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By introducing a new operator theory, we provide a unified mathematical the-

ory for general source resolution in the multi-illumination imaging problem. Our

main idea is to transform multi-illumination imaging into single-snapshot imag-

ing with a new imaging kernel that depends on both the illumination patterns

and the point spread function of the imaging system. We therefore prove that

the resolution of multi-illumination imaging is approximately determined by the

essential cutoff frequency of the new imaging kernel, which is roughly limited by

the sum of the cutoff frequency of the point spread function and the maximum

essential frequency in the illumination patterns.

Our theory provides a unified way to estimate the resolution of various exist-

ing super-resolution modalities and results in the same estimates as those ob-

tained in experiments. In addition, based on the reformulation of the multi-

illumination imaging problem, we also estimate the resolution limits for resolv-

ing both complex and positive sources by sparsity-based approaches. We show

that the resolution of multi-illumination imaging is approximately determined

by the new imaging kernel from our operator theory and better resolution can

be realized by sparsity-promoting techniques in practice but only for resolving

very sparse sources. This explains experimentally observed phenomena in some

sparsity-based super-resolution modalities.
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1. Introduction

Due to the intrinsic property of wave propagation and diffraction, the spatial resolution in

optical imaging was deemed to be limited by the optical diffraction limit for more than a

century. Based on the criteria first proposed by Abbe [1] and Rayleigh [36], this limit is com-

monly acknowledged to be nearly half of the wavelength and it is widely used to quantify the

resolution of conventional optical microscopies. However, in the last two decades, pioneered

by several super-resolution techniques [4, 37, 44], a large amount of super-resolution fluo-

rescence microscopies were developed to shatter the diffraction barrier and even frequently

achieve a resolution that is dramatically lower than the diffraction limit. For example, the

techniques known as STED [44], PALM [4], STORM [37] and dSTORM [17] exploit fluores-

cence to improve the spatial resolution from more than two hundreds nanometers to several

tens of nanometers.

A crucial and common feature in the super-resolution fluorescence microscopies is that

multiple patterned fields of light were applied to the sample to manipulate its fluorescence

emission and multiple snapshots are taken and processed to extract sub-wavelength features

of the sample. Since the snapshots are taken from samples subject to multiple illuminations,

we call imaging in this setting multi-illumination imaging, to distinguish it from the imaging

from a single snapshot. For imaging from a single snapshot (or a single-illumination), as al-

ready demonstrated in [3, 29–31], the required signal-to-noise ratio is very restrictive when

super-resolving n point sources separated by a distance below the diffraction limit. Thus

super-resolution is nearly hopeless in this case. This is why practical super-resolution tech-

niques have developed slowly over the last century, where multiple illuminations have been

rarely utilized. In recent years, the capabilities of super-resolution from a single snapshot

have already been established by several mathematical theories [3, 9, 22, 29–31] and the reso-

lution limits have been explicitly characterized [24, 27, 30], while the super-resolution capa-

bility of multi-illumination imaging is not yet well understood.

On the other hand, although the mechanism and resolution of the aforementioned imaging

modalities were simple and well explained, such as the down-modulating of high-frequency

information in SIM and single molecule localization in STORM, a variety of the perspectives

of understanding do not uncover the fundamental principle and possibilities for improving

the resolution by using multi-illuminations. There is no mathematical theory to understand

all or most of the imaging modalities in a unified way, exhibiting the fundamental princi-

ple and performance limit in their resolution improvement. In particular, many new imag-

ing modalities employing the prior knowledge of sparsity [38, 45] have achieved a resolution

better than common sense, necessitating an investigation of a mathematical theory for the

resolution as well. The fundamental understanding would certainly inspire us to develop

new imaging modalities and give us insight into their fundamental limitations. Therefore,

the development of a rigorous and uniform mathematical theory to discover the principle

and show the resolution of multi-illumination imaging in a straightforward and simple way

is important.

This paper aims to present a unified mathematical theory for understanding the resolu-

tion of multi-illumination based super-resolution techniques. In particular, we seek to math-

ematically explain the resolution improvement of existing multi-illumination imaging ap-
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proaches and further highlight the possibilities and difficulties in this field.

1.1. Main contributions

We first propose an operator theory for analyzing multi-illumination imaging. To be more

specific, we define the multi-illumination imaging operator as A and apply its adjoint op-

erator A∗ to the measurement A f with f being a general source. It turns out that A∗A f

can be viewed as a conventional imaging from a single snapshot with a specific imaging ker-

nel G(z, y). Therefore, this imaging kernel enables us to analyze the resolution of the multi-

illumination imaging by conventional ways. Especially, as one shall see in Sections 2 and 3, all

of the multi-illumination imaging methods have this imaging kernel, despite it is quite hid-

den in some modalities, such as the SIM and the single molecule fluorescence microscopy.

Based on our operator theory, in Sections 2.2 and 3 we analyze the stability of the recon-

struction of the frequency information of the source f and show that our results are in agree-

ment with the experimental results. While this is consistent with common understanding in

the field of multi-illumination imaging, our presentation is more general and does not re-

quire specific manipulation of specific measurements and illumination patterns. For exam-

ple, it explains the resolution of structured illumination microscopy, imaging by translating

illumination points, single molecular localization microscopy and decoding based random

illumination imaging in the same mathematical framework.

In addition, this general framework allows us to analyze more aspects of multi-illumination

imaging. As shown in Section 2.3, by generalizing the above operator analysis to a more

general encoding and decoding theory, for a large category of decoding methods, the recon-

structed spectral data of f cannot exceed [−Ωmulti,Ωmulti], where Ωmulti = Ωpsf +Ωillu with

Ωpsf being the cutoff frequency of the point spread function and Ωillu the essential maxi-

mum frequency in the illumination patterns. This demonstrates the common sense in the

field that, without additional prior information, the maximum frequency information in the

multi-illumination imaging recovery is limited by the summation of the cutoff frequency of

the point spread function and the essential maximum frequency in the illumination pattern.

We also analyze the resolution of multi-illumination imaging for the case when the illumina-

tion patterns are not exactly known but can be approximated.

On the other hand, based on the imaging kernel formulated in Section 2, under appropri-

ate assumptions, in Section 4 we are also able to estimate rigorous resolution limits of certain

sparsity-based multi-illumination imaging methods. Our results explain important phenom-

ena in some sparsity-based multi-illumination imaging modalities, revealing the inherent ad-

vantage and limitation of sparsity-based multi-illumination imaging. In particular, we arrive

at the following conclusions: i) the resolution of multi-illumination imaging is fundamentally

determined by the summation of the cutoff frequency of the point spread function and the

essential maximum frequency in the illumination pattern; and ii) better resolution can be

achieved by sparsity-promoting approaches, but only for resolving very sparse sources.
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1.2. Related works

The mathematical theory analyzing the ability of super-resolution imaging from a single noisy

snapshot dates back to the last century. From the middle of the last century, many researchers

have already analyzed the two-point resolution from the perspective of statistical inference

[10,14,18,19,32,33,39–41]. In these papers, the authors have derived estimations for the min-

imum SNR that is required to discriminate two point sources or for the possibility of a correct

decision. Although the resolutions (or the requirement) in this respect were thoroughly ex-

plored in these works which spanned the course of several decades, these results are compli-

cated, wherefore they are rarely used in practical applications. Recently, we proposed a new

rigorous and simple formula in [24] to serve as a resolution limit in super-resolving two point

sources under only an assumption on the noise level.

The mathematical analysis of the stability for recovering more than two point sources is

more challenging. To the best of our knowledge, the first breakthrough dates back to Donoho.

In 1992, he studied the possibility and difficulties of super-resolving multiple on-the-grid

sources from a noisy single snapshot. He derived both the lower and upper bounds for the

minimax error of the amplitude recovery in terms of the noise level, grid spacing, cutoff fre-

quency, and a so-called Rayleigh index. The results were improved in recent years for the

case when resolving n-sparse on-the-grid sources [9]. Especially, the authors showed that

the minimax error rate for amplitudes recovery scales like SRF2n−1ǫ, where ǫ is the noise level

and SRF := 1
∆Ω

is the super-resolution factor with ∆ being the grid spacing and Ω the band

limit. Similar results for multi-cluster cases were also derived in [2, 22]. In particular, in [3]

the authors derived sharp minimax errors for the location and the amplitude recovery of off-

the-grid sources. They showed that for complex sources satisfying a specific clustered con-

figuration and ǫ. SRF−2p+1 with p being the number of the cluster nodes, the minimax error

rate for reconstructing of the cluster nodes is of order (SRF)2p−2 ǫ
Ω

, while for recovering the

corresponding amplitudes the rate is of order (SRF)2p−1ǫ. These results were generalized to

the case of superresolving positive sources by us [26] recently.

On the other hand, in order to characterize the exact resolution in the number and location

recovery, in the earlier works [24,25,27,29–31], we have defined the so-called "computational

resolution limits", which characterize the minimum required distance between point sources

so that their number or locations can be stably resolved under certain noise level. It was

shown that the computational resolution limits for the number and location recoveries in the

k-dimensional super-resolution problem should be around respectively
Cnum (k,n)

Ω

(
σ

mmin

) 1
2n−2

and
Csupp (k,n)

Ω

(
σ

mmin

) 1
2n−1

, where Cnum(k,n) and Csupp (k,n) are certain constants depending

only on the source number n and the space dimensionality k. In particular, these results

were generalized to the case when resolving positive sources in [27]. We also refer the readers

to [7, 34] for understanding the resolution limit from the perspective of sample complexity

and to [8, 43] for the resolving limit of some algorithms.

All of these results reveal the severe ill-conditioning of the inverse problem, indicating

that achieving super-resolution for resolving multiple sources from single snapshot is almost

hopeless. This is also the reason why the practical super-resolution techniques have devel-

oped slowly over the past century. The significant development of practical super-resolution
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techniques in the last two decades is mainly attributed to the use of multiple illuminations

with different patterns.

Although super-resolution techniques have achieved considerable progress and have be-

come indispensable tools for understanding biological functions at the molecular level, the

mathematical theory regarding the possibility and difficulty in multi-illumination imaging

has not been satisfactory developed. To the best of our knowledge, stability estimations

for the MUSIC and ESPRIT algorithms for multi-snapshots have been developed in [23]. In

our previous work [28], we proposed a theory for the resolution estimation of sparsity-based

multi-illumination imaging, revealing the importance of the incoherence of the illumination

patterns in the resolution enhancement. However, the theory did not provide the perfor-

mance limit of the multi-illumination imaging with known illumination patterns and the re-

sults still lack practical significance.

Here we propose a theory focused on the analysis of multi-illumination imaging with ex-

actly known or well approximated illumination patterns. We also intend our results to have

sufficient interpretability and guiding significance for practical super-resolution techniques.

1.3. Organization of the paper

In Section 2, we first propose an operator analysis for multi-illumination imaging. In partic-

ular, we formulate a certain imaging kernel in the multi-illumination case and analyze the

stability of the reconstruction of frequency information of a general source. In Section 3, we

examine several super-resolution microscopies to elucidate their stability using the opera-

tor theory presented in Section 2. In Section 4, we derive estimates of the resolution limit

of sparsity-based multi-illumination imaging. Section 5 concludes the paper. The appendix

contains several technical proofs.

2. Imaging kernel and resolution of multi-illumination

imaging modalities

In this section, we propose a mathematical theory to analyze the resolution of multi-illumination

imaging. Our theory is based on the analysis of imaging operators that appear in multi-

illumination imaging problems. For convenience, we call our theory the operator theory for

the resolution analysis.

2.1. Problem setting and the Imaging kernel

Let us first introduce the problem setting. We suppose that a general source f is supported

on [0,1]d and the point spread function of the imaging system is given by

k(x, y) = PSF (x − y)

with y denoting the source location. We also suppose that we have N times of illuminations

for the source and the illumination patterns, denoted by I (x, tq ), q = 1, · · · , N , are known a

5



priori. We consider having full data for each image on R
d (or full spectral data in the low-

frequency region) to gain more precise reconstruction and make the analysis convenient.

Moreover, we make the following assumptions on f , k(x, y) and I (x, tq ). Our assumptions

are consistent with the practical modalities.

Assumption 2.1. f is either a continuous function in [0,1]d or a discrete and finite measure.

Assumption 2.2. k(x, y) is a real, continuous, and bounded function and PSF ∈ L2(Rd ).

Assumption 2.3. I (x, tq ), q = 1, · · · , N , are continuous and bounded functions in R
d .

The noiseless measurements are given by

f̂ (x, tq ) =
∫

Rd
k(x, y)I (y, tq ) f (y)d y, q = 1, · · · , N ,

where f (y) is the unknown source. The multi-illumination imaging problem is to reconstruct

f (x) from f̂ (x, tq ). To obtain an appropriate method for analyzing the resolution of the multi-

illumination imaging problem, we define the imaging operator A by

A f (x, tq ) =
∫

[0,1]d
k(x, y)I (y, tq ) f (y)d y =

∫

[0,1]d
Q(x, y, tq ) f (y)d y, (2.1)

where the function Q(x, y, tq ) = k(x, y)I (y, tq ) combines together the point spread function

and the illumination pattern. Note that by Assumptions 2.1, 2.2 and 2.3, it is not difficult to

see that A f (x, tq ) ∈ L2(Rd ) for each tq . Then we define the inner product

〈
A f , g

〉
=

1

N

N∑

q=1

∫

Rd
A f (x, tq )g (x, tq )d x

for g ∈
(
L2(Rd )

)N
and calculate the adjoint operator A∗ of A from

〈
f , A∗g

〉
=

〈
A f , g

〉
=

1

N

N∑

q=1

∫

Rd

∫

[0,1]d
Q(x, y, tq ) f (y)d y g (x, tq )d x

=
∫

[0,1]d

(
1

N

N∑

q=1

∫

Rd
Q(x, y, tq )g (x, tq )d x

)

f (y)d y

=
〈

f ,
1

N

N∑

q=1

∫

Rd
Q(x, y, tq )g (x, tq )d x

〉

.

Thus we get that

A∗g =
1

N

N∑

q=1

∫

Rd
Q(x, y, tq )g (x, tq )d x. (2.2)

Next, we consider the operator A∗A. We have

A∗A f (z) =
1

N

N∑

q=1

∫

Rd
Q(x, z, tq )

∫

[0,1]d
Q(x, y, tq ) f (y)d yd x

=
∫

[0,1]d

1

N

N∑

q=1

∫

Rd
Q(x, z, tq )Q(x, y, tq )d x f (y)d y

=
∫

[0,1]d
G(z, y) f (y)d y,

(2.3)
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where G(z, y) := 1
N

∑N
q=1

∫
Rd Q(x, z, tq )Q(x, y, tq )d x. Moreover, we obtain that

G(z, y) =
1

N

N∑

q=1

∫

Rd
Q(x, z, tq )Q(x, y, tq )d x

=
1

N

N∑

q=1

∫

Rd
I (z, tq )I (y, tq )k(x, z)k(x, y)d x

=
1

N

N∑

q=1

I (z, tq )I (y, tq )

∫

Rd
k(x, z)k(x, y)d x.

Since PSF ∈ L2(Rd ),
∫
Rd k(x, z)k(x, y)d x <+∞ and G(z, y) is well-defined. We call

G(z, y) :=
1

N

N∑

q=1

I (z, tq )I (y, tq )

∫

Rd
k(x, z)k(x, y)d x, (z, y) ∈R

2d , (2.4)

the imaging kernel of the multi-illumination imaging problem. From the above derivations,

the problems in multi-illumination imaging are now transformed to conventional imaging

problems from single snapshot with the imaging kernel G(z, y). This is a crucial contribu-

tion of the paper, which allows us to transform the multi-illumination imaging to a standard

imaging from a single measurement, where abundant techniques and results can be applied.

In the rest of the paper, we shall see that the imaging kernel G(z, y) plays a key role in deter-

mining the stability and resolution of multi-illumination imaging.

2.2. Stability analysis of the Imaging Problem

In the above section, we have derived an imaging kernel in the multi-illumination imaging

problem. We now propose some stability analyses for the multi-illumination imaging, elu-

cidating that the resolution of the multi-illumination imaging is almost determined by the

imaging kernel G in (2.4).

To be more specific, we denote the noise function by σ(x, t ) and suppose that

∣∣∣∣σ(x, tq )
∣∣∣∣

L1 =
∫

Rd

∣∣σ(x, tq )
∣∣d x ≤σ, q = 1, · · · , N , (2.5)

with σ being the noise level. Here we slightly abuse the use of σ to keep the notation simple,

but this will not cause any ambiguity in the following discussions. For noisy measurements

in the multi-illumination imaging given by

h(x, tq ) = A f (x, tq )+σ(x, tq ), q = 1, · · · , N ,

with σ(x, tq ) satisfying (2.5), we have

A∗h =A∗A f + A∗σ

=
∫

[0,1]d
G(z, y) f (y)d y + A∗σ

=
∫

[0,1]d
G(z, y) f (y)d y +O(σ),
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where the last equality is because by (2.5) the following estimate holds:

∣∣A∗σ(y)
∣∣≤

1

N

N∑

q=1

∣∣∣∣

∫

Rd
I (y, tq )k(x, y)σ(x, tq )d x

∣∣∣∣

≤
1

N

N∑

q=1

max
(∣∣∣I (y, tq )k(x, y)

∣∣∣
)∫

Rd

∣∣σ(x, tq )
∣∣d x

≤Cσ.

(2.6)

Therefore, by applying the reconstruction operator A∗ to the noisy measurement h(x, t ), we

obtain the following noisy image of the source f (y):

Y(z) =
∫

[0,1]d
G(z, y) f (y)d y +W(z), (2.7)

where |W(z)| is of order O(σ).

Classically, the resolution of imaging modalities is generally determined by the bandwidth

of their point spread functions. Thus, starting from (2.7) in the next section (Section 3), we be-

gin to analyze the resolution of various well-known imaging modalities, and even SIM meth-

ods where the imaging kernel is completely concealed. To be more specific, we will show that

in several imaging modalities, the imaging kernel G(z, y) is of the form PSFmulti(z − y) with

PSFmulti being the new point spread function for the multi-illumination imaging, or G(z, y)

can be approximated by PSFmulti(z − y), (z, y) ∈ [0,1]2d , to certain extent. This enables us to

view (2.7) as

Y(z) =
∫

[0,1]d
PSFmulti(z − y) f (y)d y +W(z) (2.8)

with |W(z)| being of order O(σ). This is exactly the imaging model for the single snapshot,

whereby we can understand the resolution in a conventional way, for instance from the point

of view of the Rayleigh limit [36] or the computational resolution limit [24, 29–31].

Furthermore, assuming that G(z, y) is of the form PSFmulti(z−y), we next demonstrate that

the spectral data of f in the bandpass of PSFmulti can be reconstructed in a stable way from

noisy images. In the next subsection, we show that this is also what can only eventually be

reconstructed under most circumstances. This provides a rigorous explanation of the resolu-

tion of multi-illumination imaging.

Note that the noisy measurements should be of the form A f (x, tq )+σ(x, tq ), q = 1, · · · , N ,

for some noise σ(x, tq ) satisfying (2.5). Then for g supported in [0,1]d satisfying Ag (x, tq ) =
A f (x, tq )+σ(x, tq ), we have A(g − f )(x, tq ) =σ(x, tq ) and A∗A(g − f ) = A∗σ. We define

f̃ (y) =
{

f (y), y ∈ [0,1]d ,

0, y ∈R
d \ [0,1]d ,

g̃ (y) =
{

g (y), y ∈ [0,1]d ,

0, y ∈R
d \ [0,1]d .

(2.9)

We denote the Fourier transform by F [µ](ξ) =
∫+∞
−∞ e iξxµ(x)d x and consider

F [A∗σ] =F [A∗A(g − f )] =F

[∫

Rd
G(z, y)(g̃ (y)− f̃ (y))d y

]

=F
[
PSFmulti ∗ (g̃ − f̃ )

]
=F [PSFmulti]F

[
g̃ − f̃

]

=F [PSFmulti]F
[
g − f

]
.
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It then follows that

F [PSFmulti] (ξ)F
[
g − f

]
(ξ) =F [A∗σ](ξ), ξ ∈R

d ,

and,

F
[
g − f

]
(ξ) =

F [A∗σ]

F [PSFmulti] (ξ)
(2.10)

for ξ satisfying F [PSFmulti](ξ) 6= 0. We can therefore reconstruct the frequency information in

the bandpass of PSFmulti in a stable way. In particular, if we consider PSF (y)I (y, tq ) ∈ L1(Rd )

and assume that F
[
I (y, tq )

]
is bounded, then we have the following theorem for the stability

of the reconstruction of the frequency information of f . Note that the assumption is very

mild and applies to most of the imaging modalities.

Theorem 2.1. Suppose that k(x, y) = PSF (x − y), PSF (y)I (y, tq ) ∈ L1(Rd ), F
[
I (y, tq )

]
’s are

bounded, and the imaging kernel in (2.4) has the form PSFmulti(z − y). For g supported on

[0,1]d satisfying Ag (x, tq ) = A f (x, tq )+σ(x, tq ) with σ(x, tq ) satisfying (2.5), we have

F
[
g − f

]
(ξ) ≤

C (I ,k)σ

F [PSFmulti] (ξ)

for ξ satisfying F [PSFmulti](ξ) 6= 0. Here C (I ,k) is a finite constant related to the illumination

patterns and point spread function k(x, y).

Proof. Since PSF (y)I (y, tq ) ∈ L1(Rd ),
∫

Rd

∣∣σ(x, tq )
∣∣
∫

Rd

∣∣∣I (y, tq )k(x, y)
∣∣∣d yd x <+∞.

Then by Fubini’s Theorem, we have
∫

R2d

∣∣∣I (y, tq )k(x, y)σ(x, tq )
∣∣∣d xd y <+∞.

Thus I (y, tq )k(x, y)σ(x, tq ) ∈ L1(R2d ) and Fubini’s Theorem yields

∣∣F
[

A∗σ
]

(ξ)
∣∣=

∣∣∣∣∣

∫

Rd
e i y ·ξ 1

N

N∑

q=1

I (y, tq )

∫

Rd
k(x, y)σ(x, tq )d xd y

∣∣∣∣∣

=

∣∣∣∣∣
1

N

N∑

q=1

∫

Rd
σ(x, tq )

∫

Rd
e i y ·ξI (y, tq )k(x, y)d yd x

∣∣∣∣∣

≤
1

N

N∑

q=1

∫

Rd

∣∣σ(x, tq )
∣∣
∣∣∣∣

∫

Rd
e i y ·ξI (y, tq )k(x, y)d y

∣∣∣∣d x

=
1

N

N∑

q=1

∫

Rd

∣∣σ(x, tq )
∣∣
∣∣∣F

[
I (y, tq )

]
∗F

[
k(x, y)

]
(ξ)

∣∣∣d x

≤C (I ,k)σ,

where the last inequality is because (2.5), F

[
I (y, tq )

]
is bounded, and k(x, y) = PSF (x − y)

whose spectral data vanishes outside a bounded interval. Combining the previous estimate

with (2.10) proves the theorem.
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According to Theorem 2.1, the spectral data of f in the bandpass of PSFmulti can be stably

reconstructed if we know the illumination pattern I and the point spread function. Further-

more, as discussed in Sections 2.3 and 3, the essential cutoff frequency of PSFmulti is around

the sum of the cutoff frequency of the point spread function and the essential maximum fre-

quency in the illumination pattern. On the other hand, suppose that the essential cut-off

frequency of PSFmulti is Ωmulti, by the classical resolution limit theory [11], the resolution

enhancement is around
Ωmulti

Ω
. This is a direct conclusion from our operator theory for the

resolution enhancement, which is consistent with experimental results from many imaging

modalities in practice. Sometimes additional prior information further improves the resolu-

tion enhancement, of which sparsity is the most common and widely used feature [35,42,45].

In Section 4, we will analyze the resolution when resolving sparse sources, enabling an expla-

nation of observed phenomena in some experiments.

Remark 2.1. Note that when G(z, y) is not exactly PSFmulti(z − y) but can be approximated

by PSFmulti in some sense, we can obtain an estimate similar to (2.10), indicating that the fre-

quency information in the bandpass of PSFmulti can be reconstructed stably in multi-illumination

imaging.

Remark 2.2. We remark that Theorem 2.1 can also be applied to plane wave illuminations

I (y, tq ) = e i z(tq )·y . This means that it can be applied to analyze the resolution of SIM imaging

modalities [16].

2.3. General Encoding and decoding theory

The formulation of the imaging from the operator A∗A in (2.3) can also be viewed as a process

of decoding measurements in multi-illumination imaging. To be more specific, the operator

A∗ can be viewed as a decoder which decodes the source information from the measure-

ments A f and the decoding patterns are the specific Q(x, y, tq ) = k(x, y)I (y, tq ). In some ap-

plications, although the illumination patterns as well as Q(x, y, tq ) are not exactly known, an

estimated decoding pattern can be used to reconstruct the image of the sources [13, 15]. The

mathematical formulation is as follows. We use the same notation as in Section 2.1. Each

diffraction limited image in the sequence that is captured by the camera (or the detectors)

has the following formulation:

f̂ (x, t ) =
∫

y
f
(
y
)

I
(
y, t

)
PSF

(
x − y

)
d y,

where the illumination pattern I (y, t ) varies in time. For example, in [15], I (y, t ) represents

the nanoparticles distribution that varies in time according to the Brownian motion of the

nanoparticles. Then, the decoding pattern is numerically extracted according to some esti-

mation procedures and the reconstruction r (x) is obtained by as follows:

r (x) =
∫

t

[∫

y
f
(
y
)

I
(
y, t

)
PSF

(
x − y

)
d y

]
Ĩ (x, t )d t ,
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where Ĩ (x, t ) is the digitally estimated decoding pattern. By different means and assumptions

on the model [13, 15], it was shown that
∫

t
I (y, t )Ĩ (x, t )d t =Col (x − y) (2.11)

for some function Col characterizing the correlations between I , Ĩ . Then the reconstructed

image is

r (x) =
∫

y
G(x − y) f (y)d y,

where G(x) =Col (x)PSF (x) combines the encoding/decoding patterns and the point spread

function. The further analysis of the resolution can be derived in the same way as those in

the paper.

On the other hand, the generalization of the reconstruction operator A∗ by this encoding

and decoding theory gives us a new insight into the stability of multi-illumination imaging. A

simple idea is to create new general decoders to analyze the possibility of further resolution

enhancement compared to Section 2.1. For simplicity, we always consider that the illumina-

tion patterns vary continuously and that each diffraction-limited image is

f̂ (x, t ) = A f (x, t ) :=
∫

y
k(x, y)I (y, t ) f (y)d y. (2.12)

Since the only known information is the illumination patterns and the point spread func-

tion, we consider a very general decoding pattern g1 (I (z, t )) g2 (k(x, z)) with g1, g2 being two

general functions.

We define the corresponding decoder

Dg =
∫

t

∫

x
g1 (I (z, t )) g2 (k(x, z)) g (x, t )d xd t .

Then the reconstructed image of source f reads

D A f =
∫

t

∫

x
g1 (I (z, t )) g2 (k(x, z))

∫

y
k(x, y)I (y, t ) f (y)d yd xd t ,

or equivalently,

D A f =
∫

t

∫

x
g1 (I (z, t )) g2 (k(x, z))

∫

y
k(x, y)I (y, t ) f (y)d yd xd t

=
∫

y

∫

t
g1 (I (z, t )) I (y, t )d t

∫

x
g2 (k(x, z))k(x, y)d x f (y)d y.

=
∫

y

∫

t
g1 (I (z, t )) I (y, t )d t

∫

x
g2 (PSF (x − z))PSF (x − y)d x f (y)d y

=
∫

y
G(z, y) f (y)d y,

where G(z, y) =
∫

t g1 (I (z, t )) I (y, t )d t
∫

x g2 (PSF (x − z))PSF (x−y)d x. Note that the above op-

erations are valid under only very mild assumptions on g1, g2, I ,k. When the illumination
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patterns are generated by point sources or by other assumptions such as in [13], I (y, t ) is of

the form I (y, t ) = I P (y − t ) for some illumination function I P . Then

D A f =
∫

y
PSFmulti(z − y) f (y)d y

and

F [PSFmulti] (ξ) =F
[
g1(I P )∗ I P

]
∗F

[
g2(PSF )∗PSF

]
(ξ), ξ ∈R

d .

Note that

F
[
g1(I P )∗ I P

]
(ξ) =F

[
g1(I P )

]
(ξ)F [I P ] (ξ) =F

[
g1(I P )

]
(ξ)F [I P ] (ξ)χF [I P ],

F
[
g2(PSF )∗PSF

]
(ξ) =F

[
g2(PSF )

]
(ξ)F [PSF ] (ξ) =F

[
g2(PSF )

]
(ξ)F [PSF ] (ξ)χF [PSF ],

where χg is the characteristic function of the support of g . Thus the spectral data of D A f

is still essentially constrained in [−Ωmulti,Ωmulti], where Ωmulti =Ωpsf +Ωillu with Ωpsf being

the cutoff frequency of the point spread function and Ωmulti being the essential maximum

frequency in the illumination patterns. This directly reveals that the spectral data of f that

can be recovered by any sophisticated recovering (decoding) algorithms with the aforemen-

tioned form cannot exceed the bound Ωpsf +Ωillu. This theoretically confirms the common

sense in the super-resolution field [35] that, without further assumption and information on

high-order statistics of the illumination patterns such as in [12, 42], the maximum frequency

information in multi-illumination imaging recovery is limited by the sum of the cutoff fre-

quency of the point spread function and the essential maximum frequency in the illumina-

tion pattern.

A crucial observation is that, since in the measurement (2.12) the kernel in the integral is

k(x, y)I (y, t ), together with the discussions above, any sophisticated decoding operator can-

not further improve the resolution. Thus, the essential way to further improve the resolution

is not to manipulate the decoding operator but to manipulate the measurement (2.12), for

example by multiplying it with new functions in the integral kernel in (2.12). This was in fact

done in [12, 42] under assumptions on high-order statistics of the illumination patterns.

Based on the above discussions, we now have clearer understanding of the possible reso-

lution improvement in multi-illumination imaging. This provides sufficient guidance for the

development of super-resolution modalities and algorithms.

2.4. Illumination patterns are unknown but can be approximated

In many practical applications, the illumination patterns are not exactly known but can be

approximated. In this section, we analyze the stability of multi-illumination imaging in this

case. Suppose that the original illumination patterns are I (x, tq ), q = 1, · · · , N , and the esti-

mated illumination patterns are Î (x, tq ) = I (x, tq )+ǫ(x, tq ) with a bounded ǫ(x, tq ) satisfying

∣∣∣∣ǫ(x, tq )
∣∣∣∣

L1 ≤ ǫ. (2.13)

We define the new imaging operator Â by

Â f =
∫

[0,1]d
k(x, y)Î (y, tq ) f (y)d y =

∫

[0,1]d
Q̂(x, y, tq ) f (y)d y, (2.14)

12



where Q̂(x, y, tq ) = k(x, y)Î (y, tq ). For the noisy images h(x, tq ) = A f (x, tq )+σ(x, tq ) with A

being the original imaging operator (2.1), the source g is recovered by using the following

constraint: ∣∣∣∣Âg (x, tq )−h(x, tq )
∣∣∣∣

L1 ≤σ, q = 1, · · · , N ,

or

Âg (x, tq ) = h(x, tq )+ σ̂(x, tq ), q = 1, · · · , N ,

for some σ̂(x, tq ) satisfying (2.5).

To analyze the stability of the reconstruction, we further derive the operator A∗ Â. Since

ǫ(x, tq ) is bounded, it is not difficult to see that Â f (x, tq ) ∈ L2(Rd ) by Assumptions 2.1, 2.2,

2.3. In the same way as for the derivations in Section 2.1, we can write that

A∗ Â f =
∫

[0,1]d
Ĝ(z, y) f (y)d y, (2.15)

where Ĝ(z, y) is defined by

Ĝ(z, y) :=
1

N

N∑

q=1

Î (z, tq )I (y, tq )

∫

Rd
k(x, z)k(x, y)d x, (z, y) ∈R

2d . (2.16)

We now have the following theorem for the stability of recovery of the spectral data of the

source f .

Theorem 2.2. Suppose that k(x, y) = PSF (x − y), PSF (y)I (y, tq ) ∈ L1(Rd ), the F
[
I (y, tq )

]
’s

are bounded, and the imaging kernel in (2.4) has the form PSFmulti(z − y). For a bounded g

supported on [0,1]d satisfying Âg (x, tq ) = A f (x, tq )+σ(x, tq ) with σ(x, tq ) satisfying (2.5) and

Â defined by (2.14), we have

F
[
g − f

]
(ξ) ≤

C1(I ,k)σ+C2(I ,k)ǫ

F [PSFmulti] (ξ)

for ξ satisfying F [PSFmulti](ξ) 6= 0. Here, C1(I ,k),C2(I ,k) are finite constants that depend on

the illumination patterns and the point spread function k(x, y).

Proof. Note first that

Gǫ(z, y) := Ĝ(z, y)−G(z, y) =
1

N

N∑

q=1

ǫ(z, tq )I (y, tq )

∫

Rd
k(x, z)k(x, y)d x.

13



By the condition on g , we have

F [A∗σ] =F [A∗ Âg − A∗A f ]

=F

[∫

Rd
Ĝ(z, y)g̃ (y)−G(z, y) f̃ (y)d y

] (
f̃ , g̃ defined in (2.9)

)

=F

[∫

Rd
G(z, y)g̃ (y)−G(z, y) f̃ (y)d y

]
+F

[∫

Rd
Gǫ(z, y)g̃ (y)d y

]

=F
[
PSFmulti ∗ (g̃ − f̃ )

]
+F

[∫

Rd
Gǫ(z, y)g̃ (y)d y

]

=F [PSFmulti]F
[
g̃ − f̃

]
+F

[∫

Rd
Gǫ(z, y)g̃ (y)d y

]

=F [PSFmulti]F
[
g − f

]
+F

[∫

Rd
Gǫ(z, y)g̃ (y)d y

]
.

Note that by the proof of Theorem 2.1, we have |F [A∗σ]| ≤ C (I ,k)σ where C (I ,k) is a finite

constant depending on the illumination pattern and the point spread function. Now we esti-

mate F
[∫

Rd Gǫ(z, y)g̃ (y)d y
]
. We have

∣∣∣∣F
[∫

Rd
Gǫ(z, y)g̃ (y)d y

]
(ξ)

∣∣∣∣

=

∣∣∣∣∣F

[∫

Rd

1

N

N∑

q=1

ǫ(z, tq )I (y, tq )

∫

Rd
k(x, z)k(x, y)d xg̃ (y)d y

]

(ξ)

∣∣∣∣∣

=

∣∣∣∣∣

∫

Rd
e i zξ

∫

Rd

1

N

N∑

q=1

ǫ(z, tq )I (y, tq )

∫

Rd
k(x, z)k(x, y)d xg̃ (y)d yd z

∣∣∣∣∣

≤
1

N

N∑

q=1

∣∣∣∣

∫

Rd

∫

Rd

∣∣∣ǫ(z, tq )I (y, tq )
∣∣∣
∫

Rd

∣∣∣k(x, z)k(x, y)
∣∣∣d x

∣∣g̃ (y)
∣∣d yd z

∣∣∣∣ . (2.17)

It is not difficult to see that
∣∣∣∣

∫

Rd

∫

Rd

∣∣∣ǫ(z, tq )I (y, tq )
∣∣∣
∫

Rd

∣∣∣k(x, z)k(x, y)
∣∣∣d x

∣∣g̃ (y)
∣∣d yd z

∣∣∣∣<+∞.

Thus ∫

R3d

∣∣∣ǫ(z, tq )I (y, tq )k(x, z)k(x, y)g̃ (y)
∣∣∣d xd yd z <+∞.

By Fubini’s theorem, we have
∣∣∣∣F

[∫

Rd
Gǫ(z, y)g̃ (y)d y

]
(ξ)

∣∣∣∣

=

∣∣∣∣∣
1

N

N∑

q=1

∫

Rd

∫

Rd

∫

Rd
e i zξǫ(z, tq )k(x, z)d zI (y, tq )k(x, y)g̃ (y)d xd y

∣∣∣∣∣

≤
1

N

N∑

q=1

∣∣∣∣

∫

Rd

∫

Rd

∫

Rd
e i zξǫ(z, tq )k(x, z)d zI (y, tq )k(x, y)g̃ (y)d xd y

∣∣∣∣

=
1

N

N∑

q=1

∣∣∣∣

∫

Rd

∫

Rd
F

[
ǫ(z, tq )

]
∗F [k(x, z)] (ξ, x)I (y, tq )k(x, y)g̃ (y)d xd y

∣∣∣∣ .
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By (2.13), we have
∣∣F

[
ǫ(z, tq )

]
(ξ)

∣∣ ≤ ǫ. Meanwhile, F [k(x, z)](ξ) is zero outside a bounded

interval. Thus we have
∣∣F [ǫ(z, tq )]∗F [k(x, z)](ξ, x)

∣∣ ≤ C1ǫ for some constant C1. Then it is

not difficult to see that ∣∣∣∣F
[∫

Rd
Gǫ(z, y)g̃ (y)d y

]
(ξ)

∣∣∣∣≤C2ǫ

for a certain constant C2 under the conditions of the theorem and the assumptions made in

Section 2.1. This together with (2.17) completes the proof.

Theorem 2.2 shows that if we stably estimate the illumination patterns, then we can al-

ways stably reconstruct the spectral information of the source f inside the bandpass of the

PSFmulti. This elucidates the stability of many imaging modalities where the illumination

patterns are estimated [38].

2.5. Discrete measurement for each image

Since the measurement is taken at some discrete points in real applications, to complete our

theory, we show in this section that we have the same imaging kernel G(z, y) for the case

of discrete measurement under certain conditions. For the sake of presentation, we further

make the following simple assumption on the point spread function, which is also compati-

ble with practical applications.

Assumption 2.4. The point spread function PSF is smooth and its gradient is bounded.

Suppose we take the measurement at M d evenly-spaced points x j ’s in [−R,R]d for a large

enough R for a single snaptshot. Suppose we have N times of illuminations, the noiseless

measurements are

f̂ (x j , tq ) =
∫

[0,1]d
k(x j , y)I (y, tq ) f (y)d y, j = 1, · · · , M d , q = 1, · · · , N .

We define the operator A by

A f =
∫

[0,1]d
k(x j , y)I (y, tq ) f (y)d y =

∫

[0,1]d
Q(x j , y, tq ) f (y)d y, j = 1, · · · , M d , q = 1, · · · , N ,

(2.18)

where the function Q(x j , y, tq ) = k(x j , y)I (y, tq ). Now, we define the inner product by

〈
A f , g (x, t )

〉
=

1

M d N

N∑

q=1

M d∑

j=1

A f g (x j , tq ).

Calculating the adjoint operator A∗ and A∗A, we get that

A∗g =
1

M d N

N∑

q=1

M d∑

j=1

Q(x j , y, tq )g (x j , tq ), (2.19)

and

A∗A f (z) =
∫

[0,1]d

1

N

N∑

q=1

I (z, tq )I (y, tq )
1

M d

M d∑

j=1

k(x j , z)k(x j , y) f (y)d y.

Define W (z, y) = 1
N

∑N
q=1 I (z, tq )I (y, tq ) 1

M d

∑M d

j=1 k(x j , z)k(x j , y), we have the following lemma.
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Lemma 2.1. For (z, y) ∈ [0,1]2d and M sufficiently large, we have

W (z, y) =
1

N

N∑

q=1

I (z, tq )I (y, tq )
1

(2R)d

∫

[−R,R]d
k(x, z)k(x, y)d x +C (R, M) (2.20)

with |C (R, M)| ≤ C R
M

for a finite constant C .

Proof. Let F (x) = k(x, z)k(x, y) and ∆x j
be the hypercube

[
x j ,1, x j ,1 + 2R

M

]
×

[
x j ,2, x j ,2 + 2R

M

]
×

·· ·×
[
x j ,d , x j ,d + 2R

M

]
. Then

1

(2R)d

∫

[−R,R]d
k(x, z)k(x, y)d x =

1

(2R)d

M d∑

j=1

∫

∆x j

F (x)d x.

On the other hand,
∣∣∣∣∣

1

(2R)d

M d∑

j=1

∫

∆x j

F (x)d x −
M d∑

j=1

F (x j )

∣∣∣∣∣

=
1

(2R)d

∣∣∣∣∣

M d∑

j=1

∫

∆x j

F (x)d x −
M d∑

j=1

∫

∆x j

F (x j )d x

∣∣∣∣∣

≤
1

(2R)d

M d∑

j=1

∫

∆x j

∣∣F (x)−F (x j )
∣∣d x

≤
1

(2R)d
max
ξ∈Rd

|∇F (ξ)|
M d∑

j=1

∫

∆x j

∣∣z −x j

∣∣d z

≤
1

(2R)d
max
ξ∈Rd

|∇F (ξ)|
M d∑

j=1

∫

∆x j

(
z1 −x j ,1 +·· ·+ zd −x j ,d

)
d z

=
1

(2R)d
max
ξ∈Rd

|∇F (ξ)|
M d∑

j=1

R

M

(
2R

M

)d

=max
ξ∈Rd

|∇F (ξ)|
R

M
.

By Assumptions 2.2 and 2.4, for all (z, y) ∈ [0,1]2d , maxξ∈Rd |∇F (ξ)| < C < +∞ for a uniform

contant C . This proves the lemma.

Furthermore, we have the following lemma relating W (z, y) to the imaging kernel G(z, y) in

(2.4).

Lemma 2.2. Under the condition that for (z, y) ∈ [0,1]2d , there exist α,C > 0 such that
∣∣∣∣

∫

Rd \[−R,R]d
k(x, z)k(x, y)d x

∣∣∣∣≤
C

(R −1)α
,

we have

W (z, y) =
1

N (2R)d

N∑

q=1

I (z, tq )I (y, tq )

∫

Rd
k(x, z)k(x, y)d x +O

(
1

Rd (R −1)α

)
+O

(
R

M

)
.

16



Therefore, when we consider that M is large enough so that O
(

R
M

)
is of at most the same

order as O
(

1
Rd (R−1)α

)
, we have

W (z, y) =
1

(2R)d
G(z, y)+O

(
1

Rd (R −1)α

)
, (z, y) ∈ [0,1]2,

for G(z, y) being the imaging kernel defined in (2.4). This demonstrates that we will have the

same imaging kernel G(z, y) when taking a sufficient number of discrete measurements.

We remark that the condition
∣∣∣∣

∫

Rd \[−R,R]d
k(x, z)k(x, y)d x

∣∣∣∣≤
C

(R −1)α

in the lemma holds for most of the point spread functions in practice, such as sin |x|
|x| in the one-

dimensional space and
(

J1(r )
r

)2
in the two-dimensional space, where J1 is the Bessel function

of the first kind and order one.

3. Resolution study for some imaging modalities

By the operator theory in Section 2, we have shown, for example by (2.7), that the imaging

kernel in the multi-illumination case can be viewed as G(z, y) defined by (2.4). In this section,

we analyze the resolution of some multi-illumination imaging modalities by computing the

bandwidth of the point spread function PSFmulti from the kernel G(z, y).

We will show that G(z, y) is equal to or approximated by PSFmulti(z − y), where

PSFmulti(z − y) = fILF(z − y) fPSF(z − y)

with fILF and fPSF being determined respectively by the illumination pattern I and the point

spread function PSF of the imaging system. The spectral data of PSFmulti is given by

F [PSFmulti] =F [ fILF]∗F [ fPSF].

This clearly elucidates that multi-illumination imaging extends the bandwidth of the point

spread functions of the imaging system through convoluting them by the illumination pat-

terns and thus increases the resolution. This explains the resolution of many existing imaging

modalities in a new and unified way. It is also consistent with the common sense in multi-

illumination imaging that the resolution is determined by the sum of the cutoff frequency of

the point spread function and the essential maximum cutoff frequency in the illumination

patterns.

3.1. Plane Wave Illumination

In structured illumination microscopy (SIM), the sources are illuminated by plane waves with

cutoff frequency Ω. In the one-dimensional case, we have I (y, t ) = e iω(tq )Ωy , where ω(tq )

represents the direction of the plane wave. Therefore, I (z, tq )I (y, tq ) = e−iω(tq )Ω(z−y). In the
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one-dimensional case, suppose we illuminate the source by two plane waves with opposite

directions

I (y, t1) = e iΩy , I (y, t2) = e−iΩy .

We also recall that the point spread function in a single frame is k(x, y) = PSF (x − y). Thus G

in (2.4) is given by

G(z, y) =
1

2

(
e−iΩ(z−y) +e iΩ(z−y)

)∫∞

−∞
PSF (x − z)PSF (x − y)d x

=
1

2

(
e−iΩ(z−y) +e iΩ(z−y)

)∫∞

−∞
PSF (x − (z − y))PSF (x)d x

= : PSFmulti(z − y).

For example, when PSF = sinΩx
x

, the Fourier expansion of PSFmulti is

F [PSFmulti](ξ) =
c

2
(δ(x −Ω)+δ(x +Ω))∗ 1[−Ω,Ω](ξ) =

c

2
1[−2Ω,2Ω](ξ)

for some constant c. The band limit is thus doubled; See also Figure 3.1 for an illustration.

This demonstrates the well-known twofold resolution improvement of SIM. The above eluci-

dation can be extended to higher dimensions. In fact, for any PSF ∈ L1(Rd ), we can analyze

the stability of SIM method by Theorem 2.1. Although our analysis leads to the same result as

the one from the frequency explanation of SIM’s resolution enhancement, the arguments of

the two explanations are actually different. Our new understanding is based on extracting a

new basic imaging kernel in the multi-illumination imaging problem, rather than combining

all the frequency information from multiple images in SIM.

(a) Spectral data of PSF (b) Spectral data of PSFmulti

Figure 3.1: Spectral data of PSF and PSFmulti in SIM.

3.2. Illumination pattern generated by point sources

In many super-resolution techniques, the illumination pattern is generated by other sources

and has the form of a point spread function. This time, the illumination pattern I (x, t ) takes

the form I (x, t ) = I P (x − t ), where t denotes the location of the illumination point. We will

18



show that with a sufficient number of illuminations and measurements, an imaging kernel

G(z, y) similar to (2.4) can be derived, which can also be represented by PSFmulti(z − y) with

PSFmulti being a new point spread function. For the case when the number of illuminations

is not large enough such as in [38], one would expect that the resolution improvement for

resolving general sources will not be better than what derived below.

To be more specific, we consider the noisy discrete measurements as

f̂ (x j , tq ) =
∫

[0,1]d
k(x j , y)I (y, tq ) f (y)d y +σ(x j , tq ), j = 1, · · · , M d , q = 1, · · · , N , (3.1)

with
∣∣σ(x j , tq )

∣∣≤σ. For convenience of presentation, we suppose that the illumination points

tq ’s are evenly spaced in[−T,T ]d . Since I (x, t ) = I P (x − t ) is generated by point sources, we

can assume that
∣∣∣∣

∫

Rd \[−T,T ]d
I (x, z)I (x, y)d x

∣∣∣∣≤
C

(T −1)α
, (z, y) ∈ [0,1]2.

Consequently, in the same way as in Lemma 2.2, for large enough N , M ,R,T , we can have

1

M d N

N∑

q=1

I (z, tq )I (y, tq )
M d∑

j=1

k(x j , z)k(x j , y)

=
1

(2T )d (2R)d

∫

Rd
I (z, t )I (y, t )d t

∫

Rd
k(x, z)k(x, y)d x +

1

(2T )d (2R)d

∫

Rd
O(σ).

Therefore,

∣∣∣∣∣
1

M d N

N∑

q=1

M d∑

j=1

I (z, tq )k(x j , z)σ(x j , tq )

∣∣∣∣∣

≤σ
1

M d N

N∑

q=1

M d∑

j=1

∣∣∣I (z, tq )k(x j , z)
∣∣∣=

1

(2T )d (2R)d
O(σ).

Thus, by the results of Section 2.5, for the imaging operator A defined in (2.18), we have

A∗ f̂ = A∗A f + A∗σ

=
∫

[0,1]d

1

N

N∑

q=1

I (z, tq )I (y, tq )
1

M d

M d∑

j=1

k(x j , z)k(x j , y) f (y)d y +
1

M d N

N∑

q=1

M d∑

j=1

I (y, tq )k(x j , y)σ(x j , tq )

=
1

(2T )d (2R)d

∫

[0,1]d

∫

Rd
I (z, t )I (y, t )d t

∫

Rd
k(x, z)k(x, y)d x f (y)d y +O(σ).

Hence, we consider the imaging kernel G(z, y) as

G(z, y) =
∫

Rd
I (z, t )I (y, t )d t

∫

Rd
k(x, z)k(x, y)d x,

and obtain that

(2T )d (2R)d A∗ f̂ =
∫

[0,1]d
G(z, y)d y +O(σ).
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Since I (x, t ) = I P (x − t ), we get

G(z, y) =
∫

Rd
I (z, t )I (y, t )d t

∫

Rd
k(x, z)k(x, y)d x

=
∫

Rd
I P (z − t )I P (y − t )d t

∫

Rd
PSF (x − z)PSF (x − y)d x

=
∫

Rd
I P (z − y + t )I P (t )d t

∫

Rd
PSF (x − (z − y))PSF (x)d x

=: PSFmulti(z − y). (3.2)

Now, for different imaging modalities we can characterize the bandwidth of the correspond-

ing PSFmulti’s by their Fourier transforms.

On the other hand, in many imaging modalities, the sources are illuminated by light gen-

erated by multiple sources. For these cases, we can model the illumination patterns I (y, t̃q )’s

by I (y, t̃q ) =
∑L

l=1
bl I P (y − t̃q,l ). Thus, the noisy images are

ĝ (xl , t̃q ) =
∫

[0,1]d
I (y, t̃q )k(x j , y) f (y)d y +σ(x j , t̃q )

=
L∑

l=1

bl

∫

[0,1]d
I P (y − t̃q,l )k(x j , y) f (y)d y +σ(x, t̃q ), q = 1, · · · , N , j = 1, · · · , M d ,

with σ(x j , t̃q )’s being the noise. Since the measurement constraint

∣∣∣∣∣ĝ (x j , t̃q )−
L∑

l=1

bl

∫

[0,1]d
I P (y − t̃q,l )k(x j , y) f (y)d y

∣∣∣∣∣.σ, q = 1, · · · , N , j = 1, · · · , M d ,

can also be generated by

∣∣∣∣ĥ(x j , tq )−
∫

[0,1]d
I P (y − tq )k(x j , y) f (y)d y

∣∣∣∣.σ, j = 1, · · · , M d ,

for certain tq ’s and

ĥ(x j , tq ) =
∫

[0,1]d
I P (y − tq )k(x j , y) f (y)d y +σ(x j , tq ),

the stability for the imaging where the illumination patterns are generated by multiple sources

can be analyzed in the same way as in the case when the illumination patterns are generated

by a single point source.

As an example, we consider Brownian excitation amplitude modification (BEAM) devel-

oped in [38]. In BEAM, the illumination patterns are the waves scattered by the randomly

moving Ag particles. As shown there, assuming that the Ag particles are far apart from each

other, the total field Eω
tot generated by the random array of nanoparticles can then be approx-

imated by

Eω
tot (r ) ≈ Eω

i nc (r )+α(ω)
s∑

j=1

Gω
(
r,r j

)
Eω

i nc

(
r j

)
+α(ω)2

s∑

j=1

s∑

k=1

Gω
(
r,r j

)
Gω

(
r j ,rk

)
Eω

i nc

(
r j

)
,
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where Eω
i nc

is the incident wave, α(ω) is the polarizability of a single nanoparticle and Gω(r,r j )

is the Green function. The Green function Gω(z, y) is approximately e i k|z−y |

|z−y | C for some con-

stant C with k being the wave number of background medium. The sources are illuminated

by the intensity I (r ) of the total field that I (r ) =
∣∣Eω

tot (r )
∣∣2

. Since the wave number of the il-

lumination patterns is the wave number of the background medium, which is close to that

of the point spread functions. Thus, as we have seen in this section, with multiple illumina-

tions, the cutoff frequency of the point spread function can be at most increased by about

two times, which allows for a corresponding improvement in resolution when resolving gen-

eral sources. We note that, from Supplementary Figure 1:E in [38], BEAM can improve the

resolution by more than 1.5 for both two- and four-source recovery, which is consistent with

our theoretical prediction in this paper.

3.3. Single molecule localization microscopy

Single molecule localization microscopy (SMLM) [4, 17, 20, 21, 37] describes a family of pow-

erful imaging techniques that dramatically improve spatial resolution to the nanometer scale

by computationally localizing individual fluorescent molecules, among which the most well-

known imaging modalities are STORM [37] and PALM [4].

Since at each frame, only one point or well-separated point sources are illuminated in such

SMLM techniques, we can model the illumination patterns in these imaging modalities as δ

function or a continuous function I P with a sharp peak. Note that by Theorem 2.1, we have a

stability results for these imaging modalities when the illumination patterns are modeled by

a function I P ∈C (R)∩L1(R). Thus, by (3.2),

PSFmulti(z − y) =
∫

R

I P (z − y + t )I P (t )d t

∫

R

PSF (x − (z − y))PSF (x)d x.

Since I P has a sharp peak, the bandwidth of PSFmulti is considerably extended, which en-

sures that these imaging modalities have excellent resolution improvement. In experiments,

PALM [4] can improve the resolution by more than ten times.

4. Resolution limits for sparsity-based super-resolution

We have now shown that the frequency information of a general source f that can be stably

reconstructed is in the bandpass of the new point spread function PSFmulti . However, when

we have a prior information that the source is a collection of point sources, we are able to

reconstruct more frequency information by sparsity-promoting algorithms, as demonstrated

in the single measurement case [5, 6]. On the other hand, experimental evidence [38, 45]

has shown that sparsity-promoting approaches can achieve better resolution improvement

than discussed in Sections 2 and 3 when resolving very sparse sources. For example, when

resolving two sources, BEAM [38] can achieve a threefold resolution improvement, which is

better than twofold improvement discussed in Section 3. In this section, we theoretically esti-

mate the resolution limits of sparsity-promoting approaches in multi-illumination imaging.

In particular, we analyze the resolution limits for the recovery of locations and number of
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complex and positive point sources. Our conclusion is that it is possible to obtain better res-

olution than that predicted by operator theory in Sections 2 and 3, but only for very sparse

sources with high signal-to-noise ratio. For resolving more point sources that are tightly-

spaced, the resolution should be the one predicted by operator theory. This sheds light on

the cause of some experimental phenomena in BEAM. To be specific, as shown in Supple-

mentary Figure 1:E in [38], the algorithm achieves a threefold resolution improvement when

resolving two positive point sources, but fails when resolving six positive point sources.

4.1. Resolution limit for the location recovery

Based on the discussions in Sections 2 and 3, we have shown that, for some multi-illumination

imaging modalities, by introducing a certain recovering operator, we can recover the image

of a source µ=
∑n

j=1
a jδy j

from

Y(z) =
∫

[0,1]d
PSFmulti(z − y)µ(y)d y +W(z), z ∈ [0,1]d , (4.1)

with |W(z)| being of order O(σ). The imaging process is then actually a deconvolution and is

similar to the one we considered in [31]. A simple idea is to compare the resolution enhance-

ment by the theory in this paper, but the results in [31] can only compare the resolution of

imaging modalities with point spread functions of the same shape, such as PSF1 = f (Ωx)

and PSF2 = f (2Ωx). It is not possible to explicitly compare the resolution of point spread

functions with different shapes. For example, it is known that imaging with the point spread

function PSF =
(

sinΩx
x

)5
has better resolution than imaging with PSF =

(
sinΩx

x

)
, but the the-

ory in [31] cannot directly show the difference in resolution between the two cases. This is

also a common difficulty in comparing resolutions of deconvolution problems. To circum-

vent this problem, it is useful and reliable to understand the resolution by measurements

in the spatial-frequency domain. From (4.1), considering the parallel model in the spatial-

frequency domain, we have

Ψ(ξ) =F [PSFmulti](ξ)F [µ](ξ)+Ŵ(ξ), ξ ∈R
d , (4.2)

with Ŵ(ξ) of order O(σ). Note that by Theorems 2.1 and 2.2, the frequency information of

the source µ that can be stably reconstructed is in the bandpass of PSFmulti. Thus, the above

model is essential in multi-illumination imaging, even when the source µ is not recovered

from the deconvolution problem (4.1). For ease of analysis, we assume that
∣∣Ŵ(ξ)

∣∣ ≤ σ with

σ being the noise level. The inverse problem consists in reconstructing µ from the measure-

ment G(ξ),ξ ∈R
d .

In order to analyze the resolution, we introduce the followingσ-admissible measures, which

cannot be distinguished from the underlying sources without additional prior information.

Definition 4.1. Given the measurement Ψ(ξ),ξ ∈ R
d in (4.2), we say that µ̂ =

∑m
j=1

â jδŷ j
, ŷ j ∈

R
d is a σ-admissible discrete measure of Ψ if

∣∣F [PSFmulti](ξ)F
[
µ̂
]

(ξ)−Ψ(ξ)
∣∣<σ, ∀ξ ∈R

d . (4.3)
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For a blower ≫σ, denote Ω̂multi,blower
by

Ω̂multi,blower
:= max

{
r > 0 : |PSFmulti(ξ)| > blower for ||ξ||2 ≤ r, ξ ∈R

d
}

, (4.4)

which can be viewed as the essential cutoff frequency of PSFmulti. From (4.3), for the σ-

admissible measure µ̂, we have

∣∣∣∣F
[
µ̂
]

(ξ)−
Ψ(ξ)

F [PSFmulti](ξ)

∣∣∣∣<
σ

blower
, ||ξ||2 ≤ Ω̂multi,blower

. (4.5)

The above model is the same as the one in [29] for the single measurement case. Thus, we

can obtain a similar theorem for the resolution estimate. Defining

B d (x) :=
{

y : y ∈R
d ,

∣∣∣∣y −x
∣∣∣∣

2 <
n −1

2Ω̂multi,blower

}

,

by Theorem 2.7 in [29], we have the following theorem.

Theorem 4.1. Let n ≥ 2, assume that µ =
∑n

j=1
a jδy j

, y j ∈ R
d ,min j=1,··· ,n |a j | ≥ mmin, is sup-

ported on B d (0) and that

dmin := min
p 6= j

∣∣∣∣yp − y j

∣∣∣∣
2
≥

Csupp (d ,n)

Ω̂multi,blower

(
σ

mminblower

) 1
2n−1

, (4.6)

for Ω̂multi,blower
defined in (4.4) and a numerical constant Csupp (d ,n) depending only on d ,n.

For any µ̂=
∑n

j=1
â jδŷ j

supported on B d (0) and satisfying

∣∣F [PSFmulti](ξ)F
[
µ̂
]

(ξ)−Ψ(ξ)
∣∣<σ, ∀ξ ∈R

k ,

for Ψ(ξ) defined in (4.2), after reordering the ŷ j ’s, we have

∣∣∣∣ŷ j − y j

∣∣∣∣
2
<

dmin

2
,

and
∣∣∣∣ŷ j − y j

∣∣∣∣
2
≤

C (d ,n)

Ω
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n,

with C (d ,n) being a numerical constant depending only on d ,n.

By Theorem 4.1, we show that for very sparse sources, better resolution than the Rayleigh

limit c(d)π

Ω̂multi,blower

can be obtained when the signal-to-noise ratio is sufficiently high. This ex-

plains why better resolution than that predicted by operator theory when performing sparsity-

promoting recovery in multi-illumination imaging is attained in the experiments [38, 45].

On the other hand, by deriving the following lower bound on the resolution in the worst-

case scenario, we can also show that achieving better resolution is very hard when resolving

more than two sources.
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Proposition 4.1. Let bupper := maxξ∈Rd |F [PSFmulti](ξ)| < +∞. For given 0 < σ < mminbupper

and integer n > 2, let

τ=
e−1

Ω̌multi, (n−1)!n!σ
(2n)!mmin

(
σ

mminbupper

) 1
2n−1

, (4.7)

where Ω̌multi, (n−1)!n!σ
(2n)!mmin

:= min
{

r > 0 : |PSFmulti(ξ)| < (n−1)!n!σ
(2n)!mmin

for ||ξ||2 ≥ r,ξ ∈R
d
}

. Then, there

exist a measure µ=
∑n

j=1
a jδy j

, y j ∈R
k with n supports at

{(
−
τ

2
,0, . . . ,0

)
,

(
−

3τ

2
,0, . . . ,0

)
, . . . ,

(
−

(
n −

1

2

)
τ,0, . . . ,0

)}

and a measure µ̂=
∑n

j=1
â jδ ˆ̂y j

with n supports at

{(τ
2

,0, . . . ,0
)

,

(
3τ

2
,0, . . . ,0

)
, . . . ,

((
n −

1

2

)
τ,0, . . . ,0

)}

such that

∣∣F [PSFmulti] (ξ)F
[
µ̂
]

(ξ)−F [PSFmulti] (ξ)F
[
µ
]

(ξ)
∣∣<σ, ξ ∈R

d , min
16 j6n

∣∣a j

∣∣= mmin.

Proof. See Appendix A.

Note that the source locations in the eventually reconstructed measure µ̂ are completely

different and distant from the locations of the underlying sources. Stable recovery of the

source locations in this case is impossible by sparsity-based multi-illumination imaging. Since

the distance in (4.7) deteriorates rapidly as n increases, achieving a resolution less than e−1

Ω̌
multi,

(n−1)!n!σ
(2n)!mmin

is nearly impossible for recovering sources that are not that sparse. This gives a rigorous proof

of the resolution limit of the sparsity-promoting super-resolution when the illumination pat-

terns are known.

We remark that for many illumination patterns, Ω̂multi,blower
and Ω̌multi, (n−1)!n!σ

(2n)!mmin

are close to

the sum of the cutoff frequency of the PSF and the essential maximum frequency in the il-

lumination patterns. Also, bupper and blower are comparable. Thus, the resolution limit for

the multi-illumination imaging is of order O

(
1

Ωmulti

(
σ

mmin

) 1
2n−1

)
, where Ωmulti is the essential

cutoff frequency of the new point spread function PSFmulti. This estimate now helps us to

understand the resolution in the sparsity-based multi-illumination imaging with known illu-

mination patterns. It indicates that c
Ωmulti

for some constant c is still the essential resolution

in multi-illumination imaging, and thus, a better resolution can be achieved but only for re-

covering very sparse sources.

4.2. Resolution limit for resolving positive sources

Based on the discussions and techniques presented in [27], we can directly generalize the

above estimates of the resolution limit to the super-resolution of positive sources. In partic-
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ular, we define the positive discrete measure by

µ=
n∑

j=1

a jδy j
, a j > 0,

and have the following results.

Theorem 4.2. Let n ≥ 2. Assume that µ =
∑n

j=1
a jδy j

, y j ∈ R
d , a j > 0,min j=1,··· ,n |a j | ≥ mmin,

is supported on B d (0) and that

dmin := min
p 6= j

∣∣∣∣yp − y j

∣∣∣∣
2
≥

Csupp (d ,n)

Ω̂multi,blower

(
σ

mminblower

) 1
2n−1

, (4.8)

for Ω̂multi,blower
defined in (4.4) and a numerical constant Csupp (d ,n) depending only on d ,n.

For any positive measure µ̂=
∑n

j=1
â jδŷ j

, â j > 0, supported on B d (0) and satisfying

∣∣F [PSFmulti](ξ)F
[
µ̂
]

(ξ)−Ψ(ξ)
∣∣<σ, ∀ξ ∈R

d ,

for Ψ(ξ) defined in (4.2), after reordering the ŷ j ’s, we have

∣∣∣∣ŷ j − y j

∣∣∣∣
2
<

dmin

2
,

and
∣∣∣∣ŷ j − y j

∣∣∣∣
2
≤

C (d ,n)

Ω
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n,

with C (d ,n) being a numerical constant depending only on d ,n.

Theorem 4.2 is a direct consequence of Theorem 4.1, which shows the possibility of achiev-

ing a better resolution for resolving positive sparse sources by sparsity-based multi-illumination

imaging.

Proposition 4.2. Let bupper := maxξ∈Rd |F [PSFmulti](ξ)| < +∞. For given 0 < σ < mminbupper

and integer n > 2, let

τ=
e−1

Ω̌multi, (n−1)!n!σ
(2n)!mmin

(
σ

mminbupper

) 1
2n−1

, (4.9)

where Ω̌multi, (n−1)!n!σ
(2n)!mmin

:= min
{

r > 0 : |PSFmulti(ξ)| < (n−1)!n!σ
(2n)!mmin

for ||ξ||2 ≥ r,ξ ∈R
d
}

. Then there ex-

ist a measure µ=
∑n

j=1
a jδy j

, y j ∈R
k with n supports at

{(
−

(
n −

3

2

)
τ,0, . . . ,0

)
,

(
−

(
n −

7

2

)
τ,0, . . . ,0

)
, . . . ,

((
n −

1

2

)
τ,0, . . . ,0

)}

and a measure µ̂=
∑n

j=1
â jδŷ j

with n supports at

{(
−

(
n −

1

2

)
τ,0, . . . ,0

)
,

(
−

(
n −

5

2

)
τ,0, . . . ,0

)
, . . . ,

((
n −

3

2

)
τ,0, . . . ,0

)}
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such that ∣∣F [PSFmulti](ξ)F [µ̂](ξ)−F [PSFmulti](ξ)F [µ](ξ)
∣∣<σ, ξ ∈R

d ,

and

min
16 j6n

∣∣a j

∣∣= mmin.

Proof. See Appendix A.

Note that, in the example of Proposition 4.2, it is hard to say which ŷ j in µ̂ is the recovered

locations of some y j in the source µ. Thus, Proposition 4.2 provides an upper bound estimate

on the resolution enhancement by the sparsity-based multi-illumination imaging. To further

demonstrate the instability of the location recovery under this order of separation distance,

we state the following proposition.

Proposition 4.3. Let bupper := maxξ∈Rd |F [PSFmulti](ξ)| < +∞. For given 0 < σ < mminbupper

and integer n ≥ 2, let

τ=
0.2e−1

Ω̌
multi, π2σ

2ne11 s2(n+1)1022n−8mmin

s
2n+1
2n−1

(
σ

mminbupper

) 1
2n−1

,

where

Ω̌
multi, π2σ

2ne11 s2(n+1)1022n−8mmin

:= min

{
r > 0 : |PSFmulti(ξ)| <

π2σ

2ne11s2(n +1)1022n−8mmin
for ||ξ||2 ≥ r,ξ ∈R

d

}
.

Then there exist a positive measure µ=
∑n

j=1
a jδy j

with n supports at

{
t j =−

sn −2

2
τ+

( j −2)s

2
τ, j = 2,4, · · · ,2n

}

and a positive measure µ̂=
∑n

j=1
â jδŷ j

with n supports at

{
t j = t

4⌈ j+1

4
⌉−2

+ (−1)
j+1

2 τ, j = 1,3,5, · · · ,2n −1
}

such that
∣∣F [PSFmulti](ξ)F [µ̂](ξ)−F [PSFmulti](ξ)F [µ](ξ)

∣∣<σ, ξ ∈R
d , min

1≤ j≤n

∣∣a j

∣∣= mmin.

Proof. See Appendix A.

The n underlying sources in µ in Proposition 4.3 are spaced by

sτ=
0.4e−1

Ω̌
multi, π2σ

2ne11 s2(n+1)1022n−8mmin

s
2

2n−1

(
σ

mminbupper

) 1
2n−1

.

It is revealed that when the n point sources are separated by c

Ω̌
multi, π2σ

2ne11 s2(n+1)1022n−8mmin

(
σ

mminbupper

) 1
2n−1

for some constant c, the recovered source locations from the positive σ-admissible measures

can be very unstable; See Figure 2.1 for an illustration.
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Figure 4.1: An example of unstable location recovery. Black spikes indicate the locations

of underlying sources and red spikes indicate the source locations of some σ-

admissible measure.

4.3. Resolution limit for the source number recovery

To better understand the possibilities and difficulties of super-resolution in sparsity-based

multi-illumination imaging, in particular the difficulty to achieve a better resolution than that

predicted in Section 2, we next derive stability results for the recovery of the source number

in multi-illumination imaging. We have the following results.

Theorem 4.3. Let n ≥ 2. Assume that µ =
∑n

j=1
a jδy j

, y j ∈ R
d ,min j=1,··· ,n |a j | ≥ mmin, is sup-

ported on B d (0) and that

dmin := min
p 6= j

∣∣∣∣yp − y j

∣∣∣∣
2
≥

Cnum(d ,n)

Ω̂multi,blower

(
σ

mminblower

) 1
2n−2

, (4.10)

for Ω̂multi,blower
defined in (4.4) and a numerical constant Cnum(d ,n) depending only on d ,n.

Then there do not exist any measures with less than n supports, µ̂ =
∑k

j=1
â jδŷ j

,k < n, such

that ∣∣F [PSFmulti](ξ)F
[
µ̂
]

(ξ)−Ψ(ξ)
∣∣<σ, ∀ξ ∈R

d .

In particular, the above results still hold for the case when µ, µ̂ are positive measures.

Proof. Since the model (4.5) is the same as the one in [29] for the single measurement case,

by Theorem 2.3 in [29], we directly obtain the desired results.

Theorem 4.3 reveals that when the signal-to-noise ratio is sufficiently high and the source

is very sparse, detecting the correct source number when the sources are separated by a dis-

tance below c

Ω̂multi,blower

is possible by sparsity-based multi-illumination imaging. This shows
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that better resolution can be achieved. However, as the following proposition indicates, in

theory this is only possible when resolving very sparse sources.

Proposition 4.4. For given 0 <σ< mmin and integer n ≥ 2, there exist µ=
∑n

j=1
a jδy j

, y j ∈ R
d

with n supports, and µ̂=
∑n−1

j=1
â jδŷ j

with n −1 supports such that

∣∣F [PSFmulti] (ξ)F
[
µ̂
]

(ξ)−F [PSFmulti] (ξ)F
[
µ
]

(ξ)
∣∣<σ.

Moreover,

min
1≤ j≤n

∣∣a j

∣∣= mmin, min
p 6= j

∥∥yp − y j

∥∥
2
=

2e−1

Ω̌
multi, ((n−1)!)2σ

(2n−1)!mmin

(
σ

mminbupper

) 1
2n−2

,

where Ω̌
multi, ((n−1)!)2σ

(2n−1)!mmin

:= min
{

r > 0 : |PSFmulti(ξ)| < ((n−1)!)2σ
(2n−1)!mmin

for ||ξ||2 ≥ r,ξ ∈R
d
}

. In partic-

ular, the above results still hold for the case when µ, µ̂ are positive measures.

Proof. See Appendix A.

Proposition 4.4 demonstrates the challenge of using sparsity-based multi-illumination imag-

ing to super-resolve the number of complex or positive sources. We remark that by discus-

sions in [24], it seems that the minimum separation distance in the proposition can actually

be

min
p 6= j

∥∥yp − y j

∥∥
2
=

cπ

Ω̌
multi, ((n−1)!)2σ

(2n−1)!mmin

(
σ

mminbupper

) 1
2n−2

with c > 1.

In particular, for the case when n = 2, the lower bound in the above form should be

p
2π

Ω̌
multi, ((n−1)!)2σ

(2n−1)!mmin

(
σ

mminbupper

) 1
2n−2

.

Therefore, if the source is not that sparse, obtaining theoretically a better resolution, i.e.,

smaller than π
Ω̌

multi,
((n−1)!)2σ

(2n−1)!mmin

, is extremely hard. This explains experimentally observed phe-

nomena in BEAM. For example, as shown in Supplementary Figure 1:E in [38], a threefold

resolution improvement is achieved for resolving two positive point sources but the algo-

rithm fails to resolve both the number and location of six positive point sources.

4.4. Resolution limit for imaging with unknown illumination patterns

When the illumination patterns are unknown, although we do not have the explicit form of

A, A∗, the results in [28] in one-dimensional space demonstrated that sparsity recovery in

multi-illumination imaging can also improve the resolution, compared to the case of imaging

from a single snaptshot.
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To be more specific, let us suppose that we illuminate the source µ=
∑n

j=1
a jδy j

by N dif-

ferent It , t = 1, · · · , N , and that the measurements are given by

Y(ξ, t ) =
n∑

j=1

a j e i y j ξ, ξ ∈ [−Ω,Ω],

with Ω being the cutoff frequency of the imaging system. In [28], the authors have demon-

strated that, when

min
p 6= j

∣∣yp − y j

∣∣≥
2.2eπ

Ω

( 1

σ∞,min(I M)

σ

mmin

) 1
n

, (4.11)

the sparsity-promoting approach (l0 minimization) can stably recover the source locations

y j ’s. Here, Ω is the cutoff frequency of the imaging system rather than the Ωmulti from the

PSFmulti. I M is the illumination matrix defined as

I M =





I1(y1) · · · I1(yn)
...

. . .
...

IN (y1) · · · IN (yn)





and σ∞,min(I M) := minx∈Ck ,‖x‖∞≥1 ‖I M x‖∞ characterizes the incoherence between the illu-

mination patterns. Compared to the estimate of the resolution limit in the case of a single

measurement [24,30], which is of order O

(
π
Ω

(
σ

mmin

) 1
2n−1

)
, multi-illumination imaging will cer-

tainly improve the resolution when the incoherence between the illumination patterns is suf-

ficiently high.

On the other hand, by the following proposition ( [28, Proposition 2.1]), it was shown that,

in the worst-case scenario, the resolution order O
(

1
Ω

(
σ

mmin

)) 1
n

is the best that can be obtained

if the illumination patterns are completely unknown.

Proposition 4.5. Given n ≥ 2,σ,mmin with σ
mmin

≤ 1, and an unknown illumination pattern It

with
∣∣It (y)

∣∣≤ 1, y ∈R,1 ≤ t ≤ N , let τ be defined by

τ=
0.043

Ω

(
σ

mmin

) 1
n

.

Then there exist µ=
∑n

j=1
a jδy j

with n supports at {−τ,−2τ, . . . ,−nτ} and
∣∣a j

∣∣= mmin,1 ≤ j ≤
n, and ρ =

∑n
j=1

â jδŷ j
with n supports at {0,τ, · · · , (n −1)τ}, such that

there exist Ît ’s so that
1

2Ω

∫
Ω

−Ω

∣∣F
[
Îtρ

]
(ξ)−F

[
Itµ

]
(ξ)

∣∣dξ<σ, t = 1, · · · , N .

Note that all of these results show that it is possible to achieve better resolution than pre-

dicted by the operator theory of Section 2 for recovering very sparse sources, but it is difficult

to recover more point sources.
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5. Conclusions

In this paper, we have derived a stability analysis for reconstructing the frequency informa-

tion of a source and demonstrated that the resolution of multi-illumination imaging is funda-

mentally determined by the essential bandwidth (or cutoff frequency) of an imaging kernel

(or point spread function) formulated in terms of the illumination patterns and point spread

function of the imaging system. Our theory provides a unified way to estimate the resolution

of various existing super-resolution modalities and arrive at the same results as those ob-

tained experimentally. Our theory also allows us to estimate the resolution of sparsity-based

multi-illumination imaging. In particular, we have shown that sparsity-promoting algorithms

can achieve better resolution than that predicted by operator theory in multi-illumination

imaging, provided that the source to be recovered is very sparse.

A. Proofs of results in Section 4

We first introduce some notation and lemmas that are used in the following proofs. Set

φs(t ) =
(
1, t , · · · , t s

)⊤
, (A.1)

where the superscript ⊤ denotes the transpose. We recall the Stirling formula

p
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n . (A.2)

We introduce the following useful lemma ( [30, Lemma 5]).

Lemma A.1. Let t1, · · · , tk be k different real numbers and let t be a real number. We have

(
Dk (k −1)−1φk−1(t )

)
j =Π1≤q≤k,q 6= j

t − tq

t j − tq
,

where Dk (k −1) :=
(
φk−1 (t1) , · · · ,φk−1 (tk )

)
with φk−1(·) being defined by (A.1).

A.1. Proofs of Propositions 4.1 and 4.2

Proof. Step 1. Considerγ=
∑2n

j=1
a jδt j

with t1 =
(
−

(
n − 1

2

)
τ,0, . . . ,0

)
,t2 =

(
−

(
n − 3

2

)
τ,0, . . . ,0

)
, . . .

t2n =
((

n − 1
2

)
τ,0, . . . ,0

)
and

τ=
e−1

Ω̌multi, (n−1)!n!σ
(2n)!mmin

(
σ

mminbupper

) 1
2n−1

. (A.3)

For every ξ= (ξ1,ξ2, . . . ,ξd )⊤, F [γ](ξ) =
∑2n

j=1
a j eit j ·ξ =

∑2n
j=1

a j ei(−n− 1
2
+ j )τξ1 . This reduces the

estimation of F [γ](ξ) to the one-dimensional case. In what follows, we demonstrate that

with proper a j ’s, we have

∣∣∣∣∣

2n∑

j=1

a j ei(−n− 1
2
+ j )τξ1

∣∣∣∣∣<σ, |ξ1| ≤ Ω̌multi, (n−1)!n!σ
(2n)!mmin

.
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Let

t1 =−
(
n −

1

2

)
τ, t2 =−

(
n −

3

2

)
τ, · · · , tn =−

τ

2
, tn+1 =

τ

2
, · · · , t2n =

(
n −

1

2

)
τ. (A.4)

Consider the following system of linear equations:

Aa = 0, (A.5)

where A =
(
φ2n−2 (t1) , · · · ,φ2n−2 (t2n)

)
with φ2n−2(·) being defined by (A.1). Since A is under-

determined, there exists a nontrivial solution a = (a1, · · · , a2n)⊤. By the linear independence

of any (2n−1) column vectors of A, all the a j ’s are nonzero. By a scaling of a, we can assume

that

min
1≤ j≤n

∣∣a j

∣∣= mmin . (A.6)

We define

µ=
n∑

j=1

a jδt j
, µ̂=

n∑

j=n+1

−a jδt j
.

We now prove that

∣∣F [µ̂](ξ1)−F [µ](ξ1)
∣∣<

σ

bupper
, |ξ1| ≤ Ω̌multi, (n−1)!n!σ

(2n)!mmin

.

Step 2. We first estimate
∑2n

j=1

∣∣a j

∣∣. We begin by ordering the a j ’s such that

∣∣a j1

∣∣≤
∣∣a j2

∣∣≤ ·· · ≤
∣∣a j2n

∣∣ .

Note that
∣∣a j1

∣∣≤ mmin by (A.6). Then (A.5) implies that

a j1
φ2n−2

(
t j1

)
=

(
φ2n−2

(
t j2

)
, · · · ,φ2n−2

(
t j2n

))(
−a j2

, · · · ,−a j2n

)⊤
,

and hence

a j1

(
φ2n−2

(
t j2

)
, · · · ,φ2n−2

(
t j2n

))−1
φ2n−2

(
t j1

)
=

(
−a j2

, · · · ,−a j2n

)⊤
.

Together with Lemma A.1, we have

a j1
Π2≤q≤2n−1

t j1
− t jq

t j2n
− t jq

=−a j2n
.

Furthermore,

∣∣a j2n

∣∣=
∣∣a j1

∣∣Π2≤q≤2n−1

∣∣t j1
− t jq

∣∣
∣∣t j2n

− t jq

∣∣ =
∣∣a j1

∣∣Π2≤q≤2n−1

∣∣t j1
− t jq

∣∣
∣∣t j2n

− t jq

∣∣

∣∣t j1
− t j2n

∣∣
∣∣t j2n

− t j1

∣∣

=
∣∣a j1

∣∣ Π2≤q≤2n

∣∣t j1
− t jq

∣∣

Π1≤q≤2n−1

∣∣t j2n
− t jq

∣∣ ≤
∣∣a j1

∣∣ max j1=1,··· ,2n Π2≤q≤2n

∣∣t j1
− t jq

∣∣

min j2n=1,··· ,2n Π1≤q≤2n−1

∣∣t j2n
− t jq

∣∣ .
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Thus, based on the distribution of t j ’s (A.4), we have

∣∣a j2n

∣∣≤
(2n −1)!

(n −1)!n!

∣∣a j1

∣∣≤
(2n −1)!

(n −1)!n!
mmin,

and consequently,

2n∑

j=1

∣∣a j

∣∣=
2n∑

q=1

∣∣a jq

∣∣≤ (2n)
∣∣a j2n

∣∣≤
(2n)!

(n −1)!n!
mmin.

It then follows that for k ≥ 2n −1,

∣∣∣∣∣

2n∑

j=1

a j t k
j

∣∣∣∣∣≤
2n∑

j=1

∣∣a j

∣∣
(
(n −

1

2
)τ

)k

≤
(2n)!

(n −1)!n!
mmin

(
(n −

1

2
)τ

)k

.

Step 3. On the other hand, we can expand F [µ− µ̂] as follows:

F [µ− µ̂](x) =
2n∑

j=1

a j e i t j x =
2n∑

j=1

a j

∞∑

k=0

(
i t j x

)k

k !
=

∞∑

k=0

Qk (µ− µ̂)
(i x)k

k !
,

where Qk (γ) =
∑2n−1

j=1
a j t k

j
. Based on the discussions in Step 1 and Step 2, we have

Qk (γ) = 0,k = 0, · · · ,2n −2, and
∣∣Qk (γ)

∣∣≤
(2n)!

n!(n −1)!
mmin((n −1/2)τ)k ,k ≥ 2n −1.

Therefore, for |x| ≤ Ω̌multi, (n−1)!n!σ
(2n)!mmin

,

max

x∈
[
−Ω̌

multi,
(n−1)!n!σ

(2n)!mmin

, Ω̌
multi,

(n−1)!n!σ
(2n)!mmin

]
∣∣F

[
µ− µ̂

]
(x)

∣∣

≤
∑

k≥2n−1

(2n)!

n!(n −1)!
mmin((n −1/2)τ)k |x|k

k !

≤
∑

k≥2n−1

(2n)!

n!(n −1)!
mmin((n −1/2)τ)k

Ω̌
k

multi, (n−1)!n!σ
(2n)!mmin

k !

=
(2n)!mmin(n −1/2)2n−1

(
τΩ̌multi, (n−1)!n!σ

(2n)!mmin

)2n−1

n!(n −1)!(2n −1)!

+∞∑

k=0

(
τΩ̌multi, (n−1)!n!σ

(2n)!mmin

)k

(2n −1)!(n −1/2)k

(k +2n −1)!
,
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and hence

max

x∈
[
−Ω̌

multi,
(n−1)!n!σ

(2n)!mmin

, Ω̌
multi,

(n−1)!n!σ
(2n)!mmin

]
∣∣F

[
µ− µ̂

]
(x)

∣∣

<
2nmmin(n −1/2)2n−1

(
τΩ̌multi, (n−1)!n!σ

(2n)!mmin

)2n−1

n!(n −1)!

+∞∑

k=0




τΩ̌multi, (n−1)!n!σ

(2n)!mmin

2




k

=
2nmmin(n −1/2)2n−1

(
τΩ̌multi, (n−1)!n!σ

(2n)!mmin

)2n−1

n!(n −1)!

1

0.8



 (A.3) implies

τΩ̌multi, (n−1)!n!σ
(2n)!mmin

2
≤ 0.2





≤
nmmin(n −1/2)2n−1

πnn+ 1
2 (n −1)n− 1

2

(
eτΩ̌multi, (n−1)!n!σ

(2n)!mmin

)2n−1 1

0.8
( by (A.2))

≤
n

π(n −1/2)
mmin

(
eτΩ̌multi, (n−1)!n!σ

(2n)!mmin

)2n−1 1

0.8

<
σ

bupper
.

(
by (A.3) and

n

π(n −1/2)

1

0.8
< 1

)
.

It then follows that

∣∣F [µ̂](ξ1)−F [µ](ξ1)
∣∣<

σ

bupper
, |ξ1| ≤ Ω̌multi, (n−1)!n!σ

(2n)!mmin

.

By Step 1, we construct the sources in R
d as follows:

µ=
n∑

j=1

a jδt j
, µ̂=

n∑

j=n+1

−a jδt j
,

with the a j ’s satisfying (A.5). Above discussions yield

∣∣F [µ̂](ξ)−F [µ](ξ)
∣∣<

σ

bupper
, ||ξ||2 ≤ Ω̌multi, (n−1)!n!σ

(2n)!mmin

.

Thus,

∣∣F [PSFmulti](ξ)F [µ̂](ξ)−F [PSFmulti](ξ)F [µ](ξ)
∣∣<σ, ||ξ||2 ≤ Ω̌multi, (n−1)!n!σ

(2n)!mmin

,

by the definition of bupper.

Step 4. Note that by Step 3, for ||ξ||2 > Ω̌multi, (n−1)!n!σ
(2n)!mmin

,

∣∣F [µ̂](ξ)−F [µ](ξ)
∣∣=

∣∣∣∣∣

2n∑

j=1

a j e i t j ξ1

∣∣∣∣∣≤
n∑

j=1

∣∣a j

∣∣=
(2n)!

(n −1)!n!
mmin.

By the definition of Ω̌multi, (n−1)!n!σ
(2n)!mmin

, for ||ξ||2 > Ω̌multi, (n−1)!n!σ
(2n)!mmin

, we also have

∣∣F [PSFmulti](ξ)F [µ̂](ξ)−F [PSFmulti](ξ)F [µ](ξ)
∣∣<σ.

33



This completes the proof of Proposition 4.1.

Step 5. Now we prove Proposition 4.2. Similar to the proof of Proposition 4.1, we still only

need to consider the one-dimensional case. We define

µ=
n∑

j=1

a2 jδt2 j
, µ̂=

n∑

j=n+1

−a2 j−1δt2 j−1
, j = 1, · · · ,n,

where the t j ’s are defined by (A.4) and a = (a1, · · · , a2n)⊤ satisfies (A.5) and

a2n > 0, min
j=1,··· ,n

|a2 j | ≥ mmin.

Note that the above conditions on a are easy to be satisfied after scaling a in (A.5). Now we

only have to prove that µ, µ̂ are positive measures, since the other conclusions of Proposition

4.2 can be shown in the same way as in the previous steps.

Equation (A.5) implies that

−a2nφ2n−2 (t2n) =
(
φ2n−2 (t1) , · · · ,φ2n−2 (t2n−1)

)
(a1, · · · , a2n−1)⊤ ,

and hence,

−a2n

(
φ2n−2 (t1) , · · · ,φ2n−2 (t2n−1)

)−1
φ2n−2 (t2n−1) = (a1, · · · , a2n−1)⊤ .

This together with Lemma A.1 yields

−a2nΠ1≤q≤2n−1,q 6= j

t2n − tq

t j − tq
= a j , (A.7)

for j = 1, · · · ,2n − 1. Observe first that Π1≤q≤2n−1,q 6= j

(
t2n − tq

)
is always positive for 1 ≤ j ≤

2n −1. For j = 2n −1, since

a2n > 0,−a2nΠ1≤q≤2n−1,q 6=2n−1

(
t2n−1 − tq

)

is negative in (A.7). Thus we have a2n−1 < 0. In the same way, we see that a j > 0 for even j

and a j < 0 for odd j . Therefore, the intensities in µ̂ and µ are all positive. This completes the

proof of Proposition 4.2.

A.2. Proof of Proposition 4.3

Proof. Step 1. Similar to the proofs of Propositions 4.1 and 4.2, we only need to consider the

one-dimensional case.

For j ∈ {1,2, · · · ,2n}, set t j =− sn−2
2

τ+ ( j−2)s
2

τ if j is even and t j = t
4
⌈

j+1

4

⌉
−2
+ (−1)

j+1

2 τ other-

wise. Consider the following system of linear equations:

Aa = 0,

where A =
(
φ2n−2 (t1) , · · · ,φ2n−2 (t2n)

)
with φ2n−2(·) defined in (A.1). As discussed before, for

a nonzero a, by scaling, we can assume that a2n > 0 and

min
1≤ j≤n

∣∣a2 j

∣∣= mmin.
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We define

µ=
n∑

j=1

a2 jδt2 j
, µ̂=

n∑

j=1

−a2 j−1δt2 j−1
.

As discussed before, we can show that a2 j−1 < 0, j = 1, · · · ,n, and a2 j > 0, j = 1, · · · ,n. Thus,

both µ̂ and µ are positive measures.

Step 2. By the proof of Proposition 2.1 in [27] we know that

2n∑

j=1

∣∣a j

∣∣≤
2n∑

q=1

∣∣a jq

∣∣≤
2ne11s2(n +1)1022n−8mmin

π2

and

∣∣F
[
µ
]

(ξ)−F
[
µ̂
]

(ξ)
∣∣<σ, ξ ∈

[
−Ω̌

multi, π2σ

2ne11 s2(n+1)1022n−8mmin

,Ω̌
multi, π2σ

2ne11 s2(n+1)1022n−8mmin

]
.

On the other hand, by the definition of Ω̌
multi, π2σ

2ne11 s2(n+1)1022n−8mmin

, for ||ξ||2 > Ω̌
multi, π2σ

2ne11s2(n+1)1022n−8mmin

,

we also have ∣∣F [PSFmulti](ξ)F [µ̂](ξ)−F [PSFmulti](ξ)F [µ](ξ)
∣∣<σ.

This completes the proof.

A.3. Proof of Proposition 4.4

Let

τ=
e−1

Ω̌
multi, ((n−1)!)2σ

(2n−1)!mmin

(
σ

mminbupper

) 1
2n−2

and t1 = (−(n −1)τ,0, · · · ,0) ,t2 = (−(n −2)τ,0, · · · ,0) · · · ,t2n−1 = ((n −1)τ,0, · · · ,0). Define

µ=
n∑

j=1

a2 j−1δt2 j−1
, µ̂=

n−1∑

j=1

−a2 jδt2 j
.

The rest of proof proceeds in the same way as the proofs of Propositions 4.1 and 4.2.
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