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UNIQUE WAVELET SIGN RETRIEVAL FROM SAMPLES WITHOUT

BANDLIMITING

RIMA ALAIFARI, FRANCESCA BARTOLUCCI, AND MATTHIAS WELLERSHOFF

Abstract. We study the problem of recovering a signal from magnitudes of its wavelet
frame coefficients when the analyzing wavelet is real-valued. We show that every real-
valued signal can be uniquely recovered, up to global sign, from its multi-wavelet frame
coefficients

{|Wφi
f(α−nβm,α−n)| : i ∈ {1, 2, 3},m ∈ Z, n ∈ N}

for every α > 1, β > 0 with β ln(α) ≤ 4π/(1 + 4p), p > 0, when the three wavelets φi are
suitable linear combinations of the Poisson wavelet Pp of order p and its Hilbert transform
H Pp. For complex-valued signals we find that this is not possible for any choice of the
parameters α > 1, β > 0 and for any window. In contrast to the existing literature on
wavelet sign retrieval, our uniqueness results do not require any bandlimiting constraints
or other a priori knowledge on the real-valued signals to guarantee their unique recovery
from the absolute values of their wavelet coefficients.

Keywords. Phase retrieval, Wavelet transform, Cauchy wavelet, Poisson

wavelet, weighted Bergman space, Wavelet frame, Sampling theorem

1. Introduction

Wavelet phase retrieval refers to the inverse problem of reconstructing a square-integrable
function f from its scalogram; that is, from the absolute value of its wavelet transform:

Wφf(b, a) := a−
1

2

∫

R

f(x)φ

(
x− b

a

)
dx, b ∈ R, a ∈ R+.

The wavelet transform emerged from research activities aimed at developing new analysis
and processing tools to enhance signal theory and has proved to be extremely efficient
in various applications such as denoising and compression. We refer to [7, 13, 15] for a
thorough overview of wavelet analysis. However, there is still limited knowledge of the
problem of reconstructing a function from the absolute value of its wavelet transform.
This inverse problem arises in audio analysis and processing and has recently received an
increasing amount of attention [2, 11, 14, 16, 19].

More precisely, wavelet phase retrieval aims to determine for which analyzing wavelets
φ, and which choices of sets Λ ⊆ R×R+ and subspaces M ⊆ L2(R) the forward operator

Aφ : M/∼→ [0,+∞)Λ, Aφ(f)(b, a) := |Wφf(b, a)|, (b, a) ∈ Λ, (1)

is injective, where f ∼ g if and only if f = eiαg for some α ∈ R. In the following, we
distinguish between continuous wavelet phase retrieval, meaning the recovery of f (up to
a global phase) from Aφ(f) when Λ has the cardinality of the continuum, and sampled
wavelet phase retrieval, i.e. the recovery of f (up to a global phase) from Aφ when Λ is a
discrete subset of R× R+.

We emphasise that in this paper we treat real-valued analyzing wavelets and point out
that whenever φ is real-valued the map

L2(R)/∼∋ f 7→ (|Wφf(b, a)|)(b,a)∈R×R+
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is not injective. To see that, we consider a function f ∈ L2(R) with Re f 6≡ 0 and Im f 6≡ 0.
Then, the functions f and g = Re f − i Im f are not equal up to a global constant phase,
i.e. f 6∼ g, but satisfy

|Wφf(b, a)| = |Wφg(b, a)|, (b, a) ∈ R× R+.

Therefore, we cannot hope to have a uniqueness result in L2(R)/∼ when the analyzing
wavelet is real-valued and the restriction to the space of real-valued square-integrable
functions L2(R,R)/∼ is optimal. In this latter case, f ∼ g if and only if f = ±g, and we
refer to this problem as wavelet sign retrieval.

1.1. Prior work: sampled wavelet sign retrieval with bandlimiting. The existing
literature on sampled wavelet sign retrieval only includes uniqueness results which require
either the analyzing wavelets or the signals to be bandlimited. In [2] the authors show that
every real-valued function f ∈ L2(R) that has exponential decay at infinity is uniquely
determined (up to a global sign) by its wavelet coefficients

{|Wφf(2
−nβm, 2−n)| : m ∈ Z, n ∈ N}

if φ is a real-valued bandlimited wavelet and β > 0 is a sampling parameter explicitly
determined by the bandwidth of φ. Examples of real-valued bandlimited wavelets are the
Meyer wavelet and the Shannon wavelet.

Then, in our recent paper [1], we prove that, for every choice of the sampling parameters
α > 1, β > 0, and for every wavelet φ ∈ L2(R) with finitely many vanishing moments1,
all real-valued bandlimited functions f ∈ L2(R) are uniquely determined (up to a global
sign) by the measurements

{|Wφf(α
−nβm, α−n)| : m ∈ Z, n ∈ N}.

This uniqueness result can be restated as the injectivity of the operator Aφ, cf. (1), for
the choices

M = {f ∈ L2(R) : supp f̂ is compact} and Λ = α−N(βZ× {1}),
whenever φ has a finite number of vanishing moments. Examples of real-valued (non
bandlimited) wavelets with a finite number of vanishing moments include the Poisson
wavelets and the nth Hermitian wavelet, i.e. the nth derivative of the Gaussian function,
for every n ∈ N>0. In particular, n = 2 corresponds to the Mexican hat wavelet.

1.2. Our contribution: wavelet sign retrieval without bandlimiting. The above-
mentioned results always make a bandlimitedness assumption either on the unknown signals
or on the analyzing wavelets. In contrast to prior work, our results here guarantee the
unique recovery of real-valued signals from the absolute value of their wavelet transform
without bandlimiting constraints or other a priori knowledge on the signals. While
uniqueness results on sign retrieval from samples for M = L2(R) are missing to date, the
current paper proposes that a positive uniqueness result can be established when instead
of a single wavelet, three wavelets are employed.

We first prove Theorem 3.1 which guarantees injectivity of Aφ if Λ is a subset of the
upper half plane with positive measure and φ is such that RanWφ ⊆ A (C+), where
A (C+) denotes the space of real-analytic functions on the upper-half plane. Our theorem
applies to the Poisson wavelet, a classical real-valued wavelet [12, Chapter 1,§ 7].

1We say that a wavelet has a finite number of vanishing moments if there exists an ℓ ∈ N such that

lim
ξ→0

ξ−ℓφ̂(ξ) ∈ C \ {0}.
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However, Theorem 3.1 does not apply to the more challenging case where Λ is a discrete
set, and we address this problem in Theorem 3.3 with a multi-wavelet approach. A
hyperbolic lattice in the upper half plane is a countable and discrete set of the form

Λ(β, α) := {(αmβn, αm)}m,n∈Z,
with α > 1 and β > 0, see Figure 1 for an example. Theorem 3.3 shows that the
magnitudes of the multi-wavelet frame coefficients

{|Wφif(b, a)| : i ∈ {1, 2, 3}, (b, a) ∈ Λ(β, α)} (2)

uniquely determine f up to a global sign if the analytic windows φ1, φ2, φ3 are suitable
linear combinations of the Poisson wavelet, defined in the Fourier domain by

P̂p(ξ) := |ξ|pe−|ξ|, ξ ∈ R, p > 0,

and its Hilbert transform H Pp, and if Λ is a hyperbolic lattice satisfying β ln(α) ≤
4π/(1 + 4p). For instance, we can choose φ1 = Pp, φ2 = H Pp and φ3 = Pp + H Pp.

As a consequence of Proposition 2.4, the set

{TbDaPp}(b,a)∈Λ(β,α) ∪ {TbDaH Pp}(b,a)∈Λ(β,α) (3)

forms a frame for L2(R,R) if and only if β ln(α) < 2π/p, where Tb and Da denote the
translation and dilation operators

Tbf(x) = f(x− b) and Daf(x) = a−
1

2f
(
a−1x

)
,

respectively. Theorem 3.3 states that by taking (1+4p)/2p times the necessary density for
(3) to constitute a wavelet frame for L2(R,R), we can achieve uniqueness in the recovery
of real-valued signals from the set of measurements (2). Therefore, we need roughly
3(1 + 4p)/4p times more samples than required for signal reconstruction using wavelet
coefficients when the phases are not available. For example, if p = 1, we would need
3.75 times more samples to obtain uniqueness. It is still an open question whether three
wavelets are indeed necessary or whether one of the analytic wavelets Pp and H Pp (or a
linear combination of the two) could also be sufficient to obtain uniqueness.

1.3. Other related literature. In [16] the authors prove that the magnitude of the
Cauchy wavelet transform of a signal f ∈ L2(R) uniquely determines its analytic repre-
sentation

f̂+(ξ) := 2f̂(ξ)1ξ>0, ξ ∈ R,

up to a global constant phase factor. Here, 1Ξ denotes the characteristic function of the set
Ξ. Since real-valued functions are uniquely determined by their analytic representation, one
would be tempted to conclude that the magnitude of the Cauchy wavelet transform uniquely
determines real-valued signals up to a global sign. However, the analytic representation
f+ up to a global phase factor does not uniquely determine the real-valued signal up
to a global sign. Indeed, it is possible to construct real-valued functions f, g ∈ L2(R)
which do not agree up to a global sign but satisfy g+ = eiαf+, for some α ∈ R, see [1,
Remark 12]. In contrast with [16], our uniqueness theorem guarantees the unique recovery
of the real-valued signals themselves, instead of their analytic representations. Moreover,
the result in [16] is a uniqueness result in the semi-discrete regime, while our main result
is in the fully discrete setting.

Building on the results in [16], in [1] we restrict the signal class to analytic bandlimited
signals to obtain a uniqueness result from sampled Cauchy wavelet transform measurements.
Again, the bandlimitedness assumption plays a crucial role to obtain a full sampling result.
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Finally, we point out that our result is reminiscent of the recent work in [9], where
the authors prove uniqueness results from magnitudes of multi-window Gabor frame
coefficients.

Notation. We set R+ := (0,+∞). For any p ∈ [1,+∞], we denote by Lp(R) the Banach
space of functions f : R → C which are p-integrable with respect to the Lebesgue measure
and we use the notation ‖ · ‖p for the corresponding norms. The Fourier transform on
L1(R) is defined by

f̂(ξ) :=

∫

R

f(x)e−2πixξ dx, ξ ∈ R,

and it extends to L2(R) by a classical density argument.

2. Preliminaries

2.1. Frames in Hilbert spaces. The notion of a frame, which generalizes that of a
Riesz basis in Hilbert spaces, is due to Duffin and Schaffer [8]. Let H be a separable
Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. A countable sequence of vectors
{fi}i∈I in H is a frame for H if there exist constants A,B > 0 such that for all f ∈ H

A‖f‖2 ≤
∑

i∈I

|〈f, fi〉|2 ≤ B‖f‖2.

A direct consequence of the lower inequality is that every f ∈ H is uniquely determined
by its frame coefficients {〈f, fi〉}i∈I , that is

〈f, fi〉 = 0, ∀i ∈ I =⇒ f = 0.

If a frame is obtained via translated and scaled versions {TbDaφ}(b,a)∈I of a fixed function
φ, the analyzing wavelet, we call it a wavelet frame. A generalization of wavelet frames is
obtained by considering n ∈ N, n > 1, analyzing wavelets instead of a single one. In this
latter case, we talk about multi-wavelet frames. We refer to [6, 7] for an introduction to
frame theory and an overview on wavelet frames.

2.2. Weighted Bergman spaces. We denote by C+ the upper half plane,

C+ = {z ∈ C : Im z > 0},
and by O(C+) the space of holomorphic functions on C+. For every w > 1, we define the
weighted Bergman space Bw(C

+) by

Bw(C
+) :=

{
F ∈ O(C+) :

∫

R×R+

|F (x+ iy)|2yw−2 dx dy <∞
}
.

We say that a discrete subset Λ of C+ is a a set of sampling for Bw(C
+) if there exist

positive constants A and B such that

A

∫

R×R+

|F (x+ iy)|2yw−2dxdy ≤
∑

zj=xj+iyj∈Λ

|F (xj + iyj)|2ywj

≤ B

∫

R×R+

|F (x+ iy)|2 yw−2 dx dy,

for every F ∈ Bw(C
+).
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Figure 1. The lattice Λ(β, α) with β = 4π/5 ln(2) and α = 2 constitutes
a uniqueness set for the weighted Bergman space B6(C

+).

Theorem 2.1 ([18, Theorem 1.1]). Let w > 1. For every α > 1 and β > 0, the discrete
set

Γ(β, α) = {αm(βn+ i)}m,n∈Z
is a set of sampling for Bw(C

+) if and only if

β ln(α) < 4π/(w − 1).

Furthermore, we say that a discrete subset Λ of C+ is a uniqueness set for Bw(C
+) if

for every F ∈ Bw(C
+) it holds that

F (λ) = 0, ∀λ ∈ Λ =⇒ F ≡ 0.

Clearly, sampling sets are also uniqueness sets.

Theorem 2.2 ([18]). Let w > 1. For every choice of α > 1 and β > 0 satisfying

β ln(α) = 4π/(w − 1),

the discrete set

Γ(β, α) = {αm(βn+ i)}m,n∈Z
is a uniqueness set for Bw(C

+).

A general treatment of sets of sampling for weighted Bergman spaces can be found in
[17].

The weighted Bergman spaces appear in the characterization of the range of the wavelet
transform for a special choice of the analyzing wavelets: the so-called Cauchy wavelets.

2.3. Cauchy wavelets. The Cauchy wavelets are progressive wavelets, i.e. wavelets with
only positive frequencies, with real-valued Fourier transforms defined by

ψ̂p(ξ) := ξpe−ξ1ξ>0, ξ ∈ R,
5



where p > 0. We abbreviate the case p = 1 by ψ = ψ1. The wavelet transform with respect
to any Cauchy wavelet is referred to as the Cauchy wavelet transform and is defined by

Wψp
f(b, a) := a

1

2
+p

∫ +∞

0

f̂(ξ) e2πibξ−aξ ξp dξ, (b, a) ∈ R× R+.

The Cauchy wavelets satisfy the admissibility condition

Cψp
=

∫ +∞

0

|ψ̂p(ξ)|2
ξ

dξ <∞,

and consequently the Cauchy wavelet transform is a multiple of an isometry from H+(R)
into L2(R× R+, db da/a

2),

‖Wψp
f‖L2(R×R+,db da/a2) = Cψp

‖f‖2, (4)

where H+(R) denotes the Hardy space,

H+(R) := {f ∈ L2(R) : ∀ξ < 0, f̂(ξ) = 0}.
The weighted Bergman spaces relate to the Cauchy wavelet transform as the Bargmann–
Fock space does to the Gabor transform. Indeed, the map

H+(R) ∋ f 7→ F : C+ → C, F (b+ ia) = a−( 1
2
+p)Wψp

f(b, a), (5)

defines a unitary operator from H+(R) into the weighted Bergman space B2p+1(C
+), see

[10, § 3.2] and the references therein.

2.4. Poisson wavelets. The Poisson wavelet is a real-valued wavelet defined by

P (x) := ρ(x) + xρ′(x), ρ(x) :=
1

π(1 + x2)
, x ∈ R,

and with real-valued Fourier transform given by

P̂ (ξ) = |ξ|e−|ξ|, ξ ∈ R. (6)

The wavelet transform of a square-integrable function f with respect to the Poisson
wavelet is closely related to its harmonic extension into the upper half-plane

F (b, a) := (ρa ∗ f)(b), ρa(t) :=
1

a
· ρ

(
t

a

)
, (b, a) ∈ R× R+.

More precisely, we have that

WPf(b, a) = −a∂aF (b, a),
and consequently WPf is a real analytic function on the upper half-plane, see e.g. [12,
Chapter 1,§ 7]. Furthermore, equation (6) implies that the Poisson wavelet is related to
the Cauchy wavelet via

2ψ = P+ = P + iH P,

where H denotes the Hilbert transform. We recall that the Hilbert transform is a unitary
operator on L2(R) defined by

(H ϕ)̂(ξ) = −i sgn(ξ)ϕ̂(ξ), for a.e. ξ ∈ R.

In particular, the Hilbert transform of a real-valued function remains real-valued. In
general, for every p > 0, we can define the Poisson wavelet of order p as

P̂p(ξ) := |ξ|pe−|ξ|, ξ ∈ R,

which is equivalent to
2ψp = Pp + iH Pp. (7)
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The next proposition shows that the wavelet transform of any real-valued signal with
respect to a Poisson wavelet corresponds to the real part of its Cauchy wavelet transform.
Analogously, the wavelet transform of any real-valued signal with respect to the Hilbert
transform of a Poisson wavelet relates to the imaginary part of its Cauchy wavelet
transform.

Proposition 2.3. Let p > 0. For every f ∈ L2(R,R),

WPp
f = 2Re[Wψp

f ], WH Pp
f = −2 Im[Wψp

f ]. (8)

In particular, WPp
f and WH Pp

f are real analytic functions on the upper half-plane.

Proof. Let p > 0 and f ∈ L2(R,R). By equation (7), and the definition of the wavelet
transform, we obtain

2Wψp
f(b, a) = 2〈f, TbDaψp〉 = 〈f, TbDa (Pp + iH Pp)〉,

= 〈f, TbDaPp〉 − i〈f, TbDaH Pp〉,
= WPp

f(b, a)− iWH Pp
f(b, a),

for (b, a) ∈ R× R+, which implies equation (8). Equivalently, for every (b, a) ∈ R× R+,
we have that

WPp
f(b, a) = 2a

1

2
+pRe[a−( 1

2
+p)Wψp

f(b, a)],

WH Pp
f(b, a) = −2a

1

2
+pIm[a−( 1

2
+p)Wψp

f(b, a)],

which, together with equation (5), shows that WPp
f and WH Pp

f are real analytic functions
on the upper half-plane. �

As a consequence of Theorem 2.1 and Proposition 2.3, the Poisson wavelet and its
Hilbert transform give rise to discrete frames for L2(R,R). More precisely, we have the
following result.

Proposition 2.4. The set

{TbDaPp}(b,a)∈Λ(β,α) ∪ {TbDaH Pp}(b,a)∈Λ(β,α) (9)

constitutes a frame for L2(R,R) if and only if β ln(α) < 2π/p.

Proof. The set in equation (9) is a frame for L2(R,R) if and only if there exist constants
A,B > 0 such that

A‖f‖22 ≤
∑

(b,a)∈Λ(β,α)

(|WPp
f(b, a)|2 + |WH Pp

f(b, a)|2) ≤ B‖f‖22, (10)

for every f ∈ L2(R,R). By Proposition 2.3, equation (10) is equivalent to

A

4
· ‖f‖22 ≤

∑

(b,a)∈Λ(β,α)

|Wψp
f(b, a)|2 ≤ B

4
· ‖f‖22, for all f ∈ L2(R,R). (11)

We recall that any real-valued function satisfies

f̂(−ξ) = f̂(ξ), ξ ∈ R.

Consequently, L2(R,R) is isomorphic to the Hardy space H+(R) via the mapping

L2(R,R) ∋ f 7→ f+ ∈ H+(R),

which satisfies

‖f‖2 =
‖f+‖2√

2
.
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Furthermore, we can see that the wavelet transform with respect to a Cauchy wavelet
satisfies

Wψp
f(b, a) =

√
a ·

∫

R

f̂(ξ)ψ̂p(aξ)e
2πiξb dξ =

√
a ·

∫ ∞

0

f̂(ξ)ψ̂p(aξ)e
2πiξb dξ

=

√
a

2
·
∫ ∞

0

f̂+(ξ)ψ̂p(aξ)e
2πiξb dξ =

1

2
· Wψp

f+(b, a),

where the first equality follows by Plancherel’s theorem. Therefore, equation (11) is
equivalent to

A

2
· ‖f‖22 ≤

∑

(b,a)∈Λ(β,α)

|Wψp
f(b, a)|2 ≤ B

2
· ‖f‖22, for all f ∈ H+(R). (12)

Now, since the map

H+(R) ∋ f 7→ F : C+ → C, F (b+ ia) = a−( 1
2
+p)Wψp

f(b, a),

is a unitary operator from H+(R) onto the weighted Bergman space B2p+1(C
+) (cf. equa-

tion (5)), equation (12) becomes

A

2
·
∫

R×R+

|F (x+ iy)|2y2p−1dxdy ≤
∑

x+iy∈Γ(β,α)

|F (x+ iy)|2y2p+1

≤ B

2
·
∫

R×R+

|F (x+ iy)|2y2p−1dxdy, (13)

for every F ∈ B2p+1(C
+), where Γ(β, α) denotes the image of Λ(β, α) via the isomorphism

R2 ∋ (x, y) 7→ x+ iy ∈ C. Finally, Theorem 2.1 allows us to conclude that equation (13)
is satisfied if and only if β ln(α) < 2π/p. �

With this preparatory result, we now work towards establishing our main result. For
this, we say that a frame Φ = {ϕi}i∈I of a separable Hilbert space H does phase retrieval
if the nonlinear map

AΦ : H/∼→ RI
+, AΦ([f ]) = {|〈f, ϕi〉|}i∈I

is injective, where f ∼ g if and only if f = eiαg for some α ∈ R. Building on Proposition 2.4,
our main theorem shows that the multi-wavelet frame

{TbDaPp}(b,a)∈Λ(β,α) ∪ {TbDaH Pp}(b,a)∈Λ(β,α) ∪ {TbDa(µ1Pp + µ2H Pp)}(b,a)∈Λ(β,α)
does phase retrieval in L2(R,R) if Λ(β, α) is a hyperbolic lattice with β ln(α) ≤ 4π/(1+4p),
and if the collection of vectors

{(1, 0), (0, 1), (µ1, µ2)}
satisfies the complement property whose definition is recalled in the next section.

2.5. Sign retrieval in ❘M . Given a collection of vectors Φ = {vn}Nn=1 in RM , we consider
the map

AΦ : R
M/∼→ RN

+ , AΦ(v) = {|〈v, vn〉|}Nn=1,

where v ∼ w if and only if v = ±w. The term “sign retrieval in RM ” refers to the study
of necessary and sufficient conditions on Φ under which the map AΦ is injective. It is
well-known that the map AΦ is injective if and only if the collection Φ has the complement
property.

8



Definition 2.5. Let M,N ∈ N and let Φ = {vn}Nn=1 be a collection of vectors in RM .
We say that Φ has the complement property if, for every subset S ⊆ {1, . . . , N}, either
span{vn : n ∈ S} = RM or span{vn : n ∈ {1, . . . , N} \ S} = RM .

Proposition 2.6 ([4]). Let M,N ∈ N and let Φ = {vn}Nn=1 be a collection of vectors in
RM . Then, the map

AΦ : R
M/{±1} → RN

+ , AΦ(v) = {|〈v, vn〉|}Nn=1, (14)

is injective if and only if Φ has the complement property.

Proposition 2.6 immediately implies that the map in equation (14) is not injective if
N ≤ 2M − 2. A natural question is therefore whether N = 2M − 1 vectors are sufficient
to yield injectivity of AΦ. This question has been answered in [4] where the authors show
that a collection of vectors Φ = {vn}2M−1

n=1 ⊆ RM has the complement property if and only
if Φ is full spark, which means that every subcollection of M vectors of Φ spans RM .

The complement property can be stated in the more general setting where Φ is a
collection of vectors in a separable Hilbert space H.

Definition 2.7 ([5]). Let Φ = {ϕi}i∈I be a collection of vectors in a separable Hilbert
space H. We say that Φ has the complement property if, for every subset S ⊆ I, either
span{ϕi : i ∈ S} = H or span{ϕi : i ∈ I \ S} = H.

Analogously to the finite dimensional setting, if H is a Hilbert space over R, a collection
Φ does phase retrieval if and only if Φ has the complement property. If H is a Hilbert
space over C, we only know that the complement property is a necessary condition for
uniqueness of the phase retrieval problem, see [3, 5].

3. Main Results: Wavelet Sign Retrieval without Bandlimiting

This section is devoted to presenting our contributions to wavelet sign retrieval. The
novelty of our results with respect to the existing literature lies in the fact that we do not
need any a priori knowledge about the real-valued square-integrable signals to guarantee
their unique recovery from the absolute values of their wavelet transforms.

Remember that we distinguish between continuous wavelet sign retrieval, meaning the
recovery of f (up to a global sign) from (|Wφf(b, a)|)(b,a)∈Ω, where Ω has the cardinality
of the continuum, and sampled wavelet sign retrieval, i.e. the recovery of f (up to a global
sign) from (|Wφf(b, a)|)(b,a)∈Λ, where Λ is a discrete subset of R× R+.

3.1. Continuous wavelet sign retrieval. We recall that A (C+) denotes the space of
real-analytic functions on the upper-half plane.

Theorem 3.1. Let Ω ⊆ R× R+ be a set with positive measure and let φ ∈ L2(R,R) be
an analyzing wavelet such that RanWφ ⊆ A (C+). Then, the following are equivalent for
f, g ∈ L2(R,R):

(i) f = ±g,
(ii) |Wφf | = |Wφg| on Ω.

Proof. It is clear that item (i) implies item (ii). Let us therefore assume that f, g ∈ L2(R,R)
satisfy

|Wφf(b, a)| = |Wφg(b, a)|, (b, a) ∈ Ω.

If we consider the subset

S = {(b, a) ∈ Ω : Wφf(b, a) = Wφg(b, a)},
9



then the functions h1 = f + g and h2 = f − g satisfy

Wφh1(b, a) = 0, (b, a) ∈ Ω \ S,
and

Wφh2(b, a) = 0, (b, a) ∈ S.

Since Ω has positive measure, either S or Ω \ S has positive measure. Therefore, either
Wφh1 ≡ 0 or Wφh2 ≡ 0 because the zero set of a non-zero real analytic function has zero
measure. We can thus conclude that f = ±g. �

Remark 3.2. By Proposition 2.3, Theorem 3.1 applies to the family of the Poisson wavelets
and to their Hilbert transforms.

3.2. Sampled wavelet sign retrieval. Theorem 3.1 does not apply to the case where
we only know the magnitude of the wavelet transform on a discrete set. We remember
that a hyperbolic lattice in the upper half place takes the form

Λ(β, α) = {(αmβn, αm)}m,n∈Z
for some values of the parameters α > 1 and β > 0. It is therefore a natural question to
ask under which assumptions on the analyzing wavelets and on the sample parameters
α and β we can obtain a uniqueness result as in Theorem 3.1. We address this problem
with a multi-wavelet approach.

Theorem 3.3. Let p > 0 and let α > 1 and β > 0 satisfy

β ln(α) ≤ 4π

1 + 4p
.

Furthermore, let
φi = λi,1Pp + λi,2H Pp, i = 1, 2, 3,

for a collection of full spark vectors

{λi = (λi,1, λi,2)}3i=1

in R2. Then, every f ∈ L2(R,R) is uniquely determined, up to a global sign, by the
magnitudes of the multi-wavelet frame coefficients

{|Wφif(b, a)| : i ∈ {1, 2, 3}, (b, a) ∈ Λ(β, α)}.
Equivalently, the multi-wavelet frame

{TbDaφ1}(b,a)∈Λ(β,α) ∪ {TbDaφ2}(b,a)∈Λ(β,α) ∪ {TbDaφ3}(b,a)∈Λ(β,α).
does sign retrieval in L2(R,R).

Proof. Let f, g ∈ L2(R,R) be such that

|Wφif(b, a)| = |Wφig(b, a)|, (b, a) ∈ Λ(β, α),

where
φi = λi,1Pp + λi,2H Pp, i = 1, 2, 3,

for a collection of full spark vectors

{λi = (λi,1, λi,2)}3i=1.

We prove that f = ±g. Let us first observe that, for every (b, a) ∈ Λ(β, α) and for every
i = 1, 2, 3, it holds that

|〈(WPp
f(b, a),WH Pp

f(b, a)), λi〉| = |Wφif(b, a)| = |Wφig(b, a)|
= |〈(WPp

g(b, a),WH Pp
g(b, a)), λi〉|.
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By hypothesis, the set of vectors {λi}3i=1 is full spark and therefore satisfies the complement
property. Consequently, for every (b, a) ∈ Λ(β, α),

(WPp
f(b, a),WH Pp

f(b, a)) = ±(WPp
g(b, a),WH Pp

g(b, a)).

If we consider the subset

S = {(b, a) ∈ Λ(β, α) : (WPp
f(b, a),WH Pp

f(b, a)) = (WPp
g(b, a),WH Pp

g(b, a))},
then the functions h1 = f + g and h2 = f − g satisfy

(WPp
h1(b, a),WH Pp

h1(b, a)) = 0, (b, a) ∈ Λ(β, α) \ S
and

(WPp
h2(b, a),WH Pp

h2(b, a)) = 0, (b, a) ∈ S.

Therefore, by Proposition 2.3, the functions h1 and h2 satisfy

(2Re[Wψp
h1(b, a)],−2 Im[Wψp

h1(b, a)]) = 0, (b, a) ∈ Λ(β, α) \ S
and

(2Re[Wψp
h2(b, a)],−2 Im[Wψp

h2(b, a)]) = 0, (b, a) ∈ S,

or equivalently

Wψp
h1(b, a) = 0 (b, a) ∈ Λ(β, α) \ S and Wψp

h2(b, a) = 0 (b, a) ∈ S.

We introduce the functions

H1(b+ ia) := a−( 1
2
+p)Wψp

h1(b, a), H2(b+ ia) := a−( 1
2
+p)Wψp

h2(b, a),

of one complex variable, where (b, a) ∈ R × R+, and note that H1 and H2 are entire
functions on the upper half plane (cf. equation (5)). As a consequence, the function

H = H1 ·H2

is also an entire function on the upper half plane and

H(b+ ia) = 0, (b, a) ∈ Λ(β, α). (15)

Furthermore, by equation (4),
∫

R×R+

|H(b+ ia)|2a2+4pdbda

a2
=

∫

R×R+

|Wψp
h1(b, a)|2|Wψp

h2(b, a)|2
dbda

a2

≤ ‖ψp‖22‖h1‖22
∫

R×R+

|Wψp
h2(b, a)|2

dbda

a2

= Cψp
‖ψp‖22‖h1‖22‖h2‖22,

where

Cψp
=

∫ +∞

0

|ψ̂p(ξ)|2
ω

dω <∞,

showing that H belongs to the weighted Bergman space B2+4p(C+). By Theorems 2.1
and 2.2, Λ(β, α) is a uniqueness set for B2+4p(C+) and hence equation (15) implies H ≡ 0.
Therefore, either H1 ≡ 0 or H2 ≡ 0 which shows that f = ±g. �

Example 3.4. Theorem 3.3 applies to the analyzing wavelets

φ1 = P, φ2 = H P, φ3 = P + H P,

together with the dyadic lattice Λ(4π/5 ln(2), 2), see Figures 1 and 2.
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Figure 2. The Fourier transform of the Poisson wavelet (on the left) and
its Hilbert transform (on the right). Since the Fourier transform of the
Poisson wavelet is real-valued, the Fourier transform of its Hilbert transform
is purely imaginary.

Remark 3.5. More generally, we could replace the regular set of sampling Λ(β, α) in
Theorem 3.3 with any other sampling set for B2+4p(C+). We refer to [17] for a complete
characterization of sets of sampling for Bergman type spaces on the unit disk D. We recall
that the upper-half plane C+ can be mapped onto the unit disk D under the conformal
map

ϕ(z) =
z − i

z + i
,

known as the Cayley transform.

Remark 3.6. In the second part of the proof of Theorem 3.3, we actually show that, if
β ln(α) ≤ 4π/(1 + 4p), the Cauchy wavelet frame

{TbDaψp}(b,a)∈Λ(β,α)
for the Hardy space H+(R) satisfies the complement property (see Definition 2.7). Indeed,
suppose that there exists a subset S ⊆ Λ(β, α) such that

span{TbDaψp}(b,a)∈Λ(β,α)\S 6= H+(R) and span{TbDaψp}(b,a)∈S 6= H+(R).

This means that there exist two non-zero functions h1, h2 ∈ H+(R) such that

Wψp
h1(b, a) = 0 (b, a) ∈ Λ(β, α) \ S and Wψp

h2(b, a) = 0 (b, a) ∈ S.

Then, the same argument as in the proof of Theorem 3.3 leads to the conclusion that
either h1 or h2 has to be zero and thus the complement property holds. However, in the
complex-valued case, the complement property is only a necessary condition for uniqueness
of the phase retrieval problem and we cannot conclude that the operator

H+(R)/∼∋ h 7→ (|Wψp
h(b, a)|)(b,a)∈Λ(β,α) ∈ RΛ(β,α) (16)

is injective. Determining a hyperbolic lattice such that the operator in equation (16) is
injective remains an interesting open problem.
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