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EDGE MODES IN SUBWAVELENGTH RESONATORS IN ONE DIMENSION

1. Introduction

In the past decade, controlling and manipulating waves via interaction with objects at
subwavelength scales has gained a lot of attention in both photonics and phononics [26, 27,
34]. One way to achieve subwavelength interactions is to use high-contrast metamaterials,
that are media constituted by the insertion of a set of highly contrasted resonators into a
background medium. Here, subwavelength means that the size of such resonators is much
smaller than the operating wavelength. A typical example in acoustics of such high-contrast
resonators are air bubbles in water, which give rise to Minneart resonances [7]. Examples in
electromagnetics include high-contrast dielectric particles and plasmonic particles [11, 12].

High-contrast subwavelength resonators have been extensively studied in the three-dimen-
sional case [1, 5, 7, 14, 22]. Recently, an increased interest has been dedicated to topological
properties of one-dimensional resonators. Studies include one-dimensional infinite periodic
media with continuous material parameters [30], simplified Su-Schrieffer-Heeger (SSH) mod-
els [13] and various physical experiments [32, 33]. A rigorous mathematical analysis of the
finite one-dimensional case was recently presented [24]. The present work completes this
analysis by considering the one-dimensional periodic case. Since the interactions between
the subwavelength resonators only imply the nearest neighbors in one-dimension, it also
connects the field of high-contrast metamaterials to condensed-matter physics.

In classical wave systems, sources of amplification and dissipation of energy can be mod-
elled by non-real material parameters making the underlying system non-Hermitian, mean-
ing that the left and right eigenmodes are distinct. Our work considers both Hermitian and
non-Hermitian systems of subwavelength resonators. We look at these two cases separately
as they present deep underlying differences. A particular case of non-Hermitian systems
are those with parity-time (PT-) symmetry. Recently, non-Hermitian subwavelength res-
onators have been studied in three dimensions [10], but to the best of our knowledge no
literature exists on the one-dimensional case, which is of interest not only for the study
of one-dimensional metamaterials but also of quantum systems as the interactions in both
cases are short-range.

In this work, we are able to show that, similarly to the three-dimensional case [6], also
in the one-dimensional case it is possible to design subwavelength structures where certain
frequencies cannot propagate and are trapped near an edge. This typically happens by in-
troducing a defect in the geometry — in the Hermitian case — or in the material parameters
— in the non-Hermitian case. Generally these localised modes are sensitive with respect
to small perturbations. In order to manufacture structures presenting the said characterist-
ics, stability with respect to perturbations is required. We take inspiration from quantum
mechanics where so-called topological insulators have been extensively studied [15, 17, 18,
19]. The underlying principle of these structures is the existence of a topological invariant
that captures the propagation properties of the system. In the present setup, the correct
topological invariant is the Zak phase. The combination of two structures having different
invariants will give rise to modes that are confined at the interface of the structure and that
are stable with respect to imperfections. These modes are known as topologically protected
edge modes. We first compute the Zak phase for both the Hermitian and non-Hermitian
cases and prove that the non-Hermitian one is not quantised. Then we show the existence
of the said edge modes and demonstrate their robustness. Moreover, in the non-Hermitian
case, we also provide a full characterisation of these modes.

The paper is organized as follows. In Section 2, we present the mathematical setup
of the problem. In Section 3, we introduce the Dirichlet-to-Neumann map and solve the
exterior problem. Section 4 is dedicated to deriving an asymptotic approximation of the
subwavelength resonances and their associated modes. We show that a generalised eigenvalue
problem involving the capacitance matrix solves this. The exact tridiagonal structure of the
capacitance matrix allows us to study the topological properties of one-dimensional systems
of subwavelength resonators without dilute regime assumptions. In Section 5, we focus on
the Hermitian case and show numerically the existence of edge modes in the presence of
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geometrical defects. Ultimately in Section 6, we first explicitly compute the Zak phase
and then prove the existence of an edge mode in the case of defects in the periodicity of
the material parameters. The robustness of the edge modes in both the Hermitian and
non-Hermitian cases is illustrated numerically.

2. Problem statement and preliminaries

2.1. Problem formulation

We consider a one-dimensional system constituted of N periodically repeated disjoint

subwavelength resonators Di := (xL

i , xR

i ), where (xL,R
i )1≤i≤N ⊂ R are the 2N extremities

satisfying xL

i < xR

i < xL

i+1 for any 0 ≤ i ≤ N − 1. We assume without loss of generality that

xL

1 = 0. We denote by (xL,R
i )i∈N the infinite sequence obtained by setting

xL,R
i+N := xL,R

i + L,

for some L > xR

N − xL

1. Furthermore, we let Dn =
⋃N

i=1 Di + nL so that Dn = D + nL
is just the repetition of D0 =: D. We denote the entire structure by C :=

⋃
n∈Z

Dn. We

also denote by ℓi = xR

i − xL

i the length of the i-th resonators, and by si = xL

i+1 − xR

i the
spacing between the i-th and (i + 1)-th resonator. With our convention, the spacing sN is
the distance that separates the last resonator of a unit cell from the first of the next one:

sN := xL

N+1 − xR

N = L − xR

N + xL

1.

One notices that L =
∑N

i=1 ℓi +si is the size of the unit cell, which we denote by Y := (0, L).
The system is illustrated on Figure 1.
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Figure 1. An infinite chain of N subwavelength resonators, with lengths
(ℓi)1<i≤N and spacings (si)1≤i≤N−1, periodically repeated with
period L.

As a wave field u(t, x) propagates in a heterogeneous medium, it is solution to the following
one-dimensional wave equation:

1

κ(x)

d2

dt2
u(t, x) − d

dx

(
1

ρ(x)

d

dx
u(t, x)

)
= 0, (t, x) ∈ R×R . (2.1)

The parameters κ(x) and ρ(x) are the material parameters of the medium. We consider

κ(x) =

{
κi x ∈ Di + LZ,

κ x ∈ R \C,
, ρ(x) =

{
ρb x ∈ Di + LZ,

ρ x ∈ R \C,
(2.2)

where ρb, ρ ∈ R>0. We are interested in both the Hermitian κi ∈ R>0 and the non-Hermitian
κi ∈ C (with nonzero imaginary parts) cases. In the Hermitian case we typically set for
simplicity κi = κb for some κb ∈ R for all 1 ≤ i ≤ N . We stick with the general notation
allowing different κi’s, but think of them as equal to a positive constant in the Hermitian
case.

Following the notation of [7, 22], the wave speeds inside the resonators C and inside the
background medium R \C, are denoted respectively by vi and v, the wave numbers respect-
ively by ki and k, and the contrast between the ρ’s of the resonators and the background
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medium by δ:

vi :=

√
κi

ρb
, v :=

√
κ

ρ
, ki :=

ω

vi
, k :=

ω

v
, δ :=

ρb

ρ
. (2.3)

Up to using a Fourier decomposition in time, we can assume that the total wave field
u(t, x) is time-harmonic:

u(t, x) = ℜ(e−iωtu(x)), (2.4)

for a function u(x) which solves the one-dimensional Helmholtz equations:

− ω2

κ(x)
u(x) − d

dx

(
1

ρ(x)

d

dx
u(x)

)
= 0, x ∈ R . (2.5)

In these circumstances of step-wise defined material parameters, the wave problem de-
termined by (2.5) can be rewritten as the following system of coupled one-dimensional
Helmholtz equations:





d

dx2
u(x) +

ω2

v2
u(x) = 0, x ∈ R \C,

d

dx2
u(x) +

ω2

v2
i

u(x) = 0, x ∈ Di + LZ,

u|R(xL,R
n ) − u|L(xL,R

n ) = 0, ∀n ∈ Z,

du

dx

∣∣∣∣
R

(xL

n) − δ
du

dx

∣∣∣∣
L

(xL

n) = 0, ∀n ∈ Z,

δ
du

dx

∣∣∣∣
R

(xR

n) − du

dx

∣∣∣∣
L

(xR

n) = 0, ∀n ∈ Z,

(2.6)

where for a one-dimensional function w we denote by

w|L(x) := lim
s→0
s>0

w(x − s) and w|R(x) := lim
s→0
s>0

w(x + s)

if the limits exist.

2.2. Floquet-Bloch theory

To study this periodic problem we use Floquet-Bloch theory (see, for instance, [9, 25]).

Definition 2.1. Given f(x) ∈ L2(R), the Floquet transform of f with period L is defined
as

F [f ](x, α) :=
∑

n∈Z

f(x − mL)eiαmL.

The Floquet transform is an analogue of the Fourier transform in the periodic case. Also
for the Floquet transform, the original function may be recovered from the collection of the
transformed ones via the following Plancherel type inversion:

F−1[g](x) =
L

2π

∫ π
L

− π
L

g(x, α) dα.

A function f : R → C is said to be α-quasiperiodic if e−iαxf(x) is periodic. One remarks
that F [f ](x, α) is α-quasiperiodic in x (with period L) and periodic in α (with period 2π

L ).
We will thus be interested in quasiperiodicities laying in the first Brillouin zone Y ∗ :=
R / 2π

L Z = (− π
L , π

L ]. We will denote uα(x) := F [u](x, α) the Floquet transform of a solution
to (2.6). Inserting uα(x) into (2.5) and using the periodicity of the material parameters κ(x)
and ρ(x), we find that uα(x) solves

− ω2

κ(x)
uα(x) −

(
d

dx
+ iα

)[
1

ρ(x)

(
d

dx
+ iα

)
uα(x)

]
= 0, x ∈ R, (2.7)

where x 7→ uα(x) is L-periodic.

4



H. Ammari, S. Barandun, J. Cao, and F. Feppon

The following lemma describes the subwavelength resonances — that is ωα for which (2.7)
has a nontrivial solution — in the Hermitian case.

Lemma 2.2. Let κ ∈ R>0 and κi = κb ∈ R>0 for all i. Then there exists a family of real
non-negative eigenfrequencies (ωα

p )p∈N such that, for any p ∈ N:

(i) α 7→ ωα
p is an analytic, 2π/L-periodic function of α for any p ≥ 1;

(ii) α 7→ ωα
0 is an analytic 2π/L–periodic function except as α ∈ 2π

L Z, where it has a
linear behaviour:

ωα
0 ∼ c|α| + O(α2) as |α| → 0,

corresponding to the crossing of the branches ωα
0 and ω−α

0 . Furthermore, a direct
computation shows that

c =

√√√√
∫ L

0
1

ρ(x) dx
∫ L

0
1

κ(x) dx
∼ vb as δ → 0; (2.8)

(iii) For any α ∈ (−π/L, π/L), there exists a nontrivial L-periodic function uα
p (x) solu-

tion to (2.7) with ω = ωα
p . The function uα

p (x) is called a Bloch mode and can be
chosen analytic with respect to the parameter α ∈ R;

(iv) By convention, one can choose

0 = ωα=0
0 < ωα=0

1 ≤ ωα=0
2 ≤ . . . ,

where ωα=0
p is the p-th eigenvalue of the symmetric eigenvalue problem (2.7) at

α = 0;
(v) ωα

p = 0 with α ∈
(
− π

L , π
L

)
if and only if α = 0 and p = 0, which is associated to the

constant Bloch mode. As a consequence,

ωα
p > 0 for any p ≥ 1 or for p = 0 with α 6= 0;

(vi) ωα
p = ω−α

p and uα
p (x) is a Bloch mode for the quasiperiodicity −α.

Proof. All these properties result from the fact that

α 7→ −
(

d

dx
+ iα

)[
1

ρ(x)

(
d

dx
+ iα

)]

form a holomorphic family of Hermitian operators on the space of H1
per((0, L)), where

H1
per((0, L)) is the usual Sobolev space of periodic complex-valued functions on (0, L). Rel-

lich’s theorem ensures in particular that α 7→ (ωα
p )2 is analytic, and hence ωα

p is analytic
for all values of α except maybe ωα

0 at α = 0. However, the parity property implies that
(ωα

0 )2 = O(α2) as α → 0, and then ωα
0 /|α| is analytic in α.

The value of c in (2.8) can be found as follows. Denoting λ0(α) := (ωα
0 )2, we find by

differentiating (2.7) with respect to α that
[
−λ0(α)

κ(x)
−
(

d

dx
+ iα

)[
1

ρ(x)

(
d

dx
+ iα

)]]
d

dα
uα

0 (x)

=
λ′

0(α)

κ(x)
uα

0 (x) + i
1

ρ(x)

(
d

dx
+ iα

)
uα

0 (x) +

(
d

dx
+ iα

)[
1

ρ(x)
iαuα

0 (x)

]
. (2.9)

Setting α = 0 and using that λ0(0) = 0 and uα
0 (x) ≡ u0 is a constant, we obtain that

λ′
0(0) = 0, and then d

dα u0
0(x) = 0. Then, differentiating (2.9) with respect to α and setting

α = 0, we obtain
[
−
(

d

dx

)[
1

ρ(x)

(
d

dx

)]]
d2

dα2
u0

0(x) =
λ′′

0(0)

κ(x)
u0 − 2

1

ρ(x)
u0.

From Fredholm’s alternative, this equation admits a L-periodic solution if and only if
∫ L

0

(
λ′′

0(0)

κ(x)
u0 − 2

1

ρ(x)
u0

)
dx = 0,
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which yields

λ′′
0(0)

2
=

∫ L

0
1

ρ(x) dx
∫ L

0
1

κ(x) dx
,

and hence (2.8) holds. The asymptotic expansion (2.8) is obtained then from the formula

∫ L

0
1

ρ(x) dx
∫ L

0
1

κ(x) dx
=

1
ρb

∑N
i=1 ℓi + 1

ρ

(
L −∑N

i=1 ℓi

)

1
κb

∑N
i=1 ℓi + 1

κ

(
L −∑N

i=1 ℓi

) =

∑N
i=1 ℓi + δ

(
L −∑N

i=1 ℓi

)

1
v2

b

∑N
i=1 ℓi + δ

v2

(
L −∑N

i=1 ℓi

) = v2
b +O(δ).

�

We recall from [9] that the subwavelength spectrum of the operator associated to (2.5) is
given by

σ =
N−1⋃

p=0

⋃

α∈Y ∗

ωα
p ,

both in the Hermitian and the non-Hermitian cases.
This describes the band structure of the subwavelength spectrum of (2.5): for each p the

spectrum traces out bands ωα
p as α varies. In the Hermitian case, the spectrum is said to

have a subwavelength band gap if, for some 0 ≤ p ≤ N − 1, maxα ωα
p < minα ωα

p+1. In the
non-Hermitian case, a subwavelength band gap is a connected component of C \σ. A band
is said to be non-degenerate if it does not intersect any other band.

Consequently, we study the equivalent one-dimensional spectral problem in the unit cell
Y for the function u(x, α) := uα(x)eiαx for α ∈ Y ∗:





d

dx2
u(x) +

ω2

v2
u(x, α) = 0, x ∈ R \C,

d

dx2
u(x) +

ω2

v2
i

u(x, α) = 0, x ∈ Di + LZ,

u|R(xL,R
n , α) − u|L(xL,R

n , α) = 0, ∀n ∈ Z,

du

dx

∣∣∣∣
R

(xL

n, α) − δ
du

dx

∣∣∣∣
L

(xL

n, α) = 0, ∀n ∈ Z,

δ
du

dx

∣∣∣∣
R

(xR

n, α) − du

dx

∣∣∣∣
L

(xR

n, α) = 0, ∀n ∈ Z,

u(x + L, α) = u(x, α)eiαL for almost every x ∈ R,

(2.10)

and consider the subwavelength resonances for the scattering problem (2.10) by performing
an asymptotic analysis in the low-frequency and high-contrast regimes

ω → 0 as δ → 0. (2.11)

For this, we adapt the Dirichlet-to-Neumann approach of [23, 24] to the one-dimensional
quasiperiodic problem (2.10).

3. Quasiperiodic Dirichlet-to-Neumann map

In this section, we characterize the Dirichlet-to-Neumann map of the Helmholtz operator
on the domain Y with the quasiperiodic boundary conditions. We give a fully explicit
expression of this operator in Proposition 3.3, before computing its leading-order asymptotic
expansion in terms of δ in Corollary 3.4.

In all what follows, we denote by H1(D) the usual Sobolev space of complex-valued
functions on D and let H1

per(R) be the the usual Sobolev space of periodic complex-valued

functions on R and H1
per,α(R) := {u : e−iαxu ∈ H1

per(R)}.
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Throughout the paper, we also denote by C
2N,α the set of quasiperiodic boundary data

f ≡ (fL,R
i )i∈Z satisfying

fL,R
i+N = eiαLfL,R

i ,

where fL

i (respectively fR

i ) refers to the component associate to xL

i (respectively to xR

i ).
The space of such quasiperiodic sequences is clearly of dimension 2N . The following lemma
provides an explicit expression for the solution to exterior problems on R \C.

Lemma 3.1. Assume that k is not of the form k = nπ/si for some nonzero integer n ∈ Z \{0}
and index 1 ≤ i ≤ N . Then, for any quasiperiodic sequence (fL,R

i )1≤i≤N ∈ C
2N,α, there

exists a unique solution wα
f ∈ H1

per,α(R) to the exterior problem:




(
d2

dx2
+ k2

)
wα

f (x) = 0, x ∈ R \C,

wα
f (xL,R

i ) = fL,R
i , ∀ 1 ≤ i ≤ N,

wα
f (x + L) = eiαLwα

f (x), x ∈ R \C .

(3.1)

Furthermore, when k 6= 0, the solution wα
f reads explicitly

wα
f (x) = aie

ikx + bie
−ikx if x ∈ (xR

i , xL

i+1), ∀i ∈ Z, (3.2)

where ai and bi are given by the matrix-vector product

ai

bi


 = − 1

2i sin(ksi)


e−ikxL

i+1 −e−ikxR

i

−eikxL

i+1 eikxR

i




 fR

i

fL

i+1


 . (3.3)

Proof. Identical to [24, Lemma 2.1]. �

Definition 3.2 (Dirichlet-to-Neumann map). For any k ∈ C which is not of the form nπ/si

for some n ∈ Z \{0} and 1 ≤ i ≤ N − 1, the Dirichlet-to-Neumann map with wave number

k is the linear operator T k,α : C
2N → C

2N defined by

T k,α[(fL,R
i )1≤i≤N ] =

(
±

dwα
f

dx
(xL,R

i )

)

1≤i≤N

, (3.4)

where wα
f is the unique solution to (3.1).

The condition that k ∈ C is not of the form nπ/si for some n ∈ Z \{0} and i ∈ Z is
equivalent to state that k2 is not a (quasiperiodic) Dirichlet eigenvalue of − d2/ dx2 on R \C.

We consider a minus sign in (3.4) on the abscissa xL

i because T k,α[(fL,R
j )1≤j≤N ]L,R

i is the

normal derivative of wα
f at xL,R

i , with the normal pointing outward the segment (xL

i , xR

i ). This
convention allows us to maintain some analogy with the analysis in the three-dimensional
setting considered in [23, Section 3].

In the next proposition, we compute T k,α explicitly.

Proposition 3.3. The Dirichlet-to-Neumann map T k,α admits the following explicit matrix

representation: for any k ∈ C \{nπ/si | n ∈ Z \{0}, 1 ≤ i ≤ N − 1}, f ≡ (fL,R
i )1≤i≤N ,

T k,α[f ] ≡ (T k,α[f ]L,R
i )1≤i≤N is given by




T k,α[f ]L1

T k,α[f ]R1
...

T k,α[f ]LN

T k,α[f ]RN




= T k,α




fL

1

fR

1

...

fL

N

fR

N




, (3.5)
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with

T k,α =




− k cos(ksN )
sin(ksN )

k
sin(ksN ) e−iαL

Ak(s1)

Ak(s2)

. . .

Ak(s(N−1))

k
sin(ksN ) eiαL − k cos(ksN )

sin(ksN )




, (3.6)

where for any real ℓ ∈ R, Ak(ℓ) denotes the 2 × 2 symmetric matrix given by

Ak(ℓ) :=




−k cos(kℓ)

sin(kℓ)

k

sin(kℓ)
k

sin(kℓ)
−k cos(kℓ)

sin(kℓ)


 . (3.7)

We will thus use T k,α and T k,α interchangeably.

Proof. Following the proof of [24, Proposition 2.1], it is easy to infer that


 T k[f ]Ri ,

T k[f ]Li+1


 =




dwα
f

dx (xR

i )

− dwα
f

dx (xL

i+1)


 = Ak(si)


 fR

i

fL

i+1


 for all i ∈ Z,

where we extend (fL,R
i )1≤i≤N by quasiperiodicity. The values of (T k,α[f ]Ri , T k,α[f ]Li+1) fol-

low, with 1 ≤ i ≤ N − 1. Then, we obtain the following values at xL

1 and xR

N by using the
quasiperiodicity:




dwα
f

dx (xR

N )

− dwα
f

dx (xL

N+1)


 =




dwα
f

dx (xR

N )

−eiαL dwα
f

dx (xL

1)


 = Ak(si)


 fR

i

fL

i+1


 = Ak(sN )


 fR

N

fL

1 eiαL


 ,

which yields (3.5). �

Remarkably, the 2N ×2N matrix associated to T k,α is Hermitian. It can be verified that
the solution wα

f to (3.1) with k 6= 0 converges as k → 0 to the solution to the same equation

with k = 0. As it can be expected from the matrix representation (3.5), the operator T k,α

is analytic in a neighbourhood of k = 0. In all what follows, we denote by r the convergence
radius

r :=
π

max1≤i≤N si
.

We identify T k,α with the matrix T k,α of (3.6).

Corollary 3.4. The Dirichlet-to-Neumann map T k,α can be extended to a holomorphic
2N × 2N matrix with respect to the wave number k ∈ C on the disk |k| < r. Therefore,
there exists a family of 2N × 2N matrices (T α

2n)n∈N such that T k,α admits the following
convergent series representation:

T k,α =
+∞∑

n=0

k2nT α
2n, ∀k ∈ C with |k| < r. (3.8)

8
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The matrices T α
0 and T α

2 of this series explicitly read

T α
0 =




− 1
sN

1
sN

e−iαL

A0(s1)

A0(s2)

. . .

A0(sN−1)

1
sN

eiαL − 1
sN




, (3.9)

T α
2 =




1
3 sN

1
6 sN e−iαL

A2(s1)

. . .

A2(sN−1)

1
6 sN eiαL 1

3 sN




, (3.10)

where for any ℓ ∈ R, A0(ℓ) and A2(ℓ) are the 2 × 2 matrices

A0(ℓ) :=


−1/ℓ 1/ℓ

1/ℓ −1/ℓ


 , A2(ℓ) :=




ℓ
3

ℓ
6

ℓ
6

ℓ
3


 . (3.11)

Proof. The result is immediate by noticing that for a given ℓ > 0, the matrix Ak(ℓ) of (3.7)
is analytic with respect to the parameter k on the disk |k|ℓ < π, and its components are
even functions of k. The expressions for T α

0 and T α
2 follow by computing the Taylor series

of Ak(ℓ). �

Remark 3.5. The expression (3.9) for T α
0 can be more conveniently stated in terms of its

action on a vector f ≡ (fL,R
i )1≤i≤N ∈ C

2N as





T α
0 [f ]L1 = − 1

sN
(fL

1 − e−iαLfR

N ),

T α
0 [f ]Li = − 1

si−1
(fL

i − fR

i−1), 2 ≤ i ≤ N,

T α
0 [f ]Ri =

1

si
(fL

i+1 − fR

i ), 1 ≤ i ≤ N − 1,

T α
0 [f ]RN =

1

sN
(eiαLfL

1 − fR

N ),

(3.12)

or even more simply





T k,α[f ]Li = − 1

si−1
(fL

i − fR

i−1) +
k2si−1

3

(
fL

i +
1

2
fR

i−1

)
+ O(k4),

T k,α[f ]Ri =
1

si
(fL

i+1 − fR

i ) +
k2si

3

(
fR

i +
1

2
fL

i+1

)
+ O(k4),

∀i ∈ Z,

for any quasiperiodic sequence (fL,R
i )i∈Z ∈ C

2N,α.

9



EDGE MODES IN SUBWAVELENGTH RESONATORS IN ONE DIMENSION

4. Subwavelength resonances

The one-dimensional problem (2.10) can be rewritten in terms of the Dirichlet-to-Neumann
map as a set of coupled ordinary differential equations posed on the periodic segments C:





(
d2

dx2
+

ω2

v2
i

)
u(x, α) = 0, x ∈ Di + LZ,

− du

dx
(xL

i ) = δT ω
v

,α[u]Li for all i ∈ Z,

du

dx
(xR

i ) = δT ω
v

,α[u]Ri for all i ∈ Z,

u(x + L) = u(x)eiαL for almost every x ∈ R,

(4.1)

where for a function u ∈ H1
per,α(R), we use the notation T ω

v
,α[u] ≡ T ω

v [(u(xL,R
i ))i∈Z].

Definition 4.1. Any frequency ωα(δ) such that (4.1) admits a nontrivial solution u is called
a scattering resonance [35]. Subwavelength resonances are those which in addition satisfy

ωα(δ) → 0 as δ → 0.

The associated nontrivial solution uα(ωα(δ), δ) is called a subwavelength resonant mode.

4.1. A first characterisation of subwavelength resonances based on an explicit

representation of the solution

Let us first state a characterisation of the subwavelength resonances which relies on a
finite dimensional parametrisation of the solution u.

Lemma 4.2. The subwavelength scattering resonances ω to the wave problem (4.1) are the
solution to the 2N × 2N nonlinear eigenvalue problem

Aα(ω, δ)


ai

bi




1≤i≤N

= 0, (4.2)

where Aα(ω, δ) is the 2N × 2N matrix given by

A(ω, δ) := i diag


ki


−eikixL

i e−ikixL

i

eikixR

i −e−ikixR

i






1≤i≤N

−δT ω
v

,α×diag




eikixL

i e−ikixL

i

eikixR

i e−ikixR

i






1≤i≤N

,

(4.3)
and where T ω

v
,α is the 2N × 2N matrix defined by (3.5). Furthermore, resonant modes to

(4.1) correspond to (ai bi)
T
1<i≤N by the formula

u(x) = aie
ikix + bie

−ikix, ∀x ∈ (xL

i , xR

i ). (4.4)

Proof. Any solution u to (4.1) can be written as (4.4) and the boundary condition of (4.1)
reads

±iki(aie
ikixL,R

i − bie
−ikixL,R

i ) − δT ω
v

,α[u]L,R
i = 0,

which can be rewritten as (4.2). �

Remark 4.3. With the characterisation of Lemma 4.2, we reduce the spectral problem (4.1)
to a nonlinear finite-dimensional eigenvalue problem (4.2). We will exploit this property in
the numerical computations.

4.2. Characterisation of the subwavelength resonances based on the Dirichlet-

to-Neumann map

Multiplying by a test function v ∈ H1(D) and integrating on all the intervals (xL

i , xR

i ),
(4.1) can be rewritten in the following weak form: find a nontrivial u ∈ H1(D) such that
for any v ∈ H1(D),

aα(u, v) = 0, (4.5)

10
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where aα is the bilinear form on H1(D) × H1(D) defined by

aα(u, v) :=

N∑

i=1

∫ xR

i

xL

i

(
du

dx

dv

dx
− ω2

v2
i

uv

)
dx −

N∑

i=1

δ
[
v(xR

i )T ω
v

,α[u]Ri + v(xL

i )T ω
v

,α[u]L,R
i

]
.

Following [24], we introduce a new bilinear form aα
ω,δ on H1(D) × H1(D):

aα
ω,δ(u, v) :=

N∑

i=1

[∫ xR

i

xL

i

du

dx

dv

dx
dx +

∫ xR

i

xL

i

u dx

∫ xR

i

xL

i

v dx

]

−
N∑

i=1

[
ω2

v2
i

∫ xR

i

xL

i

uv dx + δ[v(xR

i )T ω
v

,α[u]Ri + v(xL

i )T ω
v

,α[u]Li ]

]
. (4.6)

The bilinear form aα
ω,δ(u, v) is obtained by adding the rank-one bilinear forms (u, v) →

∫ xR

i

xL

i

u dx
∫ xR

i

xL

i

v dx to the bilinear form aα. Clearly, aα
ω,δ is an analytic perturbation in ω and

δ of the bilinear form a0,0 defined by

a0,0(u, v) =

N∑

i=1

[∫ xR

i

xL

i

du

dx

dv

dx
dx +

∫ xR

i

xL

i

u dx

∫ xR

i

xL

i

v dx

]
,

which is continuous coercive on H1(D). From standard perturbation theory, aα
ω,δ remains

coercive for sufficiently small complex values of ω and δ.
In order to characterise the subwavelength resonant modes, it is useful to introduce

hα
j (ω, δ) the solution to the variational problems

aα
ω,δ(hα

j (ω, δ), v) =

∫ xR

j

xL

j

v dx, ∀v ∈ H1(D), ∀1 ≤ j ≤ N. (4.7)

The functions hα
j (ω, δ) allow to reduce the 2N × 2N problem (4.2) to a N × N matrix linear

system, which is simpler to analyse.

Lemma 4.4. Let ω ∈ C and δ ∈ R belong to a neighbourhood of zero such that aα
ω,δ is

coercive. The variational problem (4.5) admits a nontrivial solution u ≡ u(ω, δ) if and only
if the N × N nonlinear eigenvalue problem

(I − Cα(ω, δ))x = 0 (4.8)

has a solution ω and x := (xi(ω, δ))1≤i≤N , where Cα(ω, δ) is the matrix given by

Cα(ω, δ) ≡ (Cα(ω, δ)ij)1≤i,j≤N :=

(∫ xR

i

xL

i

hα
j (ω, δ) dx

)

1≤i,j≤N

. (4.9)

When it is the case, ω is a subwavelength resonance and an associated resonant mode uα(ω, δ)
solution to (4.5) (equivalently, to (2.10) and (4.1)) reads

uα(ω, δ) =

N∑

j=1

xj(ω, δ)hα
j (ω, δ) (4.10)

with hα
j (ω, δ) being defined by (4.7).

Proof. The variational problem (4.5) reads equivalently

aα(u, v) = 0 ⇔ aα
ω,δ(u, v) −

N∑

i=1

(∫ xR

i

xL

i

u dx

)
aα

ω,δ(uα
i , v) = 0

⇔ u −
N∑

i=1

(∫ xR

i

xL

i

u dx

)
uα

i = 0.

(4.11)
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By integrating both sides of (4.11) on (xL

i , xR

i ), we find that the vector x :=
(∫ xR

i

xL

i

u(ω, δ) dx
)

1≤i≤N

solves the linear system

∫ xR

i

xL

i

u(ω, δ) dx −
N∑

j=1

∫ xR

i

xL

i

hα
j (ω, δ) dx

∫ xR

j

xL

j

u(ω, δ) dx = 0, 1 ≤ i ≤ N,

which is exactly (4.8). Conversely, if (4.8) has a solution, then the second line of (4.11)
shows that the solution to (4.5) is given by (4.10). �

Subwavelength resonances are therefore the characteristic values ω ≡ ω(δ) for which
I − Cα(ω, δ) is not invertible.

4.3. Asymptotic expansions of the subwavelength resonances

We now show the existence of N subwavelength resonances for any α ∈ Y ∗ and we com-
pute their leading-order asymptotic expansions in terms of δ. We start by computing explicit
asymptotic expansions of the functions hα

j (ω, δ) solutions to (4.7). Here and hereafter, the
characteristic function of a set S is written as 1S .

Proposition 4.5. Let ω ∈ C and δ ∈ R belong to a small enough neighbourhood of zero. The
unique solution hj(ω, δ) with 1 ≤ j ≤ N to the variational problem (4.7) has the following
asymptotic behaviour as ω, δ → 0:

hj(ω, δ) =

(
1

ℓj
+

ω2

v2
j ℓ2

j

)
1(xL

j
,xR

j
)

+ δ

[
1{2,...,N}(j)

ℓ2
j−1ℓj

1

sj−1
1(xL

j−1
,xR

j−1
) − 1

ℓ3
j

(
1

sj−1
+

1

sj

)
1(xL

j
,xR

j
) +

1{1,...,N−1}(j)

ℓjℓ2
j+1sj

1(xL

j+1
,xR

j+1
)

+
δ1j

ℓ2
N ℓ1

e−iαL

sN
1(xL

N
,xR

N
) +

δNj

ℓ2
1ℓN

eiαL

sN
1(xL

1
,xR

1
) + h̃j,0,1

]
+ O((ω2 + δ)2),

(4.12)

where h̃j,0,1 is some (quadratic) functions satisfying

∫ x+

i

x−

i

h̃j,0,1 dx = 0, ∀1 ≤ i ≤ N.

Proof. From the definition of aα
ω,δ, the function hα

j ≡ hα
j (ω, δ) satisfies the following differ-

ential equation written in strong form:




− d2

dx2
hα

j − ω2

v2
b

hα
j +

N∑

i=1

(∫ xR

i

xL

i

hα
j dx

)
1(xL

i
,xR

i
) = 1(xL

j
,xR

j
) in

N⊔

i=1

(xL

i , xR

i ),

−
dhα

j

dx
(xL

i ) = δT ω
v

,α[hα
j ]Li for all 1 ≤ i ≤ N,

dhα
j

dx
(xR

i ) = δT ω
v

,α[hα
j ]Ri for all 1 ≤ i ≤ N.

(4.13)
Since T ω

v
,α is analytic in ω2, it follows that hα

j (ω, δ) is analytic in ω2 and δ: there exist
functions (hj,2p,k)p≥0,k≥0 such that hα

j (ω, δ) can be written as the following convergent series

in H1(D):

hα
j (ω, δ) =

+∞∑

p,k=0

ω2pδkhj,2p,k. (4.14)
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By using Corollary 3.4 and identifying powers of ω and δ, we obtain the following equations
characterizing the functions (hj,2p,k)p≥0,k≥0:





− d2

dx2
hj,2p,k +

N∑

i=1

(∫ xR

i

xL

i

hj,2p,k dx

)
1(xL

i
,xR

i
) =

1

v2
j

hj,2p−2,k + 1(xL

j
,xR

j
)δ0pδ0k in D,

− dhj,2p,k

dx
(xL

i ) =

p∑

n=0

1

v2n
T α

2n[hj,2p−2n,k−1]Li , 1 ≤ i ≤ N,

dhj,2p,k

dx
(xR

i ) =

p∑

n=0

1

v2n
T α

2n[hj,2p−2n,k−1]Ri , 1 ≤ i ≤ N,

(4.15)

with the convention that hj,2p,k = 0 for negative indices p and k. It can then be easily
obtained by induction that

hj,2p,0 =
1(xL

j
,xR

j
)

v2p
j ℓp+1

j

for any p ≥ 0, 1 ≤ j ≤ N.

Then, for p = 0 and k = 1, we find that hj,0,1 satisfies





− d2

dx2
hj,0,1 +

N∑

i=1

(∫ xR

i

xL

i

hj,0,1 dx

)
1(xL

i
,xR

i
) = 0 in D,

− dhj,0,1

dx
(xL

i ) = T α
0 [hj,0,0]Li for all 1 ≤ i ≤ N,

dhj,0,1

dx
(xR

i ) = T α
0 [hj,0,0]Ri for all 1 ≤ i ≤ N.

(4.16)

From (3.12) with fL,R
i := hj,0,0(xL,R

i ) = δij/ℓj for 1 ≤ i ≤ N , we obtain





T0[hj,0,0]L1 = − 1

ℓj

1

sN
(δ1j − δNje−iαL),

T0[hj,0,0]Li = − 1

ℓj

1

si−1

(
δij − δ(i−1)j

)
for 2 ≤ i ≤ N,

T0[hj,0,0]Ri =
1

ℓj

1

si
(δi+1 − δij) for 1 ≤ i ≤ N − 1,

T0[hj,0,0]RN =
1

ℓj

1

sN

(
eiαLδ1j − δNj

)
.

Multiplying (4.16) by 1(xL

i
,xR

i
) and integrating by parts, we find that

∫ xR

i

xL

i

hj,0,1 dx =
1

ℓi

[
T α

0 [hj,0,0]Li + T α
0 [hj,0,0]Ri

]

=
1

ℓiℓj

1

si−1
(δ(i−1)j − δij)1{2,...,N}(i) +

1

ℓiℓj

1

si
(δ(i+1)j − δij)1{1,...,N−1}(i)

+
1

ℓiℓj

1

sN

(
δNje−iαL − δ1j

)
δi1 +

1

ℓiℓj

1

sN

(
eiαLδ1j − δNj

)
δiN .

13



EDGE MODES IN SUBWAVELENGTH RESONATORS IN ONE DIMENSION

Isolating the different cases yields




1

ℓ1ℓN

1

sN
e−iαL if i = 1, j = N,

1

ℓj−1ℓj

1

sj−1
if i = j − 1, 2 ≤ j ≤ N,

− 1

ℓ2
j

(
1{2,...,N}(j)

sj−1
+

1{1,...,N−1}(j)

sj
+

δ1j + δjN

sN

)
if i = j,

1

ℓjℓj+1

1

sj
if i = j + 1, 1 ≤ j ≤ N − 1,

1

ℓ1ℓN

1

sN
eiαL if i = N, j = 1.

Using Fredholm’s alternative, this allows to infer that hj,0,1 can be written as

hj,0,1 =
1{2,...,N}(j)

ℓ2
j−1ℓj

1

sj−1
1(xL

j−1
,xR

j−1
)−

1

ℓ3
j

(
1

sj−1
+

1

sj

)
1(xL

j
,xR

j
)+

1{1,...,N−1}(j)

ℓjℓ2
j+1

1

sj
1(xL

j+1
,xR

j+1
)

+
δ1j

ℓ2
N ℓ1

e−iαL

sN
1(xL

N
,xR

N
) +

δNj

ℓ2
1ℓN

eiαL

sN
1(xL

1
,xR

1
) + h̃j,0,1, (4.17)

where h̃j,0,1 is a function (in fact, a second order polynomial) satisfying
∫ xR

i

xL

i

h̃j,0,1 dx = 0

for any 1 ≤ i ≤ N , with the convention s0 = sN . Furthermore, h̃j,0,1 is identically zero on
(xL

i , xR

i ), where i /∈ {j − 1, j, j + 1}. �

Next, we define the (quasiperiodic) capacitance matrix similar to the three-dimensional
case [2, 4, 6].

Definition 4.6 (Quasiperiodic capacitance matrix). Consider the solutions V α
i : R → R of

the problem




− d2

dx2
V α

i = 0 R \C,

V α
i (x) = δi,j x ∈ Dj ,

V α
i (x + mL) = eiαmLV α

i (x) m ∈ Z .

(4.18)

Then the capacitance matrix is defined coefficient-wise by

Cα
ij = −

∫

∂Di

∂V α
j

∂ν
dσ,

where ν is the outward-pointing normal.

Lemma 4.7. The capacitance matrix is given by

Cα
ij := − 1

sj−1
δi(j−1) +

(
1

sj−1
+

1

sj

)
δij − 1

sj
δi(j+1) − δ1jδiN

e−iαL

sN
− δ1iδjN

eiαL

sN
,

that is,

Cα =




1
sN

+ 1
s1

− 1
s1

− e−iαL

sN

− 1
s1

1
s1

+ 1
s2

− 1
s2

. . .
. . .

. . .

. . .
. . . − 1

sN−1

− eiαL

sN
− 1

sN−1

1
sN−1

+ 1
sN




.
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Proof. One notices that the solutions V α
i to (4.18) for 1 ≤ i ≤ N − 1 are given by

Vi(x) =





1

si−1
(x − xL

i ), xR

i−1 ≤ x ≤ xL

i ,

1, xL

i ≤ x ≤ xR

i ,

− 1

si
(x − xL

i+1), xR

i ≤ x ≤ xL

i+1,

0 else,

while for bigger and smaller i we multiply by the corresponding eiαmL factor. Derivation
with respect to the outward-pointing normal and integrating on the boundary just means

Cα
ij = −

(
− dV α

i

dx

∣∣∣∣
L

(xL

j ) +
dV α

i

dx

∣∣∣∣
R

(xR

j )

)
. (4.19)

Evaluating (4.19) concludes the proof. �

Corollary 4.8. We have the following asymptotic expansion for the matrix Cα(ω, δ)
defined in (4.9):

Cα(ω, δ) = I + ω2V −2L−1 − δL−1CαL−1 + O((ω2 + δ)2), (4.20)

where L is the length matrix L := diag((ℓi)) and V := diag((vi)) the material parameter
matrix.

Proof. Integrating the asymptotic expansion (4.12) of hj(ω, δ) on the interval (xL

i , xR

i ), we
obtain

Cα
ij(ω, δ) =

(
1 +

ω2

v2
i ℓi

)
δij

+δ

[
1{1,...,N−1}(i)

ℓiℓj

1

sj−1
δi(j−1) − 1

ℓiℓj

(
1

sj−1
+

1

sj

)
δij +

1{2,...,N}(i)

ℓjℓi

1

sj
δi(j+1)

+
δ1jδiN

ℓN ℓ1

e−iαL

sN
+

δNjδ1N

ℓ1ℓN

eiαL

sN

]
+ O((ω2 + δ)2).

(4.21)
This yields the result. �

It is thus useful to introduce the generalised capacitance matrix

Cα
G := V 2L−1 Cα . (4.22)

Proposition 4.9. Assume that the eigenvalues of Cα
G are simple. Then the N subwavelength

band functions (α 7→ ωα
i )1≤i≤N satisfy to the first order

ωα
i = ±

√
δλi + O(δ),

where (λα
i )1≤i≤N are the eigenvalues of the eigenvalue problem

Cα
G ai = λα

i ai, 1 ≤ i ≤ N. (4.23)

We select the N values of ±
√

δλi having positive real part.

Remark that in the Hermitian case it is possible to reformulate (4.23) into a symmetric
eigenvalue problem so that the eigenvalues are real.

Proof. From Lemma 4.4, we know that (4.1) has a solution if and only if

(I − Cα(ω, δ))x = 0
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for some nonzero x. Applying the asymptotic expansion from Corollary 4.8, we obtain that
the above equation is equivalent to

0 = ω2V −2L−1x − δL−1 Cα L−1x︸ ︷︷ ︸
:=y

+ O((ω2 + δ)2)

⇔ V 2L−1 Cα y =
ω2

δ
y + O((ω2 + δ)2),

meaning that ω2

δ must be approximately an eigenvalue of V 2L−1 Cα = Cα
G. �

We refer to [22, Proposition 3.7] for a generalisation of Proposition 4.9. The capacitance
matrix provides also an approximation of the eigenmodes.

Lemma 4.10. Let uα be a subwavelength resonant eigenmode corresponding to ωα from
Proposition 4.9. Let a be the corresponding eigenvector of the generalised capacitance matrix.
Then

uα(x) =
∑

j

a(j)V α
j (x) + O(δ),

where V α
j are the functions from (4.18) in Definition 4.6 and a(j) denotes the j-th entry of

the eigenvector.

Proof. We sketch the proof, referring to [22] for more details. We consider the case N = 2
as N > 2 is only notationally more difficult. Let uα(x) be a resonant eigenmode. According
to Lemma 4.4, we may represent the resonant mode (inside the resonators) as

uα(x) = ℓ1a(1)hα
1 + ℓ2a(2)hα

2 + O(δ).

Remark that we used the change of basis L−1 in Proposition 4.9, so the approximation
of the x of Lemma 4.4 is L−1a. The asymptotic expansion of Proposition 4.5 shows that
hα

i = 1
ℓi
1Di

+ O(δ), so that we get the result inside the resonators.
In order to obtain a solution outside, we may apply Lemma 3.1. Expanding the result of

Lemma 3.1 for small δ, we obtain a linear interpolation between the boundary points, that
is V α

j outside of the resonators. �

5. Hermitian case

In this section, we analyse in closer detail the Hermitian case. For simplicity, we consider
the case when vi = vb for all i for some vb ∈ R>0. One remarks that in this case the
eigenvalue problem (4.23) may be simplified by finding eigenvalues of L−1 Cα and multiplying
the eigenvalues by v2

b .
In the general case, we have to solve the generalised eigenvalue problem

Cα ai = v−2
b λiLai. (5.1)

After a change of basis, we recover a symmetric eigenvalue problem having the same eigen-
values as (5.1)

L− 1
2 Cα L− 1

2 bi = v−2
b λibi. (5.2)

From (5.2), we see that in the Hermitian case the subwavelength resonances are real.

5.1. Dirac degeneracy and Zak phase

We first prove the following result.

Lemma 5.1. The eigenspace associated to Cα has dimension at most two.

Proof. This is a consequence of the tridiagonal structure of Cα: one can extract from
Cα −λα

p L a full rank minor of dimension (N − 2) × (N − 2) which is an upper triangu-

lar matrix with diagonal − 1
s1

· · · − 1
sN−2

. �

The following lemma concerns degeneracies of the capacitance matrix.
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Lemma 5.2. Assume that N = 2. The only configuration such that (5.2) admits a double
eigenvalue is the one with ℓ1 = ℓ2 and s1 = s2. Moreover, this double eigenvalue occurs at
α = ± π

L , and C± π
L = 2s1I, where I is the identity matrix.

Proof. Problem (5.2) reduces to find the eigenvalue of

L− 1
2 Cα L− 1

2 =




(
1
s1

+ 1
s2

)
ℓ−1

1

(
− 1

s1
− 1

s2
eiαL

)
ℓ

− 1
2

1 ℓ
− 1

2

2(
− 1

s1
− 1

s2
e−iαL

)
ℓ

− 1
2

1 ℓ
− 1

2

2

(
1
s1

+ 1
s2

)
ℓ−1

2


 . (5.3)

The characteristic polynomial of this matrix is

P (λ) = det
(

L− 1
2 Cα L− 1

2 − λI
)

(5.4)

=

((
1

s1
+

1

s2

)
ℓ−1

1 − λ

)((
1

s1
+

1

s2

)
ℓ−1

2 − λ

)
− ℓ−1

1 ℓ−1
2

∣∣∣∣
1

s1
+

1

s2
eiαL

∣∣∣∣
2

(5.5)

= λ2 −
(

1

s1
+

1

s2

)(
ℓ−1

1 + ℓ−1
2

)
λ + ℓ−1

1 ℓ−1
2

[(
1

s1
+

1

s2

)2

−
∣∣∣∣

1

s1
+

1

s2
eiαL

∣∣∣∣

]
. (5.6)

Therefore, a multiple eigenvalue occurs when the discriminant of this second order polyno-
mial vanishes, which is the case when

0 =

(
1

s1
+

1

s2

)2 (
ℓ−1

1 + ℓ−1
2

)2 − 4ℓ−1
1 ℓ−1

2

[(
1

s1
+

1

s2

)2

−
∣∣∣∣

1

s1
+

1

s2
eiαL

∣∣∣∣

]
(5.7)

=

(
1

s1
+

1

s2

)2 (
ℓ−1

1 − ℓ−1
2

)2
+ 4ℓ−1

1 ℓ−1
2

∣∣∣∣
1

s1
+

1

s2
eiαL

∣∣∣∣
2

. (5.8)

This readily implies ℓ1 = ℓ2, and then




1

s1
+

1

s2
cos(αL) = 0,

1

s2
sin(αL) = 0.

For this system to admit a solution with 0 < s1, s2, it is necessary that α = ± π
L , and then

we must have s1 = s2. �

Therefore, we study the eigenvalues of Cα for regularly spaced dimers of resonators (i.e.,
N = 2, ℓ1 = ℓ2 and s1 = s2). Let us rewrite (5.3) only in terms of s1 and ℓ1:

L− 1
2 Cα L− 1

2 =
2

ℓ1s1


 1 −eiαL/2 cos(αL/2)

−e−iαL/2 cos(αL/2) 1


 .

The eigenvalues of this matrix are

λ0(α) =
2

ℓ1s1

(
1 − cos

(
αL

2

))
=

4

ℓ1s1
sin2

(
αL

4

)
,

λ1(α) =
2

ℓ1s1

(
1 + cos

(
αL

2

))
=

4

ℓ1s1
cos2

(
αL

4

)
.

An associated family of eigenvectors read

 1

e−i
αL

2


 ,


 1

−e−i
αL

2


 .

Subwavelength resonances then read

ωα
0 =

2√
ℓ1s1

vbδ
1
2

∣∣∣∣sin
(

αL

4

)∣∣∣∣+ O(δ), ωα
1 =

2√
ℓ1s1

vbδ
1
2

∣∣∣∣cos

(
αL

4

)∣∣∣∣+ O(δ). (5.9)
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Hence, at leading order in δ, a band inversion occurs at α = ± π
L . Furthermore, (5.9) shows

that at α = ± π
L the bands form a Dirac degeneracy. Typically, breaking the symmetry of

the structure results in the Dirac cone to open into a band gap [8, Section 4]. We show this
in Section 5.2.

The following lemma gives explicit formulas for the eigenvectors of the capacitance matrix.

Lemma 5.3. Assume that ℓ1 = ℓ2. In the general case, the eigenvalues of the capacitance
matrix are given by

λα
1 = ℓ−1

1

[(
1

s1
+

1

s2

)
−
∣∣∣∣

1

s1
+

1

s2
eiαL

∣∣∣∣
]

, λα
2 = ℓ−1

1

[(
1

s1
+

1

s2

)
+

∣∣∣∣
1

s1
+

1

s2
eiαL

∣∣∣∣
]

.

An associated pair of eigenvector is given by

aα
1 =

1√
2


 1

e−iθα


 , aα

2 =
1√
2


 1

−e−iθα


 ,

where θα is the argument such that

−
(

1

s1
+

1

s2
eiαL

)
= ρeiθα . (5.10)

Definition 5.4 (Zak phase). For a non-degenerate band ωα
j , we let uα

j be a family of
normalised eigenmodes which depend continuously on α. Then we define the (Hermitian)
Zak phase as

ϕzak
j := i

∫

Y ∗

〈
uα

j ,
∂

∂α
uα

j

〉
dα, (5.11)

where 〈·, ·〉 denotes the usual L2 inner product.

Using Lemma 5.3, we obtain the Zak phase of the structure.

Proposition 5.5. Let N = 2 and ℓ1 = ℓ2. Then, we have

ϕzak

j =

{
π if s1 ≥ s2,

0 if s1 < s2.

One can prove Proposition 5.5 using a similar approach to the one in [6]. We suggest a
different proof whose presentation is postponed to Section 6, where it will result as a special
case of the more general Theorem 6.4.

5.2. Localised edge modes generated by geometrical defects

In this subsection, we study an infinite structure composed by two periodic parts. We
consider this structures as having a geometrical defect in the periodicity, see Figure 2.

Such structures have been studied in the case of tight-binding Hamiltonian systems [16,
20, 21] and for an SSH chain of resonators in R

3 [6].

s1 s2 s1

. . .

s2 s1

. . .

s1

Figure 2. Infinite structure with a geometrical defect.

The peculiarity of such defect structures is the support for edge modes. These modes
have frequencies that lay in the band gap and thus are particularly robust with respect to
perturbations. Furthermore, they are spatially localised near the defect.
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To show the existence of an edge mode, we compute the subwavelength resonances of a
finite but large array having the same geometrical defect. In the three-dimensional case,
it has been shown that this is indeed an accurate approximation [3]. Figure 3b shows the
existence of edge modes. Figure 3a illustrates that the frequencies of the edge modes are
well-separated from the bulk, and lay inside the band gap. Figure 3a is of particular interest
as it suggests that the spectrum of the finite approximation converges exponentially to the
continuous spectrum of the periodic structure. The exponential convergence is the result of
the absence of long-range interactions in the system [3, 28, 29, 31].

As mentioned before, edge frequencies laying in the band gap are typically robust to
perturbations. In Figure 3c, we show that these frequencies are only minimally influenced
by slightly perturbing the distances between the resonators via

s̃i = si + εi, εi ∼ N (0, σ2)

with N (0, σ2) being a uniform distribution with standard deviation σ and mean-value zero.
In particular, they remain in the band gap. We thus call these edge modes topologically
protected.

6. Non-Hermitian case

In the non-Hermitian case, the material parameters κi are complex with non vanishing
imaginary parts. As we want to analyse the influence of the complex material parameters,
we assume for the rest of this section that the size of the resonators is constant, i.e., ℓi = ℓ1

for all 1 ≤ i ≤ N .
A particular case of this non-Hermitian setup are systems with PT-symmetry. Originating

from quantum mechanics, this terms defines a system where gains and losses are balanced,
that is, v1 = v2 in the case of a dimer of resonators.

6.1. Non-Hermitian Zak phase

Definition 6.1 (Non-Hermitian Zak phase). The non-Hermitian Zak phase ϕzak
j , for 1 ≤

j ≤ N , is defined by

ϕzak
j :=

i

2

∫

Y ∗

(〈
vα

j ,
∂uα

j

∂α

〉
+

〈
uα

j ,
∂vα

j

∂α

〉)
dα,

where uα
j and vα

j are respectively the left and right eigenmodes.

We remark immediately that Definition 6.1 is a generalisation of Definition 5.4 as left and
right eigenmodes are equal in the Hermitian case.

The following lemma is [10, Lemma 3.5].

Lemma 6.2. Let uj and vj be a bi-orthogonal system (i.e., 〈vi, uj〉 = δij) of eigenvectors of
the generalised capacitance matrix defined by (4.22), so that Lemma 4.10 holds. Then, the
Zak phase can be written as

ϕzak

j = −ℑ
(∫

Y ∗

〈
vj ,

∂uj

∂α

〉
dα

)
+ O(δ). (6.1)

We will now derive an explicit formula for the non-Hermitian Zak phase. This, as the
non-Hermitian version is a generalisation of the Hermitian one, will allow us to prove Pro-
position 5.5.

Remark 6.3. Consider an eigendecomposition

M = UDU−1

of a matrix M , where U is an invertible matrix with columns given by (right) eigenvectors
and D a diagonal matrix. Then, a basis of left eigenvectors is given by the columns of
the matrix V := (U−1)∗. Furthermore, the two matrices are bi-orthogonal, meaning that
V ∗U = I so that the left and right eigenvectors satisfy 〈vi, uj〉 = δij .
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20 40 60 80 100

Number of resonators
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(a) Convergence of the subwavelength reson-
ances of a finite structure with a geometrical
defect for an increasing number of resonat-
ors. In black the subwavelength resonances
while in grey underlaid the subwavelength
resonant bands of the infinite right struc-
ture. (Remark that for these last frequen-
cies, the x-axis is meaningless.)

−100 −50 0 50 100 150 200

x

−0.75

−0.50

−0.25

0.00
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(b) Localised edge mode for a finite but large
array of N = 39 resonators having a geo-
metrical defect.
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(c) Stability of subwavelength edge resonances
with respect to perturbations in the geo-
metry.

Figure 3. Edge modes generated by geometrical defects. For the infinite
structure, we use N = 2, ℓi = 1, s1 = 2, s2 = 1.

Let U(α) be an eigenbasis of the generalised quasiperiodic capacitance matrix and V (α) =
(U(α))−1 be the corresponding bi-orthogonal basis according to Remark 6.3. Then, defining

V ∗(α)
∂

∂α
U(α) = U−1(α)

∂

∂α
U(α) =: J(α),

the Zak phase take the following form according to Lemma 6.2:

ϕzak
j = −ℑ

(∫

Y ∗

Jj,j(α) dα

)
+ O(δ). (6.2)

Let a = 1
s1

+ 1
s2

and b(α) = − 1
s1

− e−iLα

s2
, so that the generalised capacitance matrix is given

by

Cα
G :=


 v2

1a v2
1b(α)

v2
2b(α) v2

2a



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with eigenbasis given by the columns of

U(α) :=


−a(v2

2 − v2
1) −

√
a2(v2

1 − v2
2)2 + 4v2

1v2
2 |b(α)|2 −a(v2

2 − v2
1) +

√
a2(v2

1 − v2
2)2 + 4v2

1v2
2 |b(α)|2

2v2
2b(α) 2v2

2b(α)




(6.3)

=:


−a(v2

2 − v2
1) −

√
f(b(α)) −a(v2

2 − v2
1) +

√
f(b(α))

2v2
2b(α) 2v2

2b(α)


 .

Actually, if b(α) = 0, then this formula for U(α) does not work. However, as we will be later
interested in integrating this quantity and the set {α : b(α) = 0} has zero measure, we can
just work with the formula above.

In particular, for a non-degenerate Cα
G, we have

U(α)−1 =
1

4v2
2b(α)f(b(α))


 2v2

2b(α) +a(v2
2 − v2

1) −
√

f(b(α))

−2v2
2b(α) −a(v2

2 − v2
1) −

√
f(b(α))


 ,

so that

J1,1 =
2v2

2b(α)

4v2
2b(α)

√
f(b(α))

∂

∂α
(−
√

f(b(α))) +
a(v2

2 − v2
1) −

√
f(b(α))

4v2
2b(α)

√
f(b(α))

∂

∂α
2v2

2b(α).

By periodicity, we know that b(α) draws a closed path in C. Remark that f(b(α)) is a closed
curved tracing a line (or two segments), so that integrating over it always results in zero.
Reformulating the above in terms of path integral we get
∫

Y ∗

J1,1(α) dα = − 1

2
√

f(b(α))

∂

∂α
(
√

f(b(α))) dα +
a(v2

2 − v2
1)

2

∫

Y ∗

1

b(α)
√

f(b(α))

∂

∂α
b(α) dα

− 1

2

∫

Y ∗

1

b(α)

∂

∂α
b(α),

so that (6.2) becomes

ϕzak
j =

1

2
ℑ


−

∫
√

f

1

z
dz

︸ ︷︷ ︸
=0

+(−1)j+1 a(v2
2 − v2

1)

∫

b

1

z
√

f(z)
dz

︸ ︷︷ ︸
:=P

−
∫

b

1

z
dz


+ O(δ). (6.4)

Thus, we have shown the following theorem.

Theorem 6.4. Consider a geometrical structure with N = 2 and ℓ1 = ℓ2 with a non-
degenerate corresponding band structure. Then the Zak phase has the following asymptotic
expansion:

ϕzak

j = (−1)j+1 s1 + s2

2s1s2
ℑ
(

(v2
2 − v2

1)

∫

γ

1

z
√

f(z)
dz

)
+ π1{x<s1}(s2) + O(δ), (6.5)

where γ is the closed path

γ(t) := s−1
1 + s−1

2 eiLt,

and f is defined along γ as

f(z) :=
(
s−1

1 + s−1
2

)2
(v2

1 − v2
2)2 + 4v2

1v2
2 |z|2.

One remarks already here that for the special case v2
1 = v2

2 one obtains

ϕzak
j =

1

2
ℑ
(∫

γ

1

z
dz

)
=





π if
1

s2
>

1

s1
,

0 if
1

s2
≤ 1

s1
,

(6.6)
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as in this case the Zak phase is known to be quantised [6] so that we can drop the asymptotic
factor. This proves Proposition 5.5.

In general the integrals above are tedious to evaluate because of the non-holomorphicity
of the integrand but we can check numerically that the integral is not zero and not constant,
showing the non-quantisation of the Zak phase in the non-Hermitian case. Some values of
this integral are shown in Table 1.

s1 s2 v1 v2
1
2 ℑ(P )

1 2 1 + 1.38i 1 − 1.42i 0.408

1 1 1 + 1.38i 1 − 1.42i 2.420

1 1 1 − 1.42i 1 + 1.38i −2.420

Table 1. Values of the perturbation factor for various geometrical and
material configurations.

In the PT-symmetric case, the system is degenerate. It has twice a double eigenvalue.
The following result in that case can be shown explicitly.

Lemma 6.5 (PT-symmetric Zak phase). Assume that N = 2 and v2 = v1. Then,

ϕzak

j = O(δ).

Proof. For this proof, we will denote by ϕzak
j (v) the Zak phase for v1 = v. Let also σ = (1 2)

be the permutation of two elements. Asymptotically, the Zak phase solely depends on the
eigenvectors of the generalised capacitance matrix. We first show that ϕzak

j (v) = ϕzak
σ(j)(v).

To this end, we remark that using the definition of the capacitance matrix

Cα
G = V 2 Cα =


v2 0

0 v2




 a b(α)

b(α) a




and the permutation matrix

P =


0 1

1 0


 ,

we obtain the following relation:

V 2 = PV 2P −1 Cα = PCαP = C−α.

So,

Cα
G = PV 2P −1P Cα P −1 = P Cα

G P −1,

and Cα
G and Cα

G are similar via a permutation matrix. However, Cα
G = V 2C−α and so the

eigenvectors of V 2C−α are a permutation of the eigenvectors of Cα
G. By symmetry around

the origin of the Brillouin zone and Definition 6.1 of the Zak phase, we conclude that
ϕzak

j (v) = ϕzak
σ(j)(v).

We now show that ϕzak
j (v) = −ϕzak

σ(j)(v), which will complete the proof. Remark that the

eigenvectors of the capacitance matrix given by (6.4) show that complex conjugating both
material parameters leads to permuted and conjugated eigenvectors. Lemma 6.2 leads to
the desired conclusion. �
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6.2. Localised edge modes generated by material-parameter defects

We have shown in Section 5 that defects in the periodicity of the system can lead to
edge modes. Recently, it has been shown that edge modes can also be generated in the
non-Hermitian case via defects in the material parameters rather than in the geometry [10].
We follow a similar approach to the one in [10], showing that for a one dimensional chain of
resonators one can explicitly identify the edge modes.

In this section, we consider the case of equally spaced dimers (i.e., with two identical
resonators per cell), that is,

N = 2, ℓ1 = ℓ2, s1 = s2. (6.7)

We denote by v
(m)
i the material parameter of the i-th resonator of the m-th dimer and

similarly for the resonator itself.

v
(0)
1 v

(0)
2 v

(1)
1 v

(1)
2

. . .

v
(−1)
2 v

(−1)
1

. . .

v
(−2)
2 v

(−2)
1

Figure 4. Infinite structure with material parameter defect.

Definition 6.6 (Localized edge mode). A solution u to (4.1) is said to be a simple eigenmode
if it corresponds to a simple eigenvalue ω scaling as O(δ). A solution is said to be localised
if it is bounded in the L2-sense, that is,

∫
R

|u(x)|2 dx < ∞.

As we have seen in Proposition 4.5 and Lemma 4.10, inside the resonators a subwavelength
resonant mode is almost constant

u(x) = um
i + O(δ) if x ∈ D

(m)
i . (6.8)

The following proposition is [10, Proposition 4.2].

Proposition 6.7. Any localized solution u to (4.1) corresponding to a subwavelength fre-
quency ω satisfies

1

ρ
Cα



∑

m∈Z
um

1 eiαmL

∑
m∈Z

um
2 eiαmL


 = ω2



∑

m∈Z

um
1 eiαmL

(vm
1

)2

∑
m∈Z

um
2 eiαmL

(vm
2

)2


 . (6.9)

We consider the topological defect

v
(m)
1 =

{
v1 m ≤ 0,

v2 m > 0,
and v

(m)
2 =

{
v2 m ≤ 0,

v1 m > 0.
(6.10)

The following lemma, which is [10, Lemma 4.3], exploits the symmetry in the defect to
obtain a decay rate of the mode.

Lemma 6.8. Let

U1 =
∑

m≤0

um
1 eiαmL, U2 =

∑

m>0

um
1 eiαmL, U3 =

∑

m≤0

um
2 eiαmL, U4 =

∑

m>0

um
2 eiαmL.

Then, there exists some b ∈ C independent of α satisfying |b| < 1 and

U1 = bU3, U4 = bU2.
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Using the same notation as in Lemma 6.8, we have
∑

m∈Z

um
1 eiαmL = U2 + U1 = U2 + bU3,

∑

m∈Z

um
2 eiαmL = U3 + U4 = U3 + bU2.

Furthermore, the topological defect (6.10) implies

∑

m∈Z

um
1 eiαmL

(
v

(m)
1

)2 =
U2

v2
2

+
U1

v2
1

=
U2

v2
2

+
1

v2
1

bU3,
∑

m∈Z

um
2 eiαmL

(
v

(m)
2

)2 =
U3

v2
2

+
U4

v2
1

=
U3

v2
2

+
1

v2
1

bU4.

This allows us to rewrite Proposition 6.7 as follows.

Proposition 6.9. Assume that a structure as in (6.7) has a topological defect as in (6.10).
Then, there is a localised mode in the subwavelength regime corresponding to the frequency
ω only if B−1 Cα A has an eigenvalue µ ∈ C independent of the quasiperiodicity α. Here,

A =


1 b

b 1


 , B =

1

δ


 v−2

2 bv−2
1

bv−2
1 v−2

2


 .

Particular of the one-dimensional case is the explicit α-dependence of the capacitance
matrix, as seen in Definition 4.6, which allows us to prove the next theorem.

Remark that it has been shown in [10, Section 4.2] that the decay rate of edge modes in
the case of (6.7) must be either of

b± =
1

2


3

(
1 − v2

1

v2
2

)
±
√

9

(
1 − v2

1

v2
2

)2

+
4v2

1

v2
2


 , (6.11)

whichever has magnitude smaller than 1.

Theorem 6.10. Assume that a one-dimensional structure as in (6.7) has a topological
defect given by (6.10). Then there always exists a simple eigenmode, which — if v1 6= v2 or
v1 = v2 := v with

√
8|ℑ(v2)| ≤ |ℜ(v2)| — is also localised.

The frequency of the mode in the subwavelength regime satisfies

ω = ±
√

µ

ℓ1
+ O(δ),

where

µ =
δ

s1

8v2
1(−3v2

1 + v2
2

√
D + 3v2

2)

−7v2
1 + 3v2

2

√
D + 9v2

2

with D :=
9v4

1

v4
2

− 14v2
1

v2
2

+ 9.

Proof. The condition about localisation arises from the form of the decay rate given in
(6.11). For v1 6= v2 or v1 = v2 := v with

√
8|ℑ(v2)| ≤ |ℜ(v2)| either b− or b+ must have

magnitude smaller than one. However, in the v1 = v2 := v with
√

8|ℑ(v2)| > |ℜ(v2)| case
both |b±| = 1 making it impossible to have localised modes.

For the eigenvalue computations, we assume without loss of generality that s1 = 1 and
introduce it again in the last step.

The eigenvalues of B−1 Cα A are given by

µj =
δv2

1v2
2

b2v4
2 − v4

1︸ ︷︷ ︸
:=K

(
Cα

11(b2v2
2 − v2

1) + b(v2
2 − v2

1)ℜ(Cα
12)

+ (−1)j
√

(Cα
11(b2v2

2 − v2
1) + b(v2

2 − v2
1)ℜ(Cα

12))2 − (b2 − 1)(b2v4
2 − v4

1)((Cα
11)2 − |Cα

12|2)

)
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and we will show that µ0 is independent of the quasiperiodicity. We assume without loss of
generality that b = b−, since the case b = b+ can be proved similarly. Inserting the explicit
coefficients of the capacitance matrix, we obtain

K

(
(
2b2v2

2 + b
(
v2

1 − v2
2

)
(cos (Lα) + 1) − 2v2

1

)

+

√
v4

1v4
2

(
(2b2 − 2) (b2v4

2 − v4
1) (cos (Lα) − 1) + (2b2v2

2 + b (v2
1 − v2

2) (cos (Lα) + 1) − 2v2
1)

2
))

,

while in order to show independence from α, it is enough to consider the term

b
(
v2

1 − v2
2

)
(cos (Lα) + 1)

+

√
(2b2 − 2) (b2v4

2 − v4
1) (cos (Lα) − 1) + (2b2v2

2 + b (v2
1 − v2

2) (cos (Lα) + 1) − 2v2
1)

2
.

(6.12)

Inserting into (6.12) the value of b from (6.11), we obtain after some careful algebraic
manipulations

√
2
(
v2

1 − v2
2

)√√√√
(

9v4
1 − 3v2

1v2
2

√
D − 16v2

1v2
2 + 3v4

2

√
D + 9v4

2

)

︸ ︷︷ ︸
:=B

(cos (Lα) + 3)

−
(
v2

1 − v2
2

) (
3v2

1 − v2
2

(√
D + 3

))

︸ ︷︷ ︸
:=A

(cos (Lα) + 1)

with D :=
9v4

1

v4
2

− 14v2
1

v2
2

+ 9. In order to verify independence from the quasiperiodicity, it is

now enough to prove that 2B = A2. A direct computation shows that

A2 = Dv4
2 + 6

√
Dv2

1v2
2 − 6

√
Dv4

2 + 9v4
1 − 18v2

1v2
2 + 9v4

2

= 18v4
1 − 6v2

1v2
2

√
D − 32v2

1v2
2 + 6v4

2

√
D + 18v4

2

= 2B.

In particular, we have

µ0 =
δ

s1

8v2
1(−3v2

1 + v2
2

√
D + 3v2

2)

−7v2
1 + 3v2

2

√
D + 9v2

2

.

�

As in Section 5.2, we provide some numerical simulations to visualise the edge mode. We
first compute the bands ωα for the left infinite structure. These are shown in Figure 5a
while Figure 5b shows their traces in C. In these plots, we add separately the edge mode
frequency predicted by Theorem 6.10.

In Figure 5c, we show the edge mode computed for a finite but large array of resonators.
As Theorem 6.10 provides an explicit formula for the edge mode frequency, it is par-

ticularly interesting to compare the subwavelength resonances of a finite structure with an
increasing number of resonators with the band structure and predicted edge mode frequency
— both structures having the same material parameter defect. We do this in Figure 5e.

As in the Hermitian case, we want to show that the edge mode is robust with respect
to perturbations, this time in the material parameters. In Figure 5d, we compute the
subwavelength resonances of a finite but large array of N = 100 resonators having a material
parameter defect with some random perturbation given by

ṽi = vi + (1 i) · εi, εi ∼ N (0, Σ),

where

Σ = σ diag

(
1√
2|vi|

)
.
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We remark that the edge mode predicted by Theorem 6.10 is stable with respect to perturb-
ations in the material parameters. The stability is, however, less strong with respect to the
Hermitian case. This is to be expected due to the non-quantisation of the Zak phase in this
setup. Figure 5d shows that there is a second isolated frequency supported by this setup
not predicted by Theorem 6.10. However, this frequency is not isolated from the bulk even
for very small perturbations.
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perturbations in the material parameters.

20 40 60 80 100

0.00

0.01

0.02

0.03

0.04

0.05

ℜ
(ω

)

20 40 60 80 100

N

−0.05

0.00

0.05

ℑ
(ω

)

(e) Convergence of the subwavelength reson-
ances with an increasing number of resonat-
ors. In black the subwavelength resonances
while in grey underlaid the subwavelength
resonant bands of the infinite right struc-
ture and in green the predicted edge mode
frequency. (Remark that for these last two
frequencies, the x-axis is meaningless.)

Figure 5. Edge modes generated by material parameter defects. For the
infinite structure we used N = 2, ℓi = 1, si = 1, v1 = 1 + 1.38i,
v2 = 1 − 1.42i.
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