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WEIGHTED ANALYTIC REGULARITY FOR THE
INTEGRAL FRACTIONAL LAPLACIAN IN POLYHEDRA

MARKUS FAUSTMANN?* CARLO MARCATI, JENS MARKUS MELENK?*, AND CHRISTOPH SCHWAB?

Abstract. On polytopal domains in 3D, we prove weighted analytic regularity of solutions to the Dirichlet problem
for the integral fractional Laplacian with analytic right-hand side. Employing the Caffarelli-Silvestre extension allows
to localize the problem and to decompose the regularity estimates into results on vertex, edge, face, vertex-edge, vertex-
face, edge-face and vertex-edge-face neighborhoods of the boundary. Using tangential differentiability of the extended
solutions, a bootstrapping argument based on Caccioppoli inequalities on dyadic decompositions of the neighborhoods
provides control of higher order derivatives.

Key word. fractional Laplacian, analytic regularity, corner domains, weighted Sobolev spaces
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1. Introduction. On a bounded, polytopal domain  C R? with Lipschitz boundary 99
comprising of (the closure of) a finite union of plane, open polygons, we consider the Dirichlet
problem for the integral fractional Laplacian

(1.1) (—A)°u = fonQ, u=0 on R"\ Q,

with 0 < s < 1, subject to a source term f that is analytic in 2.

As solutions to fractional PDEs typically exhibit a singular behaviour close to the whole
boundary 0% of the domain, the aim of this article is to capture this singular behaviour in Sobolev
scales by introducing certain weight functions, which are powers of distances to vertices, edges
or faces of the polytope and vanish on 0f2. As such, we derive weighted analytic-type esti-
mates for the variational solution u in €2, which also extends the analysis of our previous work
[FMMS22] (on 2D polygons) to the 3D-case.

Our analysis will, as in the two-dimensional setting [FMMS22], be based on localization of
(1.1) through a local, divergence form, elliptic degenerate operator in dimension 4. Furthermore, the
proof technique initiated in [BFM 23, FMMS22] will also be used here: we establish a base reg-
ularity shift of the variational solutions in €2 via the difference-quotient technique due to Savaré
[Sav98], rather than by localization and Mellin-analysis as is customary in the regularity analy-
sis of elliptic PDEs in corner domains (see, e.g., [MR10] and the references there). This allows,
largely building upon the general results in [Sav98, FMMS22], for a more succinct proof of a
small regularity shift in fractional order, non-weighted Sobolev spaces. Subsequently, this reg-
ularity is inductively bootstrapped to arbitrary order of regularity via local regularity estimates
of Caccioppoli type on appropriately scaled balls in a Besicovitch covering of the domain. These
local, analytic regularity estimates are subsequently assembled into a-priori bounds in weighted
Sobolev spaces, with corner-, edge- and face-weight functions.

While structurally similar to our analysis of the two-dimensional case [FMMS22], the analy-
sis in polyhedral domains brings additional technical difficulties: the coverings and local regu-
larity estimates exhibit a certain “recursive by dimension of the singular set” structure, reminis-
cent to the “singular chains” of M. Dauge in the analysis of the singularities of the Laplacean in
polytopal domain in R¢ for general dimension d > 2 in [Dau88].
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1.1. Relation to previous work. Asmentioned, the present analysis extends our work [FMMS22]

to polyhedral domains in R?, thereby being the first analytic regularity results for the integral
fractional Laplacian in three space dimensions.

Previous, recent work [BN23a] establishes essentially optimal finite regularity shifts in (non-
weighted) Besov spaces in general Lipschitz domains 2 C R? in arbitrary dimension d > 2,
which are also applicable in the presently considered case. As compared with [BN23a], we
consider a more restricted geometric setting of Lipschitz polyhedra Q C R? with a finite number
of faces. Asin [BN23a] and in the two-dimensional case [FMMS22] we build the base regularity
shift on the techniques of Savare [Sav98]. To obtain the analytic regularity shifts, however, we
then employ coverings and local Caccioppoli-type estimates with inductive bootstrapping. This
is distinct from the analysis in [ GB97, BG88], which is based on inductive bootstrapping in finite-
order, corner-weighted spaces of Kondrat'ev type. As in [FMMS22], we develop this regularity
analysis for the four-dimensional, singular local elliptic divergence-form PDE related to (1.1)
which was developed in [CS16] and the references there.

1.2. Impact on numerical methods. As is customary in the convergence rate analysis of
Finite Element Methods and in line with other recent works (e.g. [BLN22] and the references
there) on numerical approximation methods for the fractional Laplacean, sharp regularity for
variational solutions of (1.1) will imply corresponding convergence rate estimates of Galerkin
approximations. Similar to the two-dimensional case, where analytic regularity of solutions
to (1.1) on bounded, polygonal domains (2, which we obtained in [FMMS22], implied expo-
nential convergence bounds for corresponding hp Finite Element Galerkin approximations in
[FMMS23], the weighted analytic regularity estimates obtained in the present paper form the
foundation for proving exponential rates of convergence of suitable families of hp-Finite Element
Methods in polyhedral domains €2 in a forthcoming work.

1.3. Structure of this text. Upon fixing some notation in the next subsection, we establish
the variational formulation of (1.1) in Section 2. We also introduce the scales of boundary-, edge-
and vertex-weighted Sobolev spaces in which we subsequently will establish analytic regularity
shifts. In Section 2.3, we state our main regularity result, Theorem 2.3. The proof of this theo-
rem is developed in the remaining part of the paper. Section 4 recapitulates a global regularity
shift and localized interior regularity estimates for the extension problem, which were proved in
[FMMS22]. In Section 5, local regularity for various tangential derivatives of the solution of the
extension problem, in a vicinity of (smooth parts of) the boundary will be considered. While
the mathematical structure of the proofs is identical to the polygonal case in [FMMS22], the
number of cases to be distinguished is larger than in the polygonal case: singular sets now have
either dimension zero (vertices v), one (edges e) or two (faces f). A somewhat larger number
of combined cases (listed in Section 2.1) needs to be discussed item by item. These localized esti-
mates are combined in Section 6 with covering arguments and scaling to establish the weighted
analytic regularity. Section 7 gives a summary of our main results. Appendix A develops some
elementary estimates related to fractional norms, which are used in some of the arguments in
the main text.

1.4. Notation. The notation used here is largely consistent with our analysis in the polyg-
onal setting in [FMMS22]. For open w C R?% and t € Ny, the spaces H*(w) are the classical
Sobolev spaces of order t. For ¢t € (0, 1), fractional order Sobolev spaces are given in terms of the

Aronstein-Slobodeckij seminorm | - | +(.,) and the full norm || - || g+ (o) by
lo(2) = v(2)”
(1.2) |U|§{‘(w) = / / T dtet dz dx, ||UH§—It(w) = HUH%z(w) + |”|%It(w),
TEW JzEW |JZ Z|
2
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where we denote the Euclidean norm in R? by | - |.
For bounded Lipschitz domains 2 ¢ R? and ¢ € (0, 1), we additionally introduce

~ — 2
HY(Q) = {uec H'(RY) : u=0on ]Rd\Q}, Hv||%t(ﬂ) - Hv||§{t(ﬂ) + ||v/rgQHL2(Q),

where 790 (z) = dist(z, 992) denotes the Euclidean distance of a point z € Q from the boundary

dQ. On H'(£2) we have, by combining [Grill, Lemma 1.3.2.6] and [AB17, Proposition 2.3], the
estimate

(1.3) Vue H'(Q):  ullgiq < Clilm e

for some C' > 0 depending only on ¢ and 2. For ¢ € (0,1)\{3}, the norms 11l e ) @ [Nl e )
are equivalent on H((), see, e.g., [Grill, Sec. 1.4.4]. Furthermore, for t > 0, the space H*(Q)
denotes the dual space of H'(2), and we write (-, -) 12(0) for the duality pairing that extends the
L?(Q)-inner product.

We denote by R the positive real numbers. For subsets w C R¢, we will use the notation
wt == w x Ry ; in addition, for real Y > 0, we write w¥ = w x (0,)). For any multi index § =
(B1,.-.,B4) € N¢, we denote 97 = 951 --- 3P4 and |8 = S0, B;. We adhere to the convention
that empty sums are null, i.e., Z;’:a ¢; = 0 when b < a; this even applies to the case where the
terms c¢; may not be defined. We also follow the standard convention 0° = 1.

We use the notation < to abbreviate < up to a generic constant C' > 0 that does not depend
on critical parameters in our analysis.

2. Setting and Statement of the Main Result. There are several different ways to define the
fractional Laplacian (—A)* for s € (0,1). A classical definition on the full space R? is in terms
of the Fourier transformation F, i.e., (F(—A)*u)(£) = [£]**(Fu)(€). Alternative, equivalent def-
initions of (—A)? are, e.g., via spectral, semi-group, or operator theory, [Kwal7] or via singular
integrals.

In the following, we consider the integral fractional Laplacian defined pointwise for suffi-
ciently smooth functions u as the principal value integral

T(s + d/2)

(2.1) (=A)Yu(z) = C(d,s) P.V./ M dz with C(d,s) = —228m7

Rd |.§U _ Z|d+2s
where I'(-) denotes the Gamma function. We investigate the fractional differential equation

(2.2a) (—A)Y’u=f in{,
(2.2b) u=0  inQ°:=RNQ,

where s € (0,1) and f € H*(Q) is a given right-hand side. Equation (2.2) is understood in
weak form: Find v € H*(2) such that

(2.3) a(u,v) = ((=A)*u,v) p2gay = ([, V) p2(0 Yo € H*().

The bilinear form a(-, -) has the alternative representation

(2.4) a(u,v) = @ /]Rd /Rd (@) _Z(Z))z(gg) — () dz dx Yu,v € ﬁq(Q)
3
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Observe that the domain of integration in the bilinear form a(-,-) in (2.4) equals (2 x RY) U
(R4 x Q). Existence and uniqueness of a weak solution u € H*(Q) of (2.3) follow from the
Lax-Milgram Lemma for any f € H~*(2), upon the observation that the bilinear form a(,-) :
H*(Q) x H*() — R is continuous and coercive (observing that coercivity with respect to the
ﬁ‘s(Q)—norm follows from (1.3)).

The main result of this article asserts that, provided the data f is analytic in Q, the variational
solution u of (2.2) admits weighted analytic regqularity in a scale of boundary-, edge- and corner-
weighted Sobolev spaces in ). To state the result, we introduce some notation.

In the following, we consider © C R? a bounded, Lipschitz polyhedron with boundary 952
comprised of finitely many vertices, and straight edges and plane faces. In Q, we denote by V
the set of vertices v and by £ the set of the (open) edges e, and by F the set of the (open) faces
f of 0Q. Evidently then, 0Q = J-f U eU U, v.

Forv eV, e € £ and f € F, we shall require the distance functions

n@ ==yl re@=infle—yl, o) = infle—yl, ze

and corresponding (nondimensional) relative distances

pve(x) = Te(l')/Tv((L'), pef(x) = Tf(iC)/Te(l').

2.1. Partition of (2. For each vertex v € V, we denote by &, := {e € £ : v € €} the set of all
edges that meet at v, and F, := {f € F : f NV # ()} the set of all faces abutting at the vertex v.
For any edge e € £, we define Ve == {v eV :v e} =0e and Fo = {f € F: fNe+# 0} asthe
set of faces sharing the edge e.

For any face f € F, & = {e € £ : e C Of} is the set of edges abutting the face f, and
Vi == {v €V : v C f} is the set of vertices contained in the face f.

For fixed, sufficiently small £ > 0 and forv € V, e € &, f € F, we decompose § into various
neighborhoods defined as

wief ={reQ:r(r) <& A pvel®) <& AN per(r) < &Y

wée ={zeQ:ry(@) <& AN puelr) <& AN per(z) > & VE € Fel,

wsf ={xeQ:r(x) <& AN pyel(®) =& A per(x) <& Ve e &, NEr},
WwE={reQ iry(@) <€ A pee(r)>E A per(r) > € Vec &, feFD,
wgf ={2cQ:r(x)>¢6 A 1) <E A per(x) <E YV E Vo),
wWwE={zeQ:r(@)>€6 AN 1) <& A pet(z)>E YV EV., fEFD,
wf ={reQ ir(x)>¢ A re(x) > A re(z) <€ W eV, ec &),
B ={zeQ:r(x)>¢ A re(x) > A re(z) > Vv,ef}.

Figure 1 illustrates the neighborhoods near a vertex and Figure 2 shows the neighborhoods
close to an edge but away from a vertex. We drop the superscript £ unless strictly necessary.
Decompositions: We decompose the Lipschitz polyhedron §2 into (possibly overlapping) secto-
rial neighborhoods of vertices v, which are unions of vertex, vertex-edge, vertex-face, and vertex-
edge-face neighborhoods (as depicted in Figure 1), wedge-shaped neighborhoods of edges e
(that are bounded away from a vertex, but are unions of edge- and edge-face neighborhoods as
depicted in Figure 2), neighborhoods of faces f, and an interior Qiys, i.e.,

(25) Q=i U U (wv U U Wye U Wy Uwvef) U U (we U U wef> U U Wr .

vevy e€ly, feFy ecf feFe fer
4
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Fig. 1: Notation near a vertex v, left: top view of the vertex cone (the vertex v is behind, on a
straight line to the barycenter of the triangle), right: side view of the vertex cone.

Qint‘,

Fig. 2: Notation near an edge e with two faces f, f’ meeting at the edge and no vertex close by,
left: front view (edge collapses to point), right: side view.

Each sectoral and edge neighborhood may have a different value &, but we assume that each w,
abutts at most at one vertex, one edge or one face of 9€2. Since only finitely many distinct types
of neighborhoods are needed to decompose the polygon, the interior Qi C 2 has a positive
distance from the boundary.

2.2. Coordinates. To state the main result, and throughout the ensuing proof of analytic
estimates, we require coordinates tangential resp. perpendicular to edges e and faces f in the
local neighborhoods.

DerintrioN 2.1. [Co-ordinates and directional derivatives in neighborhoods of singular sets|

This manuscript is for review purposes only.
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1. In face or vertex-face neighborhoods we, wys, we let f; |, i = 1,2 and £, be unit vectors
such that f; | are mutually orthogonal and span the tangential plane to £, and £, is normal to
f € F. We assume that £, and f; | are right-oriented.
2. In edge or vertex-edge neighborhoods we, wye, we let e and e, |, ez | be unit vectors
such that e is tangential to e and e; | are mutually orthogonal and span the plane transversal
fo e.
3. In edge-face or vertex-edge-face neighborhoods wer, wyer, we choose three linearly inde-
pendent, right-oriented unit vectors {g)|, g, g } satisfying
e g is parallel to e and f;
o g is perpendicular to e and parallel to f;
o g is perpendicular to e and f.
Fors € {e;1,e|,fL,f; |, g, &=, gL} wedenotefirst order derivatives as Dsv = s-V zv. For higher
order derivatives, we set

Dy = Dy(DE"'v)  fork > 1.
Finally, for B = (b1, B2) € NE, we write

B _— pB B B _ nb B
Do, = Dol Doj 1 Dfn - Dfll,u Df;,\\'

The coordinates introduced above can be written in a unified way. The following definition

formalizes the notation used to write the statement of our main result and the proofs in a compact

form.

DeriNtTION 2.2. Let w C Q) be any connected set abutting at most one vertex v, one edge e, and one
face £ of 9Q. We take (g1, g, g) to be linearly independent unit vectors in R? that additionally satisfy
o g is perpendicular to f if £ N Ow # 0 and perpendicular to e if e N Ow # (;
o gy is parallel to £ if f N Ow # () and perpendicular to e if e N Ow # (;
o g is parallel to f if f N 0w # 0 and parallel to e if e N Ow # (.
With these vectors and for 3 = (B, e, B)) € N3, we introduce the derivative
g _ DPLpB=DP
D(gngh,gH) - Dgi Dgi Dg” :
2.3. Statement of the main result. The following statement is the main result of this work.
It provides weighted analytic regularity in all neighborhoods used to decompose €2.

Tueorem 2.3. Let  C R3 be a bounded, open Lipschitz polyhedron whose boundary 9§ comprises
finitely many vertices, straight edges and plane faces.
Let the data f € C'*°(R2) satisfy with a constant vy > 0

(2:6) VieNo: Y 107 fle2) <p i
|B|=4

Let u be the weak solution of (2.2).
Then, there exists -y > 0 depending only on ~¢, s, and Q2 such that for all t < 1/2, there exists Cy > 0
such that for all § = (B1, B=, B)) € N} and all w C Q as in Definition 2.2, it holds that

—t—s_ B
”raé ST’VH rghr?LD(ﬂgj-,ghg“)u”]ﬁ(w) < Ct,y\ﬁ\w\ﬁ\

with v, e, f being the closest vertex, edge, face to w.

The rest of this paper will develop the proof of these bounds.
6
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206 3. The Caffarelli-Silvestre extension. Key to the present regularity analysis is a localiza-
207 tion of the fractional Laplacian provided by the so-called Caffarelli-Silvestre extension, [ CS07]: the
208 nonlocal operator (—A)® can be realized via a Dirichlet-to-Neumann map of a degenerate, local
209 elliptic PDE on a half space in R?*!. Here, we shall be mainly interested in d = 3.

210 3.1. Weighted spaces for the Caffarelli-Silvestre extension. We recapitulate from [FMMS22]
211 certain weighted function spaces which will be used in the sequel. We distinguish the last com-
212 ponent of points in R4*! with the notation (r,y) where x = (x1,...,24) € R% y € R and we
213 set

214 (3.1) a=1-2s.

215 For open sets D C R? x R, the weighted L?-norm || - || 12 (p) is defined via
26 (32) 0= [ UG dedy
(z,y)eD

217 For the variational formulation of the CS extension, we require the space L2 (D) of functions on
218 D that are square (Lebesgue-)integrable with respect to the weight y*. With the weighted space
219 HL(D):={U € L%2(D): VU € L2(D)} we introduce the Beppo-Levi space [DL54]

20 (3.3) BL, ={Uec L} .RYxR,) : VU € L2(R? x Ry )}.

loc

221 Elements U € BL,ll admit a trace at y = 0, which we denote as trU. It holds that (e.g., [KM19,
222 Lem. 3.8]) trU € Hj (R?). Also, for supptr U C Q for a bounded Lipschitz domain €, tr U €

225 H*() and 4

(13) [KM19, Lem. 3.8]
224 (34) HtI‘ UHﬁb(Q) 5 ‘tI‘ U|HS(Rd) < ||VUHL3(]R4><]R+)

225 with implied constant depending on s and €.

3.2. Statement of the Caffarelli-Silvestre extension. Given u € H*(Q), let U = U(z,y)
denote the (unique in BL., see [FMMS22]) minimum norm extension of u to R* x R, i.e.,

U = argmin{[|VU |72 garg, ) |U € BLg, trU = uin H*(R?)}.

xR
226 The Euler-Lagrange equations corresponding to this extension problem read
227 (3.5a) div(y*VU) =0 in R? x (0, 00),
228 (3.5b) U(,0)=u  inR%

229 Henceforth, when referring to solutions of (3.5), we will additionally understand that U € BL,.
230 The relevance of (3.5) is due to the fact that the fractional Laplacian applied tou € H*(2) can
231  be recovered as distributional normal trace of the extension problem [CS07, Section 3], [CS16]:

232 (3.6) (=A)*u = —ds lim y*0,U(z,y), dy = 2270 (s) /T (1 — ).
y—0+
233 3.3. Variational Formulation of the CS Extension. Fix } > 0. Given F' € L% (R? x (0,)))

234 and f € H%(Q), consider the problem to find the minimizer U = U(x,y) with + € R? and
235y € Ry of

236 (3.7 minimize F on BL} ={U eBL! : ttU =0 on Q°},
«,0,Q «@
7
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237  where
(3.8)

238  F(U) = %b(U, U) —/

Fdedy—/ ftrUdz, b(U,V) ::/ y*VU - VV dx dy.
R4x(0,)) Q RixR4

239 Invirtue of a Poincaré inequality ([FMMS22, Lemma 3.1]), the map BL}%O,Q 53U = [[VU||L2 raxr,)

240 is a norm. The space BL;OVQ endowed with this norm is a Hilbert space with corresponding
241 inner-product given by the bilinear form b(-,-) in (3.8). Hence, for every Y € (0, 0), there is
242 Cy,q > 0 such that

243 (3.9) YU € Blaoa: Ul @ix0y) < CvallVUllL2 ®axry)-

244 Details of the proof are in [FMMS22, Appendix B].

245 Existence and uniqueness of solutions of (3.7) follows from the Lax-Milgram Lemma since,
26 for F € L2 (RY x (0,))) and f € H~*(Q), the map U Jrasoyy FU + Jo ftrU in (3.8)
247 extends to a bounded linear functional on BL}X,QQ. In view of (3.9) and the trace estimate (3.4),

248 the minimization problem (3.7) admits by Lax-Milgram a unique solution U € BL}LO’Q with the
249 a priori estimate

250 (3.10) ||VU||L§(RC'><R+) <C [HF”L%a(Rdx(o,y)) + Hf”H*S(Q)}

251  with constant C' dependent on s € (0,1), Y > 0, and €.

252 The Euler-Lagrange equations formally satisfied by the solution U of (3.7) are:
253 (3.11a) —div(y*VU) = F in R? x (0, 00),

254 (3.11b) o U(0)=f in €,

255 (3.11c) trU =0 on Q°,

256 where 8, U(z,0) = —ds lim,_,o y*9,U(x,y) and we implicitly extended F to R? x R by zero.
257 Inview of (3.6) together with the fractional PDE (—A)®u = f, this is a Neumann-type Caffarelli-
258  Silvestre extension problem with an additional source F'.

259 Remark 3.1. The system (3.11) is understood in a weak sense, i.e., to find U € BL}LO’Q such
260 that
261 (3.12) VYV €BLL o : b(U,V) = / FVdxdy+ / frVide.

” Rd xR Q

262 Dueto (3.9), the integral [;. , FV dx dy is well-defined.

263 ]

264 4. Solution regularity for the CS extension. Asin [FMMS22], we prove analytic regularity
265  of solutions of (1.1) in polyhedral 2 C R? vialocal (higher order) regularity results for solutions
266 to the Caffarelli-Silvestre extension problem in Section 3.2. These were obtained in [FMMS22,
267 Sec.3] for general space dimension d > 2. We re-state these for further reference for d = 3.

268 4.1. Global regularity: a shift theorem. The following lemma provides additional regu-
269 larity of the extension problem in the z—direction. Its proof is based on the difference quotient
270 technique developed in [Sav98], and was already used in our analysis in two spatial variables

8
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280

[FMMS22] and in [BN23a] to establish a regularity shift in Besov scales for the Dirichlet frac-
tional Laplacian.
For functions U, F, f, it is convenient to introduce the abbreviation

(4.1) N2*(U,F,f):=|VU|

L2 (RIXR,) <||VU||L3(RdXR+) + I F 22 maxco,p)) + Hf”Hl*S(Q)) .

In view of the a priori estimate (3.10), we have the simplified bound (with updated constant C')

(4.2) N*(U,F,f)<C (Hf”%{lfs(g) + ||FH%EQ(R’1><(0,3J))) :

Lemma 4.1. Let Q C R? be a bounded Lipschitz domain, and let By C R® be a ball with Q C Bp,.
For t € [0,1/2), there is C;y > 0 (depending only on s, t, Q, R, and Y) such that for f € C>=(Q),
F e L% (R? x (0,))) the solution U of (3.7) satisfies

| o 19U dy < VAL )
.

with N*(U, F, f) given by (4.1).
This is [FMMS22, Lemma 3.3] with d = 3.

4.2. Caccioppoli inequalities for the CS extension. Our regularity will be based on Cac-
cioppoli inequalities for solutions to the extension problem (3.11). These inequalities were de-
rived in [FMMS22], but we also require them for some more general cases of tangential deriv-
atives. Roughly speaking, they imply quantitative control of second order derivatives of U on
some local set (balls or sets introduced below) in terms of first order derivatives on a (slightly)
enlarged set.

DeriniTioN 4.2 (Half ball, wedge). We call the intersection between a ball and a half space whose
boundary passes through the center of the ball a half ball.

We call the intersection between a ball and two non-identical half spaces with boundaries passing
through the center of the ball a wedge.

Lemma 4.3 (Caccioppoli inequalities). Let Br(xo) be an open ball with radius R > 0 centered
at zg € Q\ V. Let R > 0 be so small that
(Z) BR(Z‘()) CQ, if],‘o e
(it) Br(zo) N Qis a half ball, if zq € {;
(iit) Br(zo) N is a wedge, if xy € e.
For § € (0,00] and c € (0, 1] denote by B?, := (B.r(z0) N Q) x (0,0) C R x RY the corresponding
concentrically scaled and extended ball / half-ball /wedge, respectively.
Let U satisfy (3.11) with given data f and F with supp(F) C R? x [0, Y] and let §' > 6.
Then, for @ € {x; :i=1,2,3} incase (i), ® € {f; | : i = 1,2} in case (ii), and @ = ey in case (iii),
there is Cipny > 0 independent of R and c, 6,0’ such that

1D (V) (5, < O (= R)Z 4 (8 = 6)2) [ VU125
(43) 1De 2y + I3 i) )-
Proof. We use a cut-off function ¢ = ((z,y) with 0 < ¢ <1 and product structure

C(@.y) = G@)G(y), G eCF(Br), (€ Cr (=00
9
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329
330
331
332
333

Here, ¢, is such that ¢, = 1 on Bcg as well as ||V, |~ (p,) < Cc((1 —¢)R)™* for some C; >
0 independent of ¢, R. Similarly, ¢, satisfies (, = 1 on (—6,6) as well as HaZCyHLoo(,QI’QI) <
C¢(0 — 0)™ for j € {0,1} with a constant C¢ independent of R, 6, 8. Hence || V(|| = ®sxr,) S
(1=c)R)™1+ (0 —0)~1.

Let e, be the already defined unit vectors for e € {f; |, e} and e,, be the unit vector in the
z;-coordinate. Let 7 € R\{0}. We define the difference quotient D] as the operator such that,
forallw:R® xR — R,

(DIw)(e,y) = LEITCaW) @Y g cps e R
T

We recall that by, e.g., [Eva98, Sec. 6.3], we have uniformly in 7

(4.4) [Devlizz m3xry) S IVUlL2 3 xR, )-

For || sufficiently small, consider the function V = D7 ((2D;U). We claim V € BL}!’O’Q, ie,
trV = 0on Q°, Vel (R®xRy), VV € LA(R? x Ry).

The first property is true as long as 7 is small enough, due to the compact support of ¢, in
Bpr C Q. The second property follows from ¢ € L>*(R* x Ry )and V € L} (R? x R, ). To show

loc

the third one, note that derivatives commute with the difference quotient operator. It follows
that

9,V = DI (¢*D70,U)).

Hence, 8,V € L(R3 x Ry ) since 9,U € L?(R® x R} ) and ( is bounded.
Similarly, for any j € {1, 2,3},

0,V = 2D;7 (C(0:,Q)DIU) + D7 (D0, U) = (I) + (1),

We have
(1) = 2[(¢00,¢) 2 = reasn) D570 + (¢0.,¢) () D3]

Using the boundedness of (9,,¢ and since D;7U € L2(R* x Ry) and DU € LZ(R3 x Ry)
by (4.4), we obtain that (I) € L2(R? x R.). In addition, by the boundedness of ¢ and since
U € BL, o implies 0,,U € L2(R3 x R..), we also obtain (/1) € L2(R® x R,). We conclude
that VV € L2(R® x R..). This implies V € BL,, ; .

We can therefore choose V as a test function in the weak formulation of (3.11) and calculate

0V = 5 (o — 7ea) (ule) — ulw — rea)) + ) () — ula + 7e4))) = Dy (D).

Integration by parts in (3.11) tested with V over R? x R and using that the Neumann trace
(up to the constant d, from (3.6)) realizes the fractional Laplacian gives

1
/ FVdxdy — —/ (=AYutrVdr = / y*VU - VVdz dy
R3 xR ds Jps

s R3 xR
~ [ Dwv0)- V(EDI)dedy
R3xR4

10

This manuscript is for review purposes only.



339

340

341
342
343

344

345

346

347

348

349

350

352

353

354
355

356
357
358
359
360
361
362
363
364

365

366

= / y*D7(VU) - ((*VDIU + 2¢V(DU) dz dy
B+

R

- /+y‘“§2DI(VU)-DI(VU) dxdy+/+ZyQCVQ-DI(VU)DIdedy.
B Bf,

R

Using the equation (—A)*u = f on Q, Young’s inequality, and the Poincaré inequality to-
gether with the trace estimate (3.4), we get the existence of constants C; > 0,j € {1,...,5},such
that

ICDI(VUI2z () < Cl(‘/B+ y*(V¢ - DI (VU)DU dz dy| +
R

)

1 r 2 2 T 2
DIV 55 + Co VG~ oy 12U o

/ F D;7¢?DIU dx dy
R3XRy

+ ’/ D7 f¢2Dludx
R3

IN

FIFl ) IV @D 5y + 166 D3 Flli— e ||<ID:u||Hs<R3>)

/\

< HgDT(VU)l\L2(B+ +cg(v<||2w s IVUIL: gy + IFI1Z: (myy
+ 1¢e D fll gr-+0) |CwD:uHs(R3)>

(34

< f||<DT<VU>||L2<B+ +c4(||vc||2 eI VUL gy + IFIIZ: (1,

6D |V<<D:U>|L3<Rw+>>

w

ZIEDIVO)L2 (5

>~

+C5 <||v<||ioc(B+)|VU||L2 (BH’ + HF”%{Q(B;) + grD:fH?J—S(Q))

Absorbing the first term of the right-hand side in the left-hand side and taking the limit 7 — 0,
we obtain the sought inequality for the second derivatives since || V(|| « (BY) S((1-c)R)~t+

(0"—60)~"'. We conclude using ||z Do f|| 1—+(0) < Cloc||De f | 12(B ) for some Cloc > 0 independent
of R, ¢, and f. 0

The Caccioppoli inequality in Lemma 4.3 can be iterated on concentric balls to provide con-
trol of higher order derivatives by lower order derivatives locally.

CoroLLARY 4.4 (High order interior Caccioppoli inequality). Let Br(zo) C §2 be an open ball
with radius R > 0 centered at xo € Q. For 6 € (0,00] and ¢ € (0, 1] denote by B?, := B.r(z0) x (0,0)
the corresponding concentrically scaled and extended ball. Let U satisfy (3.11) with given data f and F
with supp(F) C R3 x [0, Y] and let 0' > 6.

Then, there is v > 0 such that for all 3 € N3 we have with p = | 3|
(45) |lozvull;,

1) < PR VU2, (o

P
2
_|_Z ~yp)2P=9) R2(i=p) ImIaXH@ f||L2 (Br) + ‘ r‘nax ||3;’F||L%a(3;)
Jj=1 <B

n<p
11
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373
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376
377

378

379

391

392

393
394
395
396
397

Proof. We start by noting that the case p = 0 is trivially true since empty sums are zero and
0% = 1. For p > 1, we fix a multi index 3 such that |3| = p. As the z-derivatives commute with
the differential operator in (3.11), we have that 97U solves equation (3.11) with data 97 F and
OB f. Forgivenc > 0and 0 < 0 < ¢, let
1—c 0 —0

ci=c+(i—1) , 0;=04+(i—1) , i1=1,....,p+1.
b p

(1—c)R

0'—6
p 7

Then, we have ¢;.1 R — ¢;R = ,c1R = cR,and ¢,-1R = Raswell as ;41 — 0; =
61 =0,and 6,11 = 0. As R < diam ), we obtain

(9i+1 - 91‘)_2 + (Ci+1R — Ci.R)_2 S CpQR_Z/(l — 0)2

with a constant C' > 0 depending only on 2, §, §’. For ease of notation and without loss of

generality, we assume that 5; > 0. Applying Lemma 4.3 iteratively on the sets Bf: g fori >1
2

105U 1 (50

provides
2
2 p -2
C1nt ((1 _ C)QR ‘ L2 (B+ R)>

Cunep \ 7 s 2 2 = Cup \P7¥ +2; 2
< ins R™2P VU , C 1 R—°Pt4) o
= ((1—6)) H ||Li(B%) + locjz::l <(1—C)> ‘r’?‘i};” mf||L2(Bcp7j+2R)

2
L2 (Bezk) + CVIQOC Haﬂéf”LQ(Bc =+ Ha(ﬂl 1, ,62)F‘
c2

[nl=j Lp—j+1R)

p—1 D 2p—2j—2

int —2p+2j+2 allE
() R max |07 F|2: e
7=0

Choosing v = max(CZ,.,1)Cint /(1 — ¢) concludes the proof. 0

loc»

The same arguments also apply to the other cases in the statement of Lemma 4.3 for sets
near faces and edges.

Cororrary 4.5 (High order boundary Caccioppoli inequality on f).
Let £ € F be an open face of 02 and xo € f. For R > 0, let Br(xo) N Q be an open half-ball. For
6 € (0,00] and ¢ € (0,1] denote by B’y := (B.r(zo) N Q) x (0,0) the corresponding concentrically
scaled and extended half-ball. Let U satisfy (3.11) with given data f and F with supp(F) C R? x [0,))]
and let 6" > 6.

Then, there is v > 0 such that for every for all 8 € N§ with p = |31,

B
(46) |1DF'VUIR, 5o, < ()R ZIVUI, o

+

M@

2(p—J) p2(i—p) 2 n o2
(vp) R IITr]lIa)j( ||Dfo||L2(BR) + mr‘lf})fl ”DfHFHLiu(B?;)

1 n<By n<p

J

Cororrary 4.6 (High order boundary Caccioppoli inequality on e).
Let e € & be an open edge of 0 and zy € e. For R > 0, let Bg(zo) N Q be an open wedge. For
0 € (0,00] and ¢ € (0,1] denote by B%, := (B.r(wo) N Q) x (0,0) the corresponding concentrically
scaled and extended wedge. Let U satzsfj/ (3.11) with given data f and F with supp(F) C R3 x [0,)]
and let 6" > 6.

12
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420
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432

Then, there is v > 0 such that for every p € Ny

(4.7) ||DeHVUHL2(39 ) = ('YP)QPR QPHVU”Lz (BY)

p
+ > (DR (D] fl3e(mpy + 1D FIZ (e))
j=1

5. Local tangential regularity for the CS extension. Employing additional regularity of
U, which was shown in Lemma 4.1, the term HVUHLg(Bj;) in (4.5) — (4.7) is small for R — 0.
This is the made precise in the following lemma, which is the exact analog of the corresponding
statement in dimension d = 2 near edges [FMMS22, Lem. 4.3].

LemMma 5.1. For t € [0,1/2), there exists Crez > 0 (depending only on t and Q) such that the
solution U of (3.7) satisfies

(5.1) 1756V U122 (o+) < CregCeN?(U, F, f)

with the constant Cy > 0 from Lemma 4.1 and N*(U, F, f) given by (4.1).

Lemma 4.1 provides global regularity for the solution U of (3.11). Forall R,y > 0 and 2, € R?,
let B%(wo) = Bpr(zo) x (0,)). We introduce, for any set B% C R3 x Ry and any p € Ny,

p+1
62 RS = 300 (3 e 100 g,y + 37 max 1021 oy, )

j=1
We derive localized versions of Lemma 4.1 for tangential derivatives of U at the boundary. Their
proofs are minor variations of arguments in the proof of [FMMS22, Lemma 4.4 ]; we present the
details here for completeness.

Lemma 5.2 (High order localized shift theorem near a face or an edge). Let U be the solution
of (3.7). Lets € EUF. Letxzg €s. Let R € (0,1/2], ¢ € (0, 1), and assume that Br(xo) N Q is a half
ball (if s € F) or a wedge (if s € £).

Then, for t € [0,1/2), there is C > 0 independent of R and x¢ such that, forall 3 € N (if s € £) or
B € NE (ifs € F), with || =: p € N,

(53)  lIrgh D5 VU, vys) < CRTP 7 (3p)* (L4 7p) (IVUI2, () + BFIND(E D).

S|

where vy is the constant in Corollary 4.6 or 4.5.

Proof. Leté = (c+1)/2 € (¢,1). Letn, € C§°(Bzr(wo)) with 1, = 1 on Ber(zo), 1y €

Cse(=Y,Y) withnp, = Lon (—Y/2, JJ/Z) and ||VI1, || oo (Bp(zo)) < CnR™7, j € {0,1,2} as well
as ||<9y77y|\Loo _yy) < CY7, 5 €{0,1,2}, with a constant C,, > 0 independent of R and ). Let
n(x,y) = () (y)-

We denote k = 1ifs € £ and k = 2if s € F (so that § € Njj). We abbreviate Ulﬁ )= DEHU
Uh = nDg U, F‘(ﬁ ) = D] F,and f‘(’g ) = Df f. Throughout the proof we will use the fact that,
forall j € N and all suff1c1ently smooth functions v, we have

max |DSH
Inl=3

v| < 37/2 max [92v].
1Bl=3

We also note that the assumptions on 7(z, y) = 1. ()1, (y) imply the existence of C,, > 0 (which
absorbs the dependence on Y and ¢ that we do not further track) such that

(54) V203 0| oo moxm) < CoR™I,  j €{0,1,2},5 € {0,1,2}.
13
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449

Step 1. (Localization of the equation). Using that U solves the extension problem (3.11),
we obtain that the function U(#) = =nU, ) satisfies in Q x (0, 00) the equation
JlCch - div(y avﬁ(ﬁ))
=y div, (V.U )) 4 0, (y*d ﬁ(ﬁ))
=y (AU + 29, - VU + 02,07 ) + 00, (y°0,U)
+ 0, (U P 0yn) + y*0,U on
=y (A U[? + 29 - 7,07 ) + 0,520 0ym) + 50,07 0, + n div(y* VU”)
=y° ((Awn)Uﬁ +2Vyn- vaH ) + 8y(yaU\|ﬁ)ay77) + yaayUH 5y77 + 77F‘|(ﬁ)

as well as the boundary conditions

0, TP (-,0) = n(-,0Df f = J¥ on ©,
trUP) =0 on N°.

By the support properties of the cut-off function 7, we have supp F(®) C Bag(z0) x [0, ). Using
Lemma 4.1, for all ¢t € [0,1/2), there is a C; > 0 such that

(55) [ 19Ty < CNHTO, O, T,
Ry

where By is a ball containing . By (4.1), we must bound N2(U®), F(®), f(8)) e, the quantities
INU® || 12 (s xr, ) ||ﬁ(6)HLEQ(R3x(o7y)): and ||| g1+ (q. In the following, v is the constant
introduced in Corollary 4.6 or 4.5.

Step 2. (Estimate of |[VU ¥ 22 m3xr,))- Let 3 € NE be any (multi-)index such that 18] =

p — 1. We write

IVU P22 @ xz) < 21V0017 w53, I Ve Uw)”L?(By 2l 52, Vo 22 (52,
(5.6) <2C? (R_2HVU ﬁ)”Lz(By y ||VU|\5 [ 2(BY, ))

We employ Corollary 4.6 or 4.5 (with ¢ instead of ¢) to obtain for all 5 € Nj
(5.7)

VU135 53 < R‘zp(vp)2p<||VU||L2 (BY)
+ 3RO (192 ) + o 1581 o))
i=t n<p n<p

S (A

+R22R2J Y(yp)” 2J(3J maX\|55f||L2 (B T377 1|ﬂﬂnax l0z F 72 (B%))
j=1

< R () (IVUI2, (y) + REND(F.))) -
14
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452 Forp € N, we apply (5.7) to the jB-derivative and exploit the estimate (y(p—1)) 72 < max{1,y72}
453 for p > 1 to bound (y(p — 1))2p*2]Y7}(3py_1)(F, ) < max{1,7*2}(7p)2pN p)(F f). Consequently,
R

454 we obtain the existence of a constant C' > 0 such that for all p € Nitholds that (recall | B |=p—1)
55 (58) VUV, s, < Cmax{Ly 2R 2 (p) > (VU2 ) + RENDIES)) -

456 Inserting (5.7) and (5.8) into (5.6) provides the estimate

457 IVT DN gaxn,y < CR™# () (IVUI2, ) + BN DIF. 1))

458 with a constant C' > 0 depending only on the constants C,), ¢, and .
459 Step 3. (Estimate of || F'() 22 (rsxr,)). Wetreatthe five terms appearing in | F5) 2 (s xry)
460 separately. With (5.7), we obtain

1
161 V.0V, U(B) _ va Y, U(‘” <02 Hv U(B)

Hy 4 L2 _(R3x(0,)) " L2(R3xRy) — T R2 L2(BY,)

(5.7) -
2 < CRT2p)? (VU gy + BEND(E. D)) -
463 Similarly, we get (with | Bl=p—1 again)
2 2
464 [ Aw U(B)) — H A U(B)) 027 H (,3)
‘y( mUj L2 (B3%(0,)) mY; r2B¥,) ~ "R Vo L2(BYy)
- 58) 2p—2 2p 2

465 < CRT ) (VU gy + FEND(E. D)) -
466 Next, we estimate
7 nF e oo SIFV NG 2, <3 max02F I3, sy, < ()7 FENG (F ).

468 Finally, for the term 0, (y*U, I?ﬁ )8y77) + y*0,U ﬁﬁ )8yn, we observe that 0,7 vanishes near y = 0
469 so that the weight y“ does not come into play as it can be bounded from above and below by
470  positive constants depending only on ). We arrive at

471 ’

8y(y UH )8y77)+yaa Uﬂﬁ)azﬂl’

L2 (R3x(0,))

472 <C (y_2||U|?ﬁ) ||%g(BaRx(0,y)) + y_1||VUﬁﬂ)||2Lg(Bng)>
P ayre2 (e (VU R*N ) (F.
v () (IVUI72 5y + RNy (. f)

R

473 for suitable C'y > 0 depending on ).

474 Step 4. (Estimate of || f()|| H1-s(q).) Here, we use Lemma A.1 and R < 1/2 together with
475 s < 1 to obtain

76 LFON -y < 2020202 (9B 21D FI325) + D2, F 301 ()

77 < CCRaCRR (3 max 10212 s, + 370 o 10211

w78 < CCResCr R (p)™ (14 () )N ) (F. f)

479 with a constant C' > 0 depending only on €2, s, and c.
15
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480 Step 5. (Putting everything together.) Combining the above estimates, we obtain that there
481 exists a constant C' > 0 depending only on C,, Cioc,2, Y, 7, €2, 5, and ¢ such that

483 = ||V[7(B)||%§(R3><R+) + ||V(7(ﬂ)“L3(R3><]R+)Hﬁ(B)HLz_a(lWX(O,y)) + ||VI7('8)||L3(R3><R+)”f(ﬂ)”Hl*S(Q)
s SC(L+apR + RN +99) R0 ([VUIE, py, + REIND(E ) -

=
0]

185 Inserting this estimate in (5.5) we conclude that

2
A3 a 7(B) (. < —2p—1 2p 2 s+1 77(p)
486 /R+y VU (,y)HHt(mdy_C(ler)R (vp) (IIVUIILg(B%)+R NB%(F,f))-
487 Step 6. The estimate (5.3) follows from [Grill, Thm. 1.4.4.3], which gives
488 Nt VU P ()22 dy < C | y*IVTP (-, y)|30q) d

¢ ¥ a0 ( ay)Hm(Q) Y= vl ( ay)”H‘(Q) Y

Ry Ry

189 and from U = DL U on Beg x (0,)Y/2) by the definition of . 0
490 The following lemma is the same of the above, but in the interior of the domain.
491 Lemma 5.3 (High order localized shift theorem in the interior). Let U be the solution of (3.7).
492 Letzg € Q. Let R € (0,1/2], ¢ € (0,1), and assume that Br(zg) C Q.
493 Then, for t € [0,1/2), there is C > 0 independent of R and o such that, for all § € N3, with
194 p =[] € Ny,
95 (59)  Irab02VUIR, o) < CR™ )1+ 4p) (IVUI2, ) + REPNDFP))
496 Proof. The proof is the same as that of Lemma 5.2, with Corollary 4.4 replacing Corollary 4.6
497 or 4.5. 0

16
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6. Weighted H”-estimates in polyhedra. In this section, we derive higher order weighted
regularity results, at first for the extension problem and finally for the fractional PDE. The strat-
egy is as in the two-dimensional case: we first introduce suitable countable, locally finite cover-
ings of the various neighborhoods in Section 6.1. We then obtain in each of the neighborhoods
local, Caccioppoli-type regularity shifts for the solution U of the CS extension defined in Sec-
tion 3.2, in Section 6.2. Finally, in Section 6.3, we deduce from the estimates on U the analytic
regularity results for the solution u of (2.3).

6.1. Coverings. As in space dimension d = 2, [FMMS22], a main ingredient in the proofs
of a-priori estimates are suitable localizations of all the geometric neighborhoods in the partition
(2.5) of the polyhedron (2.

This is achieved by covering such neighborhoods by balls, half-balls or wedges with the
following two properties: a) their diameter is proportional to the distance to lower-dimensional
singular supports, i.e., vertices, edges and faces, and b) scaled versions of the balls/cut-balls
satisfy a locally finite overlap property.

The general procedure in our construction of suitable localized coverings of all neighbor-
hoods is hierarchic with respect to the dimension of the singular support set: if w, is close to
only one singular component, i.e., to either one vertex, edge or face (i.e. ® € {v,e,f}), we use
balls inscribed in €2 with radii proportional to the distance to 0.

For w, close to two singular components of 99, i.e., e € {ve, vf, ef }, we localize at first with
half-balls (in case of neighborhoods close to faces) centered on f in direction of the edge/vertex
or wedges (in case of wye) in direction of the vertex. Then, the half-balls/wedges are localized
again using balls centered in 2 in direction of the face/edge (implicitly done in Lemma 6.8 and
Lemma 6.11).

For w, situated simultaneously close to three singular components of 052, i.e. belonging to
vertex-edge-face-neighborhoods, we first localize with wedges centered on the edge in direction
of the vertex, then with half-balls centered on the face in direction of the edge, and finally with
balls centered in (2 in direction of the face.

As in the two-dimensional case [FMMS22, Lemma 5.1], we work with local estimates ob-
tained from Besicovitch’s Covering Theorem.

Lemma 6.1 ([MW12, Lem. A.1], [HMW13, Lem. A.1]). Let w C R? be bounded, open and
let M C Ow be closed, and nonempty. Fix ¢, ( € (0,1) such that 1 — ¢(1 4+ () = ¢ > 0. For
each x € w, let B, = B, dist(z,M) () be the closed ball of radius cdist(x, M) centered at x, and let
B, = §(1+()cdist(z,M) (x) be the scaled closed ball of radius (1 + {)cdist(x, M) centered at x.

Then, there is a countable set (x;);cz C w (for some suitable index set T C N) and a number N € N
depending solely on d, ¢, ¢ with the following properties:

1. (covering property) |J; Bz, O w.
2. (finite overlap) card{i|z € B,,} < N forall z € R%,

6.1.1. Covering of wy, we, and we. We start with coverings of vertex, edge and face neigh-
borhoods and provide coverings using balls insribed in 2 whose size is proportional to their
distance to the vertex, edge or face, respectively.

Lemma 6.2 (covering of we, ® € {v,e,f}). Given e € VUE U F and £ > 0, there are parameters
0 < ¢ < ¢ < 1aswell as points (x;)ien C we = WS such that:

(i) The collection B := {B; = Bidist(x;,e)(%i) | i € N} of open balls covers w,.

(if) The collection B = {EZ = Bedist(z,,0)(%i) | i € N} of open balls satisfies a finite overlap
property, i.e., there is an integer N > 0 depending only on the spatial dimension d = 3 and the
parameters c, ¢ such that card{i |z € B} <N for all z € R3. The balls from B are contained
in €.
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Proof. Apply Lemma 6.1 with M = {e} and sufficiently small parameters ¢, ¢ > 0. Observe
that by possibly slightly increasing the parameter ¢, one can ensure that the open balls rather
than the closed balls given by Lemma 6.1 cover w,. Also, since ¢ < 1, theindex setZ of Lemma 6.1
cannot be finite so that we may assume Z = N. O

6.1.2. Covering of wer. We now introduce a covering of edge-face neighborhoods wer. We
start by a covering of half-balls resting on the face f and with size proportional to the distance
from the edge.

Lemma 6.3. Given e € &, f € Fo, there are £ > 0 and parameters 0 < ¢ < ¢ < 1 as well as points
(x;)ien C f such that, denoting R; = cdist(z;, e) and R; = édist(z;, e):

(i) Thesets H; := = Bg, (xl)ﬂQ are half-balls and the collection B := {H; | i € N} covers wer = wgf

(ii) The collection B := {H; = = Bg (z:) N} is a collection of half-balls and satisfies a finite overlap
property, i.e., there is N > 0 depending only on the spatial dimension d = 3 and the parameters
¢, ¢ such that card{i|z € H;} < N forall z € R3.

Proof. Let f be the (infinite) plane containing f. We apply Lemma 6.1 to the 2D plane surface

f ﬂ(’?wgf (for some sufficiently small ) and M := {e} and the parameter c sufficiently small so that
B dist(z,e) () N2 is a half-ball for all z € f N 8w§f. Lemma 6.1 provides a collection (x;);eny C
such that the balls B; = B, (z;) C R? and the scaled balls B; = B(14¢)dist(as.0) (i) C R? (for
suitable, sufficiently small ¢) satisfy the following: the 2D balls { B;Nf | i € N} cover 8w§f Nf, and
the 2D balls { B; Nf |i € N} satisfy a finite overlap condition on f. By possibly slightly increasing
the parameter c (e.g., by replacing c with ¢(1 +(/2)), the newly defined balls B; then cover a set
5 ¢ for a possibly reduced &. It remains to see that the balls B; satisfy a finite overlap condition
on R2 given x € B,, its projection ¢ onto f satisfies Te € B N f since r;, €f C f. This implies
that the overlap constants of the 3D balls B; in R? is the same as the overlap constant of the 2D
balls EZ A fin f. The half-balls H; = B;NQand PAIZ = Ei N €2 have the stated properties. 0

6.1.3. Covering of wy¢. Similarly, we provide a covering of the vertex-face neighborhoods
wye using half-balls centered on the face f.
Lemma 6.4. Givenv € V, f € F,,, there are £ > 0 and parameters 0 < ¢ < ¢ < 1 as well as points
(x:)ien C f such that, denoting R; = cdist(z;, v) and R, = ¢dist(z;, v):
(i) Thesets H; = Bpg, (x;)N§2are half-balls and the collection B := {H; | i € N} coverswys = wf,f
(ii) The collection B := {H; = Bp (2:) NQ} is a collection of half-balls and satisfies a finite overlap
property, i.e., there is N > 0 depending only on the spatial dimension d = 3 and the parameters
¢, é such that card{i |z € H;} < N forall z € R®.

Proof. The proof is the same as the proof of Lemma 6.3. 0

6.1.4. Covering of wye. For the vertex-edge neighborhoods wye, we introduce a covering
using wedges centered on the edge with size proportional to the distance to the vertex.

LemmA 6.5. Given v € V, e € &, there are £ > 0 and parameters 0 < ¢ < ¢ < 1 as well as points
(x:)ien C e such that, denoting R; = cdist(x;,v) and R; = édist(z;, v):

(i) The collection of wedges B = {W C Bpg,(x;) N Q}ien covers wye = w5

(1) The collection of wedges B:= {W C By (w;) N Q}ien satisfies W; C W, and a finite overlap
property, i.e., there is N > 0 dependzng only on the spatial dimension d = 3 and the parameters

¢, ¢ such that card{i |z € W;} < N forall z € R3,

Proof. Let € be the (infinite) line containing e. We apply Lemma 6.1 to the intervals e N dwS,
(for some sufficiently small {) and M = {v} and the parameter ¢ sufficiently small so that
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Bae dist(w,e) (1) N Q2 is a wedge for all z € e N OwS,. Lemma 6.1 provides a collection (x;);en C €
such that the balls B; := B, (2;) C R3 and the scaled balls B; = Be(1+4¢) dist(z:.v) (i) C R3 (for
suitable, sufficiently small () satisfy the following: the intervals {B; N¢€|i € N} cover dw$, Ne,
and the intervals {B; N &|i € N} satisfy a finite overlap condition on €. Upon increasing the
parameter c (e.g., by replacing c with ¢(1+(/2)), the newly defined balls B; then cover a set w$,
for a possibly reduced . It remains to see that the balls B; satisfy a finite overlap condition on
R2: given x € E, its projection z onto € satisfies z, € R Nesince z; € e C €. This implies that
the overlap constants of the balls B; in R? is the same as the overlap constant of the intervals
R- Neine. The wedges W, := B, N Q and /I/IZ = El N  have the stated properties. 0
6.1.5. Covering of wyer. Inthe same way, we obtain a covering of the vertex-edge-face neigh-
borhoods wyes.
Lemma 6.6. Givenv € V, e € &, and £ € Fo N Fy, there are £ > 0 and parameters 0 < ¢ < ¢ < 1
as well as points (x;);en C e such that, denoting R; = cdist(x;, v) and E = ¢dist(x;, v):
(i) Thesets W, :== Bp, (z;)NS2are wedges and the collection B := {W; | i € N} covers wyer = wf,ef.
(if) The collection B = {Wl = Bp (2;) N Q} is a collection of wedges and satisfies a finite overlap
property, i.e., there is N > 0 depending only on the spatial dimension d = 3 and the parameters
¢, é such that card{i |z € W;} < N forall z € R3,

Proof. The proof is the same as that of Lemma 6.5, with wyer replacing wye. 0

6.2. Weighted HP-regularity for the CS extension. In the following, we provide separate
weighted analytic regularity estimates on extensions of each neighborhood w, used to decom-
pose 2in (2.5). Hereby, for any setw C R? and Y > 0, define w¥ := w x (0,)).

6.2.1. Vertex neighborhoods w,. We have
TE~Te ™~ Ty on wy .

The following lemma provides higher order regularity estimates in vertex-weighted norms
for solutions to the Caffarelli-Silvestre extension problem with smooth data.

Lemma 6.7 (Weighted HP-regularity in wy). Let wy, = w$ be given for some & > 0and v € V.
Let U be the solution of (3.7). There is v > 0 depending only on s, Q, wy, and Y, and for every
e € (0,1/2), there exists C. > 0 depending additionally on e such that for all B € N3, with p = |3,

P22 200V U T2 (oo x 0,9)) < Cev™PH D% {Hfﬁp(sz) + ||F|‘%3Q(R3X(o7y))

p
2 (maf; 197 fllzaay + e ”33F”iz-a<R3X<0’y>>> ]

= Inl

Proof. The case p = 0 follows from Lemma 5.1 and the estimates (4.1), (4.2).
We therefore assume in the remainder of this proof that p € N. Lemma 6.2 gives the covering

U; Bi O wy with scaled balls B; = B, (5,)(7;) and scaled balls B; = Bér, (z,)(x:). We denote
R; = ¢dist(x;, v) the radius of the ball R and note that, for some Cg > 1,

(6.1) VieN VzeB;, C3z'Ri<ry(z)<CgpR,.

We assume (for convenience) that R; < 1 for all s.
19
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For any multi index 3, with p = |£3],

[~ OIVUN, e I Al ik

L2(By/2)
i€N
(6.1)
< Z CpR:) 2p+a‘|r71/2+6/2aBVU”L2 (B
€N
C.53 ~
< S (CaR P R [VUIR, g, + BRG]
1€EN ‘

< CHF )y [C I /22U

1€EN

< CF (np) ! |:CB llry 1/2+‘€/2VU||2

L2 (By + Rf—i_sﬁgg (F7 f):|

L)

x(0,))

We conclude by using that in wy, rv >~ 7o and using Lemma 5.1, Lemma 4.1 and (4.2). O

6.2.2. Edge-neighborhoods w.. We have
TF ~ Te on We.-

We start with a weighted regularity estimate on arbitrary wedges centered on an edge e.
Lemma 6.8 (Weighted HP-regularity in a wedge). Lete € £, 9 € e, R >0, > 0and let

Wr = Br(zo) N{z € Q: pes(x) > ¢ VI € Fe}

be a wedge either in we 0 wye. Let ¢ € (0, 1) and let U be the solution of (3.7).

Then, there exists v > 0 depending only on s, Q, ¢ and ), and for every € € (0,1/2), there exists
C. > 0 depending additionally on e such that for all $1 = (81,1,812) € N§ and all B € No, with
pL = P11+ B12 p =B and p = p1 + py, it holds that

(62) DL DIYVUI, o, < Cor® g2 | oo (U,

L2 (w4 (W)

+ R”lﬁéé’j'g( f)) +N ‘%L(Diu F, D¢ f)

where DI+ = D! Dot 2.
Proof. The case p; = 0 follows from Lemma 5.2 and from the estimates (4.1), (4.2).

We therefore assume in the following that p; € N. Denote ¢ = (¢ +1)/2 € (¢, 1).

We observe that the argument of Lemma 6.2 also gives a covering | J, B; D W.r with balls
Bi = B, (s,)(x:) and scaled balls Ei = Bi,ro(as) (i) such that J; Ei C Weg, provided one
chooses the parameters ¢, ¢; > 1 small enough.

We denote R, := ¢; dist(x;, e) the radius of the ball R and note that, for some Cp > 1,

(6.3) VieN VzeB, C3'Ri<re(z)~ron(z)<CpR;.

We assume (for convenience) that R; < 1 for all .
We apply Lemma 5.3 to the function Dé’;; U (noting that this function satisfies (3.11) with
data D;‘“ f, D;‘“ F) with the pair (B, B;) of concentric balls, with ) /2 instead of Y, and with
20
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653 constant denoted v; > 1. For any 8, = (8. 1,.2) € N and By € No, withp, = [8.1] € Nand
654 p| = B”, it holds that

@5 gD DG VUG, s,
L'<6‘2 pL—1/2+€D5J_ Dpll 2
= ane el e||VU||L2(BW4)
€N o
(6.3)
D S (Com g D DRI
€N o
L.53 Ne
< S (O R (p ) R {'Dﬁ VUl gvrs) + BT N gy (DG F Dey f )}
ppe « i i
3) N7
656 - s
< O s P I DL VU, sy + RN LD DY )|
ieN ' '
S CF T npr )t {Irelms/zlﬁ VUl w3y + Nigs)a(Del F, D) f)]

L.5.2 ~
< O np )P (a1 [R_Qp_l (”VU g + BRGNP, f>)

+ RysL(D4 D 1),

wy/?
657  where we have used Lemma 5.2 in the last step. 0
658 CoroLLaRY 6.9. Let e € Eand Y > 0. Let U be the solution of (3.7).
659 Then, there exists v > 0 depending only on s, , ( and Y, and, for every e € (0,1/2), there exists

660  Ce > 0 depending additionally on e such that for all B, = (B11,8.12) € NE and all B € No, with
661 pr = P11+ Bui2 p) =P andp=p. + py, it holds that

602 (6.4) [r2+ =12 D2 Dl VUIR, vy < Coy™ o NE(E, f).

663 Proof. This follows directly from Lemma 6.8 with R ~ 1 and from (4.2). 0
664 6.2.3. Vertex-edge neighborhoods wy.. We have

665 rE o~ Te and Te < Ty on Wye-

666

667 LemMma 6.10 (Weighted HP-regularity in wye). Let U be the solution of (3.7). Thereis v > 0

668  depending only on s, Q, and Y, and for every € € (0,1/2), there exists C. > 0 depending additionally
669 on e such that for all 81 = (B11,81,2) € N§and B € No, withp, = B11+ BL2 p) = B, and
670 p=p1L +Dp|, it holds that

+e — € -~
671 (6.5) ||7,€H rgi 1/2+ Dﬁij""VUIIQLQ (w%’e/‘l) < Cs’YQerlpszg(z@(Faf)a

672 where D3+ = DI D2

€1, ez |

673 Proof. We use the covering of wedges W; C B.g,(x;) with Wz C Bg,(z;) givenby Lemma 6.5.
674  We have, for a constant Cy > 1,
675 VieN VeeW, Oyt R < ry(z) < CwR.
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676 Using this and Lemma 6.8,

677 I p”JFETM UHEDMD'ENVUHH( v/
B
678 <) (CwRy)*PI+2e||ppa =1 /2 e Dl Do VU3, qyvsa,
i€EN
—2 s
< S (Cw R g R (RIS, i, + RV E D)
i€N

RSl )|

< ,72p+1 QpZ |:||T_1/2+EVU||

RS+ NS08 F DL ).
€N

L2 Wy)

679 The bound r(z) > ran(x), the finite overlap of the wedges ﬁ/\i, Lemma 5.1, and (4.2) conclude

680 the proof. O
681 6.2.4. Face neighborhoods wg. We write HY, = Hp x (0,)) and start with a weighted
682 regularity estimate on arbitrary half-balls centered on a face f.

683 Lemma 6.11 (Weighted HP-regularity in a half-ball). Letf € F, xo € f, R > 0, ( > 0and let
684 Hp :BR(.’L‘())ﬁQ

685 be a half-ball. Let ¢ € (0, 1) and let U be the solution of (3.7). There is v > 0 depending only on s, Q,
686 ¢ and Y, and for every € € (0,1/2), there exists C. > 0 depending additionally on € such that for all
687 B = (By,1,B),2) € N§ and 1 € No, with p = By1 + B2, pL = B1, and p = p| + py, it holds that

655 (6.6) ||r§r1/2+8Dﬁin‘“‘VU|| < Coytip? [R 2py— 1<||VU|L2

L2 (Hy/4 Hy)
689 - RS“N‘(};“; (F, f)) + (p;/)2(D§||”F Dfu”f)
o Bi _ 1P pbi.e
690 where Dy = Dy, Dy,
691 Proof. The case p; = 0 follows from Lemma 5.2 and the estimates (4.1), (4.2). We therefore
692 assume p; € N.
693 Denote ¢ = (¢ +1)/2 € (c,1). The arguments of Lemma 6.2 give a covering | J, B; O Hcr

694 with balls B; = B, (s, (7;) and scaled balls B; = B, re(2:)(2:) such that J; B; C Hzp, if one
695 chooses the parameters c;,¢; > 1 small enough.
696 We denote R; := ¢; dist(x;, ) the radius of the ball B; and note that, for some Cz > 1,

07 (6.7) VieN VoeeB;, Cg'R; <re(x)=roa(z) < CpRy.

698  We assume (for convenience) that R; < 1 for all ¢.
699 We apply Lemma 5.3 to the function Dﬁ ‘” U (noting that this function satisfies (3.11) with

700 data Dfl I” f, D’B ' F') with the pair (B;, B;) of concentric balls, with /2 instead of ), and with
701 constant denoted 7 > 1. Forany 3 = (B)1,5),2) € NZ and 3, € Ny, with p; = 16| € Nand
702 p, = B, it holds that
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720
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722

723

HT?L 1/2+6D[3LDPHVUH

f) L2(HZL)
1/2+ B
Z” pL—1/ stijHHVU”Lz (By/4)
1€N
(6.7) _
= Z CpR;)*+"|r, 1/QJFE/QD[))LD‘{"BHHVUHL? (BY'*)
€N
L.53
< ) (CpRy)*+ ¥ (mpy )P R4 1[D€|VU;(:§W>
1€EN o

s B B
RN 0] F D] 1)

(©.3) —1/2 28
< O upa Y |l DYVUIR, o

s ~ 8 8
i€EN ‘

- B B B
S szgm (’71PJ_)2pL+1 |:Tf 1/2+E/2DfH”VU||L2 (HY!?) Ng;/)z(DfHH F Df|f):|

L.52
< OF* (mpL)+ (qopy) 1 [R2p1<||VU||L2 ) +RS+1N’”H (F, f)>
L B B
+ ]\7(173}/)2 (Df”HF Df”H f):l’

where we have used Lemma 5.2 in the last step. 0

CoroLLaRrY 6.12. Let £ € Fand )Y > 0. Let U be the solution of (3.7). Then, there exists v > 0
depending only on s, Q, ¢ and Y, and for every e € (0,1/2), there exists C. > 0 depending additionally
on ¢ such that for all B = (B).1,8),2) € N2 and B, € Ny, with p| = B+ B2 pL = BL, and
p = p) + pL, it holds that

_ 8 ~
(6.8) v DL D VU, iy < CAPPH PPN ).
Proof. This follows directly from Lemma 6.11 with R ~ 1 and from (4.2). 0

6.2.5. Vertex-face neighborhoods wys. We have

v ~ Te and re < Te on wyf.

LemMma 6.13 (Weighted HP-regularity in wye). Let U be the solution of (3.7). There is v > 0
depending only on s, Q, and Y, and for every € € (0,1/2), there exists C. > 0 depending additionally
on ¢ such that for all B = (B),1,0),2) € NZ and B, € Ny, with P = By + B2 pL = Bi, and
p=p|+pL, it holds that

(6.9) IS DDV UR, s < C?P PR (E, ),
Bi _ 1P b2
where DfH Dfl § Df2 y

Proof. We use the covering of scaled half-balls H;, = B.g, (z;) N Q with ﬁi = Bpg,(z;) N Q
given by Lemma 6.4. We have, for some constant Cy > 1,

VieN VeeH;  C}'R; <ry(z) < CyR;.
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Using this and Lemma 6.11, we obtain

|l p|te ?L 1/2+€DﬁLD6HVU”

f) L2 (w 37/4)

< S (Cy Rk Dl DU

L2 (Hy/4)
1€N
—2 P
< SRt R (RIVUIR, g, + RFEY (D)
ieN ‘
B B
+ N(pj/)2 (DfHHF DfHH f)]
- () B B
< S I U, oy + R (R + RYSLDL F. D7 1)

ieN

The bound ry (z) > ran(z), the finite overlap of the half-balls H i, Lemma 5.1, and (4.2) conclude
the proof. O

6.2.6. Edge-face neighborhoods wer. We have
re < Te ON Wef-

We recall the directional coordinates in Def. 2.2.

LemMma 6.14 (Weighted HP-regularity in wee). Let U be the solution of (3.7). There is v >
0 depending only on s, Q, and Y, such that for every ¢ € (0,1/2), there exists C. > 0 depending
additionally on e such that for all (3, B=, B1) € N3, p= By + Be + BL € Ny,

(6.10) Irgerg /DG D Dl VU, /sy < Cor ' pP NE(E,]) -

Proof. We write interchangeably p, and f,, for e € {F, ||, L}. We use the covering of scaled
half-balls H; = Bcg,(x;) N Q with H; = Bg, (z;) N Q given by Lemma 6.4. We have, for some
constant C'y > 1,

VieN VeeH; C5'R; <re(x) < CyR,.

Applying Lemma 6.11 to the function Dg‘l‘ U, which solves (3.7) with data Dg” F, Dg” f, and
remarking that g is parallel to f,

Ir=terg* =2 DG DD VU2, vim,

< Z(Cym%;”f||r€“”2+EDBLDBF Dg|VU|?

L2 (Hy/s)
€N
< Z(CyRi)2p;=+2a,yf(PJ_+Ph)+l(pJ_ _’_p’:)Q(lerp;:) |:Ri2pt (R11”D§||||VU”L2 Hy/2)+
€N

s B B B B
RN (DGF. DY) + K4 (0 D P DG D 1

£ B
lra /2T Dg| VU |12 +

< AP (p) fpe)PPatee) { L2/

€N
~(pe+ B B
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The bound re(z) > ro0(x) and the finite overlap of the half-balls H; imply that we can apply
Lemma 5.2 to obtain, for a constant C' > 0 that depends on &£ and on the covering of half-balls,

— B Cop ~
S DGV, sy < CR 1 (1) (IO, g+ RS (8. 1) ).
i€eN

where (Tagjf is a domain that contains the union of the half-balls ]LAI2 and where we can choose
R ~ 1. Equation (4.2) concludes the proof. 0

6.2.7. Vertex-edge-face neighborhoods wy.r. We have
e Sre < Ty ON Wyef-

We recall the directional coordinates in Def. 2.2.

Lemma 6.15 (Weighted HP-regularity in wyer). Let U be the solution of (3.7). Thereis v > 0
depending only on s, Q, and Y, and for every € € (0,1/2), there exists C. > 0 depending additionally on
e such that for all ()], B, 1) € N§, p = ) + B= + BL € Ny,

(6.11) I gt e g T DG D Dl VU, /s < Cer 0P NE(E, ) -

Proof. We write interchangeably p, and ., for e € {F, ||, L}. We use the covering of wedges
W;, W; given by Lemma 6.6. We have, for some constant Cyy > 1,

VieN VoeW, Cyp'Ri<re(z)<CwRi.

The arguments of Lemma 6.3 give a covering | J; H; D W; with half-balls H; = Bc, ., (,)(z;) N,

x; € f and scaled half-balls H; = Bg,re(a;) (27) N2 such that |J; Hj Wi, provided one chooses
the parameters c;, ¢; > 1 small enough.
Consequently, as in the proof of Lemma 6.14, we have

- —1/2 B —2p;—1
lrg="=rg* /“DmDﬁhDgHVUHLz /s S (np)* T l:Ri a <VU||L2<wy)
s ~(pe+ 7 B B
F RN )+ BSOS + B 0] R0 )|

It follows that

I pll+€7,p;=+s m 1/2+5D5LD5FDﬁ”VU||2

gl 2 (w2/8)
e € —1/2 B
< Z(CWRi)szJrz ”T,ZHr TfIfJ_ / +5DﬁLD6': DgH VUHL2 W/
1€EN
S Y (I VU,

1€N

FRIENGL (P + NGB ) NQ;L(D%”F D' f)|.

The finite overlap of the wedges W;, Lemma 5.1, and equation (4.2) conclude the proof. 0
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6.2.8. Unified weighted analytic regularity bounds for U. We unify the bounds in all neigh-
borhoods in the following statement.

ProprosITION 6.16. Let w C 2 be any set whose boundary intersect at most one v € V, onee € &,
and one f € F. Let (g1,g=,g|) be linearly independent unit vectors as in Def. 2.2. Then, there exists
v > 0 such that for all t < 1/2, there exists C; > 0 such that for all 3 = (8L, =, B)) € N3 with

ﬂej_ = (5la@:)/

1B, | m DP

IBI
”T Pve (81,85, gu

VUl L2 (v /1) < Coy? PP BRPINGSD (F, £).

6.3. HP-regularity for the solution v in the polyhedron Q). The preceding analytic regular-
ity bounds on the solution U of the CS extension (3.11) imply corresponding weighted, analytic
regularity on the weak solution u of the integral fractional Laplacian in the polyhedron €2 ie.
(2.3) via (3.5b). Quantitative control of u in terms of U is achieved via the multiplicative trace
estimate given in the next lemma.

Lemma 6.17. Let Y > 0. There exists Cy,y > 0 such that, for all V. : Q x (0,)) — R with
V(z,) € HL((0,Y)) for all = € Q, it holds that

2 11—« 14«
(6.12) V(z,0)]" < Cuy (||V(l“’ Mz (0. 195V (2, ')||L£((0,y)) + V(-] %g((o,y))) ’

y
where, for a function v : Ry — R, we write ||v||3, (0y) = / y*|o(y)|? dy.
o 0
Proof. From the proof of [KM19, Lem. 3.7], we have, for all W (z,-) € HL(R),

(6.13)

W (@ 0)P < Cor (IW G, 3 10, )Gy + I @) e )

Let then n € Cg°(=Y,Y) with n(0) = 1 and ||n|[ze®) + |7 |L~®) < C,. Choose W = 1V in
(6.13). We obtain

V (@, 0)]* = [(V)(,0)[
< Cur (1)@, )13 ) 1@ V) @, MR G, + 10V (@, )32 )
< CuC2 (20V (@, )53 05 1@V @ )50y + 31V @ ) Bz 0 )

where we have also used that (a+b)!T® < 2(a'*® +b!7%) forall « € (—1, 1) and all non negative
a,b. 0

Proof of Thm. 2.3. Assume || > 1. Using V = yU in (6.12) together with multipli-

(gL g=,8|)
2|Be . .
cation by r55" 2l 2lfe. | p22+ and integration over w leads to
pot—s B\\rﬁhrﬂLDﬂ u 2
o v f (g1,8=.8)) L2(w)
11— 1+a
t15\|[3»:»5l5 tﬁ\\ﬁbﬂiﬂ ‘
< Cuy Hra v s D(gmgbygu)U‘ L2 (w¥/4) ‘raﬂrv D(gL gh’gu)VU L2 (w¥/4)
2
t—s »3\\ 5.: BL B
+Cuy HraQ v "' D(gbgh,gu)U‘ L2 (w¥/4)

On each neighborhood w, it either holds that rgq ~ r (when dw does not intersect with any
face or edge of the boundary), ropn =~ re (When Ow intersects with an edge but no face of the
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boundary), or rpq = r¢. Consequently, as || > 1, there is a suitable 3 € N3 with | 3| = [8|—1 > 0
such that

—t By B BL B
Toalv Te' Tt D(gJ. ge, gH)VU

—t—1 ﬂu ﬁt BL B
To0 Tt D(gL,ghgu) ‘

Lg(wy/4) - Li(wy/4)
Now, the statement follows from Proposition 6.16.

The case || = 0 essentially follows from a 1D weighted Hardy inequality similarly as in
[FMMS22]. Here, we illustrate the argument for the vertex-edge-face case w = wyer, noting that
the remaining cases correspond verbatim to discussions in [FMMS22].

We use the coordinates {g, g=, g } introduced in Definition 2.1 and — by rotation and trans-
lation — assume that the local orthogonal coordinate system coincides with the canonical coor-
dinates in R®. We introduce the equivalent vertex-edge-face neighborhood

Gl ={r € Q21 € (0,p),72 € (0,€x1), 73 € (0, x2)}

and drop the superscripts in the following. We denote by u the function « in the coordinate
system in wyer. We remark that there exists ¢ > 1 such that in Wyer holds

(6.14) 1 <ry(2) e, w2 <re(x) < cx2

and we observe also 7¢(z) = 3 = raa(x). Hence, for almost all ;1 € (0, ) and x5 € (0,&x1), it
holds that

(6.15) (.733 — 7’% = S(DgLﬂ)(J:)> € L*((0,&x)).

Now, the fundamental theorem of calculus, the Cauchy-Schwarz inequality, and (6.15) imply

Holder continuity of @(x1, z2, ) for almost all x1,z2. As u € H*(Q2), we can therefore employ
the Hardy inequality of [KMR97, Lem. 7.1.3], which gives

[re (@1, 22, ) || £2((0,£22)) < Clrg™"" *(Dg, u)(x1, 22, )| 22((0,¢22))5

with a constant C' independent of z1,z2. Squaring, integrating in turn over 2 € (0,{z1) and
x1 € (0, 1), and using (6.14), we obtain

1758 Ul L2@ver) = IITe Ul L2@0er) < Cllirad *reDg, till L2(@er)-

The term in the right-hand side of the above inequality has been bounded in the first part of this
proof; this completes the proof except for the fact that the region wyer \ Wver is nNot covered yet.
This region can be treated with modifying the parameter ¢, exactly as in [FMMS22, Rem. 5.8].0

7. Conclusion. For the Dirichlet integral fractional Laplacian (—A)® in a bounded, poly-
topal domain 2 C R3, subject to a source term f which is analytic in 2, we proved weighted,
analytic regularity of weak solutions. The analysis and the result extends the theory in polygons
Q2 C R?, developed in our previous work [FMMS22], to dimension d = 3.

As is well known from the numerical analysis of Galerkin approximations of solutions for
elliptic PDEs, weighted Sobolev regularity of solutions has direct consequences for the approx-
imation rate theory of numerical methods: boundary weighted Sobolev regularity and Besov
regularity has recently been used to investigate the convergence rates of first order Galerkin FE
discretizations on boundary-graded, shape-regular meshes in [BN23b]. The (boundary- and
corner-) weighted analytic regularity proved in [FMMS22] is the basis of exponential convergence
rate bounds for hp-FEM in space dimensions d = 1,2 [BEM 23, FMMS23].
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Directions for natural extensions of the present results in three space dimensions suggest
themselves: first, the presently developed proof and the geometric structure of the weights in 2
should facilitate analogous weighted analytic regularity results for integral fractional diffusion
such as (—V - A(z)V)?, with an anisotropic diffusion coefficient A(-) being a uniformly positive
definite d x d matrix, again with analytic in 2 entries. Likewise, the exponential convergence rate
bound established in [FMMS23] in the two-dimensional setting will generalize to the presently
considered, polyhedral setting, albeit with rate given by C exp(—bN1/6), with N denoting the
number of the degrees of freedom of the hp-FE subspace, and with constants b, C' > 0 depending
on €, f but not on N. Here, the larger number of geometric situations for > 3 edges meeting in
one, common vertex of J§2 will mandate significant extensions and additional technical issues
as compared to the proof in [FMMS23]. Details will be developed elsewhere.

Appendix A. Localization of fractional norms. The following lemma is a slightly improved
version of [FMMS22, Lemma A.1]

Lemma A.l. Let R > O such that Br C Q, c € (0,1),n € C5°(Ber), and s € (0,1). Then,

(A1) Infllz-+) < CoclnllLo o) 1l 2(B.r)s

(A2) [nfl1-2@) < Croc,2 [ (RIVl oo () + (B + D[l zoe (Bos)) 11l 2251
+ ||77||L°°(BcR)|f‘H1*S(BR)]>

where Cioc depends only on Q and s, and Cioc 2 depends additionally on c.

Proof. (A.1) follows directly from the embedding L? C H~*. For (A.2), we start from the
definition of the Slobodecki semi-norm

2
WY LT CETE

We denote the intermediate radius between R and cR as R = 13¢R and write ¢ = 15¢ so

that R— R = R — cR = éR. We split the integration over §2 x Q2 into four subsets,

° BE X Bg,

° BE x B NQ,

o BENQ x B,

o BLNQx BNQ

For the last case, i.e., forall (z, 2) € B N x B{p N, we have that 5(z) = n(z) = 0 and the

integral is zero. Then, for all (z,2) € B x Bf N, we have |z — z| > ¢R. Hence, using polar
coordinates centered at z,

e n(2)f(2) / / f(@)P
dzdmf dz dx
/ /CmQ z|d+2 2 ©NQ |:U z|dJr2 2
1 o
< / @ @) | ——deds S / In(@) f () / P dy
. 55, 2 — 2] 5, -

2428 |12 2 _ 2 2
S (GR)7*? ||77HLoo(BCR)/B (@) de S R [nll 7 5,0y 1 £ 1228 )

R

For the integration over B% N x B.gr, we write using polar coordinates (centered at z)

(=)l 1
/ / d+2 2s dzdr = ‘n(z)f(Z)P T d+2—2s dr dz
7N/ Ber |x Z| Ber BeNQ |z — 2|
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Ben) 1281 -

s [ merer [ 55

Finally, for the integration over By x Br, we use the triangle inequality

[ S

In(x)f(w) —n(@)f(z)]° —n(2)f(2)]?
S/Bﬁ /BR T dzd:c—i—/ /BR o |d+2_25 dz dw
= (I) + (I1)

We have
< If P 40 g <
(1) HnHLOO(BCR) Z‘dﬁ 55 dzdr < |0l (o) | flH1-2(BR)-
Since |n(x) —n(z)| < ||Vn||Loo(BcR) |z — z| and using polar coordinates (centered at z) we esti-
mate
(1D < Vil oy [ QP [ g dods
Br By |z — 2|

2R
2 — s 2 2 s
A2 . /B F)P / 2z V2 gy 1 ) B2
R

The straightforward bound || f|z2() < |7z~ (B.x) I fllz2(B.») concludes the proof. 0
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