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SKELETON INTEGRAL EQUATIONS FOR ACOUSTIC
TRANSMISSION PROBLEMS WITH VARYING COEFFICIENTS ∗

F. FLORIAN† , R. HIPTMAIR‡ , AND S.A. SAUTER§

Abstract. In this paper we will derive an non-local (“integral”) equation which transforms a
three-dimensional acoustic transmission problem with variable coefficients, non-zero absorption, and
mixed boundary conditions to a non-local equation on a “skeleton” of the domain Ω ⊂ R3, where
“skeleton” stands for the union of the interfaces and boundaries of a Lipschitz partition of Ω. To
that end, we introduce and analyze abstract layer potentials as solutions of auxiliary coercive full
space variational problems and derive jump conditions across domain interfaces. This allows us to
formulate the non-local skeleton equation as a direct method for the unknown Cauchy data of the
solution of the original partial differential equation. We establish coercivity and continuity of the
variational form of the skeleton equation based on auxiliary full space variational problems. Explicit
expressions for Green’s functions is not required and all our estimates are explicit in the complex
wave number.
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1. Introduction. Setting. In this paper we consider acoustic transmission
problems in Laplace domain.

(1.1) − div (A∇w) + s2pw = 0 in Ω ⊂ R
3.

We admit general essentially bounded and uniformly positive (definite) coefficient
functions A and p and mixed boundary conditions. More precisely, the boundary
conditions on ∂Ω are of Dirichlet and/or Neumann type and decay conditions are
imposed at infinity if the domain is unbounded. We assume that the (complex) wave
number s has positive real part, Re s > 0, so that the arising sesquilinear form in
the variational formulation is coercive and well-posedness in H1(R3) follows by the
Lax-Milgram lemma. More details are given in Section 2.2 and the following.

Goal. There exist many approaches to transform continuous and coercive acous-
tic transmission problems to a non-local equation on a domain skeleton (interfaces of a
Lipschitz partition and the domain boundary); among them are the direct and indirect
formulation, equations of first and second kind, and symmetric and non-symmetric
couplings for interface problems. However, not all of them lead to well-posed skeleton
equations. The goal of this paper is to develop a transformation strategy for acoustic
transmission problems with mixed boundary condition such that well-posedness will
always be inherited from the well-posedness of the boundary value problem. This
transformation will be based on a direct formulation by Green’s representation for-
mula to express the homogeneous solutions in the subdomains via their Cauchy data,
i.e., by their traces and co-normal traces on the subdomain boundaries. Green’s for-
mula is typically based on explicit expressions for the fundamental solution for the
differential operator and boils down to a linear combination of the single layer and
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double layer potential. However, the explicit expressions for fundamental solutions
are known only for very special configurations which include full and half space prob-
lems and constant coefficients. A semi-explicit representation by Sommerfeld-type
integrals exist for half space problems with impedance boundary conditions or full
space problems for layered media and piecewise constant coefficients [19, 14] while for
more general domains and varying coefficients the explicit form of the fundamental
solution is unknown.

The main goals of this paper are
a) to represent the solution of a homogeneous acoustic PDE with very general

coefficients as a linear combination of generalized layer potentials acting on
the Cauchy traces of the solution and we will present an appropriate definition
of these layer potentials, and

b) to derive a non-local single-trace skeleton equation for the unknown Cauchy
data such that well-posedness is inherited from the PDE.

c) to provide fully s-explicit stability estimates for that new equation; we will
elaborate the dependence on s in all estimates of the arising operators and
solutions.

In this way, the question of finding a representation for a fundamental solution
is decoupled from the transformation method: once a fundamental solution or an
approximation to it is available it can be used for an integral representation of the
relevant layer potentials resulting in a stable non-local single-trace skeleton integral
equation.

Main contributions. Usually, Green’s representation formula contains the fun-
damental solution of the underlying PDE explicitly and, hence, in literature the arising
boundary integral equations are usually considered for cases where the fundamental
solution is known explicitly. Our approach to transforming the PDE to a non-local
equation on the skeleton does not rely on fundamental solutions; neither their exis-
tence nor an explicit form is required. Instead, we define the layer potentials directly
via the variational form of the PDE as solutions of appropriate variational problems.
We derive jump relations for these abstract potentials, Green’s representation formula,
and non-local skeleton operators which allow us to define the Calderón operator. We
show how coercivity of the sesquilinear form on the skeleton can be derived directly
from the coercivity of the PDE.

While the definition of the single layer potential as the solution of the variational
form of the full space PDE for certain types of right-hand side is standard and applies
also to elliptic PDEs with variable coefficients, the definition of the double layer po-
tential is more delicate. Various (equivalent) definitions exist in literature for certain
types of elliptic PDEs and we briefly review some of them:

1) If the fundamental solution, say G (x,y), of the differential operator is known
the double layer potential can be defined as an integral over the skeleton of
the co-normal derivative of G convoluted with a boundary density – first for
sufficiently regular boundary functions and then by continuous extension as
a mapping between appropriate Sobolev spaces. The analysis of the double
layer potential (mapping properties/jump relations, etc.) is then derived from
properties of the fundamental solution. However, if the fundamental solution
is not known explicitly as, e.g., for variable L∞ coefficients the analysis is far
from trivial.

2) For problems with constant coefficients the double layer potential can be de-
fined as the composition of the full space solution operator (acoustic Newton
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potential) with the dual of the co-normal derivative. However, this dual co-
normal derivative maps into a space which is larger than the natural domain
of the Newton potential. For PDEs with constant coefficients this problem
can be solved since it is known that the Newton potential satisfies some reg-
ularity shift properties. For variable L∞ coefficients this is a subtle issue.

3) In [12], the case of C∞- coefficients is considered. First the double layer
potential is introduced as explained in 1); then a regularity shift theorem
from [25] is employed to directly derive a Green’s representation formula.
This Green’s formula can then be used as an alternative definition of the
double layer potential.

4) The definition in [6, (4.5)] expresses the double layer potential as a composi-
tion of a trace lifting of the boundary density with the differential operator
and the Newton potential and thus avoids both, the explicit knowledge of
the fundamental solution and the range space of the dual co-normal deriva-
tive. Although the analysis of the double layer potential can be based on the
mature theory of elliptic PDEs, it seems that our new definition allows for a
much more straightforward analysis.

Our new approach defines the double layer potential as the solution of an ultra-
weak variational formulation of the full space PDE with a certain type of right-
hand sides. This definition allows us to derive directly the mapping properties, jump
relations, and representation formula from the underlying PDE.

We derive the skeleton and Calderón operators from this idea. The formulation
of acoustic transmission problems with constant coefficients in each subdomain and
mixed boundary condition as skeleton equations is a topic of active research in nu-
merical analysis and we mention the approaches via the multi-trace formulation (see,
[9], [10]), the single-trace formulation [13], [30], [11], [8], [21], and the related PM-
CHWT method in electromagnetics (see [18], [26]). Our approach with emphasis on
transmission and mixed boundary conditions can be regarded as a generalization of
the recent paper [15] from the piecewise constant coefficient case to general L∞ co-
efficients. Another approach for problems with variable coefficients is based on the
use of a parametrix instead of the unknown Green’s function and presented in [8].
We also generalize [10] by allowing for unbounded domains (full space/half space),
variable coefficients in the subdomains, and do not require the explicit knowledge of
a Green’s function. We also generalize the stability theory for the Calderón operator
developed in [4] (see also the monograph [29]) to variable coefficients in the principal
and zeroth order part of the differential equation. The estimates for the layer poten-
tials, Calderón operators, and skeleton operators are explicit with respect to the wave
number s and generalize the known estimates for problems with piecewise constant
coefficients (see, e.g., [3], [22], [15]).

Remark 1.1. We emphasize that this work is meant to be a contribution to the
theory of partial differential equations. Nevertheless, our new non-local single-trace
skeleton equations may be the foundation of numerical methods, but this will require
the representations of the layer potentials as integral operators acting on trace on the
skeleton. This representation might be explicit, semi-explicit via Fourier- or Hankel
transforms, might be given by an asymptotic series or, alternatively, a parametrix can
be employed.

Outline. The paper is structured as follows. In Section 2 we formulate the
acoustic transmission problem with mixed boundary conditions. This requires the
introduction of a domain partitioning and its skeleton, the definition of one-sided
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trace operators as well as the jumps and means of piecewise regular functions. The
transmission problem is formulated in (2.23) and defines the starting point for the
various steps in the derivation of the non-local skeleton equations.

In Section 3, we derive Green’s representation formula in an abstract way. We
consider the homogeneous PDE on a subdomain as well as on its complement do-
main in R

3 (with extended coefficients) and formulate auxiliary variational full space
problems which are coercive and continuous. The single layer potential is defined as
the solution operator for a distribution (density) located on the interface (see (3.18));
the explicit knowledge of a fundamental solution is not required. We present a new
and simple definition of the double layer potential as the solution of an ultra-weak
variational full space problem for a certain type of right-hand sides. With these layer
potentials at hand we prove a Green’s representation formula on both subdomains
(Lemma 3.15) as well as jump relations for both layer potentials.

Section 4 is devoted to the definition of the non-local skeleton operators V, K, K′,
W which are used to build the Calderón operator. The important projection property
for the Calderón operator is derived in Lemma 4.3.

In Section 5 we define the free single trace space X
single on the skeleton and

the one with incorporated boundary conditions Xsingle
0 . Then, the non-local skeleton

equation is formulated in (5.4) as a variational problem with energy space X
single
0 .

The remaining part of this section is devoted to the analysis of the skeleton equation
and leads to its well-posedness, formulated in Theorem 5.5.

We summarize our main achievement in the concluding Section 6 and give com-
ments on some straightforward extensions of this integral equation method.

In Appendix A we give the proof of s-explicit coercivity and continuity estimates
for the boundary integral operators and layer potentials. Since the arguments are
very similar to those in [22, Prop. 16, 19] and [6, Lem. 5.2] we have shifted this proof
to the appendix.

A list of notation is assembled at the end of the paper.

2. Setting. In this section we give details about the acoustic transmission prob-
lem. First, we introduce the appropriate Sobolev spaces, standard trace operators, and
co-normal derivatives. Then we specify assumptions on the coefficients of the problem
and formulate boundary and decay conditions. We write R>0 := {x ∈ R | x > 0}, and
C>0 := {z ∈ C | Re z > 0}, respectively.

2.1. Function spaces. Let ω ⊂ R
3 be a bounded or unbounded Lipschitz do-

main with (possibly empty) boundary ∂ω. Let Lp (ω), 1 ≤ p ≤ ∞, be the usual
Lebesgue spaces with norm ∥·∥Lp(ω). For k ≥ 0, the classical Sobolev space Hk (ω)
consists of all functions whose k-th weak derivatives are square-integrable; its norm is
denoted by ∥·∥Hk(ω). For k ≥ 0, we denote by Hk

0 (ω) the closure of the space of infin-

itely smooth functions with compact support in ω with respect to the Hk (ω) norm.

Its dual space is denoted by H−k (ω) :=
(

Hk
0 (ω)

)′
. Vector- and tensor valued versions

of the Lebesgue spaces are denoted by Lp (ω) := Lp (ω)
3
and L

p (ω) := Lp (ω)
3×3

with
norm ∥·∥Lp(ω) and ∥·∥

Lp(ω), respectively and we use an analogous notation for vec-
tor and tensor valued Sobolev spaces. For p = 2, these spaces are Hilbert spaces
with scalar product (·, ·)L2(ω), (·, ·)L2(ω), (·, ·)

L2(ω). We also employ a “frequency-

dependent” H1 (ω) norm and define for s ∈ C\ {0}

(2.1) ∥v∥H1(ω);s :=
(

∥∇v∥2L2(ω) + |s|
2 ∥v∥2L2(ω)

)1/2

.
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Note that the usual norm ∥·∥H1(ω) coincides with ∥·∥H1(ω);s for |s| = 1. The space

H (ω, div) is given by

(2.2) H (ω, div) :=
{

w ∈ L2 (Ω) | divw ∈ L2 (ω)
}

.

On the boundary of ω, we define the Sobolev space Hα (∂ω), α ≥ 0, in the usual
way (see, e.g., [23, pp. 98]). Note that the range of α for which Hα (∂ω) is defined
may be limited, depending on the global smoothness of the surface ∂ω; for Lipschitz
surfaces, α can be chosen in the range [0, 1]; for α < 0, the space Hα (∂ω) is the
dual of H−α (∂ω). Revall that the Sobolev space H1/2 (∂ω) is equipped with the
Sobolev-Slobodeckij norm

∥v∥H1/2(∂ω) :=

(

∥v∥2L2(∂ω) +

∫

∂ω×∂ω

|v (x)− v (y)|2

∥x− y∥3
dΓxdΓy

)1/2

.

We write ⟨·, ·⟩ω for the bilinear form

(2.3) ⟨u, v⟩ω :=

∫

ω

uv so that (u, v)L2(ω) = ⟨u, v⟩ω ,

and identify ⟨·, ·⟩ω with its continuous extension to the duality pairing H−k (ω) ×
Hk

0 (ω). For k ≥ 0, the spaces Hk
loc (ω) are defined based on smooth and compactly-

supported cutoff functions via

(2.4) Hk
loc (ω) :=

{

v : χv ∈ Hk (ω) for all χ ∈ C∞0
(

R
3
)}

and the subscript “loc” is used in an analogue way also for other spaces.
Let R

3×3
sym denote the set of real symmetric 3 × 3 matrices. We denote by ⟨·, ·⟩ :

C
3 × C

3 → C the bilinear form ⟨a,b⟩ :=
∑3
ℓ=1 aℓbℓ for a = (aℓ)

3
ℓ=1 ∈ C

3 and

b = (bℓ)
3
ℓ=1 ∈ C

3. Clearly, this bilinear form is the standard Euclidean scalar product
if restricted to R

3 × R
3. Let L∞

(

ω,R3×3
sym

)

denote the space of all functions B : ω →
R

3×3
sym whose components belong to the Lebesgue space L∞ (ω). We define the spectral

bounds for B ∈ L
∞
(

ω,R3×3
sym

)

and q ∈ L∞ (ω,R) by

λ (B) := ess inf
y∈ω

inf
v∈R3\{0}

⟨B (y)v,v⟩
⟨v,v⟩ ≤ ess sup

y∈ω
sup

v∈R3\{0}

⟨B (y)v,v⟩
⟨v,v⟩ =: Λ (B) <∞,

(2.5a)

λ (q) := ess inf
y∈ω

q (y) ≤ ess sup
y∈ω

q (y) =: Λ (q) <∞.(2.5b)

Definition 2.1. Let

L∞>0 (ω,R) := {q ∈ L∞ (ω,R) | λ (q) > 0} ,
L
∞
>0

(

ω,R3×3
sym

)

:=
{

B ∈ L
∞
(

ω,R3×3
sym

)

| λ (B) > 0
}

.

For B ∈ L
∞
>0

(

ω,R3×3
sym

)

, the space H1 (ω,B) is given by

H1 (ω,B) :=
{

u ∈ H1 (ω) | div (B∇u) ∈ L2 (ω)
}

and equipped with the graph norm

∥u∥H1(ω,B) :=
(

∥u∥2H1(ω) + ∥div (B∇u)∥
2
L2(ω)

)1/2

.
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2.2. Differential operators. Next we describe our assumptions on the compu-
tational domain and its partition. Let Ω ⊂ R

3 be a bounded or unbounded Lipschitz
domain with (possibly empty) boundary Γ := ∂Ω. We assume that there is a fi-
nite partition of Ω consisting of disjoint Lipschitz domains Ωj , 1 ≤ j ≤ nΩ, with
boundaries Γj := ∂Ωj , which satisfy Ω =

⋃nΩ

j=1Ωj . The subdomains are collected in
the partition PΩ = {Ωj : 1 ≤ j ≤ nΩ}. The intersection of the boundaries ∂Ωj and
∂Ωk is denoted by Γj,k := ∂Ωj ∩ ∂Ωk. The skeleton of this partition is given by

Σ :=

nΩ
⋃

j=1

∂Ωj . To unify notation, we write Ω−j := Ωj and set Ω+
j := R

3\Ω−j .

We consider mixed Dirichlet and Neumann boundary conditions on ∂Ω. In this
way, we split

(2.6) ∂Ω = ΓD ∪ ΓN

and assume the relative interiors of these subsets are disjoint.
In the subdomains Ωj ∈ PΩ, we consider partial differential equations and formu-

late appropriate assumptions on the coefficients next.

Assumption 2.2. For any 1 ≤ j ≤ nΩ we are given coefficients that satisfy
1. A

−
j ∈ L

∞
>0

(

Ωj ,R
3×3
sym

)

and A
−
j can be extended to some Aext

j ∈ L
∞
>0

(

R
3,R3×3

sym

)

,

2. p−j ∈ L∞>0 (Ωj ,R) and p
−
j can be extended to some pextj ∈ L∞>0

(

R
3,R

)

,
3. s ∈ C>0 and |s| ≥ s0 for some s0 > 0.

We exclude a neighborhood of 0 for the frequencies s ∈ C since our focus is
on the high-frequency behavior. Note that the constants in our estimates depend
continuously on s0 and, possibly, deteriorate as s0 → 0.

For σ ∈ {+,−}, we formally define the differential operators:

(2.7) L
σ
j (s)w := − div

(

A
σ
j∇w

)

+ s2pσjw in Ωσj ,

where

(2.8) A
σ
j := A

ext
j

∣

∣

Ωσ
j

and pσj := pextj

∣

∣

Ωσ
j

σ ∈ {+,−} .

The differential equation on the subdomain Ωj is given by

(2.9) L
−
j (s)uj = 0 in Ωj .

Remark 2.3. Time harmonic wave propagation with absorption can be described
in the simplest case by a Helmholtz equation with wave number (frequency parameter)
s of positive real part. Such problems arise in many applications such as, e.g., in
viscoelastodynamics for materials with damping (see, e.g., [1]), in electromagnetism
for wave propagation in lossy media (see, e.g., [20]) and in nonlinear optics (see,
e.g., [27]). The Helmholtz equation for complex wave numbers also arises within the
popular convolution quadrature method for solving time depending wave propagation
problems and within some iterative algorithms for solving the linear system for the
Helmholtz equation (see, e.g., [7, §2] for a more detailed description of applications).

Remark 2.4. Typically, the coefficients A−j , p
−
j are the restrictions of some given

global coefficients A ∈ L
∞
>0

(

R
3,R3×3

sym

)

, p ∈ L∞>0

(

R
3,R

)

. Then, the choice A
ext
j := A

is admissible and seems to be natural. In some practical applications, a different
choice might be “simpler” and preferable. For instance, if the global coefficient A is
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constant on the subdomains Ωj and given by a positive definite matrix A
−
j ∈ R

3×3
sym

and p−j is also constant, then, the choice of Aext
j and pextj as the constant extensions

of A−j , p
−
j are preferable since the Green’s function is explicitly known in these cases

(see, e.g., [28, (3.1.3)]). However, in our abstract setting the existence or explicit
knowledge of the Green’s function is not needed and, hence, the concrete choice of
the extension is irrelevant.Of course, the single layer and double layer operators will
depend on the chosen extension; however the key point is that their combination in
a Green’s representation formula always represents a homogeneous solution in the
corresponding subdomain as will be shown in Lemma 3.15.

2.3. Traces and jumps. Next, we introduce jumps and means of functions
across the boundaries Γj ; the index j indicates that the two-dimensional manifold Γj
is regarded from the domain Ωj .

The following trace operators along their properties are well known for domains
with compact boundary (see, e.g., [23, Thm. 3.37, 3.38, Lem. 4.3, Thm. 4.4], [17,
Thm. 2.5]). For domains with non-compact boundary we refer to [24, Thm. 2.3,
Cor. 3.14, Lem. 2.6]. We define the one-sided co-normal derivatives for an abstract
diffusion coefficient B ∈ L

∞
>0

(

R
3,R3×3

sym

)

; in our applications, this will be either A or
A

ext
j .

Proposition 2.5. Let Ω, Ωj, Ω
σ
j , 1 ≤ j ≤ nΩ, σ ∈ {+,−}, be as explained above.

1. For σ ∈ {+,−}, there exist linear one-sided trace operators (Dirichlet trace)

γσD;j : H
1
(

Ωσj
)

→ H1/2 (Γj) ,

which are the continuous extensions of the classical trace operators: for u ∈
C0
(

Ωσj
)

, it holds
γσD;ju = u|Γj

.

These operators are surjective and bounded

(2.10)
∥

∥γσD;j

∥

∥

H1/2(Γj)←H1(Ωσ
j )
≤ CD.

For u ∈ H1
(

R
3
)

, the one-sided traces coincide, i.e.,

(2.11) γ−D;j

(

u|Ωj

)

= γ+D;j

(

u|Ω+

j

)

and we write short γD;ju for γσD;j

(

u|Ωσ
j

)

, σ ∈ {−,+}, in such cases.

2. For σ ∈ {+,−}, there exist linear one-sided normal trace operators (normal
trace)

γσn;j : H
(

Ωσj , div
)

→ H−1/2 (Γj)

which are continuous extensions of the classical normal trace: for ψσ ∈
C0
(

Ωσj
)

, it holds

γ−n;j
(

ψ−
)

=
〈

ψ−
∣

∣

Γj
,nj

〉

and γ+n;j
(

ψ+
)

=
〈

ψ+
∣

∣

Γj
,−nj

〉

,

where nj is the unit normal vector on Γj pointing from Ω−j into Ω+
j . These

operators are bounded

(2.12)
∥

∥γσn;j
∥

∥

H−1/2(Γj)←H(Ωσ
j ,div)

≤ Cn.
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For ψ ∈ H
(

R
3, div

)

the one-sided normal traces in the fixed direction nj
coincide, more precisely,

(2.13) γ−n;j

(

ψ|Ω−

j

)

= −γ+n;j
(

ψ|Ω+

j

)

and we write short γn;jψ for γ−n;j

(

ψ|Ω−

j

)

.

3. Let B ∈ L
∞
>0

(

R
3,R3×3

sym

)

. For σ ∈ {+,−}, 1 ≤ j ≤ nΩ, set B
σ
j := B|Ωσ

j
. There

exist linear one-sided co-normal derivative operators (Neumann trace)

γB,σN;j : H1
(

Ωσj ,B
σ
j

)

→ H−1/2 (Γj)

which are the continuous extensions of the classical co-normal derivatives: for

u− ∈ C1
(

Ω−j

)

and u+ ∈ C1
(

Ω+
j

)

it holds

γB,−N;j u
− =

〈

B
−
j ∇u−,nj

〉

and γB,+N;j u
+ =

〈

B
+
j ∇u+,−nj

〉

.

These operators are bounded
∥

∥

∥γ
B,σ
N;j

∥

∥

∥

H−1/2(Γj)←H1(Ωσ
j ,B

σ
j )
≤ CN.

For u ∈ H1
(

R
3,B
)

the one-sided co-normal derivatives in the fixed direction
nj coincide, more precisely,

(2.14) γB,−N;j

(

u|Ω−

j

)

= −γB,+N,j

(

u|Ω+

j

)

and we write short γBN;ju for γB,−N;j

(

u|Ω−

j

)

.

The one-sided Dirichlet and Neumann traces are collected in the Cauchy trace
operators γB,σ

C;j : H
1
(

Ωσj ,B
σ
j

)

→ H1/2 (Γj)×H−1/2 (Γj) given by

(2.15) γ
B,σ
C;j :=

(

γσD;j , γ
B,σ
N;j

)

.

For u ∈ H1
(

R
3,B
)

and uσ := u|Ωσ
j
, σ ∈ {+,−}, the one-sided Cauchy traces satisfy

(

γ−D;ju
−, γB,−N;j u

−
)

=
(

γ+D;ju
+,−γB,+N;j u

+
)

and we write

(2.16) γB

C;j : H
1
(

R
3,B
)

→ H1/2 (Γj)×H−1/2 (Γj) , γB

C;ju :=
(

γD;ju, γ
B

N;ju
)

.

We will also use versions of these operators which are scaled by a frequency parameter
s ∈ C>0 and set for σ ∈ {+,−}

γσD;j (s) := s1/2γσD;j , γσn;j (s) := s−1/2γσn;j , γB,σN;j (s) := s−1/2γB,σN;j ,

γD;j (s) := s1/2γD;j , γn;j (s) := s−1/2γn;j , γBN;j (s) := s−1/2γBN;j ,
(2.17)

γ
B,σ
C;j (s) :=

(

s1/2γσD;j , s
−1/2γB,σN;j

)

.(2.18)

Remark 2.6. It will turn out that the Calderón operator (see Def. 4.2) for these
scaled trace operators has a coercivity estimate which is better balanced with respect
to the frequency parameter s compared to the Calderón operator for the standard
trace operators (see, e.g., [4]).
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Definition 2.7. Let B ∈ L
∞
>0

(

R
3,R3×3

sym

)

. For σ ∈ {+,−}, 1 ≤ j ≤ nΩ, set

B
σ
j := B|Ωσ

j
. For a function u ∈ L2 (Ω) with u|Ωσ

j
∈ H1

(

Ωσj ,B
σ
j

)

, the (Dirichlet)

jump and the jump of the co-normal derivative (Neumann jump) of u across Γj are
given by

[u]D;j := γ+D;j

(

u|Ω+

j

)

− γ−D;j

(

u|Ω−

j

)

,(2.19a)

[u]
B

N;j := −γ
B,+
N;j

(

u|Ω+

j

)

− γB,−N;j

(

u|Ω−

j

)

.(2.19b)

For s ∈ C>0, the frequency-scaled versions are given by [u]D;j (s) := s1/2 [u]D;j and

[u]
B

N;j (s) := s−1/2 [u]
B

N;j .
The (Dirichlet) mean and the mean of the co-normal derivative (Neumann mean)

across Γj are given by

{{u}}D;j :=
1

2

(

γ+D;j

(

u|Ω+

j

)

+ γ−D;j

(

u|Ω−

j

))

,(2.20a)

{{u}}BN;j :=
1

2

(

−γB,+N;j

(

u|Ω+

j

)

+ γB,−N;j

(

u|Ω−

j

))

.(2.20b)

For s ∈ C>0, the frequency-scaled versions are given by {{u}}D;j (s) := s1/2{{u}}D;j and
{{u}}BN;j (s) := s−1/2{{u}}BN;j.

We also need to formulate jump conditions on partial boundaries Γj,k of the
subdomains. For a measurable subsetM ⊆ ∂Ωj we denote by |M | its two-dimensional
surface measure. Let Ωj and Ωk be such that Γj,k := Γj ∩ Γk has positive surface
measure. We define the Sobolev spaces

H1/2 (Γj,k) :=
{

φ|Γj,k
: φ ∈ H1/2 (Γj)

}

,

H̃−1/2 (Γj,k) :=
(

H1/2 (Γj,k)
)′

,

H̃1/2 (Γj,k) :=
{

φ|Γj,k
: φ ∈ H1/2 (Γj) ∧ φ = 0 in Γj\Γj,k

}

,

H−1/2 (Γj,k) :=
(

H̃1/2 (Γj,k)
)′

.

(2.21)

Definition 2.8. The multi trace space X (PΩ) for the partition PΩ is given by

X (PΩ) :=
nΩ×
j=1

Xj with Xj := H1/2 (Γj)×H−1/2 (Γj) ,

and equipped with the norm

∥

∥ψj
∥

∥

Xj
:=
(

∥ψD;j∥2H1/2(Γj)
+ ∥ψN;j∥2H−1/2(Γj)

)1/2

∀ψj = (ψD;j , ψN;j) ∈ Xj ,

∥ψ∥
X
:=





nΩ
∑

j=1

∥

∥ψj
∥

∥

2

Xj





1/2

∀ψ =
(

ψj
)nΩ

j=1
∈ X (PΩ) .

We seek the solution of our transmission problem in the space

H
1 (PΩ,A) :=

nΩ×
j=1

H1
(

Ωj ,A
−
j

)
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(cf. Assumption 2.2, Remark 2.4).
Then, for u ∈×nΩ

j=1H
1 (Ωj) and w ∈ H

1 (PΩ,B) the jump [u]D;j,k ∈ H1/2 (Γj,k)

and the Neumann jump [w]
B

N;j,k ∈ H−1/2 (Γj,k) across Γj,k := Γj∩Γk (and frequency-
scaled versions thereof) are defined by

[u]D;j,k :=
(

γ−D,juj

)∣

∣

∣

Γj,k

−
(

γ−D,kuk

)∣

∣

∣

Γj,k

, [u]D;j,k (s) := s1/2 [u]D;j,k ,

(2.22a)

[w]
B

N;j,k := −
(

γB,−N,j wj

)∣

∣

∣

Γj,k

−
(

γB,−N,kwk

)∣

∣

∣

Γj,k

, [w]
B

N;j,k (s) := s−1/2 [w]
B

N;j,k .

(2.22b)

We set [u]D;j,k := 0 and [w]
B

N;j,k := 0 if Γj,k has zero surface measure or j = k.
Note that for coefficients B and functions w which are piecewise sufficiently reg-

ular, the Neumann jump across Γj,k can be written as

[w]
B

N;j,k = −
〈

γ−D;j (B∇wj) ,nj
〉∣

∣

∣

Γj,k

−
〈

γ−D;k (B∇wk) ,nk
〉∣

∣

∣

Γj,k

=
〈

γ−D;j (B∇wj)− γ−D;k (B∇wk) ,nk
〉∣

∣

∣

Γj,k

=
〈

[B∇w]D;j,k ,nk

〉∣

∣

∣

Γj,k

,

where we used nj = −nk on Γj,k. Clearly [u]D;j,k = − [u]D;k,j depends on the ordering
of the indices j, k, while the Neumann jump is independent of it.

Notation 2.9. We have defined co-normal derivatives, Neumann jumps, and
Neumann means for an abstract coefficient B ∈ L

∞
>0

(

Ωj ,R
3×3
sym

)

and used a super-
script B in the notation. In our application, the choices B ← A and B ← A

ext
j will

appear. To simplify notation we skip the superscript B if B = A and write γσN;j short

for γA,σN;j and similar for analogous quantities. If B = A
ext
j , we replace the super-

script by “ext” and write γext,σN;j short for γ
A

ext
j ,σ

N;j and in the same way for analogous
quantities. This convention is applied verbatim also to the notation of Cauchy traces.

2.4. Transmission problem. Now we have collected all ingredients to state
the acoustic transmission problem. Let A ∈ L

∞
>0

(

R
3,R3×3

sym

)

and p ∈ L∞>0

(

R
3,R

)

be

given and let the coefficients in (2.9) be defined by A
−
j := A|Ω−

j
and p−j := p|Ω−

j
such

that Assumption 2.2 is satisfied. We do not require that the extensions Aext
j , pextj in

Assumption 2.2 coincide with A (see Remark 2.4).
The given excitation of the acoustic transmission problem consists of given data

on the skeleton as well as on the Dirichlet and Neumann parts ΓD and ΓN of the
boundary (cf. (2.6)). Let β =

(

βj
)nΩ

j=1
∈ X (PΩ) with βj = (βD;j , βN;j) ∈ Xj . For

1 ≤ j, k ≤ nΩ, define the jumps of β across Γj,k := Γj ∩ Γk by

[β]j,k :=
(

βD;j |Γj,k
− βD;k|Γj,k

,− βN;j |Γj,k
− βN;k|Γj,k

)

if j ̸= k and Γj ∩ Γk has positive surface measure. Otherwise, we set [β]j,k := 0.
Given data β ∈ X (PΩ), the acoustic transmission problem with mixed boundary
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condition seeks u = (uj)
nΩ

j=1 ∈ H
1 (PΩ,A) such that

(2.23)

− div (Aj∇uj) + s2pjuj = 0 in Ωj , 1 ≤ j ≤ nΩ,
(

[u]D;j,k (s) , [u]
A

N;j,k (s)
)

= [β]j,k , 1 ≤ j, k ≤ nΩ,
(

γ−D;j (s)uj

)∣

∣

∣

Γj∩ΓD

= βD;j |Γj∩ΓD
1 ≤ j ≤ nΩ,

(

γ−N;j (s)uj

)∣

∣

∣

Γj∩ΓN

= βN;j |Γj∩ΓN
1 ≤ j ≤ nΩ.

Remark 2.10. The inhomogeneity β in (2.23) is given in some applications via an
incident wave uinc ∈ H1

loc

(

R
3,Aext

ν

)

for some fixed ν ∈ {1, 2, . . . nΩ} which satisfies
− div (Aext

ν ∇uinc)+s2pextν uinc = 0 in R
3. If Ω is unbounded, then typically, ν is chosen

such that Ων is unbounded. In any case, it is assumed that the Cauchy trace of uinc is
well defined, more precisely, (at least) one of the following two conditions is required:

1. γ−C;νuinc ∈ Xν ,

2. the function uinc belongs to C1
(

R
3
)

and satisfies
(a) the traces γD;νuinc and γN;νuinc exist in the classical pointwise sense,
(b) the restrictions of the traces γD;νuinc|ΓD

and γN;νuinc|ΓN
have compact

supports.

We will derive the well-posedness of this problem in Section 5 via layer potentials.
For this goal, we will present a general method to transform such acoustic transmission
problems with mixed boundary conditions and variable coefficients to a system of non-
local Calderón operators on the skeleton, without relying on the explicit knowledge
of the Green’s function. The resulting boundary integral operators1 are coercive,
self-dual and continuous (Thm. 5.5) so that the Lax-Milgram theorem implies well-
posedness. In turn, well-posedness of the original formulation (2.23) follows.

3. Potentials and Green’s formula. In the subdomains Ωj ∈ PΩ, a function
uj ∈ H1 (Ωj ,Aj) which satisfies the homogeneous partial differential equation (2.9)
can be expressed in terms of its Cauchy trace via layer potentials. In this section,
we introduce in a fairly standard way the Newton potential and the single layer
potential as solutions to coercive, full space PDEs in variational form. We present a
new definition for the double layer potential as a solution of an ultra-weak variational
problem. This allows us to derive its mapping properties and jump relations from the
theory of elliptic PDEs. Finally, we derive a Green’s representation formula for our
acoustic transmission problem based on these potentials.

3.1. Sesquilinear forms and associated operators. Throughout this section
we require that Assumption 2.2 holds and employ the notation

Ω−j := Ωj , Ω+
j := R

3\Ωj ,
A

+
j := A

ext
j

∣

∣

Ω+

j

, p+j := pextj

∣

∣

Ω+

j

.

We also need the piecewise gradient∇pw;j which is given, for a function w ∈ H1
(

R
3\Γj

)

,
by

(3.1) (∇pw;jw)|Ωσ
j
:= ∇

(

w|Ωσ
j

)

, σ ∈ {−,+}

and considered as a function in L2
(

R
3
)

.

1We use here the traditional notion of boundary integral operators (instead of skeleton operators)
since they are defined on the subdomain boundaries.
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Definition 3.1. Let Assumption 2.2 be satisfied. For s ∈ C>0, the sesquilinear
form

ℓj (s) : H
1
(

R
3
)

×H1
(

R
3
)

→ C

is given by

ℓj (s) (u, v) :=
〈

A
ext
j ∇u,∇v

〉

R3
+ s2

〈

pextj u, v
〉

R3
∀u, v ∈ H1

(

R
3
)

,

and the associated operator Lj (s) : H
1
(

R
3
)

→ H−1
(

R
3
)

by

(3.2) ⟨Lj (s)u, v⟩R3 := ℓj (s) (u, v) ∀u, v ∈ H1
(

R
3
)

.

Next, we prove continuity and coercivity for the sesquilinear form ℓj (s) (·, ·) in
the spirit of [3]. We take pains to elaborate the explicit dependence of the constants
on s.

Lemma 3.2. Let Assumption 2.2 be satisfied. The sesquilinear forms ℓj are con-
tinuous and coercive: for µ := s/ |s| and for all holds

[c]ll |ℓj (s) (v, w)| ≤ Λj ∥v∥H1(R3);s ∥w∥H1(R3);s ∀v, w ∈ H1
(

R
3
)

,(3.3)

Re ℓj (s) (v, µv) ≥ λj
Re s

|s| ∥v∥
2
H1(R3);s ∀v ∈ H1

(

R
3
)

,(3.4)

with

(3.5) λj := min
{

λj
(

pextj

)

, λj
(

A
ext
j

)}

and Λj := max
{

Λj
(

pextj

)

,Λj
(

A
ext
j

)}

.

Proof. Fix µ = s/ |s|. For v ∈ H1
(

R
3
)

, it holds

Re ℓj (s) (v, µv) = Re
〈

s2pextj v, µv
〉

R3
+Re

〈

A
ext
j ∇v, µ∇v

〉

R3
(3.6)

≥ λ
(

pextj

)

Re
(

s2µ
)

∥v∥2L2(R3) + λ
(

A
ext
j

)

(Reµ) ∥∇v∥2L2(R3)

≥ Re s

|s| λj ∥v∥
2
H1(R3);s .

To establish continuity, we use

|ℓj (s) (v, w)| =
∣

∣

∣s2
〈

pextj v, w
〉

R3

∣

∣

∣+
∣

∣

∣

〈

A
ext
j ∇v,∇w

〉

R3

∣

∣

∣

≤ Λ
(

pextj

)

|s|2 ∥v∥L2(R3) ∥w∥L2(R3) + Λ
(

A
ext
j

)

∥∇v∥L2(R3) ∥∇w∥L2(R3)

≤ Λj ∥v∥H1(R3);s ∥w∥H1(R3);s

for all v, w ∈ H1
(

R
3
)

.

Since the right-hand side in the first equation of (2.23) is the zero function we
conclude that a solution uj belongs to H

1
(

Ω−j ,A
−
j

)

.

Lemma 3.3 (Green’s identities). Let Assumption 2.2 be satisfied and set A
σ
j :=

A
ext
j

∣

∣

Ωσ
j

, pσj := pextj

∣

∣

Ωσ
j

for σ ∈ {+,−}.
1. For any σ ∈ {+,−}, assume that vσ ∈ H1

(

Ωσj ,A
σ
j

)

satisfies

(3.7) L
σ
j (s) v

σ = 0 in Ωσj .

Then, the co-normal derivative of vσ satisfies

(3.8)

〈

A
σ
j∇vσ,∇w

〉

Ωσ
j

+

s2
〈

pσj v
σ, w

〉

Ωσ
j

=
〈

γext,σN;j (s) vσ, γσD;j (s)w
〉

Γj

∀w ∈ H1
(

Ωσj
)

.
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2. For v ∈ H1
(

R
3
)

, set vσ := v|Ωσ
j
. Assume that vσ belongs to H1

(

Ωσj ,A
σ
j

)

and satisfies (3.7) for σ ∈ {+,−}. Then

(3.9) ℓj (s) (v, w) =
〈

− [v]
ext
N;j (s) , γD;j (s)w

〉

Γj

, ∀w ∈ H1
(

R
3
)

.

3. For v ∈ L2
(

R
3
)

, set vσ := v|Ωσ
j
. Assume vσ ∈ H1

(

Ωσj ,A
σ
j

)

, [v]
ext
N;j = 0, and

that vσ satisfies, (3.7). Then
(3.10)

∑

σ∈{+,−}

〈

A
σ
j∇vσ,∇wσ

〉

Ωσ
j

+ s2
〈

pσj v
σ, wσ

〉

Ωσ
j

=
〈

γextN;j (s) v,− [w]D;j (s)
〉

Γj

for any w ∈ L2
(

R
3
)

with wσ := w|Ωσ
j
∈ H1 (Ωσ), σ ∈ {+,−}.

4. Let vσ, wσ ∈ H1
(

Ωσj ,A
σ
j

)

. Then,

〈

vσ, Lσj (s)w
σ
〉

Ωσ
j

−
〈

L
σ
j (s) v

σ, wσ
〉

Ωσ
j

=
〈

γext,σN;j (s) vσ, γσD;j (s)w
σ
〉

Γj

(3.11)

−
〈

γσD;j (s) v
σ, γext,σN;j (s) (wσ)

〉

Γj

.

Proof. @ 1. For any v ∈ H1
(

Ωσj ,A
σ
j

)

, it holds

〈

A
σ
j∇v,∇w

〉

Ωσ
j

+
〈

s2pσj v, w
〉

Ωσ
j

=
〈

L
σ
j (s) v, w

〉

Ωσ
j

+
〈

γext,σN;j (s) v, γσD;j (s)w
〉

Γj

(3.12)

(3.7)
=
〈

γext,σN;j (s) v, γσD;j (s)w
〉

Γj

∀w ∈ H1
(

Ωσj
)

.

@ 2. Let v ∈ H1
(

R
3
)

and assume v satisfies the conditions in part 2. We
conclude from part 1 that

ℓj (s) (v, w) =
∑

σ∈{+,−}

〈

A
σ
j∇v,∇w

〉

Ωσ
j

+
〈

s2pσj v, w
〉

Ωσ
j

=
〈

γext,+N;j (s) v+ + γext,−N;j (s) v−, γD;j (s)w
〉

Γj

=
〈

− [v]
ext
N;j (s) , γD;j (s)w

〉

Γj

holds for all w ∈ H1
(

R
3
)

.
@ 3. The relation (3.10) follows in the same fashion as (3.8).
@ 4. Relation (3.11) follows by integrating by parts the first term in (3.12).

3.2. Volume and layer potentials. In this section we define volume and layer
potentials as solutions to certain variational formulations of elliptic partial differential
equations without relying on the explicit knowledge of the Green’s function.

3.2.1. The Newton potential. We will define the acoustic Newton potential as
the solution of the variational formulation of a full space partial differential equation
depending on a single subdomain Ωj , corresponding to extended coefficients A

ext
j ,

pextj , and the frequency parameter s.
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Definition 3.4. Let Assumption 2.2 be satisfied. The solution operator (acoustic
Newton potential) Nj (s) : H

−1
(

R
3
)

→ H1
(

R
3
)

is defined through

ℓj (s) (Nj (s) f, w) = ⟨f, w⟩R3 ∀f ∈ H−1
(

R
3
)

, ∀w ∈ H1
(

R
3
)

.(3.13)

Lemma 3.2 implies that ℓj (s) is continuous and coercive. Hence, the Lax-Milgram
theorem ensures that

(3.14) Nj (s) : H
−1
(

R
3
)

→ H1
(

R
3
)

is well defined, linear, and bounded. An estimate of the operator norm in frequency
dependent norms (see (2.1), (3.15)) is given by the following lemma. Note that the

dual space of
(

H1
(

R
3
)

, ∥·∥H1(R3);s

)

is given by
(

H−1
(

R
3
)

, ∥·∥H−1(R3);s

)

with dual

norm defined by

(3.15) ∥f∥H−1(R3);s := sup
g∈H1(R3)\{0}

|⟨f, g⟩
R3 |

∥g∥H1(R3);s

.

Lemma 3.5. Let Assumption 2.2 be satisfied. The Newton potential is an inverse
of Lj (s), i.e.,

v = Nj (s) ◦ Lj (s) v ∀v ∈ H1
(

R
3
)

and f = Lj (s) ◦ Nj (s) f ∀f ∈ H−1
(

R
3
)

;

it satisfies the s-explicit estimate

(3.16) ∥Nj (s) f∥H1(R3);s ≤
|s|

λj Re s
∥f∥H−1(R3);s ∀f ∈ H−1

(

R
3
)

,

with λj as in (3.5).

Proof. For v ∈ H1
(

R
3
)

, we have Lj (s) v ∈ H−1
(

R
3
)

and hence the Newton
potential can be applied:

ℓj (s) (Nj (s) ◦ Lj (s) v, w) = ⟨Lj (s) v, w⟩R3 = ℓj (s) (v, w) ∀w ∈ H1
(

R
3
)

.

Since ℓj (s) (·, ·) is coercive the first identity in (3.5) follows. The second one is a
direct consequence of the definition of Nj (s).

To prove (3.16), we use the coercivity of ℓj (s) (·, ·) with respect to the Hilbert

space
(

H1
(

R
3
)

, ∥·∥H1(R3);s

)

as stated in Lemma 3.2. From the Babuška-Lax-Milgram

theorem [2, Thm. 2.1] and the definition (3.15) of the dual norm the assertion follows.

3.2.2. The single layer potential. The single layer potential is defined by
using the same sesquilinear form as for the Newton potential for a certain type of
right-hand sides.

Definition 3.6. Let Assumption 2.2 be satisfied. For 1 ≤ j ≤ nΩ and φ ∈
H−1/2 (Γj) the single layer potential Sj (s)φ ∈ H1

(

R
3
)

is given as the unique
solution of:

(3.17) ℓj (s) (Sj (s)φ,w) = ⟨φ, γD;j (s)w⟩Γj
∀w ∈ H1

(

R
3
)

.

This defines a continuous operator H−1/2 (Γj) → H1(R3). The single layer can
be represented as the composition of the Newton potential and the dual Dirichlet
trace as can be seen from the next lemma, where also important properties of Sj (s)
are collected.
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Lemma 3.7. Let Assumption 2.2 be satisfied. Then

(3.18) Sj (s) = Nj (s) ◦ (γD;j (s))
′
.

For any φ ∈ H−1/2 (Γ), the single layer potential u := Sj (s)φ satisfies

u ∈ H1
(

R
3\Γj ,Aext

j

)

.

For the restrictions uσ := u|Ωσ
j
, σ ∈ {+,−}, hold

(3.19) L
σ
j (s)u

σ = 0 in Ωσj

and the jump relations

(3.20) [(Sj (s)φ)]D;j (s) = 0 , [(Sj (s)φ)]
ext
N;j (s) = −φ .

Proof. The representation (3.18) follows by writing (3.17) as

ℓj (s) (Sj (s)φ,w) =
〈

(γD;j (s))
′
φ,w

〉

R3 ∀w ∈ H1
(

R
3
)

,

so that Sj (s)φ = Nj (s) (γD;j (s))
′
φ. Indeed, the mapping properties of the dual

Dirichlet trace (γD;j (s))
′
: H1/2 (Γj) → H−1

(

R
3
)

imply that the Newton potential
can be applied in (3.18).

For φ ∈ H−1/2 (Γ), let u := Sj (s)φ and uσ := u|Ωσ
j
. By choosing in (3.17) test

functions v ∈ H1
(

R
3
)

with zero trace on Γj we obtain

L
σ
j (s)u

σ = 0 in Ωσj , σ ∈ {+,−} .

In particular, this implies u ∈ H1
(

R
3\Γj ,Aext

j

)

. An integration by parts in (3.17)

over Ω−j and Ω+
j leads to

−
〈

[u]
ext
N;j (s) , γD;j (s)w

〉

Γj

= ⟨φ, γD;j (s)w⟩Γj
∀w ∈ H1

(

R
3
)

.

Since γD;j (s) : H1
(

R
3
)

→ H1/2 (Γj) is surjective (see, e.g., [23, Thm. 3.37], [24,

Lem. 2.6]) it follows that [u]
ext
N;j (s) = −φ. Finally, the relation [u]D;j (s) = 0 follows

from u ∈ H1
(

R
3
)

(see, e.g. [23, (6.20)], [24, Lem. 2.5]).

3.2.3. The double layer potential. Next, we introduce the double layer po-
tential and start by reviewing some standard definitions as already sketched in the
introduction. For problems with constant coefficients as, e.g., in [28, Def. 3.1.5], the
double layer potential is defined by

(3.21) Dj (s) := Nj (s) ◦
(

γextN;j

)′
(s) .

The continuity of the co-normal derivative γextN;j : H1
(

R
3,Aext

j

)

→ H−1/2 (Γj) (see

(2.14)) leads to the continuity of its dual
(

γextN;j

)′
: H1/2 (Γj)→

(

H1
(

R
3,Aext

j

))′
. The

problem with (3.21) is that the image space
(

H1
(

R
3,Aext

j

))′
in general is larger than

H−1
(

R
3
)

and hence exceeds the domain of Nj (s) in (3.21). The extension of the
domain of Nj (s) for problems with varying coefficients is far from trivial. Another
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common definition uses explicit knowledge of the fundamental solution G (x,y) and
first defines

(Dj (s)ψ) (x) :=

∫

Γj

(

∂

∂ñy

G (x,y)

)

ψ (y) dΓy x ∈ R
3\Γj

(∂/∂ñy with ñy := A
ext
j nj denotes the co-normal derivative with respect to y) for

coefficients A
ext
j and boundary densities ψ : Γj → C, which are sufficiently regular,

and then continuously extends this definition to appropriate Sobolev spaces. However,
the derivation of mapping properties of Dj (s) via this approach relies on properties
of the unknown fundamental solution and is far from trivial for problems with L∞

coefficients.
Instead, we present here a new definition of the double layer potential as a solution

of some ultra-weak variational problem which allows us to derive properties of these
potentials directly from the well-established theory of linear elliptic partial differential
operators of second order.

For the definition of the double layer potential we introduce two auxiliary varia-
tional problems.

I. Ultra-weak variational problem (UWVP): Given ψ ∈ H1/2 (Γj), find u ∈ L2
(

R
3
)

such that

⟨u, Lj (s) v⟩R3 =
〈

ψ, γextN;j (s) v
〉

Γj
∀v ∈ H1

(

R
3,Aext

j

)

.(3.22)

II. Mixed variational problem (MVP). For given ψ ∈ H1/2 (Γj), find j ∈ H
(

R
3, div

)

and u ∈ L2
(

R
3
)

such that
(3.23)

−
〈

(

A
ext
j

)−1
j,m

〉

R3
−⟨u, divm⟩

R3 = ⟨ψ, γn;j (s)m⟩Γj
∀m ∈ H

(

R
3, div

)

,

−⟨div j, q⟩
R3 +s2

〈

pextj u, q
〉

R3
= 0 ∀q ∈ L2

(

R
3
)

.

In Lemmas 3.8 and 3.9 we will prove that the variational problems (3.9) and
(3.23) are well posed.

Lemma 3.8. Let Assumption 2.2 be satisfied. The ultra-weak variation problem
(3.22) is well posed.

Proof. We will show that there exist constants 0 < C1, C2, c1 <∞ such that the
continuity estimates

∀u ∈ L2
(

R
3
)

, v ∈ H1
(

R
3,Aext

j

) ∣

∣⟨u, Lj (s) v⟩R3

∣

∣ ≤ C1 ∥u∥L2(R3) ∥v∥H1(R3,Aext
j ) ,

(3.24a)

∀ψ ∈ H1/2(Γj),

v ∈ H1
(

R
3,Aext

j

)

∣

∣

∣

〈

ψ, γextN;j (s) v
〉

Γj

∣

∣

∣ ≤ C2 ∥ψ∥H1/2(Γ) ∥v∥H1(R3,Aext
j ) .(3.24b)

and the following inf-sup conditions hold:

∀u ∈ L2
(

R
3
)

∃v ∈ H1
(

R
3,Aext

j

) ∣

∣⟨u, Lj (s) v⟩R3

∣

∣ ≥ c1 ∥u∥L2(R3) ∥v∥H1(R3,Aext
j ) ,

(3.24c)

∀v ∈ H1
(

R
3,Aext

j

)

(

sup
u∈L2(R3)

∣

∣⟨u, Lj (s) v⟩R3

∣

∣ = 0

)

=⇒ (v = 0) .(3.24d)
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The Babuška-Lax-Milgram theorem (also sometimes called Banach-Nečas-Babuš-
ka theorem) (see, e.g., [2, Thm. 2.1] and, e.g., [16, Thm. 25.9] for the form we will
apply it) then implies well-posedness of (3.22).

@(3.24a). The continuity of the sesquilinear form in (3.22) follows from

∣

∣⟨u, Lj (s) v⟩R3

∣

∣ ≤ ∥u∥L2(R3) ∥Lj (s) v∥L2(R3)

≤ ∥u∥L2(R3)

∥

∥− div
(

A
ext
j ∇v̄

)

+ s2pextj v̄
∥

∥

L2(R3)

≤
√
2 ∥u∥L2(R3)

(

∥

∥div
(

A
ext
j ∇v̄

)∥

∥

2

L2(R3)
+ |s|4 Λ2

j ∥v∥
2
L2(R3)

)1/2

≤ C1 ∥u∥L2(R3) ∥v∥H1(R3,Aext
j )

for C1 =
√
2max

{

1, |s|2 Λj
}

.

@(3.24b). It is a simple consequence of the mapping properties of the trace oper-
ator that the right-hand side in (3.22)

〈

ψ, γextN;j (s) ·
〉

Γj
defines a continuous functional

on H1
(

R
3,Aext

j

)

so that (3.24b) follows.
@(3.24c). We choose the test function in (3.22) as v ← Nj (s)u. It is easy to

deduce from Definition 3.4 that Nj (s)u = Nj (s)u holds so that

〈

u, Lj (s)Nj (s)u
〉

R3
= ⟨u, Lj (s)Nj (s)u⟩R3 = ∥u∥2L2(R3) .

Hence, the inf-sup constant for problem (3.22) can be estimated from below by

inf
u∈L2(R3)\{0}

sup
v∈H1(R3,Aext

j )\{0}

⟨u, Lj (s) v⟩R3

∥u∥L2(R3) ∥v∥H1(R3,Aext
j )

≥ inf
u∈L2(R3)\{0}

∥u∥L2(R3)

∥Nj (s)u∥H1(R3,Aext
j )

.

We estimate the denominator by

∥Nj (s)u∥2H1(R3,Aext
j ) =

∥

∥div
(

A
ext
j ∇Nj (s)u

)∥

∥

2

L2(R3)
+ ∥Nj (s)u∥2H1(R3)

=
∥

∥Lj (s)Nj (s)u− s̄2pextj Nj (s)u
∥

∥

2

L2(R3)
+ ∥Nj (s)u∥2H1(R3)

≤ 2 ∥Lj (s)Nj (s)u∥2L2(R3) + 2 |s|4 Λ2
j ∥Nj (s)u∥2L2(R3)

+ ∥Nj (s)u∥2H1(R3)

≤ 2 ∥u∥2L2(R3) + |s|
2
C2

0 ∥Nj (s)u∥2H1(R3);s

for C0 := max
{
√

2Λ2
j +

1
s40
, s−10

}

. From (3.16) we get

∥Nj (s)u∥H1(R3);s ≤
|s|

λj Re s
∥u∥H−1(R3);s

≤ |s|
λj Re s

(

sup
g∈H1(R3)\{0}

∥g∥L2(R3)

∥g∥H1(R3);s

)

∥u∥L2(R3)

≤ 1

λj Re s
∥u∥L2(R3)
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and, in turn,

∥Nj (s)u∥H1(R3,Aext
j ) ≤

(

2 +
C2

0 |s|
2

λ2j (Re s)
2

)1/2

∥u∥L2(R3) .

The combination of these estimates leads to the inf-sup estimate

inf
u∈L2(R3)\{0}

sup
v∈H1(R3,Aext

j )\{0}

⟨u, Lj (s) v⟩R3

∥u∥L2(R3) ∥v∥H1(R3,Aext
j )
≥ c1

Re s

|s| ,

where c1 > 0 only depends on λj ,Λj , s0.

@(3.24d). We choose u = Lj (s)v and obtain

(3.25) sup
u∈L2(R3)

∣

∣⟨u, Lj (s) v⟩R3

∣

∣ ≥
∣

∣

∣

〈

Lj (s)v, Lj (s) v
〉

R3

∣

∣

∣ = ∥Lj (s) v∥2L2(R3) .

Since Lj (s) : H1
(

R
3
)

→ H−1
(

R
3
)

is an isomorphism (see (3.14)), the implication

Lj (s) v = 0 =⇒ v = 0 holds for all v ∈ H1
(

R
3
)

. Since H1
(

R
3,Aext

j

)

⊂ H1
(

R
3
)

we
conclude from (3.25) that (3.24d) holds.

Lemma 3.9. Let Assumption 2.2 be satisfied. The mixed variational problem
(3.23) is well posed.

Proof. Again, we employ the Babuška-Lax-Milgram theorem and prove the rele-
vant properties for the sesquilinear form and anti-linear form associated with (3.23).
The sesquilinear form b :

(

H
(

R
3, div

)

, L2
(

R
3
))

×
(

H
(

R
3, div

)

, L2
(

R
3
))

→ C related
to the mixed variational problem (3.23) is given by

b ((j, u) , (m, v)) := −
〈

(

A
ext
j

)−1
j,m

〉

R3
−⟨u, divm⟩

R3 −⟨div j, v⟩R3 + s
2
〈

pextj u, v
〉

R3
.

The anti-linear form associated to the right-hand side is f :
(

H
(

R
3, div

)

, L2
(

R
3
))

→
C

f ((m, v)) := ⟨ψ, γn;j (s)m⟩Γj
.

We will verify the four conditions for the Babuška-Lax-Milgram theorem. The conti-
nuity of b follows by straightforward Cauchy-Schwarz inequalities. For the analogue
of (3.24c) we choose

(3.26) v ← s

|s|3
u− s

|s|3
1

pextj

div j and m← − s̄

|s|

(

1 +
1

|s|2

)

j

and obtain after some straightforward manipulations

b ((j, u) , (m, v)) =
s

|s|

(

1 +
1

|s|2

)

〈

(

A
ext
j

)−1
j, j
〉

R3
+

s̄

|s|3

〈

1

pextj

div j, div j

〉

R3

+ 2 i Im

(

s

|s|3
〈

u, div j
〉

R3

)

+
s

|s|
〈

pextj u, u
〉

R3
.
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Hence,

|b ((j, u) , (m, v))| ≥ Re b ((j, u) , (m, v))

≥ Re s

Λj |s|

(

1 +
1

|s|2

)

∥j∥2L2(R3) +
Re s

Λj |s|3
∥div j∥2L2(R3)

+
Re s

|s| λj ∥u∥
2
L2(R3) .

From this, the estimate

|b ((j, u) , (m, v))| ≥ Re s

|s|3
min

{

1

Λj
, s20λj

}

(

∥j∥2H(R3,div) + ∥u∥
2
L2(R3)

)

follows. The choice (3.26) can be bounded by

∥m∥2H(R3,div) + ∥v∥
2
L2(R3) ≤

(

1 +
1

|s|2

)2

∥j∥2H(R3,div)

+
2

|s|4

(

∥u∥2L2(R3) +
1

λ2j
∥j∥2H(R3,div)

)

≤ C0

(

∥j∥2H(R3,div) + ∥u∥
2
L2(R3)

)

for a positive constant C0 which depends solely on s0 and λj . This leads to

|b ((j, u) , (m, v))| ≥ c1
(

∥j∥2H(R3,div) + ∥u∥
2
L2(R3)

)1/2 (

∥m∥2H(R3,div) + ∥v∥
2
L2(R3)

)1/2

.

Next, we prove the analogue of (3.24d). Let (m, v) ∈
(

H
(

R
3, div

)

, L2
(

R
3
))

and
assume

(3.27) ∀ (j, u) ∈
(

H
(

R
3, div

)

, L2
(

R
3
))

b ((j, u) , (m, v)) = 0.

The analogous choice to (3.26) for the primal variables (j, u) is

u← s̄

|s|3
v − s̄

|s|3
1

pextj

divm and j = − s

|s|

(

1 +
1

|s|2

)

m

and we obtain in the same way as before

b ((j, u) , (m, v)) =
s

|s|

(

1 +
1

|s|2

)

〈

(

A
ext
j

)−1
m,m

〉

R3
+

s̄

|s|3

〈

1

pextj

divm, divm

〉

R3

+ 2 i Im

(

s

|s|3
⟨divm, v⟩

R3

)

+
s

|s|
〈

pextj v, v
〉

R3
.

For the real part the estimate

Re b ((j, u) , (m, v)) ≥ Re s

|s|3
min

{

1

Λmin
, s20λmin

}

(

∥m∥2H(R3,div) + ∥v∥
2
L2(R3)

)
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follows. In view of (3.27), (m, v) = (0, 0) follows.
The continuity of the anti-linear form f follows by combining a Cauchy-Schwarz

inequality

|f ((m, v))| ≤ ∥ψ∥H1/2(Γj)
|s|−1/2 ∥γn;j(s) (m)∥H−1/2(Γj)

with the estimate (2.12) for the normal trace.

The next lemma states an equivalence of the solutions of (3.22) and (3.23).

Lemma 3.10. Let Assumption 2.2 be satisfied. The mixed variational problem
(3.23) and the ultra-weak variational problem (3.22) are equivalent:

1. If (j, u) ∈
(

H
(

R
3, div

)

, L2
(

R
3
))

is the solution of (3.23), then u solves
(3.22).

2. If u is the solution of (3.22), then the pair (j, u) :=
(

A
ext
j ∇pw;ju, u

)

solves

(3.23). In particular, it holds j ∈ H
(

R
3, div

)

.
3. The solution u of the ultra-weak variational problem satisfies the jump relation

(3.28) [u]D;j (s) = ψ.

Proof. Part 1.
Let (j, u) ∈

(

H
(

R
3, div

)

, L2
(

R
3
))

be the solution of (3.23). We test the first

equation in (3.23) with m := A
ext
j ∇v for v ∈ H1

(

R
3,Aext

j

)

. Clearly, m ∈ H
(

R
3, div

)

is an admissible test function. This leads to

−⟨j,∇v⟩
R3 −

〈

u, div
(

A
ext
j ∇v

)〉

R3
=
〈

ψ, γextN;j (s) v
〉

Γj
∀v ∈ H1

(

R
3,Aext

j

)

.

Next, we test the second equation in (3.23) with q ∈ H1
(

R
3,Aext

j

)

and integrate by
parts

⟨j,∇q⟩
R3 + s2

〈

pextj u, q
〉

R3
= 0 ∀q ∈ H1

(

R
3,A ext

j

)

.

We set q = v and sum both equations, which yields

⟨u, Lj (s) v⟩R3 =
〈

ψ, γextN;j (s) v
〉

Γj
∀v ∈ H1

(

R
3,Aext

j

)

.

Hence, the solution u of the mixed variational problem (3.23) solves the ultra-weak
problem (3.22). Lemma 3.8 implies uniqueness of solutions of (3.23) so that u is the
unique solution of (3.22).

Now, we test the first equation in (3.23) with functions m ∈ C∞0
(

R
3
)

satisfying

supp (m) ⊂⊂ Ωσj for some σ ∈ {+,−}. This leads to ∇pw;ju =
(

A
ext
j

)−1
j ∈ L2

(

R
3
)

and, in turn, to u ∈ H1
(

R
3\Γj

)

.

Part 2.
Lemma 3.8 and 3.9 imply the existence and uniqueness of solutions for the vari-

ational problems (3.22) and (3.23). For ψ ∈ H1/2 (Γj), let uuw denote the solution of
(3.22) and (jm, um) the solution of (3.23). Part 1 implies that um ∈ H1

(

R
3\Γj

)

solves
the ultra-weak problem so that uuw = um. Vice versa, uuw equals the um-component
of the solution for the mixed variational problem. We test the first equation in (3.23)
with test functions m ∈ H

(

R
3, div

)

with compact support in Ω−j ∪Ω+
j and obtain by

integration by parts
jm = A

ext
j ∇pw;jum = A

ext
j ∇pw;juuw.

Since jm ∈ H
(

R
3, div

)

it follows that
(

A
ext
j ∇pw;juuw, uuw

)

∈ H
(

R
3, div

)

× L2
(

R
3
)

solves the mixed variational problem.
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Part 3.
We consider the first equation of the mixed problem (3.23) and employ j =

A
ext
j ∇pw;ju. Integration by parts in each subdomain yields

⟨ψ, γn;j (s)m⟩Γj
= −

〈

(

A
ext
j

)−1
j,m

〉

R3
− ⟨u, divm⟩

R3

(3.29)

= −⟨∇pw;ju,m⟩R3 − ⟨u, divm⟩R3

= −⟨∇pw;ju,m⟩R3 + ⟨∇u,m⟩R3\Γj
+
〈

[u]D;j (s) , γn;j (s) (m)
〉

Γj

=
〈

[u]D;j (s) , γn;j (s) (m)
〉

Γj

∀m ∈ H
(

R
3, div

)

.(3.30)

The range of the normal trace is H−1/2 (Γj) = γn;j (s)
(

H
(

R
3, div

))

(cf. [17, Cor.
2.8]) so that the jump relation (3.28) follows from (3.30).

The well-posedness of the ultra-weak variational problem allows us to define the
double layer potential as its solution.

Definition 3.11. Let Assumption 2.2 be satisfied. For 1 ≤ j ≤ nΩ and ψ ∈
H1/2 (Γj) the double layer potential Dj (s)ψ ∈ L2

(

R
3
)

is given as the unique
solution of the ultra-weak variational problem

(3.31) ⟨Dj (s)ψ, Lj (s) v⟩R3 =
〈

ψ, γextN;j (s) v
〉

Γj
∀v ∈ H1

(

R
3,Aext

j

)

.

Remark 3.12. Note that our definition (3.31) has the same form as formula (4.7)
in [12]. However, we employ this directly as the definition while, in [12] (where the
coefficients are assumed to be infinitely smooth) a different definition is used and
(3.31) is deduced as an intermediate step within the proof of the jump relations.

In the following lemma, important properties of Dj (s) are collected which are
well-known, e.g., for PDEs with piecewise constant coefficients.

Lemma 3.13. Let Assumption 2.2 be satisfied. For ψ ∈ H1/2 (Γ), the double layer
potential w := Dj (s)ψ satisfies w ∈ H1

(

R
3\Γj ,Aext

j

)

, the restrictions wσ := w|Ωσ
j

solve the homogeneous equations:

(3.32) L
σ
j (s)w

σ = 0 in Ωσj , σ ∈ {+,−} ,

and the jump relations hold:

(3.33) [(Dj (s)ψ)]D;j (s) = ψ, [(Dj (s)ψ)]
ext
N;j (s) = 0 .

In fact, the double layer potential is a continuous operator Dj : H1/2 (Γj) →
H1(R3 \ Γj ,Aext

j ).

Proof. From Lemma 3.10 we conclude that the pair (j, w) with j := A
ext
j ∇pw;jw

solves the mixed variational formulation (3.23). We insert this into the second equa-
tion of (3.23) and test with functions q ∈ L2

(

R
3
)

which vanish in a neighborhood

of Γj . From Lemma 3.10(2) it follows w ∈ H1
(

R
3\Γj ,Aext

j

)

and w satisfies (3.32).

Again from Lemma 3.10 it follows j ∈ H
(

R
3, div

)

so that [⟨j,nj⟩]D;j = 0. We con-

clude [(Dj (s)ψ)]
ext
N;j (s) = 0. Finally, we insert j into the first equation and substitute



22 F. FLORIAN, R. HIPTMAIR AND S.A. SAUTER

u← w. Integrating by parts over Ω−j and Ω+
j leads to

〈

[w]D;j (s) , γn;j (s)m
〉

R3
= ⟨ψ, γn;j (s)m⟩Γj

∀m ∈ H
(

R
3, div

)

.

Since the mapping γn;j : H
(

R
3, div

)

→ H−1/2 (Γj) is surjective (see, e.g., [17, Cor.
2.8]) it follows [(Dj (s)ψ)]D;j (s) = ψ.

3.2.4. Layer potential representation formula. The key observation for the
transformation of our transmission problem to a non-local skeleton equation is the fact
that solutions of the homogeneous PDE can be expressed by Green’s representation
formula via their Cauchy data by means of layer potentials. We start with some
preliminaries. For φ ∈ H−1/2 (Γj) and ψ ∈ H1/2 (Γj) we define the potential

(3.34) w := Dj (s)ψ − Sj (s)φ.

From Lemmas 3.7 and 3.13 we conclude that w ∈ H1
(

R
3\Γj ,Aext

j

)

and satisfies

(3.35)
− div

(

A
ext
j ∇w

)

+ s2pextj w = 0 in R
3\Γj ,

[w]D;j (s) = ψ and [w]
ext
N;j (s) = φ.

Proposition 3.14. The transmission problem: “for given φ ∈ H−1/2 (Γj) and
ψ ∈ H1/2 (Γj), find w ∈ H1

(

R
3\Γj ,Aext

j

)

such that (3.35) holds” is well posed and
the unique solution is given by w in (3.34).

Proof. Existence follows since the potential w in (3.34) defines a solution. For
uniqueness, we assume that there are two solutions w1, w2 so that the difference
d = w1 − w2 satisfies

− div
(

A
ext
j ∇d

)

+ s2pextj d = 0 in R
3\Γj ,

[d]D;j (s) = 0 and [d]
ext
N;j (s) = 0.

We multiply the first equation by test functions v ∈ H1
(

R
3
)

and integrate by parts

over Ω−j and Ω+
j . After inserting the transmission conditions we get

ℓj (s) (d, v) = 0 ∀v ∈ H1
(

R
3
)

.

Since ℓj (s) (·, ·) is coercive (cf. Lem. 3.2)) we conclude that d = 0 holds and unique-
ness follows. Hence, the potential w in (3.34) defines the unique solution. Since the
single and double layer operators are continuous, well-posedness follows.

Lemma 3.15 (Green’s representation formula). Let Assumption 2.2 be satisfied.
Let u− ∈ H1

(

Ω−j ,A
−
j

)

and

L
−
j (s)u− = 0 in Ω−j .

Then, the Green’s representation formulae hold

u− =
(

Sj (s) γ
ext,−
N;j (s)u− − Dj (s) γ

−
D;j (s)u

−
)∣

∣

∣

Ω−

j

,(3.36a)

0 =
(

Sj (s) γ
ext,−
N;j (s)u− − Dj (s) γ

−
D;j (s)u

−
)∣

∣

∣

Ω+

j

.(3.36b)
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Proof. Define u ∈ H1
(

R
3\Γj ,Aext

j

)

by u|Ω−

j
:= u− and u|Ω+

j
:= 0. Clearly

− div
(

A
ext
j ∇u

)

+ s2pextj u = 0 in R
3\Γj

and

[u]D;j (s) = −γ−D;j (s)u
−, [u]

ext
N;j (s) = −γ

ext,−
N;j (s)u−.

From Proposition 3.14 we deduce that the unique solution of this transmission
problem can be written in the form

u = Sj (s) γ
ext,−
N;j (s)u− − Dj (s) γ

−
D;j (s)u

−.

From this and the definition of u, the representation (3.36) follows.

4. Calderón operators. Green’s representation formula from Lemma 3.15 ex-
presses homogeneous solutions of a linear, second order, elliptic PDE by means of
their Cauchy data on the domain boundary. By applying the Cauchy trace to this
formula we obtain the Calderón identity. In this way, Dirichlet and Neumann traces
have to be applied to the single layer and double layer potential which give rise to
non-local boundary integral operators on the subdomain boundaries.

Definition 4.1. Let Assumption 2.2 be satisfied. For 1 ≤ j ≤ nΩ, the single
layer boundary integral operator (Vj (s)), the double layer boundary integral operator
(Kj (s)), the dual double layer boundary integral operator (K′j (s)), the hypersingular
boundary integral operator (Wj (s)) are given by

Vj (s) : H
−1/2 (Γj)→ H1/2 (Γj) , Vj (s)φ := {{Sj (s)φ}}D;j (s) ,

Kj (s) : H
1/2 (Γj)→ H1/2 (Γj) , Kj (s)ψ := {{Dj (s)ψ}}D;j (s) ,

K
′
j (s) : H

−1/2 (Γj)→ H−1/2 (Γj) , K
′
j (s)φ := {{Sj (s)φ}}extN;j (s) ,

Wj (s) : H
1/2 (Γj)→ H−1/2 (Γj) , Wj (s)ψ := −{{Dj (s)ψ}}extN;j (s) ,

for all φ ∈ H−1/2 (Γj) and ψ ∈ H1/2 (Γj).

In order to define the Calderón operator we introduce a bilinear form on the multi
trace spaces (cf. Def. 2.8) and set, for φj = (ϕD;j , ϕN;j) ∈ Xj and ψj = (ψD;j , ψN;j) ∈
Xj ,

(4.1a)
〈

φj ,ψj
〉

Xj
:= ⟨ϕD;j , ψN;j⟩Γj

+ ⟨ψD;j , ϕN;j⟩Γj
,

where, again, ⟨·, ·⟩Γj
designates the pairing between H1/2 (Γj) and H−1/2 (Γj). For

φ =
(

φj
)nΩ

j=1
∈ X (PΩ) and ψ=

(

ψj
)nΩ

j=1
∈ X (PΩ) we define the bilinear form ⟨·, ·⟩ :

X (PΩ)× X (PΩ)→ C by

(4.2) ⟨φ,ψ⟩
X
:=

∑

1≤j≤nΩ

〈

φj ,ψj
〉

Xj
.
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Definition 4.2. Let Assumption 2.2 be satisfied. The Calderón operator C (s) :
X (PΩ)→ X (PΩ) is given by

C (s) := diag [Cj (s) : 1 ≤ j ≤ nΩ] with Cj (s) :=

[

−Kj (s) Vj (s)
Wj (s) K′j (s)

]

.

The sesquilinear form c (s) : X (PΩ) × X (PΩ) → C associated to the operator C (s)
is

c (s) (φ,ψ) :=
〈

C (s)φ,ψ
〉

X
.(4.3)

Let Id : X (PΩ) → X (PΩ) denote the identity. An essential property of the
Calderón operator is that

(

1
2 Id+C (s)

)

is a projector into the space of Cauchy traces
of solutions of the homogeneous PDE (2.9) as can be seen from the next Lemma.
Recall the definition of the one-sided Cauchy trace γext,−

C;j (s) from (2.16) and (2.18).

Lemma 4.3. Let Assumption 2.2 be satisfied. Let u− ∈ H1
(

Ω−j ,A
−
j

)

and

L
−
j (s)u− = 0 in Ω−j .

Then, for any j ∈ {1, 2, . . . , nΩ} it holds

(4.4)

(

Cj (s)−
1

2
Idj

)

γ
ext,−
C;j (s)u− = 0,

where Idj : Xj → Xj is the identity in Xj.

Proof. Green’s representation formula (3.36a) gives us

γ−D;j (s)u
− = γ−D;j (s) Sj (s) γ

ext,−
N;j (s)u− − γ−D;j (s)Dj (s) γ

−
D;j (s)u

−,

0 = γ+D;j (s) Sj (s) γ
ext,−
N;j (s)u− − γ+D;j (s)Dj (s) γ

−
D;j (s)u

−,

γext,−N;j (s)u− = γext,−N;j (s) Sj (s) γ
ext,−
N;j (s)u− − γext,−N;j (s)Dj (s) γ

−
D;j (s)u

−,

0 = −γext,+N;j (s) Sj (s) γ
ext,−
N;j (s)u− + γext,+N;j (s)Dj (s) γ

−
D;j (s)u

−.

We multiply the first two relations by 1/2 and add them and do the same with the
last two relations. This yields

1

2
γ−D;j (s)u

− = Vj (s) γ
ext,−
N;j (s)u− − Kj (s) γ

−
D;j (s)u

−,

1

2
γext,−N;j (s)u− = K

′
j (s) γ

ext,−
N;j (s)u− +Wj (s) γ

−
D;j (s)u

−

and after a reordering of the terms (4.4) follows.

5. Single-trace formulation of the transmission problem. In this section,
we formulate the transmission problem (2.23) as a non-local skeleton equation for the
Cauchy data of the solution. We start from a transmission problem with given jump
data: We seek

umult =
(

umult
j

)nΩ

j=1
=
((

umult
D;j , u

mult
N;j

))nΩ

j=1
∈ X (PΩ)

as the solution of
(

Cj (s)− 1
2 Idj

)

umult
j = 0, 1 ≤ j ≤ nΩ,

[

umult
]

j,k
(s) = [β]j,k , 1 ≤ j, k ≤ nΩ,

s1/2 umult
D;j

∣

∣

Γj∩ΓD

= βD;j |Γj∩ΓD
1 ≤ j ≤ nΩ

s−1/2 umult
N;j

∣

∣

Γj∩ΓN

= βN;j |Γj∩ΓN
, 1 ≤ j ≤ nΩ

(5.1)
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with β as in (2.23). Note that umult is multi-valued on the inner skeleton Σ ∩ Ω.
Following [10, Section 3], a single trace formulation and single-valued functions is
obtained when the transmission conditions are incorporated into the multi trace space
X (PΩ). We define the free single trace space X

single (PΩ) and the single trace space
with incorporated homogeneous boundary conditions by

X
single (PΩ) :=















((ψD;j , ψN;j))
nΩ

j=1 ∈ X (PΩ) |















∃v ∈ H1 (Ω)
s.t. ∀1 ≤ j ≤ nΩ

}

: ψD;j = γD;jv

∃w ∈ H (Ω, div)
s.t. ∀1 ≤ j ≤ nΩ

}

: ψN;j = γn;jw















,

(5.2)

X
single
0 (PΩ) :=

{

((ψD;j , ψN;j))
nΩ

j=1 ∈ X
single (PΩ) | ∀1 ≤ j ≤ nΩ :

ψD;j |Γj∩ΓD
= 0 ∧ ψN;j |Γj∩ΓN

= 0
}

.

We set usingle :=
(

umult
j − β (s)

)nΩ

j=1
for β (s) :=

((

s−1/2βD,j , s
1/2βN,j

))nΩ

j=1
and ob-

serve that usingle satisfies
(

Cj (s)− 1
2 Idj

)

usingle
j = −

(

Cj (s)− 1
2 Idj

)

βj on Γj , 1 ≤ j ≤ nΩ,
[

usingle
]

j,k
(s) = 0, 1 ≤ j, k ≤ nΩ,

usingleD;j

∣

∣

∣

Γj∩ΓD

= 0 and usingleN;j

∣

∣

∣

Γj∩ΓN

= 0, 1 ≤ j ≤ nΩ.

(5.3)

This implies that usingle ∈ X
single
0 (PΩ).

A reversed perspective on this derivation of the skeleton equation in the single
trace space from the original transmission problem (2.23) is as follows: One solves the
non-local skeleton problem in the single trace space (in variational form):

With c(s) from (4.3) find usingle ∈ X
single
0 (PΩ) such that

(5.4) c (s)
(

usingle,ψ
)

− 1

2

〈

usingle,ψ
〉

X
= −

(

c (s) (β (s) ,ψ)− 1

2

〈

β (s) ,ψ
〉

X

)

for all ψ ∈ X
single
0 (PΩ).

We obtain umult
j := usingle + β (s). Then, we use Green’s representation formula

uj :=
(

Sj (s)u
mult
N;j − Dj (s)u

mult
D;j

)∣

∣

Ω−

j

, 1 ≤ j ≤ nΩ.

Finally, the function u = (uj)
nΩ

j=1 ∈ H (Ω,A) solves the original transmission problem

(2.23).
Next, we prove the well-posedness of (5.4). The essential point is to prove s-

explicit continuity estimates for the layer potentials and the boundary integral oper-
ators as well as coercivity results for V (s), W (s), and C (s)− 1

2 Id.
We start with an estimate of the Dirichlet and Neumann trace of homogeneous

solutions of the acoustic PDE.

Lemma 5.1. Let Assumption 2.2 be satisfied and set Aσj := A
ext
j

∣

∣

Ωσ
j

, σ ∈ {+,−}.
Then there are constants CD, C > 0 independent of s such that

∥

∥γσD;j (s) v
∥

∥

H1/2(Γj)
≤ CD |s|1/2 ∥v∥H1(Ωσ

j )
≤ C |s|1/2 ∥v∥H1(Ωσ

j );s
∀v ∈ H1

(

Ωσj
)

.

(5.5)
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Vice versa, there exists C > 0 independent of s and a linear bounded extension oper-
ator Ej (s) : H

1/2 (Γj)→ H1
(

R
3
)

which satisfies for all φ ∈ H1/2 (Γj) :

(5.6) γD,j (s)Ej (s)φ = φ and ∥Ej (s)φ∥H1(R3);s ≤ C ∥φ∥H1/2(Γj)
.

Let v ∈ H1
(

R
3
)

such that vσ := v|Ωσ
j
belongs to H1

(

Ωσj ,A
σ
j

)

and

− div
(

A
ext
j ∇v

)

+ s2pextj v = 0 in R
3\Γj .

Then,

(5.7)
∥

∥

∥γ
ext,σ
N;j (s) vσ

∥

∥

∥

H−1/2(Γj)
≤ CΛj ∥vσ∥H1(Ωσ

j );s
,

where Λj is as in Lem. 3.2 and C depends only on the domain Ωσj .

Proof. The estimates in (5.5) follow from the scaling of γσD;j (s) with respect to s
and (2.10).

The extension operator Ej (s) : H
1/2 (Γj)→ H1

(

R
3
)

is defined for φ ∈ H1/2 (Γj)
piecewise in Ωσj , σ ∈ {+,−}, by

γσD;j (s) (Ej (s)φ) = φ and

(∇ (Ej (s)φ) ,∇w)L2(Ωσ
j )

+ |s|2 (Ej (s)φ,w)L2(Ωσ
j )

= 0 ∀w ∈ H1
(

Ωσj
)

.

From [29, Prop. 2.5.1] the estimate (5.6) follows.
For (5.7) we adapt the standard proof (see, e.g., [29, Prop. 2.5.2]) to our setting.

For given ψ ∈ H1/2 (Γj) let w := Ej (s)ψ. Let wσ := w|Ωσ
j
and vσ := v|Ωσ

j
, σ ∈

{+,−}. Green’s first identity (3.8) gives us

∣

∣

∣

∣

〈

γext,σN;j (s) vσ, ψ
〉

Γj

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

s

s

)1/2
〈

γext,σN;j (s) vσ, γσD;j (s)w
σ
〉

Γj

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

〈

A
σ
j∇vσ,∇wσ

〉

Ωσ
j

+ s2
〈

pσj v
σ, wσ

〉

Ωσ
j

∣

∣

∣

∣

Lem. 3.2
≤ Λj ∥vσ∥H1(Ωσ

j );s
∥wσ∥H1(Ωσ

j );s

(5.6)

≤ CΛj ∥vσ∥H1(Ωσ
j );s
∥ψ∥H1/2(Γj)

.

Finally,

∥

∥

∥
γext,σN;j (s) vσ

∥

∥

∥

H−1/2(Γj)
= sup
ψ∈H1/2(Γj)\{0}

∣

∣

∣

∣

〈

γext,σN;j (s) vσ, ψ
〉

Γj

∣

∣

∣

∣

∥ψ∥H1/2(Γj)

≤ CΛj ∥vσ∥H1(Ωσ
j );s

.

Lemma 5.2. Let Assumption 2.2 be satisfied. Then the sesquilinear form induced
by the single layer boundary integral operator satisfies the s-explicit coercivity and
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continuity estimates

Re
〈

φ,Vj (s)φ
〉

Γj

≥ cRe s|s|
λj
Λ2
j

∥φ∥2H−1/2(Γj)
∀φ ∈ H−1/2 (Γj) ,

(5.8a)

∣

∣

∣

〈

Vj (s)φ,ψ
〉

Γj

∣

∣

∣ ≤ C |s|2
λj Re s

∥φ∥H−1/2(Γj)
∥ψ∥H−1/2(Γj)

∀φ, ψ ∈ H−1/2 (Γj) .

(5.8b)

The dual double layer boundary integral operator is bounded and satisfies the estimates

(5.9)
∥

∥K
′
j (s)φ

∥

∥

H−1/2(Γj)
≤ CΛj

λj

|s|3/2
Re s

∥φ∥H−1/2(Γj)
∀φ ∈ H−1/2 (Γj) .

The sesquilinear form induced by the hypersingular boundary integral operator satisfies
the coercivity and continuity estimate

Re
〈

Wj (s)ψ, ψ
〉

Γj
≥ cRe s
|s|2

λj ∥ψ∥2H1/2(Γj)
∀ψ ∈ H1/2 (Γj) ,

(5.10a)

∣

∣

∣⟨Wj (s)ψ,φ⟩Γj

∣

∣

∣ ≤ C
Λ2
j

λj

|s|
Re s

∥ψ∥H1/2(Γj)
∥φ∥H1/2(Γj)

∀φ, ψ ∈ H1/2 (Γj) .(5.10b)

The double layer boundary integral operator is bounded and satisfies the estimate

(5.11) ∥Kj (s)ψ∥H1/2(Γj)
≤ CΛj

λj

|s|3/2
Re s

∥ψ∥H1/2(Γj)
∀ψ ∈ H1/2 (Γj) .

For the single layer potential, the estimate

(5.12) ∥Sj (s)φ∥H1(R3);s ≤ C
|s|3/2
λj Re s

∥φ∥H−1/2(Γj)
∀φ ∈ H−1/2 (Γj)

holds. The operator norm of the double layer potential is bounded by

(5.13) ∥Dj (s)ψ∥H1(R3\Γj);s
≤ CΛj

λj

|s|
Re s

∥ψ∥H1/2(Γj)
∀ψ ∈ H1/2 (Γj) ,

where for u ∈ L2
(

R
3
)

with uσ := u|Ωσ
j
∈ H1

(

Ωσj
)

, σ = {+,−} the broken H1 norm

is given by

∥u∥H1(R3\Γj);s
:=





∑

σ∈{+,−}

∥uσ∥2H1(Ωσ
j );s





1/2

.

All constants c, C > 0 only depend on Ωj and, in particular, are independent of s.

The proof of this lemma follows standard arguments and hence is postponed to
Appendix A.

Lemma 5.3. Let Assumption 2.2 be satisfied.
The sesquilinear form ⟨Cj (s) ·, ·⟩Xj

: Xj ×Xj → C is coercive:

Re
〈

Cj (s)ψj ,ψj
〉

Xj
≥ c λj

1 + Λ2
j

Re s

|s|2
∥ψ∥2Xj

∀ψj ∈ Xj ,
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and continuous:

∣

∣

∣

〈

Cj (s)ψj ,φj
〉

Xj

∣

∣

∣ ≤ C 1 + Λj
λj

|s|2
Re s

∥

∥ψj
∥

∥

Xj

∥

∥φj
∥

∥

Xj
∀ψj ,φj ∈ Xj .

The proof follows closely the arguments in [4, Lem. 3.1] for the case of constant
coefficients and we adapt it here to our general setting.

Proof. We pick some ψj := (ψD;j , ψN;j) ∈ Xj and define u ∈ H1
(

R
3\Γj

)

by

u := Sj (s)ψN;j − Dj (s)ψD;j .

We set uσ := u|Ωσ
j
, σ ∈ {−,+}. The jump relations (3.20), (3.33) imply

[u]D;j (s) = −ψD;j and [u]
ext
N,j (s) = −ψN;j

while the relations

{{u}}D;j (s) = Vj (s)ψN;j − Kj (s)ψD;j ,

{{u}}extN;j (s) = K
′
j (s)ψN;j +Wj (s)ψD;j

follow directly from the definition of the boundary integral operators. A more compact
formulation is

Cj (s)ψj =

(

{{u}}D;j (s)
{{u}}extN;j (s)

)

.

Since Sj (s)ψN;j and Dj (s)ψD;j satisfy the homogeneous PDE in Ω−j and Ω+
j (cf.

(3.19), (3.32)) we may apply Green’s identity (3.8) and the definition of the jumps
and means (2.19), (2.20) to obtain by a jump-average parallelogram identity2:

Re
〈

Cj (s)ψj ,ψj
〉

Xj

= −Re

(

(s

s

)1/2 〈

{{u}}D;j (s) , [u]
ext
N,j (s)

〉

Γj

+
( s̄

s

)1/2 〈

[u]D;j (s) , {{u}}extN;j (s)
〉

Γj

)

= Re

(

(

s

s

)1/2(
〈

A
+
j ∇u+,∇u+

〉

Ω+

j

+ s2
〈

p+j u
+, u+

〉

Ω+

j

)

)

+Re

(

(s

s

)1/2
(

〈

A
−
j ∇u−,∇u−

〉

Ω−

j

+ s2
〈

p−j u
−, u−

〉

Ω−

j

))

.

As in the proof of Lemma 3.2 we obtain

(5.14) Re
〈

Cj (s)ψj ,ψj
〉

Xj
≥ Re s

|s| λj ∥u∥
2
H1(R3\Γj);s

.

2 For α, a1, a2, b1, b2 ∈ C a direct calculation shows

α
a1 + b1

2

(

b2 − a2

)

+ α
(

b1 − a1

)

(

a2 + b2

2

)

= −Re
(

αa1a2 + αb1b2

)

+ i Im
(

αa1b2 + αa2b1

)

so that

−Re

(

α
a1 + b1

2

(

b2 − a2

)

+ α
(

b1 − a1

)

(

a2 + b2

2

))

= Re
(

αa1a2 + αb1b2

)

.
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To estimate the right-hand side we start with

(5.15)

∥

∥

∥s−1/2ψD;j

∥

∥

∥

2

H1/2(Γj)
+ ∥ψN;j∥2H−1/2(Γj)

=
∥

∥

∥s−1/2 [u]D;j (s)
∥

∥

∥

2

H1/2(Γj)

+
∥

∥

∥[u]
ext
N,j (s)

∥

∥

∥

2

H−1/2(Γj)
.

From (5.5) and a triangle inequality we conclude that

∥

∥

∥s−1/2ψD;j

∥

∥

∥

2

H1/2(Γj)
=
∥

∥

∥s−1/2 [u]D;j (s)
∥

∥

∥

2

H1/2(Γj)

(5.16)

≤ 2
∑

σ∈{+,−}

|s|−1
∥

∥γσD;j (s)u
σ
∥

∥

2

H1/2(Γj)
≤ C ∥u∥2H1(R3\Γj);s

.

From (3.9) and by using the lifting Ej (s) as in Lemma 5.1, we obtain

∥ψN;j∥H−1/2(Γj)
=
∥

∥

∥
[u]

ext
N,j (s)

∥

∥

∥

H−1/2(Γj)
= sup
ϕ∈H1/2(Γj)\{0}

∣

∣

∣

∣

〈

[u]
ext
N,j (s) , ϕ

〉

Γj

∣

∣

∣

∣

∥ϕ∥H1/2(Γj)

(5.17)

= sup
ϕ∈H1/2(Γj)\{0}

∣

∣

∣

∣

(

s
s

)1/2
〈

[u]
ext
N,j (s) , γD;j (s)Ej (s)ϕ

〉

Γj

∣

∣

∣

∣

∥ϕ∥H1/2(Γj)

= sup
ϕ∈H1/2(Γj)\{0}

|ℓj (s) (u,Ej (s)ϕ)|
∥ϕ∥H1/2(Γj)

Lem. 3.2
≤ Λj ∥u∥H1(R3\Γj);s

sup
ϕ∈H1/2(Γj)\{0}

∥Ej (s)ϕ∥H1(R3);s

∥ϕ∥H1/2(Γj)

(5.6)

≤ CΛj ∥u∥H1(R3\Γj);s
.

The combination of (5.14)-(5.17) leads to the coercivity estimate

Re
〈

Cj (s)ψj ,ψj
〉

Xj
≥ c̃ λj

1 + Λ2
j

Re s

|s|2
∥

∥ψj
∥

∥

2

Xj
.

For the continuity estimate we obtain for any

ψj = (ψD;j , ψN;j)φ = (φD;j , φN;j) ∈ Xj



30 F. FLORIAN, R. HIPTMAIR AND S.A. SAUTER

from Lemma 5.2

∣

∣

∣

〈

Cj (s)ψj ,φj
〉

Xj

∣

∣

∣ =

∣

∣

∣

∣

∣

∣

〈

(

−Kj (s)ψD;j + Vj (s)ψN;j

Wj (s)ψD;j + K′j (s)ψN;j

)

,

(

φD;j

φN;j

)

〉

Xj

∣

∣

∣

∣

∣

∣

=
∣

∣

∣⟨−Kj (s)ψD;j + Vj (s)ψN;j , φN;j⟩Γj
+
〈

φD;j ,Wj (s)ψD;j + K
′
j (s)ψN;j

〉

Γj

∣

∣

∣

≤ C 1

λj

|s|
Re s

(

Λj |s|1/2 ∥ψD;j∥H1/2(Γj)
∥φN;j∥H−1/2(Γj)

+ |s| ∥ψN;j∥H−1/2(Γj)
∥φN;j∥H−1/2(Γj)

+Λ2
j ∥ψD;j∥H1/2(Γj)

∥φD;j∥H1/2(Γj)
+ Λj |s|1/2 ∥ψN;j∥H−1/2(Γj)

∥φD;j∥H1/2(Γj)

)

≤ C ′ 1
λj

|s|2
Re s

(

Λ2
j

∥

∥

∥
s−1/2ψD;j

∥

∥

∥

2

H1/2(Γj)
+ ∥ψN;j∥2H1/2(Γj)

)1/2

×

×
(

Λ2
j

∥

∥

∥s−1/2φD;j

∥

∥

∥

2

H1/2(Γj)
+ ∥φN;j∥2H−1/2(Γj)

)1/2

≤ C ′′ 1 + Λj
λj

|s|2
Re s

∥

∥ψj
∥

∥

Xj

∥

∥φj
∥

∥

Xj
.

A summation of the local coercivity estimates (of the local continuity estimates,
resp.) over all subdomains leads to the following global coercivity (global continuity,
resp.).

Corollary 5.4. Let Assumption 2.2 be satisfied. The sesquilinear form

⟨C (s) ·, ·⟩
X
: X (PΩ)× X (PΩ)→ C

is coercive: for any ψ ∈ X (PΩ) it holds

(5.18) Re
〈

C (s)ψ,ψ
〉

X
≥ c λ

1 + Λ2

Re s

|s|2
∥ψ∥2

X
;

and continuous: for any ψ,φ ∈ X (PΩ) it holds

(5.19)
∣

∣

〈

C (s)ψ,φ
〉

X

∣

∣ ≤ C 1 + Λ

λ

|s|2
Re s

∥ψ∥
X
∥φ∥

X

with λ := min1≤j≤nΩ
λj and Λ := max1≤j≤nΩ

Λj.

We have collected all prerequisites to prove the well-posedness of the non-local
variational problem on the skeleton (5.4) in single trace spaces.

Theorem 5.5. Let Assumption 2.2 be satisfied. The sesquilinear form

(

c (s) (·, ·)− 1

2
⟨·, ·⟩

X

)

: Xsingle
0 (PΩ)× X

single
0 (PΩ)→ C

is coercive and continuous: for any α ∈ X
single
0 (PΩ) and ψ,φ ∈ X (PΩ) holds true

⟨α, α⟩
X
= 0, and

Re (c (s) (α,α)) ≥ c λ

1 + Λ2

Re s

|s|2
∥α∥2

X
,

∣

∣

∣

∣

c(s) (ψ,φ)− 1

2

〈

ψ,φ
〉

X

∣

∣

∣

∣

≤
(

1

2
+ C

1 + Λ

λ

|s|2
Re s

)

∥ψ∥
X
∥φ∥

X
.
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For any β ∈ X (PΩ), the variational problem (5.4) has a solution usingle ∈ X
single
0 (PΩ)

which is unique and satisfies

(5.20)
∥

∥usingle
∥

∥

X
≤ C |s|

9/2

(Re s)
2 ∥β∥X ,

where C only depends on λ, Λ, s0, and on the domain Ω via trace estimates.

Proof. Let α = (αj)
nΩ

j=1 ∈ X
single
0 (PΩ) with αj = (αD;j , αN;j) and

φ =
(

φj
)nΩ

j=1
,ψ =

(

ψj
)nΩ

j=1
∈ X (PΩ) with ψj = (ψD;j , ψN;j) and φj = (φD;j , φN;j).

Then

Re

(

c (s) (α,α)− 1

2
⟨α,α⟩

X

)

= Re c (s) (α,α)

owing to the self-polarity of the single trace space, see [9, Lem. 4.1], [10, Remark 55].
Thus, the coercivity estimate follows from (5.18):

Re

(

c (s) (α,α)− 1

2
⟨α,α⟩

X

)

≥ c λ

1 + Λ2

Re s

|s|2
∥α∥2

X
.

The continuity estimate follows by combining (5.19) with

∣

∣

〈

ψ,φ
〉

X

∣

∣ ≤
∑

1≤j≤nΩ

∣

∣

∣⟨ψD;j , φN;j⟩Γj
+ ⟨ψN;j , φD;j⟩Γj

∣

∣

∣

≤
∑

1≤j≤nΩ

(

∥ψD;j∥H1/2(Γj)
∥φN;j∥H−1/2(Γj)

+ ∥ψN;j∥H−1/2(Γj)
∥φD;j∥H1/2(Γj)

)

≤
∑

1≤j≤nΩ

∥

∥ψj
∥

∥

Xj

∥

∥φj
∥

∥

Xj
≤ ∥ψ∥

X
∥φ∥

X
.

In particular, the continuity of
(

c (s) (·, ·)− 1
2 ⟨·, ·⟩X

)

implies that for any β ∈ X (PΩ)

the form
(

c (s) (β (s) , ·)− 1
2 ⟨β (s) , ·⟩

X

)

: Xsingle
0 (PΩ)→ C defines an anti-linear oper-

ator with upper bound
(

1
2 + C 1+Λ

λ
|s|2

Re s

)

|s|1/2 ∥β∥
X
for its norm. By the Lax-Milgram

theorem we infer well-posedness of (5.4) and the bound in (5.20).

Remark 5.6. Our approach also paves the way for pursuing a multi-trace formu-
lation as in [10]; all the ingredients are available! We expect that the multi-trace
formulation becomes well-posed and the resulting equations are well-suited for opera-
tor preconditioning. In this paper, we have focus on the single-trace formulation since
it directly inherits the stability of the boundary value problem.

6. Conclusion. In this paper, we have considered acoustic transmission prob-
lems with mixed boundary conditions, variable coefficients and absorption. We have
developed a general approach to transform these equations to non-local skeleton equa-
tions in such a way that the resulting variational form is continuous and coercive so
that well-posedness follows by the Lax-Milgram theorem. The transformation is based
on Green’s representation formula involving single and double layer potentials which
are defined as solutions of some variational full space problems without relying on the
explicit knowledge of the Green’s function. The paper can be regarded as a general-
ization of [15] by allowing for unbounded domains (full space/half space) and variable
coefficients in the subdomains.
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In contrast to other methods such as the indirect method of boundary integral
equations (see, e.g., [28, Chap. 3.4.1]) the well-posedness of the non-local skeleton
(integral) equation follows directly from the well-posedness of the auxiliary variational
problems in full space.

Another important contribution of this work is the completely s-explicit nature
of all estimates, s the frequency parameter. Its significance is due to the possibility
to apply our boundary integral equation method to transform the space-time wave
transmission problem (in analogy to (2.23)) to an integro-differential equation which
may serve as a starting point for its discretization by convolution quadrature. The
well-posedness of this integro-differential equation follows from the coercivity and con-
tinuity of the variational skeleton equation (5.4) via operational calculus; for details we
refer to [15], [4], [29], [5]. We also mention that the restriction to mixed Dirichlet and
Neumann boundary conditions was merely done to reduce technicalities: Dirichlet-
to-Neumann boundary conditions and impedance conditions can be incorporated into
the variational skeleton equation following the approach in [15].

Appendix A. Proof of Lemma 5.2. The proof of Lemma 5.2 is an adaptation
of the arguments in [22, Prop. 16, 19] to our setting; see also [6, Lem. 5.2]. In
this appendix, we present the proof to show that the known arguments apply to our
general setting.

Proof of Lemma 5.2. Let φ ∈ H−1/2 (Γ) and set u := Sj (s)φ. The jump
relations for the single layer potential (cf. (3.20)) imply γD;j (s)u = V (s)φ and

[u]
ext
N;j (s) = −φ. Then, we have

Re
〈

φ,Vj (s)φ
〉

Γj

= Re
〈

− [u]
ext
N;j (s) , γD;j (s)u

〉

Γj

(2.18)
= Re

(

(

s

s

)1/2
〈

− [u]
ext
N;j (s) , γD;j (s)u

〉

Γj

)

.

We employ (3.9) with v = w = u and λ (·), λj as in Lem. 3.2 to obtain (cf. (3.6))

Re

(

(

s

s

)1/2
〈

− [u]
ext
N;j (s) , γD;j (s)u

〉

Γj

)

= Re

(

(

s

s

)1/2

ℓj (s) (u, u)

)

=
Re s

|s|
(

〈

A
ext
j ∇u,∇u

〉

R3
+ |s|2

〈

pextj u, u
〉

R3

)

≥ Re s

|s|
(

λ
(

A
ext
j

)

|∇u|2L2(R3) + λ
(

pextj

)

|s|2 ∥u∥2L2(R3)

)

≥ Re s

|s| λj ∥u∥
2
H1(R3);s .

Finally, the coercivity estimate (5.8a) for V (s) follows from (5.7)
Next, we prove the continuity of the single layer operator. For φ ∈ H−1/2 (Γj),

let v := Sj (s)φ. Then (5.12) follows from

Re s

|s| λj ∥v∥
2
H1(R3);s ≤ Re

〈

φ,Vj (s)φ
〉

Γj

≤ ∥φ∥H−1/2(Γj)
∥γD;j (s) v∥H1/2(Γj)

(5.5)

≤ C |s|1/2 ∥φ∥H−1/2(Γj)
∥v∥H1(R3);s .
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The continuity (5.8b) of V (s) is a direct consequence of the estimate

∣

∣

∣

〈

Vj (s)φ,ψ
〉

Γj

∣

∣

∣ =
∣

∣

∣

〈

γD;j (s) Sj (s)φ,ψ
〉

Γj

∣

∣

∣ ≤ ∥γD;j (s) Sj (s)φ∥H1/2(Γj)
∥ψ∥H−1/2(Γj)

≤ C |s|1/2 ∥Sj (s)φ∥H1(R3);s ∥ψ∥H−1/2(Γj)

≤ C |s|2
λj Re s

∥φ∥H−1/2(Γj)
∥ψ∥H−1/2(Γj)

.

Finally, the dual double layer boundary integral operator K′j (s) can be estimated by
using the mapping properties of Sj and γextN,j . Let vσ := (Sj (s)φ)|Ωσ

j
, σ ∈ {+,−}.

Then, we have for all φ ∈ H−1/2 (Γj) :

∥

∥K
′
j (s)φ

∥

∥

H−1/2(Γj)
=
∥

∥{{Sj (s)φ}}extN;j (s)
∥

∥

H−1/2(Γj)
≤

∑

σ∈{+,−}

∥

∥

∥γ
ext,σ
N;j (s) vσ

∥

∥

∥

H−1/2(Γj)

(5.7)

≤ CΛj
∑

σ∈{+,−}

∥vσ∥H1(Ωσ
j );s

(5.12)

≤ C
Λj
λj

|s|3/2
Re s

∥φ∥H−1/2(Γj)
.

Next, we investigate the mapping properties of the operators related to the double
layer potential and start with the coercivity estimate of Wj (s). Let ψ ∈ H1/2 (Γj)
and set u := Dj (s)ψ. The jump relations for the double layer potentials (cf. (3.33))
imply γextN;j (s)u = −Wj (s)ψ and [u]D;j (s) = ψ. Then, we have

Re
〈

Wj (s)ψ, ψ
〉

Γj
= Re

〈

−γextN;j (s)u, [u]D;j (s)
〉

Γj

(2.18)
= Re

(

(

s

s

)1/2
〈

−γextN;j (s)u, [u]D;j (s)
〉

Γj

)

.

We employ (3.10) with v = w = u and λ (·), λj as in Lem. 3.2 to obtain (cf. (3.6))
with A

σ
j := A

ext
j

∣

∣

Ωσ
j

and pσj := pextj

∣

∣

Ωσ
j

, σ ∈ {+,−}:

Re
〈

Wj (s)ψ,ψ
〉

Γj
= Re





(

s

s

)1/2
∑

σ∈{+,−}

(

〈

A
σ
j∇uσ,∇uσ

〉

Ωσ
j

+ s2
〈

pσj u
σ, uσ

〉

Ωσ
j

)





=
Re s

|s|
∑

σ∈{+,−}

(

〈

A
σ
j∇uσ,∇uσ

〉

Ωσ
j

+ |s|2
〈

pσj u
σ, uσ

〉

Ωσ
j

)

≥ Re s

|s| λj
∑

σ∈{+,−}

∥uσ∥2H1(Ωσ
j );s

=
Re s

|s| λj ∥u∥
2
H1(R3\Γj);s

.(A.1)

Thus, the coercivity relation (5.10a) follows from the trace estimate (cf. (5.5))

∥ψ∥2H1/2(Γj)
=
∥

∥

∥[u]D;j (s)
∥

∥

∥

2

H1/2(Γj)
≤

∑

σ∈{+,−}

∥

∥γσD;j (s)u
σ
∥

∥

2

H1/2(Γj)

≤ C |s|
∑

σ∈{+,−}

∥uσ∥2H1(Ωσ
j );s

= C |s| ∥u∥2H1(R3\Γj);s
.
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Next, we prove the continuity of the double layer operator. For ψ ∈ H1/2 (Γj), let
u := Dj (s)ψ. Then (5.13) follows from

Re s

|s| λj ∥u∥
2
H1(R3\Γj);s

≤ Re
〈

Wj (s)ψ,ψ
〉

Γj
= Re

〈

−γextN;j (s)u, ψ
〉

Γj

≤
∥

∥γextN;j (s)u
∥

∥

H−1/2(Γj)
∥ψ∥H1/2(Γj)

(5.7)

≤ CΛj ∥u∥H1(R3\Γj);s
∥ψ∥H1/2(Γj)

.

The continuity estimates for the operators Wj (s) and Kj (s) follow from the combi-
nation of this and the trace estimates (Lem. 5.1).

List of notations. In this article we prefer “verbose” notations conveying max-
imum information about entities. We admit that this leads to lavishly adorned sym-
bols, but enhanced precision is worth this price.

As a convention, we denote scalar functions and spaces of scalar functions with
italic letters, vectors in C

3 (tensors of order 1) with bold letters, and matrices in C
3×3

(tensors of order 2) by blackboard bold letters.

R>0 . . . . . . . . . . . . . . . . . . . positive real numbers
C>0 . . . . . . . . . . . . . . . . . . . complex numbers with positive real part
R

3×3
sym . . . . . . . . . . . . . . . . . symmetric 3× 3 matrices

⟨·, ·⟩ , ⟨·, ·⟩ω . . . . . . . . . . . . bilinear form in C
3 see §2.1 and duality pairing of a function space

on a domain (or manifold) ω with its dual
A . . . . . . . . . . . . . . . . . . . . . . tensor coefficient for transmission problem, see Rem. 2.4
A

σ
j , p

σ
j . . . . . . . . . . . . . . . . . coefficients on the subdomain Ωσ

j , σ ∈ {+,−}, see Assumption 2.2,
(2.8)

A
ext
j , pextj . . . . . . . . . . . . . extension of the coefficients Aext

j , p−j to R
3, see Assumption 2.2

λ
(

A
ext
j

)

, Λ
(

A
ext
j

)

. . . . . lower and upper spectral bound of the tensor coefficient A
ext
j , see

(2.5)
λ
(

pextj

)

, Λ
(

pextj

)

. . . . . . lower and upper bound of the coefficient pextj , see (2.5)
λj , Λj . . . . . . . . . . . . . . . . min

{

λ
(

A
ext
j

)

, λ
(

pextj

)}

, max
{

Λ
(

A
ext
j

)

,Λ
(

pextj

)}

, see (3.5)
s . . . . . . . . . . . . . . . . . . . . . Laplace domain parameter (“wave number”) in C>0, see (2.2)
s0 . . . . . . . . . . . . . . . . . . . . lower bound of the modulus of s, see (2.2)
Ω . . . . . . . . . . . . . . . . . . . . . bounded or unbounded domain in R

3, see §2.2
Ωj = Ω−

j , . . . . . . . . . . . . . subdomains of Ω (1 ≤ j ≤ nΩ), see §2.2

Ω+
j . . . . . . . . . . . . . . . . . . . exterior complement R3\Ω−

j , see §2.2

ω ⊂⊂ Ω . . . . . . . . . . . . . . ω is compactly contained in Ω, i.e., ω ⊂ Ω,
Γ . . . . . . . . . . . . . . . . . . . . . boundary of Ω; see §2.2
Γj . . . . . . . . . . . . . . . . . . . . boundary of Ωj ; see §2.2
Γj,k . . . . . . . . . . . . . . . . . . . common boundary of Ωj and Ωk; see §2.2
ΓD . . . . . . . . . . . . . . . . . . . . part of Γ where Dirichlet boundary conditions are imposed; see §2.2
ΓN . . . . . . . . . . . . . . . . . . . . part of Γ where Neumann boundary conditions are imposed; see §

2.2
PΩ . . . . . . . . . . . . . . . . . . . . set of subdomains of Ω; see §2.2
Σ. . . . . . . . . . . . . . . . . . . . . . skeleton of PΩ, union of ∂Ωj , see §2.2
nj . . . . . . . . . . . . . . . . . . . . outward normal vector pointing from Ω−

j to Ω+
j , see Prop. 2.5

C∞ (ω), C∞ (ω) . . . . . . . space of infinitely differentiable functions and vector valued version
C∞

0 (ω), C∞
0 (ω) . . . . . . . C∞

0 (ω) := {u ∈ C∞ (ω) | suppu ⊂ ω} with vector valued version
C

∞
0 (ω)

(

Lp (ω) , ∥·∥Lp(ω)

)

. . . . . Lebesgue space for 1 ≤ p ≤ ∞ with norm ∥·∥Lp(ω); see §2.1
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(

L
p(ω), ∥·∥

Lp(ω)

)

. . . . . . L
p (ω) := Lp (ω)3 with norm ∥·∥

Lp(ω), see §2.1
(

L
p (ω) , ∥·∥

Lp(ω)

)

. . . . . L
p (ω) := Lp (ω)3×3 with norm ∥·∥

Lp(ω), see 2.1

(·, ·)L2(ω), (·, ·)L2(ω),

(·, ·)
L2(ω) . . . . . . . . . . . . . . L2 (ω) scalar product in L2 (Ω),L2 (Ω), L2 (Ω)

L∞
>0 (ω,R) . . . . . . . . . . . . . subset of L∞ (ω) of functions which are uniformly positive, see §2.1

L
p
(

ω,R3×3
sym

)

. . . . . . . . . . . subset of Lp (ω) of functions which map into the set of symmetric
3× 3 matrices; see §2.1

L
∞
>0

(

ω,R3×3
sym

)

. . . . . . . . . subset of L
∞

(

ω,R3×3
sym

)

of functions which are uniformly positive
definite, see Def. 2.1

Hk (ω) . . . . . . . . . . . . . . . . Sobolev space W k,2 (ω), see §2.1

Hk
0 (ω), H

−k(ω) . . . . . . . . closure of smooth functions with compact support with respect to
the ∥·∥Hk(ω) norm (see §2.1) and its dual space (see §2.1)

Hk
loc (ω) . . . . . . . . . . . . . . . Sobolev space of functions which locally belong to Hk (ω); see §2.1

∥·∥H1(ω);s, ∥·∥H−1(R3);s frequency-weighted Sobolev norm and its dual norm, see (2.1),
(3.15)

H (ω, div) . . . . . . . . . . . . . subspace of L2 (ω) of functions v satisfying divv ∈ L2 (ω), see (2.2)
(

H1 (ω,B) , ∥·∥H1(ω,B)

)

subspace of H1 (ω) of functions v such that div (B∇v) ∈ L2 (ω)
equipped with the graph norm; see Def. 2.1

H
1 (PΩ,A) . . . . . . . . . . . . . ×nΩ

j=1 H
1
(

Ωj ,A
−
j

)

Hα (∂ω) . . . . . . . . . . . . . . . Sobolev space on a closed manifold, see §2.1

H±1/2 (Γj,k),
H̃±1/2 (Γj,k) . . . . . . . . . .

Sobolev spaces on manifolds with boundary; see (2.21)

(

Xj , ⟨·, ·⟩Xj
, ∥·∥

Xj

)

. . . Sobolev space H1/2 (Γj)×H−1/2 (Γj), equipped with bilinear form
⟨·, ·⟩

Xj
and norm ∥·∥

Xj
, see Def. 2.8, (4.1a)

(

X (PΩ) , ⟨·, ·⟩X , ∥·∥X
)

. . Sobolev space X (PΩ) := ×nΩ

j=1 Xj , with bilinear form ⟨·, ·⟩
X
and

norm ∥·∥
X
, see Def. 2.8, (4.2)

X
single (PΩ) . . . . . . . . . . . . single traces space; see (5.2)

X
single
0 (PΩ) . . . . . . . . . . . . single traces space with incorporated zero boundary conditions, see

(5.2)
γσ
D;j , γD;j , γσ

D;j (s),
γD;j (s) . . . . . . . . . . . . . . . .

one-sided and two-sided Dirichlet trace operators and frequency
scaled versions; see Prop. 2.5, (2.18)

γσ
n;j , γn;j , γσ

n;j (s),
γn;j (s) . . . . . . . . . . . . . . . .

one-sided and two-sided normal trace operators and frequency
scaled versions; see Prop. 2.5, (2.18)

γσ
N;j , γ

ext,σ
N;j , γN;j , γext

N;j ,

γσ
N;j (s), γ

ext,σ
N;j (s),

γN;j (s), γ
ext
N;j (s) . . . . . . .

one-sided and two-sided co-normal derivatives and frequency scaled
versions, see Prop. 2.5, (2.18), Notation 2.9

γ
σ
C;j , γ

ext,σ
C;j , γ

σ
C;j (s),

γ
ext,σ
C;j (s) . . . . . . . . . . . . . .

one-sided and two-sided Cauchy trace operators and frequency
scaled versions, see (2.15), (2.18), Notation 2.9

Ej (s) . . . . . . . . . . . . . . . . . . trace lifting operator; see Lem. 5.1
[u]D;j , [u]D;j (s) . . . . . . . . Dirichlet jump across Γj and frequency scaled version; see Def. 2.7

[u]D;j,k . . . . . . . . . . . . . . . . Dirichlet jump across partial boundary Γj,k; see (2.22)

[u]N;j , [u]
ext
N;j ,

[u]N;j(s), [u]
ext
N;j(s)

jump of co-normal derivative across Γj and frequency scaled version;
see Definition 2.7, Notation 2.9

[w]N;j,k, [w]extN;j,k . . . . . . jump of co-normal derivative across partial boundary Γj,k, see (2.22)

{{u}}D;j , {{u}}D;j (s),
{{u}}N;j , {{u}}N;j (s). . . .

mean value of Dirichlet traces and co-normal derivatives across
boundary Γj , and their frequency scaled version; see Definition 2.7,
Notation 2.9

ℓj (s) (·, ·) , Lj (s) . . . . . . . sesquilinear form associated to the full space transmission problem
with coefficients Aext

j , pextj and relative operator; see Definition 3.1
L
−
j (s), L+

j (s) . . . . . . . . . differential operator on subdomains Ω−
j , Ω

+
j , see (2.7)
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∇pw;j . . . . . . . . . . . . . . . . . . piecewise gradient; see (3.1)
Vj (s) ,Kj (s),
K

′
j (s) ,Wj(s) . . . . . . . . . . boundary integral operators, see Definition 4.1

Cj (s). . . . . . . . . . . . . . . . . . Calderón operator for the subdomain Ωj , see Def. 4.2
C (s) , c (s) . . . . . . . . . . . . . global Calderón operator and associated sesquilinear form; see Def-

inition 4.2
Id . . . . . . . . . . . . . . . . . . . . . identity operator
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X, 2010, https://pastel.archives-ouvertes.fr/pastel-00006172/document.

[20] J. Jackson, Classical Electrodynamics, John Wiley & Sons, New York, NY, 3 ed., 1998.
[21] I. Labarca and R. Hiptmair, Volume integral equations and single-trace formulations for

acoustic wave scattering in an inhomogeneous medium, Computational Methods in Applied
Mathematics, (2023).

[22] A. R. Laliena and F.-J. Sayas, Theoretical aspects of the application of convolution quadrature

to scattering of acoustic waves, Numer. Math., 112 (2009), pp. 637–678.
[23] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge, Univ.



SKELETON INTEGRAL EQUATIONS 37

Press, 2000.
[24] S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz

domains, J. Math. Anal. Appl., 378 (2011), pp. 324–342.
[25] J. Nečas, Les Methodes Directes en Theorie des Equations Elliptiques, Academia, Prague,

1967.
[26] A. Poggio and E. Miller, Integral equation solution of three-dimensional scattering problems,

in Computer techniques for electromagnetics, Chap.4, R. Mittra, ed., New York, 1973,
Pergamon,, pp. 159–263.

[27] E. G. Sauter, Nonlinear optics, vol. 44, John Wiley & Sons, 1996.
[28] S. A. Sauter and C. Schwab, Boundary Element Methods, Springer, Heidelberg, 2010.
[29] F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equations: A Road

Map, Springer Verlag, 2016.
[30] T. von Petersdorff, Boundary Integral Equations for mixed Dirichlet-, Neumann and Trans-

mission problems, Math. Meth. Appl. Sci., 11 (1989), pp. 185–213.


	Introduction
	Setting
	Function spaces
	Differential operators
	Traces and jumps
	Transmission problem

	Potentials and Green's formula
	Sesquilinear forms and associated operators
	Volume and layer potentials
	The Newton potential
	The single layer potential
	The double layer potential
	Layer potential representation formula


	Calderón operators
	Single-trace formulation of the transmission problem
	Conclusion
	Appendix A. Proof of Lemma 5.2
	References

