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ABSTRACT

Although very successfully used in machine learning, convolution based neural
network architectures – believed to be inconsistent in function space – have been
largely ignored in the context of learning solution operators of PDEs. Here, we
adapt convolutional neural networks to demonstrate that they are indeed able to
process functions as inputs and outputs. The resulting architecture, termed as
convolutional neural operators (CNOs), is shown to significantly outperform com-
peting models on benchmark experiments, paving the way for the design of an
alternative robust and accurate framework for learning operators.

1 INTRODUCTION

Partial Differential Equations (PDEs) are mathematical models for an enormous variety of phenom-
ena of interest in the sciences and engineering Evans (2010). Solving a PDE amounts to computing
the underlying solution operator which maps given input functions such as initial and boundary
conditions, source terms, coefficients etc to the solution. Currently, numerical methods such as fi-
nite difference, finite element and spectral methods are used to compute this PDE solution operator
Quarteroni & Valli (1994). However, these methods can be prohibitively expensive, particularly
in several dimensions. Moreover these methods are data agnostic, Mishra (2018) and references
therein, and not designed to learn from or adapt to the available large datasets, either generated
through simulations or from observations. Consequently, there has been considerable amount of
interest in recent years to use data driven machine learning methods for the fast, robust and accurate
solution of PDEs.

Given that operators are the underlying objects of interest in the context of PDEs, operator learning
ML architectures which map functions to functions are being increasingly viewed as the suitable
paradigm for applying ML techniques to PDEs Kovachki et al. (2021). A widely used framework
in this regard is that of DeepONets and its variants Lu et al. (2021); Mao et al. (2020); Cai et al.
(2021); Lanthaler et al. (2022) whereas an alternate paradigm is that of neural operators Kovachki
et al. (2021); Li et al. (2020a;b), which includes the popular Fourier Neural Operator (FNO) Li et al.
(2021) architecture. Although these architectures have been successfully applied in various exam-
ples, many pressing issues, such as the limited expressivity of DeepONets Lanthaler et al. (2023)
and aliasing errors for FNOs Fanaskov & Oseledets (2022), still hinder the widespread adoption of
operator learning frameworks in the simulation of PDEs.

In this context, it is worth noting that convolutional neural networks (CNNs) are often the state of
the art models for a variety of tasks in image processing such as classification and generation LeCun
et al. (2015). However, CNNs entail finite dimensional inputs and outputs and are not directly appli-
cable for operator learning. Naive use of CNNs in solving PDEs often leads to results that depend
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heavily on the underlying grid resolution Zhu & Zabaras (2018) and references therein. Hence,
CNNs have been largely ignored as ML models in this important area. Despite this background,
CNNs are appealing in many respects, given their locality, computational efficiency and widespread
use in other ML contexts and bringing them back into the reckoning for learning PDE operators
could be advantageous. This is precisely the goal of the current paper where we will show that by
making simple modifications, for instance reinterpreting those suggested in Karras et al. (2022) for
image generation, CNNs can be adapted to learn operators. The resulting architecture, termed as
Convolutional Neural Operators (CNOs) maps input functions to output functions. Moreover, we
demonstrate through numerical experiments that CNOs significantly outperform existing operator
learning architectures on benchmark problems, highlighting the utility of convolution based archi-
tectures and paving the way for an alternative efficient operator learning framework.

2 CONVOLUTIONAL NEURAL OPERATORS

Setting. For simplicity of notation and definiteness, we focus on two spatial dimensions by letting
the domain D = T

2 be a 2-d torus. Let G† : Hr(D) 7→ Hs(D) be the solution operator of
some underlying PDE, with Hr,s being Sobolev spaces. Without loss of generality, we set s = r
hereafter. The goal is to learn G† from finite data of measurements of input and output function
pairs {ui, ūi}

N
i=1. As in practice, the underlying data is either generated by numerical simulations

or observations, we assume that we can only access the realizations of any function f ∈ Hr(D) in

the form of point-wise evaluations {f(xj)}
s×s
j=1 on a s× s uniform grid on D.

Bandlimited Approximations. Next, we approximate the solution operator G† with an operator
G : Bw(D) 7→ Bw(D), where Bw(D) is a space of bandlimited functions Vetterli et al. (2014) i.e.,
functions whose non-zero Fourier coefficients can be atmost of modulus w ∈ R+. The motivation
behind the use of bandlimited functions is twofold: (1) the fourier coefficients of Sobolev functions
f ∈ Hr(D) decay (rapidly). Therefore, they can be well approximated by bandlimited functions

f̃ ∈ Bw(D) with a large enough band w: for any ϵ > 0, there exists w > 0 such that ||f−f̃ ||L2(D) <
ϵ. (2) for a sufficiently resolved grid i.e. s > 2w, there exists a direct equivalence between the
function and its grid (point) values, given by the Shannon-Whittaker-Kotel’nikov sampling theorem
Vetterli et al. (2014). Hence, any (discrete) operations on gridvalues are guaranteed to yield a unique
continuous analogue in the space of bandlimited functions. This exact correspondence between the
continuous and discrete representations of the functions, defined in SM A.2, is a necessary condition
for working with continuous objects such as functions. If it is not satisfied, multiple functions could
have the same discrete representation, leading to the well-known aliasing phenomenon Vetterli et al.
(2014), resulting in subsequent errors. Throughout the following, we implicitly assume that all the
functions have a bandlimit at most s/2, so we may suppose that w = s/2 in the rest of the paper.

CNO Block. We will now introduce CNO, our convolution-based neural operator, which we define
as a compositional mapping between functions as,

N
CNO : u = v1 7→ v2 7→ . . . vL = ū, vl+1 = Pl ◦ Σl ◦ Kl(vl), 1 ≤ ℓ ≤ L. (1)

Here, the input function u is processed through the composition of a series of mappings between
functions (layers), with each layer consisting of three elementary mappings, i.e., Pl is either up-
sampling or downsamping operator, Kl is the convolution operator and Σl is the activation operator.
These elementary operators are defined below. See also Figure 1 for a schematic representation of
CNO.

Our goal in defining the elementary operations below is to maintain an equivalence between the
continuous operations and the discrete computations such that the Shannon-Whittaker-Kotel’nikov
theorem applies at every step. This requires that each layer of the operator is a mapping between
bandlimited functions (the bands need not be the same), and the size of the sampling grid is cho-
sen accordingly. This constitutes the main difference from classic realizations of CNNs as their
operations do not respect this requirement, leading to aliasing errors Karras et al. (2022).

Convolution. The convolutional operator in our case has a discrete kernel Kw =
∑k

i,j=1 kij ·δzij ,

defined on the s × s grid with zij being the grid points, k ∈ N being the discrete kernel size and δ
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the Dirac measure. The convolution operator Kw : Bw(D) 7→ Bw(D) is defined by

Kwf(x) = (Kw ⋆ f)(x) =

∫

D

Kw(x− y)f(y)dy =
k

∑

i,j=1

kijf(x− zij), ∀x ∈ D,

where the last identity arises from the fact that f is a bandlimited function. Thus, our convolution
operator is directly parametrized in physical space, providing locality in this operator. This is in
contrast to FNO Li et al. (2021), where the convolution operator is defined in Fourier space.

Up and Downsampling. Let hw(x) = sinc(2wx0) · sinc(2wx1) for x = (x0, x1) ∈ R
2 be an

ideal low-pass interpolation filter. We define the downsampling operator from the bandlimit w to
the bandlimit w < w as Dw,w : Bw(D) 7→ Bw(D), defined by

Dw,wf(x) =
(w

w

)2

(hw ⋆ f)(x) =
(w

w

)2
∫

D

hw(x− y)f(y)dy, ∀x ∈ D,

where ⋆ is the convolution operation on functions. The upsampling operator from the bandlimit w
to w > w is simply defined by Uw,w : Bw(D) 7→ Bw(D) as

Uw,wf(x) = f(x), ∀x ∈ D.

Activation. Assume that we want to apply a (pointwise) activation function σ to a function f ∈
Bw(D). Following Karras et al. (2022), we modify this operation by firstly upsampling the signal to
a bandlimit w, then apply the activation and finally downsample the signal back to the bandlimit w.
As the functions of our interest (solutions of PDEs) have a fast decaying spectrum, it is reasonable
to assume that newly introduced frequencies above w >> w are negligible. Consequently, the
activation function can be approximated by an operator between the bandlimited spaces, namely
σ : Bw(D) 7→ Bw(D). Therefore, the modified activation function Σw,w̃ : Bw(D) 7→ Bw(D) is
defined by

Σw,wf(x) = Dw,w(σ ◦ Uw,w̃f)(x), ∀x ∈ D.

Instantiation. We propose to use a deep convolutional encoder-decoder architecture for Convolu-
tional Neural Operators equation 1. The encoder network gradually downsamples the input in the
spatial domain, while increasing the number of channels at the same time. The decoder network
does the opposite. As the network goes deeper in the encoder, more global features are extracted.
The extracted information from the multiple scales is gradually gathered in the decoder to produce
the relevant output. In the convolutional encoder-decoder neural operator, the first M iterations are
devoted to the encoder, namely

vl+1 = Dsl,sl+1
◦ Σsl,sl+1

◦ Kslvl, vl ∈ Bsl(D),

where sl = s/2l is the current bandlimit. The next M − 1 iterations are devoted to the decoder. Let
s̃l = s2M−l−1. The decoder is defined as

vl+1 = Us̃l,s̃l+1
◦ Σs̃l,s̃l+1

◦ Ks̃lvl, vl ∈ Bs̃l(D).

Optional residual blocks could be added between the encoder and decoder, while optional resolution
invariant blocks could be added after each up/downsampling block. A schematic representation of
the encoder-decoder blocks is given in SM A.3. All the continuous operators introduced above can
be equivalently defined in a discrete setting, see SM A.2 for details.

3 EXPERIMENTS

We empirically test CNO on two different benchmark problems. As baselines in the following exper-
iments, we choose three models. First, we consider an end-to-end fully convolutional neural-network
(CNN) architecture, but ablate the interpolation filtering operation and perform the downsampling
operation with a standard average (mean) pooling. Next, we benchmark the proposed architecture
with Fourier Neural Operator FNO and DeepONet, with the CNN encoder as a branch-net.

For both experiments, we will consider the widely used fluid dynamics model, the incompressible
Navier-Stokes equations (see SM B.1) on the two-dimensional domain D = [0, 1]2 with periodic
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Figure 1: Schematic representation of the Convolutional Neural Operator architecture, see equa-
tion 1 for notation.

boundary conditions. In the first experiment, which we abbreviate as NS1, the Navier-Stokes equa-
tion is considered with a fluid viscosity of ν = 10−3. Following, Li et al. (2021); Prasthofer et al.
(2022), the initial conditions are drawn from the measure N (0,C), where the covariance matrix is

C = 73/2(−∆ + 49I)−5/2 and task is to learn the operator that maps the initial vorticity to the
vorticity of the resulting solution at time T = 5. To this end, the underlying data is generated with
a spectral method as described in Prasthofer et al. (2022) and all the models are trained with 500
samples on a 332-grid. The test error is also computed on 500 samples. We compare the perfor-
mance of CNO to CNN, FNO and DeepONet baselines and present the test errors in Table 3. We
observe from this table that not only is CNO the best performing architectures among all the models
compared here, it outperforms CNN by a factor of almost 4. This demonstrates that simple modifi-
cations to CNNs such as adding interpolation filters at every layer can significantly improve model
performance.

In the second experiment, abbreviated as NS2, the Navier-Stokes equations are again considered, but
with a viscosity of ν = 4 · 10−4, applied to only Fourier modes with modulus greater than 12 and
the initial data corresponds to a thin shear layer (or vortex sheet), see SM B.2 for illustrations. The
aim is to consider a problem with significantly larger range of scales and more complicated temporal
dynamics than NS1. To generate the training and test data, we simulate the Navier-Stokes equations
with a spectral viscosity method on a 1282-grid and downsample the data to a 642-grid to learn
the operator mapping the initial velocity to velocity at T = 1. We train all models on 890 training
samples and present the test errors (on 128 samples) in Table 3. We observe from the table that CNO
is the best performing model, not only outperforming CNN but also FNO, which is considered state
of the art among operator learning models, by reducing the test error by a factor of 1.6.

DONet CNN FNO CNO

NS1 2.23% 3.50% 1.15% 0.96%

NS2 11.28% 4.69% 5.14% 3.27%

Table 1: Relative median L1-error computed over testing samples for different benchmarks and
models with the best performing model highlighted in bold.

Figure 2: Shear Layer experiment. The errors are computed on different testing resolution.
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Varying Resolutions. It is widely believed that errors with Neural operators should (approximately)
be independent when they are tested on different grid resolutions representing the same continuous
function Kovachki et al. (2021). We test this issue for CNO by considering the same setup as the
NS2 experiment, with training data downsampled on the 642 grid. These trained models are then
tested by downsampling the original 1282 data on a wide range of different resolutions. Results are
illustrated in Figure 2. On the left plot, just as expected (as the scale of the convolutional filters do not
vary with the resolution) and reported previously Zhu & Zabaras (2018); Li et al. (2021), the CNN
model performs very poorly. We believe that for this reason, classical convolutional architectures
have largely been overlooked in operator learning. On the right of the same plot, but on a different
scale, we compare CNO and FNO at different test resolutions and observe that CNO –despite being
a convolutional based architecture– not only is very stable to changes in the resolution, but seems to
be even more stable than FNO, for both higher and lower resolution data. We hypothesize that this
observed lack of stability of FNO could be due to aliasing, which implicitly ties the model to the
resolution of the training data.
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Supplementary Material for: Convolutional Neural Operators.

A DETAILS OF THE MODELS

In the main text, we defined continuous operators that we apply to the bandlimited functions. Below,
we describe these operators, including implementation of the filter hw, data sampling, etc., in the
discrete settings.

A.1 FILTER DESIGN

Since perfect filters hw have infinite impulse response and cause ringing artifacts around high-
gradient points (e.g. discontinuities) due the Gibbs phenomenon, one usually uses windowed-sinc
filters. The windowed-sinc filters are constructed by multiplying the ideal filter hw by a corre-
sponding window function. That is equivalent to convolving the filter with the window function
in the frequency domain. In practice, we use standard Python libraries and their functions such as
scipy.signal.firwin to design the filters. They enable us to manually control the cutoff frequency wc

and the half-width of the transition band wh of the designed filters. We design discrete filters with a
prescribed compact support. We usually choose our filters to have the kernel size of at least 16 (or
to have at least 16 ”taps”).

In all the experiments, we use wc = s/(2 + ϵ), where ϵ ≪ 1. As we mentioned, we control the
half-width of the filter wh = ch · s. (Almost) Perfect sinc filter can be designed by setting ch = 0.5.
However, it is usually beneficial to allow some amount of aliasing and, hence, we set ch = 1. In rest
of the text, we will denote the designed filters by Hs,M , where s is the sampling rate of the signals,
while M is the number of taps. One can implement a 2D filter by first convolving a 1D filter with
each row and then with each column. Different filter designs (in 1D) are shown in the Figure 3.

Figure 3: On the left: Frequency responses of different designed filters. On the right: Impulse
responses of different designed filters. The sampling rate is s = 128, the cutoff frequency is wc =
s/2.001, while the halfwidth each filter is wh = ch · s. Each filter has M = 16 taps.

A.2 DISCRETE DATA STRUCTURES AND OPERATIONS

Discrete Data Structures. Given a function f ∈ Bw(D), one can always pass to its discrete
representation fs ∈ R

s×s by sampling it with a sampling rate s = 2w. Formally, the discrete
representation of the signal can be written as

fs[i, j] = Xs

(

i/s, j/s
)

· f
(

i/s, j/s
)

i, j = 1 . . . s,

where Xs =
∑

n∈Z2 δn/s is the Dirac comb. Given a vector fs ∈ R
s×s, one recovers the continuous

representation f ∈ Bs/2(D) by convolving it with the interpolation filter hs/2:

f(x0, x1) =
+∞
∑

n=−∞

s
∑

i,j=1

fs[i, j] · hs/2

(

x0 −
ns+ i

s
, x1 −

ns+ j

s

)

, ∀(x0, x1) ∈ D.
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Discrete Convolution. Let f ∈ Bs/2(D) and fs ∈ R
s×s be its sampled version. Let Hs,M ∈

R
M×M be a discrete interpolation filter with M taps, designed as above. For i, j = 1 . . . s and

n ∈ N, we define fs[i + ns, j +ms] = fs[i, j]. Discrete convolution between the filter Hs,M and
fs is defined as

(fs ⋆ Hs,M )[n,m] =

M
∑

k1,k2=1

Hs,M [k1, k2] · fs[n− k1,m− k2] n,m ∈ N.

The convolution of fs with a discrete kernel K ∈ R
k×k is defined in the same way.

Discrete Upsampling. Let F(fs) ∈ C
s×s be the DFT of the signal fs. The signal upsampling in

the frequency domain (by a factor 2) is defined by the function UF,s : C
s×s 7→ C

2s×2s, with

UF,s(g)[i, j] =

{

F(g)[i, j], |i| ≤ s/2, |j| ≤ s/2

0, otherwise

for all i, j = −s, . . . , 0, . . . s− 1 Then, the discrete upsampling of the signal fs is

Us : R
s×s 7→ R

2s×2s, Us(fs) = F−1
(

UF,s(fs)
)

Alternatively, one can upsample the signal by adding the zeros between every 2 grid points to get the
signal fs,↑2s and then convolve the new signal with the discrete windowed filter Hs,M ∈ R

M×M .
This is the approach used in the implementation of CNO.

Discrete Downsampling. The discrete downsampling of the signal fs (by a factor 2) is done by
convolving it discretely with Hs/2,M ∈ R

M×M and then keeping every other point of the resulting

output. We implicitly assume that s/2 ∈ N. More rigorously, the discrete downsampling is defined

as the function Ds : R
s×s 7→ R

s/2×s/2 such that

Ds(fs) = (Hs/2,M ⋆ fs)↓s/2

Discrete Modified Activation Function. Finally, given the definitions above, the discrete activation
function is defined as

Σs : R
s×s 7→ R

s×s, Σs(fs) = Ds ◦ σ ◦ Us(fs),

where σ : R 7→ R is a point-wise activation functions (such as leaky ReLu).

A.3 ARCHITECTURE DETAILS

Below, details concerning the model architectures are discussed.

Fourier Features. Features features have been first introduce in Tancik et al. (2020) to improve the
learning of high frequencies. Let v ∈ [0, 1]2 be input coordinates and m ∈ N. Featurized version of
v with 2m Fourier features is given by,

(

cos(2π bT1 · v), sin(2π bT1 · v), . . . , cos(2π bTm · v), sin(2π bTm · v)
)

,

where bi ∈ R
2 are i.i.d. drawn from the standard normal distributions.

Convolutional Neural Operator. The CNO architecture is designed based on 4 different ”blocks”,
i.e. the downsampling block (D), the upsampling block (U), the invariant block (I) and the ResNet
block (R).

The downsampling block (D) consists of the following operations:

• convolution, which leaves the input size unchanged and, and doubles the number of chan-
nels (usually, in the very first (D) block, the number of channels is increased to 64);

• modified activation function Σ;

• downsampling by a factor 2.

The upsampling (U) block is similar to the first one and consists of:
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• convolution, defined as before;

• upsampling by a factor 2;

• modified activation function Σ.

The invariant block (I) includes:

• convolution operation. Differently from the (D) and (U) blocks, neither the input size nor
the number of channels are changed;

• modified activation function Σ;

The invariant block usually follows a dowsampling or precedes an upsampling bock and allows for
better exploration of the signal features at a certain sampling rate. The ResNet block (R) is similar
to the (I) block, but with the additional skip connections added between the consecutive invariant
blocks. An example of CNO architecture can be seen in the Figure 4.

Figure 4: This is an example of a CNO architecture with 6 (I) blocks, 3 (D) blocks, 3 (U) blocks
and 4 (R) blocks. Larger the height, larger is the resolution. The number of channels first gradually
grows in the encoder, stays constant in the ResNet, and drops in the decoder. The information from
the multiple scales is sequentially gathered. In this specific case, assuming that the initial sampling
rate is 64, the sampling rate changes in accordance with the sequence 64 → 32 → 16 → 8 in the
(D) encoder and 8 → 16 → 32 → 64 in the decoder. The number of channels changes as per
17 → 64 → 128 → 256 in the encoder and 256 → 128 → 64 → 1 in the decoder. Note that the
sequence of channels starts with 17, as we include 16 Fourier features in the input.

Convolutional Neural Networks. The architecture of Convolutional Neural Network is the same
as the one of CNO, but the downsampling operation is performed through average pooling, while
the upsampling operation is done by a standard interpolation.

Feed Forward Dense Neural Networks. Given an input y ∈ R
m, a feed-forward neural network

(also termed as a multi-layer perceptron) transforms it to an output, through a layer of units (neurons)
which compose of either affine-linear maps between units (in successive layers) or scalar non-linear
activation functions within units Goodfellow et al. (2016), resulting in the representation,

uθ(y) = CLt
◦ σ ◦ CLt−1 . . . ◦ σ ◦ C2 ◦ σ ◦ C1(y). (2)
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Here, ◦ refers to the composition of functions, and σ is a scalar (non-linear) activation function. For
any 1 ≤ ℓ ≤ Lt, we define

Cℓzℓ = Wℓzℓ + bℓ, for Wℓ ∈ R
dℓ+1×dℓ , zℓ ∈ R

dℓ , bℓ ∈ R
dℓ+1 ., (3)

and denote,
θ = {Wℓ, bℓ}

Lt

ℓ=1, (4)

to be the concatenated set of (tunable) weights for the network. Thus, in the machine learning
terminology, a feed-forward neural network equation 2 consists of an input layer, an output layer,
and Lt hidden layers with dℓ neurons, 1 < ℓ < Lt. In all numerical experiments, the trunk net of
DeepONet is a feed-forward neural network. Moreover, we consider a uniform number of neurons
across all the layers of the network dℓ = dℓ−1 = d, 1 < ℓ < Lt.

Fourier Neural Operator. Fourier neural operator (FNO) NFNO : Hr(D) 7→ Hs(D) is a compo-
sition

N
FNO = Q ◦ LT ◦ · · · ◦ L1 ◦R. (5)

with ū(x) 7→ R(ū(x), x) being a “lifting operator”, represented by a linear transformation R :
R

du × R
d → R

dv where du is the number of components of the input function, d is the dimension
of the domain and dv is the “lifting dimension” (a hyperparameter). The operator Q is a non-linear
projection, instantiated by a shallow neural network with a single hidden layer with 128 neurons and
GeLU activation function. Each hidden layer Lℓ : v

ℓ(x) 7→ vℓ+1(x) is of the form

vℓ+1(x) = σ
(

Wℓ · v
ℓ(x) +

(

Kℓv
ℓ
)

(x)
)

,

with Wℓ ∈ R
dv×dv a weight matrix (residual connection), σ an activation function, and the non-local

Fourier layer,

Kℓv
ℓ = F−1

N

(

Pℓ(k) · FNvℓ(k)
)

,

where FNvℓ(k) denotes the (truncated)-Fourier coefficients of the discrete Fourier transform (DFT)
of vℓ(x), computed based on the given n grid values in each direction. Here, Pℓ(k) ∈ C

dv×dv is
a complex Fourier multiplication matrix indexed by k ∈ Z

d, d the total number of retained Fourier
coefficients, and F−1

N denotes the inverse DFT. The residual connection derives from a convolutional
layer with kernel size 1.

DeepONet. DeepONet Lu et al. (2021) is the operator, NDONet : Hr(D) 7→ Hs(D), given by

N
DONet(ū)(y) =

p
∑

k=1

βk(ū)τk(y) (6)

where the branch-net β is a neural network that maps E(ū) = (ū(x1), . . . , ū(xm)) ∈ R
m, evalua-

tions of the input ū at sensor points x := (x1, . . . , xm) ∈ D, to R
p:

β : Rm → R
p, E(ū) 7→ (β1(E(ū)), . . . , βp(E(ū)), (7)

and the trunk-net τ(y) = (τ1(y), . . . , τp(y)) is another neural network mapping,

τ : U → R
p, y 7→ (τ1(y), . . . , τp(y)). (8)

Thus, a DeepONet combines the branch net (as coefficient functions) and trunk net (as basis func-
tions) to create a mapping between functions.

In particular, in all numerical experiments, we employ standard feed-forward neural networks as
trunk-net. In contrast, the branch is obtained as a composition of the encoder and Resnet of CNO
architecure (without interpolation filter), and a linear transformation from R

n to R
p, where n denotes

the number of channels in the last layer of the ReseNet and p the number of basis functions.

B DETAILS OF THE EXPERIMENTS

B.1 2D NAVIER-STOKES EQUATIONS

Navier-Stokes equations describe the flow of an incompressible fluid with viscosity ν. The equations
are given by

∂u

∂u
+ u · ∇u+∇p = ν∆u, ∇ · u = 0, u(t = 0) = u0,

where u ∈ R
2 is the fluid velocity, p ∈ R is the fluid pressure and u0 ∈ R

2 is the initial velocity of
the fluid. The fluid vorticity is defined as ω = ∇× u.
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B.2 INITIAL CONDITIONS: EXPERIMENT 2

In the second experiment, we first generate the (pre-)initial velocity, defined by

u0(x, y) =







tanh
(

2π y−0.25
ρ

)

, y + σ(x) ≤ 1
2

tanh
(

2π 0.75−y
ρ

)

, otherwise
, v0(x, y) = 0

Here, ρ = 0.1 and σ : [0, 1] 7→ R is the perturbation function given byσ(x) =
∑10

k=1 αk sin(2πkx−
βk), where αk and βk are i.i.d. uniformly distributed in [0, 1] and [0, 2π]. The real initial velocity is
obtained by Leray projection onto the divergence free manifold (to assure incompressibility).

B.3 HYPERPARAMETERS

Experiment 1. The CNO model has 3 (D) (and (U) blocks), 6 (I) blocks and 6 (R) blocks. The
convolution size is k = 3. The filter properties are fc = fs/2.0001, ch = 1 and number of taps
M = 16. The number of Fourier features that we include is mCNO = 16. The sequence of channels
in the encoder is 17 → 64 → 128 → 256. There are approximately 5.3M parameters. The FNO
architecture has 4 Fourier layers, d = 16 Fourier modes and the lifting dimension (width) dv = 64.
The model accounts for approximately 8.4M parameters. The trunk-net of DeepONet accounts for
4 hidden layers, with 256 neurons and LeakyReLU activation function. On the other hand the
branch consists of 4 (D), (I) and (R) blocks. Moreover, we reconstruct the output function as linear
combination of 100 basis and we consider mDON = 4 Fourier features. The model has roughly
3.4M parameters.

Experiment 2. The CNO model that we trained has 3 (D) (and (U) blocks), 6 (I) blocks and 10 (R)
blocks. The convolution size is k = 3. The filter properties, the sequence of channels in the encoder
and the number of Fourier features mCNO is the same as in the previous experiment. There are
approximately 1.9M parameters. As far as DeepONet is concerned, we employ 4 hidden layers and
128 neurons in the trunk, 6 (D) (and (I)) blocks, and 4 (R) blocks in the branch. Moreover, m = 16
Fourier features are used and 50 basis functions. The total number of parameters is 4.7M.

B.4 ILLUSTRATION OF RESULTS REPORTED IN SECTION 3.

We start by elaborating on the results obtained on the benchmarks and presented in Table 3. In
Figure 5, we show 4 randomly drawn test samples for the experiment 1. For all the test samples,
we observe that CNO, FNO and DONet can accurately approximate the ground truth without any
visible artifacts, whereas CNN assigns the same value to batches of neighboring cells, resulting in a
visually coarser prediction.

Next, in Figure 6, we focus on the experiment 2 and plot 4 testing samples. CNO clearly yields
to significantly more accurate predictions compared to the other models. In particular, FNO shows
aliasing artifacts that explain the high error. Instead, DeepONet is not able to learn the operator,
predicting for all the samples the same output.

We also show an example of input and output samples at different resolutions which are used in the
NS2 experiment in Figure 7
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Figure 5: Exact and predicted coefficients for 4 different test samples (rows) and for different mod-
els (columns) for the NS Experiment 1. From left to right: ground truth, CNO, FNO, CNN, and
DeepONet. The input and output resolutions are 332.

Figure 6: Exact and predicted coefficients for 4 different test samples (rows) and for different mod-
els (columns) for the NS Experiment 2. From left to right: ground truth, CNO, FNO, CNN, and
DeepONet. The input and output resolutions are 642.
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Figure 7: An example of input and output (ground truth) samples at 4 different resolutions for the
NS Experiment 2. The input samples are on the top, while the corresponding output samples are on
the bottom.
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