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Abstract

A large class of inverse problems for PDEs are

only well-defined as mappings from operators to

functions. Existing operator learning frameworks

map functions to functions and need to be modi-

fied to learn inverse maps from data. We propose

a novel architecture termed Neural Inverse Opera-

tors (NIOs) to solve these PDE inverse problems.

Motivated by the underlying mathematical struc-

ture, NIO is based on a suitable composition of

DeepONets and FNOs to approximate mappings

from operators to functions. A variety of exper-

iments are presented to demonstrate that NIOs

significantly outperform baselines and solve PDE

inverse problems robustly, accurately and are sev-

eral orders of magnitude faster than existing direct

and PDE-constrained optimization methods.

1. Introduction.

Partial differential equations (PDEs) are ubiquitous as math-

ematical models in the sciences and engineering (Evans,

2010). Often, solving PDEs entails solving the so-called

forward problem. That is, given inputs such as initial and

boundary conditions, coefficients, and sources, compute

(observables of) the solution of the PDE. However, in many

important contexts in applications, one is instead interested

in solving the so-called inverse problem (Isakov, 2017).

That is, given measurements of (observables of) the solution

of a PDE, infer the underlying inputs.

A large class of such inverse problems takes the following

abstract form: given observables as operators (mappings

between function spaces), infer the underlying input coef-

ficient (functions) of the associated PDE. A prototypical

example is the well-studied Calderón Problem (Uhlmann,

2009) that arises in electrical impedance tomography (EIT)

in medical imaging. Here, the observable is the Dirichlet-

to-Neumann (DtN) operator that maps the voltage on the

1Seminar for Applied Mathematics (SAM), ETH, Zürich.
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boundary to the current, and one is interested in inferring the

underlying conductivity field. A related example is inverse

wave scattering for geophysical applications. Other exam-

ples include optical tomography (Lai et al., 2019) where

the observable is the so-called Albedo operator, and one

needs to infer the scattering and absorption coefficients of

the underlying medium. Another prominent example arises

in seismic imaging in geophysics (Yilmaz, 2011) where the

observable is the source-to-receiver (StR) operator, and the

task at hand is to infer the underlying sub-surface properties

such as wave velocity or material density. In many of these

examples, the solution to the resulting inverse problem ex-

ists. It is unique and stable if and only if the inverse problem

is posed as a mapping from operators to functions.

Given the nonlinear nature of most of these inverse prob-

lems, analytical solution formulas are not available except in

some simple cases. Instead, iterative numerical algorithms

based on the PDE-constrained optimization are commonly

used to approximate the solution (Chavent, 2010). These

algorithms repeatedly apply the forward and adjoint PDE

solvers to converge to the unknown coefficient. However, a

large number of iterations might be necessary, which leads

to prohibitively high computational costs as numerous calls

to PDE solvers are very expensive, particularly in two and

three space dimensions. Moreover, these iterative algo-

rithms can be sensitive to the choice of initial coefficient.

Given these factors, the design of alternative approaches to

solving inverse problems is imperative.

Data-driven approximation of PDEs is rapidly emerging as

a powerful paradigm. Most of the available results pertain to

forward problems for PDEs. A particularly popular frame-

work is operator learning, where one seeks to learn the

underlying forward solution operator of the PDE from data.

Existing approaches to operator learning include Deep oper-

ator networks (DeepONet) (Lu et al., 2021; Mao et al., 2020;

Cai et al., 2021) and their variants, as well as the so-called

neural operators (Kovachki et al., 2021b), which include

the widely used Fourier Neural Operators (FNO) and its

variants (Li et al., 2021b; Pathak et al., 2022). Graph neural

network-based algorithms (Boussif et al., 2022; Brandstetter

et al., 2022) are also emerging as an alternative.

Given the widespread success of operator learning and other

deep learning-based algorithms in the context of forward



Neural Inverse Operators

problems for PDEs, it is natural to investigate their utility in

learning the solutions of the corresponding inverse problems

from data. However, this task is very challenging as existing

operator learning algorithms map functions to functions.

On the other hand, the aforementioned inverse problems

are only well-defined as maps from operators to functions.

Hence, one needs non-trivial modifications of existing oper-

ator learning architectures to handle inverse problems. This

is precisely the rationale for the current paper, where our

main contributions are the following.

• Motivated by the underlying mathematical structure of

the considered class of inverse problems, we propose a

novel architecture, termed as Neural Inverse Operators

(NIOs), for learning solutions of these inverse prob-

lems from data. NIOs compose (stack) two existing

architectures, DeepONet and FNO, in a novel manner

to map operators to functions.

• We test NIOs extensively on a suite of problems, in-

cluding the Calderón problem in EIT, inverse wave

scattering for object detection, reconstructing the ab-

sorption and scattering coefficients in optical tomogra-

phy, and seismic wave migration to infer sub-surface

properties. We show that NIO outperforms baselines

on all these benchmarks and provides a fast, robust and

accurate solution to the underlying inverse problem.

2. A Class of Inverse Problems.

2.1. Mathematical Framework.

Let D ⊂ R
d be a bounded open set, with (smooth) boundary

∂D. Let T > 0 and Ω = D or Ω = D × (0, T ), depending

on whether the PDE is time-(in)dependent. Correspondingly,

∂Ω = ∂D or ∂Ω = ∂D × (0, T ), respectively. Let a ∈
A(D), with A denoting a suitable function space over D,

be a coefficient. Then, an abstract PDE can be written as

Da(u) = s, B(u) = g, (1)

where u ∈ U(Ω) is the solution, s ∈ S(Ω) is the source term

and g ∈ G(∂Ω) is the boundary condition, for the PDE (1).

Here, Da : U 7→ F and B : U 7→ G are the differential and

boundary operators, respectively and U, S,G are suitable

function spaces, defined over their respective domains.

The forward problem for the abstract PDE (1) amounts to

the following: given the coefficient a ∈ A, source term

s ∈ S and boundary condition g ∈ G, find the solution

u ∈ U of the PDE (1). Often, one is interested in not

only the solution itself but also observables of the solution,

which can be measured in practice. Since measurements

are usually easier to perform at boundaries, a particularly

relevant class of such observables are given by the following

boundary observation operator,

Λa : G(∂Ω) 7→ H(∂Ω), (2)

which maps the boundary data g ∈ G(∂Ω) to a measure-

ment Λa(g) = h(u) ∈ H(∂Ω), a function space on ∂Ω.

Thus, for a fixed coefficient a (and source s), solving the

forward problem amounts to solving the PDE (1), with a

given boundary data g to obtain the solution u and then post-

processing u to compute the boundary observation operator

h(u) = Λa(g). Hence, one can rewrite the forward problem

associated with the PDE (1) to obtain the map,

F : A(D) 7→ L (G(∂Ω),H(∂Ω)) , a 7→ F(a) = Λa, (3)

where Λa is the boundary observation operator (2) and

L(X,Y ) denotes continuous operators between function

spaces X and Y .

In practice, one is often interested in the inverse problem

associated with the PDE (1). For instance, in tomography

(imaging), one needs to infer the unknown coefficient a
from some measurements of the solution u. In general, this

problem is ill-posed, and a single instance (or small num-

ber) of boundary conditions g and measurements h(u) of

the corresponding solutions u, do not suffice in inferring the

underlying coefficient a. Instead, many deep mathematical

results have provided suitable frameworks where such in-

verse problems can be well-posed. The inverse map for the

forward problem (3) takes the form

F−1 : L (G(∂Ω),H(∂Ω)) 7→ A(D), Λa 7→ a = F−1(Λa),
(4)

The rigorous guarantee of the existence and, more impor-

tantly, the uniqueness of this inverse map F−1, for a large

class of PDEs, is a crowning achievement of the mathemat-

ical theory of inverse problems (Isakov, 2017). Moreover,

one can also show Lipschitz or Hölder-stability of the in-

verse problem by proving estimates of the form,

∥F−1(a)− F−1(a)∥L ∼ ∥a− a∥αA, 0 < α ≤ 1. (5)

In some cases, the right-hand side of the above stability

estimate is replaced by a logarithm of ∥a−a∥A, which only

guarantees (weak) logarithmic stability.

After presenting this abstract framework, we provide four

concrete examples of PDE inverse problems (see SM Fig-

ures 3-8 for illustrations) to which this abstract framework

applies.

2.2. Calderón Problem (EIT).

Let the coefficient 0 < a ∈ C2(D) represent the conduc-

tivity of the underlying medium (domain D ⊂ R
d) and the

associated PDE (1) is the following elliptic equation,

−∇ ·
(

a(z)∇u
)

= 0, z ∈ D,

u(z) = g(z), z ∈ ∂D,
(6)



Neural Inverse Operators

with Dirichlet boundary value g ∈ H
1
2 (∂D) representing

the voltage and the current source term is s = 0. The

associated boundary observation operator Λa is the well-

known Dirichlet-to-Neumann (DtN) map,

Λa : H1/2(∂D) 7→ H−1/2(∂D),

Λa[g] = a
∂u

∂ν

∣
∣
∣
∂D

, ∀g ∈ H1/2(∂D),
(7)

which maps the input voltage g into the current a(z)∂u∂ν =
a∇u · ν (with ν being the unit outward normal vector) at

the boundary and u is the solution of (6).

The inverse problem, often referred to as the Calderón prob-

lem, constitutes the basis of EIT (Uhlmann, 2009). It aims to

find the conductivity a of the medium, given different mea-

surements of the DtN (voltage-to-current) pairs. Thus, this

inverse problem falls into the considered abstract formalism

and the inverse map (4) is given by,

F−1 : L
(

H1/2(∂D), H−1/2(∂D)
)

7→ C2(D),

F−1 : Λa 7→ a = F−1(Λa),
(8)

with L(·, ·) denoting the corresponding bounded linear op-

erators. This inverse problem is shown to be well-defined

and (logarithmic-) stable (Clop et al., 2010).

2.3. Inverse Wave Scattering.

In many applications of interest, wave propagation in the

frequency domain is used to infer material properties of

the medium, modelled by the squared slowness 0 < a ∈
L∞(D). The associated PDE is the Helmholtz equation,

−∆u− ω2a(z)u = 0, z ∈ D,

u(z) = g(z), z ∈ ∂D,
(9)

for some frequency ω and Dirichlet boundary condition

g ∈ H
1
2 (∂D). The resulting boundary observation operator

is again the Dirichlet-to-Neumann (DtN) map

Λa : H1/2(∂D) 7→ H−1/2(∂D),

Λa[g] =
∂u

∂ν

∣
∣
∣
∂D

, ∀g ∈ H1/2(∂D),
(10)

where u is the solution to (9) with the coefficient a. The

corresponding inverse problem amounts to inferring the

wave coefficient a from the DtN map (10). Thus, it can be

formulated similar to the inverse map (8). Its well-posedness

and stability have been demonstrated for the Helmholtz

equation in (Nachman, 1988) and references therein.

2.4. Radiative Transport and Optical Imaging.

In optical imaging or tomography, the material properties of

the medium D ⊂ R
d are expressed in terms of the scattering

and absorption coefficients, 0 ≤ a, σa ∈ C(D). The asso-

ciated PDE is the well-known radiative transport equation

(RTE) for the particle density u(z, v) at location z ∈ D and

velocity v ∈ V ⊂ R
d, given by

v · ∇zu(z, v) + σa(z)u(z, v) =
1

ε
a(z)Q[u], z ∈ D,

u(z, v) = ϕ(z, v), z ∈ Γ−,
(11)

where Q[u] =
∫
k(v, v′)u(z, v′)dv′−u(z, v) is the collision

term, ε is the Knudsen number, Γ± = {(z, v) ∈ ∂D × V :
±nz · v ≥ 0} are the inflow (outflow) boundaries and

nz is the unit outer normal vector at z ∈ ∂D. Thus, the

input to this problem is provided by the particle density,

uΓ
−

∈ L1(∂D), prescribed on the inflow boundary. The

associated boundary observation operator Λa defined in (2)

is the so-called Albedo operator,

Λa : L1(Γ−) 7→ L1(Γ+), Λa : u
∣
∣
Γ
−

= ϕ 7→ u
∣
∣
Γ+

, (12)

that maps the incident boundary values on Γ− to the ob-

served boundary values on the outflow boundary Γ+.

The corresponding inverse problem aims to infer the

medium properties characterized by the scattering and ab-

sorption coefficients a, σa from the measurements of the

Albedo operator. It leads to the following inverse map,

F−1 : L
(
L1(Γ−), L

1(Γ+)
)
7→ C(D),

F−1 : Λa 7→ a = F−1(Λa).
(13)

The well-posedness and Lipschitz-stability of this inverse

map were shown in (Bal & Jollivet, 2008).

2.5. Seismic Imaging.

Seismic imaging is widely used in geophysics to infer and

reconstruct sub-surface material properties for various appli-

cations such as CO2 storage monitoring and seismic hazard

assessment. Given a domain D ⊂ R
d, we are interested

in reconstructing the velocity coefficient 0 < a ∈ L∞(D)
by sending in acoustic waves from the top boundary into

the medium and measuring the response in the time domain.

The associated PDE is the acoustic wave equation,

utt(t, z) + a2(z)∆u = s, (z, t) ∈ D × [0, T ]. (14)

with a time-dependent source term s. Here, u is the pressure

variation. The wave equation is supplemented with zero

initial conditions, i.e., u(:, 0) = ut(:, 0) = 0 and suitable

boundary conditions. In particular, sources are placed on

a subset of the boundary, Σ ⊂ ∂D × [0, T ], resulting in a

source term of the form s = gδΣ (with δS being the Dirac

measure concentrated on a set. These waves are transmitted,

reflected, and refracted through the medium. The resulting

signal is recorded at a set of receivers on the boundary
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given by R ⊂ D × [0, T ]. Hence, the boundary observation

operator (2) in this case becomes the Source-to-Receiver

(StR) operator (Symes, 2009),

Λa : L2(Σ) 7→ H1(R), Λa : g 7→ u
∣
∣
R
. (15)

The inverse problem that underpins seismic imaging is

F−1 : L
(
L2(Σ), H1(R)

)
7→ L∞(D),

F−1 : Λa 7→ a = F−1(Λa),
(16)

with Λa is the StR operator (15). Thus, seismic imaging

aims to infer the subsurface spatial medium properties from

spatial-temporal StR signals. This process is also termed

as migration, or Full waveform Inversion (FWI) in the lit-

erature (Deng et al., 2021). There have been studies on

the well-posedness of the inverse problem for the wave

equation (14) (Liu & Oksanen, 2016; Stefanov et al., 2016;

Caday et al., 2019) although they do not directly apply to

the setting considered here.

3. Neural Inverse Operators.

In this section, we present the neural network architecture

for the proposed Neural Inverse Operators (NIOs).

3.1. Learning Task and Challenges.

All four examples described in the previous section were

particular instances of the abstract framework summarized

in (4). Thus, the solution of the inverse problem (4) boils

down to inferring (learning) the inverse map F−1 from rel-

evant data. Given sufficient training data in the form of

pairs
(
Λa,F

−1(Λa)
)

(or given the injectivity of the forward

map, data in the form of pairs (a,Λa)), we aim to learn the

inverse map F−1 and evaluate it on test (unseen) data. This

task is very challenging on account of the following factors:

• The learning task requires us to learn mappings from

operators to functions for F−1 defined in (4).

• The inputs to the inverse map F−1 (4) are specified on

the boundaries ∂Ω whereas the output is the coefficient

a, defined in the interior of the underlying domain D.

Thus, there is a mismatch in the domains of the inputs

and outputs for the inverse map F−1.

• In general, the inverse map F−1 (4) may only be

weakly stable, for instance, either in terms of small

values of the Hölder exponent α in (5) or even only

logarithmic-stable. In these cases, the learning task

can be very sensitive to noises from the input, and

additional regularization terms might be necessary.

3.2. Existing Operator Learning Architectures.

Before proposing a suitable architectures for learning the in-

verse map F−1 (4), we briefly summarize existing operator

learning architectures to examine whether they can be use-

ful in this context. To this end, let D ⊂ R
dx , U ⊂ R

du

and X = X (D) and Y = Y(U) be suitable function

spaces. Then, a DeepONet (Lu et al., 2021) is the oper-

ator, NDON : X → Y , given by

NDON(u)(y) =

p
∑

k=1

βk(u)τk(y), u ∈ X , y ∈ U, (17)

where the branch-net β is a neural network that maps

E(u) = (u(x1), . . . , u(xm)) ∈ R
m, evaluations of the in-

put u at sensor points x := (x1, . . . , xm) ∈ D, to R
p:

β : Rm → R
p, E(u) 7→ (β1(E(u)), . . . , βp(E(u)), (18)

and the trunk-net τ (y) = (τ1(y), . . . , τp(y)) is another

neural network mapping,

τ : U → R
p, y 7→ (τ1(y), . . . , τp(y)). (19)

Thus, a DeepONet combines the branch net (as coefficient

functions) and trunk net (as basis functions) to create a

mapping between functions.

On the other hand, a Fourier neural operator (FNO) NFNO

(Li et al., 2021a) is a composition

NFNO : X 7→ Y : NFNO = Q◦LT ◦· · ·◦L1 ◦R. (20)

It has a “lifting operator” u(x) 7→ R(u(x), x), where R is

represented by a (shallow) neural network R : Rdu ×R
d →

R
dv where du is the number of components of the input

function, d is the dimension of the domain and dv is the

“lifting dimension” (a hyperparameter). The operator Q is a

non-linear projection, instantiated by a shallow neural net-

work, such that vL+1(x) 7→ NFNO(u)(x) = Q
(
vL+1(x)

)
.

Each hidden layer Lℓ : v
ℓ(x) 7→ vℓ+1(x) is of the form

vℓ+1(x) = σ
(
Wℓ · v

ℓ(x) + bℓ(x) +
(
Kℓv

ℓ
)
(x)

)
,

with Wℓ ∈ R
dv×dv a weight matrix (residual connection),

bℓ(x) ∈ R
dv a bias function, σ an activation function, and

the non-local Fourier layer,

Kℓv
ℓ = F−1

N

(
Pℓ(k) · FNvℓ(k)

)
,

where FNvℓ(k) denotes the (truncated)-Fourier coefficients

of the discrete Fourier transform (DFT) of vℓ(x), computed

based on the given N grid values in each direction. Here,

Pℓ(k) ∈ C
dv×dv is a complex Fourier multiplication matrix

indexed by k ∈ Z
d, and F−1

N denotes the inverse DFT.

Both operator learning frameworks (DeepONet and FNO)

and their variants map functions to functions. Hence, they

cannot directly be used to learn the inverse map F−1 (4),

which maps operators to functions. Therefore, we need to

modify and adapt these architectures to learn the inverse

map. The following sections present our proposed approach.
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3.3. A Motivating (Formal) Calculation.

We start by providing a heuristic motivation for our proposed

architecture to learn the inverse map (4). To this end and

for definiteness, we consider the inverse wave scattering

problem for the Helmholtz equation (9), presented in section

2.3. Given the domain D ⊂ R
d, we consider the following

eigenvalue problem with Neumann boundary conditions,

−∆φk = λkφk, ∀z ∈ D.

∂φk

∂ν

∣
∣
∂D

= 0,

∫

D

φkdz = 0. (21)

By standard PDE theory (Evans, 2010), there exist eigen-

values 0 ≤ λk ∈ R for k ∈ N, and the corresponding

eigenfunctions {φk} form an orthonormal basis for L2(D).
We fix K ∈ N sufficiently large and without loss of gener-

ality, we assume ω = 1 in the Helmholtz equation (9) to

consider the following Dirichlet boundary-value problems,

−∆uk − a(z)uk = 0, z ∈ D, 1 ≤ k ≤ K,

u(z) = gk(z), z ∈ ∂D,
(22)

where gk = φk

∣
∣
∂D

. Using (21) and (22), we prove in

SM B, the following formal representation formula for all

1 ≤ k ≤ K,

∫

D

aukφkdz =

∫

D

λkukφkdz −

∫

∂D

gk
∂uk

∂ν
dσ(z). (23)

The formula (23) can be used to construct an approxima-

tion to the coefficient a ∈ L2(D) in the following manner.

Writing a ≈
K∑

ℓ=1

aℓφℓ (using the orthonormality of φ’s) for

K sufficiently large, we can evaluate the coefficients aℓ by

solving the following Matrix equation for A = {aℓ}
K
ℓ=1,

CA = B, Ckℓ =

∫

D

ukφkφldx, ∀k, l,

Bk =

∫

D

λkukφkdz +

∫

∂D

gk
∂uk

∂ν
dσ(z), ∀k.

(24)

Further setting Ψk = ∂uk

∂ν , we observe that the formal ap-

proximation of the coefficent a relies on the following build-

ing blocks,

• Basis construction: The operations Bk : z 7→
(φk(z), λk), 1 ≤ k ≤ K, that form a basis. Note

that they are independent of the coefficient a.

• PDE Solve: The operation Ek : (gk,Ψk) 7→
(
{uk

j }
K
j=1,

∫

∂D

gkΨkdσ(z)
)

that amounts to (approx-

imately) inferring the coefficients of the solution uk

of the Helmholtz equation (22), given the Dirichlet gk
and Neumann Ψk boundary values. A part of the right-

hand side term Bk is also appended to this operation.

Once the coefficients uk
j are computed, the approxima-

tion uk to the solution of (22) is readily computed in

terms of the basis {φk} by setting uk ≈
K∑

j=1

uk
jφj .

• Mode Mixing: The previous two operations were

restricted to individual modes, i.e., to each k, for

1 ≤ k ≤ K. However, to construct the coeffi-

cients Ckl in (24), we need to mix different modes.

One way to do so is through multiplication. We de-

note this operation by M :
(
{φk}

K
k=1, {uk}

K
k=1

)
7→

(

{ukφkφℓ}
K
k,ℓ=1, {λkukφk}

K
k=1

)

.

• Matrix Inversion: In the final step, we need to

build the Matrix C in (24) and (approximately)

invert it. This operation can be summarized by

I :
(

{ukφkφℓ}
K
k,ℓ=1, {λkukφk}

K
k=1

)

7→
∑K

j=1 ajφj ,

with A = {aj} being the solution of (24).

Figure 1. Schematic representation of the Fully-Connected Neural

Inverse Operator (NIO) architecture. See (25) for notation.

3.4. Fully-Connected Neural Inverse Operator.

The formal approximation of the inverse map F−1 (4) for

the Helmholtz equation by formulas (23)-(24) cannot be

directly used in practice as one cannot solve the PDE (22)

without knowing the coefficient a. However, the build-

ing blocks enumerated above motivate either an iterative

fixed-point procedure or, in our case, a learning algorithm

approximating F−1 from data. To this end, we observe that

the basis construction z 7→ φk(z) amounts to a particular

instantiation of a trunk-net (19) of a DeepONet. Similarly,

the PDE solve map Ek : (gk,Ψk) 7→ {uk
j }

K
j=1 is a partic-

ular instance of the application of a branch-net (18) of a

DeepONet. Moreover, they can be combined in a Deep-

ONet (17) to approximate the solutions uk of the PDE (22).

However, a DeepONet (17) is linear in its trunk-net basis

functions and thus cannot represent the non-linear mode

mixing operator M. Instead, one can do so by passing the

outputs of the DeepONet through another (densely) con-

nected neural network. Another possibility is to pass these

outputs through the non-linear lifting layer of an FNO (20).
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Finally, the inversion operator I, an operator inversion at the

continuous level, can be approximated with an FNO.

These heuristic considerations are generalized to the abstract

formalism of the inverse problem (4) and motivate us to

propose the composition (stacking) of DeepONets and FNO

to result in the following map (also illustrated in Figure 1),

NFC :

(
z

{Ψℓ}
L
ℓ=1

)
τ,β
7−→

(
{τp(z)}

P
p=1

{βp}
P
p=1

)

. . .

. . .
N

DON

7−→ {fℓ(z)}
L
ℓ=1

M
7−→ h(z)

N
FNO

7−→ a∗(z),

(25)

for approximating the abstract inverse map F−1 (4).

In other words, the inputs z ∈ D and Ψℓ = Λa(gℓ) (2),

for 1 ≤ ℓ ≤ L, are fed into the trunk- and branch-nets of

a DeepONet NDON (17), respectively, to create L repre-

sentations {fℓ}
L
ℓ=1, defined in the interior of the underlying

domain. These representations are then mixed, for instance,

by a dense fully-connected neural network M, to yield a

mixed representation h(z), which in turn is passed through

an FNO NFNO (20), resulting in an approximation of the

underlying coefficient a∗. We term NFC as the fully con-

nected Neural Inverse Operator (FC-NIO).

We observe that the DeepONet NDON in FC-NIO (25) is

flexible enough to handle inputs defined on the boundary,

i.e., Ψℓ, and produce outputs fℓ, defined on the interior

of the underlying domain. Finally, the injectivity of the

boundary observation operator (2) implies that it suffices to

provide the output Ψℓ = Λa(gℓ) rather than the input-output

pair (gℓ,Ψℓ).

Figure 2. Schematic representation of the Convolutional Neural

Inverse Operator architecture. See (27) for notation.

3.5. Convolutional Neural Inverse Operator.

The PDE (22) admits a Green’s function representation,

(Engquist & Zhao, 2018):

uk(z) =

∫

∂D

∂G

∂ν
(z, y)gk(y)dσ(z), (26)

for a suitable Green’s function G. Moreover, this Green’s

function is translation invariant, i.e., G(z, y) = G(z − y),
at least for the free-space case. Given this representation,

the PDE solve step in section 3.3 allows for a significantly

more parsimonious representation by replacing the fully-

connected branch-net β (18) by a convolutional neural

network (CNN). Interpreting the boundary values gk for

1 ≤ k ≤ K as the K channels of a CNN allows us to

mimic the Green’s function representation (26). The same

kernel is now used for all the boundary inputs to create

approximations to the solution uk of (22).

Generalizing this representation to the abstract inverse prob-

lem (4) results in the following architecture, (also illustrated

in Figure 2),

NCon :

(
z

{Ψℓ}
L
ℓ=1

)
τ,βcon

7−→

(
{τp(z)}

P
p=1

{βp}
P
p=1

)

. . .

. . .
N

DON

7−→ h(z)
N

FNO

7−→ a∗(z),

(27)

for approximating the abstract inverse map F−1 (4). Note

that βcon is a convolutional neural network, and the inputs

Ψℓ are now mixed through the channel mixing in CNNs. We

term this architecture (27) as Convolutional Neural Inverse

Operator (CNIO). Clearly, CNIO allows for a more sparse

representation than FC-NIO. Hence, we expect it to be more

expressive for a similar number of model parameters.

4. Empirical Results.

Both the fully-connected (25) and convolutional (27) ver-

sions of NIO are designed to approximate the abstract form

(4) of the PDE inverse problem as they map operators to

functions. We empirically test NIO on benchmark PDE

inverse problems below. Based on the design, CNIO is ex-

pected to outperform FC-NIO, and this was indeed verified

in all experiments we have performed. Hence, we will re-

port only the results with the convolutional version of NIO,

i.e., CNIO (27). Moreover, the exact details of the training,

as well as the architecture and hyperparameter choices, are

presented in SM C.

As baselines in the following experiments, we choose two

models. First, we consider an end-to-end DeepONet archi-

tecture with a CNN as the branch net in (17). In other words,

we consider (27) but ablate the FNO part at the end by only

considering,

NDonet :

(
z

{Ψℓ}
L
ℓ=1

)
τ,βcon

7−→

(
{τp(z)}

P
p=1

{βp}
P
p=1

)

N
DON

7−→ a∗(z).

(28)

Note that channel mixing in the CNN allows for mode mix-

ing to a certain degree in this architecture. Second, we con-

sider a fully convolutional image-to-image neural network

architecture (details in SM C.1). A variant of this architec-

ture was already used in seismic imaging (full waveform

inversion) in (Deng et al., 2021). We have extended this

architecture significantly to apply it to the abstract inverse

problem (4).
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4.1. Calderón Problem for EIT.

We start with the Calderón inverse problem for the elliptic

equation (6) on the computational domain D = [0, 1]2, with

source s = 0. The training (and test) data are generated by

sampling from a probability distribution on the conductivity

coefficient a. Once a sample conductivity is drawn, a set

of Dirichlet boundary conditions {gℓ}
L
ℓ=1 are drawn from a

probability distribution on the boundary values. For each gℓ,
the underlying elliptic equation is solved numerically with a

standard five-point finite difference scheme and the current,

Ψℓ = a∂u
∂ν , is evaluated on the boundary. We choose the

boundary data gℓ, for 1 ≤ ℓ ≤ L = 20 as the boundary

values of cos(ω(x cos(θℓ)+y sin(θℓ))), with θℓ =
2πℓ
20 . For

the coefficient a, we sample from trigonometric functions

by setting a(x, y) = exp
(∑m

k=1 ck sin(kπx) sin(kπy)
)
,

with m = mod (m) where m ∼ U([1, 5]) and {ck} ∼
U([−1, 1]m). All the models are trained with 4096 training

coefficient samples, and the relative (percentage) test errors

(with respect to 2048 test samples) in both L1 and L2 norms

for CNIO (and the baselines) are presented in Table 1. As

the table shows, CNIO is the best-performing model, outper-

forming the next-best FCNN model by almost halving the

errors. Moreover, the total errors are very small (less than

1%) with CNIO. In contrast, we also experimented with FC-

NIO in this particular example to observe L1-errors of 5.9%,

i.e., almost an order of magnitude bigger than CNIO, reaf-

firming the intuition that the convolutional version of NIO

is much more expressive than the fully-connected variant.

As a second experiment for EIT, we consider a more practi-

cal example suggested in (Muller & Siltanen, 2012), where

the authors model the EIT imaging of the heart and lungs of

a patient using electrodes on the body. This discontinuous

heart and lungs phantom is depicted in SM Figure 4. The

underlying domain is the unit circle, and the elliptic equa-

tion (6) is solved with a standard finite element scheme. The

boundary conditions are given by gℓ(θ) =
1
2π exp(i2πθfℓ),

with ℓ = 1, . . . , 32 and f = [−16, . . . ,−1, 1, 14, 15, 16].
The coefficient a is modelled by adding 8% white noise to

the location, shape, and conductivity of the configuration

of heart and lungs shown in SM Figure 4. The input of

the learning operators is obtained by computing the Fourier

transform at frequencies f of the difference between the

Neumann trace of the PDE solution with the coefficient

a and the one with the unit coefficient a = 1. Again,

the results presented in Table 1 show that CNIO is the

best-performing model and yields very low reconstruction

errors, solving this practical problem with high accuracy.

In contrast, a traditional direct method such as the D-bar

method (Muller & Siltanen, 2012) has a very large error of

8.75% (see SM Figure 13) for this numerical inversion test.

4.2. Inverse Wave Scattering.

In this problem, the Helmholtz equation (9) is considered

on the domain D = [0, 1]2, and the task is to learn coeffi-

cients sampled from a distribution, a(x, y) =
∑m

k=1 exp
(
−

c(x − c1,k)
2 − c(y − c2,k)

2
)
, with c = 2 × 104/3. It

represents a homogeneous medium with square-shaped

inclusions, randomly spread in the domain (see SM Fig-

ure 5). Here, m = mod (m), m ∼ U([1, 5]) and

{(c1,k, c2,k)} ∼ U([0, 1]m×2). For each draw of the co-

efficient, 20 Dirichlet boundary values are prescribed, ex-

actly as in the EIT experiment with trigonometric coeffi-

cients. The corresponding (approximate) solutions of the

Helmholtz equation (9) are computed with a central finite

difference scheme, and the Neumann trace is evaluated to

represent the DtN map. We train the models with 10000
training samples and present the relative (median) test er-

rors, on a test set of 4000 samples, in Table 1. Again, CNIO

is the best-performing model, beating the next-best FCNN

by a significant margin.

4.3. Radiative Transport Equation and Optical Imaging.

Next, we consider the radiative transport equation (11) in

the domain X × V , where X = [0, 1] and V = [−1, 1],
with ε = 1. Consequently, Γ− = {(0, v), v ∈ [0, 1]} ∪
{(1, v), v ∈ [−1, 0]}. The task is to infer the absorption

and scattering coefficients from the Albedo operator (12).

To this end, we fix k(v, v′) = 1, σa = 1 − a in (11)

and draw the absorption coefficient a from the distribu-

tion, a(x) = cχ[−1/2,1/2](rx − x0) + 1, with χ denot-

ing the characteristic function and with c ∼ U([0.5, 1]),
x0 ∼ U([0, 1]) and r ∼ U([0, 0.8]). Once the coefficient

is drawn, boundary conditions on the inflow boundary Γ−

are imposed by setting ϕℓ(0, v) = exp
(
− 200 (v − vℓ)

2 )
,

and ϕℓ(1, v) = 0, if vℓ > 0, and ϕℓ(0, v) = 0, and

ϕℓ(1, v) = exp
(
− 200 (v − vℓ)

2 )
, if vℓ < 0, with vℓ

being the ℓ-th quadrature point used to approximate the

integral term in (11), 1 ≤ ℓ ≤ 32. Then, the radiative

transport equation is approximated with a finite-element

method, and the resulting solution uℓ is evaluated at the out-

flow boundary Γ+ as the output of the Albedo operator (12).

All the models are trained on 4096 training samples, and

the relative median test errors on a test set of 2048 samples

are presented in Table 1, demonstrating that CNIO signifi-

cantly outperforms both FCNN and DeepONet, also in this

case, resulting in low test errors even for the underlying

discontinuous absorption coefficient.

4.4. Seismic Imaging.

In the final test, we model seismic imaging by considering

the acoustic wave equation (14) in the space-time domain

[0, 1]2 × [0, T ] and the task at hand is to learn the under-

lying squared-slowness coefficients a from the source-to-
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receivers map (15). To this end, we choose two types of

coefficients from (Deng et al., 2021), the so-called Style-

A and CurveVel-A datasets. For each medium, waves are

generated at source locations (xsℓ,0) on the vertical bound-

ary, for ℓ = 1, . . . , 5. The corresponding acoustic wave

equation is solved with a finite difference scheme, and the

temporal data is recorded at receivers on the vertical bound-

ary. We follow (Deng et al., 2021) and train all the models

with 55000 and 22000 training samples for the Style-A and

CurveVel-A datasets, respectively, and present the resulting

(median) relative test errors, on a test set of 7000 and 6000
samples, in Table 1. We observe from the table that even

for this problem, CNIO is either outperforming or on par

with FCNN. This is particularly noteworthy as the FCNN

architecture was demonstrated to be one of the states of the

art on this problem in (Deng et al., 2021) among several

machine learning models.

5. Related Work.

Existing methods for solving the class of PDE inverse prob-

lems considered here include the so-called Direct Methods,

such as the D-bar method (Isaacson et al., 2004) for EIT and

the so-called Imaging condition (Claerbout, 1985) for seis-

mic inversion. Iterative methods approximating fixed points

(Bakushinsky & Kokurin, 2005) are also used, including

the very popular gradient-based PDE-constrained optimiza-

tion methods (Chavent, 2010). Another approach falls in

the category of Bayesian formulation of inverse problems

(Tarantola, 2005; Stuart, 2010), which also quantifies the

uncertainty of the solution. Finally, directly learning some

PDE inverse operators from data has been considered in

(Maarten et al., 2022) and references therein.

Table 1. Relative median L1-error and L2-error computed over

testing samples for different benchmarks and models with the best

performing model highlighted in bold.

DONet FCNN CNIO

L1 ↓ L2 ↓ L1 ↓ L2 ↓ L1 ↓ L2 ↓

Calderón Problem
Trigonometric

1.57% 2.0% 1.22% 1.5% 0.67% 0.86%

Calderón Problem
Heart&Lungs

0.44% 2.76% 0.18% 1.34% 0.098% 1.11%

Inverse Wave Scattering 2.65% 5.5% 1.24% 3.4% 0.91% 2.82%

Radiative transport 2.82% 5.04% 1.55% 3.72% 1.19% 2.82%

Seismic Imaging
CurveVel - A

3.91% 5.79% 2.65% 5.05% 2.65% 4.77%

Seismic Imaging
Style - A

3.42% 4.77% 3.12% 4.62% 3.02% 4.42%

6. Discussion.

For PDEs, written in the abstract form (1), we consider a

large class of inverse problems that are only well-defined

when the underlying inverse operator (4), maps an opera-

tor (the boundary observation operator (2)) to the underly-

ing coefficient (a function). The resulting inverse problem

amounts to inferring the unknown coefficient a from data

pairs (Λa,F
−1(Λa)) representing the observation operator.

Existing operator learning frameworks such as DeepONets

(17) and FNOs (20) only map functions to functions. Hence,

one needs to adapt them to be able to learn mappings be-

tween operators and functions in order to solve the inverse

problem (4). To this end, we have proposed a novel archi-

tecture, termed Neural Inverse Operators (NIO), based on

a suitable composition of DeepONets and FNOs. Our ar-

chitecture is motivated by the underlying structure of the

inverse map and comes in fully-connected (25) or convo-

lutional (27) variants. We tested the NIO on a variety of

benchmark inverse problems. These include the Calderón

Problem in electrical impedance tomography, inverse wave

scattering modelled with the Helmholtz equation, optical

imaging using the radiative transport equation, and seis-

mic imaging with the acoustic wave equation. For all these

problems, NIO outperformed baselines significantly and pro-

vided accurate approximations to the unknown coefficients

with small errors (see SM D).

One major challenge in inverse problems is (poor) stability.

However, our tests showed that the learned NIOs are very ro-

bust to both large noise in the observed data and varying grid

sizes in PDE solvers, which is a source of modelling error

(see SM Tables 6 and 7). Therefore, we have provided a uni-

fying machine learning framework that can accurately solve

a large class of PDE inverse problems arising in applications

in science and engineering. The most attractive aspect of

NIO is the extremely low computational cost at inference

compared to traditional PDE-constrained optimization meth-

ods while still retaining satisfactory accuracy levels. As an

example, the inference time for the inverse wave scatter-

ing with CNIO is 0.5 secs. On the other hand, obtaining

similar accuracy with a PDE-constrained optimization ap-

proach will require parallelization and approximately 800
Helmholtz PDE solves of 2 secs each, making NIO at least

three orders of magnitude faster.

As this is the first paper where an end-to-end machine

learning framework is proposed for learning maps between

operators and functions, various extensions are possible.

For instance, other architectures, such as recently pro-

posed LOCA (Kissas et al., 2022), VIDON (Prasthofer

et al., 2022), or graph-based approaches (Boussif et al.,

2022; Brandstetter et al., 2022), can be adapted in this con-

text. Problems in higher-dimensional (particularly with seis-

mic) imaging need to be considered to explore how NIOs

scale with increasing problem size. Finally, approximation

bounds and universality results, in the spirit of (Lanthaler

et al., 2022; Kovachki et al., 2021a) need to be derived in

order to place NIOs on a solid theoretical footing.
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Supplementary Material for:

Neural Inverse Operators for solving PDE Inverse problems.

A. Depiction of PDE Inverse Problems.

In the following figures, we illustrate the different PDE inverse problems considered in the main text.

g ∂u

∂ν

∣
∣
∣
∂D

Λa

Λa

Λa

F−1F−1F−1

a

Figure 3. Illustration of a typical input (left) and output (right) sample for the Calderón Problem for EIT with trigonometric coefficients.

The input is the Dirichlet-to-Neumann (DtN) map (7), represented here by three Dirichlet Boundary condition (Voltage) to Current pairs

and the output is the conductivity coefficient a.

g ∂u

∂ν

∣
∣
∣
∂D

Λa

Λa

Λa

F−1F−1F−1

a

Figure 4. Illustration of EIT for the discontinuous heart-lung Phantom of (Muller & Siltanen, 2012). Left: Input through the DtN

(voltage-to-current) map. Right: Conductivity field showing the phantom of heart and lungs.
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g ∂u

∂ν
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Figure 5. Illustration of detection of inclusions through the Inverse Wave Scattering with the Helmholtz equation. Left: Input represented

through 3 samples for the DtN map. Right: Coefficient a.
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Figure 6. Illustration of Optimal Imaging through the Radiative Transport Equation. Left: Input is the Albedo operator (12) illustrated

with 3 mappings between the inflow and outflow boundaries and Right: Output is the Scattering coefficient.
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g u

∣
∣
R
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a

Figure 7. Illustration of Seismic Imaging. Left: Input is Source-to-Receiver map (15) between Incident waves generated at Sources to

Temporal signals recorder at Receivers. Right: Output is the velocity coefficient, corresponding to Style A dataset of (Deng et al., 2021).

g u

∣
∣
R
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Λa

Λa

F−1F−1F−1

a

Figure 8. Illustration of Seismic Imaging. Left: Input is Source-to-Receiver map (15) between Incident waves generated at Sources to

Temporal signals recorder at Receivers. Right: Output is the velocity coefficient, corresponding to CurveVel A dataset of (Deng et al.,

2021)

B. Proof of Formula (23) in Main Text.

Below, we prove the representation formula (23) in the main text.
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Proof. Multiplying uk (the solution of (22)) to Eqn (21) and integrating over space, we obtain,

∫

D

uk∆φkdz + λk

∫

D

φkdz = 0

Integrating by parts in the above equation and using the Gauss-Green formula yields,

−

∫

D

⟨∇uk,∇φk⟩dz +

∫

∂D

uk
∂φk

∂ν
︸︷︷︸
=0

ds(z) + λk

∫

D

ukφkdz = 0. (29)

Note that the Neumann boundary conditions from (21) in the above.

Similarly, multiplying the solution φk of the Neumann problem (21) to the Eqn (22) and repeating the above integration

parts yields,

−

∫

D

⟨∇uk,∇φk⟩dz +

∫

∂D

gk
∂uk

∂ν
ds(z) +

∫

D

a(z)ukφkdz = 0. (30)

Formula (23) follows by subtracting (29) from (30).

C. Architecture and Training Details

Below, details concerning the model architectures and training are discussed.

C.1. Architecture Details

C.1.1. FEED FORWARD DENSE NEURAL NETWORKS

Given an input y ∈ R
m, a feed-forward neural network (also termed as a multi-layer perceptron) transforms it to an output,

through a layer of units (neurons) which compose of either affine-linear maps between units (in successive layers) or scalar

non-linear activation functions within units (Goodfellow et al., 2016), resulting in the representation,

uθ(y) = CLt
◦ σ ◦ CLt−1 . . . ◦ σ ◦ C2 ◦ σ ◦ C1(y). (31)

Here, ◦ refers to the composition of functions, and σ is a scalar (non-linear) activation function. For any 1 ≤ ℓ ≤ Lt, we

define

Cℓzℓ = Wℓzℓ + bℓ, for Wℓ ∈ R
dℓ+1×dℓ , zℓ ∈ R

dℓ , bℓ ∈ R
dℓ+1 ., (32)

and denote,

θ = {Wℓ, bℓ}
Lt

ℓ=1, (33)

to be the concatenated set of (tunable) weights for the network. Thus, in the machine learning terminology, a feed-forward

neural network (31) consists of an input layer, an output layer, and Lt hidden layers with dℓ neurons, 1 < ℓ < Lt. In all

numerical experiments, the trunk net of DeepONet is a feed-forward neural network. Moreover, we consider a uniform

number of neurons across all the layers of the network dℓ = dℓ−1 = d, 1 < ℓ < Lt.

C.1.2. FULLY CONVOLUTIONAL NEURAL NETWORK

Fully convolutional neural networks are a special class of convolutional networks which are independent of the input

resolution. We use them as a strong baseline for PDE inverse problems in the results presented in Table 1. The networks

consist of an encoder and decoder, both defined by a composition of linear and non-linear transformations:

Eθe(y) = Ce
L ◦ σ ◦ Ce

L−1 . . . ◦ σ ◦ Ce
2 ◦ σ ◦ Ce

1(y),

Dθd(z) = Cd
L ◦ σ ◦ Cd

L−1 . . . ◦ σ ◦ Cd
2 ◦ σ ◦ Cd

1 (z),

uθ(y) = Dθd ◦ Eθe(y).

(34)

The affine transformation Cℓ commonly corresponds to a convolution operation in the encoder, and transposed convolution

(also known as deconvolution), in the decoder.
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The (de)convolution is performed with a kernel Wℓ ∈ R
kℓ×kℓ , stride s, and padding p. It takes as input a tensor

zℓ ∈ R
wℓ×hℓ×cℓ with cℓ being the number of input channels, and computes zℓ+1 ∈ R

wℓ+1×hℓ+1×cℓ+1 . Therefore, a

(de)convolutional affine transformation can be uniquely identified with the tuple (kℓ, s, p, cℓ, cℓ+1).

A visual representation of the convolutional architectures used for the benchmark problems is depicted in Figures 9, 10, 11.

The number of channels c is selected with cross-validation. The architecture used for seismic imagining is referred to as

InversionNet in (Deng et al., 2021).
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Figure 9. Schematic representation of the Fully-Convolutional Neural Network architecture used for the Calderón Problem and Inverse

Wave Scattering with the Helmholtz Equation.
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Figure 10. Schematic representation of the Fully-Convolutional Neural Network architecture used for the optical Imaging with Radiative

transport Equation.

C.1.3. DEEPONET

The architectures of the branch and trunk are chosen according to the benchmark addressed. In particular, we employ

standard feed-forward neural networks as trunk-net in all the experiments. In contrast, the branch is obtained as a composition

of the encoder of the fully convolutional networks depicted in figures 9, 10, 11 and a linear transformation from R
n to R

p,

where n denotes the number of channels in the last layer of the encoder and p the number of basis functions. Moreover,

c = 64 for the Calderón, scattering wave, and radiative transport problems.

Therefore, the architecture of the branch is fixed. The number of the trunk hidden layers Lt, units d, and p are chosen

through cross-validation. On the other hand, the activation function σ is chosen to be a leaky ReLU.
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Figure 11. Schematic representation of the Fully-Convolutional Neural Network architecture used for the Seismic imaging problems.

C.1.4. FOURIER NEURAL OPERATOR

We use the implementation of the FNO model provided by the authors of (Li et al., 2021a). Specifically, the lifting R is

defined by a linear transformation, and the projection Q to the target space is performed by a shallow neural network with a

single hidden layer with 128 neurons and GeLU activation function. The same activation function is also used for all the

Fourier layers. Moreover, bℓ(x) = 0, for all ℓ = 1, . . . , T and the weight matrix Wℓ used in the residual connection derives

from a convolutional layer defined by (kℓ = 1, s = 1, p = 0, cℓ = dv, cℓ+1 = dv), for all 1 < ℓ < T .

C.1.5. CONVOLUTIONAL NEURAL INVERSE OPERATOR

In all numerical experiments, the proposed architecture is constructed as a composition of DeepONet and Fourier Neural

Operator, both defined above. Hence, the model includes the following hyperparameters: the number of layers Lt and

neurons d of the DeepONet trunk, the number of basis functions p, and the lifting dimension dv, the number of Fourier

layers T and number of (truncated)-Fourier coefficients k, of FNO.

C.2. Training Details

The training of the models, including the baselines, is performed with the ADAM optimizer, with a learning rate η for

1000 epochs (120 epochs in the Seismic imaging problem) and minimizing the L1-loss function. We also use a step

learning rate scheduler and reduce the learning rate of each parameter group by a factor γ every epoch. We train the

models in mini-batches of size 256, and a weight decay of magnitude w is used. Moreover, the input and output data are

transformed with a suitable map before training. Observe that the testing error reported in Table 1 has been obtained on the

non-transformed output data. We consider 3 different data transformations:

1. scaling of the inputs and outputs between −1 and 1 (Scaling);

2. normalizing the input by subtracting the function mean, dividing by the standard deviation function, and scaling the

outputs between −1 and 1 (Inputs-Normalization);

3. normalizing both the inputs and the outputs (Normalization);

All the parameters mentioned above, including the type of data transformation (Identity, Scaling, Inputs-Normalization,

Normalization), are chosen through cross-validation.

At every epoch, the relative L1 error is computed on the validation set, and the set of trainable parameters resulting in the
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lowest error during the entire process is saved for testing. Early stopping is used to interrupt the training if the best validation

error does not improve after 50 epochs.

The cross-validation is performed by running a random search over a chosen range of hyperparameters values and selecting

the configuration, realizing the lowest relative L1 error on the validation set. For instance, the model size (minimum and

maximum number of trainable parameters) covered in this search are reported in Table 2.

The results of the random search, i.e., the best-performing hyperparameter configurations for each model and each benchmark,

are reported in tables 4, 3 and 5. The FCNN hyperparameters reported in the table for the seismic imaging problem are

those used in (Deng et al., 2021). For instance, differently from the input normalization used here, in (Deng et al., 2021), a

log-transform of the inputs and scaling of the outputs is employed instead.

Calderón
Problem

Trigonometric

Calderón
Problem

Heart&Lungs

Inverse Wave
Scattering

Radiative
Transport

Seismic
Imaging

CurveVel - A

Seismic
Imaging
Style - A

DONet
4,603,918
9,073,268

9,542,414
14,011,764

4,603,918
9,073,268

9,542,314
14,011,264

11,988,494
16,457,844

11,988,494
16,457,844

FCNN
1,070,339

68,315,139
4,308,067

275,366,659
1,070,339
68,315,139

2,475,107
39,526,787

24,409,123
24,409,123

24,409,123
24,409,123

CNIO
5,638,487

45,878,313
10,576,983
50,816,809

5,638,487
45,878,313

9,578,483
12,225,689

11,988,494
16,457,844

11,988,494
16,457,844

Table 2. Minimum (Top sub-row) and maximum (Bottom sub-row) number of trainable parameters among the random-search hyperpa-

rameters configurations for all the models in every problem reported in Table 1 in main text.

Calderón
Problem

Trigonometric

Calderón
Problem

Heart&Lungs

Inverse Wave
Scattering

Radiative
Transport

Seismic
Imaging

CurveVel - A

Seismic
Imaging
Style - A

η 0.001 0.001 0.001 0.001 0.001 0.001

γ 1 0.98 1 1 0.98 0.98

w 0 0 0 0 0 1e-6 1e-6

Data Trans Norm Norm-Inp Norm Identity Inputs-Norm Norm

p 100 100 100 25 400 400

Lt 15 15 12 12 8 8

d 500 500 200 200 500 200

Trainable
Params

8,160,668 13,099,164 5,055,368 9,940,114 12,491,744 14,088,944

Table 3. DeepONet best-performing hyperparameters configuration for different benchmark problems.

Calderón
Problem

Trigonometric

Calderón
Problem

Heart&Lungs

Inverse Wave
Scattering

Radiative
Transport

Seismic
Imaging

CurveVel - A

Seismic
Imaging
Style - A

η 0.0005 0.0005 0.0005 0.0005 0.0001 0.0001

γ 1 1 1 1 1 1

w 0 0 0 1e-6 1e-4 1e-4

Data Trans Scaling Inputs-Norm Scaling Scaling Log-Scaling Log-Scaling

c 128 128 128 16 64 64

Trainable
Params

68,315,139 275,366,659 68,315,139 2,475,107 24,409,123 24,409,123

Table 4. Fully convolutional neural network best-performing hyperparameters configuration for different benchmark problems.
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Calderón
Problem

Trigonometric

Calderón
Problem

Heart&Lungs

Inverse Wave
Scattering

Radiative
Transport

Seismic
Imaging

CurveVel - A

Seismic
Imaging
Style - A

η 0.001 0.001 0.001 0.001 0.001 0.001

γ 0.98 1 0.98 0.98 1 0.97

w 0 0 1e-6 0 0 0

Data Trans Scaling Norm Scaling Scaling Inputs-Norm Norm

p 25 25 100 400 500 500

Lt 8 8 6 6 8 8

d 200 200 200 100 256 256

k 25 50 25 32 16 16

dv 64 64 64 128 64 32

L 4 3 3 4 3 3

Trainable
Params

25,344,763 40,519,099 20,192,953 11,952,789 14,088,944 12,491,744

Table 5. Convolutional Neural Inverse Operator best-performing hyperparameters configuration for different benchmark problems.

D. Further Experimental Results

D.1. Illustration of Results reported in Table 1.

(a) Test Sample 1

(b) Test Sample 2

Figure 12. Exact and predicted coefficients for two different test samples (Rows) for the Calderón problem with Trigononmetric -

coefficients. Left Column: Ground Truth. Middle Column: CNIO reconstruction. Right Column: FCNN Reconstruction.
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(a) Test Sample 1

(b) Test Sample 2

Figure 13. Exact and predicted coefficients for two different test samples (Rows) for the Calderón problem with Trigononmetric -

coefficients. Left Column: Ground Truth. Middle Column: CNIO reconstruction. Right Column: Reconstruction with the D-bar Direct

method of (Muller & Siltanen, 2012)

We start by elaborating on the results obtained on the benchmarks and presented in Table 1. In Figure 12, we show two

randomly drawn test samples for the Calderón Problem for inferring conductivity with trigonometric coefficients by EIT.

For both these test samples, we see that CNIO (and FCNN) can accurately approximate the ground truth without any visible

artifacts. This observation correlates with very small test errors with CNIO. At least for these two samples, there appears

to be little visible difference between CNIO and FCNN. Nevertheless, the results from Table 1 demonstrate that CNIO

outperforms FCNN considerably on this problem by almost halving the test error.

Next, in Figure 13, we focus on the discontinuous heart-lungs Phantom inferred with EIT. We follow the problem setup

of (Muller & Siltanen, 2012) and plot the ground truth and the CNIO reconstruction for a couple of randomly chosen test

samples. For comparison, we also plot the reconstruction with the D-bar method. This method is a direct method (Muller &

Siltanen, 2012), which is widely used in the context of EIT. As observed from the figure, CNIO reconstructs the ground

truth to very high accuracy, consistent with the very small errors presented in Table 1.

On the other hand, the D-bar method is relatively inaccurate and provides a blurred and diffusive reconstruction of the shapes.

In fact, the L1-test error for the D-bar method is an unacceptably high 8.75%, compared to the almost 0.1% test error with

CNIO. This is even more impressive when one looks at the run times. The D-bar method takes approximately 2 hours to run

for a single sample, whereas the inference time for CNIO is only 0.5 seconds. Thus, we can provide a method which two

orders of magnitude more accurate while being four orders of magnitude faster to run. This highlights the massive gain in

performance with machine learning-based methods, such as CNIO, compared to traditional direct methods.

In Figure 14, we plot the results of two randomly chosen test samples for the Inverse wave scattering problem and compare

the ground truth with the reconstruction with CNIO and FCNN. In the first sample (top row), both models accurately

reconstruct the ground truth coefficient with very little visible difference between the competing models. In contrast, in the
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(a) Test Sample 1

(b) Test Sample 2

Figure 14. Exact and predicted coefficients for two different test samples (Rows) for the Inverse Wave Scattering with Helmholtz Equation.

Left Column: Ground Truth. Middle Column: CNIO reconstruction. Right Column: FCNN Reconstruction.

second sample, the reconstruction with CNIO and FCNN are noticeable differences. In particular, FCNN cannot reconstruct

the small rectangular scatterer (at the top right of the square domain), whereas CNIO can reconstruct it. This possibly

explains why CNIO is significantly more accurate (see Table 1) for this experiment in reconstructing scatterers.

In Figure 15, we plot two randomly chosen test samples to recover the absorption coefficient with optical imaging for the

Radiative transport equation (11). The ground truth and reconstructions obtained with CNIO and FCNN are shown. For

the first test sample, both models can provide an accurate reconstruction with a sharp resolution of the discontinuities in

the absorption coefficient. On the other hand, for the second sample (Figure 15 Right), we see that FCNN gets the correct

location but the wrong magnitude of the discontinuity, whereas CNIO can approximate both accurately, probably accounting

for the significant gain in accuracy on this problem (see Table 1 of main text).

In Figures 16 and 17, we show two randomly chosen test samples for Seismic imaging of the subsurface property (squared

slowness) by the acoustic wave equation (14), corresponding to the CurveVel-A and Style A datasets (considered in (Deng

et al., 2021)), respectively. Both figures show that CNIO and FCNN reconstruct the coefficient reasonably accurately,

although there are slight differences between the models. Nevertheless, coupled with quantitative results from Table 1, we

can conclude that CNIO is at least on par with FCNN, which was shown to be one of the state-of-the-art models in this

context in (Deng et al., 2021).
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(a) Test Sample 1 (b) Test Sample 2

Figure 15. Exact and predicted absorption coefficients for two different test samples, obtained with optical imaging for the radiative

transport Equation.

D.2. Sensitivity of Reconstructions to Noise

Inverse problems, such as the abstract PDE inverse problem (4), can be very sensitive to noise as the stability estimate (5)

indicates, and reconstruction methods have to show some robustness with respect to noisy measurements in order to be

practically useful. To test the robustness of CNIO (and competing models) to noise, we take all the benchmark test problems

reported in Table 1 of the main text and add varying amounts of noise to the inputs to each model at test time. The resulting

test errors, with varying noise levels, are presented in Table 6. This table shows that CNIO (as well as DOnet and FCNN) is

very robust to this measurement noise. Even adding 10% noise to the inputs at the time of inference only leads to a minor

deterioration of accuracy.

DONet FCNN CNIO

σσσ 1% 5% 10% 1% 5% 10% 1% 5% 10%

Calderón Problem
Trigonometric

1.58% 1.89% 2.76% 1.25% 1.74% 2.8% 0.72% 1.13% 1.86%

Calderón Problem
Heart&Lungs

0.43% 0.47% 0.61% 0.18% 0.28% 0.48% 0.10% 0.15% 0.22%

Inverse Wave Scattering 2.65% 2.65% 2.76% 1.24% 1.25% 1.28% 0.91% 0.97% 1.0%

Radiative transport 2.20% 2.92% 3.05% 1.59% 2.06% 2.87% 1.23% 1.35% 1.58%

Seismic Imaging
CurveVel - A

3.91% 4.05% 4.42% 2.65% 2.67% 2.65% 2.67% 2.79% 3.00%

Seismic Imaging
Style - A

3.45% 3.68% 4.00% 3.12% 3.12% 3.14% 3.03% 3.25% 3.65%

Table 6. Relative median L1-error computed over σ-noisy testing samples for different benchmarks with different models.

D.3. Robustness of Reconstructions to Varying Grid Sizes.

Although the inputs and outputs to the inverse problem (4) are continuous objects in principle, in practice, one has to deal

with discretized versions of both inputs and outputs. This is true when the ground truth is generated by numerical simulations

and observed through other forms of measurement. It is highly desirable that an operator learning algorithm be robust to the

resolutions at which it is tested; see (Kovachki et al., 2021b) for further discussion on this topic. To test if the proposed

NIO architecture is robust with respect to resolution, we focus on the inverse wave scattering with the Helmholtz equation
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(a) Test Sample 1

(b) Test Sample 2

Figure 16. Exact and predicted coefficients for two different test samples (Rows) for the Seismic Imaging with the acoustic wave equation

with CurveVel A data set. Left Column: Ground Truth. Middle Column: CNIO reconstruction. Right Column: FCNN Reconstruction.
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(a) Test Sample 1

(b) Test Sample 2

Figure 17. Exact and predicted coefficients for two different test samples (Rows) for the Seismic Imaging with the acoustic wave equation

with Style A data set. Left Column: Ground Truth. Middle Column: CNIO reconstruction. Right Column: FCNN Reconstruction.
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example, where CNIO was trained with data obtained from a finite difference scheme on a uniform 70× 70 grid. To test the

robustness with respect to resolution, we use this trained model to also infer at two different resolutions, namely at 50× 50
and 100× 100, and present the results, together with DeepONet and FCNN baselines in Table 7 to observe that CNIO (and

the baselines) is robust to varying resolutions. The accuracy does not change much, even if the test resolutions are changed.

DONet FCNN CNIO

Resolution 50× 50 100× 100 50× 50 100× 100 50× 50 100× 100

Inverse Wave Scattering 2.65% 2.44% 0.79% 0.79% 0.57% 0.53%

Table 7. Relative median L1-error computed over testing samples generated at different resolutions (grid sizes).


