
Design of defected non-hermitian chains of

resonator dimers for spatial and

spatio-temporal localizations

H. Ammari and E.O. Hiltunen and T. Kosche

Research Report No. 2023-22

May 2023

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

____________________________________________________________________________________________________

Funding SNF: 200021-200307



Design of defected non-hermitian chains of resonator dimers for

spatial and spatio-temporal localizations∗

Habib Ammari† Erik Orvehed Hiltunen‡ Thea Kosche†

Abstract

The aim of this article is to advance the field of metamaterials by proposing formulas for the
design of high-contrast metamaterials with prescribed subwavelength defect mode eigenfrequencies.
This is achieved in two settings: (i) design of non-hermitian static materials and (ii) design of in-
stantly changing non-hermitian time-dependent materials. The design of static materials is achieved
via characterizing equations for the defect mode eigenfrequencies in the setting of a defected dimer
material. These characterizing equations are the basis for obtaining formulas for the material param-
eters of the defect which admit given defect mode eigenfrequencies. Explicit formulas are provided
in the setting of one and two given defect mode eigenfrequencies in the setting of a defected chain
of dimers. In the time-dependent case, we first analyze the influence of time-boundaries on the sub-
wavelength solutions. We find that subwavelength solutions are preserved if and only if the material
parameters satisfy a temporal Snell’s law across the time boundary. The same result also identifies
the change of the time-frequencies uniquely. Combining this result with those on the design of static
materials, we obtain an explicit formula for the material design of instantly changing defected dimer
materials which admit subwavelength modes with prescribed time-dependent defect mode eigenfre-
quency. Finally, we use this formula to create materials which admit spatio-temporally localized
defect modes.
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1 Introduction

In the classical setting, wave localization in space is typically constrained by the diffraction limit. Defects
on length-scales smaller than the wavelength have a negligible effect on wave scattering. However, recent
developments of subwavelength wave localization are able to overcome this barrier [4, 30, 21, 34, 26, 24, 19]
by making use of locally resonant periodic materials. Such systems are periodic systems of high-contrast
resonators which exhibit subwavelength resonant frequencies [10, 25]. They are typical examples of
metamaterials: materials with a repeating micro-structure that exhibit properties surpassing those of
the individual building blocks [22].

As first shown in [13], subwavelength band gaps can be found in any type of these periodic systems.
Introducing defects in a subwavelength band gap material can be used to trap or guide waves at sub-
wavelength scales. Throughout this paper, subwavelength resonant frequencies of a resonator structure
with a defect, which lie inside a subwavelength band gap of the unperturbed structure, will be called
subwavelength defect mode eigenfrequencies; see Definition 2.

In [11], the existence of subwavelength defect mode eigenfrequencies in point defect structures is
demonstrated. In [14], by showing that the defect modes in the case of a line defect in a crystal of
subwavelength resonators are not bound along the defect line, it is proved that the line defect indeed
acts as a waveguide; waves of certain frequencies inside the band gap are localized to, and guided
along, the line defect. However, there is a fundamental restriction of the practical applicability of these
localized/guided modes since the band-gap frequencies are exponentially close to the edge of the bulk
bands. Therefore, for structures to have physically achievable localization properties, their guiding
properties must be robust against imperfections of their design.

By taking inspiration from the field of topological insulators, it is shown in [9, 6] that systems of
subwavelength resonators can be designed to have spatial wave localization properties, at subwavelength
scales, that are robust with respect to random imperfections. Moreover, as recently shown in [5], the
scattering of time-harmonic waves by systems of high-contrast resonators with randomly chosen material
parameters reproduces the characteristic features of Anderson localization and its properties can be
understood by considering the phenomena of hybridization and level repulsion.

On the other hand, it has been proposed in recent years to add non-hermiticity into systems of
subwavelength resonators in order to achieve intriguing phenomena, such as nonreciprocal transmission
properties, unidirectional amplification [33, 18, 32, 29, 27, 3, 2, 1, 8, 20, 17]. This has been done by
either adding gain and loss in the material parameters [8, 32, 20] or by varying them in time. Time
variations of the material parameters could be either instantaneous as considered in this paper (see also
[23, 17, 18]) or periodically modulated [15, 28, 33, 31, 16].

The focus of this article is to furnish explicit and easy-to-implement formulas which allow the design
and construction of defected materials with prescribed defect mode eigenfrequencies. This is achieved
for up to two defect mode eigenfrequencies in a defected chain of dimers. The method for a more
general setting (arbitrarily finitely many defect mode eigenfrequencies in n-resonator periodic systems)
is also explained. The design of (static) defected non-hermitian materials that admit a certain defect
mode eigenfrequency provides the basis for the design of time-dependent materials that admit time-
dependent defect mode eigenfrequencies ω(t) = ω−χt<0 +ω+χt≥0, thus providing an approach to design
time-dependent non-hermitian materials. An application of the design of time-dependent non-hermitian
materials is the creation of simultaneous spatial and temporal localization of scalar waves at given (time-
dependent) defect mode eigenfrequencies ω(t). In fact, this is achieved by choosing ω(t) = ω−χt<0 +
ω+χt≥0 with Im(ω−) > 0 and Im(ω+) < 0.

For the sake of clarity and presentation, we will consider a chain of periodically repeated resonator
dimers and introduce one to two defected resonators to the periodic structure. However, we would like
to emphasize that the choice of a chain with repeated dimers has only illustrative reasons and that the
same approach presented here can be used to consider a system of n resonators which are repeated with
some arbitrary lattice Λ ⊂ R

3; see the two remarks at the end of Subsection 2.3.
Thus, for the sake of clarity, throughout this paper, we let D1, D2 ⊂ [0, 1)×R

2 be two disjoint smooth
simply connected domains and consider Dm

i := Di + (m, 0, 0)T with i = 1, 2 and D :=
⋃

m∈Z
Dm

1 ∪Dm
2 .

We will study subwavelength waves in the setting where the material parameters are of the form

ρ(x, t) =



















ρ−b t < 0, x ∈ R
3 \ D

ρ−i,m t < 0, x ∈ Dm
i

ρ+b t ≥ 0, x ∈ R
3 \ D

ρ+i,m t ≥ 0, x ∈ Dm
i

and κ(x, t) =



















κ−
b t < 0, x ∈ R

3 \ D

κ−
i,m t < 0, x ∈ Dm

i

κ+
b t ≥ 0, x ∈ R

3 \ D

κ+
i,m t ≥ 0, x ∈ Dm

i

, (1)
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with ρ−b , ρ−i,m, ρ+b , ρ+i,m, κ−
b , κ−

i,m, κ+
b , κ+

i,m ∈ C. The associated wave equation with time-dependent
coefficients is given by

(

∂

∂t

1

κ(x, t)

∂

∂t
− divx

1

ρ(x, t)
∇x

)

u(x, t) = 0, x ∈ R
3, t ∈ R. (2)

In this setting, we aim to find solutions which are time-harmonic for negative and positive times. That
is, we want to find solutions u : R3 × R → C of the following form:

u(x, t) =

{

v(x)e−iω−t t < 0,

v(x)e−iω+t t ≥ 0,
(3)

where v : R
3 → C and ω± ∈ C. Such solutions will be called quasi-harmonic. We will say that

a solution u is then spatio-temporally localized, if v(·, x2, x3) ∈ L2(R) for almost every (x2, x3) ∈ R

(spatial localization) and if for almost every choice of x ∈ R
3 the function u(x, ·) is in L2(R) (temporal

localization). This is the case precisely when Im(ω−) > 0 and Im(ω+) < 0. In this setting it is possible to
split the problem into two parts: a static part and a time-transition part. We will first study v : R3 → C

more closely and determine a setting in which v is spatially localized. In fact, as shown in Section 3, v
is the solution to the Helmholtz equation

∆v(x) + ω±

√

κ±(x)

ρ±(x)
v(x) = 0,

together with an appropriate boundary conditions for v(x) on ∂D, where the constant (w.r.t. time t)
coefficients are given by κ−(x) = κ(x, t)|t<0, ρ−(x) = ρ(x, t)|t<0 and κ+(x) = κ(x, t)|t≥0, ρ+(x) =
ρ(x, t)|t≥0, respectively.

The methodology adopted in this paper is based on a discrete approximation of the spectral problem
obtained in the high contrast limit [4]. In a periodic material, e.g. assuming that the material parameters
ρ and κ are periodic with respect to the lattice Λ = (1, 0, 0)TZ, that is, ρi,m = ρi,n and κi,m = κi,n

for all m,n ∈ Z, and ρi,m/ρb ≪ 1, it has been shown in [4, 9] that the subwavelength spectrum can
be approximated in terms of the eigenvalues of the so-called generalized capacitance matrix Cα, where
α ∈ R/2πZ. In a periodic structure the associated (Bloch) modes v ∈ L2

loc are α-quasiperiodic, which in
this case means that (x1, x2, x3) 7→ v(x1, x2, x3) exp(−iα · x1) is Λ-periodic and thus v(x) is not square
integrable along the x1-direction. In order to achieve spatial localization, it is thus necessary to break the
periodicity of the system and to introduce defects in the periodic structure. One possibility to break the
periodicity is to change some of the ρm,i’s and κm,i’s. It turns out that the defect mode eigenfrequencies
associated to a defected structure with finitely many defects are related to the generalized capacitance
matrix Cα of the periodic non-defected structure and the defect material parameters and locations [5].

Based on the characterization of the defect mode eigenfrequencies in the hermitian case (i.e., when all
the material parameters are real positive) first provided in [5], we derive several characterizing equations
for the defect mode eigenfrequencies of localized modes in the setting of single and double defects in
non-hermitian chains of resonator dimers; see Subsection 2.2. Using these characterizing equations we
succeed in showing numerically the existence of localized modes in defected non-hermitian chains of
dimers.

Changing perspective, we ask no longer whether a certain choice of resonator system with given
material parameters admits localized solutions, but we ask whether it is possible to introduce a defect
(by changing the material parameters of a single resonator) in a given resonator structure, such that
a given frequency ω is a defect mode eigenfrequency of the defected system. The characterization
from Subsection 2.2 provides a basis for answering this question. In Subsection 2.3, we prove that the
answer to this question is indeed ‘yes’ for frequencies ω which lie in the band gap of the Helmholtz
problem and which satisfy a mild technical condition. We are able to derive an explicit function ω 7→
V def (ω) which maps the frequency to the defect material parameters; see Theorem 2. Even more is true.

Theorem 3 provides a function (ω1, ω2) 7→ (V def
1 (ω1, ω2), V

def
2 (ω1, ω2)) which maps a pair of frequencies

(ω1, ω2) to a pair of defect material parameters (V def
1 (ω1, ω2), V

def
2 (ω1, ω2)), such that the material with

two defected resonators with material parameters given by V def
1 (ω1, ω2) and V def

2 (ω1, ω2), respectively,
admits two defect mode eigenfrequencies given by ω1 and ω2. We observe that the procedure to obtain
functions which map frequencies to associated defected material parameters reduces to solving polynomial
equations in the variables given by the defect material parameters. Indeed for n given frequencies, it
is possible to find n defect material parameters such that, generically, the given frequencies occur as
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defect mode eigenfrequencies. In that case, the material parameters V def
1 , . . . , V def

n satisfy a system of
n polynomial equations of degree n and as such, generically, have a solution. This makes clear that,
generically, it is possible to deduce similar explicit formulas as in Theorems 2 and 3, for up to four given
frequencies. For at least five given frequencies, generically, the system of equations can no longer be
solved explicitly, but needs to be solved numerically. For further details see the remarks at the end of
Subsection 2.3.

Having established spatial localization, in a second step, we analyse the time-dependent setting in
Section 3. We show that in order to admit quasi-harmonic solutions as in (3) it is sufficient and necessary
that ρ and κ satisfies a temporal Snell’s law, that is, ρ−ω+ = ρ+ω− and κ+ω+ = κ−ω−. This gives us
a one-to-one correspondence between materials M1 and M2 such that the composite time-dependent
materialM given byM1 for times t < 0 and byM2 for times t ≥ 0, admits solutions of the form (3). The
temporal Snell’s law describes time-refraction (see, for example, [18]) tailored so that any time-harmonic
solution of M1 will be refracted to a time-harmonic solution of M2 across the temporal boundary.

With these results at hand, we succeed to prove Theorem 5, which is in the same style as Theorems 2
and 3. Theorem 5 establishes an explicit and easy-to-implement function which maps a time-dependent
frequency ω(t) = ω−χt<0+ω+χt≥0 as in (3) to the material parameters of a defected instantly changing
material, such that ω(t) occurs as a time-dependent defect mode eigenfrequency. In particular, it allows
to construct examples of spatio-temporal localization, by choosing Im(ω−) > 0 and Im(ω+) < 0, see
Theorem 6 in Section 3.3.

The paper is organized as follows. It is divided into a first part which treats the case of static
metamaterials in Section 2 and a second part which builds on the first and treats the case of time-
dependent instantly changing metamaterials in Section 3. In the first part, exact formulas characterizing
the defect mode eigenfrequencies are derived in Subsections 2.2.1 and 2.2.2 for a system of resonator
dimers with a single or a double defect. Then explicit formulas for the design of defected structures which
admit specified defect mode eigenfrequencies are obtained (Subsection 2.3). The results of Subsection
2.3 are generalized in Section 3 to the setting of instantly changing metamaterials with prescribed time-
dependent defect mode eigenfrequencies ω(t) = ω−χt<0 + ω+χt≥0. To this end, in Subsection 3.1, the
occurrence of quasi-harmonic waves in instantly changing metamaterials is characterized in Theorem 4.
Then, Subsection 3.2 introduces the design of time-dependent materials which admit localized modes
with a prescribed time-dependent defect mode eigenfrequency ω(t) = ω−χt<0+ω+χt≥0. The main result
is presented in Theorem 5, which furnishes the basis for the design of instantly changing metamaterials
which admit spatio-temporally localized modes at given frequencies. This is addressed in Section 3.3 and
the central design and existence result is presented in Theorem 6.

2 Spatial localization

As outlined in the introduction, this section is the first step towards designing instantly changing mate-
rials with prescribed time-dependent defect mode eigenfrequency, which is the basis for spatio-temporal
localization. After having introduced the setting and necessary background in Subsection 2.1, we derive in
Subsection 2.2 characterizing equations for defect mode eigenfrequencies in non-hermitian infinite chains
of dimers with one or two defected resonators. These characterizing equations are numerically solved to
determine the defect mode eigenfrequencies of defected structures. We also observe that approximating
an infinite chain resonator dimers with a finite, truncated chain gives accurate approximations for the
defect mode eigenfrequencies. Then, in Subsection 2.3, we are able to use these characterizing equations
for the design of defected dimer systems which admit prescribed defect mode eigenfrequencies. That is,
given ω, we derive explicit functions which map frequencies ω to the defect material parameters of a
dimer system, such that ω occurs as a defect mode eigenfrequency in the associated defected material.

2.1 Theoretical background and setting

In this work, we will consider disjoint resonators D1, D2 ⊂ [0, 1)×R
2 repeated periodically with respect

to Λ = (1, 0, 0)TZ in R
3, forming a chain of resonator dimers as depicted on Figure 1 (left). To be more

precise, let

D1, D2 ⊂ [0, 1)× R
2 such that D1 ∩D2 = ∅
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Fundamental domain [0, 1)× R
2

D1, D2 ⊂ [0, 1)× R
2

such that D1 ∩D2 = ∅

D1 D2

Periodic material

D :=
⋃

m∈Z
Dm

1 ∪Dm
2 ,

where Dm
i :=





m
0
0



+Di

Dm−1
2

Dm
1 Dm

2 Dm+1
1

Resonator material Dm
i

Bulk moulus κm
i

Density ρmi
Wave speed vmi :=

√

κm
i

ρm
i

Background material R3 \ D

Bulk moulus κb

Density ρb
Wave speed vb :=

√

κb

ρb

Contrast parameter δmi :=
ρm
i

ρb

Figure 1: Notation convention for material parameters used in this paper.

and define

D :=
⋃

m∈Z

Dm
1 ∪Dm

2 , where Dm
i :=





m
0
0



+Di.

Furthermore, we associate to every resonator Dm
i with i = 1, 2 and m ∈ Z the material parameters ρmi

and κm
i ; ρb and κb will denote the material parameters of the background medium (as depicted in Figure

1 (right)). The respective wave speeds vmi in each resonator Dm
i are then given by vmi =

√

κm
i /ρmi and we

will denote by vb =
√

κb/ρb the wave speed in the surrounding background medium R
3 \D. The contrast

parameter associated to the resonator Dm
i will be denoted by δmi := ρmi /ρb and which will satisfy that

for some more general δ
δmi = O(δ) as δ → 0. (4)

In the static case, we are interested in solving the wave equation
(

1

κ(x)

∂2

∂t2
− divx

1

ρ(x)
∇x

)

u(x, t) = 0, x ∈ R
3, t ∈ R,

for a time harmonic solution u(x, t) = v(x) exp(−iωt) in the subwavelength regime. That is, we are inter-
ested in parameterized solutions uδ(x, t) = vδ(x) exp(−iωδt), such that vδ and ωδ depend continuously
on δ and such that vδ ̸= 0 for all δ close to 0 and

ωδ → 0 as δ → 0.

We call solutions (ωδ, vδ) of this form subwavelength solutions. In that case, ωδ is called subwavelength
frequency and vδ is called subwavelength mode. Solving the wave equation (2) is actually equivalent to
solving the following system of Helmholtz equations in v : R3 → C and ω ∈ C with Re(ω) > 0:































∆v + ω2

v2 v = 0 in R
3 \ D,

∆v + ω2

(vm
i
)2 v = 0 in Dm

i , m ∈ Z, i = 1, 2,

v|+ − v|− = 0 on ∂D,

δmi
∂v
∂ν

|+ − ∂v
∂ν

|− = 0 on ∂D,

v(x1, x2, x3) satisfies the outgoing radiation condition as |x1| → ∞.

(5)

Assuming that the material parameters ρmi and κm
i are periodic, that is, assuming ρmi = ρni and

κm
i = κn

i for i = 1, 2 and for all m,n ∈ Z, one can apply Floquet-Bloch theory and find quasi-periodic
solutions to (5). In this case, the case of periodic material parameters, the lattice of the structure is
given by Λ = Z(1, 0, 0)T , the dual lattice is given by Λ∗ = Z(2π, 0, 0)T and the Brillouin Zone by
Y ∗ = R/2πZ × {0}2. For α ∈ Y ∗, define the quasiperiodic Green’s function Gα(x) as the Floquet
transform of the Green’s function G(x) associated to the Laplace equation

∆u = 0,

which is given in three dimensions by

G(x) = −
1

4π|x|
.
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Hence, Gα is defined as

Gα(x) :=
∑

m∈Λ

G(x)eiα·m.

The associated single layer potential to Gα is then

Sα
D[φ](x) :=

∫

∂D

Gα(x− y)φ(y)dσ(y), x ∈ R
3,

and is known to be invertible from L2(∂D) onto H1(∂D) with H1(∂D) being the usual Sobolev space;
see, for instance, [12].

Definition 1 (Quasiperiodic generalized capacitance matrix). Let α ∈ Y ∗−{0}. Let D1, . . . , DN ⊂ R
3 be

N resonators which are repeated periodically with respect to some lattice Λ ⊂ R
3. Define the quasiperiodic

capacitance matrix Cα = (Cα
ij) ∈ C

N×N as

Cα
ij = −

∫

∂Di

(Sα
D)−1[χ∂Dj

]dσ, i, j = 1, . . . , N,

where χ∂Dj
is the indicator function of ∂Di. Then the generalized quasiperiodic capacitance matrix

Cα = (Cα
ij) ∈ C

N×N is given by

Cα
ij =

δiv
2
i

|Di|
Cα

ij , i, j = 1, . . . , N, (6)

where |Di| denotes the volume of Di.

The subwavelength frequencies of the system of N resonators are given by the eigenvalues of the
generalized quasiperiodic capacitance matrix up to an error of order O(δ); see [4]. Thus, a priori, the
quasiperiodic capacitance matrix only describes subwavelength phenomena in the infinite periodic setting.
However, it has been proven in [5] that the quasiperiodic capacitance matrix also helps to understand
localized modes in defected structures with finitely many defected resonators.

More precisely, assume that for finitely many Dm
i the material parameters are not given by δiv

2
i but

by δiv
2
i (1+xm

i ) for some xm
i ∈ C; an example being depicted in Figure 2. For m ∈ Z, denote by Xm the

diagonal matrix with the diagonal entries given by

(Xm)ii = xm
i .

Definition 2 (Localized mode and defect mode eigenfrequency). Using the notation from the beginning
of this chapter and being in the setting of a defected material, where the material parameters δiv

2
i of

finitely many resonators Dm
i have been replaced by δiv

2
i (1 + xm

i ) for xm
i ∈ C, we consider the Helmholtz

problem (5) and assume that (ωδ, vδ) is a subwavelength solution. We call vδ a localized or defect mode
if (ωδ, vδ) satisfies

∫

R

|vδ(x1, x2, x3)|
2dx1 < ∞ for a.e. (x2, x3) ∈ R

2,

ωδ ̸∈
⋃

α∈Y ∗\{0}

σ(Cα),

where σ(Cα) denotes the set of eigenvalues of Cα. In that case, ωδ is called defect mode eigenfrequency.

The first condition formalizes the localized nature of the subwavelength solution, whereas the second
condition formalizes the defect nature. We have the following result from [5, Proposition 3.7].

Theorem 1 (Defect mode eigenfrequencies). Assume that xm
i ̸= 0 for finitely many m ∈ Λ and 1 ≤

i ≤ N . Let ω ∈ C and assume ω ̸∈
⋃

α∈Y ∗ σ(Cα) for all α ∈ Y ∗ − {0}. Then ω is a defect mode
eigenfrequency associated to the above defected material if and only if

det(Id−XT (ω)) = 0, (7)

where Id is the identity matrix and X is the block-diagonal matrix with entries Xm and T is the infinite
block Toeplitz matrix given by

T (ω)m,n = Tn−m(ω) = −
1

|Y ∗|

∫

Y ∗

eiα(n−m)Cα(Cα − ω2 Id)−1dα. (8)
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Dm−1
1

δ1(v1)
2

Dm−1
2

δ2(v2)
2

Dm
1

δ1(v1)
2

Dm
2

δ2(v2)
2

Dm+1
1

δ1(v1)
2

Dm+1
2

δ1(v1)
2

Introduction of a defect

Dm−1
1

δ1(v1)
2

Dm−1
2

δ2(v2)
2

Dm
1

δm1 (vm1 )2

Dm
2

δ2(v2)
2

Dm+1
1

δ1(v1)
2

Dm+1
2

δ1(v1)
2

δm1 (vm1 )2 = δ1(v1)
2(1 + xm

i )

Figure 2: Illustrative example of the introduction of finitely many defected resonators with the notation convention
used in Section 2.1.

Since X has only finitely many non-zero values, it follows that the determinant in equation (7) reduces
to a determinant of a finite dimensional matrix and is thus well-defined.

Furthermore, we would like to note that this theorem serves as the basis of the following paper.
Although [5] is mainly concerned with the hermitian case, that is, real-valued material parameters, the
theorem holds in the general non-hermitian case of complex material parameters. This is the setting in
which this theorem will be heavily used in this work. Most of the results obtained in this paper rely on
its characterization of the defect mode eigenfrequencies.

2.2 Characterization of defect mode eigenfrequencies

In this section, characterizing equations for defect mode eigenfrequencies in defected structures will be
derived. To this end, we will study three different settings, the first being a PT -symmetric chain of
spherical resonator dimers (i.e., identical spheres with material parameters complex conjugate to each
other as shown in (9)) and with a single defected resonator D0

1 in which the wave speed v01 has been

replaced with its complex conjugate v01 . The characterizing equation for the defect mode eigenfrequencies
in this setting is the result of Lemma 1. Next, we consider the setting of a general chain of dimers with a
single defected resonator D0

1 with wave speed
√

V def/δ01 , the respective result can be found in Lemma 3.
Finally, we characterize the defect mode eigenfrequencies in a defected chain of dimers with two defected
resonators D0

1 and D0
2; see Lemma 4. Finally, these results are used in Subsection 2.3 in order to design

defected materials with prescribed defect mode eigenfrequencies.

2.2.1 PT-symmetric periodic system of resonator dimers with a loss defect

In this section, we will study phenomena in the setting of a PT -symmetric chain of equally sized,
spherical, disjoint resonators and introduce a loss (respectively, gain) defect by conjugating the mate-
rial parameter of the resonator D0

1. This setting will significantly simplify the characterizing equation
obtained for the defect mode eigenfrequencies.

D0
1

V

D−1
2

V

D0
1

V

D0
2

V

D1
1

V

D0
2

V

V = a+ ib

Figure 3: Setting and notation convention used in Lemma 1.

We suppose the material parameters of the periodic material to be given by

δj(vj)
2 =

{

a+ ib, if j = 1,

a− ib, if j = 2.
(9)

As depicted in Figure 3, in order to study defected non-hermitian materials, we will replace the
material parameter of a single resonator by its complex conjugate thus creating a loss/gain defect as
depicted in Figures 4a and 4b.
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(a) Non-hermitian periodic material with gain defect.

(b) Non-hermitian periodic material with loss defect.

Figure 4: Non-hermitian periodic structure without defect. Red indicates material parameters equal to a + ib
whereas blue indicates material parameters equal to a − ib. The proportions are precisely those used in the
numerical simulations: length of the fundamental domain L = 1, radius of the spherical resonators 0.15, positions
of the resonators at (0.25 + Z, 0, 0) and (0.75 + Z, 0, 0).

In this case, the generalized quasiperiodic capacitance matrix defined in (6) takes the form

Cα =

(

a+ ib 0
0 a− ib

)

Cα =

(

a+ ib 0
0 a− ib

)(

C11(α) C12(α)

C12(α) C11(α)

)

.

In the case of a single loss defect in the zeroth fundamental domain, we obtain that there is precisely
one non-zero block X0 in the block diagonal matrix (Xm)m∈Z = X , which is given by

X0 =

(

−2ib
a+ib

0

0 0

)

and the relevant part of the Toeplitz matrix T (ω) in (7) reduces to

T (ω)0,0 = T 0 = −
1

|Y ∗|

∫

Y ∗

Cα(Cα − ω2 Id)−1dα,

where Id denotes here the 2× 2 identity matrix.
The following lemma holds.

Lemma 1. The defect mode eigenfrequencies in the above setting are given by solutions ω ∈ C \
∪α∈Y ∗σ(Cα) to the equation

0 =

∫

Y ∗

ω4 − 2(a− ib)(Cα)11ω
2 + (a− ib)2 det(Cα)

ω4 − 2a(Cα)11ω2 + |(a+ ib)|2 det(Cα)
dα. (10)

Proof. From Theorem 1, we know that whenever ω ∈ C \ ∪α∈Y ∗σ(Cα), then ω corresponds to a defect
mode eigenfrequency if and only if it satisfies the equation

det(Id−XT (ω)) = 0.

Since only one resonator is modified, this reduces to the equation

1−X1
0 (T )11 = 0. (11)

Then we compute

(Cα(Cα − ω2 Id)−1)11

=
1

det(Cα − ω2 Id)

((

a+ ib 0
0 a− ib

)(

C11(α) C12(α)

C12(α) C11(α)

)(

(a− ib)C11(α)− ω2 −(a+ ib)C12(α)

−(a+ ib)C12(α) (a+ ib)C11(α)− ω2

))

11

=
(a+ ib)

det(Cα − ω2 Id)
(−C11(α)ω

2 + ((a− ib)C11(α)
2 − (a− ib)|C12(α)|

2))

=
(a+ ib)

det(Cα − ω2 Id)
(−C11(α)ω

2 + (a− ib) det(Cα))

=
(a+ ib)(−C11(α)ω

2 + (a− ib) det(Cα))

ω4 − 2a(Cα)11ω2 + |(a+ ib)|2 det(Cα)
.
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Putting this into the determinant formula (11), we obtain that

0 = 1 +
−2ib

a+ ib

1

|Y ∗|

∫

Y ∗

Cα(Cα − ω2 Id)−1dα

= 1 +
−2ib

a+ ib

1

|Y ∗|

∫

Y ∗

(a+ ib)(−C11(α)ω
2 + (a− ib) det(Cα))

ω4 − 2a(Cα)11ω2 + |(a+ ib)|2 det(Cα)
dα

=

∫

Y ∗

ω4 − 2(a− ib)(Cα)11ω
2 + (a− ib)2 det(Cα)

ω4 − 2a(Cα)11ω2 + |(a+ ib)|2 det(Cα)
dα.
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Figure 5: As an application and with the notation from Lemma 1 two simulations of two different PT -symmetric
materials with loss defect are depicted. The geometric structure is described in Figure 4b. The heatmap describes
the absolute value of the right hand side of the equation (10), in red is indicated a discretization of the continuous
spectrum of the infinite material (199 discretization steps). This discretization of the Brillouin zone was then
used to compute the heatmap. In blue is indicated an approximation of the defect mode eigenfrequency, when
using a finite material with 200 fundamental domains to approximate the defected infinite material.

Simulations of two different PT -symmetric materials with loss defect are depicted in Figure 5. In this
figure, the predicted defect mode eigenfrequencies of a truncated finite structure is also depicted and one
sees that a finite structure is a good approximation for the exact prediction in the infinite structure. This
gives an example where the spectral approximation theory developed in [7] for finite but large hermitian
chains of resonators applies to the non-hermitian case.

All numerical results in this paper are obtained by the following way. The generalized quasiperiodic
capacitance matrix is computed by using a multipole approximation for the single layer potential [13,
Appendix C]. The remaining numerical computations mainly rely on evaluations of the integrals, which
occur in the different characterizing equations. These are computed using the end point rule with
constant step sizes.

The following observation will transform Lemma 1 into the corresponding lemma for a gain defect.
Conjugation of the material parameters gives a bijection between the set of PT -symmetric materials with
loss defect and the set of PT -symmetric materials with gain defect. Thus, conjugating the material pa-
rameters in the equation of Lemma 1 transforms the equation (11) for loss defects into the corresponding
equation for gain defects, proving the following lemma.

Lemma 2. Let D1, D2 ⊂ [0, 1) × R
2 be two equally sized spherical resonators, which are repeated peri-

odically with Λ = (1, 0, 0)TZ and let the Λ-periodic material parameters be given by

δj(vj)
2 =

{

a− ib, if j = 1,

a+ ib, if j = 2.

Assume that the resonator D0
1 is defected and has its material parameter given by δ1(v1)2 = a+ib. Then,

the frequencies ω of the defect modes in this setting are given by the solutions to the following equation

0 =

∫

Y ∗

ω4 − 2(a+ ib)(Cα)11ω
2 + (a+ ib)2 det(Cα)

ω4 − 2a(Cα)11ω2 + |(a+ ib)|2 det(Cα)
dα.
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2.2.2 General periodic system of resonator dimers with a single or a double defect

In this section, we drop the PT -symmetry assumption on the periodic material without defect, but treat
the case of general, disjoint resonators D1, D2 ⊂ [0, 1)×R

2 with general, periodic material parameters V1

and V2, respectively. Furthermore, any constraints on the defect material parameters are lifted, allowing,
in the next section, to design defected materials with prescribed defect mode eigenfrequencies.

D0
1

V1

D−1
2

V2

D0
1

V def
1

D0
2

V2

D1
1

V1

D0
2

V2

Figure 6: Notation convention of Lemma 3.

Considering first a single defected resonator, we obtain the following result.

Lemma 3. Let D1, D2 ⊂ [0, 1) × R
2 be a pair of disjoint resonators which is repeated periodically with

respect to Λ = (1, 0, 0)TZ. Set the material parameters as

δ1(v1)
2 =: V1 ∈ C,

δ2(v2)
2 =: V2 ∈ C,

as depicted in Figure 6. Denote by Y ∗ := R/2πZ × {0}2 the associated Brillouin zone and by Cα

the associated capacitance matrix. Assume that the resonator D1 of the zeroth cell is defected and its
material parameter is given by V def

1 ∈ C. Then, ω ∈ C \ ∪α∈Y ∗σ(Cα) is a defect mode eigenfrequency of
the Helmholtz problem (5) if and only if it satisfies

0 = V1 + (V def
1 − V1)

1

|Y ∗|

∫

Y ∗

det(Cα)− ω2Cα
11

det(Cα − ω2 Id)
dα. (12)

Proof. Again, from Theorem 1, we know that whenever ω ∈ C \ ∪α∈Y ∗σ(Cα), then ω corresponds to a
defect mode eigenfrequency if and only if it satisfies the equation

det(Id−XT (ω)) = 0.

Since only one resonator is modified, this reduces to the equation

1−X1
0 (T )11 = 0.

Then we compute

(Cα(Cα − ω2 Id)−1)11 =

(

Cα 1

det(Cα − ω2 Id)
(det(Cα)(Cα)−1 − ω2 Id)

)

11

=

(

1

det(Cα − ω2 Id)
(det(Cα) Id−ω2Cα)

)

11

=
det(Cα)− ω2Cα

11

det(Cα − ω2 Id)
,

and put this into the determinant formula to arrive at

0 = 1 +X1
0

1

|Y ∗|

∫

Y ∗

det(Cα)− ω2Cα
11

det(Cα − ω2 Id)
dα

= 1 + (V def
1 /V1 − 1)

1

|Y ∗|

∫

Y ∗

det(Cα)− ω2Cα
11

det(Cα − ω2 Id)
dα,

which is equivalent to

0 = V1 + (V def
1 − V1)

1

|Y ∗|

∫

Y ∗

det(Cα)− ω2Cα
11

det(Cα − ω2 Id)
dα,

as desired.
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Figure 7: As an application example of Lemma 3, two simulations of two single defects are depicted. The radius of
the spherical resonators is given by R = 0.15, the centers of the resonators D1 and D2 are located at (0.25, 0, 0)T

and (0.75, 0, 0)T , respectively. The periodicity lattice used is Λ = (1, 0, 0)TZ. The periodic material parameters are
given by V1 = a+ ib and V2 = a− ib. The heatmap describes the absolute value of the right-hand side of equation
(12), in red is indicated a discretization of the continuous spectrum of the infinite material (199 discretization
steps). This discretization of the Brillouin zone was then used to compute the heatmap. In blue is indicated an
approximation of the defect mode eigenfrequency, when using a finite material with 200 fundamental domains to
approximate the defected infinite material.

Similarly, in the setting of two defected resonators which lie in the same fundamental domain, we
obtain the following characterization of the defect mode eigenfrequencies.

Lemma 4. Let D1, D2 ⊂ [0, 1)×R
2 be a pair of disjoint resonators which are repeated periodically with

respect to Λ = (1, 0, 0)TZ. Set the material parameters as

δ1(v1)
2 =: V1 ∈ C,

δ2(v2)
2 =: V2 ∈ C,

and denote by Y ∗ := R/2πZ× {0}2 the associated Brillouin zone and by Cα the associated quasiperiodic
generalized capacitance matrix. Assume that the zeroth cell is defected and its material parameters are
given by V def

1 and V def
2 . Then, ω ∈ C \ ∪α∈Y ∗σ(Cα) is a defect mode eigenfrequency of the Helmholtz

problem (5) if and only if it satisfies

0 = det

(

V + (V def − V )
1

|Y ∗|

∫

Y ∗

1

det(Cα − ω2 Id)

[

det(Cα) Id−ω2Cα
]

dα

)

,

where

V :=

(

V1 0
0 V2

)

, V def :=

(

V def
1 0

0 V def
2

)

.

Proof. Applying the formula for the inverse of a 2× 2-matrix to the matrix (Cα − ω2 Id)−1, one obtains
that

(Cα − ω2 Id)−1 =
1

det(Cα − ω2 Id)

[(

V2C
α
22 V1C

α
12

−V2C
α
21 V1C

α
11

)

− ω2 Id

]

=
1

det(Cα − ω2 Id)

[

det(Cα)(Cα)−1 − ω2 Id
]

.

Putting this into the equation

0 = det

(

Id−(V defV −1 − Id)
1

|Y ∗|

∫

Y ∗

Cα(Cα − ω2 Id)−1dα

)

,

we get

0 = det

(

Id−(V defV −1 − Id)
1

|Y ∗|

∫

Y ∗

1

det(Cα − ω2 Id)

[

det(Cα) Id−ω2Cα
]

dα

)

.
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Then pulling out V yields

0 = det

(

V − (V def − V )
1

|Y ∗|

∫

Y ∗

1

det(Cα − ω2 Id)

[

det(Cα) Id−ω2Cα
]

dα

)

,

which proves the lemma.

Remark. The results in Subsection 2.2.2 do not rely on the fact that a chain of dimers is considered.
That is, in the above two lemmas, Lemmas 3 and 4, the sublattice Λ = (1, 0, 0)TZ can be replaced with
any 1, 2 or 3-dimensional sublattice of R3 without changing the results and the characterizing equations.

Both results will help us in the next section to design defected materials with defect modes at given
defect mode eigenfrequencies.

2.3 Material design of defected resonator dimer systems with prescribed

defect mode eigenfrequencies

This section applies the characterization of defect mode eigenfrequencies in defected periodic materials
to the question whether it is possible to create defects which admit localized modes at a given defect
mode eigenfrequency ω. It turns out that the answer to this question is, under mild assumptions, ‘yes’;
see Theorem 2. Even more is true. In fact, it is possible to create a double defect that admits two
localized modes u1 and u2 at given defect mode eigenfrequencies ω1 and ω2, as it is shown in the proof
of Theorem 3. We conclude with a remark on realizing n frequencies as defect mode eigenfrequencies in
a material with n defects.

Theorem 2. Let D1, D2 ⊂ [0, 1)×R
2 be a pair of disjoint resonators which is repeated periodically with

respect to Λ = (1, 0, 0)TZ. Set the material parameters as (see e.g. Figure 6)

δ1(v1)
2 =: V1 ∈ C,

δ2(v2)
2 =: V2 ∈ C,

and denote by Y ∗ := R/2πZ× {0}2 the associated Brillouin zone and by Cα the associated quasiperiodic

generalized capacitance matrix. Let W be the set of zeros of
∫

Y ∗

det(Cα)−ω2Cα
11

det(Cα−ω2 Id) dα, that is,

W :=

{

ω ∈ C \
⋃

α∈Y ∗

σ(Cα) :

∫

Y ∗

det(Cα)− ω2Cα
11

det(Cα − ω2 Id)
dα = 0

}

.

Then, the following map Ψ : C\ (
⋃

α∈Y ∗ σ(Cα)∪W ) → C associates to each ω a choice of defect material

parameters V def (ω) (for the resonator D0
1) such that ω occurs as a defect mode eigenfrequency, when in

the above periodic structure a defected fundamental domain is created with the defect material parameter
given by V def (ω). The map Ψ is defined by

Ψ : C \
(
⋃

α∈Y ∗ σ(Cα) ∪W
)

−→ C

ω 7−→ V def (ω),

where V def (ω) is given by the following

V def (ω) = V1



1−
1

1
|Y ∗|

∫

Y ∗

det(Cα)−ω2Cα
11

det(Cα−ω2 Id) dα



 .

Proof. This result directly follows from Lemma 3 and is obtained by a straightforward computation from
equation (12).

An illustration of the result stated in Theorem 2 can be found in Figure 8. There, the map
ω 7→ V def (ω) is plotted and the resulting values V def (ω) are validated by a comparison between the
desired defect mode eigenfrequency ω and the defect mode eigenfrequency ωapprox obtained when one
approximates the defected material with a truncated, finite material.

Similarly, given two frequencies ω1 and ω2, we succeed to produce defect parameters V def
1 , V def

2 of a
double defect, such that ω1 and ω2 are the eigenfrequencies of two localized modes u1, u2. The precise
result is stated in the following theorem.
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(a) Plot of the map x 7→ V def (ω(x)), where ω(x) = 1−0.4i+
0.2 exp(2πix). On the left is the real part of V def (ω(x)) and
on the right is the imaginary part.

0 0.5 1

0.8

0.9

1

1.1

1.2

1.3

0 0.5 1

-0.6

-0.55

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

(b) Comparison between ω(x) = 1 − 0.4i + 0.2 exp(2πix)
(blue) and the approximated defect mode eigenfrequency
(red) obtained by a finite approximation of the material with
defect V def (ω(x)) and 100 fundamental domains.

Figure 8: Material design of a defected chain of resonator dimers that admits ω as a defect mode eigenfrequency.
With the notation from Theorem 2, the following material parameters are chosen as follows: V1 = 1 + 0.6i, V2 =
1.0 − 0.6i, the radius of all the spherical resonators is given by R = 0.15 and the locations of the centers of the
two resonators D1, D2 in the fundamental domain [0, 1)×R

2 are given by (0.25, 0, 0) and (0.75, 0, 0), respectively.
The considered defect mode eigenfrequencies are given by {ω = 1−0.4i+0.2 exp(2πix) : x ∈ [0, 1)}. In this figure,
the x-axis of all the plots is parameterized by x ∈ [0, 1).

Theorem 3. Let D1, D2 ⊂ [0, 1) × R
2 be a pair of disjoint resonators which are repeated periodically

with respect to Λ = (1, 0, 0)TZ. Set the material parameters as

δ1(v1)
2 =: V1 ∈ C,

δ2(v2)
2 =: V2 ∈ C,

and denote by Y ∗ := R/2πZ× {0}2 the associated Brillouin zone and by Cα the associated quasiperiodic

generalized capacitance matrix. Then, the following map Ψ :
(

C \
⋃

α∈Y ∗ σ(Cα)
)2

\W → C
2 associates to

each pair of frequencies (ω1, ω2) a choice of defect material parameters (V def
1 (ω1, ω2), V

def
2 (ω1, ω2)) such

that ω1 and ω2 occur as defect mode eigenfrequencies, when in the above material a defected fundamental
domain is created with the defect material parameters given by V def

1 (ω1, ω2) and V def
2 (ω1, ω2) for the two

resonators D0
1 and D0

2, respectively. The map Ψ is given by

Ψ :
(

C \
⋃

α∈Y ∗ σ(Cα)
)2

\W −→ C
2

(ω1, ω2) 7−→ (V def
1 (ω1, ω2), V

def
2 (ω1, ω2))

where (V def
1 (ω1, ω2), V

def
2 (ω1, ω2)) and W are given by the following. Let I11(ω), I12(ω), I21(ω), I22(ω)

be defined as follows:

I11(ω) =
1

|Y ∗|

∫

Y ∗

det (Cα)− ωCα
11

det (Cα − ω2 Id)
dα, I12(ω) =

1

|Y ∗|

∫

Y ∗

−ωCα
12

det (Cα − ω2 Id)
dα,

I21(ω) =
1

|Y ∗|

∫

Y ∗

−ωCα
21

det (Cα − ω2 Id)
dα, I22(ω) =

1

|Y ∗|

∫

Y ∗

det (Cα)− ωCα
22

det (Cα − ω2 Id)
dα,

I(ω) =

(

I11(ω) I12(ω)
I21(ω) I22(ω)

)

.
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Then, W is given by

W =







(ω1, ω2) ∈

(

C \
⋃

α∈Y ∗

σ(Cα)

)2

:

I11(ω1) det(I(ω2))− I11(ω2) det(I(ω1)) = 0
or

(V def
1 (ω1, ω2)− V1) det(I(ω)) + V1I22(ω) = 0







and V def
1 (ω1, ω2), V

def
2 (ω1, ω2) are given by

V def
1 (ω1, ω2) = V1 −

1

2
p±

√

p2

4
− q, V def

2 (ω1, ω2) = V2

(

1−
V1 + I11(ω)(V

def
1 − V1)

(V def
1 − V1) det(I(ω)) + V1I22(ω)

)

with

p =
det(I(ω1))− det(I(ω2)) + I22(ω1)I11(ω2)− I22(ω2)I11(ω1)

I11(ω2) det(I(ω1))− I11(ω1) det(I(ω2))
,

q =
I22(ω1)− I22(ω2)

I11(ω2) det(I(ω1))− I11(ω1) det(I(ω2))
.

Proof. From Lemma 4, we know that ω is a defect mode eigenfrequency if

0 = det

(

V + (V def − V )
1

|Y ∗|

∫

Y ∗

1

det(Cα − ω2 Id)

[

det(Cα) Id−ω2Cα
]

dα

)

,

where

V :=

(

V1 0
0 V2

)

, V def :=

(

V def
1 0

0 V def
2

)

.

That is, if the following equation holds for ω = ω1 and ω = ω2,

0 = det
(

V + (V def − V )I(ω)
)

,

= (V1 + (V def
1 − V1)I11(ω))(V2 + (V def

2 − V2)I22(ω))− (V def
1 − V1)(V

def
2 − V2)I12(ω)I21(ω)

= X1X2 det(I(ω)) +X1V2I11(ω) +X2V1I22(ω) + V1V2,

where Xi = V def
i − Vi with i = 1, 2, then ω1 and ω2 are defect mode eigenfrequencies, simultaneously.

The function Ψ is obtained by deducing from the above equation the parameter X2 as a function of ω and
then equating X2(ω1) = X2(ω2) to obtain an equation for X1 (without X2) from which an expression
for X1(ω1) = X1(ω2) can be deduced.

One obtains

X2(ω) = −
V2(V1 + I11(ω)X1)

X1 det(I(ω)) + V1I22(ω)
,

and therefore, equating X2(ω1) = X2(ω2) gives

(V1 + I11(ω1)X1)(X1 det(I(ω2)) + V1I22(ω2)) = (V1 + I11(ω2)X1)(X1 det(I(ω1)) + V1I22(ω1)).

This is a quadratic equation in X1 which can be solved with standard formulas to obtain the result of
this theorem.

Remark. We would like to remark that the question whether n given frequencies (ω1, . . . , ωn) can si-
multaneously occur as defect mode eigenfrequencies in a periodic structure with n defects and what the
defect material parameters would be, can be answered by solving n polynomial equations for a com-
mon root. Namely, looking at equation (7), identities for the corresponding defect material parameters

V def
1 , . . . , V def

n are obtained by solving the system

det(I −X0T
0(ω1)) = 0, . . . , det(I −X0T

0(ωn)) = 0, (13)

where X0 is a diagonal matrix with (X0)ii = V def
i − Vi.

1 This system is a set of n polynomial equations
in n variables and as such, generically, has a solution in C

n. This implies that n generic frequencies can

1If the locations of the defects are not in the same fundamental domain of the lattice, then one needs to consider the
associated submatrix of T (ω) (see equation (8)). This particularly occurs when the number of defects is higher than the
number of resonators in the fundamental domain. This adjustment in the system of equations (13) does however not change
the polynomial nature of the problem and the reasoning in this remark remains valid.
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(a) Plot of the map x 7−→ Ψ(ω1(x), ω2(x)) =
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mate defect mode eigenfrequencies (blue) associated to a
finite approximation of the material with double defect

V def
1

(ω1(x), ω2(x)), V
def
2

(ω1(x), ω2(x)) and with 100 funda-
mental domains.

Figure 9: Material design of a chain of resonator dimers with a double defect that admits ω1, ω2 as defect mode
eigenfrequencies. With the notation from Theorem 3, the material parameters are chosen as follows: V1 =
1 + 0.6i, V2 = 1.0 − 0.6i, the radius of all the spherical resonators is given by R = 0.15 and the locations of
the centers of the two resonators D1, D2 in the fundamental domain [0, 1) × R

2 are given by (0.25, 0, 0) and
(0.75, 0, 0), respectively. The considered defect mode eigenfrequencies are given by {(ω1(x), ω2(x)) : x ∈ [0, 1)}
with ω1(x) = 1.2− i+ 0.2 exp(2πix) and ω2(x) = 1.2− i+ 0.2 exp(2πi(x+ π/2)− 0.2). In this figure, the x-axis
of all the plots is parameterized by x ∈ [0, 1).

be realized as defect mode eigenfrequencies in a chain of resonator dimers with n defects. Closed form
solutions, as presented in Theorems 2 and 3, would be possible for up to 4 frequencies. For more than 4
frequencies, the common roots need to be found numerically.

Remark. As in Subsection 2.2.2, the results in Subsection 2.3 do not rely on the fact that a chain of
dimers is considered. That is, in the above two Theorems, Theorems 2 and 3, the sublattice Λ = (1, 0, 0)TZ
can be replaced with any 1, 2 or 3-dimensional sublattice of R

3 without changing the results and the
characterizing formulas.

3 Instantly changing materials

The aim of this section is to develop a way to design instantly changing materials which admit prescribed
time-dependent defect mode eigenfrequencies. Furthermore, this will allow the design of materials with
spatio-temporally localized modes. To this end, we will first analyze the existence of quasi-harmonic
solutions in the presence of instantly changing material parameters. Then, these results are used to
design materials with prescribed time-dependent defect mode eigenfrequency. As an application of this
material design, materials which admit spatio-temporally localized modes will be treated.

3.1 Quasi-harmonic waves in instantly changing materials

Here, we consider the wave equation with space- and time-dependent materials parameters

(

∂

∂t

1

κ(x, t)

∂

∂t
− divx

1

ρ(x, t)
∇x

)

u(x, t) = 0, x ∈ R
3, t ∈ R, (14)
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t < 0

t = 0

t > 0

Figure 10: Illustration of the type of time-dependent material used in Section 3.

with ρ(x, t) and κ(x, t) being of the form

ρ(x, t) =

{

ρ−(x) for t < 0,

ρ+(x) for t ≥ 0,
and κ(x, t) =

{

κ−(x) for t < 0,

κ+(x) for t ≥ 0,
(15)

where ρ−(x), ρ+(x) and κ−(x), κ+(x) are C
∗-valued functions on R

3. In this setting, we are interested
in what we call quasi-harmonic solutions.

Definition 3 (Quasi-harmonic modes). A non-zero solution u(x, t) of the wave-equation (14) is called
quasi-harmonic if it is of the form

u(x, t) = v(x) exp(−iω(t)t), (16)

where v : R3 → C is independent of the time variable and ω(t) has the form

ω(t) =

{

ω− for t < 0,

ω+ for t > 0,
(17)

for ω−, ω+ ∈ C. In this case, ω(t) is called time-dependent frequency of u(x, t).

We will see that quasi-harmonic solutions only occur if ω+ρ+ = ω−ρ− and ω−κ+ = ω+κ−. That is,
quasi-harmonic solutions only occur if ρ and κ satisfy a type of temporal Snell’s law

ω+

ω−
=

ρ−

ρ+
=

κ+

κ−
,

where ω takes the position of the angle of incidence, ρ the refractive index and κ the phase velocity.

Proposition 1 (Temporal Snell’s law). In the above setting and under the assumption that a non-zero
quasi-harmonic solution u(x, t) with ω+, ω− ̸= 0 exists, then the following relation is satisfied by ω−, ω+,
ρ−, ρ+ and κ−, κ+:

ω+

ω−
=

κ+

κ−
=

ρ−

ρ+
. (18)

Remark. If ω+ ̸= 0 and ω− ̸= 0, then Snell’s law in particular implies that κ+(x) = ω+

ω−
κ−(x) and

ρ+(x) = ω−

ω+ ρ+(x) for all x ∈ R
3, where ω−

ω+ is constant in space.

Proof. Assume u(x, t) = v(x) exp(−iω(t)) is a non-zero quasi-harmonic solution with ω−, ω+ ̸= 0. Since
the time-derivative is continuous, it follows

lim
t↗0

1

κ(x, t)

∂

∂t
u(x, t) = lim

t↘0

1

κ(x, t)

∂

∂t
u(x, t),

which in this case is simply given by

ω−

κ−
=

ω+

κ+
.

Then, putting the ansatz (16) into equation (14) and considering the associated Helmholtz problem
one obtains that, for t < 0,

(ω−)2

κ−
v(x) +

1

ρ−
v(x) = 0

and for t ≥ 0
(ω+)2

κ+
v(x) +

1

ρ+
v(x) = 0.

Since ω−

κ−
= ω+

κ+ by the first equality, it thus follows that ρ+ω+ = ρ−ω−.
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Since the material parameters ρ and κ are given as in equation (15) and since we are interested in
quasi-harmonic solutions, it is possible to solve the wave equation (14) by solving the following associated
Helmholtz problems for negative and positive times t:

∆v + ω2κ
−(x)

ρ−(x)
v = 0 for v : R3 → C and ω ∈ C,

and

∆v + ω2κ
+(x)

ρ+(x)
v = 0 for v : R3 → C and ω ∈ C,

and then using a solution (v(x), ω) for negative or positive times as an initial condition for positive or
negative times, respectively. This approach leads to the following theorem.

Theorem 4. Consider the above setting and assume that a non-zero solution v : R3 → C of the Helmholtz
problem

∆v + (ω−)2
κ−(x)

ρ−(x)
v = 0 in R

3,

exists. Then, v(x) exp(−iω−t) : R3×R<0 → C corresponds to the restriction of a quasi-harmonic solution
u(x, t) of the wave equation (14) if and only if ρ and κ satisfy the temporal Snell law (18).

Remark. Equivalently, given a solution (v(x), ω+) to the a Helmholtz problem

∆v + (ω+)2
κ+(x)

ρ+(x)
v = 0 in R

3.

Then, v(x) exp(−iω+t) : R
3 × R≥0 → C corresponds to the restriction of a quasi-harmonic solution

u(x, t) of the wave equation (14) if and only if ρ and κ satisfy the temporal Snell law (18).

Proof. Assume that v(x) exp(−iω−t) : R3 × R<0 → C is the restriction of a mode of the form u(x, t) =
v(x) exp(−iω(t)t), where ω(t) = ω− for t < 0 and ω(t) = ω+ for t ≥ 0. Then Propositions 1 implies
that ρ and κ satisfy the temporal Snell law. Conversely, if ρ and κ are as above and satisfy the temporal
Snell’s law, then u(x, t) = v(x) exp(−iω(t)t) defines a solution to (14) and its restriction to the negative
time domain is given by v(x) exp(−iω−t) : R3 × R<0 → C.

These general results allow to develop a material design theory for subwavelength quasi-harmonic
solutions with prescribed time-dependent defect mode eigenfrequency in the next section.

3.2 Design of instantly changing defected dimer systems with prescribed

time-dependent defect mode eigenfrequencies

As in Subsection 2.1, we will consider disjoint resonators D1, D2 ⊂ [0, 1)×R
2 repeated periodically with

respect to the lattice Λ = (1, 0, 0)TZ in R
3, forming a chain of resonator dimers. The resonator domain

is then given by

D :=
⋃

m∈Z

Dm
1 ∪Dm

2 , where Dm
i :=





m
0
0



+Di.

Similarly as before, we associate to every resonator Dm
i with i = 1, 2 and m ∈ Z the time-dependent

material parameters ρmi (t) and κm
i (t), and to the background medium the time-dependent material

parameters ρb(t) and κb(t). Moreover, we suppose that the resonator material parameters are periodic
with respect to the lattice Λ, except for the resonatorD0

1, which might have different material parameters.
That is, we assume that

κm
i (t) = κn

i (t), ρmi (t) = ρni (t),

for m,n ∈ Z and (m, i), (n, i) ̸= (0, 1). In order to stay in the scope of Section 3.1, we assume that
κm
i (t), κb(t), ρ

m
i (t) and ρb(t) are constant for negative times and constant for positive times, but may
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have a jump at time t = 0. We will call time-dependent materials of this type instantly changing
materials. We will adopt the following notation:

κ(x, t) =

{

κm
i (t) for x ∈ Dm

i for some m ∈ Z, i = 1, 2,

κb(t) for x ̸∈ D,

ρ(x, t) =

{

ρmi (t) for x ∈ Dm
i for some m ∈ Z, i = 1, 2,

ρb(t) for x ̸∈ D.

The time dependent contrast parameter associated to the resonator Dm
i will be denoted by δmi (t) :=

ρmi (t)/ρb(t) and which we will assume satisfies for some general parameter δ

δmi = O(δ) as δ → 0, (19)

uniformly in t ∈ R, m ∈ Z, i = 1, 2. In the setting of instantly changing high-contrast materials, the
following definition will be useful.

Definition 4 (Subwavelength quasi-harmonic solution). We will call a quasi-harmonic solution u(x, t) =
v(x) exp(−iω(t)t) of the time dependent wave equation (14) a subwavelength quasi-harmonic solution if
(v(x), ω−) and (v(x), ω+) are subwavelength solutions to the associated Helmholtz problems. If further-
more v(x) is a localized or defect mode, we call ω(t) the time-dependent defect mode eigenfrequency of
v(x).

Lemma 5. Let κ(x, t) and ρ(x, t) be defined as above and consider the wave equation (14). If the wave
equation (14) admits subwavelength solutions for negative times and if

b κ(x, t)|t<0 = κ(x, t)|t≥0,

1

b
ρ(x, t)|t<0 = ρ(x, t)|t≥0,

for some constant b ∈ C
∗ which is independent of δ, then the wave equation (14) admits quasi-harmonic

subwavelength solutions.

Proof. The proof is a direct consequence of Theorem 4. Let (v(x), ω−) be a subwavelength solution to
the Helmholtz problem for negative times. Then

u(x, t) =

{

v(x) exp(−iω−t) for t < 0,

v(x) exp(−iω+t) for t ≥ 0,

is a quasi-harmonic subwavelength solution of (14) if and only if ω+ = bω−.

Having clarified the behavior of subwavelength quasi-harmonic solutions to the wave equation of an
instantly changing material, we will present a way to design metamaterials which admit quasi-harmonic
subwavelength solutions of prescribed time-dependent defect mode eigenfrequency. This result then lays
the basis for the construction of instantly changing materials which admit spatio-temporally localized
quasi-harmonic subwavelength solutions.

Theorem 5. Let D and Dm
i be defined as at the beginning of this section and use the same notation as

in Theorem 2 which will describe the material for t < 0. Then there exists a map Φ which associates
to a pair of frequencies (ω−, ω+) the defect material parameter V def

1 and the constant b from Lemma 5,
such that ω(t) = χt<0ω

−+χt≥0ω
+ is the time-dependent defect mode eigenfrequency of a quasi-harmonic

subwavelength solution u(x, t) = v(x) exp(−iω(t)t) of the associated instantly changing material. More
precisely, let V1, V2 be as in Theorem 2

Φ : C \
(
⋃

α∈Y ∗ σ(Cα) ∪W
)

× C
∗ −→ C× C

(ω−, ω+) 7−→ (V def
1 (ω−), b),

where V def
1 (ω−) = Ψ(ω−) as in Theorem 2 and b = ω+/ω−. If we let V1, V2, V

def
1 be the material

parameters for t < 0 and b2V1, b
2V2, b

2V def
1 be the material parameters for t ≥ 0, then this system admits

a quasi-harmonic subwavelength solution u(x, t) of the form

u(x, t) = v(x) exp(−iω(t)t) with ω(t) =

{

ω− if t < 0,

ω+ if t ≥ 0.
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Proof. The result is a combination of Theorems 2 and 4. Using Theorem 2, one obtains the defect
parameter V def

1 (ω−) such that ω− occurs as a defect mode eigenfrequency. In order to construct a time-
dependent structure which admits u(x, t) as a solution, it follows from Theorem 4 that the only possible
choice of compressibility and density for positive times is given by κ+ = bκ−, ρ+ = ρ−/b, respectively.
Thus, if the material parameters for positive times satisfy

(δmi )+((vmi )+)2 =
(κi

m)+

(ρb)+
= b2

(κi
m)−

(ρb)−
= b2(δim)−((vmi )−)2 for m ∈ Z, i = 1, 2,

that is, if the material parameters for positive times are given by b2V1, b
2V2, b

2V def
1 , then ω(t) is a

time-dependent defect mode eigenfrequency of the associated instantly changing material.

3.3 Spatio-temporal localization

In this section, the results from Theorem 5 will be used to design (and thus show existence of) materials
which admit spatio-temporally localized modes. The following definition will clarify what we understand
by a spatio-temporally localized mode.

Definition 5 (Spatio-temporal localization). We call a quasi-harmonic solution u(x, t) = v(x) exp(−iω(t)t)
to the wave equation (14) spatio-temporally localized, if v(x) is a localized mode and if for almost every
x ∈ R

3 the function t 7→ u(x, t) is square integrable.

The following characterization will help for the design of instantly changing materials which admit
spatio-temporally localized modes.

Proposition 2. Let u(x, t) = v(x) exp(−iω(t)t) be a quasi-harmonic solution to the wave equation (14)
of an instantly changing material given by (15). Then, u(x, t) is a spatio-temporally localized if and only
if v(x) is a localized mode of the associated Helmholtz problem for negative and positive times and if
Im(ω−) > 0 and Im(ω+) < 0.

Proof. Let u(x, t) = v(x) exp(−iω(t)t) be spatio-temporally localized. Then, v(x) is a localized mode
and for almost every x ∈ R

3 the function t 7→ v(x) exp(−iω(t)t) is square integrable. This is precisely
the case when t 7→ exp(−iω(t)t) is square integrable, which occurs precisely when Im(ω−) > 0 and
Im(ω+) < 0. Conversely, if v(x) is a localized mode and Im(ω−) > 0 and Im(ω+) < 0, then u(x, t) is
spatio-temporally localized.

This proposition allows us to finally state the following design and existence result for spatio-temporal
localization.

Theorem 6 (Design for spatio-temporal localization). Assuming the same setting and notation as in
Theorem 5. Denote by H ⊂ C the upper half-plane of the complex numbers given by H := {x ∈ C :
Im(x) > 0} and denote by H the lower half plane. Let

(ω−, ω+) ∈ H \

(

⋃

α∈Y ∗

σ(Cα) ∪W

)

×H.

Then, there exists an instantly changing material that admits ω(t) = χt<0ω
− + χt≥0ω

+ as a time-
dependent defect mode eigenfrequency associated to a spatio-temporally localized quasi-harmonic sub-
wavelength solution u(x, t).

More precisely, let V def
1 (ω−) := Φ1(ω

−, ω+) and b = Φ2(ω
−, ω+) and let V1, V2 be as in Theorem 2.

If we let V1, V2, V
def
1 to be the material parameters for t < 0 and b2V1, b

2V2, b
2V def

1 to be the material
parameters for t ≥ 0, then this system admits a spatio-temporally localized quasi-harmonic subwavelength
solution u(x, t) of the form

u(x, t) = v(x) exp(−iω(t)t) with ω(t) =

{

ω− if t < 0,

ω+ if t ≥ 0.

Proof. This is a straightforward combination of the results of Proposition 2 and Theorem 5.
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4 Concluding remarks

In this paper, we have derived closed formulas for the design of defected metamaterials which admit
specified defect mode eigenfrequencies. This has been achieved both in the setting of static metamaterials
and in the setting of instantly changing metamaterials. Our results do not rely on the fact that a chain
of resonator dimers is considered. That is, in Lemmas 3 and 4, the sublattice Λ = (1, 0, 0)TZ can be
replaced with any 1, 2 or 3-dimensional sublattice of R3 without changing the results. The characterizing
equations from Lemmas 3 and 4 are the basis for the derivation of exact formulas for the design of a
defected structure that admits a given frequency ω or a given frequency pair (ω1, ω2) as defect mode
eigenfrequencies (see Theorems 2 and 3). It is important to note that the same procedures as for
Theorems 2 and 3 are possible for three and four prescribed frequencies and three and four defected
resonators, respectively. For more than four frequencies the system of equations (13) cannot be generally
solved as in Theorems 2 and 3, but has to be solved numerically in order to obtain the defect material
parameters.

Having developed a method to have exact formulas for the metamaterial design of defected materials
with prescribed defect mode eigenfrequencies, we have used our findings to obtain in Section 3 similar
results in the setting of instantly changing materials with prescribed time-dependent defect mode eigen-
frequency ω(t) = ω−χt<0 + ω+χt≥0. To this end, in Section 3.1, we have characterized in Theorem 4
the occurrence of quasi-harmonic waves in instantly changing materials. After having established the
material design of static materials with prescribed defect mode eigenfrequencies in Theorem 2 and char-
acterized the occurrence of quasi-harmonic solutions in time-dependent materials in Theorem 4, we have
presented the design of instantly changing materials which admit localized modes with a prescribed time-
dependent defect mode eigenfrequency ω(t) = ω−χt<0 + ω+χt≥0. The result is presented in Theorem 5.
The design in Section 3.3 of instantly changing materials which admit spatio-temporally localized modes
results as an application of this Theorem. The main finding is presented in Theorem 6.
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