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Abstract

We elaborate a numerical method for a three-dimensional hydrodynamic multi-species plasma model described
by the Euler-Maxwell equations. Our method is inspired by and extends the one-dimensional scheme from
[P. Degond, F. Deluzet, and D. Savelief, Numerical approximation of the Euler-Maxwell model in the quasineu-
tral limit, Journal of Computational Physics, 231 (4), pp. 1917–1946, 2012]. It can cope with large variations of
the Debye length λD and is robust in the quasi-neutral limit λD → 0 thanks to its asymptotic-preserving (AP)
property. The key ingredients of our approach are (i) a discretization of Maxwell’s equations based on primal
and dual meshes in the spirit of discrete exterior calculus (DEC) also known as the finite integration technique
(FIT), (ii) a finite volume method (FVM) for the fluid equations on the dual mesh, (iii) mixed implicit-explicit
timestepping, (iv) special no-flux and contact boundary conditions at an outer cut-off boundary, and (v) ad-
ditional stabilization in the non-conducting region outside the plasma domain based on direct enforcement of
Gauss’ law. Numerical tests provide strong evidence confirming the AP property of the proposed method.

1 Introduction

The starting point for this work was the desire to numerically simulate the formation and evolution of electric
arcs at atmospheric pressures. Following common practise, we rely on a mathematical description by means
of a hydrodynamic multi-species plasma model, which boils down to an extended Maxwell-Euler system. The
arc phenomenon covers a wide range of plasma regimes and, thus, the design goal was a numerical model
capable of dealing with all of them seamlessly and simultaneously. Thus, in this work, as in [11], the focus is
on asymptotic-preserving (AP) discretization in the quasi-neutral limit λ → 0, where λ is the rescaled Debye
length, see Sec. 2.2 for the underlying scaling arguments and [11, 9] for a discussion of the importance of the
AP property of numerical plasma models.

Our approach is inspired by [11], but goes beyond that work in various directions:

• We supplement the Maxwell-Euler system by inter-species friction terms.

• We extend the spatially one-dimensional scheme of [11] to three spatial dimensions using discrete exterior
calculus (DEC) to discretize Maxwell’s equations combined with a low-order finite volume method for
Euler’s equations.

• We propose a stabilization in non-conducting regions which is essential for the efficacy of our method.

We stay close to [11] in terms of discretization in time employing semi-implicit time-stepping and base
our illustration on the model situations shown in Fig. 1. Yet, we would like to remark that the mesh-based
numerical scheme proposed in this paper can in principle be adapted to settings more general than those of
Fig. 1. In particular, we do not assume any rotational symmetry, which would allow reduction to two spatial
dimensions [35].
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Fig. 1. The special geometric setting suggested by the simulation of electric arcs, for which we discuss the
new method.

The quasi-neutral limit of the Maxwell-Euler system leads to a singularly perturbed problem, that is, the
limiting PDE system changes its type1. This poses a challenge for simulations in settings encompassing different
regimes. Beside the quasi-neutral limit, we remind that singularly perturbed problems occur in extensively
many physical models, e.g., in the case of vanishing viscosity problem [28, 3, 48], the zero-relaxation-limit
of kinetic-type equations [43, 1], and the incompressible limit of compressible flows [29]. Throughout, it
is essential that numerical schemes remain valid even if crucial model parameters approach the limit. These
schemes are then said to be asymptotic-preserving (AP): Let us assume that we discretize a parameter (denoted
by λ) dependent model Pλ, which converges to a limit P 0 as λ→ 0, by the scheme Pλh where h denotes some
discretization parameter, e.g., the mesh size. The AP property amounts to uniform convergence of Pλh to the
Pλ as λ → 0. The concept is effectively depicted by a commuting diagram in [27, Fig. 1]. AP schemes have
been extensively studied for various problems, e.g., the diffusive limit of kinetic equations [26, 34], the low
Mach-number limit of compressible flow models [10, 19], magnetohydrodynamics [8], the quasi-neutral limit of
drift-diffusion equations [2, 5]. For more information readers are referred to the comprehensive reviews [27, 9].

The content of this paper is organized as follows: In Sec. 2, we give a full description of the underlying
equations of the Maxwell-Euler system and its rescaling procedure. Meanwhile, the boundary conditions in
our setting is elaborated. A reformulation of Maxwell’s equations in the non-conducting region is presented.
Sec. 3 is devoted to the spatial discretization. The concept of primal-dual meshes is introduced based on
which FIT and FVM are utilized. We discuss the full AP discretization in Sec. 4 and do numerical experiments
in Sec. 5.

2 Plasma model

2.1 The Maxwell-Euler System

Plasmas consist of electrically charged and (possibly) neutral particle species, and we suppose that they can be
treated as continua (fluids). That is, they may be described by the Navier-Stokes equations augmented with
source terms for species generation (ionization, recombination), forces (Lorentz force and interspecies friction),
and energy (thermal relaxation among species, radiative heat transfer, Ohmic heating). For more details on
fluid models of plasmas, see [6, 45].

The electromagnetic effects in plasmas are governed by Maxwell’s equations:

∂tB+∇×E = 0, (1a)

∂tD−∇×H = −J, (1b)

∇ ·B = 0, (1c)

∇ ·D = ρ, (1d)

where the involved quantities2 are the magnetic flux density B[Wb
m2 ], the electric field E[Vm ], the electric dis-

placement field D[ C
m2 ], the magnetic field H[Am ], the electric current density J[ A

m2 ] and the electric charge

1The type of the Maxwell-Euler system switches from hyperbolic to mixed for λD → 0
2SI units in square brackets.
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density ρ[ C
m3 ]. These equations are known as Faraday’s law (1a), Ampère’s law (1b), Gauss’s law for mag-

netism (1c) and Gauss’s law for electric field (1d). For simplicity, we only consider isotropic and homogeneous
media. Namely, we rely on linear constitutive relations (material laws):

D = ϵE , B = µH, (2)

where ϵ[ Fm ] and µ[ N
A2 ] are the permittivity and permeability and assumed to be constant. By taking the time

derivative of (1d) and the divergence of (1b), it is easy to see that (1b) and (1d) implies the charge conservation

∂tρ+∇ · J = 0. (3)

Besides, by taking the divergence of equations (1a) and (1b) together with the relation (3), it is possible to
verify that Gauss’s laws (1c) (1d) are consequences of (1a) and (1b) provided that (1c) (1d) are satisfied at
initial time. In other words, Gauss’s laws (1c) (1d) can be thought of as initial conditions.

We model each species in the plasma as a compressible fluid through a set of Euler equations augmented
by electromagnetic forces as well as other processes, e.g. collisions and recombination:

∂t





n∗

m∗n∗u∗

m∗n∗e∗



+∇ ·





n∗u∗

m∗n∗u∗ ⊗ u∗ + p∗I
m∗n∗h∗u∗



 =





0
q∗n∗(E+ u∗ ×B)

J∗ ·E



+





Γ∗

R∗

Q∗



 . (4)

The subscript ∗ ∈ {e, i, . . .} labels electrons, ions or other species. The involved fluid quantities are: number
density n∗[

1
m3 ], particle massm∗[kg], electric charge q∗[C], velocity u∗[

m
s ], pressure p∗[

N
m2 ], specific total energy

e∗ := 1
2 |u∗|

2+ p∗
m∗n∗(γ−1) [

J
kg ], specific total enthalpy h∗ := e∗+

p∗
m∗n∗

[ J
kg ] and current density J∗ := q∗n∗u∗[

A
m2 ].

All species are assumed to be ideal gases with heat capacity ratio γ = 5/3 for monatomic gases. The left-hand
side of the equations describes the convection of plasma fluids. The first term at the right-hand side takes into
account the Lorentz force in the momentum equation and Joule heating in the energy equation. Γ∗,R∗, Q∗

are generic terms due to effects of inter-species collision, ionization, recombination, etc.
Combining the two sets of equations (1a) to (1d) and (4) leads to the governing equations for a multi-species

plasma model. The coupling of the two subsystems is due to the fact that the flow of charged particles induces
electric currents:

ρ =
∑

∗

q∗n∗ , J =
∑

∗

q∗n∗u∗. (5)

Remark. For the sake of simplicity, we only consider ion-electron collision in this work, but extension to more
species is straightforward. Such collisions can be well modelled by friction terms, for instance [6, Sec. 5.6.2]

Rcoll

e =
πZe4m

1/2
e

(4πϵ)
2
(kBTe)

3/2
lnΛneni(ui − ue) = −Rcoll

i , (6)

which is the collision force acting on electrons. lnΛ is called the Coulomb logarithm and is usually taken as
a constant [6]. Because of the conservation of momentum, the collision term for ions Rcoll

i is nothing but the
negative of Rcoll

e . In this work, the other effects, e.g. ionization and recombination, are not considered. For
full details about the modeling of these physical processes, readers are referred to [15, Sec. 3.2].

2.2 Rescaling

We arrive at non-dimensional equations by following the rescaling procedure of [9, Sec. 2.2]. First, a reference
value for each quantity is fixed. We define x and t as space and time scale of interest, by which the reference
velocity v is defined as x/t. The typical magnitudes of electromagnetic fields are E and B. The reference
magnitudes of fluid quantities are denoted by u for the plasma drift velocity, n for the plasma number density,
T for the plasma temperature. On top of that, the reference pressure is set to nkBT with kB being the
Boltzmann constant; the reference value for the specific total energy and enthalpy is set to u2. Also taking
into account the physical constants, i.e. the reference permittivity ϵ, the reference permeability µ, the light
speed c2 = (ϵµ)

−1
, Boltzmann constant kB , the elementary charge e, and ion mass mi, we introduce the
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following dimensionless parameters:

ξ :=
v

c
the velocity of interest w.r.t.1 the light speed,

ζ :=
u

v
the plasma velocity w.r.t. the speed of interest,

M :=
u

vthi
the plasma drift velocity w.r.t. the thermal speed of ions, where vthi :=

(
kBT

mi

)1/2

,

η :=
eEx

miu
2 the electric energy w.r.t. the kinetic energy of ions,

β :=
vB

E
the induced electric field w.r.t. the total electric field,

λ :=
λD
x

the dimensionless Debye length, where λD :=

(
ϵkBT

e2n

)1/2

,

ε2∗ :=
m∗

mi
the species mass w.r.t. the ion mass, ∗ ∈ {i, e, . . .},

g :=
1

nλ3D
the plasma parameter2.

Though rescaled, we keep the notations for the various quantities. We neglect ionization and recombination
but retain collision terms, i.e. Γ∗ = 0,R∗ = Rcoll

∗ , Q∗ = Qcoll
∗ in (4). The rescaled Euler-Maxwell system is

β∂tB+∇×E = 0, (7a)

λ2∂tD−
βλ2

ξ2
∇×H = −

ζ

ηM2
J, (7b)

∇ ·B = 0, (7c)

λ2ηM2∇ ·D = ρ, (7d)

∂t





n∗

n∗u∗

n∗e∗



+∇ ·





ζn∗u∗

ζn∗u∗ ⊗ u∗ + ζM−2ε−2
∗ p∗I

ζn∗h∗u∗



 =





0
ηζε−2

∗ q∗n∗E+ ηζ2βε−2
∗ q∗n∗u∗ ×B

ζηε−2
∗ J∗ ·E



+





0
ε−2
∗ Rcoll

∗

ε−2
∗ Qcoll

∗



 ,

(7e)

where the equation of state becomes e∗ = 1
2 |u∗|

2 +M−2 p∗
ϵ2
∗
n∗(γ−1) and h∗ = e∗ +M−2 p∗

ϵ2
∗
n∗

. For a fully-ionized

gas, we have the original expression of Rcoll
∗ in (6), and its rescaled expression becomes

Rcoll
i =

ZlnΛ

16π
gλ−1M−1εeneni(ui − ue). (8)

Assumptions can be made to reduce the number of dimensionless parameters. Following [9, Sec. 2.2], the
reference speed v is of the same scale as the plasma speed u and the thermal speed vthi whereas it is much
smaller than the light speed c. Also, it is assumed that η and β are of order one and ξ has the same magnitude
as λ.

Remark. Special treatment is needed for the collision term. One could argue that the occurrence of λ−1 in
(8) could lead to singular perturbation of the Euler system as λ→ 0. However, the validity of such a collision
model is doubtful when λ → 0. From the physical viewpoint, the shielding effect characterized by the rescaled
Debye length λ limits the impact parameters to values ∼ λ. The λ→ 0 limit implies that the collisions happen
on the atomic length scale, in which quantum-mechanical effects must be taken into account [13, pp. 144-
148]. Therefore, we eliminate the perturbation parameter in the friction term by assuming g ∼ λ and keep the
prefactor αcoll of the collision term constant throughout the simulation.

The case when there is an asymptotic parameter in the denominator of the friction term is of interest, too.
This situation is known as relaxation limit, see [40, 50, 33, 7].

1Abbreviation of with respect to.
2It is basically the reciprocal of the number of particles per Debye sphere, see [16, Sec. 1.1]. Classical plasma theory assumes

g ≪ 1.
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In summary, we make the following choices [9, sec 2.2]

ξ ∼ g ∼ λ ∈ [0, 1], ζ ∼M ∼ η ∼ β ∼ O(1).

Assuming this behavior of the dimensionless parameters, the rescaled Euler-Maxwell system is simplified to a
system of PDEs with the dimensionless Debye length λ as single parameter, whose value may tend to zero:

∂tB+∇×E = 0, (9a)

λ2 ∂tD−∇×H = −J, (9b)

∇ ·B = 0, (9c)

λ2 ∇ ·D = ρ, (9d)

∂t





n∗

n∗u∗

n∗e∗



+∇ ·





n∗u∗

n∗u∗ ⊗ u∗ + ε−2
∗ p∗I

n∗h∗u∗



 =





0
ε−2
∗ q∗n∗(E+ u∗ ×B)

ε−2
∗ J∗ ·E



+





0
ε−2
∗ Rcoll

∗

ε−2
∗ Qcoll

∗



 , (9e)

with the equation of state e∗ = 1
2 |u∗|

2 + p∗
ε2
∗
n∗(γ−1) and h∗ = e∗ +

p∗
ε2
∗
n∗

. For a fully-ionized gas with only ions

and electrons,
Rcoll
i = αcollneni(ui − ue) = −Rcoll

e , (9f)

and consequently, the rescaled friction heat for ions and electrons takes the form:

Qcoll
i = αcollneniui(ui − ue), (9g)

Qcoll
e = αcollneniue(ue − ui). (9h)

The rescaled material laws (2) are still given by

D = ϵE, B = µH, (9i)

with rescaled permittivity ϵ and permeability µ, however. The λ-parameterized rescaled Maxwell-Euler system
(9a)- (9i) is the starting point for the development of the numerical method.

Remark. Structure preservation, that is, respecting inherent constraints satisfied by solution fields on the
discrete level, is a major concern in discretization of (9) or related reduced models. Important constraints are
the positivity of densities, entropy inequalities, and zero divergence of the B-field. Two main approaches can
be distinguished:

(i) The first is to combine all equations into one hyperbolic system of conservation laws and apply finite
volume methods. Such numerical methods are rather simple to implement and also computationally
efficient. The challenge is to ensure the stability and the divergence constraint, which requires suitable
numerical fluxes and limiters. Schemes that are provably positive, entropy-stable, or divergence-free have
been constructed, see [53, 55, 54, 30, 14], and the references therein.

(ii) The second class of numerical methods tackles the electromagnetic and fluid subsystems separately. The
rationale behind such a splitting strategy is that rather mature schemes for these parts are available.
In particular, the divergence constraint can be easily handled by finite element exterior calculus. Yet
the implementation of coupled solvers is usually complicated. To name some related work, [14] applies
dedicated finite volume schemes to each subsystem; [25, 23] treat the electromagnetic part via finite
element exterior calculus.

The scheme proposed in this work belongs to the second category and by construction satisfies the divergence-
free constraint at the discrete level. Yet, our focus is on the AP property and not primarily on structure
preservation.

2.3 Quasi-neutral Limit

The Debye length λD is the characteristic length over which the local net charge is shielded, see [6, Sec. 1.4]
for the underlying physics. In many situations, it has a very small value compared to the reference length
scale: the typical λD for gas discharge and Tokamak fusion reactors is 10−4 meter, for interstellar medium,
the magnitude is about 1 meter [4, Chapt. 20]. Then the quasi-neutrality assumption ρ =

∑

∗
q∗n∗ ≈ 0 is

justified, which is typical of the limit model. Formally we obtain it by setting the rescaled Debye length λ to
zero in (9):
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∂tB+∇×E = 0, (9a)

λ2∂tD−∇×H = −J, (9b)

∇ ·B = 0, (9c)

λ2∇ ·D = ρ. (9d)

λ→0
−−−→

∂tB+∇×E = 0, (10a)

−∇×H = −J, (10b)

∇ ·B = 0, (10c)

0 = ρ. (10d)

The quasi-neutrality condition (10d) is the consequence of setting λ = 0 in Gauss’s law for the electric field
(9d). As in the non-neutral case, Gauss’s laws (10c) (10d) are the consequence of (10a) (10b) provided (10c)
(10d) are satisfied at initial time.

Remark. The limit (10) represents a singular perturbation problem in the sense that vanishing λ changes
the character of the PDE system. To be more specific, for λ = O(1) the E-field evolves with time whereas in
the quasi-neutral model, it responds instantaneously to other quantities according to the constraint (10b). We
replace (9b) by the sum of the rotation of (9a) and the time-derivative of (9b). Meanwhile, due to the link
between fluid momenta n∗u∗ and current in (5), the term ∂tJ can be reformulated by the momentum equation
according to (9e) and we end up with the following wave equation with the source terms:

λ2∂2tE+∇×∇×E = S1 + S2, (11)

where

S1 = −

(
∑

∗

ε−2
∗ q2∗n∗

)

E, (12)

S2 =
∑

∗

q∗∇ · (n∗u∗ ⊗ u∗ − ε−2
∗ p∗Iε

−2
∗ q2∗n∗u∗ ×B− q∗ε

−2
∗ Rcoll

∗ ). (13)

It is obvious in (11) that the electric field propagates with finite speed (hyperbolic evolution) when λ = O(1),
whereas for λ = 0 it responds instantaneously everywhere to local excitation (parabolic evolution/elliptic bound-
ary value problems).

Remark. The preceding formal limit argument is heuristic. Deep mathematical tools from perturbation theory
would be needed to rigorously prove the convergence of the limiting sequence. This topic is beyond the scope of
this paper. Readers are referred to [45, Chapt. 2] [39] for the quasi-neutral limit of the Maxwell-Euler system
and [24, 20] for some general theory.

2.4 Boundary Conditions

We consider a simply-connected domain Ω comprising two subdomains ΩP (plasma domain) and ΩN (non-
conducting domain). They represent regions of space occupied by plasma and a non-conducting linear dielectric
medium (e.g. glass) respectively. We use the notation ΓC := ∂Ω ∩ ∂ΩP to denote the contact boundary, and
ΓI := ∂Ω ∩ ∂ΩN for the insulating boundary which is an “artificial” cut-off boundary. The interface between
the two domains is denoted by ΓW = ∂ΩI ∩ ∂ΩP . A geometric arrangement corresponding to this setting is
sketched in Fig. 2 and is the one used in [15, Chapt. 1, Sec. 4]. This situation is simple but highly relevant.
It covers fundamental experimental set-ups, for example, those studying wall-stabilized electric arcs [17], but
is also adequate for a range of industrial plasmas, for instance, for those occurring in high-voltage circuit
breakers [44, 37].

The Euler equations are defined in ΩP with boundary conditions on ∂ΩP . We consider the physical scenario
where the plasma is confined by a solid insulator. Therefore, the interface ΓW is treated as a reflective wall
where fluid particles are bouncing back while keeping the tangential velocity and energy unchanged. The
contact boundary ΓC is modelled by open boundaries, where charge carriers and energy can pass through, i.e.,
ions and electrons are emitted and absorbed by the electrodes.

Remark. The treatment of electrodes as open boundary is a simplification. For more realistic electrode mod-
elling, see [18, 38].

Maxwell’s equations are posed on the whole domain Ω. The insulating boundary ΓI blocks energy transfer
and therefore only admits zero electric and magnetic flux, that is, D · n|ΓI

= 0 and B · n|ΓI
= 0 where n is

the normal vector [22]. We model the electrodes by imposing boundary conditions on the contact boundary
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Fig. 2. The right figure shows the cross section in the x-z plane and the different parts of the boundary and
interfaces.

ΓC = Γ+
C ∪ Γ−

C , which is composed of two disjoint connected components. On the contact boundary ΓC , the
tangential component Et of the E-field vanishes. By Faraday’s law (9a) we have ∇× E · n = 0 on the whole
(topologically trivial) boundary ∂Ω, which admits a scalar potential φ defined on ∂Ω such that Et = ∇Γφ
where ∇Γ denotes surface gradient. The scalar potential φ is constant on Γ+

C and Γ−

C . The difference of these
two constant values gives the voltage drop between the two contacts. We summarize the boundary conditions
for both sets of equations:

For the Euler equations:

u∗ · n = 0 on ΓW ,

∇u∗ · n = 0 on ΓC ,

∇n∗ · n = 0 on ΓW ∪ ΓC ,

∇e∗ · n = 0 on ΓW ∪ ΓC .

For Maxwell’s equations:

D · n = 0 on ∂Ω,

B · n = 0 on ΓI ,

φ = φ±(t) on Γ±

C .

Remark. No interface condition for Maxwell’s equations is needed on ΓW .

Remark. For a geometric setting with non-trivial topology, e.g. with a tunnel, ∇×E·n = 0 does not guarantee
the existence of a surface potential φ satisfying Et = ∇Γφ. One needs to include co-homology vector fields [22].

2.5 Stabilization in ΩN

No plasma fills the non-conducting domain ΩN (see Fig. 2), and, consequently, the Maxwell system in ΩN
reduces to

∂tB+∇×E = 0, (14a)

λ2∂tD−∇×H = 0, (14b)

∇ ·B = 0, (14c)

λ2∇ ·D = 0. (14d)

In a non-neutral regime where λ = O(1), the Maxwell system in ΩN is well-posed and Gauss’s laws (14c)
(14d) are redundant as long as they are satisfied at initial time. Nonetheless, as the system approaches the
quasi-neutral limit as λ → 0, Gauss’s law for the D-field (14d) is no longer enforced. Schemes based on
this set of PDEs would become unstable as λ → 0. The vanishing divergence constraint would evaporate as
∇ ·D = 0/λ2 = 0 would not hold numerically when λ2 becomes extremely small.

To view this issue from another perspective, we examine the limit Maxwell system in ΩN :

∂tB+∇×E = 0, (15a)

−∇×H = 0, (15b)

∇ ·B = 0, (15c)

∇ ·D = 0. (15d)
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Again, Gauss’s law for the B-field (15c) is redundant, while Gauss’s law for the D-field (15d) is no longer
a consequence of Ampère’s law (15b). However, (15d) is essential for the well-posedness of the problem [42,
p. 7]. Obviously, the degeneracy of Gauss’s law for the D-field in the system (15a) to (15d) as λ → 0 poses
some problem. In other words, the set of equations (15a) to (15d) switches to an ill-posed situation for λ = 0.
I computations this will manifest itself as instability already for λ > 0.

As a remedy, we propose the following reformulation which introduces a scalar Lagrange multiplier ψ and
removes the λ2 prefactor in Gauss’s law for the D-field:

∂tB+∇×E = 0, (16a)

λ2∂tD−∇×H+ ∇ψ = 0, (16b)

∇ ·B = 0, (16c)

∇ ·D = 0. (16d)

Supplemented with the boundary condition ψ = 0 on ∂ΩN , one can check that (16a) to (16d) are equivalent
to the original formulation (14a)-(14d) by verifying that ψ = 0 in ΩN . This is done by taking the divergence of
(16b), which results in ∆ψ = 0 and the zero Dirichlet boundary condition gives vanishing ψ. The importance
of this reformulation will become clear through numerical experiments, see Sec. 5.

We point out that this reformulation is not needed in the plasma domain ΩP since the Maxwell system
is uniformly well-posed for λ ∈ [0, 1] thanks to the existence of an electric current and its dependence on the
E-field.

3 Spatial Discretization

3.1 Primal-dual Staggered Meshes

3.1.1 Definition and Geometric Construction

To prepare the spatial discretization of the Maxwell-Euler system, we introduce primal-dual staggered meshes,
a key component of the discrete exterior calculus (DEC) discretization of Maxwell’s equations. The spatial
domain is covered by two meshes interlacing with each other, denoted by a mesh doublet (M,M̃) for primal
mesh and dual mesh respectively. The fundamental duality property requires that each edge of one mesh
penetrates a face of the other mesh and that each vertex of one mesh lies inside of a cell of the other mesh [52,
Sec. 2]. Examples are shown in Fig. 3a.

To clarify the notation, in three dimensions the primal mesh M is a cell complex defined by the set of mesh
entities {P,L,A, V }3 denoting vertices (points), edges, faces and cells respectively. In the same way, the dual
mesh M̃ is defined by {P̃ , L̃, Ã, Ṽ }. The entities of two meshes are connected by one-on-one pairings P ↔ Ṽ ,
L ↔ Ã, A ↔ L̃ and V ↔ P̃ , which arise in a very natural way: P (P̃ resp.,) corresponds to Ṽ (V resp.,) in
which it lies and L(L̃ resp.,) penetrates a corresponding Ã(A resp.,). According to their dimensions, vertices,
edges, faces and cells are also called 0-dim, 1-dim, 2-dim and 3-dim entities respectively. Moreover, we denote
by N∗, ∗ ∈ {P, P̃ , L, L̃, A, Ã, V, Ṽ } the total number of entities in M,M̃.

In 2D we construct the pair of meshes based on the Delaunay-Voronoi approach: we start with a Delaunay
triangulation M of the domain and construct M̃ by connecting circumcenters of any two adjacent triangles,
see Fig. 3b. In three dimensions, the meshes are constructed by extruding the 2D meshes vertically along one
axis in a staggered manner [36, Sec. 3.1]. See an example in Fig. 3c. In this way, the meshes are composed of
prisms. This particular choice is compatible with the cylindrical geometric setting that we are in, see Fig. 2.
For a general setting, one can directly decompose the domain into tetrahedrons and constructs the Voronoi
grid, but the procedure is more complicated. The meshes for the cylindrical domain are displayed in Fig. 5a.

The geometric orthogonality between L ↔ Ã and A ↔ L̃ is satisfied and will be a crucial property for
approximating the material laws on the discrete level (which is the so-called discrete Hodge operator [21, 46]),
as will be shown in Sec. 3.2.1.

Remark. The use of the Delaunay-Voronoi based primal-dual meshes is problematic when there are triangles
with an obtuse angle in M. In this case their circumcenters lie outside the triangles and the intersection
between edges and faces is violated. An alternative approach is barycenter-based dual meshes, which are not
restricted to an acute-angle triangulation [36, Sec. 4.2].

3The notation here is a bit sloppy. P,L,A, V can refer to a single entity or a set of entities depending on the context.
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M

M̃

(a) 3D case (Cartesian)

M

M̃

(b) 2D case

M

M̃

(c) 3D case (2D extrusion)

Fig. 3. Illustration of primal and dual meshes. (a) A Cartesian case (“staggered grids”) (a) A Delaunay-
Voronoi grid in 2D (c) The extrusion of 2D mesh: six triangular prisms are primal cells (with black and gray
edges). One dual cell, which is a hexagonal prism, is depicted by blue edges. The dashed hexagon represents
the intersection of the dual cell and primal cells.

3.1.2 Orientation and Incidence Matrices

Each geometric entity in the primal mesh M is (arbitrarily) endowed with an internal orientation4. The
notion is illustrated in Fig. 4. For the entities of the dual mesh M̃, we set their internal orientations to be
aligned with their corresponding primal entities according to the bijective pairings, i.e. edges penetrate faces.

Another orientation attribute, induced orientation, is defined as follows: an induced orientation of a k-dim
entity f with respect to a (k + 1)-dim entity f ′, satisfying f ⊂ ∂f ′, is determined by the internal orientation
of f ′ according to the rules shown in Fig. 4.

This information can be described by matrices with entries in {0,−1,+1}, called incidence matrices. To
describe the primal face-to-edge relation, for instance, a sparse matrix C ∈ R

NA×NL is assembled whose (i, j)-
entry is assigned +1 if the internal orientation of edge Lj and its induced orientation with respect to face Ai
coincides; it is assigned −1 if two orientations are opposite; and assigned 0 if Lj is not a subset of the boundary
of Ai. We will see later that C functions as a discrete version of the rotation operator. The other incidence
matrices are constructed in the same manner, see Tab. 1 for a summary. Given the relationship of orientations
of M and M̃, we can derive the relations listed in Tab. 2.

Matrix Size Incidence relation Operator

D (D̃) NV ×NA (NṼ ×NÃ) cell → face discrete divergence

C (C̃) NA ×NL (NÃ ×NL̃) face → edge discrete rotation

G (G̃) NL ×NP (NL̃ ×NP̃ ) edge → vertex discrete gradient

Tab. 1. Summary of incidence matrices

Property of incidence matrices Corresponding rule in vector analysis

G
T = −D̃ ∇∗ = −(∇·)

C
T = C̃ (∇×)∗ = (∇×)

D
T = −G̃ (∇·)∗ = −∇

CG = 0, C̃G̃ = 0 (∇×) ◦ ∇ = 0

DC = 0, D̃C̃ = 0 (∇·) ◦ (∇×) = 0

∗ denotes adjoint operator.

Tab. 2. Relations between incidence matrices

These matrices are topological and thus invariant under smooth deformation of the domain. In the next
section, we will show that they play a crucial role in constructing discrete Maxwell’s equations.

4This notion should not be confused with inner orientation, which has a slightly different definition, see [49, Sec. 3.1].
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P LP1

(−)

P2

(+)

L1

L2

L3

A
A1

A2

A3

A4 V

Fig. 4. Illustration of internal and induced orientations. The internal orientation of each entity is depicted
in black: vertices are oriented as sink by default; edges are oriented by their pointing direction; faces are
oriented by their normal vector; cells are oriented positive by default. The induced orientations are depicted
in blue: the ending vertex of an edge is negatively oriented while the starting point is positively oriented; the
orientations of edges with respect to a face obey the right-hand rule; a face of a cell are oriented by its outer
normal vector.

(a) Cylinder geometry

(b) Cuboid geometry

Fig. 5. Examples of primal (left) and dual meshes (right)

3.1.3 Cut-off Boundary

The primal mesh M is generated first and resolves the domain boundary ∂Ω. The dual mesh M̃ is generated
afterwards. To make both meshes aligned at the boundary, we have to truncate the dual entities near the
boundary. In addition, auxiliary geometric entities are needed to close M̃, see Fig. 6.

Note that the auxiliary edges might not be straight and the auxiliary faces might not be flat as is shown in
Fig. 6, which necessitates a versatile data structure to include such situations. In the following, the auxiliary
entities will be treated as dual entities, which limits the validity of the relations in Tab. 2 to the interior part
of M̃. For a more systematic illustration that considers the boundary dual entities, see [21, Sec. 5]. A pair of
primal and dual meshes for the geometry in Fig. 2 is displayed in Fig. 5a.

3.2 Discrete Maxwell Equations

3.2.1 Finite Integration Technique (FIT)

We utilize FIT to discretize Maxwell’s equations. This framework was originally proposed in [51] and can be
regarded as a generalization of Yee’s FDTD method [56]. To derive a discrete model for the (rescaled) Maxwell

10



(a) Before cut-off (b) After cut-off

M

M̃

(c) 3D case

Fig. 6. Illustration of cut-off boundary. Before the cut-off, the boundary of M̃ is not well-defined. To resolve
the same boundary as M, boundary dual cells are truncated and auxiliary entities are supplemented (shown
in orange color). To be specific, in subfigure (c) four edges and one face are added in order to close this dual
cell. Notice that these auxiliary edges and faces can be non-straight and non-flat.

equations (9a)-(9d), we first cast them into integral form:
∮

∂A

E · ds = −

∫∫

A

∂tB · dA, (17a)

∮

∂A

H · ds =

∫∫

A

(
λ2∂tD+ J

)
· dA, (17b)

∮

∂V

B · dA = 0, (17c)

∮

∂V

λ2D · dA =

∫∫∫

V

ρdV. (17d)

where A, V stand for arbitrary surfaces and cells in the spatial domain.
Given the mesh pair (M,M̃), the discrete Maxwell system arises from restricting the integrals (17a)-(17d)

to the entities in (M,M̃). We end up with

∑

k:Lk∈∂Al

∫

Lk

E · ds

︸ ︷︷ ︸

:=ek

= −∂t

∫∫

Al

B · dA

︸ ︷︷ ︸

:=bl

, l = 1, ..., NA, (18a)

∑

k:L̃k∈∂Ãl

∫

L̃k

H · ds

︸ ︷︷ ︸

:=hk

= λ2∂t

∫∫

Ãl

D · dA

︸ ︷︷ ︸

:=dl

+

∫∫

Ãl

J · dA

︸ ︷︷ ︸

:=jl

, l = 1, ..., NÃ, (18b)

∑

k:Ak∈∂Vl

∫∫

Ak

B · dA = 0, l = 1, ..., NV , (18c)

λ2
∑

k:Ãk∈∂Ṽl

∫∫

Ãk

D · dA =

∫∫∫

Ṽl

ρdV

︸ ︷︷ ︸

:=ql

, l = 1, ..., NṼ . (18d)

where k, l number the entities in (M,M̃). The integral field quantities are the unknowns of the discrete
Maxwell model. As is defined in (18a)-(18d) by the underbraces, these unknowns are stacked into vectors:

e := {ek}
NL

k=1, b := {bk}
NA

k=1, h := {hk}
N

L̃

k=1, d := {dk}
N

Ã

k=1, j := {jk}
N

Ã

k=1, q := {qk}
N

Ṽ

i=k. (19)

Remark. In an implementation, it is always convenient to index a pair of corresponding primal and dual
entities with the same number. For instance, a primal face Ak is penetrated by the dual edge L̃k. In the
following discussion, we stick to this convention, which will simplify our notation.

The material laws (2) need to be taken into account within this framework, that is, relations b = Mµh

and d = Mϵe with suitable material matrices Mµ,Mϵ. When the orthogonality of the pair (M,M̃) holds, the
discrete material laws can consistently be represented by diagonal matrices with entries

(Mµ)k,k =
µ|Ak|

|L̃k|
, (Mϵ)k,k =

ϵ|Ãk|

|Lk|
,
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where | · | denotes taking length or area. We would like to remark that an approximation error is introduced
due to the implicit assumption that vector fields are piecewise constant, see the analysis in [36, Sec. 3.2].

With the aid of incidence matrices defined in the preceding section and given the discrete material law,
(18a)-(18d) can be recast into a set of algebraic equations:

∂tB+∇×E = 0,

λ2∂tD−∇×H = −J,

∇ ·B = 0,

λ2∇ ·D = ρ,

H = µ−1B,

D = ϵE.

(M,M̃)

ḃ+ Ce = 0, (20a)

λ2ḋ− C̃h = −j, (20b)

Db = 0, (20c)

λ2D̃d = q, (20d)

h = M
−1
µ b, (20e)

d = Mϵe, (20f)

where the dot on top of quantities stands for the time derivative.

Remark. At this point, we would like to emphasize the importance of the primal-dual staggered meshes: the
material laws can be included in a rather simple way. For Gauss’s law D = ϵE, for instance, the D-field
is represented by a collection of face integrals {dk}k while the E-field is represented by a collection of edge
integrals {ek}k. The primal-dual meshes allow us to arrange them in a staggered way – edges penetrate faces –
such that D = ϵE can be approximated by d = Mϵe in a local fashion, i.e. Mϵ is diagonal. A more schematic
illustration relies on the language of discrete exterior calculus (DEC), see [46, 47, 21].

Summing up, the essence of DEC/FIT is the following:

(i) The discrete Maxwell model (20a)-(20d) are topological in the sense that they are invariant under different
coordinate systems. Only the discrete material laws (20e)(20e) depend on the geometric information.

(ii) The discrete Maxwell model (20a)-(20d) is free of approximation error, that is, it holds for exact fields.
A consistency error is introduced only by the discrete material laws (20e)(20e).

3.2.2 Discrete Boundary Conditions

The electromagnetic boundary ∂Ω = ΓC ∪ ΓI is resolved by the primal mesh M. As is mentioned in Sec. 2.4,
the zero-magnetic-flux boundary condition B · n is equivalent to (∇× E) · n = 0, which paves the way for a
surface scalar potential φ : ∂Ω → R such that the tangential component Et of the E-field is equal to ∇Γφ.
This remains true on the discrete level. We associate with each primal vertex Pk ∈ ∂Ω a scalar value φk.
Therefore, the boundary conditions (see Sec. 2.4) are discretized in the following way:

D · n = 0 on ΓI ,

B · n = 0 on ΓI ,

φ = φ±(t) on Γ±

C ,

(M,M̃)
dk = 0, ∀k : Ãk ⊂ ΓI , (21a)

ek = (GXφϕ)k, ∀k : Lk ⊂ ∂Ω, (21b)

φk = φ±(t), ∀k : Pk ⊂ Γ±

C , (21c)

where Xφ ∈ R
NP×N∂

P extends ϕ to all the primal vertices by zero. Obviously, the surface gradient ∇Γ is
represented by GXφ.

3.2.3 Stabilization in ΩN

In Sec. 2.5, we have proposed a stabilization of the Maxwell system in the non-conducting domain ΩN by
introducing a Lagrange multiplier. On the semi-discrete level, the equations to be solved in ΩN are

∂tB+∇×E = 0,

λ2∂tD−∇×H+ ∇ψ = 0,

∇ ·D = 0.

(M,M̃)
[ḃ+ Ce = 0]k, ∀k : Ak ⊂ ΩN , (22a)

[λ2ḋ− C̃h+ HGXψψ = 0]k, ∀k : Ãk ⊂ ΩN (22b)

[D̃d = 0]k, ∀k : Ṽk ⊂ ΩN , (22c)

where ψ := {ψk}
NN

P

k=1 denotes unknowns assigned to each primal vertex in ΩN . The matrix Xψ ∈ R
NP×NN

P

extends ψ by zero to all the primal vertices. This way the zero Dirichlet boundary condition is incorporated.
We need the diagonal matrix (H)k,k = |Ãk|/|Lk| to transform primal edge integrals to dual face fluxes since
the discrete Ampère’s law (22b) is defined on dual faces on ΩN .
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Vector of unknowns Meaning Vector size

e line integrals of E-field at primal edges L NL
ϕ boundary scalar potential φ at primal vertices P on ∂Ω N∂

P

b surface integrals of B-field at primal faces A NA
h line integrals of H-field at dual edges L̃ NL̃
d surface integrals of D-field at dual faces Ã NÃ
ψ Lagrange multiplier ψ at primal vertices P in ΩN NN

P

Tab. 3. Definitions and sizes of the vectors of unknowns.

3.2.4 Numbers of Equations and Unknowns

We can probe the well-posedness of the (semi-)discrete Maxwell system by checking whether the numbers
of unknowns (also called degrees of freedom (D.o.F.)) and equations coincide. First, we count mesh entities
according to their locations:

# primal cells NV ,

# primal edges NL := NC
L +N I

L
︸ ︷︷ ︸

=N∂

L

+N◦
L,

# primal faces NA := NC
A +N I

A
︸ ︷︷ ︸

=N∂

A

+N◦
A,

# primal vertices NP := NC
P +N I

P
︸ ︷︷ ︸

=N∂

P

+N◦
P ,

# dual cells NṼ := NP ,

# dual edges NL̃ := N∂
L̃

︸︷︷︸

=N∂

L

+ N◦

L̃
︸︷︷︸

=NA

,

# dual faces NÃ := N∂
Ã

︸︷︷︸

=N∂

P

+ N◦

Ã
︸︷︷︸

=NL

,

where the superscripts indicate where the entities are located. The equalities N∂
L̃

= N∂
L, N

∂
Ã

= N∂
P reveal

the bijective relation between the boundary primal entities and auxiliary entities, as can be checked easily by
inspecting Fig. 6. We also give a summary of the unknowns in Tab. 3.

Next, we collect all the algebraic equations derived from the Maxwell system and the boundary conditions:

discrete Faraday’s law (20a) −→ NA equations

discrete Ampere’s law (20b) −→ NÃ equations

discrete material laws (20e)(20f) −→ NA +NL equations

boundary condition (21c) −→ NC
P equations

boundary condition (21b) −→ N∂
L equations

boundary condition (21a) −→ N I
Ã

equations.

vanishing divergence constraint (22c) −→ NN
Ṽ

equations.

Comparing the numbers of d.o.f. in Tab. 3 and of the equations we collect above, we see that they are equal:

# of unknowns = NL + NA + NL̃ + NÃ + N∂
P + NN

P ,

# of equations = NA + NÃ + NA +N∂
L + NL + NC

P +N I
P + NN

Ṽ
.

Of course, the matching numbers of unknowns and equations do not necessarily result in a valid linear system,
since the equations might be linearly dependent. In fact, the linear system will be singular without the
stabilization proposed in the previous section when λ = 0.

3.3 Discrete Euler Equations

We employ the finite volume method (FVM) to discretize the Euler system. The Euler equations (4) can be
cast into the form of a conservation law with source terms:

∂tU+∇ · f(U) = RHS, (23)
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where U : Ω× [0, T ] → R
m stands for m conservative variables; f(U) : Ω× [0, T ] → R

3×m is the flux function
depending on U; RHS : Ω× [0, T ] → R

m is the source term. In the case of the full 3D Euler equations (9e),
m = 5 and U := [n, nu, ne].

To obtain the semi-discretization, we first integrate (23) over a dual cell Ṽk ∈ ΩP

U̇k +
1

|Ṽk|

∑

l:Ãl∈∂Ṽk

|Ãl|
1

|Ãl|

∫∫

Ãl

f(U) · nldA

︸ ︷︷ ︸

:=f l≈fnum
l

=
1

|Ṽk|

∫∫∫

Ṽk

RHSdV

︸ ︷︷ ︸

:=RHSk

, k = 1, 2, . . . , NP
Ṽ

(24)

where Uk :=
∫∫∫

Ṽk

UdV/|Ṽk| ∈ L2([0, T ],Rm) is the cell average of U and nl is the outer normal vector

of face Ãl with respect to the cell Ṽk. In FVM, the flux f l in (24) is approximated by a numerical flux

fnuml := fnum
(

Uk,Uk̂(k,l),nl

)

, where k̂(k, l) returns the index of the adjacent dual cell that shares Ãl with

cell Ṽk. Classical numerical fluxes include the Lax-Friedrich flux, the Rusanov flux, and the Engquist-Osher
flux, see [31, Sec. 12.6]. We end up with the semi-discretized equation:

U̇k +
1

|Vk|

∑

l:Ãl∈∂Ṽk

|Ãl|f
num

(

Uk,Uk̂(k,l),nl

)

= RHSk, k = 1, 2, . . . , NP
Ṽ
. (25)

We employ the Rusanov flux, which writes

fnum
(
UL,UR,n

)
=

1

2

[
f(UL) · n+ f(UR) · n

]
−

1

2
s
(
UR −UL

)
, (26)

where s = max{s(UL), s(UR)} with s(U) := |u · n|+
√

γp/ρ representing the largest wave speed.

At this stage, we would like to discuss why the Euler system should be discretized on M̃. As is shown in
the integrated Ampère’s law (17b), the electric currents are defined on dual faces Ã. By solving the Euler
equations on M̃, we have the mass flux on dual faces Ã as well. In this way, the connection between the charge
conservation (3) and the mass conservation (the 1st equation in (4)) due to the current-momentum coupling
(5) is preserved on the discrete level.

For the sake of presentation, we rewrite (25) into a matrix form. By abuse of notation, we stack all the

cell average {Uk}
NP

Ṽ

k=1 into a matrix U ∈ R
NP

Ṽ
×5 with Uk,: = Uk. Further, we denote by F ∈ R

NP

Ã
×5 the

collection of the (total) numerical fluxes, i.e. Fk,: = fnumk = [fmass
k ,fmom

k , f enek ]. In the same way, we denote

by RHS ∈ R
NP

Ṽ
×5 the collection of RHSk. Besides, we define the diagonal matrices Ṽ ∈ R

NP

Ṽ
×NP

Ṽ and

Ã ∈ R
NP

Ã
×NP

Ã with (Ã)k,k = |Ãk|. Making use of the incidence matrices, we end up with

U̇+ Ṽ
−1

D̃ÃF(U) = RHS(U,d,b), (27)

Recall that D̃ represents the discrete divergence of M̃. Dependence of RHS on d,b is implied by (9e) and
will be elaborated next.

3.3.1 Reconstruction of Lorentz Force

Since the electromagnetic fields are represented by integrals on edges and faces, we need to reconstruct their
vector components for the computation of the Lorentz force (and Joule heating) inside each dual cell. The
task involves two aspects:

- given the fluxes at the faces of a cell, reconstruct the vector field inside the cell;

- given the integrals along the edges of a cell, reconstruct the vector field inside the cell.

We adopt the principle of least squares fitting and reconstruct a constant vector field inside each cell. For a
cell Ṽ with NA faces with areas {Ak}

NA

k=1, normal vectors {nk}
NA

k=1 and fluxes {fk}
NA

k=1, a constant vector field
v satisfying

v = argmin
w∈R3

NA∑

k=1

(Akw · nk − fk)
2
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can be computed through
v = (KTK)−1

K
T f ,

where
K = [A1n1, A2n2, . . . , ANA

nNA
]T , f = [f1, f2, . . . , fNA

]T ,

and each vector in R
3 is treated as a column vector. The construction based on the integral quantities on

edges can be done similarly. Assembling the local constructions for each dual cell, the global construction can
be written as

E = R̃Ed , B = R̃Bb, (28)

where d,b are defined in Tab. 3; E := {Ek}
N

Ṽ

k=1 and B := {Bk}
N

Ṽ

k=1 are NṼ × 3 matrices containing the

reconstructed E-fields and B-fields at each Ṽ ; R̃E and R̃B are thus rank-3 tensors.
The problem of the reconstruction of vector fields on unstructured meshes is a widely studied topic. Apart

from the least-squares method, other methods include Perot’s method [41], finite-entity-based methods, etc.,
which potentially can achieve higher-order accuracy. See [15, Sec. 3.4.4] and the references therein.

Eventually, the right-hand-side term in (27) can be computed by evaluating the right-hand-side of rescaled
Euler equations (9e) for the reconstructed E-field and B-field by (28) defined in each dual cell.

3.3.2 Discrete Boundary Conditions

The boundary conditions for the Euler system (see Sec. 2.4) are implemented by the approach of ghost cells [32,
Chapt. 7], i.e. extending the domain by a layer of virtual cells with prescribed variables. In our case, the ghost
cells at the open boundary at ΓC are assigned the same state as their adjacent interior cells. It is equivalent
to enforcing the numerical fluxes

Fk = fnum(Ul,Ul,nk), ∀k : Ãk ⊂ ΓC , (29)

where l refers to the (unique!) index of the cell adjacent to the boundary face Ãk. For the reflective wall
ΓW , the momentum of a ghost cell is reversed with respect to its adjacent interior cell while keeping the other
quantities unchanged. Therefore, in this case the numerical fluxes are

Fk = fnum(Ul, Ûl,nk), ∀k : Ãk ⊂ ΓW , (30)

where the state of the ghost cell Ûl = [n, nu−2(n ·u)n, ne]T reverses the normal velocity of Ul = [n, nu, ne]T .

3.4 Summary: Spatially Semi-discrete Model

We collect all the equations and boundary conditions presented above and give a summary for the spatially
semi-discrete Maxwell-Euler system based on the FIT/DEC-FVM framework:

(20a) =⇒ [ḃ+ Ce = 0]k, ∀k : Ak ⊂ Ω, (31a)

(20b) =⇒ [ḋ− C̃h = −Σ∗q∗f
mass
∗ ]k, ∀k : Ãk ⊂ ΩP , (31b)

(22b) =⇒ [ḋ− C̃h+HGXψψ = 0]k, ∀k : Ãk ⊂ ΩN , (31c)

(22c) =⇒ [D̃d = 0]k, ∀k : Ṽk ⊂ ΩN , (31d)

(27) =⇒ [U̇∗ + Ṽ
−1

D̃ÃF∗ = RHS∗]k, ∀k : Ṽi ⊂ ΩP , (31e)

(20e) =⇒ [h = M
−1
µ b]k, ∀k : Ak ⊂ Ω, (31f)

(20f) =⇒ [d = Mϵe]k, ∀k : Lk ⊂ Ω, (31g)

where ∗ ∈ {e, i, . . . } and fmass denotes the mass flux which is defined in Sec. 3.3. By [. . .]k we mean taking
the k-th component of both sides of the equation. We have the following boundary conditions:

(21a) =⇒ dk = 0, ∀k : Ãk ⊂ ΓI , (31h)

(21b) =⇒ ek = (GXφϕ)k, ∀k : Lk ⊂ ∂Ω, (31i)

(21c) =⇒ φk = φ±(t), ∀k : Pk ⊂ Γ±

C , (31j)

(29) =⇒ F∗,k = fnum(U∗,l,U∗,l,nk), ∀k : Ãk ⊂ ΓC , (31k)

(30) =⇒ F∗,k = fnum(U∗,l, Û∗,l,nk), ∀k : Ãk ⊂ ΓW . (31l)
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M
z-axis

zk+1zk+1/2zk

M̃

zk−1/2

Fig. 7. “Projection” of a 3D discretization to 1D. On the assumption of transverse translation invariance, we
can reduce all the degrees of freedom lying in the perpendicular plane z = zk to the vertex at z = zk. For
instance, an edge orthogonal to the z-axis is projected to a vertex on the z-axis while a parallel edge to the
z-axis is projected to an edge on the z-axis.

We would like to stress again that in our FIT/DEC-FVM framework Faraday’s law is discretized on the
primal mesh M while Ampère’s law is discretized on the dual mesh M̃. The material laws directly connect
primal and dual d.o.f. Using the cells of the dual mesh M̃ as finite-volumes for the Euler system the connection
between electric currents and fluid momenta is perfectly represented in the discretization, since both are defined
on the dual faces.

4 Full Discretization

4.1 Motivation: Reduction to One Spatial Dimension

Our work extends the 1D scheme proposed in [11] to three dimensions. Therefore, it is supposed to be com-
patible with the original 1D scheme when “projected” to one dimension. This perspective helps to understand
how the 3D scheme is linked to the 1D. For the sake of presentation, we discuss the one-fluid model of [11],
for which ions are assumed immobile and only the motion of electrons is considered.

4.1.1 Projection to One Dimension

Consider a primal-dual mesh pair (M,M̃) that is constructed by 2D extrusion along the z-axis and is un-
bounded in transverse directions. Assuming transverse translation invariance and rotational symmetry, we can
“project” all the d.o.f. onto the z-axis. The idea is sketched in Fig. 7.

In [11], the authors investigate a 1D Maxwell-Euler system by assuming vanishing traverse derivatives. For
further simplicity, a transverse mode is considered, i.e. uy, Ey, Bx, and Bz are set to zero. The 1D reduced
component-wise one-fluid Maxwell-Euler system and its quasi-neutral limit are

(9e) =⇒







(9a) =⇒

(9b) =⇒

{

(9d) =⇒

∂tn+ ∂z(nuz) = 0,

ε2[∂t(nux) + ∂z(nuzux)] = −n(Ex − uzBy),

ε2[∂t(nuz) + ∂z(nu
2
z)] + ∂z(p(n)) = −n(Ez + uxBy),

∂tBy + ∂zEx = 0,

λ2∂tEx + ∂zBy = nux,

λ2∂tEz = nuz,

λ2∂zEz = 1− n,

λ→0
−−−→

n = 1,

ε2∂t(ux) = −Ex,

Ez + uxBy = 0,

uz = 0,

∂tBy + ∂zEx = 0,

∂zBy = nux,

where all the fluid variables are attributed to electrons and the subscript indicates the direction of the compo-
nent. An isentropic fluid model with the equation of state p(n) = nγ is assumed to drop the energy equation.

16



4.1.2 1D Fully Discrete Plasma Model

The fully discrete scheme proposed in [11] is given below. From now on, the superscript m for any variable
indicates the time step. The scheme is built on a uniform 1D mesh with cell size h and evolves the system
with time step size δm := tm+1 − tm:

(31e) =⇒







(31a) =⇒

(31b) =⇒







nm+1
k − nmk
δm

+
f
mass,m+1/2
k+1/2 − f

mass,m+1/2
k−1/2

h
= 0,

(nux)
m+1
k − (nux)

m
k

δm
+
fmomx,m
k+1/2 − fmomx,m

k−1/2

h
= −

nmk Em+1
x,k

ε2
+
nmk u

m
z,kB̃

m
y,k

ε2
,

(nuz)
m+1
k − (nuz)

m
k

δm
+
fmomz,m
k+1/2 − fmomz,m

k−1/2

h
= −

nmk Ẽm+1
z,k

ε2
−
nmk u

m
x,kB̃

m
y,k

ε2
,

Bm+1
y,k+1/2 −Bmy,k+1/2

δm
+

Em+1
x,k+1 − Em+1

x,k

h
= 0,

λ2
Em+1
x,k − Emx,k

δm
+

Bm+1
y,k+1/2 −Bm+1

y,k−1/2

h
= (nux)

m+1
k ,

λ2
Em+1
z,k+1/2 − Emz,k+1/2

δm
= f

mass,m+1/2
k+1/2 ,

where

(28) =⇒ Ẽmz,k =
1

2
(Emz,k+1/2 + Emz,k−1/2), B̃my,k =

1

2
(Bmy,k+1/2 +Bmy,k−1/2),

are the averaged electromagnetic fields, and the fluxes read

(26) =⇒







f
mass,m+1/2
k+1/2 =

1

2
[ (nuz)

m+1
k + (nuz)

m+1
k+1 + µmk+1/2(n

m
k − nmk+1)],

fmomx,m
k+1/2 =

1

2
[(nuzux)

m
k + (nuzux)

m
k+1 + µmk+1/2((nux)

m
k − (nux)

m
k+1)],

fmomz,m
k+1/2 =

1

2
[(nu2z + p(n)/ε2)mk + (nu2z + p(n)/ε2)mk+1 + µmk+1/2((nuz)

m
k − (nuz)

m
k+1)].

The implicit terms are highlighted and are all essential to achieve the AP property. The implicitness of the
electric field in the Lorentz force is shown to be necessary in [12] for the Euler-Poisson system. In [11], based
on the linearized stability analysis, the author shows that the full-implicit treatment of the Maxwell equations
is essential to achieve stability in the quasi-neutral limit. Besides, the mass flux in the mass conservation
equation and the current in Ampère’s law has the same level of implicitness to guarantee consistency with
Gauss’s law.

4.2 Semi-implicit Fully-discrete AP Scheme in 3D

Taking the cue from the formulas of Sec. 4.1.2 and combining the 3D FIT/DEC-FVM framework presented
in Sec. 3 and the time-stepping scheme shown below, we propose the following semi-implicit fully-discrete AP
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scheme in 3D:

(31a) =⇒
[

δ−1
m (bm+1 − bm) + C em+1 = 0

]

k
, ∀k : Ak ⊂ Ω, (32a)

(31b) =⇒

[

λ2δ−1
m (dm+1 − dm)− C̃ hm+1 = −Σ∗q∗ f

mass,m+1/2
∗

]

k

, ∀k : Ãk ⊂ ΩP , (32b)

(31c) =⇒
[

λ2δ−1
m (dm+1 − dm)− C̃ hm+1 +HGXψ ψ

m+1 = 0
]

k
, ∀k : Ãk ⊂ ΩN , (32c)

(31d) =⇒
[

D̃ dm+1 = 0
]

k
, ∀k : Ṽk ⊂ ΩN , (32d)

(31e) =⇒

[

δ−1
m (Um+1

∗ −Um
∗ ) + Ṽ

−1
D̃Ã F

m+1/2
∗ = RHSm+1/2

∗

]

k

, ∀k : Ṽk ⊂ ΩP , (32e)

(31f) =⇒ [hm+1 = M
−1
µ bm+1]k, ∀k : Ak ⊂ Ω, (32f)

(31g) =⇒ [dm+1 = Mϵe
m+1]k, ∀k : Lk ⊂ Ω, (32g)

where

Um
∗,k =





n
nu
ne





m

∗,k

, (32h)

F
m+1/2
∗,k =





fmass,m+1/2

fmom,m

f ene,m





∗,k

=






1
2

[

(nu⊥)
m+1
L + (nu⊥)

m+1
R

]

− 1
2s
m(nmR − nmL )

1
2 [(nu⊥u)

m
L + (nu⊥u)

m
R + pmL nj + pmRnj ]−

1
2s
m [(nu)mR − (nu)mL ]

1
2 [(nhu⊥)

m
L + (nhu⊥)

m
R ]− 1

2s
m [(ne)mR − (ne)mL ]






∗,k

,

(32i)

RHS
m+1/2
∗,k =






0

ε−2
∗ q∗

[

nm∗ Em+1 + (nu)m∗ ×Bm
]

ε−2
∗ q∗(nu)

m
∗ · Em+1






k

+







0

ε−2
∗ Rcoll,m+1

∗

ε−2
∗ Qcoll,m+1

∗







k

, (32j)

Em+1 = R̃Ed
m+1, Bm = R̃Bb

m, (32k)

Rcoll,m+1
∗,k =







αcoll
[

nme (nu)m+1
i − nmi (nu)m+1

e

]

k
, if ∗ = e

αcoll
[

nmi (nu)m+1
e − nme (nu)m+1

i

]

k
, if ∗ = i

(32l)

Qcoll,m+1
∗,k = Rcoll,m+1

∗,k · um+1
∗,k . (32m)

A superscript m + 1/2 indicate a dependence on the quantities at both time step m and (m + 1). In the
Rusanov flux (32i), we denote by u⊥ the normal component of the velocity u with respect to the dual face Ãk.
For the sake of simplicity we have confine the presentation of the collision term (32l) (32m) to the two-species
case.

The time-stepping scheme mimics the 1D scheme shown in the previous section. The implicit treatment
of the friction term is necessary owing to its potential stiffness in case the prefactor ε−2

∗ αcoll attains a large
value.

Remark. When applying the “projection to one dimension” described in Sec. 4.1.1, the fully discrete 3D AP
scheme (32a)-(32m) collapses to the scheme of [11] presented in Sec. 4.1.2. This is not a coincidence, because
recovering that scheme under dimensional reduction has guided our construction.

Remark. The AP scheme aims to remove the λ-dependence of the stability constraint on the time step size.
Yet time-step size for the fully discrete Euler system is still limited by a CFL condition due to the explicit
treatment of the fluid convection.

4.2.1 Linearly Implicit Time-stepping

The semi-implicit scheme (32a)-(32m) merely entails solving a linear system in each time step. A single time
step comprises the following computations:
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Step 1. We establish the connection between f
mass,m+1/2
∗ and d through the momentum equation (see

(32e)(32i)(32j)). Relying on the reconstruction (28), the following formula emerges:

(nu)m+1
∗ = M̂

m
∗ dm+1 + ηm∗ . (33)

The expression for the current Jm+1 in ΩP (see (32b)) depends on the mass flux fmass,m+1
∗ which, in turn,

relies on (nu)m+1
∗ through (32i). Appealing to (33), one can formulate the following relation:

jm+1 := Σ∗q∗f
mass,m+1
∗ = M

m
σ dm+1 + jmaux, (34)

where M
m
σ ∈ R

N
Ã
×N

Ã and jmaux ∈ R
N

Ã . The formulas of M̂m
∗ ,η

m
∗ ,M

m
σ , j

m
aux are slightly lengthy but straight-

forward, so we omit the details.
Step 2. After (34) has been evaluated, the discrete Maxwell system (32a)-(32d) is closed and can be evolved
by solving a linear system.
Step 3. With dm+1 at our disposal, we update the momenta (nu)m+1

∗ according to (33).
Step 4. The remainder of the Euler system can be evolved explicitly.

Remark. The formula (34) functions as Ohm’s law on the discrete level. Matrix M
m
σ can be treated as

a “conductivity” matrix. In the quasi-neutral limit λ → 0 we lose control of the E-field through its time
derivative. Therefore, Mm

σ is crucial to the stability of the scheme. Since j and d are both defined on dual
faces, it is reasonable to adopt a local relation between them. Therefore, we perform the diagonal lumping
trick, i.e. rendering M

m
σ diagonal by accumulating the row sum. The lumped M

m
σ has a positive diagonal (for

the entity corresponding to ΩP . the rest is zero since no current exists in ΩN ). Enhanced stability is observed
in the numerical experiments with very minor changes in the results.

5 Numerical Tests

We conduct numerical tests based on the geometric setting and boundary conditions as presented in Sec. 2.4.
The primal-dual mesh pair (M,M̃) is generated as explained in [15, Chapt. 1]. Examples are shown in
Fig. 5. We consider a two-fluid plasma model, which comprises electrons and ions. We set the mass ratio
εe := me/mi = 104 and the collision parameter αcoll = 32. All source codes plus instructions for use are
available from https://github.com/TianweiCSE/APPM.

5.1 Case I: Quasi-1D Problem

Exploiting the radial symmetry of the domain as well as of the boundary conditions, we can simplify the gov-
erning equations defined at the axis of symmetry, i.e. z-axis in this case, assuming vanishing radial components
of the vector fields and their radial derivatives. The (isentropic and collisionless) Euler-Maxwell system at the
axis of symmetry reduces to

∂tn∗ + ∂z(n∗u∗,z) = 0,

∂t(n∗u∗,z) + ∂z(n∗u
2
∗,z) + ε−2

∗ ∂zp∗(n∗) = ε−2
∗ q∗n∗Ez,

λ2∂tEz =
∑

∗

−q∗n∗u∗,z.

which is nothing but the 1D model in Sec. 4.1.1 after further dropping ux, By, Ex. We compare the results
produced by the 1D scheme (see Sec. 4.1.2) and those produced by the 3D scheme (see Sec. 4.2) restricted
to the z-axis. The following initial conditions are used for both models

ne(z, 0) = ni(z, 0) = 1, uz(z, 0) = χ[−0.1,0](z)− χ[0,0.1](z) ∀z ∈ [−0.1, 0.1],

where χ is the characteristic function. The other variables are initially zero. Results for the choice λ = 1 are
given in Fig. 8 and demonstrate good matching.
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Fig. 8. Case I, λ = 1: Comparison of 1D two-fluid model and of 3D results (at time t = 5× 10−4) projected
onto the z-axis. The simulations were both conducted on meshes with 64 cells along the z-axis. No friction
terms were taken into account. The 3D fields are computed for the axi-symmetric geometry shown in Fig. 2
and then restricted to the z-axis. They slightly differ from 1D results, possibly due to the impact of the cut-off
boundary of the 3D domain.

5.2 Case II, convergence: 3D “cuboid domain”

We rely on the geometry from Fig. 1b and the setting in Fig. 2. The computational domain is equipped with
structured Cartesian meshes in Fig. 5b. The initial conditions are

n∗(x, 0) = 1, p∗(x, 0) = 1, ∀x ∈ Ω, ∗ ∈ {e, i},

and zero for the other variables. We set φ(x, t)|Γ−

C

= 0, φ(x, t)|Γ+

C

= 10× t, that is, one electrode is grounded

and a ramp voltage is applied on the other electrode. The results are computed for final time t = 0.01. The
scheme is tested for different mesh resolutions and the convergence rates are estimated. Tab. 4 lists the errors
for the E-field, B-field, and electron densities with reference solutions generated on a sufficiently fine mesh with
218 = 262144 primal cells. The results confirm uniform algebraic convergence over 0 ≤ λ ≤ 1, a vindication
of the AP property. It is natural that the convergence rate does not exceed 1, since the reconstruction of the
electromagnetic field discussed in Sec. 3.3.1 is only of first order and the numerical flux used for solving the
Euler equations is also of first order. The 1/2-order reduction observed for the L2-error of the E-field and the
electron density is possibly the consequence of singularities of the solution due to abutting different types of
boundary conditions (electrodes and insulating boundary).

5.3 Case III: 3D cylindrical domain

We stick to the setting in Fig. 2 and the mesh in Fig. 5a using the following initial conditions

n∗(x, 0) = 1, p∗(x, 0) = 1, ∀x ∈ Ω, ∗ ∈ {e, i}.

All the other variables are set to zero initially. We set φ(x, t)|Γ−

C

= 0, φ(x, t)|Γ+

C

= tanh(100 × t), that is, a

smooth voltage jump is applied at the anode and excites the system.
The cylindrical domain is 5.0 in length and 1.5 in radius. The plasma domain ΩP is 1.0 in radius, i.e. the

non-conducting domain ΩN has an inner radius of 1.0 and an outer radius of 1.5.
In Fig. 9, the numerical solutions for λ = 1.0, 0.1 and 0 are shown to visualize the 3D structure of the

electromagnetic field. Qualitative verification can be done in many aspects. First, the rotational symmetry
of the problem is preserved. Second, the E-field points from Γ+

C to Γ−

C with a relatively uniform value of
approximately 0.2 (= applied voltage/cylinder length) as a consequence of the irrotational E-field in the steady
state according to Faraday’s law (which is also confirmed in Fig. 11 (b)). Note that it does not hold for λ = 1
since the system has a large characteristic time and takes a long time to reach an equilibrium, as will be shown
later in Fig. 10. Besides, the B-field is azimuthal (vortex-shaped) and orthogonal to the E-field. Also, under
the electric force, the electrons move towards the anode Γ+

C as expected.
To inspect how the system evolves, the time histories of some quantities are displayed in Fig. 10. Being

in stable equilibrium at t = 0, the system is excited by applying a voltage and this triggers oscillations that
decay over time. A larger value of λ leads to oscillations with larger amplitude and slower damping, whereas
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Fig. 9. Case III: Snapshots of the E-field, B-field, and ue for different values of λ at t = 0.5.
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NV
E-field B-field electron density

L1-error L2-error L1-error L2-error L1-error L2-error

64 0.369 0.0712 5.88 1.14 6.67 1.83
512 0.195 0.0493 3.13 0.77 3.09 1.36
4096 0.087 0.0332 0.98 0.34 1.26 0.76

aver. rate 1.05 0.55 1.34 0.90 1.21 0.65

(a) λ = 1

NV
E-field B-field electron density

L1-error L2-error L1-error L2-error L1-error L2-error

64 0.141 0.0271 1.52E-3 2.67E-4 6.67 1.83
512 0.094 0.0214 8.21E-4 1.47E-4 3.09 1.36
4096 0.041 0.0113 3.84E-4 6.93E-5 1.26 0.76

aver. rate 0.93 0.66 1.00 0.98 1.21 0.65

(b) λ = 0.01

NV
E-field B-field electron density

L1-error L2-error L1-error L2-error L1-error L2-error

64 0.127 0.0274 9.46E-4 1.58E-4 6.67 1.83
512 0.100 0.0212 6.26E-4 1.05E-4 3.09 1.36
4096 0.038 0.0110 2.49E-4 4.33E-5 1.26 0.76

aver. rate 0.96 0.69 1.00 0.98 1.21 0.65

(c) λ = 0

Tab. 4. Case II: L1 and L2 errors of the E-field, the B-field, and the electron density and their convergence
rates for different values of λ. The reference solution is computed at a sufficient mesh resolution with 218 =
262144 primal cells.

for a smaller λ the system quickly reaches a steady state. It is consistent with the fact that λ characterizes the
timescale of the electromagnetic field. From a different perspective, it is a reflection of the shielding effect of the
plasma which is characterized by the Debye length. Besides, the electrons move much faster and oscillate more
than ions as a consequence of the large difference in inertia. Furthermore, the structure-preserving property
of our scheme is revealed by the exact balance of the currents at Γ+

C and Γ−

C [22], as is shown in the bottom
plot in Fig. 10.

The stabilization proposed in Sec. 3.2.3 is essential to achieve good results when λ tends to zero. As is
shown in Fig. 11 (a), the scheme without stabilization incurs a blow-up when λ is close to zero. The proposed
stabilization clearly offers a remedy.

The capability of our approach to deal with the non-neutral (λ = O(1)) and quasi-neutral (λ = 0) regimes
manifests itself in the reported numerical tests in that valid results are produced for different values of λ
including λ = 0. It is instructive to verify the quasi-neutrality condition (10d) when λ = 0. To that end we
display the E-field and particle densities on the z-axis in Fig. 11 (b). The bottom plot demonstrates that the
density profiles of the electrons and ions offset each other also for computed quantities: Quasi-neutrality holds
on the discrete level.

5.4 Case IV: 3D curved cylindrical domain

To demonstrate the performance of the proposed scheme in more general three-dimensional settings, we bend
the cylinder domain in Case III (see Fig. 2), as is shown in Fig. 12. The same initial and boundary conditions as
in Case III are imposed. Primal and dual meshes with straight edges and flat faces are generated by extrusion
in the direction of a bent central axis.

The numerical approximations of the electromagnetic fields for λ = 0 and 1 are displayed in Fig. 13. We
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Fig. 10. Case III: Time histories of quantities at the domain center and of the averaged current densities at
Γ+
C (anode) and Γ−

C (cathode) for different values of λ. The simulations are done on a mesh with 1920 primal
cells with 8 layers along the z-axis.
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(a) Time-dependent z-component of
the E-field in a boundary cell on ΩN

(b) Quantities along z-axis for different λ; the results
are computed at t = 10 on a mesh with 1920 primal
cells and 8 layers along z-axis.

Fig. 11. Case III: (a) Stabilization in the non-conducting domain ΩN , (b) Numerical quasi-neutrality.

Electrode

Electrode

Insulator

Plasma

Fig. 12. Case IV: geometry (left); primal mesh (middle); dual mesh (right).

observe qualitatively similar phenomena to Case III (see Fig. 9), that is, the electromagnetic field in the bulk
of the domain develops much faster at small λ.

6 Conclusion

We have developed an AP scheme for the Euler-Maxwell plasma model in three spatial dimensions that is
applicable in both non-neutral λ = O(1) and quasi-neutral λ → 0 regimes. The main features of our work
lie in: (i) Maxwell’s equations are discretized on primal and dual meshes by FIT (in the spirit of DEC). By
discretizing the Euler equations by FVM on the dual mesh, the coupling of two systems is naturally realized
via the connection of the mass flux and the electric current at each dual face. (ii) A non-conducting region is
taken into account where additional stabilization is essential when λ→ 0. We enforce the vanishing divergence
of the D-field through a Lagrange multiplier for any value of λ. (iii) The alignment of primal-dual meshes
at the boundary entails cut-off cells and auxiliary unknowns have to be introduced. (iv) A lumping trick is
applied to the conductivity matrix (relating the electric current and the electric field) to enhance stability.

Our approach has been tested on a cylindrical domain with settings meant for electric arc simulations. The
AP property has been verified numerically. To the best of the authors’ knowledge, this work is among the
first to try to solve the 3D fluid plasma model on unstructured meshes, which potentially gives more flexibility
than the finite-difference-based approaches and reduces the computational cost compared to particle-based
approaches. In particular, the AP property allows us to address regimes with vastly different Debye lengths.
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