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Abstract

Coupled oscillators are being increasingly used as the basis of machine learn-
ing (ML) architectures, for instance in sequence modeling, graph representation
learning and in physical neural networks that are used in analog ML devices. We
introduce an abstract class of neural oscillators that encompasses these architec-
tures and prove that neural oscillators are universal, i.e, they can approximate
any continuous and casual operator mapping between time-varying functions, to
desired accuracy. This universality result provides theoretical justification for the
use of oscillator based ML systems. The proof builds on a fundamental result of in-
dependent interest, which shows that a combination of forced harmonic oscillators
with a nonlinear read-out suffices to approximate the underlying operators.

1 Introduction

Oscillators are ubiquitous in the sciences and engineering [11, 29]. Prototypical examples include
pendulums in mechanics, feedback and relaxation oscillators in electronics, business cycles in
economics and heart beat and circadian rhythms in biology. Particularly relevant to our context is the
fact that the neurons in our brain can be thought of as oscillators on account of the periodic spiking
and firing of the action potential [28, 10]. Consequently, functional brain circuits such as cortical
columns are being increasingly analyzed in terms of networks of coupled oscillators [28].

Given this wide prevalence of (networks of) oscillators in nature and man-made devices, it is not
surprising that oscillators have inspired various machine learning architectures in recent years.
Prominent examples include the CoRNN [26] and UnICORNN [27] recurrent neural networks for
sequence modeling. CoRNN is based on a network of coupled, forced and damped oscillators,
whereas UnICORNN is a multi-layer sequence model that stacks networks of independent undamped
oscillators as hidden layers within an RNN. Both these architectures were rigorously shown to mitigate
the exploding and vanishing gradient problem [19] that plagues RNNs. Hence, both CoRNN and
UnICORNN performed very well on sequence learning tasks with long-term dependencies. Another
example of the use of oscillators in machine learning is provided by GraphCON [25], a framework
for designing graph neural networks (GNNs) [3], that is based on coupled oscillators. GraphCON was
also shown to ameliorate the oversmoothing problem [24] and allow for the deployment of multi-layer
deep GNNs. Other examples include Second Order Neural ODEs (SONODEs) [18], which can be
interpreted as oscillatory neural ODEs, locally coupled oscillatory recurrent networks (LocoRNN)
[16], and Oscillatory Fourier Neural Network (O-FNN) [12].

Another avenue where ML models based on oscillators arise is that of physical neural networks
(PNNs) [34] i.e., physical devices that perform machine learning on analog (beyond digital) systems.
Such analog systems have been proposed as alternatives or accelerators to the current paradigm of
machine learning on conventional electronics, allowing us to significantly reduce the prohibitive
energy costs of training state-of-the-art ML models. In [34], the authors propose a variety of
physical neural networks which include a mechanical network of multi-mode oscillations on a
plate and electronic circuits of oscillators as well as a network of nonlinear oscillators. Coupled
with a novel physics aware training (PAT) algorithm, the authors of [34] demonstrated that their
nonlinear oscillatory PNN achieved very good performance on challenging benchmarks such as
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Fashion-MNIST [35]. Moreover, other oscillatory systems such as coupled lasers and spintronic
nano-oscillators have also been proposed as possible PNNs, see [32] as an example of the use of
thermally coupled vanadium dioxide oscillators for image recognition and [23, 31] for the use of
spin-torque nano-oscillators for speech recognition and for neuromorphic computing, respectively.

What is the rationale behind the successful use of (networks of) oscillators in many different contexts
in machine learning? The authors of [26] attribute it to the inherent stability of oscillatory dynamics,
as the state (and its gradients) of an oscillatory system remain within reasonable bounds throughout
the time-evolution of the system. However, this is at best a partial explanation, as it does not
demonstrate why oscillatory dynamics can learn (approximate) mappings between inputs and outputs
rather than bias the learned states towards oscillatory functions. As an example, consider the problem
of classification of MNIST [17] (or Fashion-MNIST) images. It is completely unclear if the inputs
(vectors of pixel values), outputs (class probabilities) and the underlying mapping possess any
(periodic) oscillatory structure. Consequently, how can oscillatory RNNs (such an CoRNN and
UnICORNN) or a network of oscillatory PNNs learn the underlying mapping?

Our main aim in this paper is to provide an answer to this very question on the ability of neural
networks, based on oscillators, to express (to approximate) arbitrary mappings. To this end,

• We introduce an abstract framework of neural oscillators that encompasses both sequence
models such as CoRNN and UnICORNN, as well as variants of physical neural networks
as the ones proposed in [34]. These neural oscillators are defined in terms of second-order
versions of neural ODEs [4], and combine nonlinear dynamics with a linear read-out.

• We prove a Universality theorem for neural oscillators by showing that they can approximate,
to any given tolerance, continuous operators between appropriate function spaces.

• Our proof of universality is based on a novel theoretical result of independent interest, termed
the fundamental Lemma, which implies that a suitable combination of linear oscillator
dynamics with nonlinear read-out suffices for universality.

Such universality results, [1, 5, 13, 20] and references therein, have underpinned the widespread use
of traditional neural networks (such as multi-layer perceptrons and convolutional neural networks).
Hence, our universality result establishes a firm mathematical foundation for the deployment of neural
networks, based on oscillators, in myriad applications. Moreover, our constructive proof provides
insight into how networks of oscillators can approximate a large class of mappings.

2 Neural Oscillators

General Form of Neural Oscillators. Given u : [0, T ] → R
p as an input signal, for any final time

T ∈ R+, we consider the following system of neural ODEs for the evolution of dynamic hidden
variables y ∈ R

m, coupled to a linear read-out to yield the output z ∈ R
q ,





ÿ(t) = σ (Wy(t) + V u(t) + b) ,

y(0) = ẏ(0) = 0,

z(t) = Ay(t) + c.

(2.1a)

(2.1b)

(2.1c)

Equation (2.1) defines an input-/output-mapping u(t) 7→ z(t), with time-dependent output z :
[0, T ] → R

q. Specification of this system requires a choice of the hidden variable dimension m
and the activation function σ. The resulting mapping u 7→ z depends on tunable weight matrices
W ∈ R

m×m, V ∈ R
m×p, A ∈ R

q×m and bias vectors b ∈ R
m, c ∈ R

q. For simplicity of the
exposition, we consider only activation functions σ ∈ C∞(R), with σ(0) = 0 and σ′(0) = 1, such
as tanh or sin, although more general activation functions can be readily considered. This general
second-order neural ODE system (2.1) will be referred to as a neural oscillator.
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Multi-layer neural oscillators. As a special case of neural oscillators, we consider the following
much sparser class of second-order neural ODEs,





y0(t) := u(t),

ÿℓ(t) = σ
(
wℓ ⊙ yℓ(t) + V ℓyℓ−1(t) + bℓ

)
, (ℓ = 1, . . . , L),

yℓ(0) = ẏℓ(0) = 0,

z(t) = AyL(t) + c.

(2.2a)

(2.2b)

(2.2c)

(2.2d)

In contrast to the general neural oscillator (2.1), the above multi-layer neural oscillator (2.2) defines a
hierarchical structure; The solution yℓ ∈ R

mℓ at level ℓ solves a second-order ODE with driving force
yℓ−1, and the lowest level, y0 = u, is the input signal. Here, the layer dimensions m1, . . . ,mL can
vary across layers, the weights wℓ ∈ R

mℓ are given by vectors, with ⊙ componentwise multiplication,
V ℓ ∈ R

mℓ×mℓ−1 is a weight matrix, and bℓ ∈ R
mℓ the bias. Given the result of the final layer,

yL, the output signal is finally obtained by an affine output layer z(t) = AyL(t) + c. In the multi-

layer neural oscillator, the matrices V ℓ, A and vectors wℓ, bℓ and c represent the trainable hidden
parameters. The system (2.2) is a special case of (2.1), since it can be written in the form (2.1), with
y := [yL, yL−1, . . . , y1]T , b := [bL, . . . , b1]T , and a (upper-diagonal) block-matrix structure for W :

W :=




wLI V L 0 . . . 0

0 wL−1I V L−1 . . .
...

...
. . .

. . . 0
0 . . . 0 w2I V 2

0 . . . 0 0 w1I



, V :=




0
...
...
0
V 1




(2.3)

Given the block-diagonal structure of the underlying weight matrices, it is clear that the multi-layer
neural oscillator (2.2) is a much sparser representation of the general neural operator (2.1). Moreover,
one can observe from the structure of the neural ODE (2.2) that within each layer, the individual
neurons are independent of each other.

Assuming that wℓ
i 6= 0, for all 1 ≤ i ≤ mℓ and all 1 ≤ ℓ ≤ L, we further highlight that the multi-layer

neural oscillator (2.2) is a Hamiltonian system,

ẏℓ =
∂H

∂ẏℓ
, ÿℓ = −

∂H

∂yℓ
, (2.4)

with the layer-wise time-dependent Hamiltonian,

H(yℓ, ẏℓ, t) =
1

2
‖ẏℓ‖2 −

mℓ∑

i=1

1

wℓ
i

σ̂(wℓ
iy

ℓ
i + (V ℓyℓ−1)i + bℓi), (2.5)

with σ̂ being the antiderivative of σ, and ‖x‖2 = 〈x,x〉 denoting the Euclidean norm of the
vector x ∈ R

m and 〈·, ·〉 the corresponding inner product. Hence, any symplectic discretization
of the multi-layer neural oscillator (2.2) will result in a fully reversible model, which can first
be leveraged in the context of normalizing flows [22], and second leads to a memory-efficient
training, as the intermediate states (i.e., yℓ(t0), ẏ

ℓ(t0), yℓ(t1), ẏℓ(t1), . . . , yℓ(tN ), ẏℓ(tN ), for some
time discretization t0, t1, . . . , tN of length N ) do not need to be stored and can be reconstructed
during the backward pass. This potentially leads to a drastic memory saving of O(N) during training.

2.1 Examples of Neural Oscillators

(Forced) harmonic oscillator. Let p = m = q = 1 and we set W = −ω2, for some ω ∈ R,
V = 1, b = 0 and the activation function to be identity σ(x) = x. In this case, the neural ODE (2.1)
reduces to the ODE modeling the dynamics of a forced simple harmonic oscillator [11] of the form,

ÿ = −ω2y + u, y(0) = ẏ(0) = 0. (2.6)

Here, y is the displacement of the oscillator, ω the frequency of oscillation and u is a forcing term
that forces the motion of the oscillator. Note that (2.6) is also a particular example of the multi-layer
oscillator (2.2) with L = 1.
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This simple example provides justification for our terminology of neural oscillators, as in general, the
hidden state y can be thought of as the vector of displacements of m-coupled oscillators, which are
coupled together through the weight matrix W and are forced through a forcing term u, whose effect
is modulated via V and a bias term b. The nonlinear activation function mediates possible nonlinear
feedback to the system on account of large displacements.

CoRNN. The Coupled oscillatory RNN (CoRNN) architecture [26] is given by the neural ODE:

ÿ = σ (Wy +W ẏ + V u+ b)− γy − ǫẏ.

We can recover the neural oscillator (2.1) as a special case of CoRNN by setting W = 0, γ = ǫ = 0;
thus, a universality theorem for neural oscillators immediately implies a corresponding universality
result for the CoRNN architecture.

UnICORNN. The Undamped Independent Controlled Oscillatory RNN (UnICORNN) architecture
of [27, eqn. 1] recovers the multi-layer neural oscillator (2.2) in the case where the fundamental
frequencies of UnICORNN are automatically determined inside the weight matrix W in (2.1).

Nonlinear oscillatory PNN of [34]. In [34, SM, Sect. 4.A], the authors propose an analog machine
learning device that simulates a network of nonlinear oscillators, for instance realized through coupled
pendula. The resulting mathematical model is the so-called simplified Frenkel-Kontorova model [2]
given by the ODE system,

Mθ̈ = −K sin(θ)− C sin(θ) + F,

where θ = (θ1, . . . , θN ) is the vector of angles across all coupled pendula, M = diag(µ1, . . . , µN )
is a diagonal mass matrix, F an external forcing, K = diag(k1, . . . , kN ) the “spring constant” for
pendula, given by ki = µig/ℓ with ℓ the pendulum length and g the gravitational acceleration, and
where C = CT is a symmetric matrix, with

Cℓℓ = −
∑

ℓ′ 6=ℓ

Cℓℓ′ , so that [C sin(θ)]ℓ =
∑

ℓ′ 6=ℓ

Cℓℓ′(sin(θℓ′)− sin(θℓ)), (2.7)

which quantifies the coupling between different pendula. We note that this simplified Frenkel-
Kontorova system can also model other coupled nonlinear oscillators, such as coupled lasers or
spintronic oscillators [34].

We can bring the above system into a more familiar form by introducing the variable y according
to the relationship Py = θ for a matrix P . Substitution of this ansatz then yields MPÿ = −(K +
C) sin(Py) + F ; choosing P = M−1(K + C), we find

ÿ = − sin(M−1(K + C)y) + F, (2.8)

which can be written in the form ÿ = σ(Wy) + F for σ = − sin( · ) and W = M−1(K +C). If we
now take C in a block-matrix form

C :=




γLI CL 0 . . . 0

CL,T γL−1I
. . .

...

0
. . .

. . . 0
... . . . C3,T γ2I C2

0 . . . 0 C2,T γ1I




,

and with corresponding mass matrix M in block-matrix form M = diag(µLI, µL−1I, . . . , µ1I),
then with ρℓ := γℓ/µℓ, we have

M−1C :=




ρLI CL/µL 0 . . . 0

CL,T /µL−1 ρL−1I
. . .

...

0
. . .

. . . 0
...

. . . ρ2I C2/µ2

0 . . . 0 C2,T /µ1 ρ1I




,
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Introducing an ordering parameter ǫ > 0, and choosing γℓ, Cℓ, µℓ ∼ ǫℓ, it follows that ρℓ, Cℓ

µℓ =

O(1), and Cℓ

µℓ−1 = O(ǫ). Hence, with a suitable ordering of the masses across the different layers,

one can introduce an effective one-way coupling, making

M−1C =




ρLI V L 0 . . . 0

0 ρL−1I V L−1 . . .
...

...
. . . 0

0 . . . 0 ρ2I V 2

0 . . . 0 0 ρ1I



+O(ǫ),

upper triangular, up to small terms of order ǫ. We note that the diagonal entries ρℓ in M−1C are
determined by the off-diagonal terms through the identity (2.7). The additional degrees of freedom
in the (diagonal) K-matrix in (2.8) can be used to tune the diagonal weights of the resulting weight
matrix W = M−1(K + C).

Thus, physical systems such as the Frankel-Kontorova system of nonlinear oscillators can be approxi-
mated (to leading order) by multi-layer systems of the form

ÿℓ = σ
(
wℓ ⊙ yℓ + V ℓyℓ−1

)
+ F ℓ, (2.9)

with F ℓ an external forcing, representing a tunable linear transformation of the external input to the
system. The only formal difference between (2.9) and (2.2) is (i) the absence of a bias term in (2.9)
and (ii) the fact that the external forcing appears outside of the nonlinear activation function σ in
(2.9). A bias term could readily be introduced by measuring the angles represented by yℓ in a suitably
shifted reference frame; physically, this corresponds to tuning the initial position yℓ(0) of the pendula,

with yℓ(0) also serving as the reference value. Furthermore, in our proof of universality for (2.2), it
makes very little difference whether the external forcing F is applied inside the activation function,
as in (2.2b) resp. (2.1a), or outside as in (2.9); indeed, the first layer in our proof of universality
will in fact approximate the linearized dynamics of (2.2b), i.e. a forced harmonic oscillator (2.6).
Consequently, a universality result for the multi-layer neural oscillator (2.2) also implies universality
of variants of nonlinear oscillator-based physical neural networks, such as those considered in [34].

3 Universality of Neural Oscillators

In this section, we state and sketch the proof for our main result regarding the universality of neural
oscillators (2.1) or, more specifically, multi-layer oscillators (2.2). To this end, we start with some
mathematical preliminaries to set the stage for the main theorem.

3.1 Setting

Input signal. We want to approximate operators Φ : u 7→ Φ(u), where u = u(t) is a time-
dependent input signal over a time-interval t ∈ [0, T ], and Φ(u)(t) is a time-dependent output signal.
We will assume that the input signal t 7→ u(t) is continuous, and that u(0) = 0. To this end, we
introduce the space

C0([0, T ];R
p) := {u : [0, T ] → R

p | t 7→ u(t) is continuous and u(0) = 0}.

We will assume that the underlying operator defines a mapping Φ : C0([0, T ];R
p) → C0([0, T ];R

q).

The approximation we discuss in this work are based on oscillatory systems starting from rest.
These oscillators are forced by the input signal u. For such systems the assumption that u(0) = 0
is necessary, because the oscillator starting from rest takes a (arbitrarily small) time-interval to
synchronize with the input signal (to “warm up”); If u(0) 6= 0, then the oscillator cannot accurately
approximate the output during this warm-up phase. This intuitive fact is also implicit in our proofs.
We will provide a further comment on this issue in Remark 3.2, below.

Operators of interest. We consider the approximation of an operator Φ : C0([0, T ];R
p) →

C0([0, T ];R
q), mapping a continuous input signal u(t) to a continuous output signal Φ(u)(t). We

will restrict attention to the uniform approximation of Φ over a compact set of input functions
K ⊂ C0([0, T ];R

p). We will assume that Φ satisfies the following properties:
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• Φ is causal: For any t ∈ [0, T ], if u, v ∈ C0([0, T ];R
p) are two input signals, such that

u|[0,t] ≡ v|[0,t], then Φ(u)(t) = Φ(v)(t), i.e. the value of Φ(u)(t) at time t does not depend

on future values {u(τ) | τ > t}.

• Φ is continuous as an operator

Φ : (C0([0, T ];R
p), ‖ · ‖L∞) → (C0([0, T ];R

q), ‖ · ‖L∞),

with respect to the L∞-norm on the input-/output-signals.

Note that the class of Continuous and Causal operators are very general and natural in the contexts of
mapping between sequence spaces or time-varying function spaces, see [7, 6] and references therein.

3.2 Universal approximation Theorem

The universality of neural oscillators is summarized in the following theorem:

Theorem 3.1. [Universality of the multi-layer neural oscillator] Let Φ : C0([0, T ];R
p) →

C0([0, T ];R
q) be a causal and continuous operator. Let K ⊂ C0([0, T ];R

p) be compact. Then

for any ǫ > 0, there exist hyperparameters L, m1, . . . ,mL, weights wℓ ∈ R
mℓ , V ℓ ∈ R

mℓ×mℓ−1 ,
A ∈ R

q×mL and bias vectors bℓ ∈ R
mℓ , c ∈ R

q, for ℓ = 1, . . . , L, such that the output
z : [0, T ] → R

q of the multi-layer neural oscillator (2.2) satisfies

sup
t∈[0,T ]

|Φ(u)(t)− z(t)| ≤ ǫ, ∀u ∈ K.

It is important to observe that the sparse, independent multi-layer neural oscillator (2.2) suffices
for universality in the considered class. Thus, there is no need to consider the wider class of neural
oscillators (2.1), at least in this respect. We remark in passing that Theorem 3.1 immediately implies
another universality result for neural oscillators, showing that they can also be used to approximate
arbitrary continuous functions F : Rp → R

q . This extension is explained in detail in SM A.

Remark 3.2. We note that the theorem can be readily extended to remove the requirement on
u(0) = 0 and Φ(u)(0) = 0. To this end, let Φ : C([0, T ];Rp) → C([0, T ];Rq) be an operator
between spaces of continuous functions, u 7→ Φ(u) on [0, T ]. Fix a t0 > 0, and extend any input
function u : [0, T ] → R

p to a function E(u) ∈ C0([−t0, T ];R
p), by

E(u)(t) :=

{
(t0+t)

t0
u(0), t ∈ [−t0, 0),

u(t), t ∈ [0, T ].

Our proof of Theorem 3.1 can readily be used to show that the oscillator system with forcing E(u),
and initialized at time −t0 < 0, can uniformly approximate Φ(u) over the entire time interval [0, T ],
without requiring that u(0) = 0, or Φ(u)(0) = 0. In this case, the initial time interval [−t0, 0]
provides the required “warm-up phase” for the neural oscillator.

Remark 3.3. In practice, neural ODEs such as (2.2) need to be discretized via suitable numerical
schemes. As examples, CoRNN and UnICORNN were implemented in [26] and [27], respectively,
with implicit-explicit time discretizations. Nevertheless, universality also applies for such discretiza-
tions as long as the time-step is small enough, as the underlying discretization is going to be a
sufficiently accurate approximation of (2.2) and Theorem 3.1 can be used for showing universality of
the discretized version of the multi-layer neural oscillator (2.2).

3.3 Outline of the Proof

In the following, we outline the proof of the universality Theorem 3.1, while postponing the technical
details to the SM. For a given tolerance ǫ, we will explicitly construct the weights and biases of the
multi-layer neural oscillator (2.2) such that the underlying operator can be approximated within the
given tolerance. This construction takes place in the following steps:
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Figure 1: Illustration of the universal 3-
layer neural oscillator architecture con-
structed in the proof of Theorem 3.1.

(Forced) Harmonic Oscillators compute a time-
windowed sine transform. Recall that the forced har-
monic oscillator (2.6) is the simplest example of a neural
oscillator (2.1). The following lemma, proved by direct
calculation in SM B.1, shows that this forced harmonic
oscillator actually computes a time-windowed variant of
the sine transform at the corresponding frequency:

Lemma 3.4. Assume that ω 6= 0. Then the solution of
(2.6) is given by

y(t) =
1

ω

ˆ t

0

u(t− τ) sin(ωτ) dτ. (3.1)

Given the last result, for a function u, we define its time-
windowed sine transform as follows,

Ltu(ω) :=

ˆ t

0

u(t− τ) sin(ωτ) dτ. (3.2)

Lemma 3.4 shows that a forced harmonic oscillator com-
putes (3.2) up to a constant.

Approximation of causal operators from finite realizations of time-windowed sine transforms.
The following novel result, termed the fundamental Lemma, shows that the time-windowed sine
transform (3.2) composed with a suitable nonlinear function can approximate causal operators Φ to
desired accuracy; as a consequence, one can conclude that forced harmonic oscillators combined
with a nonlinear read-out defines a universal architecture in the sense of Theorem 3.1.

Lemma 3.5 (Fundamental Lemma). Let Φ : K ⊂ C0([0, T ];R
p) → C0([0, T ];R

q) be a causal and
continuous operator, with K ⊂ C0([0, T ];R

p) compact. Then for any ǫ > 0, there exists N ∈ N,
frequencies ω1, . . . , ωN and a continuous mapping Ψ : Rp×N × [0, T 2/4] → R

q , such that

|Φ(u)(t)−Ψ(Ltu(ω1), . . . ,Ltu(ωN ); t2/4)| ≤ ǫ,

for all u ∈ K.

The proof of this fundamental Lemma, detailed in SM B.2, is based on first showing that any
continuous function can be reconstructed to desired accuracy, in terms of realizations of its time-
windowed sine transform (3.2) at finitely many frequencies ω1, . . . , ωN (see SM Lemma B.1). Then,
we leverage the continuity of the underlying operator Φ to approximate it with a finite-dimensional
function Ψ, which takes the time-windowed sine transforms as its arguments.

Given these two results, we can discern a clear strategy to prove the universality Theorem 3.1.
First, we will show that a general nonlinear form of the neural oscillator (2.2) can also compute the
time-windowed sine transform at arbitrary frequencies. Then, these outputs need to be processed in
order to apply the fundamental Lemma 3.5 and approximate the underlying operator Φ. To this end,
we will also approximate the function Ψ (mapping finite-dimensional inputs to finite-dimensional
outputs) by oscillatory layers. The concrete steps in this strategy are outlined below.

Nonlinear Oscillators approximate the time-windowed sine transform. The building block of
multi-layer neural oscillators (2.2) is the nonlinear oscillator of the form,

ÿ = σ(w ⊙ y + V u+ b). (3.3)

In the following Lemma (proved in SM B.3), we show that even for a nonlinear activation function σ
such as tanh or sin, the nonlinear oscillator (3.3) can approximate the time-windowed sine transform.

Lemma 3.6. Fix ω 6= 0. Assume that σ(0) = 0, σ′(0) = 1. For any ǫ > 0, there exist w, V, b, A ∈ R,
such that the nonlinear oscillator (3.3), initialized at y(0) = ẏ(0) = 0, has output

|Ay(t)− Ltu(ω)| ≤ ǫ, ∀u ∈ K, t ∈ [0, T ],

with Ltu(ω) being the time-windowed sine transform (3.2).
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Coupled Nonlinear Oscillators approximate time-delays. The next step in the proof is to show
that coupled oscillators can approximate time-delays in the continuous input signal. This fact will be
of crucial importance in subsequent arguments. We have the following Lemma (proved in SM B.4),

Lemma 3.7. Let K ⊂ C0([0, T ];R
p) be a compact subset. For every ǫ > 0, and ∆t ≥ 0, there exist

m ∈ N, w ∈ R
m, V ∈ R

m×p, b ∈ R
m and A ∈ R

p×m, such that the oscillator (3.3), initialized at
y(0) = ẏ(0) = 0, has output

sup
t∈[0,T ]

|u(t−∆t)−Ay(t)| ≤ ǫ, ∀u ∈ K,

where u(t) is extended to negative values t < 0 by zero.

Two-layer neural oscillators approximate neural networks pointwise. As in the strategy outlined
above, the final ingredient in our proof of the universality theorem 3.1 is to show that neural oscillators
can approximate continuous functions, such as the Ψ in the fundamental lemma 3.5, to desired
accuracy. To this end, we will first show that neural oscillators can approximate general neural
networks (perceptrons) and then use the universality of neural networks in the class of continuous
functions to prove the desired result. We have the following lemma,

Lemma 3.8. Let K ⊂ C0([0, T ];R
p) be compact. For matrices Σ,Λ and bias γ, and any ǫ > 0, there

exists a two-layer (L = 2) oscillator (2.2), initialized at yℓ(0) = ẏℓ(0) = 0, ℓ = 1, 2, such that

sup
t∈[0,T ]

∣∣[Ay2(t) + c
]
− Σσ(Λu(t) + γ)

∣∣ ≤ ǫ, ∀u ∈ K.

The proof, detailed in SM B.5, is constructive and the neural oscillator that we construct has two
layers. The first layer just processes a nonlinear input function through a nonlinear oscillator and the
second layer, approximates the second-derivative (in time) from time-delayed versions of the input
signal that were constructed in Lemma 3.7.

Combining the ingredients to prove the universality theorem 3.1. The afore-constructed ingredi-
ents are combined in SM B.6 to prove the universality theorem. In this proof, we explicitly construct
a three-layer neural oscillator (2.2) which approximates the underlying operator Φ. The first layer
follows the construction of Lemma 3.6, to approximate the time-windowed sine transform (3.2), for
as many frequencies as are required in the fundamental Lemma 3.5. The second- and third-layers
imitate the construction of Lemma 3.8 to approximate a neural network (perception), which in turn
by the universal approximation of neural networks, approximates the function Ψ in Lemma 3.5 to
desired accuracy. Putting the network together leads to a three-layer oscillator that approximates the
continuous and casual operator Φ. This construction is depicted in Figure 1.

4 Discussion

Machine learning architectures, based on networks of coupled oscillators, for instance sequence
models such as CoRNN [26] and UnICORNN [27], graph neural networks such as GraphCON
[25] and increasingly, the so-called physical neural networks (PNNs) such as linear and nonlinear
mechanical oscillators [34] and spintronic oscillators [23, 31], are being increasingly used. A priori,
it is unclear why ML systems based on oscillators can provide competitive performance on a variety
of learning benchmarks, e.g. [26, 27, 25, 34], rather than biasing their outputs towards oscillatory
functions. In order to address these concerns about their expressivity, we have investigated the
theoretical properties of machine learning systems based on oscillators. Our main aim was to answer
a fundamental question: “are coupled oscillator based machine learning architectures universal?”.
In other words, can these architectures, in principle, approximate a large class of input-output maps
to desired accuracy.

To answer this fundamental question, we introduced an abstract framework of neural oscillators
(2.1) and its particular instantiation, the multi-layer neural oscillators (2.2). This abstract class of
second-order neural ODEs encompasses both sequence models such as CoRNN and UnICORNN, as
well as a very general and representative PNN, based on the so-called Frenkel-Kontorova model. The
main contribution of this paper was to prove the universality theorem 3.1 on the ability of multi-layer
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neural oscillators (2.2) to approximate a large class of operators, namely causal and continuous maps
between spaces of continuous functions, to desired accuracy. Despite the fact that the considered
neural oscillators possess a very specific and constrained structure, not even encompassing general
Hamiltonian systems, the approximated class of operators is nevertheless very general, including
solution operators of general ordinary and even time-delay differential equations.

The crucial theoretical ingredient in our proof was the fundamental Lemma 3.5, which implies
that linear oscillator dynamics combined with a pointwise nonlinear read-out suffices for universal
operator approximation; our construction can correspondingly be thought of as a large number of
linear processors, coupled with nonlinear readouts. This construction could have implications for
other models such as structured state space models [9, 8] which follow a similar paradigm, and the
extension of our universality results to such models could be of great interest.

Our universality result has many interesting implications. To start with, we rigorously prove that an
ML architecture based on coupled oscillators can approximate a very large class of operators. This
provides theoretical support to many widely used sequence models and PNNs based on oscillators.
Moreover, given the generality of our result, we hope that such a universality result can spur the
design of innovative architectures based on oscillators, particularly in the realm of analog devices as
ML inference systems or ML accelerators [34].

It is also instructive to lay out some of the limitations of the current article and point to avenues
for future work. In this context, our setup currently only considers time-varying functions as inputs
and outputs. Roughly speaking, these inputs and outputs have the structure of (infinite) sequences.
However, a large class of learning tasks can be reconfigured to take sequential inputs and outputs.
These include text (as evident from the tremendous success of large language models [21]), DNA
sequences, images [15], timeseries and (offline) reinforcement learning [14]. Nevertheless, a next
step would be to extend such universality results to inputs (and outputs) which have some spatial or
relational structure, for instance by considering functions which have a spatial dependence or which
are defined on graphs. On the other hand, the class of operators that we consider, i.e., casual and
continuous, is not only natural in this setting but very general [7, 6].

Another limitation lies in the feed forward structure of the multi-layer neural oscillator (2.2). As
mentioned before, most physical (and neurobiological) systems exhibit feedback loops between
their constituents. However, this is not common in ML systems. In fact, we had to use a mass
ordering in the Frenkel-Kontorova system of coupled pendula (2.8) in order to recast it in the form of
the multi-layer neural oscillator (2.2). Such asymptotic ordering may not be possible for arbitrary
physical neural networks. Exploring how such ordering mechanisms might arise in physical and
biological systems in order to effectively give rise to a feed forward system could be very interesting.
One possible mechanism for coupled oscillators that can lead to a hierarchical structure is that of
synchronization [33, 30] and references therein. How such synchronization interacts with universality
is a very interesting question and will serve as an avenue for future work.

Finally, universality is arguably necessary but far from sufficient to analyze the performance of any
ML architecture. Other aspects such as trainability and generalization are equally important, and we
do not address these issues here. We do mention that trainability of oscillatory systems would profit
from the fact that oscillatory dynamics is (gradient) stable and this formed the basis of the proofs of
mitigation of the exploding and vanishing gradient problem for CoRNN in [26] and UnICORNN in
[27] as well as GraphCON in [25]. Extending these results to the general second-order neural ODE
(2.2), for instance through an analysis of the associated adjoint system, is left for future work.
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Supplementary Material for:
Neural Oscillators are Universal

A Another universality result for neural oscillators

The universal approximation Theorem 3.1 immediately implies another universal approximation
results for neural oscillators, as explained next. We consider a continuous map F : Rp → R

q; our
goal is to show that F can be approximated to given accuracy ǫ by suitably defined neural oscillators.
Fix a time interval [0, T ] for (an arbitrary choice) T = 2. Let K0 ⊂ R

p be a compact set. Given
ξ ∈ R

p, we associate with it a function uξ(t) ∈ C0([0, T ];R
p), by setting

uξ(t) := tξ. (A.1)

Clearly, the set K := {uξ | ξ ∈ K0} is compact in C0([0, T ];R
p). Furthermore, we can define an

operator Φ : C0([0, T ];R
p) → C0([0, T ];R

q), by

Φ(u)(t) :=

{
0, t ∈ [0, 1),

(t− 1)F (u(1)), t ∈ [1, T ].
(A.2)

where F : Rp → R
q is the given continuous function that we wish to approximate. One readily

checks that Φ defines a causal and continuous operator. Note, in particular, that

Φ(uξ)(T ) = (T − 1)F (uξ(1)) = F (ξ),

is just the evaluation of F at ξ, for any ξ ∈ K0.

Since neural oscillators can uniformly approximate the operator Φ for inputs uξ ∈ K, then as a
consequence of Theorem 3.1 and (2.3), it follows that, for any ǫ > 0 there exists m ∈ N, matrices
W ∈ R

m×m, V ∈ R
m×p and A ∈ R

q×m, and bias vectors b ∈ R
m, c ∈ R

q, such that for any
ξ ∈ K0, the neural oscillator system,





ÿξ(t) = σ (Wyξ(t) + tV ξ + b) ,

yξ(0) = ẏξ(0) = 0,

zξ(t) = Ayξ(t) + c,

(A.3)

(A.4)

(A.5)

satisfies

|zξ(T )− F (ξ)| = |zξ(T )− Φ(uξ)(T )| ≤ sup
t∈[0,T ]

|zξ(t)− Φ(uξ)(t)| ≤ ǫ,

uniformly for all ξ ∈ K0. Hence, neural oscillators can be used to approximate an arbitrary continuous
function F : Rp → R

q , uniformly over compact sets. Thus, neural oscillators also provide universal
function approximation.

B Proof of Theorem 3.1

B.1 Proof of Lemma 3.4

Proof. We can rewrite y(t) = 1
ω

´ t

0
u(τ) sin(ω(t − τ)) dτ . By direct differentiation, one readily

verifies that y(t) so defined, satisfies

ẏ(t) =

ˆ t

0

u(τ) cos(ω(t− τ)) dτ + [u(τ) sin(ω(t− τ))]τ=t =

ˆ t

0

u(τ) cos(ω(t− τ)) dτ,

in account of the fact that sin(0) = 0. Differentiating once more, we find that

ÿ(t) = −ω

ˆ t

0

u(τ) sin(ω(t− τ)) dτ + [u(τ) cos(ω(t− τ))]τ=t

= −ω2y(t) + u(t).

Thus y(t) solves the ODE (2.6), with initial condition y(0) = ẏ(0) = 0.
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B.2 Proof of Fundamental Lemma 3.5

Reconstruction of a continuous signal from its sine transform. Let [0, T ] ⊂ R be an interval.
We recall that we define the windowed sine transform Ltu(ω) of a function u : [0, T ] → R

p, by

Ltu(ω) =

ˆ t

0

u(t− τ) sin(ωτ) dτ, ω ∈ R.

In the following, we fix a compact set K ⊂ C0([0, T ];R
p). Note that for any u ∈ K, we have

u(0) = 0, and hence K can be identified with a subset of C((−∞, T ];Rp), consisting of functions
with supp(u) ⊂ [0, T ]. We consider the reconstruction of continuous functions u ∈ K. We will show
that u can be approximately reconstructed from knowledge of Lt(ω). More precisely, we provide a
detailed proof of the following result:

Lemma B.1. Let K ⊂ C((−∞, T ];Rp) be compact, such that supp(u) ⊂ [0, T ] for all u ∈ K. For
any ǫ,∆t > 0, there exists N ∈ N, frequencies ω1, . . . , ωN ∈ R \ {0}, phase-shifts ϑ1, . . . , ϑN ∈ R

and weights α1, . . . , αN ∈ R, such that

sup
τ∈[0,∆t]

∣∣∣∣∣∣
u(t− τ)−

N∑

j=1

αjLtu(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣
≤ ǫ,

for all u ∈ K and for all t ∈ [0, T ].

Proof. Step 0: (Equicontinuity) We recall the following fact from topology. If K ⊂
C((−∞, T ];Rp) is compact, then it is equicontinuous; i.e. there exists a continuous modulus
of continuity φ : [0,∞) → [0,∞) with φ(r) → 0 as r → 0, such that

|u(t− τ)− u(t)| ≤ φ(τ), ∀ τ ≥ 0, t ∈ [0, T ], ∀u ∈ K. (B.1)

Step 1: (Connection to Fourier transform) Fix t0 ∈ [0, T ] and u ∈ K for the moment. Define
f(τ) = u(t0 − τ). Note that f ∈ C([0,∞);Rp), and f has compact support supp(f) ⊂ [0, T ]. We
also note that, by (B.1), we have

|f(t+ τ)− f(t)| ≤ φ(τ), ∀ τ ≥ 0, t ∈ [0, T ].

We now consider the following odd extension of f to all of R:

F (τ) :=

{
f(τ), for τ ≥ 0,

−f(−τ), for τ ≤ 0.

Since F is odd, the Fourier transform of F is given by

F̂ (ω) :=

ˆ ∞

−∞

F (τ)e−iωτ dτ = i

ˆ ∞

−∞

F (τ) sin(ωτ) dτ = 2i

ˆ T

0

f(τ) sin(ωτ) dτ = 2iLt0u(ω).

Let ǫ > 0 be arbitrary. Our goal is to uniformly approximate F (τ) on the interval [0,∆t]. The main
complication here is that F lacks regularity (is discontinuous), and hence the inverse Fourier transform

of F̂ does not converge to F uniformly over this interval; instead, a more careful reconstruction based
on mollification of F is needed. We provide the details below.

Step 2: (Mollification) We now fix a smooth, non-negative and compactly supported function
ρ : R → R, such that supp(ρ) ⊂ [0, 1], ρ ≥ 0,

´

R
ρ(t) dt = 1, and we define a mollifier ρǫ(t) :=

1
ǫ
ρ(t/ǫ). In the following, we will assume throughout that ǫ ≤ T . We point out that supp(ρǫ) ⊂ [0, ǫ],

and hence, the mollification Fǫ(t) = (F ∗ ρǫ)(t) satisfies, for t ≥ 0:

|F (t)− Fǫ(t)| =

∣∣∣∣
ˆ ǫ

0

(F (t)− F (t+ τ))ρǫ(τ) dτ

∣∣∣∣ =
∣∣∣∣
ˆ ǫ

0

(f(t)− f(t+ τ))ρǫ(τ) dτ

∣∣∣∣

≤

{
sup

τ∈[0,ǫ]

|f(t)− f(t+ τ)|

}
ˆ ǫ

0

ρǫ(τ) dτ ≤ φ(ǫ).
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In particular, this shows that

sup
t∈[0,T ]

|F (t)− Fǫ(t)| ≤ φ(ǫ),

can be made arbitrarily small, with an error that depends only on the modulus of continuity φ.

Step 3: (Fourier inverse) Let F̂ǫ(ω) denote the Fourier transform of Fǫ. Since Fǫ is smooth and
compactly supported, it is well-known that we have the identity

Fǫ(τ) =
1

2π

ˆ ∞

−∞

F̂ǫ(ω)e
−iωτ dω, ∀ t ∈ R,

where ω 7→ F̂ǫ(ω) decays to zero very quickly (almost exponentially) as |ω| → ∞. In fact, since

Fǫ = F ∗ρǫ is a convolution, we have F̂ǫ(ω) = F̂ (ω)ρ̂ǫ(ω), where |F̂ (ω)| ≤ 2‖f‖L∞T is uniformly
bounded, and ρ̂ǫ(ω) decays quickly. In particular, this implies that there exists a L = L(ǫ, T ) > 0
independent of f , such that

∣∣∣∣∣Fǫ(τ)−
1

2π

ˆ L

−L

F̂ (ω)ρ̂ǫ(ω)e
−iωτ dω

∣∣∣∣∣ ≤ 2T‖f‖L∞

ˆ

|ω|>L

|ρ̂ǫ(ω)| dω ≤ ‖f‖L∞ǫ, ∀ τ ∈ R.

(B.2)

Step 4: (Quadrature) Next, we observe that, since F and ρǫ are compactly supported, their Fourier

transform ω 7→ F̂ (ω)ρ̂ǫ(ω)e
−iωτ is smooth; in fact, for |τ | ≤ T , the Lipschitz constant of this

mapping can be explicitly estimated by noting that

∂

∂ω

[
F̂ (ω)ρ̂ǫ(ω)e

−iωτ
]
=

∂

∂ω

ˆ

supp(Fǫ)

(F ∗ ρǫ)(t)e
iω(t−τ) dt

=

ˆ

supp(Fǫ)

i(t− τ)(F ∗ ρǫ)(t)e
iω(t−τ) dt.

We next take absolute values, and note that any t in the support of Fǫ obeys the bound |t| ≤ T + ǫ ≤
2T , while |τ | ≤ T by assumption; it follows that

Lip
(
ω 7→ F̂ (ω)ρ̂ǫ(ω)e

−iωτ
)
≤ (2T + T )‖F‖L∞ ‖ρǫ‖L1 = 3T‖F‖L∞ , ∀ τ ∈ [0, T ].

It thus follows from basic results on quadrature that for an equidistant choice of frequencies ω1 <
· · · < ωN , with spacing ∆ω = 2L/(N − 1), we have

∣∣∣∣∣∣
1

2π

ˆ L

−L

F̂ (ω)ρ̂ǫ(ω)e
−iωτ dω −

∆ω

2π

N∑

j=1

F̂ (ωj)ρ̂ǫ(ωj)e
−iωjτ

∣∣∣∣∣∣
≤

CL2 3T‖F‖L∞

N
, ∀ τ ∈ [0, T ],

for an absolute constant C > 0, independent of F , T and N . By choosing N to be even, we can
ensure that ωj 6= 0 for all j. In particular, recalling that L = L(T, ǫ) depends only on ǫ and T , and
choosing N = N(T, ǫ) sufficiently large, we can combine the above estimate with (B.2) to ensure
that ∣∣∣∣∣∣

Fǫ(τ)−
∆ω

2π

N∑

j=1

F̂ (ωj)ρ̂ǫ(ωj)e
−iωjτ

∣∣∣∣∣∣
≤ 2‖f‖L∞ǫ, ∀ τ ∈ [0, T ],

where we have taken into account that ‖F‖L∞ = ‖f‖L∞ .

Step 5: (Conclusion) To conclude the proof, we recall that F̂ (ω) = 2iLt0u(ω) can be expressed
in terms of the sine transform Ltu of the function u which was fixed at the beginning of Step 1.
Recall also that f(τ) = u(t0 − τ), so that ‖f‖L∞ = ‖u‖L∞ . Hence, we can write the real part of
∆ω
2π F̂ (ωj)ρ̂ǫ(ωj)e

−iωjτ = ∆ω
2π 2iLt0u(ωj)ρ̂ǫ(ωj)e

−iωjτ , in the form αjLt0(ωj) sin(ωjτ − ϑj) for
coefficients αj ∈ R and θj ∈ R which depend only on ∆ω and ρ̂ǫ(ωj), but are independent of u. In
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particular, it follows that

sup
τ∈[0,∆t]

∣∣∣∣∣∣
u(t0 − τ)−

N∑

j=1

αjLt0u(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣
= sup

t∈[0,∆t]

∣∣∣∣∣∣
F (τ)− Re


∆ω

2π

N∑

j=1

F̂ (ωj)ρ̂ǫ(ωj)e
−iωjτ



∣∣∣∣∣∣

≤ sup
τ∈[0,∆t]

∣∣∣∣∣∣
F (τ)−

∆ω

2π

N∑

j=1

F̂ (ωj)ρ̂ǫ(ωj)e
−iωjτ

∣∣∣∣∣∣
≤ sup

τ∈[0,∆t]

|F (τ)− Fǫ(τ)|

+ sup
τ∈[0,∆t]

∣∣∣∣∣∣
Fǫ(τ)−

∆ω

2π

N∑

j=1

F̂ (ωj)ρ̂ǫ(ωj)e
−iωjτ

∣∣∣∣∣∣
.

By Steps 1 and 3, the first term on the right-hand side is bounded by ≤ φ(ǫ), while the second one is
bounded by ≤ 2 supu∈K ‖u‖L∞ǫ ≤ Cǫ, where C = C(K) < ∞ depends only on the compact set
K ⊂ C([0, T ];Rp). Hence, we have

sup
τ∈[0,∆t]

∣∣∣∣∣∣
u(t0 − τ)−

N∑

j=1

αjLt0u(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣
≤ φ(ǫ) + Cǫ.

In this estimate, the function u ∈ K and t0 ∈ [0, T ] were arbitrary, and the modulus of continuity φ
as well as the constant C on the right-hand side depend only on the set K. it thus follows that for this
choice of αj , ωj and ϑj , we have

sup
u∈K

sup
t∈[0,T ]

sup
τ∈[0,∆t]

∣∣∣∣∣∣
u(t− τ)−

N∑

j=1

αjLtu(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣
≤ φ(ǫ) + Cǫ.

Since ǫ > 0 was arbitrary, the right-hand side can be made arbitrarily small. The claim then readily
follows.

The next step in the proof of the fundamental Lemma 3.5 needs the following preliminary result in
functional analysis,

Lemma B.2. Let X ,Y be Banach spaces, and let K ⊂ X be a compact subset. Assume that
Φ : X → Y is continous. Then for any ǫ > 0, there exists a δ > 0, such that if ‖u− uK‖X ≤ δ with
u ∈ X , uK ∈ K, then ‖Φ(u)− Φ(uK)‖Y ≤ ǫ.

Proof. Suppose not. Then there exists ǫ0 > 0 and a sequence uj , u
K
j , (j ∈ N), such that ‖uj −

uK
j ‖X ≤ j−1, while ‖Φ(uj) − Φ(uK

j )‖Y ≥ ǫ0. By the compactness of K, we can extract a

subsequence jk → ∞, such that uK
jk

→ uK converges to some uK ∈ K. By assumption on uj , this
implies that

‖ujk − uK‖X ≤ ‖ujk − uK
jk
‖X + ‖uK

jk
− uK‖X

(k→∞)
−→ 0,

which, by the assumed continuity of Φ, leads to the contradiction that 0 < ǫ0 ≤ ‖Φ(ujk) −
Φ(uK)‖Y → 0, as k → ∞.

Proof of Lemma 3.5. Now, we can prove the fundamental Lemma in the following,

Proof. Let ǫ > 0 be given. We can identify K ⊂ C0([0, T ];R
p) with a compact subset of

C((−∞, T ];Rp), by extending all u ∈ K by zero for negative times, i.e. we set u(t) = 0 for
t < 0. Applying Lemma B.2, with X = C0([0, T ];R

p) and Y = C0([0, T ];R
q), we can find a δ > 0,

such that for any u ∈ C0([0, T ];R
p) and uK ∈ K, we have

‖u− uK‖L∞ ≤ δ ⇒ ‖Φ(u)− Φ(uK)‖L∞ ≤ ǫ. (B.3)
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By the inverse sine transform Lemma B.1, there exist N ∈ N, frequencies ω1, . . . , ωN 6= 0, phase-
shifts ϑ1, . . . , ϑN and coefficients α1, . . . , αN , such that for any u ∈ K and t ∈ [0, T ]:

sup
τ∈[0,T ]

∣∣∣∣∣∣
u(t− τ)−

N∑

j=1

αj Ltu(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣
≤ δ.

Given Ltu(ω1), . . . ,Ltu(ωN ), we can thus define a reconstruction mapping R : RN × [0, T ] →
C([0, T ];Rp) by

R(β1, . . . , βN ; t)(τ) :=

N∑

j=1

αjβj sin(ωj(t− τ)− ϑj).

Then, for τ ∈ [0, t], we have

|u(τ)−R(Ltu(ω1), . . . ,Ltu(ωN ); t)(τ)| ≤ δ.

We can now uniquely define Ψ : RN × [0, T 2/4] → C0([0, T ];R
p), by the identity

Ψ(Ltu(ω1), . . . ,Ltu(ωN ); t2/4) = Φ (R(Ltu(ω1), . . . ,Ltu(ωN ); t)) .

Using the short-hand notation Rtu = R(Ltu(ω1), . . . ,Ltu(ωN ); t), we have supτ∈[0,t] |u(τ) −

Rtu(τ)| ≤ δ, for all t ∈ [0, T ]. By (B.3), this implies that
∣∣Φ(u)(t)−Ψ(Ltu(ω1), . . . ,Ltu(ωN ); t2/4)

∣∣ = |Φ(u)(t)− Φ(Rtu)(t)| ≤ ǫ.

B.3 Proof of Lemma 3.6

Proof. Let ω 6= 0 be given. For a (small) parameter s > 0, we consider

ÿs =
1

s
σ(−sω2ys + su), ys(0) = ẏs(0) = 0.

Let Y be the solution of
Ÿ = −ω2Y + u, Y (0) = Ẏ (0) = 0.

Then we have, on account of σ(0) = 0 and σ′(0) = 1,

s−1σ(−sω2Y + su)− [−ω2Y + u] =
σ(−sω2Y + su)− σ(0)

s
− σ′(0)[−ω2Y + u]

=
1

s

ˆ s

0

∂

∂ζ

[
σ(−ζω2Y + ζu)

]
dζ − σ′(0)[−ω2Y + u]

=
1

s

(
ˆ s

0

[
σ′(−ζω2Y + ζu)− σ′(0)

]
dζ

)[
−ω2Y + u

]
.

It follows from Lemma 3.4 that for any input u ∈ K, with supu∈K ‖u‖L∞ =: B < ∞, we have a
uniform bound ‖Y ‖L∞ ≤ BT/ω, hence we can estimate

| − ω2Y + u| ≤ B(ωT + 1),

uniformly for all such u. In particular, it follows that
∣∣s−1σ(−sω2Y + su)− [−ω2Y + u]

∣∣ ≤ B(Tω + 1) sup
|x|≤sB(Tω+1)

|σ′(x)− σ′(0)|.

Clearly, for any δ > 0, we can choose s ∈ (0, 1] sufficiently small, such that the right hand-side is
bounded by δ, i.e. with this choice of s,

∣∣s−1σ(−sω2Y (t) + su(t))− [−ω2Y (t) + u(t)]
∣∣ ≤ δ, ∀ t ∈ [0, T ],

holds for any choice of u ∈ K. We will fix this choice of s in the following, and write g(y, u) :=
s−1σ(−sω2y + su). We note that g is Lipschitz continuous in y, for all |y| ≤ BT/ω and |u| ≤ B,
with Lipy(g) ≤ ω2 sup|ξ|≤B(ωT+1) |σ

′(ξ)|.
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To summarize, we have shown that Y solves

Ÿ = g(Y, u) + f, Y (0) = Ẏ (0) = 0,

where ‖f‖L∞ ≤ δ. By definition, ys solves

ÿs = g(ys, u), ys(0) = ẏs(0) = 0.

It follows from this that

|ys(t)− Y (t)| ≤

ˆ t

0

ˆ τ

0

{|g(ys(θ), u(θ))− g(Y (θ), u(θ))|+ |f(θ)|} dθ dτ

≤

ˆ t

0

ˆ τ

0

{
Lipy(g)|ys(θ)− Y (θ)|+ δ

}
dθ dτ

≤ Tω2 sup
|ξ|≤B(ωT+1)

|σ′(ξ)|

ˆ t

0

|ys(τ)− Y (τ)| dτ + T 2δ.

Recalling that Y (t) = Ltu(ω), then by Gronwall’s inequality, the last estimate implies that

sup
t∈[0,T ]

|ys(t)− Ltu(ω)| = sup
t∈[0,T ]

|ys − Y | ≤ Cδ,

for a constant C = C(T, ω, sup|ξ|≤B(ωT+1) |σ
′(ξ)|) > 0, depending only on T , ω, B and σ′. Since

δ > 0 was arbitrary, we can ensure that Cδ ≤ ǫ. Thus, we have shown that a suitably rescaled
nonlinear oscillator approximates the harmonic oscillator to any desired degree of accuracy, and
uniformly for all u ∈ K.

To finish the proof, we observe that y solves

ÿ = σ(−ω2y + su), y(0) = ẏ(0) = 0,

if, and only if, ys = y/s solves

ÿs = s−1σ(−sω2ys + su), ys(0) = ẏs(0) = 0.

Hence, with W = −ω2, V = s, b = 0 and A = s−1, we have

sup
t∈[0,T ]

|Ay(t)− Ltu(ω)| = sup
t∈[0,T ]

|ys(t)− Ltu(ω)| ≤ ǫ.

This concludes the proof.

B.4 Proof of Lemma 3.7

Proof. Let ǫ,∆t be given. By the sine transform reconstruction Lemma B.1, there exists N ∈ N,
frequencies ω1, . . . , ωN , weights α1, . . . , αN and phase-shifts ϑ1, . . . , ϑN , such that

sup
τ∈[0,∆t]

∣∣∣∣∣∣
u(t− τ)−

N∑

j=1

αjLtu(ωj) sin(ωjτ − ϑj)

∣∣∣∣∣∣
≤

ǫ

2
, ∀ t ∈ [0, T ], ∀u ∈ K, (B.4)

where any u ∈ K is extended by zero to negative times. It follows from Lemma 3.6, that there exists
a coupled oscillator network,

ÿ = σ(w ⊙ y + V u+ b), y(0) = ẏ(0) = 0,

with dimension m = pN , and w ∈ R
m, V ∈ R

m×p, and a linear output layer y 7→ Ãy, Ã ∈ R
m×m,

such that [Ãy(t)]j ≈ Ltu(ωj) for j = 1, . . . , N ; more precisely, such that

sup
t∈[0,T ]

N∑

j=1

|αj |
∣∣∣Ltu(ωj)− [Ãy]j(t)

∣∣∣ ≤ ǫ

2
, ∀u ∈ K. (B.5)

Composing with another linear layer B : Rm ≃ R
p×N → R

p, which maps β = [β1, . . . , βN ] to

Bβ :=
N∑

j=1

αjβj sin(ωj∆t− ϑj) ∈ R
p,
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we define A := BÃ, and observe that from (B.4) and (B.5):

sup
t∈[0,T ]

|u(t−∆t)−Ay(t)| ≤ sup
t∈[0,T ]

∣∣∣∣∣∣
u(t−∆t)−

N∑

j=1

αjLtu(ωj) sin(ωj∆t− ϑj)

∣∣∣∣∣∣

+ sup
t∈[0,T ]

N∑

j=1

|αj |
∣∣∣Ltu(ωj)− [Ãy]j(t)

∣∣∣ | sin(ωj∆t− ϑj)|

≤ ǫ.

B.5 Proof of Lemma 3.8

Proof. Fix Σ,Λ, γ as in the statement of the lemma. Our goal is to approximate u 7→ Σσ(Λu+ γ).

Step 1: (nonlinear layer) We consider a first layer for a hidden state y = [y1, y2]
T ∈ R

p+p, given by
{
ÿ1(t) = σ(Λu(t) + γ)

ÿ2(t) = σ(γ)

}
, y(0) = ẏ(0) = 0.

This layer evidently does not approximate σ(Λu(t) + γ); however, it does encode this value in
the second derivative of the hidden variable y1. The main objective of the following analysis is to
approximately compute ÿ1(t) through a suitably defined additional layer.

Step 2: (Second-derivative layer) To obtain an approximation of σ(Λu(t) + γ), we first note that
the solution operator

S : u(t) 7→ η(t), where η̈(t) = σ(Λu(t) + γ)− σ(γ), η(0) = η̇(0) = 0,

defines a continuous mapping S : C0([0, T ];R
p) → C2

0 ([0, T ];R
p), with η(0) = η̇(0) = η̈(0) = 0.

Note that η is very closely related to y1. The fact that η̈ = 0 is important to us, because it allows
us to smoothly extend η to negative times by setting η(t) := 0 for t < 0 (which would not be true
for y1(t)). The resulting extension defines a compactly supported function η : (−∞, 0] → R

p,
with η ∈ C2((−∞, T ];Rp). Furthermore, by continuity of the operator S, the image S(K) of the
compact set K under S is compact in C2((−∞, T ];Rp). From this, it follows that for small ∆t > 0,
the second-order backward finite difference formula converges,

sup
t∈[0,T ]

∣∣∣∣
η(t)− 2η(t−∆t) + η(t− 2∆t)

∆t2
− η̈(t)

∣∣∣∣ = o∆t→0(1), ∀η = S(u), u ∈ K,

where the bound on the right-hand side is uniform in u ∈ K, due to equicontinuity of
{η̈ | η = S(u), u ∈ K}. In particular, the second derivative of η can be approximated through
linear combinations of time-delays of η. We can now choose ∆t > 0 sufficiently small so that

sup
t∈[0,T ]

∣∣∣∣
η(t)− 2η(t−∆t) + η(t− 2∆t)

∆t2
− η̈(t)

∣∣∣∣ ≤
ǫ

2‖Σ‖
, ∀y = S(u), u ∈ K,

where ‖Σ‖ denotes the operator norm of the matrix Σ. By Lemma 3.7, applied to the input set

K̃ = S(K) ⊂ C0([0, T ];R
p), there exists a coupled oscillator

z̈(t) = σ(w ⊙ z(t) + V η(t) + b), z(0) = ż(0) = 0, (B.6)

and a linear output layer z 7→ Ãz, such that

sup
t∈[0,T ]

∣∣∣[η(t)− 2η(t−∆t) + η(t− 2∆t)]− Ãz(t)
∣∣∣ ≤ ǫ∆t2

2‖Σ‖
, ∀η = S(u), u ∈ K.

Indeed, Lemma 3.7 shows that time-delays of any given input signal can be approximated with any
desired accuracy, and η(t)− 2η(t−∆)− η(t− 2∆) is simply a linear combination of time-delays
of the input signal η in (B.6).

To connect η(t) back to the y(t) = [y1(t), y2(t)]
T constructed in Step 1, we note that

η̈ = σ(Au(t) + b)− σ(b) = ÿ1 − ÿ2,
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and hence, taking into account the initial values, we must have η ≡ y1 − y2 by ODE uniqueness. In

particular, upon defining a matrix Ṽ such that Ṽ y := V y1 − V y2 ≡ V η, we can equivalently write
(B.6) in the form,

z̈(t) = σ(w ⊙ z(t) + Ṽ y(t) + b), z(0) = ż(0) = 0. (B.7)

Step 3: (Conclusion)

Composing the layers from Step 1 and 2, we obtain a coupled oscillator

ÿℓ = σ(wℓ ⊙ yℓ + V ℓyℓ−1 + bℓ), (ℓ = 1, 2),

initialized at rest, with y1 = y, y2 = z, such that for A := ΣÃ and c := Σσ(γ), we obtain

sup
t∈[0,T ]

∣∣[Ay2(t) + c
]
− Σσ(Λu(t) + γ)

∣∣ ≤ ‖Σ‖ sup
t∈[0,T ]

∣∣∣Ãz(t)− [σ(Λu(t) + γ)− σ(γ)]
∣∣∣

= ‖Σ‖ sup
t∈[0,T ]

∣∣∣Ãz(t)− η̈(t)
∣∣∣

≤ ‖Σ‖ sup
t∈[0,T ]

∣∣∣∣Ãz(t)−
η(t)− 2η(t−∆t) + η(t− 2∆t)

∆t2

∣∣∣∣

+ ‖Σ‖ sup
t∈[0,T ]

∣∣∣∣
η(t)− 2η(t−∆t) + η(t− 2∆t)

∆t2
− η̈(t)

∣∣∣∣

≤
ǫ

2
+

ǫ

2
= ǫ.

This concludes the proof.

B.6 Proof of Theorem 3.1

Proof. Step 1: By the Fundamental Lemma 3.5, there exist N , a continuous mapping Ψ, and
frequencies ω1, . . . , ωN , such that

|Φ(u)(t)−Ψ(Ltu(ω1), . . . ,Ltu(ωN ); t2/4)| ≤ ǫ,

for all u ∈ K, and t ∈ [0, T ]. Let M be a constant such that

|Ltu(ω1)|, . . . , |Ltu(ωN )|,
t2

4
≤ M,

for all u ∈ K and t ∈ [0, T ]. By the universal approximation theorem for ordinary neural networks,
there exist weight matrices Σ,Λ and bias γ, such that

|Ψ(β1, . . . , βN ; t2/4)− Σσ(Λβ + γ)| ≤ ǫ, β := [β1, . . . , βN ; t2/4]T ,

holds for all t ∈ [0, T ], |β1|, . . . , |βN | ≤ M .

Step 2: Fix ǫ1 ≤ 1 sufficiently small, such that also ‖Σ‖‖Λ‖Lip(σ)ǫ1 ≤ ǫ, where Lip(σ) :=
sup|ξ|≤‖Λ‖M+|γ|+1 |σ

′(ξ)| denotes an upper bound on the Lipschitz constant of the activation func-

tion over the relevant range of input values. It follows from Lemma 3.6, that there exists an oscillator
network,

ÿ1 = σ(w1 ⊙ y1 + V 1u+ b1), y1(0) = ẏ1(0) = 0, (B.8)

of depth 1, such that

sup
t∈[0,T ]

|[Ltu(ω1), . . . ,Ltu(ωN ); t2/4]T −A1y1(t)| ≤ ǫ1,

for all u ∈ K.

Step 3: Finally, by Lemma 3.8, there exists an oscillator network,

ÿ2 = σ(w2 ⊙ y2 + V 2y1 + b1),

of depth 2, such that
sup

t∈[0,T ]

|A2y2(t)− Σσ(ΛA1y1(t) + γ)| ≤ ǫ,
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holds for all y1 belonging to the compact set K1 := S(K) ⊂ C0([0, T ];R
N+1), where S denotes

the solution operator of (B.8).

Step 4: Thus, we have for any u ∈ K, and with short-hand Ltu(ω) := (Ltu(ω1), . . . ,Ltu(ωN )),
∣∣Φ(u)(t)−A2y2(t)

∣∣ ≤
∣∣Φ(u)(t)−Ψ(Ltu(ω); t2/4)

∣∣

+
∣∣Ψ(Ltu(ω); t2/4)− Σσ(Λ[Ltu(ω); t2/4] + γ)

∣∣

+
∣∣Σσ(Λ[Ltu(ω); t2/4] + γ)− Σσ(ΛA1y1(t) + γ)

∣∣

+
∣∣Σσ(ΛA1y1(t) + γ)−A2y2(t)

∣∣ .
By step 1, we can estimate

∣∣Φ(u)(t)−Ψ(Ltu(ω); t2/4)
∣∣ ≤ ǫ, ∀ t ∈ [0, T ], u ∈ K.

By the choice of Σ,Λ, γ, we have
∣∣Ψ(Ltu(ω); t2/4)− Σσ(Λ[Ltu(ω); t2/4] + γ)

∣∣ ≤ ǫ, ∀ t ∈ [0, T ], u ∈ K.

By construction of y1 in Step 2, we have
∣∣Σσ(Λ[Ltu(ω); t2/4] + γ)− Σσ(ΛA1y1(t) + γ)

∣∣

≤ ‖Σ‖Lip(σ)‖Λ‖
∣∣[Ltu(ω); t2/4]−A1y1(t)

∣∣
≤ ‖Σ‖Lip(σ)‖Λ‖ ǫ1
≤ ǫ,

for all t ∈ [0, T ] and u ∈ K. By construction of y2 in Step 3, we have
∣∣Σσ(ΛA1y1(t) + γ)−A2y2(t)

∣∣ ≤ ǫ, ∀ t ∈ [0, T ], u ∈ K.

Thus, we conclude that
|Φ(u)(t)−A2y2(t)| ≤ 4ǫ,

for all t ∈ [0, T ] and u ∈ K. Since ǫ > 0 was arbitrary, we conclude that for any causal and
continuous operator Φ : C0([0, T ];R

p) → C0([0, T ];R
q), compact set K ⊂ C0([0, T ];R

p) and
ǫ > 0, there exists a coupled oscillator of depth 3, which uniformly approximates Φ to accuracy ǫ for
all u ∈ K. This completes the proof.
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