
Multi-Scale Message Passing Neural PDE

Solvers

L. Equer and T. K. Rusch and S. Mishra

Research Report No. 2023-14

February 2023

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

____________________________________________________________________________________________________

Funding ERC: 770880 COMANFLO



MULTI-SCALE MESSAGE PASSING NEURAL PDE

SOLVERS

Léonard Equer
ETH Zürich

T. Konstantin Rusch
ETH Zürich and UC Berkeley
trusch@ethz.ch

Siddhartha Mishra
ETH Zürich

ABSTRACT

We propose a novel multi-scale message passing neural network algorithm for
learning the solutions of time-dependent PDEs. Our algorithm possesses both
temporal and spatial multi-scale resolution features by incorporating multi-scale
sequence models and graph gating modules in the encoder and processor, respec-
tively. Benchmark numerical experiments are presented to demonstrate that the
proposed algorithm outperforms baselines, particularly on a PDE with a range of
spatial and temporal scales.

1 INTRODUCTION

Time-dependent partial differential equations (PDEs) arise as mathematical models of many interest-
ing phenomena in the sciences and engineering that involve the time-evolution of physical quantities
of interest (Evans, 2010). Solving such PDEs entails computing the so-called solution operator that
maps the initial conditions (and other inputs such as coefficients, sources etc) to the trajectories of
the solution over time. Classical numerical methods which combine spatial discretizations such
as finite differences, finite elements or spectral methods together with Runge-Kutta or multi-step
temporal discretization schemes are widely used to simulate time-dependent PDEs (Quarteroni &
Valli, 1994). However, these methods can be prohibitively expensive, particularly in several spatial
dimensions and for long-time integration.

Recently, machine learning based algorithms are increasingly being used for the fast and accu-
rate simulation of time-dependent PDEs. Examples include supervised learning algorithms (Zhu
& Zabaras, 2018; Lye et al., 2020), physics informed neural networks (Raissi & Karniadakis, 2018;
Raissi et al., 2019) and operator learning algorithms such as DeepONets (Lu et al., 2021) and Fourier
Neural Operators (Li et al., 2021). However, each of these frameworks raises many unaddressed is-
sues in terms of applicability, efficiency and generalization capacity.

In particular, existing frameworks such as FNOs or CNNs rely on input (and output) data on uniform
Cartesian grids whereas in practice for engineering applications, data generated from simulations or
observations is only available on unstructured grids. Given this discrepancy, learning frameworks
that admit inputs and outputs on general and highly variable grids could be useful as PDE solvers. In
this context, models based on graph neural networks are increasingly being considered as attractive
frameworks for learning PDEs (Lino et al., 2021; Boussif et al., 2022; Battaglia et al., 2018) and
references therein.

A very attractive framework in this regard was recently proposed in Brandstetter et al. (2022), where
the authors suggested an autoregressive message passing procedure to learn solution operators of
time-dependent PDEs. The approach utilized the well-known encode-process-decode paradigm
(Battaglia et al., 2018) by embedding time-dependent inputs into a feature vector on a graph (re-
lated to the underlying possibly unstructured grid), processing this feature vector through message
passing graph neural networks (GNNs) and mapping this latent representation into a time-update
through a decoder. This approach was shown to be competitive vis a vis other models for some
representative examples, particularly of PDEs where the solution only has a small range of scales in
both space and time.

However in practice, solutions to a large class of time-dependent PDEs contain structures at a wide
range of scales in both space and time. Such multi-scale PDEs (Kuehn, 2015) include the well-

1



known models of fluid dynamics, wave propagation and reaction-diffusion mechanisms. Our aim in
this paper is to propose a machine learning framework that can accurately learn the solutions of such
multiscale time-dependent PDEs. To this end, we base our algorithm on the graph learning based
framework of Brandstetter et al. (2022) but endow it with multi-scale features. In particular, the en-
coder is supplemented with a very recent multi-scale sequence modeling algorithm called the long
expressive memory (LEM) (Rusch et al., 2022). Similarly, instead of employing standard GNNs
as processors, we modify them by a novel gating mechanism, analogous to the one suggested re-
cently in Rusch et al. (2023). We demonstrate through numerical experiments that these multi-scale
augmentations not only improve performance on standard single-scale benchmarks but also signifi-
cantly outperform competing models on a multi-scale time-dependent PDE. These promising results
pave the way for the design of a robust and accurate autoregressive message passing framework for
learning time-dependent PDEs.

2 THE METHOD.

Setting. We consider the following abstract form of a time-dependent PDE,

∂tu = Nη(u), in Ω×]0, T [

u = u0(x) in Ω̄× {0}
(1)

Here, Ω ∈ R
d is a bounded open set and T > 0. The differential operator Nη : H 7→ H̄, maps

between two Hilbert spaces H, H̄ and η models a coefficient, which for simplicity we assume to be
finite-dimensional η ∈ R

dη . Finally the initial data is u0 ∈ H and the PDE equation 1 is augmented
with suitable boundary conditions. Our objective is to learn the solution operator

Sη
t : H 7→ H, u(., t) = Sη

t u0. (2)

To this end, we will proceed by learning the autoregressive mapping

u(., t+∆t) = A∆t
η (u(., t)) (3)

In other words, the above operator maps the solution u(., t) of equation 1 at current time t to the
solution at a later time t + ∆t. By iteratively applying A∆t

η , we can extend the solution over the
entire time period. We drop the ∆t-dependence below for notational convenience.

In order to learn this mapping, we define a grid {xn ∈ Ω} such that we obtain a finite dimensional
approximation of u(., t) ∈ H as u(t) = [u(t, x1), . . . , u(t, xN )]⊤ ∈ R

nx . We can now approximate
the infinite dimensional operator Aη by a finite dimensional operator Aη,θ parameterized by θ ∈
Θ ⊂ R

D as

u(t+∆t) = Aη,θ(u(t)) (4)

Next, we will describe the key ingredients of our multi-scale message-passing paradigm to learn the
autoregressive map 4.

The message passing framework of Brandstetter et al. (2022). We start by a brief description
of the message passing framework of Brandstetter et al. (2022), which we will augment with multi-
scale features later.

As mentioned before, this framework follows a encode-process-decode paradigm. The input to the
encoder is the vector of K-lagged 1 solutions uk−K:k, containing the (recent) history of the solu-
tion trajectory. This vector, at each grid point, is then embedded into a high-dimensional feature
vector X0

i at each node i of a Graph G, which in turn, is defined in terms of the underlying grid
points forming nodes {i}i and sets of nearest neighbors {N (i)}i constituting edges (see SM A.2
for details of this computational graph). The encoder mapping of Brandstetter et al. (2022) is a
shallow neural network. Next, the feature vector X0

i is augmented with relative positions xi − xj ,

the equation parameters η as well as the solution differences uk−K:k
i − uk−K:k

j and is processed
through a multi-hidden layer message passing neural network (MPNN) (Gilmer et al., 2017), with
the relative positions, parameters and solution finite differences being fed as inputs to each hidden
layer. The output of the last hidden layer {XL

i }i is then transformed into the update uk:k+K that

1A K-lagged solution u
i−K:i is defined as the following set of vectors {u(ti−K),u(ti−K+1), ...,u(ti−1)}

2



provides future trajectories of the solution. The decoder is a one-dimensional convolutional neu-
ral network. Summarizing the message passing framework of Brandstetter et al. (2022) yields the
following mapping,

uk:k+K = Aη,θ(u
k−K:k,G) (5)

for updating the solution trajectories of the time-dependent PDE equation 1.

Resolving multiple time scales with long-expressive memory (LEM). Long expressive memory
(LEM) was proposed recently in Rusch et al. (2022) as a sequence model that can i) learn long-term
dependencies in sequential data as it solves the exploding and vanishing gradient problem and ii)
it can efficiently process multiple scales in the data. It is this latter feature that we seek to exploit
in our context. LEM is based on the structure preserving implicit-explicit discretization of an ODE
system such that the recurrent update rule becomes

∆tn = ∆tσ̂ (W1yn−1 +V1un + b1)

∆tn = ∆tσ̂ (W2yn−1 +V2un + b2)

zn = (1−∆tn)⊙ zn−1 +∆tn ⊙ σ (Wzyn−1 +Vzun + bz)

yn =
(

1−∆n

)

⊙ yn−1 +∆n ⊙ σ (Wyzn +Vyun + by)

(6)

where σ̂ is a sigmoid activation function, σ(u) = tanh(u), W1,2,y,z and V1,2,y,z are weight ma-
trices and b1,2,y,z bias vectors. The discretized system evolves the hidden states by the update
formula zn,yn = f(zn−1,yn−1,un,∆t). We will apply LEM in the encoder step of our proposed
architecture to embed our input vector into an expressive high dimensional feature vector.

Resolving multiple spatial scales with Graph Gating. Following the recent paper Rusch et al.
(2023), we can endow a GNN with the explicit ability to resolve multiple spatial scales by adding
a gating mechanism. To this end, let X ∈ R

N×Nhid be a feature matrix, G the graph representation
and F

θ̂
, Fθ two MPNN with different weights. We can now represent the MPNN updates as

Xn = (1− σ̂
(

F
θ̂
(Xn−1,G)

)

)⊙Xn−1 + σ̂
(

F
θ̂
(Xn−1,G)

)

⊙ σ(Fθ(X
n−1,G)) (7)

Note that in this case we create the two graph neural networks with the same architecture, F
θ̂
(X,G)

learns the scales in the data to act as gating switches when its output are normalized between 0 and
1 while Fθ(X,G) updates the feature vector according to the message passing rule.

Figure 1: Multi-scale message passing architecture, the encoder applies a LEM on each node input
to generate the node embeddings, the processor then performsNlayers of message passing with gating
(⊘(a, b, c) = (1 − b) ⊙ a + b ⊙ c). The node features are then passed through a 1D convolutional
layer to project back to the input dimension.

The multi-scale message passing algorithm. We combine the above three ingredients to form
the multi-scale message passing neural PDE solver, which is summarized in Figure 1. We make the
following changes to the message passing architecture of Brandstetter et al. (2022): i) in the encoder
step, an additional LEM layer is introduced that processes the input vector uk−K:k, at each node,
with a LEM recurrent neural network that processes this input to resolve multiple time scales and ii)
in the processor step, we augment the standard message passing neural network with a gating neural
network as in equation 7 to endow the architecture to resolve multiple spatial scales (see SM A.2).

3



3 RESULTS

We test the proposed multi-scale message passing procedure on 3 benchmark experiments below.
As a baseline, we will use the message passing algorithm of Brandstetter et al. (2022) that we
abbreviate as MP-PDE. Our multi-scale variant, which uses LEM as a component of the encoder
and a gating GNN is abbreviated as MSMP-PDE. As additional baselines, we ablate different parts
of the proposed algorithm namely, remove the LEM component to obtain Gated, remove the gating
to obtain LEM, replace LEM with LSTM in LEM and in MSMP-PDE to obtain LSTM and
LSTMGated, respectively.

Table 1: Test L2 (mean ± std) relative errors for competing models in all the experiments. The
two-best performing models are highlighted in bold.

E1 E2 MS-wave

MP-PDE 0.472%± 0.037% 7.309%± 0.484% 20.39%± 1.64%
LSTM 0.587%± 0.137% 6.788%± 0.176% 15.84%± 1.27%
LEM 0.455%± 0.026% 6.866%± 0.235% 17.08%± 1.45%
Gated 0.364%± 0.051% 6.469%± 0.259% 11.9%± 1.22%
LSTMGated 0.326%± 0.026% 6.207%± 0.345% 12.49%± 2.79%
MSMP-PDE 0.323%± 0.034% 6.302%± 0.373% 10.36%± 0.99%

For both the first and second numerical experiments, we will consider Burgers’ equation (see SM
A.1.1) on the computational domain [0, L]. In the first experiment, that we abbreviate as E1, we
follow Brandstetter et al. (2022) to consider the inviscid Burgers’ equation with the sinusoidal initial
data given in SM equation 9. The training (and test) data are generated for different initial conditions
with a finite volume scheme and we train all the models on 2048 samples and test them on 128
samples. The test errors are presented in Table 1. We observe from this table that all the models yield
very low relative errors. This is not unexpected as the solution in this case (see SM Figure 3 for an
illustration) has rather simple dynamic evolution. Nevertheless, MSMP-PDE still outperforms the
baseline MP-PDE to some extent. Ablating different components shows that the gating mechanism
is of greater importance in this case than resolving temporal multi-scale behavior.

In the second experiment, labelled as E2, we again follow Brandstetter et al. (2022) to consider
the forced viscous version of Burgers’ equation SM equation 8 with the same sinusoidal initial
conditions as in E1. In this case, training and test samples are generated by varying both the initial
conditions as well as the time dependent source terms, leading to significantly more complicated
dynamic behavior as compared to E1 (see SM Figure 4 for an illustration). Consequently, the test
errors for each of the models, reported in Table 1 are much higher. Again, MSMP-PDE outperforms
the baseline MP-PDE significantly, with the test error being reduced by almost 14%. Ablating
models shows that adding both gating and temporal multi-scale resolution helps reduce the error,
with gating playing a bigger role.

For the final experiment that we label as MS-wave, we consider a one-dimensional wave equation,
written as a linear hyperbolic system (SM equation 10), that was proposed in Hiltebrand & Mishra
(2017) to test numerical methods for multi-scale problems. The initial conditions, given in the form
of sinusoidal data (SM equation 9) evolve in the form of waves that propagate at different speeds.
The training (and test) samples are generated from different initial conditions as well as wave speeds
(see details in SM A.1.2). The test errors with the competing models is reported in Table 1 and we
observe from this table that the errors are quite high for this problem given the fact that the models
have to learn dynamics at different temporal and spatial scales. For instance, the baseline MP-PDE
algorithm of Brandstetter et al. (2022) yields errors greater than 20%. On the other hand, adding
both temporal and spatial multi-scale resolution features in our proposed MSMP-PDE model leads
to large (factor of 2) decrease in this error. Ablating components shows that both gating and a LEM
encoder seem necessary to obtain the best results.

Thus, with these numerical experiments, we have demonstrated that adding temporal and spatial
multiscale resolution capabilities to a message passing neural PDE solver significantly enhances
its abilities in approximating PDEs, particularly those with multiple scales, accurately. This study
paves the way for the further development of operator learning models that can deal with multi-scale
data on both structured and unstructured grids.

4



REFERENCES

P.W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tac-
chetti, D. Raposo, A. Santoro, and R. Faulkner et al. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Oussama Boussif, Yoshua Bengio, Loubna Benabbou, and Dan Assouline. MAgnet: Mesh agnostic
neural PDE solver. In Advances in Neural Information Processing Systems, 2022.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE solvers.
In International Conference on Learning Representations, 2022.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, 2017.

A. Hiltebrand and S. Mishra. Efficient computation of all speed flows using an entropy stable
shock-capturing space-time discontinuous galerkin method. In Partial Differential Equations,
Mathematical Physics and Stochastic analysis. EMS Congress Reports, 2017.

Christian Kuehn. Multiple time scale dynamics, volume 191. Springer, 2015.

Randall J. LeVeque. Numerical methods for conservation laws (2. ed.). Lectures in mathematics.
Birkhäuser, 1992.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021.

M. Lino, C. Cantwell, A. Bharath, and S. Fotiadis. Simulating continuum mechanics with multi-
scale graph neural networks. arXiv preprint arXiv:2106.04900, 2021.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

Kjetil O Lye, Siddhartha Mishra, and Deep Ray. Deep learning observables in computational fluid
dynamics. Journal of Computational Physics, pp. 109339, 2020.

A. Quarteroni and A. Valli. Numerical approximation of Partial differential equations, volume 23.
Springer, 1994.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear
partial differential equations. Journal of Computational Physics, 357:125–141, 2018.

T Konstantin Rusch, Siddhartha Mishra, N Benjamin Erichson, and Michael W Mahoney. Long
expressive memory for sequence modeling. In International Conference on Learning Represen-
tations, 2022.

T. Konstantin Rusch, Benjamin P. Chamberlain, Michael W. Mahoney, Michael M. Bronstein, and
Siddhartha Mishra. Gradient gating for deep multi-rate learning on graphs. In International
Conference on Learning Representations, 2023.

Kimberly Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. In International Conference on Learning Rep-
resentations, 2022.

Y. Zhu and N. Zabaras. Bayesian deep convolutional encoder–decoder networks for surrogate mod-
eling and uncertainty quantification. Journal of Computational Physics, 336:415–447, 2018.

5



Supplementary Material for:
Multi-scale message passing neural PDE solvers.

A.1 EXPERIMENTS

A.1.1 BURGER’S EQUATION (E1/E2)

As a first benchmark, we consider Burger’s equation with variable viscosity and forcing, i.e.,
[

∂tu+ ∂x
(

u2 − β∂xu
)]

(t, x) = αf(t, x) (8)

u(t, 0) = u(t, L), u(0, x) = f(0, x), f(t, x) =

J
∑

j=1

Aj sin (ωjt+ 2πℓjx/L+ φj) , (9)

and perform two experiments:

• E1 Inviscid Burger’s Equation (α = β = 0, i.e., no forcing and no diffusion).

• E2 Burger’s Equation with variable viscosity and forcing (β ∈ [0, 0.2] and α = 1).

We generate the corresponding training, validation and test sets based on the numerical solver from
Brandstetter et al. (2022). Thereby, a numerical ground truth is generated using a WENO5 scheme
for the convection term and a fourth order finite difference for the diffusion term. The space dis-
cretization is then integrated with an explicit Runge-Kutta solver (RK4) with adaptive timestepping.
The numerical ground truth is generated with t ∈ [0, 4] and Ω = [0, 16] on a (nt, nx) = (250, 200)-
grid. We further compute the training data by down-sampling with a 1D convolution operator to
obtain a (nt, nx) = (250, 100)-grid.

Initial conditions and forcing term are defined as f in equation 9 with Aj ∼ U([−1/2, 1/2]) φj ∼
U([0, 2π]), ωj ∼ U([−0.4, 0.4]) and lj ∈ {1, 2, 3}2.

A.1.2 LINEAR ADVECTION SYSTEM (MS-WAVE)

In this experiment, we focus on the following two-speed advection problem in order to test the ability
of the models to effectively learn multi-scale properties,

∂tu+A∂xu = 0, u(t, x) =

Å

u(1)(t, x)
u(2)(t, x)

ã

, u(t, 0) = u(t, L). (10)

Since equation 10 is a linear hyperbolic system, an analytic solution can be efficiently computed to
generate training instances. To this end, in this experiment we consider,

A =

Å

a+ b b− a
b− a a+ b

ã

, a, b ∈ R. (11)

Let A = RΛR−1 be its eigendecomposition with,

Λ =

Å

2a 0
0 2b

ã

, R =

Å

−1 1
1 1

ã

, and R−1 =

Å

−1/2 1/2
1/2 1/2

ã

. (12)

Since Λ is diagonal, equation 10 can be written as a system of two uncoupled advection equations,

∂tw +Λ∂xw = 0, with w = R−1u. (13)

Given an initial condition u0(x), we can define the initial condition in the eigenbasis,

w0(x) = R−1u0(x) =

Ç

w
(1)
0 (x)

w
(2)
0 (x)

å

. (14)

2U([a, b]) denotes the uniform distribution with support [a, b].

6



We can then use the solution of scalar conservation laws by the method of characteristics (LeVeque,
1992) to get the solution of the system,

u(t, x) = Rw(t, x) = R

Ç

w
(1)
0 (x− 2at)

w
(2)
0 (x− 2bt)

å

. (15)

We generate a training, validation and test set using the aforementioned method. The numerical
ground truth is generated with Ω = [0, 16] and t ∈ [0, 4] on a (nt, nx) = (250, 200)-grid and the

training data is computed by downsampling to a (nt, nx) = (250, 100)-grid. Initial conditions u
(1)
0

and u
(2)
0 are defined as f in equation 9 with Aj ∼ U([−1/2, 1/2]) φj ∼ U([0, 2π]) and lj ∈

{1, 2, 3}. The equation parameters are sampled as a ∼ U([0.1, 1]) and b ∼ U([1, 10]) such that two
very different scales can be represented.

A.2 NETWORK ARCHITECTURE

In this section, we briefly describe the model implementation.

Encoder. In the scalar case, the input to the encoder is given by the (K+dim(η)+2)-dimensional

vector [uk−K:k
i , xi, tk, η]. We distinguish between two different types of encoders: (i) a simple

two-layer feedforward neural network (with swish activation function) for MP-PDE, (ii) a one-
layer LEM (or LSTM) for all other methods considered here, where the 3-dimensional sequence

{[uk−K+l
i , xi, η]

⊤}K−1
l=0 of lengthK gets recurrently processed and only the final hidden state of the

RNN gets further propagated through a 2-layer feedforward neural network (with swish activation)
before it gets passed to the message-passing processor.

Processor. The processor relies on the node feature vectors {Xn
i }i = Xn and graph G to perform

the following message passing operations:

edge j → i message: mn
ij = φθ

Äî

Xn−1
i ,Xn−1

j ,uk−K:k
i − uk−K:k

j , xi − xj , η
óä

,

node i update: Fθ(X
n−1,G)i = ψθ

Äî

Xn−1
i ,

∑

j∈N (i) m
n
ij , η
óä

,
(16)

where φ and ψ are 2-layer feedforward neural networks with Swish activation function. For the
non-gated models, the node vectors are simply updated as Xn = Fθ(X

n−1,G). In contrast to that,
for our proposed gated GNN model we need to construct two MPNNs, i.e., Fθ and F

θ̂
each defined

as in equation 16. We then use the propagation rule in equation 7 to update the node feature vectors.

Decoder. The decoder is based on a 2-layer convolutional neural network (CNN) to project the
node feature outputs of the final processor layer back to the input-output dimension of the underlying
PDE. To this end, we follow Stachenfeld et al. (2022); Brandstetter et al. (2022) and output the
difference of the current to the new timestep solution di =

(

d1i , d
2
i , . . . , d

K
i

)

, i.e., the final node-
wise update of our network is,

uk+ℓ
i = uki + (tk+ℓ − tk) d

ℓ
i , 1 ≤ ℓ ≤ K. (17)

We summarize the architectures used for 1D scalar PDEs (experiments E1/E2) in table 2. In practice
we fix Nhid = 128 with 6 processor hidden layers (Nlayers).

In order to accommodate 1D systems of N equations (as in experiment MS-wave where N = 2) we
add a linear layer at the beginning of the decoder that maps the hidden dimension to a vector of size
N ×K such that we can recover the N K-lagged output vectors.

A.3 TRAINING AND TESTING DETAILS

The training and inference of the models is done on an NVIDIA GeForce RTX 2080 Ti, where the
training takes between 24h and 65h depending on the model complexity.

7



Table 2: Architecture summary of the tested models.

Model Encoder Processor Decoder

MP-PDE Linear-Swish-Linear-Swish 6 × MPNN Conv1D-Swish-Conv1D
LSTM LSTM-Linear-Swish-Linear-Swish 6 × MPNN Conv1D-Swish-Conv1D
LEM LEM-Linear-Swish-Linear-Swish 6 × MPNN Conv1D-Swish-Conv1D
Gated Linear-Swish-Linear-Swish 6 × Gated MPNN Conv1D-Swish-Conv1D
LSTMGated LSTM-Linear-Swish-Linear-Swish 6 × Gated MPNN Conv1D-Swish-Conv1D
MSMP-PDE LEM-Linear-Swish-Linear-Swish 6 × Gated MPNN Conv1D-Swish-Conv1D

Table 3: Number of model trainable parameters per experiment.

Model E1 E2 MS-wave

MP-PDE 634’745 636’409 693’738
LSTM 715’769 717’817 772’842
LEM 715’257 717’305 772’330
Gated 1’249’145 1’252’345 1’330’410
LSTMGated 1’330’169 1’333’753 1’409’514
MSMP-PDE 1’329’657 1’333’241 1’409’002

A.3.1 DATASET AND ERRORS

In all experiments the domain is given by Ω = [0, 16] and t ∈ [0, 4] with (nt, nx) = (250, 100) and
K = 25.

For experiments E1/E2 we create a training, validation and test set of sizes 2048, 128 and 128
respectively (1024,128,128 for MS-wave). We perform a 5-fold cross validation to get estimates of
the standard deviation associated to changing the dataset and resampling the initial weights. The
models are trained using the method described in section A.3.2, we use the validation dataset to
perform early stopping and report the errors obtained on the test set.

Let ui and uiθ be the ground truth solution and the network prediction for the test sample i, we report
in table 1 the relative error,

RE =

1
Nsample

∑Nsample

i=1 ‖uiθ − ui‖L2(Ω×]0,T ])

1
Nsample

∑Nsample

i=1 ‖ui‖L2(Ω×]0,T ])

, (18)

which in practice is computed by unrolling the full trajectory with the network of interest and by
computing the norms in discretized form.

A.3.2 AUTOREGRESSIVE TRAINING DETAILS

We follow the training procedure of Brandstetter et al. (2022), i.e., the networks are trained for 20
epochs (with early stopping), we use a batch size of 16 and a learning rate of 1e−4, which is reduced
by a factor of 0.4 for every 5 epochs. Moreover, we train the models using the AdamW optimizer
with a root mean squared loss. We define the underlying computational graph using a radius around
the node of interest such that 3 nearest neighbors on each side are connected to the node.

The training procedure is illustrated in Figure 2. We start by grouping each of the temporal
sequences of the training set to a set of K-lagged solutions. We further randomly choose one of the
K-lagged solutions as well as the number of unrolling steps to be performed (in this paper we use
a maximum unrolling depth of 2). After unrolling, the loss is computed between the model output
and the ground truth solution, where the errors are then backpropagated only through the last model
call in order to mitigate the distribution shift problem.

8



Time

Training Sequence

Loss

Loss

Loss
Backpropagation

Backpropagation

Backpropagation

No gradient accumulation

Gradient accumulation

Aη,θ

Aη,θ

Aη,θ

Aη,θ

Aη,θ

Aη,θ

Aη,θ

Figure 2: Example of three autoregressive training input-output instances with K-lagged solutions,
truncated backpropagation and a maximum unrolling depth of 2.

A.4 PLOTS

Figure 3: Experiment E1, MSMP-PDE prediction

Figure 4: Experiment E2, MSMP-PDE prediction

9



Figure 5: Experiment MS-wave with equation parameters a = 0.21 and b = 9.42. MSMP-PDE
shows a relative L2 error of 9.6% while MP-PDE shows a relative L2 error of 26.7%.

Figure 6: Experiment MS-wave with equation parameters a = 0.87 and b = 1.31. MSMP-PDE
shows a relative L2 error of 14.05% while MP-PDE shows a relative L2 error of 44.8%.

10


	Introduction
	The Method.
	Results
	Appendix
	Experiments
	Burger's equation (E1/E2)
	Linear Advection System (MS-wave)

	Network Architecture
	Training and Testing Details
	Dataset and Errors
	Autoregressive Training Details

	Plots


