
Convolutional Neural Operators for robust

and accurate learning of PDEs

B. Raonic and R. Molinaro and T. De Ryck and T. Rohner and

F. Bartolucci and R. Alaifari and S. Mishra and E. De Bezenac

Research Report No. 2023-25

June 2023

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

__

Convolutional Neural Operators for robust and

accurate learning of PDEs

Bogdan Raonić1,2, Roberto Molinaro1, Tim De Ryck1, Tobias Rohner1, Francesca

Bartolucci3, Rima Alaifari1, Siddhartha Mishra1,2, and Emmanuel de Bézenac1

1Seminar for Applied Mathematics, ETH Zurich
2ETH AI Center

3Delft University of Technology

Abstract. Although very successfully used in conventional machine learning, convolution

based neural network architectures – believed to be inconsistent in function space – have

been largely ignored in the context of learning solution operators of PDEs. Here, we present

novel adaptations for convolutional neural networks to demonstrate that they are indeed

able to process functions as inputs and outputs. The resulting architecture, termed as

convolutional neural operators (CNOs), is designed specifically to preserve its underlying

continuous nature, even when implemented in a discretized form on a computer. We prove

a universality theorem to show that CNOs can approximate operators arising in PDEs to

desired accuracy. CNOs are tested on a novel suite of benchmarks, encompassing a diverse

set of PDEs with possibly multi-scale solutions and are observed to significantly outperform

baselines, paving the way for an alternative framework for robust and accurate operator

learning.

1 Introduction.

Partial Differential Equations (PDEs) [13] are ubiquitous as mathematical models in the

sciences and engineering. Solving a PDE amounts to (approximately) computing the so-called

solution operator that maps function space inputs such as initial and boundary conditions,

coefficients, source terms etc, to the PDE solution which also belongs to a suitable function

space. Well-established numerical methods such as finite differences, finite elements, finite

volumes and spectral methods (see [47]) have been very successfully used for many decades to

approximate PDE solution operators. However, the prohibitive computational cost of these

methods, particularly in high dimensions and for many query problems such as UQ, inverse

problems, PDE-constrained control and optimization, necessitates the design of fast, robust and

accurate surrogates. This provides the rationale for the use of data-driven machine learning

methods for solving PDEs [20].

Implementation is available at https://github.com/bogdanraonic3/ConvolutionalNeuralOperator.git

1

Convolutional Neural Operators for robust and accurate learning of PDEs

As operators are the objects of interest in solving PDEs, learning such operators from data,

which is loosely termed as operator learning, has emerged as a dominant paradigm in recent

years for the applications of machine learning to PDEs. A very partial list of architectures

for operator learning include operator networks [9], DeepONets [38] and its variants [40, 7],

PCA-net [5] , neural operators [24] such as graph neural operator [33], Multipole neural operator

[34] and the very popular Fourier Neural Operator [32] and its variants [35, 44], VIDON [46],

spectral neural operator [14], LOCA [22], NOMAD [51] and transformer based operator learning

architectures [8].

Despite the considerable success of the recently proposed operator learning architectures, several

pressing issues remain to be addressed. These include, but are by no means restricted to,

limited expressivity for some of these algorithms [27] to aliasing errors for others [14] to the

very fundamental issue of possible lack of consistency in function spaces. As argued in a recent

paper [2] (see also [14, 24]), a structure-preserving operator learning algorithm or representation

equivalent neural operator has to respect some form of continuous-discrete equivalence (CDE) in

order to learn the underlying operator, rather than just a discrete representation of it. Failure

to respect such a CDE can lead to the so-called aliasing errors [2] and affect model performance

at multiple discrete resolutions.

The absence of a suitable CDE has also plagued the naive use of convolutional neural networks

(CNNs) in the context of operator learning, see [64, 32, 2] on how using CNNs for operator

learning leads to results that heavily rely on the underlying grid resolution. This very limited use

of Convolution (in physical space) based architectures for operator learning stands in complete

contrast to the fact that CNNs [29] and their variants are widely used architectures for image

classification and generation and in other contexts in machine learning [28, 36, 62]. Moreover,

CNNs can be thought of as natural generalizations of the foundational finite difference methods

for discretizing PDEs [17, 37]. Given their innate locality, computational and data efficiency

and the availability of a wide variety of successful CNN architectures in other fields, it could

be very advantageous to bring CNN-based algorithms back into the reckoning for operator

learning. This is precisely the central point of the current paper where we make the following

contributions,

• We propose novel modifications to CNNs in order to enforce structure-preserving continuous-

discrete equivalence and enable the genuine learning of operators. The resulting architec-

ture, termed as Convolutional Neural Operator (CNO), is instantiated as a novel operator

adaptation of the widely used U-Net architecture.

• In addition to showing that CNO is a representation equivalent neural operator in the

sense of [2], we also prove a universality result to rigorously demonstrate that CNOs can

approximate the operators, corresponding to a large class of PDEs, to desired accuracy.

• We test CNO on a novel set of benchmarks, that we term as Representative PDE

Benchmarks (RPB), that span across a variety of PDEs ranging from linear elliptic

and hyperbolic to nonlinear parabolic and hyperbolic PDEs, with possibly multiscale

2

Convolutional Neural Operators for robust and accurate learning of PDEs

solutions. We find that CNO is either on-par or outperforms the tested baselines on all

the benchmarks, both when testing in-distribution as well as in out-of-distribution testing.

Thus, we present a new CNN-based operator learning model, with desirable theoretical properties

and excellent empirical performance, with the potential to be widely used for learning PDEs.

2 Convolutional Neural Operators.

Figure 1: Schematic representation of CNO (2.3) as a modified U-Net with a sequence of

layers (each identified with the relevant operators on the right, see Section 2) mapping between

bandlimited functions. Rectangles represent multi-channel signals. Larger the height, larger is

the resolution. Wider the rectangles, more channels are present.

Setting. For simplicity of the exposition, we will focus here on the two-dimensional case by

specifying the underlying domain as D = T
2, being the 2-d torus. Let X = Hr(D,RdX) ⊂ Z

and Y = Hs(D,RdY) be the underlying function spaces, where Hr,s(D, ·) are Sobolev spaces

of order r and s. Without loss of generality, we set r = s hereafter. Our aim would be to

approximate continuous operators G† : X → Y from data pairs
(
ui,G†(ui)

)M
i=1

∈ X × Y. We

further assume that there exists a modulus of continuity for the operator i.e.,

∥G†(u)− G†(v)∥Y ≤ ω (∥u− v∥Z) , ∀u, v ∈ X , (2.1)

with ω : R+ → R+ being a monotonically increasing function with limy→0 ω(y) = 0. The

underlying operator G† can correspond to solution operators for PDEs (see Section 3 for the

exact setting) but is more general than that and encompasses examples such as those arising in

inverse problems, for instance in imaging [4].

Bandlimited Approximation. As argued in a recent paper [2], Sobolev spaces such as Hr

are, in a sense, too large to allow for any form of continuous-discrete equivalence (CDE), i.e.,

equivalence between the underlying operator and its discrete representations, which is necessary

3

Convolutional Neural Operators for robust and accurate learning of PDEs

for robust operator learning. Consequently, one has to consider smaller subspaces of Hr which

allow for CDEs. In this respect, we choose the space of bandlimited functions [58] defined by,

Bw(D) = {f ∈ L2(D) : suppf̂ ⊆ [−w,w]2}, (2.2)

for some w > 0 and with f̂ denoting the Fourier transform of f . It is straightforward to show

using (2.1) (see SMA.1) that for any ε > 0, there exists a w, large enough depending on r, and

a continuous operator G∗ : Bw(D) → Bw(D), such that
∥∥G† − G∗

∥∥ < ε, with ∥ · ∥ denoting the

corresponding operator norm. In other words, the underlying operator G† can be approximated

to arbitrary accuracy by the operator G∗ that maps between band-limited spaces. Consequently,

as shown in SMA.2, one can readily define discrete versions of G∗ using the underlying basis for

bandlimited functions and establish a continuous-discrete equivalance for it.

Definition of CNO. Given the above context, our goal will be to approximate the operator

G∗ in a structure-preserving manner i.e., as the underlying operator maps between spaces

of bandlimited functions, we will construct our operator approximation architecture to also

map bandlimited functions to bandlimited functions, thus respecting the continuous-discrete

equivalence. To this end, we denote the operator G : Bw(D) → Bw(D) as a convolutional neural

operator (CNO) which we define as a compositional mapping between functions (see also Figure

1) as

G : u 7→ P (u) = v0 7→ v1 7→ . . . vL 7→ Q(vL) = u, (2.3)

where

vl+1 = Pl ◦ Σl ◦ Kl(vl), 1 ≤ ℓ ≤ L− 1. (2.4)

From (2.3), we see that first, the input function u ∈ Bw(D) is lifted to the latent space of

bandlimited functions through a lifting layer :

P :
{
u ∈ Bw(D,R

dX)
}
→

{
v0 ∈ Bw(D,R

d0)
}
.

Here, d0 > dX is the number of channels in the lifted, latent space. The lifting operation is

performed by a convolution operator which will be defined below.

Then, the lifted function is processed through the composition of a series of mappings between

functions (layers), with each layer consisting of three elementary mappings, i.e., Pl is either the

upsampling or downsampling operator, Kl is the convolution operator and Σl is the activation

operator. These elementary operators are defined below and are inspired by the modifications of

CNNs for image generation in [21]. Finally, the last output function in the iterative procedure

vL is projected to the output space with a projection operator Q, defined as

Q :
{
vL ∈ Bw(D,R

dL)
}
→

{
u ∈ Bw(D,R

dY)
}
.

The projection operation is also performed by a convolution operator defined below.

4

Convolutional Neural Operators for robust and accurate learning of PDEs

Convolution Operator. For simplicity of exposition, we will present the single-channel

version of the convolution operator Kl here. See SM A.3 for the multi-channel version for this

and other operators considered below. Convolution operations are performed with discrete

kernels

Kw =
k∑

i,j=1

kij · δzij

defined on the s×s uniform grid on D with grid size ≤ 1/2w, in-order to satisfy the requirements

of the Whittaker-Shannon-Kotelnikov sampling theorem [57], and zij being the resulting grid

points, k ∈ N being the kernel size and δx denoting the Dirac measure at point x ∈ D. The

convolution operator for a single-channel Kw : Bw(D) → Bw(D) is defined by

Kwf(x) = (Kw ⋆ f)(x) =

ˆ

D
Kw(x− y)f(y)dy =

k∑

i,j=1

kijf(x− zij), ∀x ∈ D,

where the last identity arises from the fact that f ∈ Bw. Thus, our convolution operator is

directly parametrized in physical space, in contrast to the Fourier space parametrization of a

convolution in the FNO architecture of [32]. Hence, our parametrization is of a local nature.

Upsampling and Downsampling Operators. For some w > w, we can upsample a function

f ∈ Bw to the higher band Bw by simply setting,

Uw,w : Bw(D) → Bw(D), Uw,wf(x) = f(x), ∀x ∈ D.

On the other hand, for some w < w, we can downsample a function f ∈ Bw to the lower band

Bw by setting Dw,w : Bw(D) → Bw(D), defined by

Dw,wf(x) =
(w
w

)2
(hw ⋆ f)(x) =

(w
w

)2
ˆ

D
hw(x− y)f(y)dy, ∀x ∈ D,

where ⋆ is the convolution operation on functions defined above and hw is the so-called interpo-

lation sinc filter :

hw(x0, x1) = sinc(2wx0) · sinc(2wx1), (x0, x1) ∈ R
2. (2.5)

Activation Layer. Naively, one can apply the activation function pointwise to any function.

However, it is well-known that such an application will no longer respect the band-limits of

the underlying function space and generate aliasing errors [21, 14, 2]. In particular, nonlinear

activations can generate features at arbitrarily high frequencies. As our aim is to respect the

underlying CDE, we will modulate the application of the activation function so that the resulting

outputs fall within desired band limits. To this end, we first upsample the input function f ∈ Bw

to a higher bandlimit w > w, then apply the activation and finally downsample the result back

to the original bandlimit w (See Figure 1). Implicitly assuming that w is large enough such

that σ (Bw) ⊂ Bw, we define the activation layer in (2.3) as,

Σw,w : Bw(D) → Bw(D), Σw,wf(x) = Dw,w(σ ◦ Uw,w̃f)(x), ∀x ∈ D. (2.6)

5

Convolutional Neural Operators for robust and accurate learning of PDEs

Instantiation through an Operator U-Net architecture. The above ingredients are

assembled together in the form of an Operator U-Net architecture that has bandlimited functions

as inputs and outputs. In addition to the blocks that have been defined above, we also need

additional ingredients, namely incorporate skip connections through ResNet blocks of the form,

Rw,w : Bw(D,R
d) → Bw(D,R

d) such that

Rw,w(v) = v + (Σw,w ◦ Kw)
rv, ∀v ∈ Bw(D,R

d), (2.7)

where r ∈ N and d is the number of channels. In most cases, we set r ∈ {1, 2}. We also need

the so-called Invariant blocks of the form, Iw,w : Bw(D,R
d) → Bw(D,R

d) such that

Iw,w(v) = Σw,w ◦ Kwv, ∀v ∈ Bw(D,R
d). (2.8)

Finally, all these ingredients are assembled together in a modified Operator U-Net architecture

which is graphically depicted in Figure 1. As seen from this figure, the input function, say

u ∈ Bw(D,R
dX) is first lifted and then processed through a series of layers. Four types of blocks

are used i.e., downsampling (D) block corresponding to using the downsampling operator D
as the P in (2.4), upsampling (U) block corresponding to using the upsampling operator U as

the P in (2.4), ResNet (R) block corresponding to (2.7) and Invariant (I) block corresponding

to (2.8). Each block takes a band-limited function as input and returns another band-limited

function (with the same band) as the output. Finally, U-Net style patching operators, which

concatenate outputs for different layers as additional channels are also used. As these operations

act only in the channel width and leave the spatial resolution unchanged, they conform to

the underlying bandlimits. Thus, CNO takes a function input and passes it through a set of

encoders, where the input is downsampled in space but expanded in channel width and then

processed through a set of decoders, where the channel width is reduced but the space resolution

is increased. At the same time, encoder and decoder layers (at the same spatial resolution or

band limit) are connected through additional ResNet blocks. Thus, this architectural choice

allows for transferring high frequency content via the skip connections, before filtering them

out with the sinc filter as we go deeper into the Encoder. Hence, the high frequency content

is not just recreated with the activation function, but also modified through the intermediate

networks. Consequently, we build a genuinely multiscale operator learning architecture.

Continuous-Discrete Equivalence for CNO. We have defined CNO (2.3) as an operator

that maps bandlimited functions to bandlimited functions. In practice, like any computational

algorithm, CNO has to be implemented in a discrete manner, with discretized versions of each

of the above-defined elementary operations being specified in SM A.4. Given how each of the

elementary blocks (convolution, up- and downsampling, activation, ResNets etc) are constructed,

we prove the following proposition (in SM A.5):

Proposition 2.1. Convolutional Neural Operator G : Bw(D,R
dX) → Bw(D,R

dY) (2.3) is a

Representation equivalent neural operator or ReNO, in the sense of [2], Definition 3.4 and

Remark 3.5.

6

Convolutional Neural Operators for robust and accurate learning of PDEs

Hence, we establish correspondence between the definition of CNO at the continuum level

and its realization in terms of computations at the discrete level. In particular, following [2],

this implies that CNO satisfies a form of resolution invariance, allowing it to be evaluated on

multiple resolutions.

3 Universal Approximation by CNOs.

We want to prove that a large class of operators, stemming from PDEs, can be approximated to

desired accuracy by CNOs. To this end, we consider the following abstract PDE in the domain

D = T
2,

L(u) = 0, B(u) = 0, (3.1)

with L being a differential operator and B a boundary operator. We assume that the differential

operator L only depends on the coordinate x through a coefficient function a ∈ Hr(D). The

corresponding solution operator is denoted by G† : X ∗ ⊂ Hr(D) → Hr(D) : a 7→ u, with u

being the solution of the PDE (3.1). We assume that G† is continuous. Moreover, we also

assume the following modulus of continuity,

∥∥∥G†(a)− G†(a′)
∥∥∥
Lp(T2)

≤ ω
(
∥a− a′∥Hσ(T2)

)
, (3.2)

for some p ∈ {2,∞} and 0 ≤ σ ≤ r − 1, and where ω : [0,∞) → [0,∞) is a monotonously

increasing function with limy→0 ω(y) = 0. (3.2) is automatically satisfied if X ∗ is compact and

G† is continuous. Under these assumptions, we have the following universality theorem for CNOs

(2.3),

Theorem 3.1. Let σ ∈ N0 and p ∈ {2,∞} as in (3.2), r > max{σ, 2/p} and B > 0. For any

ε > 0 and any operator G†, as defined above, there exists a CNO G such that for every a ∈ X ∗

with ∥a∥Hr(D) ≤ B it holds,

∥G†(a)− G(a)∥Lp(D) < ε. (3.3)

In fact, we will prove a more general version of this theorem in SM B, where we also include

additional source terms in the PDE (3.1).

4 Experiments.

Training Details and Baselines. We provide a detailed description of the implementation

of CNO and the training (and test) protocol for CNO as well as all the baselines in SM C.1.

To ensure a level playing field among all the tested models for each benchmark, we follow

an ensemble training procedure by specifying a range for the underlying hyperparameters for

each model and randomly selecting a subset of the hyperparameter space. For each such

hyperparameter configuration, the corresponding models are trained on the benchmark and

the configuration with smallest validation error is selected and the resulting test errors are

7

Convolutional Neural Operators for robust and accurate learning of PDEs

reported, allowing us to identify and compare the best performing version of each model for

every benchmark. We compare CNO with the following baselines: two very popular operator

learning architectures, namely DeepONet [38] and FNO [32], a feedforward neural network

(FFNN) with residual connections [18] and the U-Net [49] architecture, which is widely used in

image processing.

Table 1: Relative median L1 test errors, for both in- and out-of-distribution testing, for different

benchmarks and models.

In/Out FFNN UNet DeepONet FNO CNO

Poisson Equation In 5.74% 0.71% 12.92% 4.78% 0.23%

Out 5.35% 1.27% 9.15% 8.89% 0.27%

Wave Equation In 2.51% 1.51% 2.26% 1.10% 0.83%

Out 3.01% 2.03% 2.83% 1.6% 1.48%

Smooth Transport In 7.09% 0.49% 1.14% 0.40% 0.30%

Out 650.57% 1.28% 157.22% 13.83% 0.45%

Discontinuous Transport In 13.0% 1.31% 5.78% 1.29% 1.17%

Out 257.3% 1.35% 117.11% 8.78% 1.61%

Allen-Cahn In 18.27% 0.82% 13.63% 0.57% 0.83%

Out 46.93% 2.18% 19.86% 2.36% 3.67%

Navier-Stokes In 8.05% 3.54% 11.64% 3.93% 3.01%

Out 16.12% 10.93% 15.05% 13.45% 7.06%

Compressible Euler In 0.78% 0.38% 1.93% 0.47% 0.35%

Out 1.34% 0.76% 2.88% 0.85% 0.62%

Representative PDE Benchmarks (RPB). Given the lack of consensus on a standard set

of benchmarks for machine learning of PDEs, we propose a new suite of benchmarks here. Our

aims in this regard are to ensure i) sufficient diversity among the types of PDE considered, ii)

access to training and test data is readily available for rapid prototyping and reproducibility

and iii) intrinsic computational complexity of problem to make sure that it is worthwhile to

design fast surrogates to classical PDE solvers for a particular problem. In other words, we will

only consider PDEs where classical PDE solvers can only resolve the underlying operator on fine

enough grids. To meet these requirements, we will not consider PDEs in one space dimension

as traditional numerical methods are already quite fast for them. On the other hand, it is hard

to obtain data for problems in three dimensions, due to computational expense of traditional

methods. The sweet spot is achieved by considering PDEs in two space dimensions. We

further restrict to Cartesian domains here as all models can be readily evaluated in this setting.

In addition to including a diverse set of PDEs, we only consider problems with sufficiently

many spatial and temporal scales. Otherwise, traditional numerical solvers can approximate

the underlying PDE on very coarse grids and it is not worthwhile to design surrogates (see

8

Convolutional Neural Operators for robust and accurate learning of PDEs

SM C.3.7 for a discussion in this context on a widely used Navier-Stokes benchmark). With

these considerations in mind, we present the following set of Representative PDE Benchmarks

or RPB,

Poisson Equation. This prototypical linear elliptic PDE is given by,

−∆u = f, in D, u|∂D = 0. (4.1)

The solution operator G† : f 7→ u, maps the source term f to the solution u. With source term,

f(x, y) =
π

K2

K∑

i,j=1

aij · (i2 + j2)−r sin(πix) sin(πjy), ∀(x, y) ∈ D, (4.2)

with r = −0.5, the corresponding exact solution can be analytically computed (see SM C.3.1)

and represents K- spatial scales. For training the models, we fix K = 16 in (4.2) and choose

aij to be i.i.d. uniformly distributed from [−1, 1] (See SM D for a representation of the inputs

and outputs of G†). This multiscale solution needs fine enough grid size to be approximated

accurately by finite element methods, fitting our complexity criterion for benchmarks. In

addition to in-distribution testing , we also consider an out-of-distribution testing task by setting

K = 20 in (4.2). This will enable us to evaluate the ability of the models to generalize to inputs

(and outputs) with frequencies higher than those encountered during training.

Wave Equation. This prototypical linear hyperbolic PDE is given by

utt − c2∆u = 0, in D × (0, T), u0(x, y) = f(x, y), (4.3)

with a constant propagation speed c = 0.1. The underlying operator G† : f 7→ u(., T) maps the

initial condition f into the solution at the final time. If we consider initial conditions to be

given by (4.2) with r = 1, then one can explicitly compute the exact solution (see SM C.3.2) to

represent a multiscale standing wave with periodic pulsations (depending on K) in time. The

training and in-distribution test samples are generated by setting T = 5, K = 24 and aij to

be i.i.d. uniformly distributed from [−1, 1] (See SM D for input and output samples). For

out-of-distribution testing, we change the exponent of decay of the modes in (4.2) to r = 0.85

and K = 32, in order to test the ability of the models to generalize to learn the effect of higher

frequencies, than those present in the training data.

Transport Equation. The transport of scalar quantities of interest is modeled by PDE,

ut + v · ∇u = 0, u(t = 0) = f, (4.4)

with a given velocity field and initial data f . The underlying operator G† : f 7→ u(., T = 1)

maps the initial condition f into the solution at the final time. We set a constant velocity

field v = (vx, vy) = (0.2, 0.2) leading to solution u(x, y, t) = f(x− vxt, y − vyt). Two different

9

Convolutional Neural Operators for robust and accurate learning of PDEs

types of training data are considered, i.e., smooth initial data which takes the form of a

radially symmetric Gaussian, with centers randomly and uniformly drawn from (0.2, 0.4)2 and

corresponding variance drawn uniformly from (0.003, 0.009) and a discontinuous initial data in

the form of the indicator function of radial disk with centers, uniformly drawn from (0.2, 0.4)2

and radii uniformly drawn from (0.1, 0.2) (See SM C.3.3 for details and SM D for illustrations).

For out-of-distribution testing in the smooth case, the centers of the Gaussian inputs are sampled

uniformly from (0.4, 0.6)2 and in the discontinuous case, the centers of the disk are drawn

uniformly from (0.4, 0.6)2, while keeping the variance and the radii, respectively, the same as

that of in-distribution testing. This out-of-distribution task tests the model’s ability to cope

with input translation-equivariance.

Allen-Cahn Equation. It is a prototype for nonlinear parabolic PDEs,

ut = ∆u− ε2u(u2 − 1), (4.5)

with a reaction rate of ε = 220 and underlying operator G† : f 7→ u(., T), mapping initial

conditions f to the solution u at a final time T = 0.0002. The initial conditions for training and

in-distribution testing are of the form (4.2), with r = 1 and K = 24 and coefficients aij drawn

uniformly from [−1, 1]. For out-of-distribution testing, we set K = 16 and randomly select the

initial decay r, uniformly from the range [0.85, 1.15] of the modes in (4.2), which allows us to

test the ability of the model to generalize to different dynamics of the system. Both training

and test data are generated by using a finite difference scheme [63] on a grid at 642 resolution

(see SM D for illustrations).

Navier-Stokes Eqns. These PDEs model the motion of incompressible fluids by,

ut + (u · ∇)u+∇p = ν∆u, div u = 0, (4.6)

in the torus D = T
2 with periodic boundary conditions and viscosity ν = 4 × 10−4, only

applied to high-enough Fourier modes (those with amplitude ≥ 12) to model fluid flow at very

high Reynolds-number. The solution operator G† : f 7→ u(., T), maps the initial conditions

f : D → R
2 to the solution at final time T = 1. We consider initial conditions representing the

well-known thin shear layer problem [3, 26] (See SM C.3.5 for details), where the shear layer

evolves via vortex shedding to a complex distribution of vortices (see SM D for samples). The

training and in-distribution testing samples are generated, with a spectral viscosity method [26],

from an initial sinusoidal perturbation of the shear layer [26], with layer thickness ρ = 0.1 and

10 perturbation modes, each sampled uniformly from [−1, 1]. For out-of-distribution testing,

the layer thickness is reduced to ρ = 0.09 and the layers are shifted up in the domain to test

the ability of the models to generalize to a flow regime with an increased number and different

locations of the shed vortices.

Flow past airfoils. We model this flow by the compressible Euler equations,

ut + div F (u) = 0, u = [ρ, ρv, E]⊥, F = [ρv, ρv ⊗ v + pI, (E + p)]v]⊥, (4.7)

10

Convolutional Neural Operators for robust and accurate learning of PDEs

with density ρ, velocity v, pressure p and total Energy E related by an ideal gas equation of state.

The airfoils we consider are described by perturbing the shape of a well-known RAE2822 airfoil

[39] by Hicks-Henne Bump functions [41] (see SM C.3.6). Freestream boundary conditions

are imposed and the solution operator maps the shape function onto the steady state density

distribution (see SM D for samples) and training data are obtained with a compressible flow

solver (NUWTUN) with shapes corresponding to 20 bump functions, with coefficients sampled

uniformly from [0, 1]. Out-of-distribution testing is performed 30 bump functions.

Results. The test errors, for both in-distribution and out-of-distribution testing for all the

models on the RPB benchmarks are shown in Table 1. Starting with the in-distribution results,

we see that among the baselines, FNO clearly outperforms both FFNN and DeepONet on all the

RPB benchmarks. On the other hand, the convolution-based U-Net model is quite competitive

vis-a-vis FNO, with comparable performances on most benchmarks, while outperforming FNO by

a factor of 7 for the Poisson test case. This already indicates that convolution-based architectures

can perform very well. Moreover, we observe from Table 1 that CNO is the best performing

architecture on every task except Allen-Cahn. It readily outperforms FNO, for instance by

almost a factor of 20 on the Poisson test case but more moderately but significantly on other

tasks. It also outperforms U-Net on all tasks for in-distribution testing. This trend is further

reinforced when we consider out-of-distribution testing. CNO generalizes well to unseen data,

with test errors increasing by approximately a factor of 2, at most (with Allen-Cahn being an

outlier) and still outperforms the baselines significantly in all cases other than Allen-Cahn and

discontinuous transport, where U-Net generalizes the best. FNO shows decent generalization for

most problems but generalizes very poorly on the transport problems. This can be attributed

to its lack of translation equivariance, in contrast to U-Net and CNO. Moreover, all models,

with the possible exception of U-Net, generalize relatively poorly for the Allen-Cahn equation

as the solutions are very sensitive to perturbations of initial data.

Figure 2: Thin Shear Layer Left: Averaged logarithmic amplitude spectra comparing Ground

Truth, CNO, FNO and UNet. Right: Test error vs. Resolution for UNet, FNO and CNO.

A detailed comparison of the models, especially CNO, U-Net and FNO is presented in SM

C. However, to provide some insight into the relative performance of these three models, we

highlight differences between them for the Navier-Stokes test case here. To this end, we start

with Figure 2 (left), where we present the averaged (log) spectra for the ground truth (reference

solution computed with the spectral viscosity method) and those computed with CNO, FNO and

U-Net. We observe from this figure that i) the spectrum of the exact solution is very rich with

11

Convolutional Neural Operators for robust and accurate learning of PDEs

representations of many frequencies, attesting to the multi-scale nature of the underlying problem

and ii) there are significant differences in how CNO and FNO approximate the underlying

solution in Fourier space. In particular, the decay in CNO’s spectrum is more accurate. On the

other hand, the FNO spectrum is amplified along the horizontal axis, possibly on account of

aliasing errors that add incorrect frequency content. The U-Net spectra are similar to that of

CNO but with high-frequency modes being amplified, which leads to a higher test error. Next,

in Figure 2 (right), we compare CNO, FNO and U-Net vis-a-vis the metric of how the test

error varies across resolutions, see SMC.4 for details, which is an important aspect for robust

operator learning that been highlighted in [32, 24], see also [2] for a discussion with respect to

representation equivalent neural operators or ReNOs. We find from Figure 2 (right) that for

the Navier-Stokes benchmark, the FNO error is not invariant with respect to resolution, with

an increase in error of around 70% on both grids at lower- as well as at higher-resolution than

the training resolution of 642. Similarly, the increase of U-Net test error with respect to varying

resolutions is even more pronounced, with a maximum increase of a factor of 3, indicating

neither FNO nor U-Net are resolution (representation) equivalent in this case. In contrast, CNO

error is invariant with respect to test resolution, verifying that it respects continuous-discrete

equivalence. Further ablation studies for CNO are presented in SM C.5.

5 Discussion.

Summary. We propose CNO, a novel convolution-based architecture for learning operators.

The basic design principle was to enforce a form of continuous-discrete equivalence in order

to genuinely learn the underlying operators, rather than discrete representations of them. To

this end, we modified the elementary operators of convolution, up-and downsampling and

particularly nonlinear activations to realize CNO as a representation equivalent neural operator

or ReNO in the sense of [2]. Consequently, we show that there is an equivalence between

continuous and discrete operations inside CNO. We also prove a universality theorem to show

that CNO can approximate a large class of operators arising in PDEs to desired accuracy. A

novel suite of experiments, termed as representative PDE benchmarks (RPB) is also proposed.

It encompasses a wide variety of PDEs, with multiple scales in the corresponding solutions,

which are hard to resolve with traditional numerical methods. The experiments demonstrate

that CNO outperforms the baselines, including FNO, significantly on most benchmarks. This

also holds for the considered out-of-distribution testing tasks which ascertain the ability of the

models to generalize to unseen data. Thus, we present a novel CNN-based and representation

equivalent neural operator for robust and accurate operator learning.

Comparison to Related Work. We emphasize that our construction of CNO follows the

theoretical prescription of recent paper [2] on enforcing structure preserving continuous-discrete

equivalence. CNO is a representation equivalent neural operator, with respect to spaces of

bandlimited functions, in the sense of [2]. Another motivating work for us is [21], see also [59],

where the authors modify CNNs to eliminate (or reduce) aliasing errors in the context of image

12

Convolutional Neural Operators for robust and accurate learning of PDEs

generation. We adapt the construction of [21] to our setting. In contrast to [21], we rewrite

the operators in a continuous manner to realize CNO as a neural operator. Also, we deploy

the architecture in a very different context from that of [21], namely that of operator learning

for PDEs rather than image generation. In addition to the corresponding theoretical results

(universality) and numerical experiments, we also instantiate CNO with a very different operator

UNet architecture than that proposed in [21]. We would also like to mention related work on

using CNNs for solving PDEs such as [1, 16] and emphasize that in contrast to CNO, they lack

suitable notions of continuous-discrete equivalence. Finally comparing CNO to the widely used

FNO model, we observe that unlike FNO which can fail to enforce CDE (see [14, 2] and Figure

2(right)), CNO preserves continuous-discrete equivalence. Moreover, the convolution operator

in CNO is local in space, in contrast to convolution in Fourier space for FNO. See SM C) for

detailed comparison between FNO and CNO.

Limitations and Future Work. We have presented CNO for operators on an underlying

two-dimensional Cartesian domain. The extension to three-space dimensions is conceptually

straightforward but computationally demanding. Similarly, extending to non-Cartesian domains

will require some form of transformation maps between domains, for instance reworking those

suggested for FNO in [31, 56] can be readily considered. Moreover, CNO, as presented here,

maps between spaces of bandlimited functions, which suffice for universal approximation of

PDEs considered herein. Extending CNO to other small enough spaces, where CDE can be

realized, for instance those suggested in [2] is certainly worth considering. Adapting CNO to

approximate trajectories (in time) of time-dependent PDEs, for instance by employing it in an

auto-regressive manner, is another possible extension of this paper. At the level of theoretical

results, we believe that the generic framework of [11] can be adapted to show that not only does

CNO approximate a large class of PDEs universally, it does so without incurring any curse of

dimensionality, as shown for DeepONets in [25] and FNOs in [23]. Finally, adapting and testing

CNO for learning operators, beyond the forward solution operator of PDEs is also interesting.

One such direction lies in efficiently approximating PDE inverse problems, for instance those

considered in [43]. Finally, we would like to emphasize that CNO is a framework and naturally

allows us for the straightforward adaptation of innovative CNN architectures in other fields to

the context of operator learning.

13

Supplementary Material for:

Convolutional Neural Operators for Robust and Accurate Learning of PDEs.

Table of Contents

A Technical Details for Section 2 of main text. 15

A.1 Approximation of Operators mapping between Sobolev spaces by operators

mapping between spaces of bandlimited functions. 15

A.2 Continuous-Discrete Equivalence for Operator G∗ from Section 2.1 16

A.3 Multi-channel versions of elementary operators for CNO (2.3) 17

A.4 Discrete operators for CNO . 18

A.5 Proof of Proposition 2.1 of Main Text . 20

B Proof of Theorem 3.1 of Main Text. 22

B.1 Auxiliary results . 26

C Technical Details for Section 4 of Main Text. 27

C.1 Training and Implementation Details . 28

C.2 Training Details . 33

C.3 Details about the description and numerical results in each benchmark 34

C.4 Testing at Different Resolutions. 53

C.5 Ablation Studies. 54

C.6 Error vs. number of training samples. 56

D Depiction of the Datasets. 56

Convolutional Neural Operators for robust and accurate learning of PDEs

A Technical Details for Section 2 of main text.

A.1 Approximation of Operators mapping between Sobolev spaces by operators

mapping between spaces of bandlimited functions.

We prove that one can approximate any continuous operator G† : X → Y (as introduced in

Section 2) of the main text by an operator mapping between spaces of bandlimited functions

to arbitrary accuracy. We obtain this result by discarding the high-frequency components, e.g.

higher than frequency w, of both the input and output of G†. This can be performed by a

Fourier projection Pw. For orthogonal Fourier projections and also trigonometric polynomial

interpolation [19, 23] the following result on the accuracy of the projection holds,

Lemma A.1. Given σ, r ∈ N0 with r > d/2 and r ≥ σ, and f ∈ Cr(Td) it holds for every

w ∈ N that,

∥f − Pw(f)∥Hσ(Td) ≤ C(r, d)w−(r−σ) ∥f∥Hr(Td) , (A.1)

for a constant C(r, d) > 0 that only depends on r and d.

Using this result, we show that by discarding the high frequencies of the input and output of G†

one can approximate G† to arbitrary accuracy by choosing an appropriate frequency cutoff.

Lemma A.2. For any ε,B > 0 there exist w ∈ N such that
∥∥G†(a)− PwG†(Pwa)

∥∥
L2(D)

≤ ε for

all a ∈ Hr(D) with ∥a∥Hr(D) ≤ B.

Proof. We follow [23] and use Lemma A.1 repeatedly together with the stability of G† (2.1) to

obtain,

∥∥∥G†(a)− PwG†(Pwa)
∥∥∥
L2

≤
∥∥∥G†(a)− PwG†(a)

∥∥∥
L2

+
∥∥∥PwG†(a)− PwG†(Pwa)

∥∥∥
L2

≲ w−r
∥∥∥G†(a)

∥∥∥
Hr

+
∥∥∥G†(a)− G†(Pwa)

∥∥∥
L2

≲ w−r∥G†∥op ∥a∥Hr + ω(∥a− Pwa∥Hσ)

≲ w−r∥G†∥op ∥a∥Hr + ω(Cw−(r−σ) ∥a∥Hr).

(A.2)

It follows immediately that for large enough w,

sup
∥a∥Hr≤B

∥∥∥G†(a)− PwG†(Pwa)
∥∥∥
L2

≤ ε. (A.3)

This proves the statement of the lemma.

Given that both Pwa ∈ Bw(D) and PwG†(Pwa) ∈ Bw(D), a consequence of the above lemma

is the existence of an operator G∗ : Bw(D) → Bw(D) : a 7→ PwG†(a) that can approximate

G† arbitrarily well. It follows from the lemma and its proof that
∥∥G† − G∗

∥∥
op

≤ ε, where

the operators are considered as mappings from and to Bw(D) ∩ Hr(D) equipped with the

Hr(D)-norm.

15

Convolutional Neural Operators for robust and accurate learning of PDEs

A.2 Continuous-Discrete Equivalence for Operator G∗ from Section 2.1

For every w > 0, we denote by Bw(R
2) the space of multivariate bandlimited functions

Bw(R
2) = {f ∈ L2(R2) : suppf̂ ⊆ [−w,w]2},

where f̂ denotes the Fourier transform on L1(R)

f̂(ξ) :=

ˆ

R

f(x)e−2πixξ dx, ξ ∈ R,

which extends to L2(R) by a classical density argument. The set Ψw = {sinc(2wx1 − m) ·
sinc(2wx2 − n)}m,n∈Z constitutes an orthonormal basis for Bw(R

2). The bounded operator

TΨw : ℓ2(Z2) → Bw(R
2), TΨw(cm,n) =

∑

m,n∈Z

cm,nsinc(2w · −m) · sinc(2w · −n),

which reconstructs a function from its basis coefficients, is called synthesis operator, and its

adjoint

T ∗
Ψw

: Bw(R
2) → ℓ2(Z2), T ∗

Ψw
f =

{
f
(m
2w

,
n

2w

)
)
}
m,n∈Z

,

which extract basis coefficients from an underlying function, is called analysis operator. Ev-

ery bandlimited function can be uniquely and stably recovered from its sampled values{
f
(
m
2w ,

n
2w

)
)
}
m,n∈Z

via the reconstruction formula

f(x1, x2) = TΨwT
∗
Ψw
f(x1, x2) =

∑

m,n∈Z

f
(m
2w

,
n

2w

)
sinc(2wx1 −m) · sinc(2wx2 − n), (A.4)

and we say that there is a continuous-discrete equivalence (CDE) between f and its samples{
f
(
m
2w ,

n
2w

)
)
}
m,n∈Z

. More in general, every bandlimited function f ∈ Bw(R
2) can be uniquely

and stably recovered from its values {f (mT, nT))}m,n∈Z if the sampling rate or reciprocal of

grid size, 1/T is greater or equal than the Nyquist rate 2w. This simply follows from the fact

that Bw(R
2) ⊂ Bw′(R2) for every w′ > w. On the contrary, reconstructing f ∈ Bw at a sampling

rate below the Nyquist rate, i.e. 1/T < 2w, results in a non-zero value for the aliasing error

function:

ε(f) = f − TΨ 1
2T

T ∗
Ψ 1

2T

f,

and the associated aliasing error ∥ε∥2 (cfr. Definition 2.1 in [2]).

Let G∗ be a (possibly) non-linear operator between band-limited spaces, i.e. G∗ : Bw(R
2) →

Bw′(R2), for some w,w′ > 0. As argued in [2], the concepts of continuous-discrete equivalence

(CDE) and aliasing error can be adapted to the operator G∗. The continuous operator G∗ is

uniquely determined by a map gΨw,Ψw′ : ℓ(Z
2) → ℓ2(Z2) if the aliasing error operator

ε = G∗ − TΨw′ ◦ gΨw,Ψw′ ◦ T ∗
Ψw

(A.5)

16

Convolutional Neural Operators for robust and accurate learning of PDEs

is identically zero, and we say that G∗ and gΨw,Ψw′ satisfy a continuous-discrete equivalence

(cfr. Definition 3.1 in [2]). Equivalently, the diagram

Bw Bw′ ,

ℓ2(Z2) ℓ2(Z2)

G∗

T ∗
Ψw

gΨw,Ψw′

TΨw′

commutes, i.e. the black and the blue directed paths in the diagram lead to the same result. In

this latter case, since T ∗
Ψw

◦ TΨw is the identity operator from ℓ2(Z2) onto itself, equation (A.5)

forces the discretization gΨw,Ψw′ to be defined as

gΨw,Ψw′ = T ∗
Ψw′

◦ G∗ ◦ TΨw , (A.6)

i.e. the diagram

Bw Bw′

ℓ2(Z2) ℓ2(Z2)

G∗

T ∗
Ψw′TΨw

gΨw,Ψw′

also commutes. In other words, once we fix the discrete representations associated to the

input and output functions, there exists a unique way to define a discretization gΨw,Ψw′ that

is consistent with the continuous operator G∗ and this is given by (A.6). In practice, we may

have access to different discrete representations of the input and output functions, e.g. point

samples evaluated on different grids, which in the theory amounts to a change of reference

systems in the function spaces. For instance, sampling a function f ∈ Bw on a finer grid{(
m
2w ,

n
2w

)
)
}
m,n∈Z

, w > w, amounts to representing the function f with respect to the system

Ψw = {sinc(2wx1 − m) · sinc(2wx2 − n)}m,n∈Z, which constitutes an orthonormal basis for

Bw ⊃ Bw. Then, one can define the associated CDE discretization gΨw,Ψw′ as in (A.6), and by

equation (A.5), one readily obtains the change of basis formula

gΨw,Ψw′ = T ∗
Ψw′

◦ TΨw′ ◦ gΨw,Ψw′ ◦ T ∗
Ψw

◦ TΨw , (A.7)

see also Remark 3.5 in [2] for a more general change of frame formula. Finally, all the above

concepts generalize to every pair of frame sequences (Ψ,Φ) that span respectively the input

and output function spaces, and we refer to [2] for a complete exposition. Appendix A.2 can

be adapted to bandlimited periodic functions, i.e. periodic functions with a finite number of

non-zero Fourier coefficients, with the Dirichlet kernel as a counterpart of the sinc function, see

[58, Section 5.5.2] for further details.

A.3 Multi-channel versions of elementary operators for CNO (2.3)

In this section, we will define multi-channel versions of the elementary mappings which define

CNO (2.3). Note that the single-channel versions were defined in the main text.

17

Convolutional Neural Operators for robust and accurate learning of PDEs

Convolution Operator. In the multi-channel settings, discrete kernels Kw are defined on

the din × dout × s2 uniform grids on D, where din is the number of input channels and dout is

the number of output channels. Formally, the kernels are defined as

Kw,cl =

k∑

i,j=1

kij,cl · δzij .

where c is the channel index in the input space, while l is the channel index in the output

space. Each pair of channels defines corresponding single-channel convolution operation Kw,cl :

Bw(D) → Bw(D). For a ∈ Bw(D,R
din), the multi-channel convolution operation Kw is defined

as
(
Kwa(x)

)
l
=

din∑

c=1

Kw,cl ac(x), l = 1 . . . dout.

Upsampling and Downsampling Operators. To upsample a signal a ∈ Bw(D,R
d) with

d channels from the bandlimit w > 0 to the bandlimit w > w, one should apply the single-

channel upsampling operator Uw,w to each individual channel of the input signal, independently.

Formally, for a ∈ Bw(D,R
d), the multi channel upsampling Uw,w : Bw(D,R

d) 7→ Bw(D,R
d) is

defined as

(Uw,wa(x))c = ac(x), ∀x ∈ D, c = 1 . . . d.

The downsampling operator of a signal a ∈ Bw(D,R
d) from the bandlimit w > 0 to the

bandlimit w > w is defined in a similar manner (independent applications of the single-channel

downsampling operators).

Activation layer. The multi-channel version of the activation layer, namely Σw,w : Bw(D,R
d) 7→

Bw(D,R
d), is realized by applying the single-channel activation layer to each of the d channels,

independently.

A.4 Discrete operators for CNO

In this section, we will define the discrete versions of the elementary mappings in (2.3). Given

a discrete, multi-channel signal as ∈ R
s×s×d on s× s× d uniform grid, we will use the notation

as[i, j, c] to refer to the (i, j)-th coordinate of the c-th channel of the signal, where i, j = 1 . . . s

and c = 1 . . . d.

Convolution operator. Assume that instead of a continuous, single-channel signal a ∈ Bw(D),

one has an access only to its sampled version as ∈ R
s×s on s×s uniform grid on D. Assume that

as is to be convolved with a discrete kernel Kw ∈ R
k×k with k = 2k̂ + 1. Let âs ∈ R

s+2k̂×s+2k̂

be an extended version of as obtained by circular-padding or zero-padding of as. The discrete,

18

Convolutional Neural Operators for robust and accurate learning of PDEs

single-channel convolution Ks : R
s×s 7→ R

s×s of the signal as and the kernel Kw is given by

Ks(as) = (as ⋆ Kw)[i, j] =

k̂∑

m,n=−k̂

Kw[m,n] · âs[i−m, j − n], i, j = 1 . . . s,

where indices of âs outside the range 1 . . . s correspond to the padded samples. By performing

the convolution in a described way, we ensure that the input and the output signals have the

same spatial dimension s× s.

Let as ∈ R
s×s×din be a discrete, multi-channel signal and Kw ∈ R

k×k×din×dout a discrete kernel

with k = 2k̂ + 1. The multi-channel convolution of as and Kw is defined by

(as ⋆ Kw)[i, j, l] =
k̂∑

m,n=−k̂

din∑

c=1

Kw[m,n, c, l] · âs[i−m, j − n, c], i, j = 1 . . . s,

where l corresponds to the index of the output channel and c to the index of the input channel.

Upsampling and Downsampling Operators. In this section, we will define the discrete

upsampling and downsampling operators. For w > 0, let hw be the interpolation sinc filter

defined in 2.5. For a discrete, single-channel signal as ∈ R
s×s, let (ãs[n])n∈Z be its periodic

extension into infinite length. In other words, ãs[n] = as[n mod s] for n ∈ Z. The discrete

upsampling Us,N : Rs×s → R
Ns×Ns by an integer factor N ∈ N of the signal as ∈ R

s×s is done

in two phases:

1. First step is to increase the number of samples of the signal as from s2 to (Ns)2. One

transforms the signal as into the signal as,↑Ns obtained by separating each two signal

samples of as withN−1 zero-valued samples. In other words, it holds that as,↑Ns ∈ R
Ns×Ns

and

as,↑Ns[i, j] = ✶S(i) · ✶S(j) · as[i mod s, j mod s], i, j = 1 . . . Ns,

where S = {1, s+ 1, . . . (N − 1)s+ 1} and ✶S is the indicator function.

2. Second step is to convolve the periodic extension of as,↑Ns with the hs/2 interpolation

filter to eliminate high frequency components. The upsampled signal is formally obtained

by

Us,N (as)[i, j] =
∑

n,m∈Z

ãs,↑Ns[n,m] · hs/2(is− ns, js−ms), i, j = 1 . . . Ns.

The discrete downsampling Ds,N : Rs×s → R
s/N×s/N by an integer factor N ∈ N of the signal

as ∈ R
s×s is also done in two phases (under the assumption that s/N ∈ N):

1. First step is to convolve the periodic extension of as with the hs/(2N) interpolation filter

to eliminate high frequency content. Formally, the first step is defined by

as,s/N [i, j] =
∑

n,m∈Z

ãs[n,m] · hs/(2N)(is− ns, js−ms), i, j = 1 . . . s/N.

19

Convolutional Neural Operators for robust and accurate learning of PDEs

2. Second step is to decrease the sampling rate of as,N/s by keeping every N−th sample of

the signal. The downsampled signal is formally defined by

Ds,N (as)[i, j] = as,N/s[(i− 1)s+ 1, (j − 1)s+ 1], i, j = 1 . . . s/N.

Multi-channel discrete upsampling and downsampling are performed by independent applications

of the corresponding single-channel operators.

Since perfect filters hw have infinite impulse response and cause ringing artifacts around high-

gradient points (e.g. discontinuities) due the Gibbs phenomenon, one usually uses windowed-sinc

filters in the implementation. We will describe these filters later in the text (see C.1.3)

Activation layer. Given the definitions of the discrete operators, the discrete, single-channel

activation layer is defined as

Σs : R
s×s → R

s×s, Σs(as) = Ds,N ◦ σ ◦ Us,N (as),

where σ : R → R is an activation function applied point-wise and N ∈ N is a fixed constant. In

our experiments, we noticed that N = 2 is sufficient for accurate predictions. The multi-channel

activation layer is performed by independent applications of the single-channel activation layer.

A.5 Proof of Proposition 2.1 of Main Text

We use the same notation as in Section 2 and Appendix A.2. The layers of a convolutional

neural operator (2.3) are given by,

vl+1 = Pl ◦ Σl ◦ Kl(vl), 0 ≤ l ≤ L− 1, (A.8)

Hence, they consist of three elementary mappings between spaces of bandlimited functions, i.e.,

Kl is a convolution operator, Σl is a non-linear operator whose definition depends on the choice

of an activation function σ : R → R, and Pl is a projection operator. We now show that CNO

layers, whose discrete versions are outlined in the previous section, respect equation (A.6) and

consequently CNOs are Representation equivalent Neural Operators (ReNOs) in the sense of [2,

Definiton 3.4] and [2, Remark 3.5]. We recall that the convolutional operator appearing in (A.8)

takes the form

Kwf(x) =

k∑

m,n=−k

km,nf(x− zm,n), x ∈ R,

for some w > 0, where k ∈ N, km,n ∈ C and zm,n =
{(

m
2w ,

n
2w

)}
m,n∈Z

. By definition, Kw is a

well-defined operator from Bw(R
2) into itself. Moreover, its discretized version is defined by the

mapping

{
f
(m
2w

,
n

2w

)}
m,n∈Z

7→
{
Kwf

(m
2w

,
n

2w

)}
m,n∈Z

=

k∑

m′,n′=−k

km′,n′f(zm,n − zm′,n′)

m,n∈Z

,

20

Convolutional Neural Operators for robust and accurate learning of PDEs

and thus results in the commutative diagram

Bw Bw

ℓ2(Z2) ℓ2(Z2)

Kw

T ∗
Ψw

TΨw

Equivalently, the discretized verion of Kw is defined via (A.6), which was to be shown. In order

to define the activation layer Σl, we first assume that the activation function σ : R2 → R
2 is

such that for every f ∈ Bw(R
2)

σ(f) ∈ Bw(R
2), (A.9)

for some w > w. In fact, in Section 2 we assume that the pointwise activation can be

approximated by an operator between bandlimited spaces and consequently (A.9) is satisfied up

to negligible frequencies. Thus, the activation layer Σw,w : Bw(R
2) → Bw(R

2) in (A.8) is defined

by the composition

Σw,w = PBw(R2) ◦ σ ◦ PBw(R2), (A.10)

where PBw(R2) : Bw(R
2) → Bw(R

2) denotes the orthogonal projection onto Bw(R
2) and PBw(R2) :

Bw(R
2) → Bw(R

2) denotes the natural embedding of Bw(R
2) into Bw(R

2). The discretized

version of each mapping in (A.10) is defined in order to guarantee a continuous-discrete

equivalence (CDE) between the continuous and discrete levels. More precisely, PBw(R2) and

PBw(R2) are discretized via (A.6) as

Dw,w = T ∗
Ψw

◦ PBw(R2) ◦ TΨw , Uw,w = T ∗
Ψw

◦ PBw(R2) ◦ TΨw ,

which are respectively called downsampling and upsampling. Consequently, the discretized

version of the activation layer is given by the composition

Dw,w ◦ σ ◦ Uw,w,

which yields the commutative diagram

Bw Bw Bw Bw

ℓ2(Z2) ℓ2(Z2) ℓ2(Z2) ℓ2(Z2)

P
Bw(R2) σ

T ∗
Ψw

P
Bw(R2)

T ∗
Ψw

Uw,w

TΨw

σ Dw,w

TΨw

which we wanted to show. Finally, the activation layer might be followed by an additional

projective operator, i.e., by a downsampling or an upsampling. Thus, this exact correspondence

between its constituent continuous and discrete operators establishes CNO as an example of

Representation equivalent neural operators or ReNOs in the sense of [2, Definiton 3.4] and [2,

Remark 3.5], thus proving Proposition 2.1 of the main text. As in Appendix A.2, the above

proofs can be readily adapted to bandlimited periodic functions, i.e. periodic functions with a

finite number of non-zero Fourier coefficients.

21

Convolutional Neural Operators for robust and accurate learning of PDEs

B Proof of Theorem 3.1 of Main Text.

We present the proof of a generalization of the universality result of Theorem 3.1. The theorem

in the main text only holds when the differential operator L only depends on the coordinate x

through a coefficient function a ∈ Hr(D). Although all benchmark PDEs in Section 4 satisfy

this requirement, there are other important PDEs that do not, such as the standard elliptic

PDE ∇ · (a∇u)) = f . We therefore generalize this requirement in the following setting,

Setting B.1. We set D = T
2 and assume that the following is true,

1. L only depends on the coordinate x through functions a, f1, . . . , fℓ ∈ Hr(T2).

2. The solution of the PDE characterized by a and f = (f1, . . . , fℓ) is given by a continuous

operator G̃ : X̃ ⊂ (Hr(T2))ℓ+1 → Hr(T2) : (a, f) 7→ u or u(T), depending on the PDE. The

operator of interest G† is a restriction of G̃ for fixed f1, . . . , fℓ i.e., G† : X ∗ ⊂ Hr(Td) →
Hr(Td) : a 7→ G̃(a, f1, . . . , fℓ).

3. Similar to (2.1), it holds for all (a, f), (a′, f ′) ∈ X ∗ it holds that

∥∥∥G̃(a, f)− G̃(a′, f ′)
∥∥∥
Lp(T2)

≤ ω

(∥∥a− a′
∥∥
Hσ(T2)

+max
i

∥∥fi − f ′i
∥∥
Hσ(T2)

)
, (B.1)

for some p ∈ {2,∞} and σ ∈ N0 with σ < r. This is automatically satisfied if X ∗ is

compact and G̃ is continuous [23].

4. It holds that the activation function σ is at least r times continuously differentiable and

not a polynomial. (See Remark B.4 for a generalization.)

In addition, we will use the following notation in the proof.

• For J ∈ N we define for every j ∈ {0, . . . , J − 1}2 the grid xJ
j = (2πj1/J, 2πj2/J).

• We denote the Fourier basis by {ek}k∈Z2 , following the notation of [23]. For k =

(k1, . . . ,kd) ∈ Z
d, we let σ(k) be the sign of the first non-zero component of k and we

define

ek := Ck

1, σ(k) = 0,

cos(k · x), σ(k) = 1,

sin(k · x), σ(k) = −1,

(B.2)

where the factor Ck > 0 ensures that ek is properly normalized, i.e. that ∥ek∥L2(Td) = 1.

• For N ∈ N let PN denote a trigonometric polynomial interpolation operator as in (B.16)

in SM B.1.

Assuming Setting B.1 we can now prove the following theorem on the universality of CNOs. In

the proof we will construct an operator G : Hr(T2) → C(T2), mapping between function spaces,

22

Convolutional Neural Operators for robust and accurate learning of PDEs

and we will therefore allow to apply the activation function to the continuous representation of the

signal rather than an upsampled version. We then make the link to the discrete implementation

of the CNO by considering an encoder EK that maps the input function a to the evaluation of a

on a grid, enhanced by some Fourier features [54] in case ℓ > 0 in Setting B.1.

Theorem B.2. Let σ ∈ N0 and p ∈ {2,∞} as in (B.1), r > max{σ, 2/p} and B > 0. For

any ε > 0 and any operator G† satisfying Setting B.1, there exist K,N ∈ N0 and a CNO

G : Hr(T2) → C(T2) such that for every a ∈ X ∗ with ∥a∥Hr(T2) ≤ B it holds,

∥∥∥G†(a)− G(a)
∥∥∥
Lp(T2)

< ε. (B.3)

The CNO is implemented through an encoder

EK : Hr(T2) → (RN×N)(K+1)2 : a 7→ (a(xN), (cos(k · xN), sin(k · xN))1≤∥k∥∞≤K) (B.4)

and a single invariant block Φ̂ : (RN×N)(K+1)2 → R
N×N such that G(a)(xN) = (Φ̂ ◦ EK)(a). If

ℓ = 0 (see Setting B.1) then K = 0, meaning that no Fourier features are needed.

Proof. Let M,N ∈ N with N/M ∈ N. We will construct a CNO with input a(xN) and the

Fourier features ek(x
N) for k ∈ K := {−M/2,−M/2 + 1, . . . ,M/2}2 \ {0, 0}, summarized in

the tensor (a(xN), eM/2(xN)) := (a(xN), (ek(x
N))k∈K). In the proof, we will use the property

that bandlimited functions can be represented by their function values on a fine enough grid.

We will therefore first construct a continuous operator G : Hr(T2) → C(T2) that is a good

approximation of G†. In the second step, we will then prove that G(a)(xN) indeed corresponds

to a CNO.

Step 1: construction of G. First, since a, f ∈ Hr(T2) we can use Lemma A.1 and assumption

(B.1) on the stability of G̃ to find that,

∥∥∥G̃(a, f)− G̃(PM (a, f))
∥∥∥
Lp(T2)

≤ ω
(
CB,fM

−(r−σ)
)
. (B.5)

Next, we define for any J ∈ N the set

AJ = {y ∈ (RJ×J)(M+1)2 | ∃a ∈ Hr(T2) : y = (a(xJ), eM/2(xJ)) and ∥a∥Hr(T2) ≤ B}, (B.6)

and the map,

G : AM ⊂ (RM×M)(M+1)2 → R : (a(xM), eM/2(xM)) 7→ G̃(PM (a, f))(x0,0). (B.7)

The existence of the map G can be justified as follows. Let PM denote a trigonometric polynomial

interpolation operator as in (B.16) in SM B.1. By the Nyquist–Shannon sampling theorem and

the Whittaker–Shannon interpolation formula there is a bijection between the discrete values

(a(xM), eM/2(xM)) and PMa and eM/2, and therefore also PMa and PMfi for all 1 ≤ i ≤ ℓ.

Hence, the mapping G is equivalent to the mapping PM (a, f) 7→ PMu, and therefore well-defined.

The continuity of G follows from that of G̃. By the universal approximation theorem (Theorem

23

Convolutional Neural Operators for robust and accurate learning of PDEs

B.6) there exists a shallow neural network Ψ such that |Ψ(y)−G(y)| < ε for all y ∈ AM . Note

that Ψ only provides an approximation in the point x0,0. We can expand Φ to the whole T
2 by

defining the operator Ψ∗ as follows,

Ψ∗ : X ∗ → C(T2) : a 7→
[
T
2 ∋ z 7→ Ψ

(
a(z+ xM), eM/2(z+ xM)

)]
. (B.8)

For the intuition of the reader: the extension from Ψ to Ψ∗ is similar to the extension from the

local stencil of a finite difference scheme to its corresponding global approximation. As a result,

Ψ∗ has the same accuracy as Ψ,

∥∥∥G†(PMa)−Ψ∗(PMa)
∥∥∥
C0(T2)

< ε. (B.9)

We finalize our construction by projecting Ψ∗(PMa) on to the space of trigonometric polynomials.

The accuracy of such a projection is given by Lemma A.1,

∥(PN − Id)Ψ∗(a)∥Lp(T2) ≤ ∥(PN − Id)Ψ∗(a)∥H1−2/p(T2) ≤ CN−(r−2/p) ∥Ψ∗(a)∥Hr(T2) , (B.10)

where we used that either p = 2 or p = ∞. It is important to note that ∥Ψ∗(a)∥Hr(T2) is

independent of N . We then define the operator G as,

G(a)(z) = (PN ◦Ψ∗)(PMa)(z). (B.11)

Finally, we can put all obtained estimates together to find,

∥∥∥G†(a)− G(a)
∥∥∥
Lp(T2)

≤
∥∥∥G†(a)− G†(PMa)

∥∥∥
Lp(T2)

+
∥∥∥G†(PMa)−Ψ∗(PMa)

∥∥∥
C0(T2)

+ ∥Ψ∗(PMa)− G(a)∥Lp(T2)

≤ ω
(
CB,fM

−(r−σ)
)
+ ε+ CB,M,εN

−(r−2/p).

(B.12)

It then follows that one can make this upper bound arbitrarily small by choosing ε sufficiently

small and M,N sufficiently large (in that order).

Step 2: G corresponds to a CNO. We will now show that the operator G is in agreement with

our definition of a convolutional neural operator (CNO). To do so, we will use that trigonometric

polynomials up to a certain degree can be exactly retrieved based on their values on a grid (see

SM B.1 and [19]).

First of all, given that N/M ∈ N we find that the functions PMa and eM/2 can be exactly

recovered from their discrete values on the grid xN . We therefore will look for a CNO with input

y = (a(xN), eM/2(xN)) ∈ AN for which the continuous representation of the output agrees with

G(a).
A crucial next observation is that G is equivariant with respect to translations in space of

the input (simultaneously across all channels). By [45, Theorem 1.1] there then exists a

24

Convolutional Neural Operators for robust and accurate learning of PDEs

shallow CNN Φ such that π ◦ Φ = Ψ, where π is the projection on the first coordinate

π : (RN×N)(M+1)2 → R
(M+1)2 : X 7→ (X1

1,1, . . . , X
ℓ
1,1) (as in [45]). For simplicity we will assume

that the CNN is of the form Φ(y) = K2 ∗ σ(K1 ∗ y), i.e. that it only has one channel at every

layer. The proof of the general case is completely analogous, but much heavier on notation.

We then lift the convolution filter K1 ∈ R
M×M to the grid R

N×N by using a stride of N/M

and filling up the rest by zeroes. More rigorously, we consider the matrix K̂1 := K1 ⊗ E

with Eij = δi1δj1. Similarly we define K̂2 := K2 ⊗ E. We can then define a new CNN

Φ̂ : AN → R
N×N : y 7→ K̂2 ⋆ σ(K̂1 ⋆ y). The output of Φ̂ then consists of approximations of

G†(a) at (N/M)2 different M ×M subgrids of xN , i.e. all possible translations of xM within

xN . More precisely, it holds that

Ψ∗(xN) = Φ̂
(
PMa(x

N), eM/2(xN)
)
∈ R

N×N . (B.13)

Moreover, since the operator PN only uses the values of Ψ∗ on the grid xN it follows that

applying PN to the right-hand side of the above equation or applying an interpolation sinc filter

with corresponding frequency gives the exact same result,

G(a)(xN) = (PN ◦Ψ∗)(PMa)(x
N) = hN ⋆ Φ̂

(
PMa(x

N), eM/2(xN)
)
. (B.14)

The right-hand side exactly corresponds to our definition of a CNO, thereby concluding the

universality proof.

Remark B.3 (Alternative proof). We stress that it is crucial in the proof that M can be chosen

independently of N . A straightforward application of [45, Theorem 1.1] on the map G with

N =M would not lead to an accurate CNO approximation as the ∥Ψ∗(a)∥Hr(T2) will depend on

N =M such that N−(r−2/p) ∥Ψ∗(a)∥Hr(T2) might not convergence to zero. In addition, because

of the used trick we obtain convolution kernels with a stride of N/M and therefore a sparse

kernel. An alternative strategy could be to replace the universal approximation (Theorem B.6)

by an approximation theorem that provides explicit control on the network size and upper bounds

on the weights such as those in [10]. Other than a much more complicated proof, one will also

need to put stronger regularity conditions on G†.

Remark B.4 (Polynomial and rational activations). The CNO constructed in the above theorem

is exactly equivariant. As suggested in [21], it can be sufficient in practice to break this perfect

equivariance by applying the activation function σ to an upsampled discrete version of the signal

rather than the continuous representation of the signal. We do the same in our implementation

of CNO. Note that if one would use polynomial activation functions one could still recover exact

equivariance by choosing a high enough upsampling rate. In this case the universality of CNOs

can be proven by replacing the universal approximation theorem for neural networks (Theorem

B.6) by the Weierstrass approximation theorem. The rest of the proof of Theorem B.2 remains

unchanged. Similarly, one could consider using Padé and rational approximants as activation

functions [55, 42, 12, 6]. The computation of a rational activation function σ(x) = p(x)/q(x)

can then be approximated by iteratively minimizing ∥p(x)σ(x)− q(x)∥22, following the idea of [61].

25

Convolutional Neural Operators for robust and accurate learning of PDEs

Methods such as Newton-Raphson only involve multiplications and can therefore be completely

applied in an alias-free way through proper upsampling before, and downsampling after each

multiplication.

Remark B.5 (Physics-informed CNOs). Physics-informed learning employs a PDE residual-

based loss to circumvent the need for training data. Examples of such frameworks include

physics-informed neural networks (PINNs) [48], physics-informed DeepONets [60] and physics-

informed FNOs [35]. Using the continuous representation of the CNO output, one can use

automatic differentation to created a physics-informed CNO loss. In order to use the tools

provided in [11, Theorem 3.9] to obtain a bound on the approximation error for physics-informed

CNOs, one needs to prove that the CNO error converges at a certain rate in terms of its size.

Although Theorem B.2 does not provide such a rate, its proof does give a hint of which stronger

assumptions are needed to obtain this result. The most notable ingredients include a stronger

stability result (B.1) with a continuity modulus ω decreasing at least at a polynomial rate, and a

stronger regularity assumption on G (B.7), and hence G†.

B.1 Auxiliary results

We list the auxiliary results that are used in the proof of Theorem B.2. First, we state a

well-known version of the universal approximation theorem for feedforward neural networks [30]:

Theorem B.6 ([30]). Let σ : R → R be a function that is locally essentially bounded with the

property that the closure of the set of points of discontinuity has zero Lebesgue measure. For

1 ≤ j ≤ n, let αj , θj ∈ R and yj ∈ R
d. Then finite sums of the form

G(x) =
N∑

j=1

αjσ(y
T
j x+ θj), x ∈ R

d (B.15)

are dense in C(Rd) if and only if σ is not an algebraic polynomial.

Next, we demonstrate the equivalence of using the interpolation sinc filter (2.5) and trigonometric

polynomial interpolation. If you sample a function f ∈ C(T = [0, 2π)) with sampling frequency
2π
N , the result obtained through trigonometric polynomial interpolation PNg is given by [19],

PNf(x) =

∑
|n|≤(N−1)/2

1
N

∑N−1
j=0 f(xj) exp(in(x− xj)), for n odd,

∑
|n|≤N/2

1
Ncn

∑N−1
j=0 f(xj) exp(in(x− xj)), for n even,

(B.16)

where xj = 2πj/N , cn = 1 for |n| < N/2 and cn = 2 for |n| = N/2. We will prove that one

obtains the exact same result by using an interpolation sinc filter with the same frequency on

the periodic extension of f . We prove this result in the one-dimensional case for odd N . The

result for even N follows in an identical way, the result for the multi-dimensional case through

tensorisation.

26

Convolutional Neural Operators for robust and accurate learning of PDEs

Lemma B.7. For any N ∈ 2N+ 1 and f ∈ C(T) it holds that,

PNf(x) =
1

N

∑

|n|≤(N−1)/2

N−1∑

j=0

f(xj) exp(in(x− xj)) =
∑

n∈Z

f(xn) sinc

(
N · x− xn

2π

)
(B.17)

Proof. As a first step, it follows from [19, Section 2.2.2] that

PNf(x) =
1

N

∑

|n|≤(N−1)/2

N−1∑

j=0

f(xj) exp(in(x− xj)) =
1

N

N−1∑

n=0

f(xn)
sin(N(x− xn)/2)

sin((x− xn)/2)
. (B.18)

Then we use the result from [50], where we replace their N -periodic signal x(t) by the function

f(x) through the transformation t = Nx/2π and x(t) = f(2πt/N). In their notation, but with

the change that here we use the normalized sinc function (sinc(x) = sin(πx)/πx for x ̸= 0), [50]

shows that
∑

n∈Z

x(n) sinc (t− n) =
sin(πt)

N

M−1∑

n=−L

x(n)(−1)n csc(π(t− n)/N) (B.19)

with L,M ∈ N0 such that L + M = N . We will take L = 0 and M = N , and use that

csc(z) = 1/ sin(z) and that cos(πn) = (−1)n and sin(πn) = 0 to obtain,

∑

n∈Z

x(n) sinc (t− n) =
1

N

M−1∑

n=−L

x(n)
sin(π(t− n))

sin(π(t− n)/N)
, (B.20)

which is equivalent to,

∑

n∈Z

f(xn) sinc (N(x− xn)/2π) =
1

N

N−1∑

n=0

f(xn)
sin(N(x− xn)/2)

sin((x− xn)/2)
. (B.21)

Combining all obtained equalities proves the claim.

C Technical Details for Section 4 of Main Text.

Implementation of all the models is available at

■ https://github.com/bogdanraonic3/ConvolutionalNeuralOperator.git

In the readme.md file, it is explained how to download the data sets, as well as best performing

models. Alternatively, the data and the models can be downloaded from

■ https://zenodo.org/record/7963379

27

Convolutional Neural Operators for robust and accurate learning of PDEs

C.1 Training and Implementation Details

We start with a succinct description of the baselines that were used in the main text.

C.1.1 Feed Forward Dense Neural Networks

Given an input u ∈ R
m, a feedforward neural network (also termed as a multi-layer perceptron),

transforms it to an output, through a layer of units (neurons) which compose of either affine-

linear maps between units (in successive layers) or scalar nonlinear activation functions within

units [15], resulting in the representation,

uθ(y) = CL ◦ σ ◦ CL−1 . . . ◦ σ ◦ C2 ◦ σ ◦ C1(u). (C.1)

Here, ◦ refers to the composition of functions and σ is a scalar (nonlinear) activation function.

For any 1 ≤ ℓ ≤ L, we define

Cℓzℓ =Wℓzℓ + bℓ, for Wℓ ∈ R
dℓ+1×dℓ , zℓ ∈ R

dℓ , bℓ ∈ R
dℓ+1 ., (C.2)

and denote,

θ = {Wℓ, bℓ}Lℓ=1, (C.3)

to be the concatenated set of (tunable) weights for the network. Thus in the terminology of

machine learning, a feed forward neural network (C.1) consists of an input layer, an output

layer, and L hidden layers with dℓ neurons, 1 < ℓ < L. In all numerical experiments, we consider

a uniform number of neurons across all the layer of the network dℓ = dℓ−1 = d, 1 < ℓ < L. The

first baseline model consists into a feed forward neural network with residual blocks which use

skip or shortcut connections [18]. A residual block spanning k layers is defined as follows,

r(zℓ, zℓ−k) = σ(Wℓzℓ + bℓ) + zℓ−k. (C.4)

The residual network takes as input a sample function u ∈ X , encoded at m = s× s Cartesian

grid points (x1, . . . , xm), E(u) = (u(x1), . . . , u(xm)) ∈ R
m, and outputs the output sample

G(u) ∈ Y encoded at the same set of points, E(G(u)) = (G(u)(x1), . . . ,G(u)(xm)) ∈ R
m. In

all the experiments, but the compressible Euler, s = 64. Instead, for the compressible Euler

equation, the sampling rate is s = 128. The number of layers L, neurons d are chosen though

cross-validation, whereas the activation function σ corresponds to a Leaky ReLU and the depth

of the residual block k is fixed and equal to 2.

C.1.2 UNet

For the UNet baseline we use the model architecture proposed in [49]. However, we slightly

modify the proposed architecture by varying the number of output channels c of the first

convolutional layer, which is chosen through cross validation. We ensure that the number of

channels used in the subsequent layers align with the chosen value of c. Specifically, we respect

the progressive increase or decrease in the number of channels as established in the original

architecture across different layers.

28

Convolutional Neural Operators for robust and accurate learning of PDEs

C.1.3 Convolutional Neural Operator

Design of the filters. As we noted before, perfect sinc interpolation filters hw have infinite

impulse response and cause ringing artifacts around high-gradient points due the Gibbs phe-

nomenon. In practice, one uses windowed-sinc filters which serve as convenient approximations

of hw. They have finite impulse response and weakened ringing effect [58].

The windowed-sinc filters are constructed by multiplying the ideal filter hw by a corresponding

window function of finite length. That is equivalent to convolving the filter with the window

function in the frequency domain. To design the windowed filter, one can use standard Python

libraries and their functions such as scipy.signal.firwin. By using this function, we are enabled

to manually control the cutoff frequency wc and the half-width of the transition band wh of the

designed filters. We design discrete filters with a prescribed compact support Ntap ∈ N. In this

case, we say that a designed filter has Ntap taps. Implementation of the filters is borrowed from

[21] (CUDA programming model).

We show several 1D designed filters in the Figure 3, where we set wc = s/(2+ ε), for ε≪ 1. We

control the half-width of the filter wh = ch · s by controling the coefficient ch. When ch is set

to 0.5, one would anticipate the design of an almost perfect sinc filter. However, the presence

of undesirable oscillations in the frequency domain can be observed due to the finite impulse

response of windowed filters, as depicted in Figure 3. That is why we set ch to be at least 0.6.

One can implement a 2D filter by first convolving a 1D filter with each row and then with each

column.

The activation layer Σw,w plays a vital role in the CNO model. It is essential to closely examine

the ratio Nσ = w/w as a significant parameter. To facilitate implementation of the CNO, we

make the assumption that Nσ ∈ N and Nσ ≥ 2. Throughout the entire architecture, we make

the assumption that the value of Nσ remains fixed. In our implementation of the CNO, it is

worth noting that the value of Nσ can also be a rational number if the sampling rate of an

input signal requires it (e.g. if one wants to upsample a signal from the sampling rate 11 to the

sampling rate 20).

We choose to fix the coefficient wc = s/2.0001, so that the cutoff frequency is very close to the

Nyquist critical frequency. It remains to choose the number of taps Ntap, the coefficient related

to the half-width of the filter ch and the ratio related to the activation layer Nσ.

Choice of parameters. Throughout our experiments, we maintained a consistent configu-

ration, setting Nσ to 2, ch to 1, and Ntap to 12. Prior to finalizing the filter parameters, we

conducted experiments using various filters; however, no significant differences were observed.

To further validate this assumption, we conducted the Navier-Stokes experiment using different

filter designs. First, we selected the best-performing CNO model based on the criteria described

in C.2 using filter parameters Nσ = 2, ch = 1 and Ntap = 12. For this chosen model, we

conducted training with identical model settings as outlined in 10, but with different values for

coefficients ch, Nσ and Ntap.

29

Convolutional Neural Operators for robust and accurate learning of PDEs

In the first set of experiments, we set Ntap = 12 and vary ch and Nσ. Note that increasing

the coefficient Nσ leads to a significant increase in computational time. We show different test

errors in the Table 2. Once the coefficient ch reaches a sufficiently high value (i.e. ch ≥ 0.8), we

observe no significant difference in test errors. Additionally, we do not find a high correlation

between the error and the coefficient Nσ. We set the Nσ as low as possible, to a fixed value of

Nσ = 2. Similarly, we set the coefficient ch to a fixed value of 1.

In the second experiment, we fix Nσ = 2 and ch = 1 and vary the number of taps Ntap. By

increasing the number of taps, the computational time also increases. We show different test

errors in the Table 3. Although there is an improvement of approximately 5% in the test

error when Ntap = 24 compared to when Ntap = 12, it comes at the cost of increased training

time. Specifically, the training time for 1000 epochs increases from 0.7 hours to 1.7 hours,

representing an almost 150% increase. Due to this significant increase in training time, but not

very significant improvement in performance, we decide to fix the number of taps at Ntap = 12.

Remark C.1. Given the above description, it is important to emphasize that, although in

principle, the activation layer of CNO (2.3) needs to be exactly equivariant, i.e., σ(Bω) ⊂ Bω′

for the pair (ω, ω′), for the CNO architecture to be representation equivariant in the sense of

[2], definition 3.4, see also section A.5, several approximations are used in practice that might

be lead to this condition to hold only approximately. However, as the above results show, once

the upsampling frequency is choosen high enough, this approximation of equivariance seems to

suffice in practice, see also results in Section C.4. Neverthelesss, if exact equivariance is sought

for, it can be realized through either polynominal or rational activation functions as suggested in

Remark B.4 although this choice might be of little practical utility.

Figure 3: On the left: Frequency responses of different designed filters. On the right: Impulse

responses of different designed filters. The sampling rate is s = 128, the cutoff frequency is

wc = s/2.0001, while the half-width of each filter is wh = ch · s. Each filter has Ntap = 12 taps.

Building blocks. In the convolutional neural operator, the architecture consist of 4 different

blocks, i.e. the downsampling block (D), the upsampling block (U), the invariant block (I) and

the ResNet block (R).

30

Convolutional Neural Operators for robust and accurate learning of PDEs

Table 2: CNO model. Navier-Stokes Equations. Relative median L1-error computed over 128

in-distribution testing samples for different filter designs. The error of the model with original

filter parameters ch = 1, Nσ = 2 and Ntap = 12 is marked in blue.

ch = 0.6 ch = 0.8 ch = 1.0 ch = 1.5 ch = 2.0

Nσ = 2 3.18% 2.98% 3.01% 2.97% 3.01%

Nσ = 3 3.17% 2.89% 2.91% 3.06% 3.14%

Nσ = 4 2.96% 3.30% 2.94% 3.00% 3.05%

Nσ = 5 3.13% 2.94% 2.95% 2.98% 3.03%

Nσ = 6 3.27% 3.26% 3.03% 2.96% 3.09%

Table 3: CNO model. Navier-Stokes Equations. Relative median L1-error computed over 128

in-distribution testing samples for different number of taps Ntap. The error of the model with

original filter parameters ch = 1, Nσ = 2 and Ntap = 12 is marked in blue.

Ntap = 12 Ntap = 16 Ntap = 20 Ntap = 24

Nσ = 2 & ch = 1 3.01% 2.94% 2.96% 2.86%

In the simplest scenario, the architecture consists only of the lifting layer, number of (D) and

(U) blocks, and the projection layer. In this simple scenario, once the input is lifted to higher

dimensional space (in the channel width), one performs first T iterations of (D) blocks. These

T iterations define the encoder, namely

vl+1 = Dsl,sl+1
◦ Σsl,sl+1

◦ Kslvl, vl ∈ Bsl(D,R
dl), l = 0 . . . T − 1,

where sl = s/2l is the current bandlimit and dl is the current number of channels. The next T

iterations are (U) blocks and are devoted to the decoder. Let s̃l = s2T−l. The decoder is defined

as

vl+1 = Us̃l,s̃l+1
◦ Σs̃l,s̃l+1

◦ Ks̃lvl, vl ∈ Bs̃l(D,R
dl), l = T . . . 2T − 1.

The last output of the decoder is projected to the output space (in the channel width). In

all the experiments, we use dl = 32 as the lifting dimension. In the encoder, the number of

channels increases as per

32 7→ de 7→ 2de 7→ · · · 7→ 2T−1de.

The number de is a hyperparameter. In this simple case where no UNet style patching is present

in the architecture, the number of channels in the decoder decreases as per

2T−1de 7→ 2T−2de 7→ · · · 7→ de 7→ de.

31

Convolutional Neural Operators for robust and accurate learning of PDEs

When the patching is present in the architecture (see Figure 1), number of channels in the

decoder changes differently (as a certain number of transfered channels is concatenated).

Operator UNet architecture. We add an (I) block 2.8 before each up/downsampling block.

Additionally, we add a few (R) blocks 2.7 between the encoder and decoder. We denote the

number of residual blocks as a hyperparameter Nres. There is an additional hyperparameter r

in the definition of the (R) block and it corresponds to the number of consecutive applications

of (I) blocks to an input signal before the skip connection is employed (see 2.7 for clarification).

Remark C.2. The last hyperparameter to be chosen is the size of the convolution kernel k.

Usually, we set k = 3 or k = 5. Hence, the objectives of cross-validation are Ntap, de, Nres, r

and k.

C.1.4 DeepONet

Let x := (x1, . . . , xm) ∈ D be a fixed set of sensor points. Given an input function u ∈ X , we

encode it by the point values E(u) = (u(x1), . . . , u(xm)) ∈ R
m. DeepONet is formulated in

terms of two neural networks [38]: (1) a branch-net β, which maps the point values E(u) to

coefficients β(E(u)) = (β1(E(u)), . . . , βp(E(u)), resulting in a mapping

β : Rm → R
p, E(u) 7→ (β1(E(u)), . . . , βp(E(u)). (C.5)

and (2) a trunk-net τ(y) = (τ1(y), . . . , τp(y)), which is used to define a mapping

τ : U → R
p, y 7→ (τ1(y), . . . , τp(y)). (C.6)

While the branch net provides the coefficients, the trunk net provides the “basis” functions in

an expansion of the output function of the form

G(u)(y) =
p∑

k=1

βk(u)τk(y), u ∈ X , y ∈ U, (C.7)

with βk(u) = βk(E(u)). The resulting mapping G : X → Y, u 7→ G is a DeepONet.

In the numerical experiments, for the trunk-net we use simple feed-forward neural networks.

On the other hand the branch consists of a convolutional network of the following form:

G : X 7→ Y : G = Q ◦ Fl ◦RNres ◦ · · · ◦R1 ◦DM ◦ IM ◦ · · · ◦D1 ◦ I1 (C.8)

where I, D and R are the invariant, downsampling and ResNet blocks defined in 2, where the

downsampling in D and Σ is instead performed by average pooling with kernel size 2. The

parameter r in the residual block is set to 1. The output is then flattened through Fl and

linearly transformed by Q : Rn 7→ R
p, with n being the number of units after flattening. The

32

Convolutional Neural Operators for robust and accurate learning of PDEs

convolution is performed with a kernel of size 3 and stride 1, whereas the number of channels

across the layers is

32 7→ 64 7→ 128 7→ · · · 7→ 2M−132.

The activation function is chosen as Leaky ReLU. The number of layers L and units d of the

trunk, the number of layers M and residual blocks Nres of the branch, and the number of bases

p, are chosen through cross-validation.

C.1.5 Fourier Neural Operator

A Fourier neural operator (FNO) G [32] is a composition

G : X 7→ Y : G = Q ◦ LT ◦ · · · ◦ L1 ◦R. (C.9)

It has a “lifting operator” u(x) 7→ R(u(x), x), where R is represented by a linear function

R : Rdu → R
dv where du is the number of components of the input function and dv is the

“lifting dimension”. The operator Q is a non-linear projection, instantiated by a shallow neural

network with a single hidden layer, 128 neurons and GeLU activation function, such that

vL+1(x) 7→ G(u)(x) = Q
(
vL+1(x)

)
.

Each hidden layer Lℓ : v
ℓ(x) 7→ vℓ+1(x) is of the form

vℓ+1(x) = σ
(
Wℓ · vℓ(x) +

(
Kℓv

ℓ
)
(x)

)
,

with Wℓ ∈ R
dv×dv a trainable weight matrix (residual connection), σ an activation function,

corresponding to GeLU, and the non-local Fourier layer,

Kℓv
ℓ = F−1

N

(
Pℓ(k) · FNv

ℓ(k)
)
,

where FNv
ℓ(k) denotes the (truncated)-Fourier coefficients of the discrete Fourier transform

(DFT) of vℓ(x), computed based on the given s grid values in each direction. Here, Pℓ(k) ∈ C
dv×dv

is a complex Fourier multiplication matrix indexed by k ∈ Z
d, and F−1

N denotes the inverse

DFT.

The lifting dimension dv, the number of Fourier layers L and kmax, defined in 2, are objectives

of cross-validation.

C.2 Training Details

The training of the models, including the baselines, is performed with the ADAM optimizer,

with a learning rate η for 1000 epochs and minimizing the L1-loss function. We also use a step

learning rate scheduler and reduce the learning rate of each parameter group by a factor γ every

epoch. We train FFNN, UNet, and DeepONet in mini-batches of size 10 and FNO and CNO in

batches of 32. A weight decay of magnitude w is used.

All the parameters mentioned above (η, γ, w) are chosen through cross-validation.

33

Convolutional Neural Operators for robust and accurate learning of PDEs

At every epoch, the relative L1 error is computed on the validation set, and the set of trainable

parameters resulting in the lowest error during the entire process is saved for testing. Early

stopping is used to interrupt the training if the best validation error does not improve after 50

epochs.

The cross-validation is performed by running a random search over a chosen range of hyperpa-

rameters values and selecting the configuration, realizing the lowest relative L1 error on the

validation set. Overall, 30 hyperparameters configurations are tested for the FFNN, UNet

and DeepONet , 24 to 48 configurations for CNO and 36 to 72 configurations for FNO. The

model size (minimum and maximum number of trainable parameters) covered in this search are

reported in Table 5.

The results of the random search, i.e., the best-performing hyperparameter configurations for

each model and each benchmark, are reported in tables 6, 8 and 7, 9 and 10.

Different Initialization. After selecting the models and computing the test median errors,

we proceed to train the CNO, FNO, and UNet models again using the same settings but different

initializations for the model parameters (by changing the random seeds). Each model is trained

for each experiment a total of 10 times. We report the means and the standard deviations of

the 10 different test median errors for each benchmark experiment in the Table 4. We observe

from this table that CNO is very robust with respect to random initializations, with very low

standard deviation to mean ratio for all the benchmarks in the RPB dataset.

Table 4: Means and standard deviations for the 10 relative median L1 test errors, for both

in-distribution testing, for the CNO, FNO and U-Net models. The format is mean ± std.

CNO FNO UNet

Poisson Equation 0.26± 0.02% 5.27± 0.29% 0.76± 0.16%

Wave Equation 0.79± 0.03% 1.12± 0.04% 1.67± 0.12%

Smooth Transport 0.32± 0.06% 0.45± 0.06% 0.79± 0.21%

Discontinuous Transport 1.20± 0.03% 1.35± 0.04% 1.40± 0.09%

Allen-Cahn 0.88± 0.06% 0.57± 0.09% 1.84± 0.33%

Navier-Stokes 2.97± 0.13% 4.07± 0.12% 3.48± 0.07%

Compressible Euler 0.37± 0.02% 0.48± 0.03% 0.39± 0.01%

C.3 Details about the description and numerical results in each benchmark

This section provides details about all the experiments that are a part of the RPB benchmarks

of the main text.

34

Convolutional Neural Operators for robust and accurate learning of PDEs

Table 5: Minimum (Top sub-row) and maximum (Bottom sub-row) number of trainable

parameters among the random-search hyperparameters configurations for all the models in every

problem reported in Table 1 in main text.

FFNN UNet DeepONet FNO CNO

Poisson Equation
0.3M

8.2M

0.5M

31.0M

0.8M

48.1M

0.2M

52.5M

0.5M

26.8M

Wave Equation
0.3M

6.0M

0.5M

31.0M

0.8M

48.1M

0.9M

13.2M

0.6M

23.6M

Smooth Transport
0.3M

8.2M

0.5M

7.7M

0.7M

49.2M

0.2M

16.4M

0.4M

23.6M

Discontinuous Transport
0.3M

5.5M

0.5M

7.7M

0.7M

49.2M

0.6M

13.2M

0.4M

23.6M

Allen Cahn
0.3M

7.1M

0.5M

31.0M

1.0M

47.9M

0.9M

65.6M

0.4M

23.6M

Navier Stokes
0.3M

7.1M

0.5M

31.0M

1.0M

47.9M

0.2M

65.6M

0.5M

26.8M

Compressible Euler
1.1M

18.6M

0.5M

31.0M

0.8M

49.4M

0.9M

65.6M

0.5M

26.8M

Table 6: FFNN best-performing hyperparameters configuration for different benchmark problems.

η γ w L d
Trainable

Params

Poisson Equation 0.0005 0.98 1e-06 10 512 6.6M

Wave Equation 0.001 0.98 1e-06 4 256 2.3M

Continuous Translation 0.001 1.0 0.0 16 256 3.1M

Discontinuous Translation 0.0005 1.0 0.0 6 512 5.5M

Allen Cahn 0.0005 0.98 0.0 8 512 6.0M

Navier Stokes 0.001 1.0 1e-06 16 256 3.1M

Compressible Euler 0.0005 1.0 0.0 16 32 1.1M

C.3.1 Poisson Equation

In this experiment, we study Poisson equation 4.1 with the source term given by

f(x, y) =
π

K2

K∑

i,j

aij · (i2 + j2)r sin(πix) sin(πjy), ∀(x, y) ∈ D,

35

Convolutional Neural Operators for robust and accurate learning of PDEs

Table 7: UNet best-performing hyperparameters configuration for different benchmark problems.

η γ w c
Trainable

Params

Poisson Equation 0.001 0.98 0.0 32 7.8M

Wave Equation 0.001 1.0 1e-06 64 31.0M

Continuous Translation 0.001 0.98 1e-06 16 1.9M

Discontinuous Translation 0.001 0.98 1e-06 32 7.8M

Allen Cahn 0.0005 0.98 1e-06 64 31.0M

Navier Stokes 0.0005 0.98 1e-06 64 31.0M

Compressible Euler 0.001 0.98 1e-06 32 7.8M

Table 8: DeepONet best-performing hyperparameters configuration for different benchmark

problems.

η γ w p L d M Nres
Trainable

Params

Poisson Equation 0.001 0.98 0.0 500 8 128 4 4 5.2M

Wave Equation 0.0005 0.98 0.0 100 4 512 4 4 4.2M

Continuous Translation 0.0005 0.98 0.0 500 8 128 4 0 2.8M

Discontinuous Translation 0.0005 0.98 0.0 100 8 512 4 4 5.3M

Allen Cahn 0.0005 0.98 1e-06 50 8 512 4 4 5.0M

Navier Stokes 0.0005 0.98 1e-06 100 8 512 6 2 30.3M

Compressible Euler 0.0005 0.98 1e-06 500 8 256 4 4 11.7M

where K = 16, r = 0.5 and aij are i.i.d. uniformly distributed from [−1, 1]. Given the source

term above, the exact solution u of the Poisson equation is given by

u(x, y) =
1

πK2

K∑

i,j

aij · (i2 + j2)r−1 sin(πix) sin(πjy), ∀(x, y) ∈ D.

During the out-of-distribution testing, we augment the number of modes to K = 20 and evaluate

the models’ ability to generalize to inputs with frequencies higher than those encountered

during training. We approximate the operator G†, which maps f to u. An illustration of the

operator G† is given in the Figure 26. For training purposes, we generate 1024 samples and for

testing, we generate 256 samples for both in-distribution and out-of-distribution testing, by

sampling the exact solution u at a resolution of 64× 64 points on D = [0, 1]2. We also create a

36

Convolutional Neural Operators for robust and accurate learning of PDEs

Table 9: FNO best-performing hyperparameters configuration for different benchmark problems.

η γ w kmax dv L
Trainable

Params

Poisson Equation 0.0007 0.98 1e-10 12 32 2 0.6M

Wave Equation 0.001 0.95 1e-07 20 32 3 2.5M

Smooth Transport 0.001 0.98 1e-07 16 64 5 10.5M

Discontinuous Transport 0.001 0.98 1e-10 16 64 4 8.4M

Allen Cahn 0.001 0.98 1e-07 20 32 3 2.5M

Navier Stokes 0.001 0.98 1e-07 20 64 5 16.4M

Compressible Euler 0.001 0.98 1e-09 16 64 3 6.3M

Table 10: CNO best-performing hyperparameters configuration for different benchmark problems.

η γ w M de Nres r k
Trainable

Params

Poisson Equation 0.0007 0.98 1e-10 2 32 8 1 5 1.7M

Wave Equation 0.0005 0.98 1e-10 2 48 4 2 5 3.4M

Smooth Transport 0.00075 0.98 1e-10 2 48 8 1 5 3.4M

Discontinuous Transport 0.0005 0.98 1e-10 3 32 8 2 3 3.9M

Allen Cahn 0.00075 0.98 1e-10 3 48 6 2 3 6.7M

Navier Stokes 0.0007 0.98 1e-10 3 32 6 2 3 3.1M

Compressible Euler 0.0007 0.98 1e-10 4 48 6 2 3 26.8M

validation set consisting of 128 samples for model selection. The training data is normalized to

the interval [0, 1]. The testing data is normalized with the same normalization constants as the

training data. In Figure 4, we show empirical test error distributions for UNet, FNO and CNO

models (in-distribution in the left Figure and out-of-distribution in the right Figure). We show

a random in-distribution testing sample and an out-of-distribution testing sample, as well as

predictions made by CNO, FNO and UNet in Figure 5. As was already evidenced in Table 1 of

the main text, Figure 4 demonstrates that CNO is clearly the best performing model here with

U-Net a distant second. FNO performs very poorly on this problem, with test errors that are

more than an order of magnitude higher than CNO. A closer perusal of Figure 5 reveals that

FNO approximates the multiple scales in the exact solution very poorly and this is particularly

striking for the out of distribution testing example shown in this figure. On the other hand,

CNO approximates the multiple frequencies in the solution very accurately.

37

Convolutional Neural Operators for robust and accurate learning of PDEs

Finally, to further investigate the poor performance of FNO, as compared to CNO, for this

problem, we present in Figure 6,the averaged logarithmic amplitude spectra, which compare

the ground truth, CNO, FNO, and UNet models. We see from this spectrogram that i) the

ground truth solution contains multiple scales, corresponding to a range of frequencies ii) the

CNO model successfully captures the complete spectra with high accuracy, iii) FNO (and to

some extent UNet) resolves the underlying spectrum with quite a lot of error, particularly in

the high-frequency components, perhaps attributable to aliasing errors in this case.

Figure 4: Poisson equation. Empirical test error distributions for UNet, FNO and CNO. Left:

In-distribution testing. Right: Out-of-distribution testing.

C.3.2 Wave Equation

In this experiment, we study Wave equation 4.3 with constant speed of propagation c = 0.1 and

the initial condition given by 4.2 with K = 24 and r = 1. The exact solution at time t > 0 is

given by

u(x, y, t) =
π

K2

K∑

i,j

aij · (i2 + j2)−r sin(πix) sin(πjy) cos
(
cπt

√
i2 + j2

)
, ∀(x, y) ∈ D.

The objective is to approximate the operator G† : f 7→ u(·, T = 5). An illustration of G† is

given in Figure 27. During the out-of-distribution testing, we decrease the decay parameter to

r = 0.85. This adjustment changes the ratio between the amplitudes of different modes, which

alters the dynamics of the solution. For the training set, we generate a total of 512 samples.

In addition, we generate 256 samples for both in-distribution and out-of-distribution testing,

all by sampling the above exact solution at a resolution of 64× 64. Furthermore, we create a

validation set comprising 128 samples. The training data is normalized to the interval [0, 1].

The testing data is normalized with the same normalization constants as the training data.

In Figure 7, we present the empirical test error distributions for UNet, FNO and CNO models

during in-distribution and out-of-distribution testing. We also show a random in-distribution

testing sample and a random out-of-distribution testing sample, as well as predictions made

by CNO, FNO and UNet in Figure 8. Both these figures demonstrate that CNO is the best

performing model in this case, reinforcing the conclusion of Table 1 of the main text.

38

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 5: Poisson equation. Exact and predicted coefficients for an in-distribution (top row)

and an out-of-distribution (bottom row) samples and for different models (columns). From left

to right: input, output (ground truth), CNO, FNO and UNet.

Figure 6: Poisson equation. Averaged logarithmic amplitude spectra comparing Ground Truth,

CNO, FNO and UNet.

Figure 7: Wave equation. Empirical test error distributions for UNet, FNO and CNO. Left:

In-distribution testing. Right: Out-of-distribution testing.

39

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 8: Wave equation. Exact and predicted coefficients for an in-distribution (top row) and

an out-of-distribution (bottom row) samples and for different models (columns). From left to

right: input, output (ground truth), CNO, FNO and UNet.

C.3.3 Transport Equation

In this experiment, we study Transport equation 4.4. We fix the velocity field to v = (vx, vy) =

(0.2,−0.2) leading to solution u(x, y, t) = f(x − vxt, y − vyt). We conduct two different

experiments, i.e., Smooth Transport and Discontinuous Transport. In both cases, the goal is

to approximate the operator G† : f 7→ u(·, T = 1). Moreover, in both cases, we generate 512

training samples, 256 validation samples and 256 in-distribution and out-of-distribution testing

samples, all from the exact solution. Each sample is normalized to the interval [0, 1].

Smooth Transport. In this case, the data takes form of of a radially symmetric Gaussian.

The data is drawn from a Gaussian distribution with centers randomly and uniformly drawn

from (0.2, 0.4)2 and corresponding variance drawn uniformly from (0.003, 0.009). Formally, the

initial conditions are given by

f(x) =
1√

(2π)2 det(Σ)
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x = (x, y), µ = (µx, µy),

where Σ = σI such that σ ∼ U(0.003, 0.009) and µx, µy ∼ U(0.2, 0.4). Here, I is the identity

matrix and U(·) is the uniform distribution. Finally, each initial condition is normalized to

(0, 1).

For out-of-distribution testing, the centers of the Gaussian inputs are sampled uniformly from

(0.4, 0.6)2 (i.e. µx, µy ∼ U(0.4, 0.6)). The data is generated at 64×64 resolution. An illustration

of the operator G† for the Smooth Transport experiment is shown in Figure 28. We show

empirical test error distributions for UNet, FNO and CNO models (in-distribution and out-

of-distribution testing) in Figure 9. We show a random in-distribution testing sample and

40

Convolutional Neural Operators for robust and accurate learning of PDEs

an out-of-distribution testing sample, as well as predictions made by CNO, FNO and UNet

in Figure 10. The figures reinforce the conclusions drawn from Table 1 i.e., CNO is slightly

superior to UNet and FNO for in-distribution testing. However, there is a significant advantage

for CNO over UNet on out-of-distribution testing. On the other hand, FNO generalizes poorly

out-of-distribution, as clearly seen from the sample shown in Figure 10. Similarly, DeepONet

and FFNN are even poorer in terms of their generalization abilities, justfitying the very high

errors seen in Table 1. An example of this very poor generalization for DeepONet and FFNN

can be seen in Figure 11.

Figure 9: Smooth Transport. Empirical test error distributions for UNet, FNO and CNO. Left:

In-distribution testing. Right: Out-of-distribution testing.

Discontinuous Transport. In this case, initial data in the form of the indicator function

of radial disk with centers, uniformly drawn from (0.2, 0.4)2 and radii uniformly drawn from

(0.1, 0.2). For out-of-distribution testing, the centers of the disk are drawn uniformly from

(0.4, 0.6)2. Formally, the initial conditions are given by

f(x) = ✶Sr(µ)(x), x = (x, y), µ = (µx, µy),

where r ∼ U(0.1, 0.2) and µx, µy ∼ U(0.2, 0.4). Also, ✶· is an indicator function and Sr(µ) is

the sphere of radius r with the center µ ,defined by

Sr(µ) =
{
x : ||x− µ||2 ≤ r

}
.

Note that discontinuous data has infinite spectral content, so the aliasing error is always present

when the data is sampled. For that reason, we first generate the samples at 128× 128 resolution,

to reduce the aliasing error that emerges in data generation. We get our actual samples by

downsampling the generated data in the frequency domain to the resolution 64× 64. As the

Gibbs phenomenon is strongly present when discontinuous data is downsampled in this way, we

reduce the impact of this phenomenon by applying a Gaussian filter with a standard deviation

σ = 1.75 to the generated samples, before downsampling them to the final resolution. An

example of a random sample with horizontal cut plots is shown in the Figure 12.

We also plot empirical test error distributions for UNet, CNO and FNO models (in-distribution

and out-of-distribution testing) in Figure 13. We plot a random in-distribution testing sample

41

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 10: Smooth Transport. Exact and predicted coefficients for an in-distribution (top row)

and an out-of-distribution (bottom row) samples and for different models (columns). From left

to right: input, output (ground truth), CNO, FNO and UNet.

Figure 11: Smooth Transport. An out-of-distribution sample and predictions for DeepONet and

FFNN. From left to right: output (ground truth), DeepONet and FFNN.

and an out-of-distribution testing sample, as well as predictions made by CNO, FNO and UNet

in Figure 14. These figures clearly reinforce the conclusions from Table 1 that UNet is slighter

superior in performance on out-of-distribution testing, when compared to CNO. On the other

hand, FNO, DeepONet and FFNN (in that order) generalize very poorly as they fail to be

translation equivariant.

C.3.4 Allen-Cahn Equation

In this experiment, we study Allen-Cahn equation 4.5 with fixed reaction rate ε = 220 and

initial condition given by 4.2 with K = 24 and r = 1. The goal is to approximate the operator

G† : f 7→ u(·, T = 0.0002) (see Figure 30 for illustrations).

As exact solutions are no longer available, we generate the training and test data using a standard

finite difference discretization of the Allen-Cahn equation. We uniformly discretize space at the

42

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 12: Discontinuous Transport. An example with horizontal cut plots of the disks.

Figure 13: Discontinuous Transport. Empirical test error distributions for UNet, FNO and

CNO. Left: In-distribution testing. Right: Out-of-distribution testing.

resolution s2 = 64× 64 and set ∆x = 1/s. As we are using an explicit method, we uniformly

discretize the time domain with the time step ∆t ≈ 5.47 · 10−7 and set N = ⌊T/∆t⌋+ 1. We

denote Un
i,j = u(i∆x, j∆x, n∆t) for i, j = 0, 1, . . . , s and n = 0, 1, . . . , N . Additionally, we also

add the zero-valued ghost cells at the boundaries. The Finite Difference scheme is given by

Un+1
i,j = Un

i,j +
∆t

∆x

(
Un
i+1,j + Un

i,j+1 + Un
i−1,jU

n
i,j−1 − 4Un

i,j

)
−∆tε2Un

i,j

(
Un
i,j · Un

i,j − 1
)
,

for i, j = 0, 1, . . . , s and n = 0, 1, . . . , N . With our choice of ∆t, the CFL condition ∆t < (∆x)2

2ε

is satisfied. We generate 256 training samples, 128 validation samples and 128 in-distribution

and out-of-distribution testing samples, all at the 64 × 64 resolution. The training data is

normalized to the interval [0, 1]. The testing data is normalized with the same normalization

constants as the training data. In Figure 15, we present the empirical test error distributions

for UNet, FNO and CNO models during in-distribution and out-of-distribution testing. We

also plot a random in-distribution testing sample and an out-of-distribution testing sample, as

well as predictions made by CNO, FNO and UNet in Figure 16. Again, these figures reinforce

the conclusions of Table 1 as FNO is marginally superior to CNO and UNet on in-distribution

testing whereas UNet is the best model on out-of-distribution testing.

43

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 14: Discontinuous Transport. Exact and predicted coefficients for an in-distribution (top

row) and an out-of-distribution (bottom row) samples and for different models (columns). From

left to right: input, output (ground truth), CNO, FNO and UNet.

Figure 15: Allen-Cahn equation. Empirical test error distributions for UNet, FNO and CNO.

Left: In-distribution testing. Right: Out-of-distribution testing.

44

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 16: Allen-Cahn equation. Exact and predicted coefficients for an in-distribution (top

row) and an out-of-distribution (bottom row) samples and for different models (columns). From

left to right: input, output (ground truth), CNO, FNO and UNet.

C.3.5 Navier-Stokes

In this experiment, we study a motion of an incompressible fluid with high Reynolds number.

We study Navier-Stokes equations 4.6 in the torus D = T
2 with periodic boundary conditions

and, for stabilization, viscosity ν = 4× 10−4 only applied to high-enough Fourier modes. We

take as initial conditions

u0(x, y) =

tanh

(
2π y−0.25

ρ

)
for y + σδ(x) ≤ 1

2

tanh
(
2π 0.75−y

ρ

)
otherwise

v0(x, y) = 0

(C.10)

where σδ : [0, 1] → R is a perturbation of the initial data given by

σδ(x) = δ

p∑

k=1

αk sin(2πkx− βk). (C.11)

The random variables αk and βk are i.i.d. uniformly distributed on [0, 1] and [0, 2π] respectively.

The parameters δ and p are chosen to be δ = 0.025 and p = 10. For the smoothing parameter

we choose ρ = 0.1. (see Figure 31 for illustrations). For the out-of-distribution experiments, we

reduced ρ to ρ = 0.09 and shifted the location of the shear layers towards the middle of the

domain so that they were located at y = 0.3 and y = 0.7 instead of y = 0.25 and y = 0.75 like

in the original initial condition.

Fix a mesh width ∆ = 1
N for some N ∈ N. We consider the following discretization of the

45

Convolutional Neural Operators for robust and accurate learning of PDEs

Navier-Stokes equations 4.6 in the Fourier domain

∂tu
∆ + PN (u∆ · ∇u∆) +∇p∆ = εN |∇|2s(QN ∗ u∆)

∇ · u∆ = 0

u∆|t=0 = PNu0

(C.12)

where PN is the spatial Fourier projection operator mapping a function f(x, t) to its first N

Fourier modes: PN =
∑

|k|∞≤N f̂k(t)e
ik·x. We additionally have the hyperviscosity parameter

s ≥ 1 which can be used to dampen the higher Fourier modes strongly, thus allowing for a

larger part of the spectrum to be free of numerical dissipation. The artificial viscosity term

we use for the stabilization of the solver consists of a resolution-dependent viscosity εN and a

Fourier multiplier QN controlling the strength at which different Fourier modes are dampened.

This allows us to not dampen the low frequency modes, while applying some diffusion to the

problematic higher frequencies. The Fourier multiplier QN is of the form

QN (x) =
∑

k∈Zd,|k|≤N

Q̂ke
ik·x. (C.13)

In order to have convergence, the Fourier coefficients of QN need to fulfill [26], [52] [53]

Q̂k = 0 for |k| ≤ mN , 1−
(
mN

|k|

) 2s−1
θ

≤ Q̂k ≤ 1 (C.14)

where we have introduced an additional parameter θ > 0. The quantities mN and εN are

required to scale as

mN ∼ N θ, εN ∼ 1

N2s−1
, 0 < θ <

2s− 1

2s
. (C.15)

For the experiment described here, we choose s = 1, mN =
√
N , εN = 0.05

N , and N = 128. This

gives rise to the viscosity ν ≈ 4 · 10−4 mentioned above.

Applying the Fourier projection operator to the PDE C.12 causes the solutions to be bandlimited

functions and therefore they only have finitely many nonzero basis function coefficients (at

most N). By writing the above discretization in the Fourier basis, we transform the spatial

derivatives into multiplications with the wave vectors k and obtain

∂tûk + ikT · B̂k + ikp̂k = −ν|k|2ûk (C.16)

where we have substituted B = u⊗ u. By requiring ûk (and ∂tûk) to be divergence free, we can

compute the pressure p̂k to be

p̂k = −k
T · B̂k · k
|k|2 . (C.17)

Note that the pressure can be computed from local quantities only. This is in contrast to

numerical methods solving the equations in physical space where the pressure is obtained as

the solution to a Poisson equation. Finally, we can solve the incompressible Euler equations by

computing

∂tûk +

(
Id− kkT

|k|2
)
· b̂k = −ν|k|2ûk (C.18)

46

Convolutional Neural Operators for robust and accurate learning of PDEs

where b̂k = ikT · B̂k. Timestepping is done using a third-order strong stability preserving

Runge-Kutta scheme (SSPRK3)

u(1) = u(t) + ∆t∂tu(t)

u(2) =
3

4
u(t) +

1

4
u(1) +

1

4
∆t∂tu

(1)

u(t+∆t) =
1

3
u(t) +

2

3
u(2) +

2

3
∆t∂tu

(2).

(C.19)

Note that through the construction of the pressure field, the numerical scheme is not exactly

divergence-free. It merely preserves the divergence of the initial conditions u0. We therefore

implicitly project all the initial conditions onto divergence free vector fields. This operation

is described by the Leray projection P : L2(Ω) →
{
u ∈ L2(Ω) | div u = 0

}
mapping u 7→

u−∇∆−1(div u). In Fourier space, this can again be simplified to the local equation

Pûk =

(
Id− kkT

|k|2
)
· ûk. (C.20)

For the training set, we generate a total of 750 samples. In addition, we generate 128 samples for

validation set, in-distribution and out-of-distribution testing. To generate the training and test

data, we simulate the Navier-Stokes equations with a spectral viscosity method on a 128× 128

resolution and downsample the data to a 64× 64 resolution. The goal is to learn the operator

mapping the initial velocity to velocity at T = 1. The training data is normalized to the interval

[0, 1]. The testing data is normalized with the same normalization constants as the training data.

In Figure 17, we present the empirical test error distributions for UNet, FNO and CNO models

during in-distribution and out-of-distribution testing. We also plot a random in-distribution

testing sample and an out-of-distribution testing sample, as well as predictions made by CNO,

FNO and UNet in Figure 18. These figures demonstrate that CNO is clearly the best performing

model, for both in-distribution and out-of-distribution testing, outperforming UNet and FNO

significantly. Moreover, given the highly multiscale nature of this problem (see Figure 2 of Main

Text for spectrograms), it is not surprising that the errors with all the models are higher than

in the other RPB benchmarks.

Figure 17: Navier-Stokes equations. Empirical test error distributions for UNet, FNO and CNO.

Left: In-distribution testing. Right: Out-of-distribution testing.

47

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 18: Navier-Stokes equations. Exact and predicted coefficients for an in-distribution (top

row) and an out-of-distribution (bottom row) samples and for different models (columns). From

left to right: input, output (ground truth), CNO, FNO and UNet.

C.3.6 Flow past airfoils

The flow past the airfoil is modeled by the two-dimensional compressible Euler equations

ut + div F (u) = 0, u = [ρ, ρv, E]⊥, F = [ρv, ρv ⊗ v + pI, (E + p)]v]⊥, (C.21)

with density ρ, velocity v, pressure p and total Energy E related by the ideal gas equation of

state:

E =
1

2
ρ|u|2 + p

γ − 1
, (C.22)

where γ = 1.4. Additional important variables associated with the flow include the speed of

sound a =
√

γp
ρ and the Mach number M = |u|

a .

We follow standard practice in aerodynamic shape optimization and consider a reference airfoil

shape with upper and lower surface of the airfoil are located at (x, yU
ref(x/c)) and (x, yL

ref(x/c))

where c is the chord length and yU
ref and yL

ref corresponding to the well-known RAE2822 airfoil.

The reference shape is then perturbed by Hicks-Henne Bump functions [39] :

yL(ξ) = yL
ref(ξ) +

10∑

i=1

aL
i Bi(ξ), yU(ξ) = yU

ref(ξ) +

10∑

i=1

aU
i Bi(ξ),

Bi(ξ) = sin3(πξqi), qi =
ln2

ln14− lni
, ξ =

x

c
,

aL
i = 2(ψi − 0.5)(i+ 1)× 10−3, aU

i = 2(ψi+10 − 0.5)(11− i)× 10−3, i = 1, ..., 10

with ψ ∈ [0, 1]d.

We can now formally define the airfoil shape as S = {(x, y) ∈ D : x ∈ [0, c], yL ≤ y ≤ yU} and

accordingly the shape function f = χ[S](x, y), with χ being the characteristic function. The

48

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 19: Elliptic mesh for the airfoil problem

underlying operator of interest G† : f 7→ ρ maps the shape function f into the density of the

flow at steady state of the compressible Euler equations.

The equations are solved with the solver NUWTUN on 243× 43 elliptic mesh (Fig.19) given the

following free-stream boundary conditions,

T∞ = 1, M∞ = 0.729, p∞ = 1, α = 2.31◦.

The data is ultimately interpolated onto a Cartesian grid of dimensions 128 × 128 on the

underlying domain D = [−0.75, 1.75]2, and unit values are assigned to the density ρ(x, y) for all

(x, y) in the set S.

The shapes of the training data samples correspond to 20 bump functions, with coefficients

ψ sampled uniformly from [0, 1]20. Out-of-distribution testing is performed with 30 bump

functions. During the training and evaluation processes, the difference between the learned

solution and the ground truth is exclusively calculated for the points (x, y) that do not belong

to the airfoil shape S.

We generate 750 samples for the training set and 128 samples for validation set, in-distribution

testing set and out-of-distribution testing set. In this experiment, the data is not normalized.

In Figure 20, we show the empirical test error distributions for UNet, FNO and CNO models

during in-distribution and out-of-distribution testing. We also show a random in-distribution

testing sample and an out-of-distribution testing sample, as well as predictions made by CNO,

FNO and UNet in Figure 21. The latter figure clearly shows the superiority of CNO and UNet

over FNO when it comes to out-of-distribution testing.

C.3.7 On the Choice of the RPB benchmarks.

As noted in the main text, the rationale for the inclusion of benchmark experiments in the RPB

dataset presented here is three-fold. First, we would like to span a variety of PDEs, ranging from

49

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 20: Airfoil experiment. Empirical test error distributions for UNet, FNO and CNO. Left:

In-distribution testing. Right: Out-of-distribution testing.

Figure 21: Airfoil experiment. Exact and predicted coefficients for an in-distribution (top row)

and an out-of-distribution (bottom row) samples and for different models (columns). From left

to right: input, output (ground truth), CNO, FNO and UNet.

Figure 22: Comparison of the 32 central frequencies of averaged logarithmic amplitude spectra

for the two Navier-Stokes experiments. Left: Old NS experiment. Right: Thin shear layer

experiment.

50

Convolutional Neural Operators for robust and accurate learning of PDEs

linear elliptic (Poisson) to linear hyperbolic (wave, transport) to nonlinear parabolic (Allen-Cahn)

to nonlinear hyperbolic (Compressible Euler) to non-local advection-diffusion (Incompressible

Navier-Stokes). Second, we would like the underlying data to be readily available for rapid

prototyping and reproducibility. This limits the use of three-dimensional data-sets as data

access can be cumbersome. This requirement also leads us to prioritize problems with available

analytical solutions. Finally, the selected benchmarks should be sufficiently computationally

complex such that traditional numerical methods for approximating them are expensive and

there is a potential pay-off for the design of efficient machine learning based surrogates. This

criterion rules out one-dimensional (in space) problems as traditional numerical methods are

very fast in this case on modern computers and there is little reason to discard them for ML

surrogates. Even among two-dimensional problems, one has to be careful in selecting appropriate

benchmarks to ensure that they entails sufficient computational complexity.

We illustrate this issue by comparing and contrasting two possible benchmarks. First, we

consider a Navier-Stokes data-set, considered in [32] and widely used in the recent literature on

machine learning for PDEs. In this problem, the incompressible Navier-Stokes equations (4.6)

are recast in the so-called velocity-vorticity formulation by considering the vorticity ω = ∇× u

of the fluid. In two space dimensions, the following evolution equation for the vorticity can be

readily derived from (4.6),

ωt + (u · ∇)ω = ν∆ω, ω(0, ·) = ω0. (C.23)

We consider the above evolution of the vorticity with periodic boundary conditions. The

underlying solution operator maps the initial vorticity ω0 to the vorticity ω(·, T) at a final time T .

Following [32], we choose the initial conditions ω0 ∼ µ where µ = N (0, 7
3
2 (−∆+ 49Id)−2.5) and

extend (C.23) with a forcing term f(x) = 0.1(sin(2π(x1 + x2)) + cos(2π(x1 + x2)). Furthermore,

the viscosity is chosen to be ν = 10−3. To generate the training and test data, we use a spectral

method such as the one suggested in [26] and references therein. A rough estimate on the

computational complexity of this problem can already be formed by observing Figure 22 (Left)

where we present the averaged logarithmic amplitude spectra corresponding to the ground truth

output (vorticity at time T = 30 as considered in [32]). We clearly see from this figure that

only very few frequency modes (2-3) in each direction have relatively high amplitude and the

spectrum decays quite fast for higher frequencies. Thus, this problem could be potentially

approximated to high accuracy on fairly coarse grids.

To provide a quantitative elaboration of the above argument, we write u
Nf

i = PNf
(ui) where

ui is the solution corresponding to the i-th drawn initial conditions and PN is the spatial

Fourier projection operator mapping a function f(x, t) to its first N Fourier modes: PN =∑
|k|∞≤N f̂k(t)e

ik·x. For each sample ui we compute the relative L1error against the downsampled

solution u
Nf

i . This provides us with an estimate how many Fourier modes need to be accurately

approximated in order to achieve reasonable errors. The supremum and median of the errors

over 128 samples, at time T = 30, are plotted in Figure 23. One can observe from this figure

that even after t = 30 time units, only a maximum of 20 Fourier modes (in each direction) are

needed to approximate the solution with an error of approximately 1%. Hence, a standard

51

Convolutional Neural Operators for robust and accurate learning of PDEs

numerical method would only need to simulate it on a grid of 20 × 20 points will suffice in

order to achieve the same error. Consequently, the time requirements for solving the problem

on very coarse mesh with traditional spectral or finite difference methods are in the range of

10−3 seconds or lower. In contrast, we tested both FNO and CNO on this dataset to obtain test

errors of 1.15% and 0.96%, respectively. Moreover, the inference time for both FNO and CNO in

this case are of the order of 10−4 secs on a NVIDIA qaudro t2000 GPU. Thus to achieve similar

test errors, FNO and CNO are atmost only one order of magnitude faster than a traditional

numerical method. Given the training time and data generation overheads, it is clear that there

is very little payoff on using such a relatively simple two-dimensional problem as a benchmark

for ML surrogates for PDEs.

On the other hand, we perform exactly the same analysis for the thin shear layer problem

for the incompressible Navier-Stokes equation that is described in the main text. First, from

Figure 22 (Right), we see that the ground truth output (horizontal velocity at time T = 1) has

much more of a multiscale structure than in the previous experiment (compare with Figure 22

(Left)) with at least non-trivial frequencies upto 32 modes, suggesting that it is much more

challenging to approximate it numerically. This is indeed verified from Figure 23 (Right) where

we present the averaged (over 128 samples) L1-error for the velocity as a function of the number

of modes to observe that almost 100 Fourier modes are needed to get an L1-error of 2%. This

corresponds to a 100 × 100 spatial grid and even a state-of-the-art GPU implementation of

the spectral viscosity method of [26] would require 10−1 seconds of run time. When compared

to a CNO inference time of 10−4 secs for an error of approximately 3%, we see that the ML

surrogate (CNO) provides three orders of magnitude or more of speedup in this case, making

its deployment worthwhile. Thus, we have demonstrated the rationale for the choice of this

benchmark, rather than the Navier-Stokes benchmark of [32], in our proposed RPB dataset.

Figure 23: Relative L1-error of the vorticity experiment when restricting the solution to Nf

Fourier modes.

52

Convolutional Neural Operators for robust and accurate learning of PDEs

C.4 Testing at Different Resolutions.

We have emphasized repeatedly that CNO upholds the principle of continuous-discrete equiv-

alence (CDE), which implies that there is an equivalence between the underlying operator

and its discrete representations. As a reminder, the CNO models are operators denoted as

G∗ : Bw(D) → Bw(D) and are designed to ensure that the continuous representations of functions

align with their discrete samples on a uniform grid. This holds true when the sampling rate s of

the grid is sufficiently high, specifically s ≥ 2w. It is important to note that the implemented

CNO models are specified on a predefined computational grid with a sampling rate of s ≥ 2w.

Hence following [2] Remark 3.7, the input functions must be compatible with this grid. If the

input function is not compatible with the computational grid, one needs transform it to an

appropriate representation. Once the model is applied, the output is transformed back to the

original representation (see Remark 3.5 of [2] for a formal explanation) and also Formula (A.7)

for a precise description of these transformations.

Hence to apply an implemented CNO model to a continuous function f ∈ Bw′(D), it is necessary

to employ a discrete representation of the function on a computational grid with a sampling rate

of s. Essentially, it means that one needs to sample f on that grid. If the band limit w′ exceeds

half the sampling rate s/2, it is crucial to first filter out frequencies above s/2 to prevent aliasing

effects, which involves applying a downsampling filter. Once the function’s representation and

the computational grid are compatible with each other, the model can be applied.

To apply an implemented CNO model to a discrete representation fs′ ∈ R
s′×s′ , it is necessary

to follow (A.7) and transform fs′ into a compatible representation fs ∈ R
s×s. If s′ ≤ s, the

signal needs to be upsampled to the sampling rate s by using an appropriate upsampling filter.

However, if s′ > s, it is necessary to filter out frequencies above s/2 that are present in the

signal. One should downsample the signal to the sampling rate s by applying an appropriate

downsampling filter.

As highlighted in the main text, an important characteristic of an operator learning model is to

maintain a relatively consistent test error when evaluated on various resolutions or discretizations.

To assess this aspect, we evaluate the performance of UNet, FNO, and CNO models on different

resolutions for three problems: Navier-Stokes equations, Poisson equation, and Wave equation.

For the Navier-Stokes equations, the original data is generated at a resolution of 128× 128. To

obtain data at any lower resolution s < 128, we downsample the original data to the desired

resolution. As for the Wave equation and the Poisson equation, exact solutions are available. To

generate data for these equations, we sample the exact solutions on the desired grid, allowing us

to obtain data at different resolutions. The models that we use to make predictions are the ones

that we trained on 64× 64 resolution. The configurations of all the models are reported in C.2.

We apply the afore-described strategy to practically realize Formula (A.7) and apply CNO to

different resolutions. In contrast, we follow the approach outlined in [32] to evaluate the FNO or

UNet models at different resolutions by applying the underlying model directly to the original,

unresized input.

53

Convolutional Neural Operators for robust and accurate learning of PDEs

We show the variations of the test errors across resolutions for the three benchmarks in Figure

2, right (Navier-Stokes) and Figure 24 (left for Poisson equation, right for Wave equation).

The CNO model demonstrates the highest stability when it comes to resolution changes and

is (approximately) invariant to resolution, unlike the other two models which exhibit notable

fluctuations at different resolutions. Specifically, the UNet model displays a strong reliance on

the training resolution, whereas the FNO model exhibits a slightly less pronounced dependence.

These examples show that the CNO model respects continuous-discrete equivalence, while the

other two models are not resolution (or representation) equivalent.

Figure 24: Test error vs. Resolution for UNet, FNO and CNO. Left: Poisson equation. Right:

Wave equation.

C.5 Ablation Studies.

We conduct two ablation studies focusing on two key aspects of CNO. Firstly, we examine the

impact of modified operations, assessing how they affect the overall performance. Secondly, we

investigate the influence of ResNets that connect the Encoder and Decoder components within

the Operator UNet architecture (refer to Figure 1). These studies aim to provide valuable

insights into the effects of these key elements.

In our first ablation study, we aim to evaluate the effects of modifying operations, including

upsampling operators, downsampling operators, and activation layers, on performance and

training time. It is worth reiterating that the modified operations enable continuous-discrete

equivalence (CDE). Specifically, we replace the upsampling operator in the Operator UNet

architecture with a discrete, nearest neighbor upsampling method, while the downsampling

operator is substituted with average pooling. Additionally, we replace the activation layer with

a simple pointwise application of the activation function. As a result, the model takes on a

structure resembling a regular UNet architecture, but with the inclusion of additional ResNets

that establish connections between the Encoder and the Decoder components. We will refer to

this model as CNO w/o Filters.

The second ablation study focuses on evaluating the influence of additional ResNets that connect

the Encoder and the Decoder components on both the overall performance and training time.

In this study, we remove these ResNets while retaining the UNet-like concatenations between

corresponding levels of the Encoder and the Decoder. It is important to note that the ResNet

between the deepest levels of the Encoder and the Decoder is preserved within the model. This

ablation model respects the continuous-discrete equivalence (CDE).

54

Convolutional Neural Operators for robust and accurate learning of PDEs

Performance. We train two ablation models for every benchmark experiment that we studied

in the main text. In order to maintain consistency, we use the same hyperparameter configura-

tions for the ablation models as those of the best-performing CNO models (refer to Table 10

for the specific values). We report the in-distribution and out-of-distribution test errors in the

Table 11.

Among the 14 tests conducted, the original CNO model outperforms the others in 12 of them. In

all of the tests conducted, the first ablation model exhibits inferior performance compared to the

original CNO model. This observation indicates that the aliasing errors resulting from regular

CNN operations like average pooling, nearest neighbor upsampling and a regular application

of the activation function have an impact on the test error. Furthermore, it is important to

note that the first ablation study does not adhere to the continuous-discrete equivalence (CDE)

property, resulting in the model’s resolution dependence, similar to the UNet model (see Figure

2 and Section C.4).

In two out-of-distribution tests, the second ablation model demonstrates slightly superior

performance compared to the original CNO model. It is worth noting that in most cases, the

original CNO model exhibits significantly better performance than the second ablation model.

This disparity in performance ranges from a 10% in the Compressible Euler benchmark to a

40% in the Allen-Cahn benchmark, and even up to a 95% in the out-of-distribution Poisson

benchmark. While it is true that the second ablation model maintains the continuous-discrete

equivalence (CDE) property, we observe that the inclusion of ResNets is vital for achieving good

performance and decent generalization.

Training time. Since the first ablation model does not utilize any interpolation filters, it is

reasonable to anticipate that it will have a faster training time than the original CNO model.

Specifically, it trains approximately 1.5 times faster for the Compressible Euler, Discontinuous

Transport, and Wave Equation benchmarks. For the Allen-Cahn Equation, it trains around 1.75

times faster, while for the Continuous Transport and Poisson Equation benchmarks, it trains

approximately 2 times faster. Finally, for the Navier-Stokes Equations, it trains about 2.5 times

faster.

The second ablation model, which excludes the middle ResNets from the architecture, is expected

to have a significantly faster training process. Specifically, it trains approximately 1.5 times

faster for the Discontinuous Transport and Poisson Equation benchmarks. For the Continuous

Transport. For the Compressible Euler benchmark, it trains around 2 times faster, while for

the Wave Equation, it trains approximately 2.25 times faster. Finally, for the Navier-Stokes

Equations and Allen-Cahn Equation, it trains about 3 times faster.

However, it is important to note that even the CNO models themselves have notably fast

training times, comparable to the training times of the best-performing FNO models, with

the shortest training time observed in the Navier-Stokes benchmark (approximately 0.7 hours

for CNO and 0.6 hours for FNO for 1000 epochs) and the longest training time observed in

the Compressible Euler benchmark (approximately 3.5 hours for CNO and 2.7 hours for FNO

55

Convolutional Neural Operators for robust and accurate learning of PDEs

for 1000 epochs). Our observations indicate that there exists a trade-off between two aspects:

performance and the continuous-discrete equivalence (CDE) property on one side, and training

time on the other.

Table 11: Relative median L1 test errors, for both in- and out-of-distribution testing, for the

CNO models and two ablation models.

In/Out CNO CNO w/o Filters CNO w/o ResNets

Poisson Equation In 0.23% 0.31% 0.64%

Out 0.27% 0.54% 5.37%

Wave Equation In 0.83% 1.18% 1.01%

Out 1.48% 1.68% 1.61%

Smooth Transport In 0.30% 0.43% 0.71%

Out 0.45% 2.08% 0.91%

Discontinuous Transport In 1.17% 1.29% 1.29%

Out 1.61% 1.68% 1.55%

Allen-Cahn In 0.83% 0.97% 1.29%

Out 3.67% 5.61% 4.30%

Navier-Stokes In 3.01% 3.51% 4.34%

Out 7.06% 9.35% 6.87%

Compressible Euler In 0.35% 0.40% 0.39%

Out 0.62% 0.86% 0.69%

C.6 Error vs. number of training samples.

Once again, we revisit the best-performing CNO and FNO model architectures for the Poisson

equation and Wave equation, as reported in C.2. This time, we focus on varying the number of

training samples and retraining the selected CNO and FNO models accordingly. Consequently,

we generate a plot that illustrates the in-distribution test error as we change the cardinality

of the training set, as shown in Figure 25 (left for Poisson equation, right for Wave equation).

In the case of Poisson equation, the CNO model outperforms by far the FNO model in all the

data regimes.In the case of Wave equation, we notice that the FNO performs better than the

CNO in low data regime, with the opposite behaviour in the large data regime. Moreover, CNO

shows an approximately error decay rate of 0.5 with respect to the number of training samples.

D Depiction of the Datasets.

In the following figures, we illustrate the different PDE forward problems considered in the

main text.

56

Convolutional Neural Operators for robust and accurate learning of PDEs

Figure 25: In-distribution testing errors for different cardinalities of the training set for FNO

and CNO. Left: Poisson equation. Right: Wave equation.

f

G†

G†(f)

Figure 26: Illustration of input (left) and output (right) samples for the Poisson Equation.

57

Convolutional Neural Operators for robust and accurate learning of PDEs

f

G†

G†(f)

Figure 27: Illustration of input (left) and output (right) samples for the Wave Equation.

f

G†

G†(f)

Figure 28: Illustration of input (left) and output (right) samples for the Continuous Transport.

58

Convolutional Neural Operators for robust and accurate learning of PDEs

f

G†

G†(f)

Figure 29: Illustration of input (left) and output (right) samples for the discontinous transport

problem.

f

G†

G†(f)

Figure 30: Illustration of input (left) and output (right) samples for the Allen-Cahn.

59

Convolutional Neural Operators for robust and accurate learning of PDEs

f

G†

G†(f)

Figure 31: Illustration of input (left) and output (right) samples for the Navier Stokes equation.

f

G†

G†(f)

Figure 32: Illustration of input (left) and output (right) samples for the compressible Euler

equations.

60

Convolutional Neural Operators for robust and accurate learning of PDEs

References

[1] I. Ayed, E. de Bézenac, A. Pajot, J. Brajard, and P. Gallinari. Learning dynamical systems

from partial observations. CoRR, abs/1902.11136, 2019.

[2] F. Bartolucci, E. de Bézenac, B. Raonic, R. Molinaro, S. Mishra, and R. Alaifari. Are

neural operators really neural operators ? frame theory meets operator learning. Technical

Report 2023-21, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2023.

[3] J. Bell, P. Collela, and H. M. Glaz. A second-order projection method for the incompressible

Navier-Stokes equations. J. Comput. Phys., 85:257–283, 1989.

[4] M. Bertero, P. Bocacci, and C. De Mol. Introduction to inverse problems in imaging. CRC

press, 2021.

[5] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model Reduction And

Neural Networks For Parametric PDEs. The SMAI journal of computational mathematics,

7:121–157, 2021.

[6] N. Boullé, Y. Nakatsukasa, and A. Townsend. Rational neural networks. Advances in

Neural Information Processing Systems, 33:14243–14253, 2020.

[7] S. Cai, Z. Wang, L. Lu, T. A. Zaki, and G. E. Karniadakis. DeepM&Mnet: Inferring the

electroconvection multiphysics fields based on operator approximation by neural networks.

Journal of Computational Physics, 436:110296, 2021.

[8] S. Cao. Choose a transformer: Fourier or galerkin. In 35th conference on neural information

processing systems, 2021.

[9] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks

with arbitrary activation functions and its application to dynamical systems. IEEE

Transactions on Neural Networks, 6(4):911–917, 1995.

[10] T. De Ryck, S. Lanthaler, and S. Mishra. On the approximation of functions by tanh

neural networks. Neural Networks, 2021.

[11] T. De Ryck and S. Mishra. Generic bounds on the approximation error for physics-informed

(and) operator learning. In Advances in Neural Information Processing Systems (NeurIPS),

2022.

[12] Q. Delfosse, P. Schramowski, M. Mundt, A. Molina, and K. Kersting. Adaptive rational

activations to boost deep reinforcement learning. arXiv preprint arXiv:2102.09407, 2021.

[13] L. C. Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

[14] V. Fanaskov and I. Oseledets. Spectral neural operators. arXiv preprint arXiv:2205.10573v1,

2022.

61

Convolutional Neural Operators for robust and accurate learning of PDEs

[15] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT

Press, 2016.

[16] J. K. Gupta and J. Brandstetter. Towards multi-spatiotemporal-scale generalized pde

modeling, 2022.

[17] E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse problems,

34, 2018.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv:

1512.03385, 2015.

[19] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb. Spectral methods for time-dependent problems,

volume 21. Cambridge University Press, 2007.

[20] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics

informed machine learning. Nature Reviews Physics, pages 1–19, may 2021.

[21] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila. Alias-

free generative adversarial networks. Advances in Neural Information Processing Systems,

34:852–863, 2021.

[22] G. Kissas, J. H. Seidman, L. F. Guilhoto, V. M. Preciado, G. J. Pappas, and P. Perdikaris.

Learning operators with coupled attention. Journal of Machine Learning Research, 23(215):1–

63, 2022.

[23] N. Kovachki, S. Lanthaler, and S. Mishra. On universal approximation and error bounds

for fourier neural operators. Journal of Machine Learning Research, 22:Art–No, 2021.

[24] N. Kovachki, Z. Li, B. Liu, K. Azizzadensheli, K. Bhattacharya, A. Stuart, and A. Anand-

kumar. Neural operator: Learning maps between function spaces. arXiv preprint

arXiv:2108.08481v3, 2021.

[25] S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates for DeepONets: A deep

learning framework in infinite dimensions. Transactions of Mathematics and Its Applications,

6(1):tnac001, 2022.

[26] S. Lanthaler, S. Mishra, and C. Parés-Pulido. Statistical solutions of the incompressible

euler equations. Mathematical Models and Methods in Applied Sciences, 31(02):223–292,

Feb 2021.

[27] S. Lanthaler, R. Molinaro, P. Hadorn, and S. Mishra. Nonlinear reconstruction for op-

erator learning of pdes with discontinuities. In International Conference on Learning

Representations, 2023.

[28] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

62

Convolutional Neural Operators for robust and accurate learning of PDEs

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[30] M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedforward networks

with a nonpolynomial activation function can approximate any function. Neural networks,

6(6):861–867, 1993.

[31] Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar. Fourier neural operator with learned

deformations for pdes on general geometries, 2022.

[32] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and

A. Anandkumar. Fourier neural operator for parametric partial differential equations. In

International Conference on Learning Representations, 2021.

[33] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. M. Stuart, and

A. Anandkumar. Neural operator: Graph kernel network for partial differential equations.

CoRR, abs/2003.03485, 2020.

[34] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, A. M. Stuart, K. Bhattacharya, and

A. Anandkumar. Multipole graph neural operator for parametric partial differential

equations. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,

Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages 6755–6766.

Curran Associates, Inc., 2020.

[35] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, and A. Anand-

kumar. Physics-informed neural operator for learning partial differential equations. arXiv

preprint arXiv:2111.03794, 2021.

[36] Z. Liu, H. Mao, C. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s.

In Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition,

CVPR 2022, Proceedings of the IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, pages 11966–11976. IEEE Computer Society, 2022.

[37] Z. Long, Y. Lu, X. Ma, and B. Dong. Pde-net: Learning pdes from data. In J. G. Dy

and A. Krause, editors, Proceedings of the 35th International Conference on Machine

Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80

of Proceedings of Machine Learning Research, pages 3214–3222. PMLR, 2018.

[38] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via

DeepONet based on the universal approximation theorem of operators. Nature Machine

Intelligence, 3(3):218–229, 2021.

[39] K. O. Lye, S. Mishra, D. Ray, and P. Chandrashekar. Iterative surrogate model optimization

(ISMO): An active learning algorithm for PDE constrained optimization with deep neural

networks. Computer Methods in Applied Mechanics and Engineering, 374:113575, 2021.

63

Convolutional Neural Operators for robust and accurate learning of PDEs

[40] Z. Mao, L. Lu, O. Marxen, T. Zaki, and G. E. Karniadakis. DeepMandMnet for hypersonics:

Predicting the coupled flow and finite-rate chemistry behind a normal shock using neural-

network approximation of operators. Preprint, available from arXiv:2011.03349v1, 2020.

[41] D. A. Masters, N. J. Taylor, T. Rendall, C. B. Allen, and D. J. Poole. Geometric comparison

of aerofoil shape parameterization methods. AIAA Journal, pages 1575–1589, 2017.

[42] A. Molina, P. Schramowski, and K. Kersting. Pad\’e activation units: End-to-end learning

of flexible activation functions in deep networks. arXiv preprint arXiv:1907.06732, 2019.

[43] R. Molinaro, y. Yang, E. Engquist, and S. Mishra. Neural inverse operators for solving pde

inverse problems. arXiv:2301.11167, 2023.

[44] J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani,

T. Kurth, D. Hall, Z. Li, K. Azizzadenesheli, p. Hassanzadeh, K. Kashinath, and A. Anand-

kumar. Fourcastnet: A global data-driven high-resolution weather model using adaptive

fourier neural operators. arXiv preprint arXiv:2202.11214, 2022.

[45] P. Petersen and F. Voigtlaender. Equivalence of approximation by convolutional neural

networks and fully-connected networks. Proceedings of the American Mathematical Society,

148(4):1567–1581, 2020.

[46] M. Prasthofer, T. De Ryck, and S. Mishra. Variable input deep operator networks. arXiv

preprint arXiv:2205.11404, 2022.

[47] A. Quarteroni and A. Valli. Numerical approximation of Partial differential equations,

volume 23. Springer, 1994.

[48] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial

differential equations. Journal of Computational Physics, 378:686–707, 2019.

[49] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical

image segmentation. In Medical Image Computing and Computer-Assisted Intervention–

MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015,

Proceedings, Part III 18, pages 234–241. Springer, 2015.

[50] T. Schanze. Sinc interpolation of discrete periodic signals. IEEE Transactions on Signal

Processing, 43(6):1502–1503, 1995.

[51] J. H. Seidman, G. Kissas, P. Perdikaris, and G. J. Pappas. NOMAD: Nonlinear manifold

decoders for operator learning. arXiv preprint arXiv:2206.03551, 2022.

[52] E. Tadmor. Convergence of spectral methods for nonlinear conservation laws. SIAM

Journal on Numerical Analysis, 26(1):30–44, 1989.

[53] E. Tadmor. Burgers’ Equation with Vanishing Hyper-Viscosity. Communications in

Mathematical Sciences, 2(2):317 – 324, 2004.

64

Convolutional Neural Operators for robust and accurate learning of PDEs

[54] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal,

R. Ramamoorthi, J. Barron, and R. Ng. Fourier features let networks learn high frequency

functions in low dimensional domains. Advances in Neural Information Processing Systems,

33:7537–7547, 2020.

[55] M. Telgarsky. Neural networks and rational functions. In International Conference on

Machine Learning, pages 3387–3393. PMLR, 2017.

[56] A. Tran, A. Mathews, L. Xie, and C. S. Ong. Factorized fourier neural operators. In The

Eleventh International Conference on Learning Representations, 2023.

[57] M. Unser. Sampling-50 years after shannon. Proceedings of the IEEE, 88(4):569–587, 2000.

[58] M. Vetterli, J. Kovacevic, and V. Goyal. Foundations of Signal Processing. Cambridge

University Press, 2014.

[59] S. Wang, S. Suo, W. Ma, A. Pokrovsky, and R. Urtasun. Deep parametric continuous

convolutional neural networks. CoRR, abs/2101.06742, 2021.

[60] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial

differential equations with physics-informed DeepOnets. arXiv preprint arXiv:2103.10974,

2021.

[61] S. E. Wei. Aliasing-free nonlinear signal processing using implicitly defined functions. IEEE

Access, 10:76281–76295, 2022.

[62] R. Wightman, H. Touvron, and H. Jégou. Resnet strikes back: An improved training

procedure in timm. CoRR, abs/2110.00476, 2021.

[63] J. Yang, Q. Du, and W. Zhang. Uniform l p-bound of the allen-cahn equation and its

numerical discretization. International Journal of Numerical Analysis & Modeling, 15,

2018.

[64] Y. Zhu and N. Zabaras. Bayesian deep convolutional encoder–decoder networks for surrogate

modeling and uncertainty quantification. Journal of Computational Physics, 336:415–447,

2018.

65

	Introduction.
	Convolutional Neural Operators.
	Universal Approximation by CNOs.
	Experiments.
	Discussion.
	
	
	Technical Details for Section 2 of main text.
	Approximation of Operators mapping between Sobolev spaces by operators mapping between spaces of bandlimited functions.
	Continuous-Discrete Equivalence for Operator from Section 2.1
	Multi-channel versions of elementary operators for CNO (2.3)
	Discrete operators for CNO
	Proof of Proposition 2.1 of Main Text

	Proof of Theorem 3.1 of Main Text.
	Auxiliary results

	Technical Details for Section 4 of Main Text.
	Training and Implementation Details
	Feed Forward Dense Neural Networks
	UNet
	Convolutional Neural Operator
	DeepONet
	Fourier Neural Operator

	Training Details
	Details about the description and numerical results in each benchmark
	Poisson Equation
	Wave Equation
	Transport Equation
	Allen-Cahn Equation
	Navier-Stokes
	Flow past airfoils
	On the Choice of the RPB benchmarks.

	Testing at Different Resolutions.
	Ablation Studies.
	Error vs. number of training samples.

	Depiction of the Datasets.

