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Abstract. Recently, there has been significant interest in operator learning, i.e. learning

mappings between infinite-dimensional function spaces. This has been particularly relevant

in the context of learning partial differential equations from data. However, it has been

observed that proposed models may not behave as operators when implemented on a

computer, questioning the very essence of what operator learning should be. We contend

that in addition to defining the operator at the continuous level, some form of continuous-

discrete equivalence is necessary for an architecture to genuinely learn the underlying

operator, rather than just discretizations of it. To this end, we propose to employ frames, a

concept in applied harmonic analysis and signal processing that gives rise to exact and stable

discrete representations of continuous signals. Extending these concepts to operators, we

introduce a unifying mathematical framework of Representation equivalent Neural Operator

(ReNO) to ensure operations at the continuous and discrete level are equivalent. Lack of this

equivalence is quantified in terms of aliasing errors. We analyze various existing operator

learning architectures to determine whether they fall within this framework, and highlight

implications when they fail to do so.

1 Introduction

Operators are mappings between infinite-dimensional function spaces. Prominent examples are

solution operators for ordinary and partial differential equations (PDEs) [8] which map function

space inputs such as initial and boundary data to the function space valued PDE solution.

They are also the natural mathematical framework for inverse problems, both in the context

of PDEs [10] and in (medical) imaging [2], where the object of interest is the inverse operator

which maps observables to the underlying material property/image that needs to be inferred or

reconstructed.

Given the prohibitive cost of traditional physics based algorithms for approximating operators,

particularly those associated with PDEs, increasing attention is being paid in recent years to

machine-learning based operator approximation. Such techniques for learning operators from
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data fall under the genre of operator learning. A (by no means comprehensive) list of examples

for operator learning architectures include operator networks [5], DeepONets [18], Graph neural

operators [16], multipole neural operators [17], PCA-Nets [3], Fourier neural operators (FNO)

[15], VIDON [19], spectral neural operators [9], LOCA [11], NOMAD [21] and transformer based

operator learning models [4].

However, there is still a lack of clarity on what constitutes operator learning? Clearly, an

operator learning framework, or a neural operator in the nomenclature of [13], should be able to

process functions as inputs and outputs. On the other hand, functions are continuous objects

and in practice, one may not have access to functions either at the input or output level. Instead,

one can only access functions and perform computations with them through their discrete

representations such as point values on a grid, cell averages or in general, coefficients of an

underlying basis. Hence, in practice, neural operators have to map discrete inputs into discrete

outputs. This leads to a dichotomy, i.e., neural operators need functions as inputs/outputs

but only have access to their discrete representations. Consequently, at any finite resolution,

possible mismatches between the discretizations and the continuous versions of neural operators

can lead to inconsistencies in the underlying function spaces. These inconsistency errors can

propagate through the networks and may mar the performance of these algorithms. Moreover,

important properties of the underlying operator, such as symmetries and conservation laws, hold

at the continuous level. Inconsistent discretizations may not preserve these structural properties

of the operator, leading to symmetry breaking etc. with attendant adverse consequences for

operator approximation.

Addressing this inconsistency between neural operators and their discretizations is the central

point of this article. To this end, we revisit and adapt existing notions of continuous-discrete

equivalence (CDE) in signal processing, applied harmonic analysis and numerical analysis, by

resorting to frame theory and the associated questions of sampling and interpolation. Roughly

speaking, continuous-discrete equivalence aims at finding mathematical frameworks in which

the continuous objects (functions) can be completely (uniquely and stably) recovered from

their discrete representations (point evaluations, basis coefficients, etc.) at any resolution.

Consequently, working with discrete values is tantamount to accessing the underlying continuous

object. This equivalence is leveraged to define a class of neural operators, for which the discrete

input-output representations or their continuous function space realizations are equivalent. More

concretely, our contributions are

• We provide a novel, very general unifying mathematical formalism to characterize a

class of neural operators such that an appropriately defined notion of continuous-discrete

equivalence holds for them. These neural operators are termed as Representation equivalent

Neural Operators or ReNOs. Our definition results in an automatically consistent function

space formulation for ReNOs.

• We analyze existing operator learning architectures to find whether they are ReNOs or

not.

• Synthetic numerical experiments are presented to illustrate the continuous-discrete equiv-
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alence for ReNOs and point out the practical consequences for not respecting it.

2 Continuous-Discrete Equivalences

We start by revisiting concepts on the equivalence of functions and their discrete representations.

This is the very essence of frame theory, widely used in signal processing and applied harmonic

analysis.

Equivalence between functions and their point samples. For simplicity of exposition,

we start with univariate functions f ∈ L2(R) and the following question: Can a function be

uniquely and stably recovered from its values, sampled from equispaced grid points (f(nT ))n∈Z?

The classical Whittaker-Shannon-Kotel’nikov (WSK) sampling theorem [22], which lies at

the heart of digital-to-analog conversion, answers this question in the affirmative when the

underlying function f ∈ BΩ, i.e., it belongs to the Paley-Wiener space of band-limited functions

BΩ = {f ∈ L2(R) : suppf̂ ⊆ [−Ω,Ω]}, for some Ω > 0, f̂ the Fourier transform of f and

sampling rate 1/T ≥ 2Ω, with 2Ω termed as the Nyquist rate. The corresponding reconstruction

formula is,

f(x) = 2TΩ
∑

n∈Z

f(nT )sinc(2Ω(x− nT )), sinc(x) = sin(πx)/(πx). (2.1)

We note that the sequence of functions {ϕn(x) = sinc(2Ωx− n)}n∈Z constitutes an orthonormal

basis for BΩ and denote by PBΩ
: L2(R) → BΩ the orthogonal projection operator onto BΩ,

PBΩ
f =

∑

n∈Z

⟨f, ϕn⟩ϕn =
∑

n∈Z

f
( n

2Ω

)
ϕn, (2.2)

where the last equality is a consequence of BΩ being a reproducing kernel Hilbert space with

kernel KΩ(x, y) = sinc(2Ω(x− y)). Hence, PBΩ
f corresponds to the right-hand side of (2.1) for

T = 1/2Ω and formula (2.1) is exact if and only if f ∈ BΩ, i.e., f = PBΩ
f ⇐⇒ f ∈ BΩ.

What happens when we sample a function at a sampling rate below the Nyquist rate, i.e. when

1/T < 2Ω? Alternatively, what is the effect of approximating a function f ̸∈ BΩ by PBΩ
f?

Again, sampling theory provides an answer in the form of the aliasing error:

Definition 2.1. [1, Section 5] The aliasing error function ε(f) and the corresponding aliasing

error of f ∈ L2(R) for sampling at the rate 2Ω are given by

ε(f) = f − PBΩ
f, and ∥ε(f)∥2 = ∥f − PBΩ

f∥2.

If the aliasing error ε(f) is zero, i.e. if f ∈ BΩ, we say that there is a continuous-discrete

equivalence (CDE) between f and its samples {f(n/2Ω)}n∈Z.
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Continuous-Discrete Equivalence in Hilbert spaces. Next, we generalize the above

described concept of continuous-discrete equivalence to any separable Hilbert space H, with

inner product ⟨·, ·⟩ and norm ∥ · ∥. A countable sequence of vectors {fi}i∈I in H is a frame for

H if there exist constants A,B > 0 such that for all f ∈ H

A∥f∥2 ≤
∑

i∈I

|⟨f, fi⟩|
2 ≤ B∥f∥2. (2.3)

Clearly, an orthonormal basis for H is an example of a frame with A = B = 1. The bounded

operator T : ℓ2(I) → H, T ({ci}i∈I) =
∑

i∈I cifi, is called synthesis operator and its adjoint

T ∗ : H → ℓ2(I), T ∗f = {⟨f, fi⟩}i∈I , which extracts frame coefficients from an underlying

function is called analysis operator. By composing T and T ∗, we obtain the frame operator

S := TT ∗, which is an invertible, self-adjoint and positive operator. Furthermore, the pseudo-

inverse of the synthesis operator is given by T † : H → ℓ2(I), T †f = {⟨f, S−1fi⟩}i∈I . With

these concepts, one can introduce the most prominent result in frame theory [6], the frame

decomposition theorem, which shows that every element in H can be uniquely and stably

reconstructed from its frame coefficients by means of the reconstruction formula

f = TT †f =
∑

i∈I

⟨f, S−1fi⟩fi =
∑

i∈I

⟨f, fi⟩S
−1fi, (2.4)

where the series converge unconditionally. Formula (2.4) is clearly a generalization of reconstruc-

tion formula (2.1). However, it is worth pointing out that, in general, the coefficients in (2.4) are

not necessarily point samples of the underlying function f , but more general frame coefficients.

In general, it may not be possible to access all the frame coefficients to reconstruct a function

in a Hilbert space. Instead, just like in the case of reconstructing functions from point samples,

one will need to consider approximations to this idealized situation. This is best encapsulated

by the notion of a frame sequence, i.e., a countable sequence {vi}i∈I ∈ H which is a frame

for its closed linear span, i.e. for span{vi : i ∈ I}. With this notion, we are in a position to

generalize aliasing errors and the CDE, to arbitrary Hilbert spaces. Let H be a separable Hilbert

space and let {vi}i∈I be a frame sequence for H with V = span{vi : i ∈ I} and frame operator

S : V → V. Then, the orthogonal projection of H onto V is given by PVf =
∑

i∈I⟨f, vi⟩S
−1vi.

Thus, formula (2.4) holds and the function f can be uniquely and stably recovered from its

frame coefficients if and only if f ∈ V . If f ̸∈ V , reconstructing f from the corresponding frame

coefficients results in an aliasing error:

Definition 2.2. The aliasing error function ε(f) and the resulting aliasing error ∥ε(f)∥ of

f ∈ H for the frame sequence {vi}i∈I ⊆ V are given by

ε(f) = f − PVf, ∥ε(f)∥ = ∥f − PVf∥.

If the aliasing error ε(f) is zero, i.e. if f ∈ V , we say that there is a continuous-discrete

equivalence (CDE) between f and its frame coefficients {⟨f, vi⟩}i∈I .
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3 Representation equivalent Neural Operators (ReNOs).

The concept of neural operators and operator learning [13, 18] can be encapsulated in a pair

(U, u). Here, U is the operator, i.e. the map between infinite-dimensional function spaces, and

u is its discretization. As we may have access to different discrete representations associated to

the input and output functions in the form of frame coefficients (e.g. point samples evaluated

on different grids), u should be able to handle varying inputs and outputs appropriately, in a

way that is consistent with the continuous operator U . Our next aim is to provide a precise

mathematical formulation of this issue. To this end, we need to significantly adapt the concepts

of CDE and associated aliasing errors, defined for functions in the previous section, to operators.

3.1 Representation equivalent Operators

Let U : DomU ⊆ H → K be an operator between two separable Hilbert spaces, and let

Ψ = {ψi}i∈I and Φ = {ϕk}k∈K be frame sequences for H and K, respectively, with synthesis

operators TΨ and TΦ. We denote their closed linear spans by MΨ := span{ψi : i ∈ I} and

MΦ := span{ϕk : k ∈ K}. We note that by classical frame theory [6], the pseudo-inverses T †
Ψ

and T †
Φ, initially defined on MΨ and MΦ, respectively, can in fact be extended to the entire

Hilbert spaces, i.e. T †
Ψ : H → ℓ2(I) and T †

Φ : K → ℓ2(K). Given any mapping u : ℓ2(I) → ℓ2(K),

we can build the operator TΦ ◦ u ◦ T †
Ψ : H → K, whose definition clearly depends on the choices

of the frame sequences that we make on the continuous level. In other words, any mapping u

can be interpreted as a discrete representation of an underlying continuous operator, which in

general, may differ from the operator U , that is of interest here. Hence, in analogy to Definitions

2.1 and 2.2, we can define the aliasing error of U relative to the discrete representation u as,

Definition 3.1. The aliasing error operator ε(U, u,Ψ,Φ) of U relative to u and to the choice

of frame sequences Ψ and Φ is the operator ε(U, u,Ψ,Φ): DomU ⊆ H → K given by

ε(U, u,Ψ,Φ) = U − TΦ ◦ u ◦ T †
Ψ, (3.1)

and the corresponding aliasing error is ∥ε(U, u,Ψ,Φ)∥, with ∥ · ∥ denoting the operator norm.

By definition, the aliasing error is zero if and only if U = TΦ ◦ u ◦ T †
Ψ, or equivalently if the

diagram in Figure 1 commutes, i.e. the black and the blue directed paths in the diagram lead to

the same result. If the aliasing error is zero, we say that (U, u,Ψ,Φ) satisfies a continuous-discrete

equivalence (CDE), implying that accessing the discrete representation u is exactly the same as

accessing the underlying continuous operator U . See SM D for an illustrative example of an

aliasing error operator.

Equipped with this notion of continuous-discrete equivalence, we can now introduce the concept

of Representation equivalent Operator (ReO). To this end, we denote by u a map defined on

pairs (Ψ,Φ) of frame sequences for H and K and whose values are mappings from ℓ2(I) into

ℓ2(K), i.e. u(Ψ,Φ): ℓ2(I) → ℓ2(K).
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H K,

ℓ2(I) ℓ2(K)

U

T
†
Ψ

u

TΦ

Figure 1

H K

ℓ2(I) ℓ2(K)

U

T
†
Φ

TΨ

u

Figure 2

Hℓ Hℓ+1

ℓ2(Iℓ) ℓ2(Iℓ+1)

Gℓ

T
†
Ψℓ

gℓ(Ψℓ,Ψℓ+1)

TΨℓ+1

Figure 3

Definition 3.2. We say that (U, u) is a Representation equivalent Operator (ReO) if the

aliasing error operator ε(U, u(Ψ,Φ),Ψ,Φ) is identically zero for every pair (Ψ,Φ) of frame

sequences that satisfy

DomU ⊆ MΨ and RanU ⊆ MΦ, (3.2)

or equivalently, if the diagram in Figure 1 with the choice u = u(Ψ,Φ) commutes.

In other words, we require that the discrete representations u(Ψ,Φ) are all equivalent, meaning

that they uniquely determine the same underlying operator U , whenever a continuous-discrete

equivalence property holds at the level of the function spaces. If (U, u) is a ReO, then any frame

sequences Ψ,Ψ′ ⊆ H,Φ,Φ′ ⊆ K that satisfy (3.2) result in the following commutative diagram:

ℓ2(I) ℓ2(K)

H K

ℓ2(I ′) ℓ2(K ′)

u(Ψ,Φ)

TΦ
T

†
Ψ

T
†

Ψ′

U

u(Ψ′,Φ′)

TΦ′

Thus, there is an equivalence of discrete representations for the same underlying operator U ,

justifying the name Representation equivalent Operators.

Remark 3.3. A possible way to choose the mapping u in the above definition is to set,

u(Ψ,Φ) = T †
Φ ◦ U ◦ TΨ. (3.3)

We observe that this definition of u(Ψ,Φ) is such that the diagram in Figure 2 commutes with u =

u(Ψ,Φ). Furthermore, the aliasing error operator reads ε(U, u(Ψ,Φ),Ψ,Φ) = U−PMΦ
◦U ◦PMΨ

.

This follows by the fact that the compositions TΨ ◦T †
Ψ and TΦ ◦T †

Φ are the orthogonal projections

onto the closed subspaces MΨ and MΦ, respectively. Therefore, the pair (U, u) with u defined

by (3.3) is a ReO. Note that to avoid any aliasing error, the discrete representation of U has to

depend on the chosen frame sequences, i.e. inevitably, u must depend on Ψ and Φ.

3.2 Representation equivalent Neural Operators

The aim in operator learning is to learn non-linear operators U : H → K between separable

Hilbert spaces from input-output function pairs {ui, U(ui)}
N
i=1. As with neural networks which
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approximate functions mapping finite-dimensional spaces with compositions of hidden layers,

we will postulate a similar construction for our operator learning architecture. To this end, we

will consider the following composition,

G = GL ◦ GL−1 ◦ . . . ◦ G1 (3.4a)

of linear and non-linear operators

Gℓ : Hℓ → Hℓ+1, ℓ = 1, . . . , L, (3.4b)

between separable Hilbert spaces. For each 1 ≤ ℓ ≤ L, Gℓ is termed a hidden layer.

Note that the form (3.4) of the operator G is very general. A particular example is provided by

the neural operators (Eqn. 5) of [13], where each hidden layer is of the form Gℓ = σ(Wℓ+Kℓ+bℓ),

with Wℓ a local (pointwise) linear map (matrix), Kℓ a non-local linear operator, for instance

a kernel-integral operator and bℓ a bias function. The non-linearity is introduced through the

activation function σ which acts pointwise. However, we prefer to keep the form (3.4) as it can

represent much more general operators, for instance when the non-linearity acts in a non-local

manner.

In practice, it is not possible to directly work with the continuous form (3.4), whether at the

level of accessing inputs/outputs or performing computations on a digital computer. Rather, we

have to rely on a discretization of (3.4). Given the notion of Representation equivalent Operators

above, wherein the continuous form operators can be uniquely and stably recovered from its

discretizations, we particularize this concept to neural operators. To this end, we consider a

finite sequence of separable Hilbert spaces {Hℓ}
L+1
ℓ=1 in (3.4) and for every ℓ = 1, . . . , L+ 1, we

denote by Ψℓ = {ψℓ,i}i∈Iℓ a frame sequence for Hℓ. The choice of frame sequences for each Hℓ

corresponds to the choice of accessible discrete representations of functions in the underlying

function space Hℓ. For instance, if Hℓ = BΩ, the space of bandlimited functions with bandwidth

Ω > 0, and we can access the pointwise evaluations of any function f ∈ Hℓ on the uniform grid{
n
2Ω

}
n∈Z

, then Ψℓ may be chosen as the orthonormal basis {sinc(2Ωx− n)}n∈Z.

Now let (G, g) be a pair of the form

G = GL ◦ GL−1 ◦ . . . ◦ G1, g = gL ◦ gL−1 ◦ . . . ◦ g1, (3.5)

where, for every ℓ = 1, . . . , L, Gℓ : Hℓ → Hℓ+1 is a (possibly) non-linear operator and gℓ(Ψℓ,Ψℓ+1) :

RanT †
Ψℓ

⊆ ℓ2(Iℓ) → RanT †
Ψℓ+1

⊆ ℓ2(Iℓ+1) for each choice of frame sequences Ψℓ ⊆ Hℓ,Ψℓ+1 ⊆

Hℓ+1.

Definition 3.4. The pair (G, g) is called a Representation equivalent Neural Operator (ReNO)

if it is a Representation equivalent Operator at each hidden layer, meaning that for every

ℓ = 1, . . . , L the aliasing error operator ε(Gℓ, gℓ(Ψℓ,Ψℓ+1),Ψℓ,Ψℓ+1) is identically zero for every

pair (Ψℓ,Ψℓ+1) of frame sequences that satisfy DomGℓ ⊆ MΨℓ
and RanGℓ ⊆ MΨℓ+1

. Or

equivalently, the diagram in Figure 3 is commutative for every ℓ.
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Remark 3.5. If the aliasing error operator ε(Gℓ, gℓ(Ψℓ,Ψℓ+1),Ψℓ,Ψℓ+1) is identically zero (as

required in Definition 3.4), then the assumption that gℓ(Ψℓ,Ψℓ+1) maps RanT
Ψ†

ℓ

into RanT
Ψ†

ℓ+1

implies that gℓ(Ψℓ,Ψℓ+1) is of the form (3.3), i.e. gℓ(Ψℓ,Ψℓ+1) = T †
Ψℓ+1

◦ Gℓ ◦ TΨℓ
. This readily

shows that there is only one recipe for constructing ReNOs (see SM B for the proof). In

particular, every map gℓ satisfies

gℓ(Ψ
′
ℓ,Ψ

′
ℓ+1) = T †

Ψ′
ℓ+1

◦ TΨℓ+1
◦ gℓ(Ψℓ,Ψℓ+1) ◦ T

†
Ψℓ

◦ TΨ′
ℓ
, (3.6)

whenever the frame sequences satisfy (3.2). Thus, Eqn. (3.6) characterizes the discretized

versions of ReNO under changes of frame sequences.

Definition 3.4 requires that at each hidden layer the underlying operator satisfies a continuous-

discrete equivalence property and accessing a discretized version is exactly the same as accessing

the underlying continuous operator whenever the frame sequences fulfill (3.2) at each layer.

Requiring this CDE at each hidden layer suffices to enforce it at the level of the operator (3.4)

itself:

Proposition 3.6. If the pair (G, g) is a ReNO, then the operator G in (3.4) is uniquely

determined by its discretized version g in (3.5) since the aliasing error (3.1) is identically zero.

As the proof of Proposition 3.6, presented in SM A, also shows, if each hidden layer in the

operator (3.4) has an aliasing error (3.1), then these errors may propagate through the network

and increase with increasing number of layers.

Remark 3.7. The goal in operator learning is to learn an operator U : H → K between separable

Hilbert spaces H and K from a discrete representation of its sampled values {ui, U(ui)}
N
i=1 ∈

H×K. The above discussion indicates it is crucial to maintain an exact correspondence between

the continuous and the discrete representations in the training set {ui, U(ui)}
N
i=1 as well. In other

words, no aliasing should be present in order to learn the target operator correctly. Mathematically,

this can be formulated in terms of accessing the discrete representation {T †
Ψ(ui), T

†
Φ(U(ui))}

N
i=1

of {ui, U(ui)}
N
i=1 for underlying frame sequences Ψ ⊆ H and Φ ⊆ K that satisfy (3.2).

4 Examples

Equipped with our definition of Representation equivalent Neural Operators (ReNOs), we

analyze some existing operator learning architectures to ascertain whether they are neural

operators or not.

Convolutional Neural Networks. Classical convolutional neural networks (CNN) are based

on the convolutional layer K, involving a discrete kernel k ∈ R
2s+1 and a discrete input c:

K(c)[m] = (k ∗ c) [m] =
s∑

i=−s

c[m− i]k[i].

8
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We can then analyze this layer using our framework to ask whether this operation can be associ-

ated to some underlying continuous operator. Intuitively, if this is the case, the computations

conducted on different discretizations effectively representing the input should be consistent; in

the contrary case, no associated continuous operator exists and the convolutional operation is

not a ReO.

Consider the case where the discrete input c corresponds to pointwise evaluation on a grid of

some underlying bandlimited function f ∈ BΩ, for example c[n] = f
(

n
2Ω

)
, n ∈ Z with associated

orthonormal basis Ψ = {sinc(2Ωx − n)}n∈Z. Consider now an alternate representation of f ,

point samples of a grid twice as fine: d[n] = f
(

n
4Ω

)
, with Ψ′ = {sinc(4Ωx − n)}n∈Z as basis.

Clearly, even though discrete inputs agree, i.e. c[n] = d[2n], this is no longer true for the outputs,

(k ∗ c)[n] ̸= (k ∗ d)[2n]. This in turn implies that there exist frame sequences Ψ,Ψ′ such that:

TΨ ◦KΦ(c) ◦ T
†
Ψ ̸= TΨ′ ◦KΦ′(d) ◦ T †

Ψ′ (4.1)

thereby defying the representation equivalence property of ReOs. As a consequence, CNNs are

not ReNOs, in the sense of Definition 3.4. This fact is also corroborated with the experimental

analysis, Section 5.

Fourier Neural Operators (FNO). FNOs are defined in [15] in terms of layers, which

are either lifting or projection layers or Fourier layers. As lifting and projection layers do not

change the underlying spatial structure of the input function, but only act on the channel width,

these linear layers will satisfy Definition 3.4 of ReNO here. Hence, we focus on the Fourier layer

of the form,

vℓ+1(x) = σ (Aℓvℓ(x) +Bℓ(x) +Kvℓ(x)) , (4.2)

with the Fourier operator given by

Kv = F−1(R⊙F)(v).

Here, F ,F−1 are the Fourier and Inverse Fourier transforms.

For simplicity of exposition, we set Aℓ = Bℓ ≡ 0 and focus on investigating whether the Fourier

layer (4.2) satisfies the requirements of a ReNO. Following [15], the discrete form of the Fourier

layer is given by σ(kv), with kv = F−1(R ⊙ F (v)), where F, F−1 denote the discrete Fourier

transform (DFT) and its inverse.

In SM C, we show that the convolution in Fourier space operation for the FNO layer (4.2)

satisfies the requirements of a ReNO. However the pointwise activation function σ(f), applied

to a bandlimited input f ∈ BΩ will not necessarily respect the bandlimits, i.e., σ(f) /∈ BΩ. In

fact, with popular choices of activation functions such as ReLU, σ(f) /∈ Bω, for any ω > 0 (see

SM F for numerical illustrations). Thus, the Fourier layer operator (4.2) may not respect the

continuous-discrete equivalence and can lead to aliasing errors, a fact already identified in [9].

Hence, FNO may not be a ReNO in the sense of Definition 3.4.

9
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Spectral Neural Operators (SNO). Introduced in [9], this architecture is defined as follows.

Let K > 0 and denote by

PK =

{
g(x) =

K∑

k=−K

cke
iπkx : (ck)

K
k=−K ∈ C

2K+1

}
,

the space of 2-periodic signals bandlimited to πK. Clearly, ΨK = {eiπk·}Kk=−K constitutes an

orthonormal basis for PK , and the corresponding synthesis operator TΨK
: C2K+1 → PK and

analysis operator T ∗
ΨK

: PK → C
2K+1 are given by

TΨK
((ck)

K
k=−K) =

K∑

k=−K

cke
iπk·, T ∗

ΨK
f = {⟨f, eiπk·⟩}Kk=−K .

A spectral neural operator is defined as the compositional mapping TΨ
K′ ◦ N ◦ T ∗

ΨK
, where

N : C2K+1 → C
2K′+1 is an ordinary feedforward neural network with activation function σ,

N (x) =W (L+1)σ(W (L) · · ·σ(W (2)σ(W (1)x− b(1))− b(2)) · · · − b(L))− b(L+1) (4.3)

for some weights W (ℓ) and biases b(ℓ), ℓ = 1, . . . , L+ 1. It is straightforward to see that this

architecture corresponds to the commutative diagram,

PK C
2K+1

C
2K′+1 PK′

C
2K+1

C
2K+1

C
2K′+1

C
2K′+1

T ∗
ΨK

T ∗
ΨK

Id

N

Id

TΨ
K′

T ∗
Ψ
K′

Id

TΨK

N Id

TΨ
K′

A discretized version of spectral neural operators simply corresponds to an ordinary feedforward

neural network mapping Fourier coefficients to Fourier coefficients. We conclude that for SNOs

to be ReNOs with respect to the function spaces PK ,P
′
K , we have to enforce that for more

general choices of frame sequences, Remark 3.5 is satisfied. Moreover, the architecture of SNOs

can be generalized with respect to any frames in finite-dimensional inner-product spaces. Under

some appropriate condition on the output spanned by DeepONets [18], they also fall in this

class.

5 Experimental Analysis

An empirical analysis was conducted to demonstrate the pertinence of the framework presented

in Section 3, and to support the theoretical claims made in Section 4. This experiment consists

in training each of the models presented of Section 4 on a fixed discretization, and evaluating

how they behave when alternate discretizations are considered.

Regression to some given target operator Q : H → H is considered, where H is the space of

bandlimited and periodic functions. The precise construction of the target operator is defered

to SM F, as well as other experimental details. Frames (Ψ,Φ) for H are considered, discrete
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representations of the training data are derived from these, which are used to train a discrete

operator u : ℓ2(I) → ℓ2(K).

After training, we consider alternate discretizations derived from frame sequences (Ψ′,Φ′), with

their associated mapping u′ : ℓ2(I ′) → ℓ2(K ′). Discrepancy between the two is then calculated

by computing each mapping on their given discretization, and comparing them by expressing u′

in the basis associated to u. This idea is made formal introducing the discrete aliasing error

map ε(u, u′) : ℓ2(I) → ℓ2(K), defined as:

ε(u, u′) = u− T †
Φ ◦ TΦ′ ◦ u′ ◦ T †

Ψ′ ◦ TΨ (5.1)

Remark 5.1. In the case of an orthogonal basis, the discrete aliasing error ε(u, u′) precisely

corresponds to the discretization of the aliasing error operator, as ε(u, u′) = T †
Φ ◦ ε(U, u′,Ψ′,Φ′)◦

TΨ with U = TΦ ◦ u ◦ T †
Ψ. This implies that if we consider ReNOs, ε(u, u′) = 0 as long as

(Ψ′,Φ′) correspond to frame sequences satisfying the spanning condition in (3.2).
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Figure 4: Representation equivalence analysis is conducted by training three classical architec-

tures on a fixed resolution and examining their performance when input resolution is varied. The

resolution equivalence zone, located on the right-hand side, denotes the region where discrete

representations have an associated frame, while the left-hand side represents the area where

this is no longer the case. As predicted by the theory, CNN and FNO are not representation

equivalent, while SNO is a ReNO in the representation equivalence region, but failing to do so

outside of it.

The results of this experiment are presented in Figure 4. We test 3 models in this experiment,

namely CNN, FNO and SNO. All the models are trained on a given resolution (612) and

evaluated on varying resolutions. The results in Figure 4 clearly show that as predicted by

our theory, neither CNN nor FNO are representation equivalent, in the sense of Definition 3.4

and changing the resolution, which amounts to a change of frame, does not keep the operator

invariant and causes aliasing errors. On the other hand, as predicted by the theory, SNO is a
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ReNO as long as the conditions of Definition 3.4 and Remark 3.5 hold. When these conditions

no longer hold, SNO also generates aliasing errors. Thus, this experiment clearly demonstrates

the practical implications of not respecting representation or continuous-discrete equivalence.

6 Discussion

Summary. Although a variety of architectures for operator learning are available since the last

couple of years, there is still a lack of clarity about what exactly constitutes operator learning.

Everyone would agree that an operator learning architecture should have functions as inputs and

outputs. However, in practice, one does not necessarily have access to functions, either at the

input or output level. Rather the access is limited to some form of discrete representations of the

underlying functions, for instance, point values, cell averages, coefficients with respect to a basis

etc. Moreover, one can only perform computations with discrete objects on digital computers.

Hence, given the necessity of having to work with discrete representations of functions, it is

essential to enforce some relationship between the continuous and discrete representations of

the underlying functions or in other words, demand consistency in function space.

Unlike in [13], where the authors advanced a form of asymptotic consistency in terms of

discretization parameters, we go further to require structure-preserving continuous-discrete

equivalence (CDE). To this end, we leverage the well-established concept of CDE for functions

in Hilbert spaces in terms of frame theory. The main point about this CDE is the fact that

functions, belonging to suitable function spaces, can be uniquely and stably reconstructed, from

their frame coefficients. A failure to enforce this CDE results in the so-called aliasing errors

that quantitatively measure function space inconsistencies.

We extend these notions of CDE and aliasing errors to operators here. These notions of CDE

for operators are then used to define Representation equivalent Neural Operators (ReNOs), see

Definition 3.4. Our definition amounts to requiring the CDE for each layer of the approximating

operator. This will ensure that there is no aliasing error when the composite operator is

considered. Moreover, our framework automatically implies consistency in function spaces and

provides a recipe for deriving ReNOs in terms of changing the underlying frames. We also

employ our framework to analyze whether or not existing operator learning architectures are

ReNOs and also corroborate our results through experiments.

Related Work. Our current paper relies heavily on structure preservation from classical

numerical analysis [20] and references therein and CDE concepts from signal processing and

applied harmonic analysis [22] and references therein. Among the emerging literature on operator

learning, [13] was among the first papers to attempt a unifying framework that encompasses

many operator learning architectures and codify them through a particular definition of neural

operators. We take an analogous route here but with our main point of departure from [13]

being that unlike their notion of asymptotic consistency, we require systematic consistency in

function space by enforcing the representation equivalence for the underlying operator at each

12
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layer. Another relevant work is [9] where the authors flag the issue of possible aliasing errors

with specific operator learning architectures. We significantly expand on the approach of [9] by

providing a rigorous and very general definition for aliasing errors. Finally, our definition of

Representation equivalent Neural Operators, leveraging CDEs for operators, is analogous to a

similar approach for computing with functions, rather than discrete representations, which is

the cornerstone of the Chebfun project [7] and references therein.

Limitations and Extensions. Our aim in this paper was to tackle a fundamental question of

what defines a neural operator? We have addressed this question here and shown that enforcing

some form of CDE is needed for the architecture to genuinely learn the underlying operator

rather than just a discrete representation of it. What we have not addressed here are quantitative

measures of the error associated with a Representation equivalent Neural Operator, introduced in

Definition 3.4, in approximating the underlying operator. This is a much broader question than

what is addressed here, since sources of error, other than aliasing errors, such as approximation,

training and generalization errors also contribute to the total error (see [14, 12, 13]).

One interesting direction for further analysis would involve exploring operators and their

discretized counterparts that adhere to a relaxed form of CDE. In our formulation, this relaxation

could be achieved by allowing the aliasing error to be bounded by a specified value instead of

mandating it to be exactly zero.
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Supplementary Material for:

Are Neural Operators Really Neural Operators?

Frame Theory Meets Operators Learning

A Proof of Proposition 3.6

Proof. We show the proof of Proposition 3.6 for a two layer Representation equivalent Neural

Operator (3.5). The proof generalizes to the case of ℓ > 2 layers. We want to show that the

aliasing error ε(G2 ◦ G1, g(Ψ2,Ψ3) ◦ g(Ψ1,Ψ2),Ψ1,Ψ3) is identically zero whenever the frame

sequences satisfy (3.2), or equivalently whenever the diagram

H1 H2 H3

ℓ2(I1) ℓ2(I2) ℓ2(I3)

G1

T
†
Ψ1

T
†
Ψ2

G2

g(Ψ1,Ψ2)

TΨ2

g(Ψ2,Ψ3)

TΨ3

is commutative. We directly compute

G2 ◦ G1 = (TΨ3 ◦ g(Ψ2,Ψ3) ◦ T
†
Ψ2

) ◦ (TΨ2 ◦ g(Ψ1,Ψ2) ◦ T
†
Ψ1

)

= TΨ3 ◦ g(Ψ2,Ψ3) ◦ g(Ψ1,Ψ2) ◦ T
†
Ψ1
.

The first equality simply follows by the definition of ReNO. The last equality can be seen

as follows: first, MΨ2 = Ran(TΨ2T
∗
Ψ2

) ⊆ Ran(TΨ2) ⊆ MΨ2 , so that Ran(TΨ2) is closed.

This, in combination with Lemma 2.5.2 in [6], implies that Ran(T †
Ψ2

) is also closed. Hence,

T †
Ψ2

◦ TΨ2 is the orthogonal projection onto (Ker(TΨ2))
⊥ = Ran(T †

Ψ2
) and, by assumption,

Ran(g(Ψ1,Ψ2) ◦T
†
Ψ1

) ⊆ Ran(T †
Ψ2

). As a consequence, the aliasing error operator (3.1) of G2 ◦G1

for the discretized version g(Ψ2,Ψ3) ◦ g(Ψ1,Ψ2) is identically zero, which proves the hypothesis.

B Proof of Remark 3.5

We keep the notation as in Section 3.2. Let (G, g) be a pair of the form

G = GL ◦ GL−1 ◦ . . . ◦ G1, g = gL ◦ gL−1 ◦ . . . ◦ g1,

where, for every ℓ = 1, . . . , L, Gℓ : Hℓ → Hℓ+1 is a (possibly) non-linear operator and gℓ(Ψℓ,Ψℓ+1) :

RanT †
Ψℓ

⊆ ℓ2(Iℓ) → RanT †
Ψℓ+1

⊆ ℓ2(Iℓ+1) for each choice of frame sequences Ψℓ ⊆ Hℓ,Ψℓ+1 ⊆

Hℓ+1. By definition, if (G, g) is a ReNO, then

Gℓ = TΨℓ+1
◦ gℓ(Ψℓ,Ψℓ+1) ◦ T

†
Ψℓ

(B.1)

for every pair (Ψℓ,Ψℓ+1) of frame sequences that satisfy DomGℓ ⊆ MΨℓ
and RanGℓ ⊆ MΨℓ+1

.

By equation (B.1) we readily obtain

T †
Ψℓ+1

◦ Gℓ ◦ TΨℓ
= T †

Ψℓ+1
◦ TΨℓ+1

◦ gℓ(Ψℓ,Ψℓ+1) ◦ T
†
Ψℓ

◦ TΨℓ
= gℓ(Ψℓ,Ψℓ+1),
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where the last equality follows by the fact that T †
Ψℓ

◦ TΨℓ
is the orthogonal projection onto

(Ker(TΨℓ
))⊥ = Ran(T †

Ψℓ
) and, by assumption, g(Ψℓ,Ψℓ+1) maps RanT †

Ψℓ
into RanT †

Ψℓ+1
. This

concludes the proof of Remark 3.5.

C Fourier layer in FNOs

We focus here on the Fourier layer of FNOs, i.e.

Kv = F−1(R⊙F)(v), (C.1)

where F ,F−1 denote the Fourier transform and its inverse, and where R denotes a low-pass filter.

In [15], the authors define the Fourier layer on the space L2(T) of 2-periodic functions and, with

slight abuse of notation, they refer to the mappings F : L2(T) → ℓ2(Z) and F−1 : ℓ2(Z) → L2(T),

Fw(k) = ⟨w, eiπkx⟩, F−1({Wk}k∈Z) =
∑

k∈Z

Wke
iπkx,

as the Fourier transform and the inverse Fourier transform. Furthermore, the authors define the

discrete version of (C.1) as F−1(R⊙ F ), where F, F−1 denote the discrete Fourier transform

(DFT) and its inverse, and where they assume to have access only to point-wise evaluations of

the input and output functions. However, the space of 2-periodic functions is too large to allow

for any form of continuous-discrete equivalence (CDE) when the input v and the output Kv

are represented by their point samples. Consequently, here we consider smaller subspaces of

L2(T) which allow for CDEs. More precisely, we are able to show that FNO Fourier layers can

be realized as Representation equivalent Operators (crf. Definition 3.2) between bandlimited

and periodic functions. Let K > 0 and let PK be the space of bandlimited 2-periodic functions

PK =

{
w(x) =

K∑

k=−K

Wke
iπkx : {Wk}

K
k=−K ∈ C

2K+1

}
.

Every function w ∈ PK can be uniquely represented by its Fourier coefficients {Wk}
K
k=−K as

well as by its samples {w( k
2K+1)}

K
k=−K , see [23, Section 5.5.2]. Indeed, the latter ones are the

coefficients of w with respect to the orthonormal basis

ΨK =

{
1√

2(2K + 1)
d

(
· −

2k

2K + 1

)}2K

k=0

, (C.2)

where d denotes the Dirichlet kernel of order K and period 2, defined as

d(t) =
K∑

k=−K

eiπkt.

Furthermore, the DFT {Ŵk}
K
k=−K of the sample sequence {w( k

2K+1)}
K
k=−K is related to the

Fourier coefficients of w via the equation

Ŵk = (2K + 1)Wk, k = −K, . . . ,K,

15



Are Neural Operators Really Neural Operators? Frame Theory Meets Operator Learning

and we refer to [23, Section 5.5.2] for its proof. Thus, this yields the commutative diagram

PK C
2K+1,

C
2K+1

C
2K+1

F

T
†
ΨK

(2K+1)·F

Id

where T †
ΨK

: PK → C
2K+1 denotes the analysis operator associated to the basis (C.2). Analo-

gously, we can build the commutative diagram

C
2K′+1 PK′

C
2K′+1

C
2K′+1

Id

F−1

1
(2K′+1)

·F-1

TΨ
K′

where TΨ
K′ : C

2K′+1 → PK′ denotes the synthesis operator associated to the basis (C.2) with

K = K ′. Then, R = {Rk}
K′

k=−K′ , with K ′ ≤ K, denotes the Fourier coefficients of a 2-periodic

function, and the mapping R⊙F : PK → C
2K′+1 is defined as

(R⊙Fw)(k) = RkWk, k = −K ′, . . . ,K ′.

Therefore, by definition, R⊙F yields a continuous-discrete equivalence operation. Overall, we

get the commutative diagram

PK C
2K+1

C
2K′+1 PK′

C
2K+1

C
2K+1

C
2K′+1

C
2K′+1

F

T
†
ΨK

R⊙ F−1

(2K+1)·F

Id

R⊙

Id

1
(2K′+1)

·F-1

TΨ
K′

which shows that the discretization of the Fourier layer C.1, the blue path in the above

commutative diagram, is defined via Equation (3.3). As a consequence, the Fourier layer

C.1, regarded as an operator from PK into PK′ satisfies the requirements of a Representation

equivalent Operator (crf. Definition 3.2). However, as pointed out in 4, the pointwise activation

function applied to a bandlimited input will not necessarily respect the bandwidth. In fact,

with popular choices of activation functions such as ReLU, σ(f) /∈ PK , for any K ∈ N (see also

SM F for numerical illustrations). Thus, the FNO layer

σ(Kv) = σ(F−1(R⊙F)(v))

may not respect the continuous-discrete equivalence and can lead to aliasing errors, a fact

already identified in [9]. Hence, FNOs may not be ReNOs in the sense of Definition 3.4.

D An Illustrative Example of Aliasing in the context of Operator Learning

Let BΩ ⊂ L2(R) denote the space of bandlimited functions with bandwidth Ω > 0. We

consider the non-linear operator U : BΩ → B2Ω defined by U(f) = |f |2. Suppose we take
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Ψ = {sinc(2Ωx − n)}n∈Z as an orthonormal basis for BΩ and the same sequence Φ = Ψ as a

frame sequence for B2Ω, and consider the associated discretized version u(Ψ,Φ) of U according

to (3.3). This is equivalent to assuming that we only have access to pointwise evaluations of

input and output functions on the grid
{

n
2Ω

}
n∈Z

. Such a choice for the discrete representation

of the functions causes aliasing in the sense of Definition 3.1, since for every f ∈ BΩ such that

U(f) ∈ B2Ω \ BΩ, we have

ε(U, u(Ψ,Φ),Ψ,Φ)(f) = U(f)− PBΩ
(U(f)) ̸= 0.

If, instead, we choose the sequence Φ′ = {sinc(4Ωx − n)}n∈Z for the target space B2Ω, then

(U, u(Ψ,Φ′),Ψ,Φ′) with u(Ψ,Φ′) as in (3.3) has no aliasing error since Φ′ is an orthonormal

basis for B2Ω. Furthermore, sampling the input and output functions with arbitrarily higher

sampling rate, i.e. representing the functions with respect to the system {sinc(2Ωx− n)}n∈Z
with Ω > 2Ω, yields no aliasing error since {sinc(2Ωx− n)}n∈Z constitutes a frame for B2Ω.

E Additional Operator Learning Architectures

DeepONets. Following [18] and for simplicity of exposition, we consider sensors, located

on a uniform grid on [−1, 1] with grid size 1/(2N + 1). We assume that the input function

f ∈ PN , where PN is defined as in SM C with orthonormal basis ΨN chosen according to

(C.2). Denote the corresponding synthesis and analysis operators as TΨN
, T ∗

ΨN
, respectively. Let

τk : R → R, for 1 ≤ k ≤ K be neural networks that form the so-called trunk nets in a DeepONet

[18] and denote QK = span{τk : k = 1, . . . ,K}. Clearly TK = {τk}
K
k=1 constitutes a frame for

QK and we can denote the corresponding synthesis and analysis operators by TTK , T
∗
TK

. Then

a DeepONet [18] is given by the composition TTK ◦ N ◦ T ∗
ΨN
, with N : R2N+1 → R

K , being a

neural network of the form (4.3) that is termed as the branch net of the DeepONet. Written in

this manner, DeepONet satisfies Definition 3.4 as it corresponds to the following commutative

diagram,

PN R
2N+1

R
K QK

R
2N+1

R
2N+1

R
K

R
K

T ∗
ΨN

T ∗
ΨN

Id

N

Id

TTK

T ∗
TK

Id

TΨN

N Id

TTK

However, it is essential to emphasize that the choice of the underlying function spaces is essential

in regard to the Definition 3.4 of Representation equivalent Neural Operators. For instance, if

the sensors are randomly distributed rather than located on a uniform grid, then it can induce

aliasing errors for DeepONets (see also [14] for a discussion on this issue). Similarly, DeepONets

are only ReNOs with respect to the function space QK as the target space. Changing the target

function space to another space, say for instance PN ′ , for some N ′, will lead to aliasing errors as

the trunk nets do not necessarily form a frame for the space of bandlimited 2-periodic functions.
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F Empirical Analysis

F.1 Illustration of the effect of the activation function

We consider the same setting as for the FNO in Section 4 and SM C, i.e. considering

f ∈ PK ,K = 20 to be both periodic and bandlimited. On the upmost plot of Figure 5, we

observe the values of f , as well as relu(f) and gelu(f). In this case, pointwise samples on the

grid of size 2K + 1 are enough to characterize f , as its Fourier coefficients are zero above the

Nyquist frequency K. However, as we can clearly observe on the lower plot, this is no longer

the case for functions relu(f) and gelu(f), and as a consequence the continuous functions are

no longer represented uniquely on the grid, and aliasing errors occur.
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Figure 5: The activation function increases the bandwidth of the input function beyond the

Nyquist frequency, causing aliasing errors.
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F.2 Details for Experimental Analysis Section 5

Implementation of the experiments is available at

■ https://github.com/emited/reno.git

Below we explain how the target operator Q : H → H is constructed. In practice the support of

the function is R
d, d = 2, however for ease of exposition we will present the one-dimensional

case d = 1, as the multi-dimensional case follows easily.

Here, H corresponds to the space of bandlimited and periodic functions PK , for K = 30, as

defined in SM C. As any function f ∈ PK can be put in correspondence with its pointwise

values on the grid {f( k
2K+1)}

K
k=−K , see [23, Section 5.5.2], we simply sample these values for the

input and output functions from the normal distribution N (0, 13) with a fixed seed. From this,

128 input-target pairs (fi, gi) are produced, and each model is trained to regress on the data.

Once trained, the models are tested with respect to different representations of the training

data, and the discrete aliasing error map is computed for each of these resolutions as explained

in the main paper.
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