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Abstract. Physics-informed neural networks (PINNs) are a popular and powerful approach for6
solving problems involving differential equations, yet they often struggle to solve problems with high7
frequency and/or multi-scale solutions. Finite basis physics-informed neural networks (FBPINNs)8
improve the performance of PINNs in this regime by combining them with an overlapping domain9
decomposition approach. In this paper, the FBPINN approach is extended by adding multiple levels10
of domain decompositions to their solution ansatz, inspired by classical multilevel Schwarz domain11
decomposition methods (DDMs). Furthermore, analogous to typical tests for classical DDMs, strong12
and weak scaling studies designed for measuring how the accuracy of PINNs and FBPINNs behaves13
with respect to computational effort and solution complexity are carried out. Our numerical results14
show that the proposed multilevel FBPINNs consistently and significantly outperform PINNs across15
a range of problems with high frequency and multi-scale solutions. Furthermore, as expected in16
classical DDMs, we show that multilevel FBPINNs improve the scalability of FBPINNs to large17
numbers of subdomains by aiding global communication between subdomains.18

Key words. Physics-informed neural networks, overlapping domain decomposition methods,19
multilevel methods, multi-scale modeling, spectral bias, forward modeling, differential equations20

1. Introduction. Scientific machine learning (SciML) [3, 52, 12, 2, 35] is an21

emerging and rapidly growing field of research. The central goal of SciML is to pro-22

vide accurate, efficient, and robust tools for carrying out scientific research by tightly23

combining scientific understanding with machine learning (ML). The field has pro-24

vided many such tools which have enhanced traditional approaches, from accelerating25

simulation algorithms to discovering new scientific phenomena.26

One popular SciML approach are physics-informed neural networks (PINNs)27

[25, 40]. PINNs solve forward and inverse problems related to differential equations28

by using a neural network to directly approximate the solution to the differential29

equation. They are trained by using a loss function which minimizes the residual of30

the differential equation over a set of collocation points. The initial concepts behind31

PINNs were introduced in [25], and later re-implemented and extended in [40]. One32

of the advantages of PINNs over traditional methods for solving differential equations33

such as finite difference (FD) and finite element methods (FEM) is that they provide34

a mesh-free approach, paving the way for the application of problems with complex35

geometry or in very high spatial dimensions; cf. [33]. Furthermore, they can easily be36

extended to solve inverse problems by incorporating observational data.37

Since their invention, PINNs have been employed across a wide range of domains38

[12, 22]. For example, they have been used to solve forward and inverse problems39

in geophysics [36], fluid dynamics [21, 6, 41], and optics [10]. Many extensions of40

PINNs have also been proposed. For example, PINNs have been extended to carry41

out uncertainty quantification [54], learn fast surrogate models [49, 55], and carry out42
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2 V. DOLEAN, A. HEINLEIN, S. MISHRA, B. MOSELEY

equation discovery [11].43

However, PINNs suffer from a number of limitations. One is that, compared to44

traditional methods, their convergence properties are poorly understood, although45

some work have started to explore this [34, 42, 51]. Another limitation is that, com-46

pared to traditional methods, the computational cost of training PINNs is relatively47

high, especially when they are only used for forward modeling [22]. Finally, a major48

limitation of PINNs is that they often struggle to solve problems with high frequency49

and/or multi-scale solutions [37, 50]. Typically, as higher frequencies and multi-scale50

features are added to the solution, the accuracy of PINNs usually rapidly reduces and51

their computational cost rapidly increases in a super-linear fashion [37].52

There are multiple reasons for this behavior. One is the spectral bias of neural53

networks, which is the well-studied property that neural networks tend to learn high54

frequencies much slower than low frequencies [53, 39, 4, 9]. Another is that, as higher55

frequencies and more multi-scale features are added, more collocation points and a56

larger neural network with significantly more free parameters are typically required57

to accurately approximate the solution. This creates a significantly more complex58

optimization problem when training the PINN.59

Recently, [37] proposed finite basis physics-informed neural networks (FBPINNs),60

which aim to improve the performance of PINNs in this regime by using an overlapping61

domain decomposition (DD) approach. In particular, instead of using a single neural62

network to approximate the solution to the differential equation, many smaller neural63

networks were placed in overlapping subdomains and summed together to represent64

the solution. On the one hand, FBPINNs can be seen as a domain decomposition-65

based network architecture for PINNs. On the other hand, by taking this “divide and66

conquer” approach, the global PINN optimization problem is transformed into many67

smaller local optimization problems, which are coupled implicitly due to the overlap68

of the subdomains and their globally defined loss function. The results in [37] show69

that this significantly improves the accuracy and reduces the training cost of PINNs70

when solving differential equations with high frequency and multi-scale solutions.71

In this work, we significantly extend FBPINNs by incorporating multilevel model-72

ing into their design. In particular, instead of using a single domain decomposition in73

their solution ansatz, we add multiple levels of overlapping domain decompositions.74

This idea is inspired by classical DDMs, where coarse levels are required for numeri-75

cal scalability when using large numbers of subdomains. Furthermore, to assess the76

performance of multilevel FBPINNs, we define strong and weak scaling tests for mea-77

suring how the accuracy of PINNs and FBPINNs scale with computational effort and78

solution complexity, analogous to the strong and weak scaling tests commonly used79

in classical DDMs.80

Given these extensions, the performance of PINNs, (one-level) FBPINNs, and81

multilevel FBPINNs across a range of high frequency and multi-scale problems is82

investigated. Across all these tasks, we find that multilevel FBPINNs significantly83

outperform both PINNs and FBPINNs in terms of accuracy and computational cost.84

As expected in classical DDMs, we show that multilevel FBPINNs improve the scal-85

ability of FBPINNs when a large number of subdomains are used by aiding global86

communication between subdomains.87

The remainder of this work is structured as follows. In subsection 1.1, we discuss88

related work on combining ML, PINNs, and DD, and in subsections 1.2 and 1.3, we89

give a brief overview of neural networks and PINNs. Then, we define FBPINNs and90

extend them to multilevel FBPINNs in section 2. Our strong and weak scaling tests91

and corresponding numerical results on the performance of PINNs, FBPINNs, and92
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multilevel FBPINNs across a range of high frequency and multi-scale problems are93

discussed in section 3. Finally, in section 4, we discuss the implications and limitations94

of our work and further research directions.95

1.1. Related work. In general, the idea of combing ML with classical DDMs is96

not new; for early works on using ML to predict the geometrical location of constraints97

in adaptive finite element tearing and interconnecting (FETI) and balancing domain98

decomposition by constraints (BDDC) methods; see [17]. An overview of the first99

attempts on combining DD and ML can be found in [18].100

For specifically combining PINNs with DD, some of the first methods in this area101

were the deep domain decomposition method (D3M) [27], the deep-learning-based102

domain decomposition method (DeepDDM) [29, 28], and its two-level variant [32],103

which use PINNs to solve local problems and overlapping Schwarz steps to iteratively104

connect them based on Lions’ parallel Schwarz algorithm [30]. At the same time,105

a series of other extensions, like cPINNs and XPINNs [20] were proposed, which106

similarly divide the domain and use PINNs to solve each local problem; here, typically107

a nonoverlapping domain decomposition is used. The advantage of all these methods108

is their high potential for parallelism, but the downside is the increasing complexity of109

the local loss functions as additional terms are required to enforce coupling between110

subdomains.111

In contrast, FBPINNs do not require local loss functions nor any additional loss112

terms since they use a globally-defined solution ansatz and loss function [37]. Gated-113

PINNs introduced in [45] are perhaps most similar to FBPINNs, where several local114

networks, called experts, are used for training and the domain decomposition itself is115

learned for better efficiency. The idea of learnable domains was also recently exploited116

in XPINNs to improve their performance [19].117

1.2. Neural networks. We first provide a basic definition of a neural network.118

For the purpose of this work, we simply consider a neural network to be a mathemat-119

ical function with some learnable parameters. More precisely, the network is defined120

as u(x,θ) : Rdx × R
dθ → R

du , where x are some inputs to the network, θ are a set121

of learnable parameters, and dx, dθ, and du are the dimensionality of the network’s122

inputs, parameters, and outputs. In a traditional supervised learning setting, learn-123

ing typically consists of fitting the network function to some training data containing124

example inputs and outputs, by minimizing a loss function with respect to θ which125

penalizes the difference between the network’s outputs and the training data.126

The exact form of the network function is determined by the neural network’s127

architecture. In this work, we solely use feedforward fully connected networks (FCNs)128

[16]. In this case, the network function is given by129

(1.1) u(x,θ) = fn ◦ ... ◦ fi ◦ ... ◦ f1(x,θ)130

where now x ∈ R
d0 is the input to the FCN, u ∈ R

dn is the output of the FCN, n is the131

number of layers (depth) of the FCN, and fi(x,θ) = σi(Wix+bi) where θi = (Wi,bi),132

Wi ∈ R
di×di−1 are known as weight matrices, bi ∈ R

di are known as bias vectors, σi133

are element-wise activation functions commonly chosen as rectified linear unit (ReLU),134

hyperbolic tangent, or identity functions, and θ = (θ1, ...,θi, ...,θn) are the set of135

learnable parameters of the network. Note that only the nonlinear activation functions136

σi facilitate nonlinearity of the network function.137

1.3. Physics-informed neural networks. Physics-informed neural networks138

(PINNs) [25, 40] use neural networks to solve problems related to differential equa-139
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tions. In particular, PINNs focus on solving boundary value problems of the form140

(1.2)
N[u](x) = f(x), x ∈ Ω ⊂ R

d,
Bk[u](x) = gk(x), x ∈ Γk ⊂ ∂Ω

141

where N[u](x) is some differential operator, u(x) is the solution, and Bk(·) are a142

set of boundary conditions (BCs) which ensure uniqueness of the solution. For the143

sake of simplicity, we consider BCs in a broad sense; we do not explicitly distinguish144

between initial and boundary conditions, and the x variable can include time. Equa-145

tion (1.2) can describe many different differential equation problems, including linear146

and non-linear problems, time-dependent and time-independent problems, and those147

with irregular, higher-order, and cyclic boundary conditions.148

To solve (1.2), PINNs use a neural network to directly approximate the solution,149

i.e., u(x,θ) ≈ u(x). Note, for simplicity throughout this work, we use the same nota-150

tion for the true solution and the neural network. It is important to note that PINNs151

provide a functional approximation to the solution, and not a discretized solution152

similar to that provided by traditional methods such as finite difference methods, and153

as such PINNs are a mesh-free approach for solving differential equations. Following154

the approach proposed by [40], the following loss function is minimized to train the155

PINN,156

(1.3) L(θ) =
λI

NI

NI∑

i=1

(
N[u](xi,θ)− f(xi)
︸ ︷︷ ︸

PDE residual

)2
+

Nk∑

k=1

λk
B

Nk
B

Nk
B∑

i=1

(
Bk[u](x

k
i ,θ)− gk(x

k
i )

︸ ︷︷ ︸

BC residual

)2
.157

where {xi}
NI

i=1 is a set of collocation points sampled in the interior of the domain,158

{xk
j }

Nk
B

j=1 is a set of points sampled along each boundary condition, and λI and λk
B are159

well-chosen scalar weights that ensure the terms in the loss function are well balanced.160

Intuitively, one can see that by minimizing the PDE residual, the method tries to161

ensure that the solution learned by the network obeys the underlying PDE, and by162

minimizing the BC residual, the method tries to ensure that the learned solution is163

unique by matching it to the BCs. Importantly, a sufficient number of collocation164

and boundary points must be chosen such that the PINN is able to learn a consistent165

solution across the domain.166

Iterative schemes are typically used to optimize this loss function. Usually, vari-167

ants of the gradient descent (GD) method, such as the Adam optimizer [24], or quasi-168

Newton methods, such as the limited-memory Broyden–Fletcher–Goldfarb–Shanno169

(L-BFGS) algorithm [31] are employed. These methods require the computation of170

the gradient of the loss function with respect to the network parameters, which can171

computed easily and efficiently using automatic differentiation [23] provided in mod-172

ern deep learning libraries [1, 38, 5]. Note that gradients of the network output with173

respect to its inputs are also typically required to evaluate the PDE residual in the loss174

function, and can similarly be obtained and further differentiated through to update175

the network’s parameters using automatic differentiation.176

1.3.1. Hard constrained PINNs. A downside of training PINNs with the177

loss function given by (1.3) is that the BCs are softly enforced. This means the178

learned solution may deviate from the BCs because the BC term may not be fully179

minimized. Furthermore, it can be challenging to balance the different objectives180

of the PDE and BC terms in the loss function, which can lead to poor convergence181

and solution accuracy [51, 46]. An alternative approach, as originally proposed by182
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Fig. 1. Scaling high frequency problems to low frequency problems using domain decomposi-
tion. FBPINNs decompose the domain into many subdomains, and use neural networks within each
subdomain to learn the local solution. The input coordinates to each network are normalized to the
range [-1,1] over their individual subdomains. When solving problems with high frequency solutions,
this effectively scales each local problem from a high frequency problem to a lower frequency problem,
and helps reduce the network’s spectral bias.

[25], is to enforce BCs in a hard fashion by using the neural network as part of a183

solution ansatz. More precisely, the solution to the differential equation is instead184

approximated by [Cu](x,θ) ≈ u(x) where C is an appropriately selected constraining185

operator which analytically enforces the BCs [37, 26].186

To give a simple example, suppose we want to enforce u(x = 0) = 0 when solving a187

one-dimensional ordinary differential equation (ODE). The constraining operator and188

solution ansatz could be chosen as [Cu](x,θ) = tanh(x)u(x,θ) ≈ u(x). The rationale189

behind this is that the function tanh(x) is zero at 0, forcing the BC to always be190

obeyed, but non-zero away from 0, allowing the network to learn the solution away191

from the BC.192

In this approach, the BCs are always satisfied and therefore the BC term in the193

loss function (1.3) can be removed, meaning that the PINN can be trained using the194

simpler unconstrained loss function,195

(1.4) L(θ) =
1

N

N∑

i=1

(N[Cu](xi,θ)− f(xi))
2.196

where {xi}
N
i=1 is a set of collocation points sampled in the interior of the domain.197

Note that, in general, there is no unique way of choosing the constraining operator,198

and the definition of a suitable constraining operator for complex geometries and/or199

complex BCs may be difficult or sometimes even impossible, i.e., this strategy is200

problem dependent; in this case, one may resort to the soft enforcement of boundary201

conditions (1.3) instead.202

2. Methods. In this section, we define FBPINNs (subsection 2.1) and extend203

them to multilevel FBPINNs (subsection 2.2). We also discuss the similarities and204

differences of FBPINNs and multilevel FBPINNs to classical DDMs (subsection 2.2.2).205

2.1. Finite basis physics-informed neural networks. As discussed in sec-206

tion 1, a major challenge when training PINNs is that, when higher frequencies207

and multi-scale features are added to the solution, the accuracy of PINNs usually208

rapidly reduces and their computational cost rapidly increases in a super-linear fash-209

ion [37, 50].210

In the FBPINN approach [37], instead of using a single neural network to represent211

the solution, many smaller neural networks are confined in overlapping subdomains212

and summed together to represent the solution. By taking this “divide and conquer”213
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Ω1 Ω2

Ω3 Ω4

Fig. 2. Plot of a square domain Ω decomposed into four overlapping subdomains, using a
uniform rectangular decomposition.

approach, the global PINN optimization problem is transformed into many smaller214

coupled local optimization problems.215

Furthermore, FBPINNs ensure that the inputs to each subdomain network are216

normalized over their individual subdomain. When solving problems with high fre-217

quency solutions, this effectively scales each local problem from a high frequency218

problem to a lower frequency problem, and helps limit the effect of spectral bias;219

Figure 1 explains this effect further.220

2.1.1. Mathematical definition. We now provide a mathematical definition
of FBPINNs. First, the global solution domain Ω is decomposed into J overlapping
subdomains {Ωj}

J
j=1; cf. Figure 2. Then, for each subdomain Ωj , a space of network

functions is defined,

Vj = {vj(x,θj) | x ∈ Ωj ,θj ∈ Θj} ,

where vj(x,θj) is a neural network placed in each subdomain and Θj = R
Kj is the221

linear space of all possible network parameters. Here, Kj is the number of local222

network parameters which is determined by the network architecture.223

Next, each subdomain network is confined to its subdomain by multiplying each
network with a window function ωj(x), where supp

(
ωj

)
⊂ Ωj . Note the neural

network functions used in Vj generally can have global support, and the window
functions are used to restrict them to their individual subdomains. Furthermore, we
impose that the window functions form a partition of unity, i.e.,

J∑

j=1

ωj ≡ 1 on Ω.

Given the space of network functions and the window functions, we define a global
space decomposition given by V as

V =

J∑

j=1

ωjVj .

This space decomposition allows for decomposing any given function u ∈ V as follows224

(2.1) u =

J∑

j=1

ωjvj or u(x,θ) =

J∑

j=1

ωjvj(x,θj),225
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respectively.226

FBPINNs solve the boundary value problem (1.2) by using equation (2.1) to227

approximate the solution, and we refer to (2.1) as the FBPINN solution. From a228

PINN perspective, the FBPINN solution can simply be thought of as a specific type of229

neural network architecture for the PINN which sums together many locally-confined230

networks to generate the output solution.231

The same scheme for training PINNs is used to train the FBPINN. More specif-
ically, the FBPINN solution (2.1) is substituted into the PINN loss function (1.3)

and the same iterative optimization scheme is used to learn the parameters {θj}
J
j=1

of each subdomain network. FBPINNs can also be trained with hard BCs by using
the same constraining operator approach described in subsection 1.3.1. In particular,
substituting the FBPINN solution (2.1) into the hard-constrained loss function (1.4)
yields the loss function

L(θ) =
1

N

N∑

i=1

(N[C

J∑

j=1

ωjvj ](xi,θj)− f(xi))
2.

Note, naively computing the FBPINN solution (2.1) can be very expensive as it232

requires a summation over all subdomain networks at each collocation point. However,233

this cost can be significantly reduced by noting that only subdomains which contain234

the respective collocation point need to be included; more details on our software235

implementation are provided in Appendix A.236

2.2. Multilevel FBPINNs. Multilevel FBPINNs extend FBPINNs by adding237

multiple levels of domain decompositions to their solution ansatz. They are inspired by238

classical multilevel DD methods, where coarse levels are generally required for numer-239

ical scalability when using large numbers of subdomains, and multilevel approaches240

may significantly improve performance; see, for instance, [47, 15]. Our hypothesis241

is that multilevel modeling similarly improves the performance of FBPINNs. The242

generalization of FBPINNs to two levels was briefly discussed in [14] and we fully243

introduce the concept here.244

A multilevel FBPINN is defined as follows. First, we define L levels of domain
decompositions, where each level, l, defines an overlapping domain decomposition of
Ω with J (l) subdomains, i.e.,

D(l) =
{

Ω
(l)
j

}J(l)

j=1
,

for j = 1, . . . , J (l). Without loss of generality, let J (1) = 1, that is, on the first level,245

we only have one subdomain Ω
(1)
j = Ω. Moreover, we let J (1) < J (2) < . . . < J (l),246

meaning that the number of subdomains increases from one to the next level.247

Next, we define spaces of network functions for each level,

V
(l)
j =

{

v
(l)
j (x,θ

(l)
j ) | x ∈ Ω

(l)
j ,θ

(l)
j ∈ Θ

(l)
j

}

, j = 1, . . . , J (l), l = 1, . . . , L,

as well as a partition of unity for each level using window functions, ω
(l)
j , with

supp
(
ω
(l)
j

)
⊂ Ω

(l)
j and

J(l)
∑

j=1

ω
(l)
j ≡ 1 on Ω ∀l.
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Example subdomain boundary
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(f) FBPINN solution
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0.4

0.6

0.8

Fig. 3. Example of a multilevel FBPINN solving Laplace’s equation in one and two dimensions.
For the 1D problem, the multilevel FBPINN uses L = 3 levels, where each level has 1, 2 and

4 subdomains respectively. The window functions, ω̂
(l)
j (x), used for each level are shown in (a),

the individual solutions learned by each subdomain network are shown in (b), and the multilevel
FBPINN solution is shown in (c). For the 2D problem, the multilevel FBPINN uses L = 3 levels,
where each level has 1 × 1, 2 × 2 and 4 × 4 subdomains respectively, using a uniform rectangular
domain decomposition. The domain decompositions for level 2 and level 3 are plotted in (d) and (e),
and the multilevel FBPINN solution is shown in (f). Note the subdomain boundaries and window
functions extend past the problem domain (in this case, [0, 1]d). Example collocation points used to
train the multilevel FBPINN are plotted in (a), (d) and (e).

We can then define a global space decomposition,

V =
1

L

L∑

l=1

J(l)
∑

j=1

ω
(l)
j V

(l)
j ,

and use this space decomposition to decompose any given function u ∈ V as follows,248

(2.2) u =
1

L

L∑

l=1

J(l)
∑

j=1

ω
(l)
j v

(l)
j or u(x,θ) =

1

L

L∑

l=1

J(l)
∑

j=1

ω
(l)
j v

(l)
j (x,θ

(l)
j ).249

We refer to (2.2) as the multilevel FBPINN solution. Note, the original FBPINN250

solution described in subsection 2.1 can be obtained by simply setting L = 1; we refer251

to these as one-level FBPINNs going forward.252

Analogously, we can train multilevel FBPINNs by using the same training scheme253

as PINNs and inserting (2.2) into the PINN loss function. When using the hard-254

constrained PINN loss function (1.4), this yields the corresponding multilevel FBPINN255

loss function256

(2.3) L(θ) =
1

N

N∑

i=1

(N[C
1

L

L∑

l=1

J(l)
∑

j=1

ω
(l)
j v

(l)
j ](xi,θ

(l)
j )− f(xi))

2.257
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2.2.1. Example of a multilevel FBPINN. We now show a simple example
of a multilevel FBPINN to aid understanding. In particular, we use a multilevel
FBPINN to solve the Laplacian boundary value problem,

−∆u = f in Ω = [0, 1]d,

u = 0 on ∂Ω.

First we consider the 1D case (d = 1), and set f = 8. Then the exact solution is258

given by u(x) = 4x(1− x).259

We create an L = 3 level FBPINN to solve this problem, with J (1) = 1, J (2) = 2,260

and J (3) = 4. Each level uses a uniform domain decomposition given by261

Ω
(l)
j =

{

[0.5− δ/2, 0.5 + δ/2] l = 1,
[
(j−1)−δ/2

J(l)−1
, (j−1)+δ/2

J(l)−1

]

l > 1,
(2.4)262

263

where δ is defined as the overlap ratio and is fixed at a value of δ = 1.9. Note that an
overlap ratio of less than 1 means that the subdomains are no longer overlapping. The
subdomain window functions form a partition of unity for each level and are given by

ω
(l)
j =

ω̂
(l)
j

∑J(l)

j=1 ω̂
(l)
j

where ω̂
(l)
j (x) =

{

1 l = 1

[1 + cos(π(x− µ
(l)
j )/σ

(l)
j )]2 l > 1,

where µ
(l)
j = (j − 1)/(J (l) − 1) and σ

(l)
j = (δ/2)/(J (l) − 1) represent the center and264

half-width of each subdomain respectively. Note that FBPINNs are not restricted to265

these particular window functions or partition of unities and any other choice could266

be used instead. The window functions for each level are plotted in Figure 3 (a). A267

FCN (1.1) with 1 hidden layer and 16 hidden units is placed in each subdomain, and268

the x inputs to each subdomain network are normalized to the range [-1,1] over their269

individual subdomains.270

The multilevel FBPINN is trained using the hard-constrained loss function (2.3)271

with a constraining operator given by [Cu](x,θ) = tanh(x/σ) tanh((1− x)/σ)u(x,θ)272

and σ = 0.2. The loss function is minimized using the Adam optimizer with a learning273

rate of 1× 10−3 and N = 80 uniformly-spaced collocation points across the domain.274

The resulting multilevel FBPINN solution is shown in Figure 3 (c), and the in-275

dividual subdomain network solutions (with the constraining operator and window276

function applied) are shown in Figure 3 (b). In this case, we find the FBPINN closely277

matches the exact solution.278

Next we consider the 2D case (d = 2), and set f(x1, x2) = 32(x1(1−x1)+x2(1−279

x2)). Then the exact solution is given by u(x1, x2) = 16(x1(1− x1)x2(1− x2)).280

In this case we create a L = 3 level FBPINN to solve this problem, using a281

uniform rectangular domain decomposition for each level with J (1) = 1 × 1 = 1,282

J (2) = 2 × 2 = 4, and J (3) = 4 × 4 = 16, as shown in Figure 3 (d) and (e). The size283

of each subdomain along each dimension is defined similar as in (2.4) using, again, an284

overlap ratio of δ = 1.9. The subdomain window functions are given by285

(2.5)

ω
(l)
j =

ω̂
(l)
j

∑J(l)

j=1 ω̂
(l)
j

, where ω̂
(l)
j (x) =

{

1 l = 1
∏d

i [1 + cos(π(xi − µ
(l)
ij )/σ

(l)
ij )]

2 l > 1,
286

where µ
(l)
ij and σ

(l)
ij represent the center and half-width of each subdomain along each287

dimension, respectively. An FCN (1.1) with 1 hidden layer and 16 hidden units is288
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placed in each subdomain, and the x inputs to each subdomain network are normalized289

to the range [-1,1] along each dimension over their individual subdomains.290

Similar to above, the multilevel FBPINN is trained using the hard-constrained
loss function (2.3), using a constraining operator given by

[Cu](x,θ) = tanh(x1/σ) tanh((1− x1)/σ) tanh(x2/σ) tanh((1− x2)/σ)u(x,θ),

with σ = 0.2. The loss function is minimized using the Adam optimizer with a learning291

rate of 1× 10−3 and N = 80× 80 = 6,400 uniformly-spaced collocation points across292

the domain.293

The resulting multilevel FBPINN solution is shown in Figure 3 (f). Similar to the294

1D case, we find the multilevel FBPINN solution closely matches the exact solution.295

2.2.2. Multilevel FBPINNs versus classical multilevel DDMs. Whilst296

multilevel FBPINNs are inspired by classical multilevel DDMs, a number of differences297

and similarities exist between these approaches. We believe it is insightful to briefly298

discuss these below.299

Most classical DDMs can be described in terms of the abstract Schwarz frame-300

work [44, 47]. Similar to FBPINNs, this framework is based on a decomposition of a301

global function space V into local spaces {Vj}
J
j=1 defined on overlapping subdomains302

Ωj , where303

(2.6) V =

J∑

j=1

R⊤
j Vj .304

Here, R⊤
j : Vj → V is an interpolation respectively prolongation operator from the305

local into the global space. These notions can be defined in a similar fashion at306

the continuous and discrete level. For the sake of simplicity, we suppose here a307

variational discretisation of the PDE to solve. The space decomposition (2.6) allows308

for decomposing any given discrete function u ∈ V as309

(2.7) u =
J∑

j=1

R⊤
j vj , vj ∈ Vj ;310

due to the overlap, this decomposition is generally not unique. Schwarz DDMs are311

then based on solving local overlapping problems corresponding to the local spaces312

{Vj}
J
j=1 and merging them via the prolongation operators R⊤

j .313

Classical one-level Schwarz methods based on this framework are typically not314

scalable to large numbers of subdomains. In particular, since information is only315

transported via the overlap, their rate of convergence will deteriorate when increasing316

the number of subdomains [47]. In order to fix this, multilevel methods add coarser317

problems to the Schwarz framework to facilitate the global transfer of information; in318

particular, the coarsest level typically corresponds to a global problem.319

We note that:320

• In classical Schwarz methods, the global discretization space V is often fixed321

first, and then, the local spaces {Vj}
J
j=1 are constructed. In FBPINNs, we do322

the opposite; we define a local space of neural network functions on an overlap-323

ping domain decomposition {Ωj}
J
j=1 and construct the global discretization324

space from them.325
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• In classical Schwarz methods, the local functions vj ∈ Vj are generally not de-326

fined on the global domain Ω outside the overlapping subdomain Ωj ; the pro-327

longation operatorsR⊤
j extend the local functions to Ω such that supp(R⊤

j vj) ⊂328

Ωj , ∀vj ∈ Vj . On the other hand, in FBPINNs, the local neural network func-329

tions vj generally have global support, and the window functions ωj are used330

to confine them to their subdomains. This difference steams from the fact331

that the local neural networks are not based on a spatial discretization but a332

function approximation; cf. subsection 1.3. Nonetheless, both the prolonga-333

tion operators and the window functions ensure locality; cf. (2.1) and (2.7).334

Note that the prolongation operators in the restricted additive Schwarz (RAS)335

method [8] also include a partition of unity, such that they are very close to336

the window functions in FBPINNs.337

• A key difference is how the boundary value problem is solved. Whereas in338

domain decomposition methods, local subdomain problems are explicitly de-339

fined and solved in a global iteration, in FBPINNs, the global loss function340

is minimized. Moreover, classical DDMs can exploit properties of the sys-341

tem to be solved. For instance, if the PDE is linear elliptic, convergence342

guarantees for classical DDMs can be derived; cf. [47, 15]. In FBPINNs, we343

always have to solve a non-convex optimization problem (1.3) or (1.4), which344

makes the derivation of convergence bounds difficult. Note that there are345

also nonlinear overlapping domain decomposition methods, for instance, ad-346

ditive Schwarz preconditioned inexact Newton (ASPIN) and additive Schwarz347

preconditioned exact Newton (ASPIN) methods [7].348

3. Numerical results. In this section, we assess the performance of multilevel349

FBPINNs. In particular, we investigate the accuracy and computational cost of using350

multilevel FBPINNs to solve various differential equations, and compare them to351

PINNs and one-level FBPINNs.352

First, in subsection 3.1, we introduce the problems studied. Then, in subsec-353

tion 3.2 we introduce a notion of strong and weak scaling, inspired by classical DDMs,354

for assessing how the accuracy of FBPINNs and PINNs scales with computational ef-355

fort and solution complexity. In subsection 3.3, we list the common implementation356

details used across all experiments. Finally, in subsection 3.4 we present our numerical357

results.358

3.1. Problems studied. The following problems are used to assess the perfor-359

mance of multilevel FBPINNs;360

3.1.1. Homogeneous Laplacian problem in two dimensions. First, we361

consider the 2D homogeneous Laplacian problem already presented above, namely362

−∆u = f in Ω = [0, 1]2,

u = 0 on ∂Ω,
(3.1)363

where
f(x1, x2) = 32(x1(1− x1) + x2(1− x2)).

In this case, the exact solution is given by

u(x1, x2) = 16(x1(1− x1)x2(1− x2)).

This problem is used to carry out simple ablation tests of the multilevel FBPINN.364

In particular, we assess how varying the number of levels and subdomains as well as the365
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overlap ratio and size of the subdomain networks (architecture) affects the multilevel366

FBPINN performance.367

3.1.2. Multi-scale Laplacian problem in two dimensions. Next, we con-368

sider a multi-scale variant of the Laplacian problem (3.1) above by using the source369

term370

(3.2) f(x1, x2) =
2

n

n∑

i=1

(
ωiπ

)2
sin(ωiπx1) sin(ωiπx2).371

Then, the exact solution is given by

u(x1, x2) =
1

n

n∑

i=1

sin(ωiπx1) sin(ωiπx2).

In this case, multi-scale frequencies are contained in the solution, and the values372

of n and ωi allow us to choose the number of components and the frequency of each373

component. We use this problem to assess how the performance of the multilevel374

FBPINN scales when more multi-scale components are added to the solution.375

3.1.3. Helmholtz problem in two dimensions. Finally, we study the 2D376

Helmholtz problem377

∆u− k2u = f in Ω = [0, 1]2,

u = 0 on ∂Ω,

f(x) = e−
1
2 (∥x−0.5∥/σ)2 ,

(3.3)378

with a constant (scalar) wave number, k. Here, homogeneous Dirichlet boundary379

conditions and a Gaussian point source with a scalar width, σ, placed in the center380

of the domain are used. Note that, for this problem, the exact solution is not known,381

and instead, we compare our models to the solution obtained from FD modeling, as382

described in Appendix B.383

In this case, the solution contains complex patterns of standing waves where the384

dominant frequency of the solution depends on the wave number, k. We use this prob-385

lem to test the multilevel FBPINN on a more realistic problem. We first carry out386

some simple ablation tests by assessing how varying the number of levels, subdomains,387

overlap ratio and size of the subdomain networks affects the multilevel FBPINN per-388

formance. Then, we assess how the performance of the multilevel FBPINN scales389

when the value of k is increased.390

3.2. Definition of strong and weak scaling. For both the multi-scale Lapla-391

cian and Helmholtz problems, we carry out strong and weak scaling tests. These assess392

how the accuracy of the multilevel FBPINN scales with computational effort and so-393

lution complexity and are inspired by the strong and weak scaling tests commonly394

used in classical DD. They are defined in the following way;395

• Strong scaling: We fix the complexity of the problem and increase the model396

capacity. For optimal scaling, we expect the convergence rate and/or accuracy397

to improve at the same rate as the increase of model capacity.398

• Weak scaling: We increase the complexity of the problem and the model399

capacity at the same rate. For optimal scaling, we expect the convergence400

rate and/or accuracy to stay approximately constant.401
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Fig. 4. Hierarchy of levels used in the multilevel FBPINN. For all the multilevel FBPINNs
tested we use an exponential level structure. This means that the number of subdomains in each
level is given by 2d(l−1), where l is the level number and d is the dimensionality of the domain. Our
hypothesis is that this helps the multilevel FBPINN model solutions with frequency components that
span multiple orders of magnitude.

For all our tests, increasing the model capacity means increasing the number of402

levels, number of subdomains, size of the subdomain networks, and/or the number403

of collocation points used. The exact factors varied and their rates of increase are404

detailed in the relevant results sections below. Note all of the multilevel FBPINNs405

tested have been trained on a single GPU, and hence we only show strong and weak406

scaling tests with respect to model capacity and not hardware parallelization.407

3.3. Common implementation details. Some of the implementation details408

of the multilevel FBPINNs, one-level FBPINNs, and PINNs tested are the same across409

all tests. These details are presented here; some are only changed for ablation studies,410

in which case they are described in the relevant results section below.411

Level structure. Firstly, all multilevel FBPINNs use an exponentially increasing412

number of subdomains per level. In particular, we choose J (l) = 2d(l−1) for l = 1, ..., L.413

This level structure is shown in Figure 4. This constraint is chosen so that the414

multilevel FBPINN is able to contain an exponentially large number of subdomains415

with a relatively small number of levels; our hypothesis is that this helps the multilevel416

FBPINN model solutions with frequency components that span multiple orders of417

magnitude.418

Domain decomposition. All FBPINNs tested use a uniform rectangular domain419

decomposition for each level, with all multilevel FBPINNs having 2l−1 subdomains420

along each dimension. The size of each subdomain along each dimension is defined421

similar to (2.4), i.e., all 2D domain decompositions look similar to those shown in422

Figure 3 (d) and (e). Furthermore, all FBPINNs use the same subdomain window423

functions, given by (2.5).424

Network architecture. All the FBPINNs tested use FCNs with identical architec-425

tures as their subdomain networks. The PINNs tested also use FCNs as their network426

architecture. For all the FBPINNs tested, the x inputs to each subdomain network427

are normalized to the range [-1,1] along each dimension over their individual subdo-428

mains. For the PINNs tested, the x inputs are normalized to the range [-1,1] along429

each dimension over the global domain.430

Loss function and optimization. All FBPINNs and PINNs tested use the hard-431

constrained variants of their loss functions. All tests use the Adam optimizer with a432
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Fig. 5. Ablation tests using the homogeneous Laplacian problem. The convergence curve of
a baseline multilevel FBPINN is plotted when changing the number of levels (top right), overlap
ratio (bottom left), and number of hidden units for each subdomain network (bottom right). The
baseline model has L = 3 levels, an overlap ratio of δ = 1.9, and 16 hidden units for each subdomain
network. The exact solution is shown (top left). Convergence curves of two other benchmarks are
shown; a PINN (bottom right), and one-level FBPINNs with varying numbers of subdomains (top
right). The lists which label each model in the top right plot contain the number of subdomains along
each dimension for each level in the model.

learning rate of 1×10−3. For fairness, the same constraining operator is used across all433

models tested on a given problem. Furthermore, exactly the same collocation points434

are used for training whenever multiple models are compared on a given problem. This435

is similarly the case for all testing points used after training. All models are evaluated436

using the normalized L1 test loss, given by L(θ) = 1
M

∑M
i ∥u(xi,θ) − u(xi)∥/σ,437

where M is the number of test points and σ is the standard deviation of the set of438

true solutions {u(xi)}
M
i .439

Software and hardware implementation. All FBPINNs and PINNs tested are im-440

plemented using a common training framework written in JAX [5]. Further details441

on our software implementation are given in Appendix A. All models are trained on442

a single NVIDIA RTX 3090 GPU.443

3.4. Results. Here, we will discuss the results for the model problems described444

in subsection 3.1.445

3.4.1. Homogeneous Laplacian problem in two dimensions. First, we446

carry out simple ablation tests of the multilevel FBPINN using the 2D homogeneous447

Laplacian problem described in subsection 3.4.1.448

To carry out our ablation tests, we first train a baseline multilevel FBPINN449

to solve this problem, using L = 3 levels, an overlap ratio along each dimension450

of δ = 1.9, and FCNs with 1 hidden layer and 16 hidden units for each subdo-451
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main network. The multilevel FBPINN is trained using the constraining operator452

[Cu](x,θ) = tanh(x1/σ) tanh((1 − x1)/σ) tanh(x2/σ) tanh((1 − x2)/σ)u(x,θ) with453

σ = 0.2. Here, N = 80 × 80 = 6,400 uniformly-spaced collocation points and454

M = 350 × 350 uniformly-spaced test points across the global domain are used to455

train and test the multilevel FBPINN, respectively.456

Given this baseline model, we then vary different hyperparameters over a range457

of values and measure the change in performance. This is carried out for the number458

of levels ranging from L = 2 to 5, the overlap ratio ranging from 1.1 to 2.7, and the459

number of hidden units in the subdomain network ranging from 2 to 32. Our results460

are shown in Figure 5. We observe that the accuracy of the multilevel FBPINN461

does not depend significantly on the number of levels, likely because in this case the462

solution is very simple. However, its accuracy increases as the overlap ratio increases,463

likely because there is more communication between the subdomain networks, which is464

similar to what is expected in classical DDMs. Furthermore, its accuracy increases as465

the number of free parameters of the subdomain networks increases. This is expected466

as the capacity of the model increases. Thus, the multilevel FBPINN has similar467

characteristics to classical DDMs for this problem.468

We carry out two other benchmark tests. First, we train a PINN with 3 hid-469

den layers and 64 hidden units, and second, we train four one-level FBPINNs with470

J (1) = 2, 4, 8, and 16 subdomains along each dimension, respectively. All other rele-471

vant hyperparameters are kept the same as the baseline model. These results are also472

shown in Figure 5. In these tests, the PINN is able to solve the problem, although473

its final accuracy is lower than the baseline multilevel FBPINN and its convergence474

curve is more unstable. Furthermore, the accuracy of the one-level FBPINN reduces475

as more subdomains are added. This is analogous to the expected behavior of one-476

level classical DDMs, which is not scalable to large numbers of subdomains, and shows477

that coarse levels are required for scalability. It is therefore likely that the additional478

levels in FBPINNs serve the same purpose as in classical DDMs, i.e., they allow direct479

transfer of global information.480

3.4.2. Multi-scale Laplacian problem in two dimensions. Next, we eval-481

uate the strong and weak scalability of the multilevel FBPINN using the multi-scale482

Laplacian problem described in subsection 3.4.2.483

Strong scaling test. First, we carry out a strong scaling test. Here, the problem484

complexity is fixed and we assess how the performance of the multilevel FBPINN485

changes as the capacity of the model is increased. In particular, we fix the problem486

complexity by choosing n = 6 with ωi = 2i for i = 1, ..., n in (3.2). Thus, the solution487

contains 6 multi-scale components with exponentially increasing frequencies. This488

represents a much more challenging problem than the homogeneous problem studied489

above. The exact solution in this case is shown in Figure 6.490

We increase the capacity of the multilevel FBPINN by increasing the number of491

levels, testing from L = 2 to 7. For each test, (5 × 2L−1) × (5 × 2L−1) uniformly-492

spaced collocation points are used, i.e., the density of collocation points inside the493

subdomains in the highest level of each model is kept constant. The rest of the494

hyperparameters of the multilevel FBPINN are kept fixed across all tests. Namely,495

we use an overlap ratio of δ = 1.9 and FCNs with 1 hidden layer and 16 hidden units496

for each subdomain network. All models are trained using the constraining operator497

[Cu](x,θ) = tanh(x1/σ) tanh((1 − x1)/σ) tanh(x2/σ) tanh((1 − x2)/σ)u(x,θ) with498

σ = 1/ωn. M = 350× 350 uniformly-spaced test points are used to test all models.499

The results of this study are shown in Figure 6. We find that the accuracy500

This manuscript is for review purposes only.



16 V. DOLEAN, A. HEINLEIN, S. MISHRA, B. MOSELEY

0 5000 10000 15000 20000 25000 30000
Training step

10 1

100

101

102

No
rm

al
ise

d 
L1

 te
st

 lo
ss

102 103

Total time elapsed (s)

10 1

100

101

102

No
rm

al
ise

d 
L1

 te
st

 lo
ss

FBPINN
[1, 2]

(10, 10)

FBPINN
[1, 2, 4]
(20, 20)

FBPINN
[1, 2, 4, 8]
(40, 40)

FBPINN
[1, 2, 4, 8, 16]

(80, 80)

FBPINN
[1, 2, 4, 8, 16, 32]

(160, 160)

FBPINN
[1, 2, 4, 8, 16, 32, 64]

(320, 320)

FBPINN
[64]

(320, 320)

FBPINN
[1, 8, 64]

(320, 320)

0.0 0.5 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Exact solution

PINN
5-256

(320, 320)

Fig. 6. Strong scaling test using the multi-scale Laplacian problem. In this test the problem
complexity is fixed and the solution estimated using multilevel FBPINNs with increasing numbers of
levels and collocation points are plotted (top row). The title of each plot describes the level structure
(first line) and the number of collocation points along each dimension (second line). The color-coded
convergence curves and training times for each model are shown (bottom row). The exact solution
is shown (middle row). Plots of the solutions and convergence curves of a PINN, one-level FBPINN
and three-level FBPINN benchmark are also shown (middle and bottom row).

of the multilevel FBPINN increases as the number of levels increases, where the501

L = 2, 3, 4 and 5 models are unable to accurately model the solution, whilst the502

L = 6 and 7 models are able to accurately model all of the frequency components. The503

test shows that the multilevel FBPINN is able to solve a high frequency, multi-scale504

problem, and exhibits strong scaling behavior somewhat similar to what is expected505

by classical DDMs.506

Three other benchmark tests are carried out for this problem. First, we train a507

PINN with 5 hidden layers and 256 hidden units. Then, we train a one-level FBPINN508

with J (1) = 64 subdomains along each dimension and a three-level FBPINN with509

J (1) = 1, J (2) = 8, and J (3) = 64 subdomains along each dimension, respectively.510

All other relevant hyperparameters are kept the same as the baseline model above.511

These results are also shown in Figure 6. We find that the accuracy of the PINN is512

poor, and it is only able to model some of the cycles in the solution. Furthermore513

its convergence curve is very unstable, and its training time is an order of magnitude514

larger than the L = 7 level FBPINN tested. Its poor convergence is likely due to515

spectral bias and the increasing complexity of the PINN’s optimization problem, as516

discussed in subsection 2.1 and [37]. This shows that the multilevel FBPINN strongly517

outperforms the PINN for this problem. The one-level FBPINN is able to model the518

solution, although its accuracy is less than the L = 7 level FBPINN. Finally, for this519

test the three-level FBPINN benchmark performs best, most accurately modeling the520
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Fig. 7. Weak scaling test using the multi-scale Laplacian problem. In this test the problem
complexity is increased (in this case, the number of frequency components in the solution) (top
row) and the solution estimated using multilevel FBPINNs with increasing numbers of levels and
collocation points are plotted (middle row). The title of each plot describes the level structure (first
line) and the number of collocation points along each dimension (second line). The color-coded
convergence curves and training times for each model are shown (bottom row).

solution. This suggests that a stronger coarsening ratio between the levels may be521

beneficial; this is likely to depend on the problem.522

Weak scaling test. Next, we carry out a weak scaling test. Here, both the problem523

complexity and model capacity are scaled at the same rate, and we assess how the524

performance of the multilevel FBPINN changes. We increase the model capacity in525

exactly the same way as the strong scaling test above, i.e., the number of levels is526

increased from L = 2 to 7, where each test has (5 × 2L−1) × (5 × 2L−1) uniformly-527

spaced collocation points. However, now the problem complexity is also scaled, such528

that for each test n = L − 1 and ωi = 2i for i = 1, ..., n. Note that the number of529

subdomains per level and the frequency range of the solution both grow exponentially,530

and the multilevel FBPINN is in alignment with the problem structure. All other531

hyperparameters are fixed to the same values as the strong scaling test above.532

The results of this test are shown in Figure 7. We find that the multilevel533

FBPINNs are able to model all of the problems tested accurately, that is, model-534

ing all of their frequency components. However, the normalized L1 accuracy of the535

multilevel FBPINNs does reduce slightly as the problem complex increases. Thus in536

this case the multilevel FBPINN exhibits near – but not perfect – weak scaling.537

3.4.3. Helmholtz problem in two dimensions. Finally, we test the mul-538

tilevel FBPINN using the more complex Helmholtz problem described in subsec-539

tion 3.4.3. Again, we carry out ablation tests first and then carry out a weak scaling540

study assessing how the performance of the multilevel FBPINN changes as the wave541
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Fig. 8. Ablation tests using the Helmholtz problem. The convergence curve of a baseline
multilevel FBPINN is plotted when changing the number of levels (top right), overlap ratio (bottom
left), and number of hidden units for each subdomain network (bottom right). The baseline model
has L = 4 levels, an overlap ratio of δ = 1.9, and 16 hidden units for each subdomain network.
The solution obtained from FD modeling is shown (top left). Convergence curves of two other
benchmarks are shown; a PINN (bottom right), and one-level FBPINNs with varying numbers of
subdomains (top right). The lists which label each model in the top right plot contain the number of
subdomains along each dimension for each level in the model.

number, k, increases.542

Ablation tests. For our ablation tests, we fix the problem parameters to be k =543

24π/1.6 and σ = 0.8/24 in (3.3). Then, similar to subsection 3.4.1, we train a baseline544

multilevel FBPINN to solve this problem, using L = 4 levels, an overlap ratio along545

each dimension of δ = 1.9, and FCNs with 1 hidden layer and 16 hidden units for546

each subdomain network. The multilevel FBPINN is trained using the constraining547

operator [Cu](x,θ) = tanh(x1/σ) tanh((1−x1)/σ) tanh(x2/σ) tanh((1−x2)/σ)u(x,θ)548

with σ = 1/k. We use N = 160 × 160 = 25,600 uniformly-spaced collocation points549

and M = 320 × 320 uniformly-spaced test points to train and test the multilevel550

FBPINN, respectively.551

Given this baseline model, we then vary different hyperparameters over a range552

of values and measure the change in performance. This is carried out for the number553

of levels ranging from L = 2 to 5, the overlap ratio ranging from 1.1 to 2.7, and554

the number of hidden units in the subdomain network ranging from 2 to 32. Our555

results are shown in Figure 8. We obtain similar results to the ablation tests carried556

out in subsection 3.4.1 for the homogeneous Laplace problem. Namely, that the557

accuracy of the multilevel FBPINN improves as the overlap ratio or the number of free558

parameters of the subdomain networks increases. Furthermore, its accuracy improves559

as the number of levels increases, likely because the solution contains relatively high560

frequencies and multiple subdomains are needed.561
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Fig. 9. Weak scaling test using the Helmholtz problem. In this test the problem complexity
is increased (in this case, the wave number) (top row) and the solution estimated using multilevel
FBPINNs with increasing numbers of levels and collocation points are plotted (second row). The
title of each plot describes the level structure (first line) and the number of collocation points along
each dimension (second line). The color-coded convergence curves and training times for each model
are shown (bottom row). A PINN benchmark using a fixed network size and increasing numbers of
collocation points is also shown (third and bottom row).

We carry out two other benchmark tests. First, we train a PINN with 5 hid-562

den layers and 256 hidden units, and second, we train four one-level FBPINNs with563

J (1) = 2, 4, 8, and 16 subdomains along each dimension, respectively. All other rel-564

evant hyperparameters are kept the same as the baseline model. These results are565

also shown in Figure 8. Here, the PINN converges poorly, which again highlights the566

shortcomings of PINNs when solving more complex problems. Furthermore, the con-567

vergence of all the one-level FBPINNs is much slower than the multilevel FBPINN,568

and their final accuracy is worse. This again suggests that multiple levels are required569

for scalability.570
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Weak scaling test. We carry out a weak scaling study, where both the problem571

complexity and model capacity are scaled at the same rate. In a similar fashion to572

the weak scaling test in subsection 3.4.2, the capacity of the multilevel FBPINN is573

increased by increasing the number of levels, testing from L = 2 to 6. For each test,574

(10× 2L−1)× (10× 2L−1) uniformly-spaced collocation points are used. The problem575

complexity for each test is increased by setting k = 2Lπ/1.6 and σ = 0.8/2L in (3.3).576

All other hyperparameters are fixed to the same values as the baseline model used in577

the ablation tests above.578

The results of this test are shown in Figure 9. We find that the multilevel FBPINN579

is able to accurately model all the problems tested, except for the highest wave number580

test. In this case, the multilevel FBPINN successfully models the dominant frequency581

and overall concentricity of the solution but fails to model its more complex motifs.582

In this case, we believe that the FBPINN is struggling to satisfy both the point source583

and Dirichlet boundary conditions. Without the Dirichlet boundary condition, the584

solution to (3.3) is that of a simple point source. For all tests, we notice that in the585

first few training steps this is the solution learned by the multilevel FBPINN, which586

is then updated to the correct solution after further training. Thus, it appears the587

presence of the Dirichlet boundary condition leads to an optimization problem which588

remains challenging. Further work is required to understand this behavior; one may589

be able to address this problem by using scheduling strategies to incrementally train590

the multilevel FBPINN, as proposed in [37].591

Finally, we carry out the same weak scaling test but using a PINN instead of a592

multilevel FBPINN. For each test, the PINN’s architecture is kept fixed at 5 layers593

and 256 hidden units whilst the number of collocation points and problem complexity594

is increased in the same way as the previous test. All other relevant hyperparameters595

are kept the same. The result of this study is shown in Figure 9. In this case, we find596

that the PINN is unable to accurately model any of the solutions, and its training597

time is an order of magnitude larger than the multilevel FBPINN. Thus, the multilevel598

FBPINN still strongly outperforms the PINN for this problem.599

4. Discussion. Across all the problems studied, we find that the multilevel600

FBPINNs consistently outperform the one-level FBPINNs and PINNs tested. The601

multilevel FBPINNs are more accurate than the one-level FBPINNs when a large602

number of subdomains are used, suggesting that coarse levels are required for scala-603

bility by improving the global communication. Furthermore, the multilevel FBPINNs604

significantly outperform the PINNs across all problems tested.605

We have only started to investigate multilevel FBPINNs in this work and there606

are a range of ways they could be extended. One interesting direction would be to607

investigate more complex domain decompositions and level hierarchies; in this work,608

we restrict ourselves to uniform rectangular decompositions with an exponentially609

increasing number of subdomains with respect to the levels. It is likely that irregular610

domain decompositions would be useful for complex problem geometries, and domain611

decompositions which are tailored to the structure of the solution are likely to help612

where the solution has a large amount of variation. Taking this further, it may613

be possible to learn the domain decomposition itself, for example, by learning the614

parameters of the window functions. This would remove the need to know about the615

solution structure beforehand, and be similar to, e.g., adaptive meshes in traditional616

methods.617

Furthermore, we only consider one type of window function and partition of unity618

in this work, and it would be useful to assess the impact of different partitioning619
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schemes. We only use small and identical FCNs as subdomain networks, and it would620

be interesting to understand the performance of other network architectures. For621

example, it may be useful to use different size networks for different subdomains if part622

of the solution is more complex and requires a higher capacity model than elsewhere.623

For the Helmholtz problem, we tested sinusoidal activation functions similar to [43,624

28], although we did not notice a significant improvement.625

Another valuable direction would be to study the theoretical convergence prop-626

erties of multilevel FBPINNs. A major limitation of PINNs compared to classical627

DDMs is that their convergence properties are still poorly understood. In particu-628

lar, whilst the multilevel FBPINN exhibits good scaling properties for the Laplacian629

problems studied, it remains unclear why the optimization of the high wave number630

Helmholtz problem is challenging; note that the convergence of classical DDMs for631

high wave number Helmholtz problems is also not fully understood.632

A limitation of the multilevel FBPINNs tested is that, despite them being over an633

order of magnitude more efficient than the PINNs tested, their training times are still634

likely to be slower than many traditional methods, such as numerical solvers for finite635

difference or finite element systems. Fundamentally, this is because (FB)PINNs yield636

a non-convex optimization problem, which is relatively expensive compared to the lin-637

ear solves which traditional methods typically rely on. FBPINNs could be extended638

in various ways to reduce their training cost; one direction, as suggested in [37], is to639

provide more inputs to the subdomain networks, such as BCs and PDE coefficients,640

and train across a range of these inputs so that the multilevel FBPINN learns a fast641

surrogate model which does not need to be retrained for each new solution. Another642

option is to implement multi-GPU training; in [37] a parallel FBPINN training al-643

gorithm with minimal communication between subdomains is suggested, which may644

allow highly scalable training. We note that classical numerical solvers can also be645

efficiently parallelized, for instance by using domain decomposition methods. Finally,646

it remains important to test the performance of FBPINNs on 3D problems; only 2D647

problems were studied here, and adding more dimensions is likely to significantly in-648

crease the number of collocation points and subdomains required. These limitations649

will be addressed in future work.650

Code availability. All the code for reproducing the original FBPINN paper [37]651

is available here: https://github.com/benmoseley/FBPINNs. All the code for training652

multilevel FBPINNs and reproducing this work will be released on publication.653

Appendix A. Software implementation. All FBPINNs and PINNs are654

implemented using a common training framework written using the JAX automatic655

differentiation library [5]. When training FBPINNs, computing the FBPINN solu-656

tion (either (2.1) or (2.2)) naively can be very expensive. This is because evaluating657

the solution at each collocation point involves summing over all subdomain networks658

and all levels. However, the cost of this summation can be significantly reduced by659

exploiting that, because the output of all subdomain networks is zero outside of the660

corresponding subdomains, only subdomains which contain each collocation point661

contribute to the summation. Practically, this can be carried out by pre-computing a662

mapping describing which subdomains contain each collocation point before training663

and only evaluating the corresponding subdomain networks during training. Another664

important efficiency gain in our software implementation is that the outputs of each665

subdomain network are computed in parallel on the GPU by using JAX’s vmap func-666

tionality. This is important as the FBPINNs tested use small subdomain networks667

that if evaluated sequentially would not fully utilize the GPU’s parallelism.668
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Appendix B. Finite difference solver for Helmholtz equation. We use a669

finite difference (FD) solver to compute a reference solution for the Helmholtz problem670

studied in subsection 3.4.3. For all the problem variants studied, we discretize the671

Laplacian operator in (3.3) using a 5-point stencil, and we discretize the solution using672

a 320× 320 uniformly-spaced mesh over the problem domain. This turns (3.3) into a673

set of linear equations, which are solved using the scipy.sparse.linalg [48] sparse674

direct solver, that is, using UMFPACK [13].675
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