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Abstract

We propose a multilevel Markov chain Monte Carlo -FEM algorithm to solve elliptic

Bayesian inverse problems with ”Besov random tree prior”. These priors are given by a

wavelet series with stochastic coefficients, and certain terms in the expansion vanishing at

random, according to the law of so-called Galton-Watson trees. This allows to incorporate

random fractal structures and large deviations in the log-diffusion, which occur naturally in

many applications from geophysics or medical imaging. This framework entails two main

difficulties: First, the associated diffusion coefficient does not satisfy a uniform ellipticity

condition, which leads to non-integrable terms and thus divergence of standard multilevel

estimators. Secondly, the associated space of parameters is Polish, but not a normed linear

space, and thus prevents random walk or preconditioned Crank-Nicolson proposals for the

Markov chains. We address the first point by introducing cut-off functions in the estimator to

compensate for the non-integrable terms, while the second issue is resolved by employing an

independence Metropolis-Hastings sampler. The resulting algorithm converges in the mean-

square sense with essentially optimal asymptotic complexity, and dimension-independent ac-

ceptance probabilities.

1 Introduction

Countless phenomena in the natural sciences and engineering are modeled by partial differential
equations (PDEs). Parameters in the corresponding models are in general subject to uncertainty,
due to incomplete information, measurement errors, etc. Therefore, the PDE parameters are often
considered as random variables, or (possibly) infinite-dimensional random fields. A well-studied
example are second-order elliptic equations with a random diffusion coefficient as statistical model
for uncertain permeability/conductivity in a given physical domain. In many applications it is
then of interest to solve the associated inverse problem, that is, to infer realizations of the model
parameter based on discrete observations of the solution to the PDEmodel. Important applications
are electrical resistivity tomography in geophysical engineering ([10]) or electromyography for
medical applications ([23]). In any case, the inverse problem is ill-posed and requires appropriate
regularization techniques.

A popular approach is to consider the inverse problem from a statistical or Bayesian perspective
([16, 3, 30, 7]) with its solution given a by probability measure on a suitable space of parameters.
This so-called posterior measure is inferred by conditioning an a-priori chosen prior measure on
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the observed data. Well-posedness of the Bayesian inverse problem (BIP) is ensured under mild
assumptions, and a-priori model information may be incorporated by selecting an appropriate
prior model for the parameter space. In the wake of the pioneering work of Stuart [30], there has
been an explosion of interest in BIPs and inverse uncertainty quantification in the past decade,
see e.g. [4, 11, 6, 27, 15, 18, 22].

From a computational viewpoint, solving the inverse problem amounts to sampling from a con-
ditional probability measure, which is known only up to a normalization constant. Hence, Markov
chain Monte Carlo (MCMC) methods are used extensively in Bayesian inference, see for instance
[5, 7, 24, 19]. These acceptance-rejection algorithms rely on forward solves of the corresponding
(PDE) model, that involve discretization errors (for instance due to finite element approxima-
tions) and possibly come at high computational costs. These issues have been addressed by
the development of multilevel Monte Carlo algorithms for BIPs, a non-exhaustive list includes
[14, 26, 20, 12, 9, 21]. Multilevel Markov chain Monte Carlo (ML-MCMC) methods reduce the
complexity to compute quantities of interest with respect to the Bayesian posterior by orders of
magnitude, when compared to their ”standard” MCMC counterparts. However, a drawback of
many ML-MCMC approaches for elliptic BIPs is that they require a uniform ellipticity condition
on the random diffusion coefficient. This requirement excludes the important log-Gaussian prior,
let alone models with heavier tails such as Besov priors [25]. To the best of our knowledge, this
issue has only been fully addressed in [12, 13] for elliptic resp. parabolic BIPs with Gaussian prior.

Unfortunately, Gaussian prior models are not able to capture large deviations, due to their fast
decaying tails. Moreover, Gaussian or Besov priors can not incorporate fractal (spatial) structures
in the posterior model, which occur naturally in subsurface flow or medical imaging applications.
For this reason, Besov random tree priors have recently been introduced in [17] for linear inverse
problems, and have been proposed as log-diffusion coefficient in a random elliptic PDE model in
[28]. These priors are given by a wavelet series with stochastic coefficients, and certain terms in the
expansion vanishing at random, according to the law of so-called Galton-Watson trees. Samples
of the corresponding random fields involve fractal geometries, hence the Besov random tree prior
may be a viable candidate in applications, where models based on Gaussian random fields do not
allow for sufficient flexibility. The degree and Hausdorff dimension of the fractal structures are
controlled by a steering parameter β ∈ [0, 1], the so-called wavelet-density.

1.1 Contributions

We develop a ML-MCMC-finite element sampling algorithm for elliptic BIPs with Besov random
tree prior. The results build on and complement the analysis of the corresponding companion pa-
per [28] on the elliptic forward problem with Besov random tree coefficient. The hyper-parameters
of the algorithm are tuned with respect to the regularity of the corresponding forward problem
and we provide an error-vs-work analysis for the ML-MCMC algorithm. Our complexity estimates
show that the proposed approach has essentially the same computational complexity as the for-
ward MLMC method from [28] (up to logarithmic terms), and is therefore asymptotically optimal.
The results hold in particular for ”standard” Besov priors on the torus with wavelet density β = 1.
We emphasize that no uniform-ellipticity assumptions are necessary in the forward model, as our
ML-MCMC estimator compensates for non-integrable terms in the Bayesian potential without
introducing an additional bias. In contrast, failing to take into account the unboundedness of
the solution to the forward equation and the Bayesian potential would result in highly inaccurate
results (see e.g. the numerical experiments in [12]). We further use an independence Metropolis-
Hastings sampler, hence the algorithm may be applied to general (non-linear) parameter spaces,
such as the Polish space of GW trees. While we restrict our analysis to Besov random tree priors
in this article, it is straightforward to apply the presented algorithm to different prior models
associated to a non-normed parameter space without uniform-ellipticity condition.
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1.2 Layout of this paper

We fix the basic notation for this article in Section 1.3. Section 2 introduces general elliptic
BIPs and establishes results on well-posedness and data-dependence of the posterior measure.
We introduce the Besov random tree priors in Section 3, where we also recall well-posedness
and pathwise approximation results of the associated elliptic forward problem from [28] for the
reader’s convenience. Section 4 introduces the BIP with Besov random tree prior and the combined
dimension truncation and finite element approximation of the posterior measure. We further prove
a-priori error estimates on the posterior approximation in the Hellinger distance. In Section 5
we introduce our ML-MCMC algorithm, prove convergence of the root-mean-squared error and
provide the corresponding error-vs-work analysis for the entire range of regularity parameters in
the prior model. We validate our theoretical findings by several numerical experiments in Section 6.

1.3 Notations

We denote by V ′ the topological dual for any vector space V and by V′〈·, ·〉V the associated dual
pairing. For any metric space (X , dX ) we denote by Bλ(y) := {x ∈ X | dX (x, y) ≤ λ} ⊂ X the
closed ball with radius λ > 0 around y ∈ X . If dX is induced by a norm ‖·‖X via dX (x, y) =
‖x− y‖X , we write (X , ‖·‖X ) for the corresponding normed space. If X = Rk for a k ∈ N, we use
the Euclidean metric, unless stated otherwise.

The Borel σ-algebra of any metric space X is generated by the open sets in X and denoted
by B(X ). For any σ-finite and complete measure space (E, E , µ), a Banach space (X , ‖·‖X ), and
integrability exponent p ∈ [1,∞], we define the Lebesgue-Bochner spaces

Lp(E, µ;X ) := {ϕ : E → X| ϕ is strongly measurable and ‖ϕ‖Lp(E,µ;X ) <∞},

where

‖ϕ‖Lp(E,µ;X ) :=





(∫
E
‖ϕ(x)‖pXµ(dx)

)1/p
, p ∈ [1,∞)

ess sup
x∈E

‖ϕ(x)‖X , p = ∞.

In case that X = R, we use the shorthand notation Lp(E, µ) := Lp(E, µ;R). If E ⊂ Rd is
a subset of Euclidean space, we assume E = B(E) and µ is the Lebesgue measure, and write
Lp(E) := Lp(E, µ;R), unless stated otherwise.

For a probability space (Ω,A,P) and a Banach space-valued random variable X : Ω → X , we
denote by EP(X) =

∫
Ω
X(ω)dP(ω) the expectation of X with respect to P. For any two measures

Q1,Q2 on (Ω,A), that are both absolutely continuous with respect to a reference measure Q0 on
(Ω,A), the Hellinger distance of Q1 and Q2 is given by

dHell(Q1,Q2) :=


1

2

∫

Ω

(√
dQ1

dQ0
(ω)−

√
dQ2

dQ0
(ω)

)2

dQ0(ω)




1/2

.

For any bounded and connected spatial domain D ⊂ Rd we denote for k ∈ N and p ∈ [1,∞] the
standard Sobolev spaceW k,p(D) with k-order weak derivatives in Lp(D). The Sobolev-Slobodeckji
space with fractional order s ≥ 0 is denoted by W s,p(D). Furthermore, Hs(D) := W s,2(D) for
any s ≥ 0 and we use the identification H0(D) = L2(D). Given that D is a Lipschitz domain, we
define for any s > 1/2

Hs
0(D) := ker(γ0) = {ϕ ∈ Hs(D)| γ0(ϕ) = 0 on ∂D}, (1)

Here, γ0 ∈ L(Hs(D), Hs−1/2(∂D)) denotes the trace operator.
Let C(D) denote the space of all continuous functions ϕ : D → R. For any α ∈ N, Cα(D) is

the space of all functions ϕ ∈ C(D) with α continuous partial derivatives. For non-integer α > 0,
we denote by Cα(D) the space of all ϕ ∈ C⌊α⌋(D) with α− ⌊α⌋-Hölder continuous ⌊α⌋-th partial
derivatives. For any positive, real α > 0 we further denote by Cα(D) the Hölder-Zygmund space
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of smoothness α. We refer to, e.g., [31, Section 1.2.2] for a definition. We denote by S(Rd) the
Schwarz space of all smooth, rapidly decaying functions, and with S′(Rd) its dual, the space of
tempered distributions. Moreover, for any open set O ⊆ Rd, D(O) denotes the space of all smooth
functions ϕ ∈ C∞(O) with compact support in O.

For the finite element error analysis we introduce a countable set H ⊂ (0,∞), and denote by
h ∈ H a generic finite element refinement parameter. We further assume the existence of a strictly
decreasing sequence (hℓ, ℓ ∈ N) ⊂ H such that limℓ→∞ hℓ = 0.

2 Bayesian Elliptic Inverse Problems

2.1 Forward PDE model

Let (Ω,A,P) be a complete probability space (of parameters ω ∈ Ω), and let D ⊂ Rd, d ∈ {1, 2, 3}
be a convex polygonal domain, with the boundary ∂D consisting of a finite number of line or plane
segments. We consider the random (or ”parametric”) elliptic problem to find u(ω) : D → R for
given ω ∈ Ω such that

−∇ · (a(ω)∇u(ω)) = f in D, u(ω) = 0 on ∂D. (2)

The diffusion coefficient a : Ω → L∞(D) in Problem (2) is a suitable random field and the
source term f : D → R is assumed to be a deterministic function for the sake of simplicity. For
the variational formulation of Problem (2) we define H := L2(D), V := H1

0 (D) and recall that
‖·‖V : V → R≥0, v 7→ ‖∇v‖H defines a norm on V by Poincare’s inequality. For fixed ω ∈ Ω, we
call u(ω) ∈ V a pathwise weak solution to Problem (2) if for any v ∈ V it holds

∫

D

a(ω)∇u(ω) · ∇vdx = V ′〈f, v〉V . (3)

To ensure existence and uniqueness of pathwise weak solutions we assume f ∈ V ′, and that
a : Ω → L∞(D) is strongly A/B(L∞(D))-measurable such that

a−(ω) := ess inf
x∈D

a(x, ω) > 0, P -a.s. (4)

It is then a standard result (see, e.g. [28, Theorem 3.2]) to show that the parameter-to-solution
map u : Ω → V is well-defined and (strongly) A/B(V )-measurable.

2.2 Bayesian inverse problem

To introduce the inverse problem, we consider the parameter-to-observation map

G : Ω → Rk, ω 7→ [O ◦ u](ω) (5)

with bounded linear observation functional O ∈ ((HθO
0 (D))′)k for θO ∈ (1/2, 1] and k ∈ N. We

assume noisy observations δ of the form

δ = G(ω) + ϑ, (6)

where ϑ is centered Gaussian observation noise on Rk. Thus, ϑ is distributed with density

ρ(x) = (2π det(Σ))−
k
2 exp

(
−1

2
x⊤Σ−1x

)
, x ∈ Rk, (7)

for a symmetric and positive definite covariance matrix Σ ∈ Rk×k.
Given an observation δ, we aim to derive the Bayesian posterior probability measure Pδ :=

P(· | δ) on (Ω,A). Note that for given ω ∈ Ω, the distribution of δ = G(ω) + ϑ (conditional on a
given realization G(ω)) is P-.a.s. absolutely continuous with respect to N (0,Σ), hence Pδ is given
by Bayes’ Theorem:
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Proposition 2.1. The posterior measure Pδ is absolutely continuous with respect to the prior
measure P, with Radon-Nikodym derivative given by

dPδ

dP
(ω) =

ρ(δ − G(ω))∫
Ω
ρ(δ − G(ω))dP(ω) =

exp (−Φ(ω; δ))

Z(δ)
. (8)

In (8), we have defined the Bayesian potential Φ : Ω× Rk → R as

Φ(ω; δ) := − log (ρ(δ − G(ω))) = k log (2π det(Σ))

2
+

1

2
(δ − G(ω))⊤Σ−1(δ − G(ω)), (9)

and the normalizing constant Z(δ) > 0 is given by

Z(δ) :=

∫

Ω

exp (−Φ(ω; δ)) dP(ω). (10)

Proof. The observation map G : Ω → Rk in (5) inherits the measurability from u : Ω → V , hence
the claim follows by [7, Theorem 14].

We fix some assumptions on the Bayesian potential Φ to derive Lipschitz continuity of the map
δ → Pδ with respect to the Hellinger distance.

Assumption 2.2.

1) For every λ > 0, there exists a constant κ1(λ) > 0 and a set Ωλ ∈ A with P(Ωλ) > 0 such that

Φ(ω; δ) ≤ κ1(λ), for all ω ∈ Ωλ and δ ∈ Bλ(0).

2) For every λ > 0, there exists κ2(λ, ·) ∈ L2(Ω,P) such that

|Φ(ω; δ)− Φ(ω; δ′)| ≤ κ2(λ, ω)‖δ − δ′‖2, for all ω ∈ Ω and δ, δ′ ∈ Bλ(0).

Proposition 2.3. [11, Theorem 2.4] Under Assumption 2.2, there exists for any λ > 0 a constant
C(λ) > 0 such that

dHell(Pδ,Pδ′) ≤ C(λ)‖δ − δ′‖2, for all δ, δ′ ∈ Bλ(0). (11)

The proof of [11, Theorem 2.4] also yields a lower bound on the normalizing constants Z(δ)
in (10), that only depends on the norm of the data δ:

Corollary 2.4. Under Assumption 2.2, there exists for any λ > 0 a constant c(λ) > 0 such that

Z(δ) ≥ c(λ) > 0 for all δ ∈ Bλ(0). (12)

Proof. For fixed λ > 0 and any δ ∈ Bλ(0) we have by Item (1) of Assumption 2.2

Z(δ) =

∫

Ω

exp (−Φ(ω; δ)) dP(ω) ≥
∫

Ωλ

dP(ω) exp (−κ1(λ)) =: c(λ) > 0.

We consider Besov random tree priors as in [17, 28] in this article. This particular prior
has been used in [28] to model the log-diffusion coefficient b := log(a) in the elliptic forward
problem (2). We review the construction of Besov random tree priors in the next section, and
collect some results on well-posedness of (3) and regularity of pathwise weak solutions.
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3 Besov Random Tree Priors

We introduce in this section Besov random tree priors and the associated elliptic forward problem
to find u in (2) with log(a) given by a Besov random tree prior. We start by recalling some tools
from multiresolution analysis (MRA) and the wavelet representation of Besov spaces. Thereafter
we construct the Besov random tree prior, and record several results on well-posedness and reg-
ularity of the associated elliptic forward problem. We then discuss pathwise approximations by
dimension truncation of the prior and finite elements in the last part of this section. The latter is
in turn necessary to sample (approximately) from the posterior measure Pδ in Section 2.

3.1 MRA and wavelet representation of Besov spaces

Let Td := [0, 1]d denote the d-dimensional torus for d ∈ N. We briefly recall the construction of
orthonormal wavelet basis on L2(Rd) and L2(Td) and the wavelet representation of the associated
Besov spaces. For more detailed accounts we refer to [32, Chapter 1], [33, Chapter 1.2], and to [8,
Chapter 5] for orthonormal wavelets in MRA.

Let φ and ψ be compactly supported scaling and wavelet functions in Cα(R), α ≥ 1, that are
suitable for multi-resolution analysis in L2(R). Further, we assume that ψ satisfies the vanishing
moment condition ∫

R

ψ(x)xmdx = 0, m ∈ N0, m < α. (13)

One example are Daubechies wavelets with M := ⌊α⌋ ∈ N vanishing moments (also known as
DB(⌊α⌋)-wavelets), that have support [−M + 1,M ] and are in C1(R) for M ≥ 5 (see, e.g., [8,
Section 7.1]). For any j ∈ N0 and k ∈ Z, define the scaled and translated functions

ψj,k,0(x) := φ(2jx− k), and ψj,k,1(x) := ψ(2jx− k), x ∈ R. (14)

As ‖φ‖L2(R) = ‖ψ‖L2(R) = 1, it follows that ((ψ0,k,0), k ∈ Z) ∪ ((2j/2ψj,k,1), (j, k) ∈ N0 × Z) is an
orthonormal basis of L2(R).

A corresponding isotropic1 wavelet basis that is orthormal in L2(Rd), d ≥ 2 may be constructed
by tensorization of univariate MRAs. We define index sets L0 := {0, 1}d and Lj := L0\{(0, . . . , 0)}
for j ∈ N. We note that Lj has cardinality |Lj | = 2d if j = 0, and |Lj | = 2d − 1 otherwise. For
any l ∈ L0, we define furthermore

ψj,k,l(x) := 2dj/2
d∏

i=1

ψj,ki,l(i)(xi), j ∈ N0, k ∈ Zd, x ∈ Rd, (15)

to obtain that ((ψj,k,l), j ∈ N0, k ∈ Zd, l ∈ Lj) is an orthonormal basis of L2(Rd).
Orthonormal bases consisting of locally supported, periodic functions on the torus Td can be

introduced by tensorization, as e.g. in [32, Section 1.3]. We utilize the construction in [28, Section
2.1]: Given φ and ψ, we fix a scaling factor w ∈ N such that

supp(ψw,0,l) ⊂
{
x ∈ Rd

∣∣ ‖x‖2 <
1

2

}
, l ∈ L0.

With this choice of w, it follows for j ∈ N0 that

supp(ψj+w,0,l) ⊂
{
x ∈ Rd

∣∣ ‖x‖2 < 2−j−1
}
.

Now let Kj := {k ∈ Zd| 0 ≤ k1, . . . , kd < 2j} ⊂ 2jTd and note that |Kj+w| = 2d(j+w). Define the
one-periodic wavelet functions

ψper
j,k,l(x) :=

∑

n∈Zd

ψj,k,l(x− n), j ∈ N0, k ∈ Kj , l ∈ L0, x ∈ Rd,

1Anisotropic tensorizations leading upon truncation to so-called “hyperbolic cross approximations” may be
considered. As such constructions tend to inject preferred directions along the cartesian axes into approximations,
we do not consider them here.
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and their restrictions to Td by

ψl
j,k(x) := ψper

j,k,l(x), j ∈ N0, k ∈ Kj , l ∈ L0, x ∈ Td. (16)

We now obtain for the index set Iw := {j ∈ N0, k ∈ Kj+w, l ∈ Lj} that

Ψw :=
(
(ψl

j+w,k), (j, k, l) ∈ Iw
)

(17)

is a L2(Td)-orthonormal basis, see [32, Proposition 1.34]. We further define the subspace Vw+1 :=
span{ψl

w,k| k ∈ Kw, l ∈ L0} ⊂ L2(Td) and observe that dim(Vw+1) = 2d(w+1). By the mul-
tiresolution analysis for one-periodic, univariate functions in [8, Chapter 9.3], it follows that
((ψl

j,k), j ≤ w, k ∈ Kj , l ∈ Lj) is another orthonormal basis of Vw+1. Hence, we may re-

place the first 2d(w+1) basis functions in (16) to obtain the (computationally more convenient)
L2(Td)-orthonormal basis

Ψ :=
(
(ψl

j,k), (j, k, l) ∈ IΨ
)
, IΨ := {j ∈ N0, k ∈ Kj , l ∈ Lj}. (18)

Definition 3.1. Let s > 0, p ∈ [1,∞] and ϕ ∈ L2(Td). We define the Besov norms

‖ϕ‖Bs
p,p(T

d) :=




∑

(j,k,l)∈IΨ

2jp(s+
d
2−

d
p
)|(ϕ, ψl

j,k)L2(Td)|p



1/p

, p ∈ [1,∞), (19)

and
‖ϕ‖Bs

∞,∞(Td) := sup
(j,k,l)∈IΨ

2j(s+
d
2 )|(ϕ, ψl

j,k)L2(Td)| <∞. (20)

The corresponding Besov spaces on Td are given by

Bs
p,p(T

d) := {ϕ ∈ L2(Td)| ‖ϕ‖Bs
p,p(T

d) <∞}. (21)

We fix some notation for Besov, Hölder and Zygmund spaces to be used in the remainder of
this paper. As the (periodic) domain Td does not vary in the subsequent analysis, we use the
abbreviations Bs

p := Bs
p,p(T

d), Cα := Cα(Td) and Cα := Cα(Td) for convenience in the following.

3.2 Besov random tree priors

We introduce Besov random tree priors as wavelet expansions with respect toΨ, where the L2(Td)-
orthogonal projection coefficients are replaced by p-exponential random variables as a first step.
To this end, let p ∈ [1,∞) and consider an independent and identically distributed (i.i.d.) sequence
X = ((X l

j,k), (j, k, l) ∈ IΨ) of p-exponential random variables. That is, each X l
j,k is distributed

with density

φp(x) :=
1

cp
exp

(
−|x|p

κ

)
, x ∈ R, cp :=

∫

R

exp

(
−|x|p

κ

)
dx, (22)

where κ > 0 is a fixed scaling parameter. Let Q0 denote the associated one-dimensional p-
exponential measure on (R,B(R)). We recover the normal distribution with variance κ

2 if p = 2,
and the Laplace distribution with scaling κ for p = 1.

The random tree structure in our prior construction is based on certain set-valued random
variables, so-called Galton-Watson trees. Definitions of discrete trees, Galton-Watson (GW) trees,
along with their basic properties, are given in Appendix A of [28], that treats the elliptic forward
problem.

Definition 3.2. [17, Definition 3] Let s > 0, p ∈ [1,∞), and X = ((X l
j,k), (j, k, l) ∈ IΨ) be a

sequence of p-exponentially distributed random variables. Let T denote the set of all trees with
no infinite node (cf. [28, Definition A.1], and let T : Ω → T be a GW tree (cf. [28, Definition A.3]
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with offspring distribution P = Bin(2d, β) for β ∈ [0, 1], and independent of X. Furthermore, let
IT be the set of wavelet indices associated to T from [28, Equation (79)].

Define the random tree index set IT (ω) := {(j, k, l)| (j, k) ∈ IT (ω), l ∈ Lj} and

bT (ω) :=
∑

(j,k,l)∈IT (ω)

ηjX
l
j,k(ω)ψ

l
j,k, ω ∈ Ω, where ηj := 2−j(s+ d

2−
d
p
), j ∈ N0. (23)

We refer to bT as a Bs
p-random variable with wavelet density β.

Remark 3.3. We obtain immediately the classical Besov priors as introduced in [25] as special
case with β = 1, where IT (ω) = IΨ holds almost surely. The series (23) has a natural interpreta-
tion as orthogonal expansion of a random function with respect to the (deterministic, fixed) basis
Ψ. The tree structure of bT gives rise to random fractals on Td, that occur whenever the tree T
in Definition 3.2 does not terminate after a finite number of nodes. It follows by [28, Lemma A.4],
that the latter event occurs with positive probability if β ∈ (2−d, 1]. In this case the Hausdorff
dimension of the fractals is d+ log2(β) ∈ (0, d], see [17, Section 3] for details.

To treat elliptic inverse problems with bT as prior model, we describe the corresponding prob-
ability space of parameters. Let Q0 denote the univariate, p-exponential measure on (R,B(R)) of
the random variables X l

j,k with Lebesgue density as in (22). The product-probability space of the
p-exponentials X is given by (Ωp,Ap,Qp), where

Ωp := RN, Ap :=
⊗

n∈N

B(R), and Qp :=
⊗

n∈N

Q0. (24)

Now let s > 0 and p ∈ [1,∞) be fixed such that s > d
p . We define the weighted ℓp-spaces

ℓps :=
{
x =

(
xlj,k, (j, k, l) ∈ IΨ

)
∈ RN| ‖x‖s,p <∞

}
,

where

‖x‖s,p :=




∑

(j,k,l)∈IΨ

2−jps|xlj,k|p



1/p

.

As 1 ≤ p <∞, (ℓps , ‖·‖s,p) is a separable Banach space. We observe that for X ∼ Qp it holds

E(‖X‖ps,p) ≤
∑

(j,k,l)∈IΨ

2−jpsE(|X l
j,k|p) ≤ C

∞∑

j=0

2−jps2dj(2d − 1) ≤ C

∞∑

j=0

2−jp(s− d
p
) <∞,

since s > d
p , thus Qp is concentrated on ℓps . Therefore, we may regard (ℓps ,B(ℓps),Qp) as probability

space of random coefficient sequences X in the expansion (23).
The set-valued random variable T is a GW tree, and hence takes values in the Polish space

(T, δT) of all trees with no infinite node. The metric δT and the associated Borel σ-algebra B(T)
with respect to T can be expressed explicitly [28, Def. A2], or in [1, Sec. 2.1]. The image measure
QT of the GW tree T on (T,B(T)) then solely depends on the parameters β and d of the offspring
distribution P = Bin(2d, β), and is given in [28, Equation (77)]. Hence, the parameter probability
space of GW trees is given by (T,B(T),QT ).

To combine the random coefficients X with the GW tree T , we define the cartesian product
Ω := ℓps × T and equip Ω with the metric

dΩ((x1, x2), (t1, t2)) := ‖x1 − x2‖s,p + δT(t1, t2).

Proposition 3.4. The space (Ω, dΩ) is Polish with Borel σ-algebra given by B(Ω) = B(ℓps × T) =
B(ℓps)⊗ B(T).
Proof. By [1, Lemma 2.1] the metric space (T, δT) with δT given in [28, Def. A.2] is complete and
separable. Separability and completeness of (Ω, dΩ) follows then by [2, Corollary 3.39]. Further-
more, B(Ω) = B(ℓps × T) = B(ℓps)⊗ B(T) holds by [2, Theorem 4.44].
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We are now ready to define the prior probability space associated to the ℓps ×T-valued random
variable (X,T ): Let (Ω,A,P) denote the product probability space given by

Ω := ℓps × T, A := B(ℓps)⊗ B(T), and P := Qp ⊗QT . (25)

We remark that the product structure of the measure P = Qp ⊗ QT is tantamount to stochastic
independence of X and T .

It still remains to identify a realization of the random variable (X,T ) with the corresponding
random tree prior bT . To this end, we consider the canonical mapping

bT : Ω → L2(Td), ω 7→
∑

(j,k,l)∈IT (ω)

ηjX
l
j,k(ω)ψ

l
j,k. (26)

The map bT : Ω → L2(Td) is indeed well-defined since ‖bT ‖L2(Td) < ∞ holds due to s > d
p .

Moreover, bT is A/B(L2(Td))-measurable, as is seen in Proposition 3.5 below. Therefore, the
pushforward probability measure of bT under the prior measure P is given via

bT#P(B) := P(b−1
T (B)), B ∈ B(L2(Td)). (27)

The associated probability space of Bs
p-random variables bT with wavelet density β is given by

(L2(Td), B(L2(Td)), bT#P).

We know from [28, Remark 2.9] that bT#P is concentrated on Bt
p for any t ∈ (0, s − d

p ). A

more refined result that concentrates bT#P on Besov spaces Bt
q for q ≥ 1 with smoothness index

t = t(s, d, p, β, q) is given in Theorem 3.6 below. We conclude this section by two results on
measurability and pathwise regularity of bT .

Proposition 3.5. [28, Proposition 2.10] Let s > d
p , β ∈ [0, 1], and let bT be a Bs

p-random variable

with wavelet density β. Then bT : Ω → C(Td) and bT is (strongly) A/B(C(Td))-measurable.

Theorem 3.6. [28, Theorem 2.11] Let bT be a Bs
p-random variable with wavelet density β = 2γ−d

as in Definition 3.2 with γ ∈ (−∞, d].

1.) It holds that bT ∈ Lq(Ω,P;Bt
q), and hence bT ∈ Bt

q P -a.s., for all t > 0 and q ≥ 1 such that

t < s+ d−γ
q − d

p .

2.) Let s− d
p > 0 and t ∈ (0, s− d

p ). Then there is a εp > 0 such that

EP

(
exp

(
ε‖b‖pCt

))
<∞, ε ∈ (0, εp),

In particular, it holds bT ∈ Lq(Ω,P; Ct) for any q ≥ 1.

3.) Let q ≥ 1 and s− d
p −

min(γ,0)
q > 0. For any t ∈ (0, s− d

p −
min(γ,0)

q ) it holds bT ∈ Lq(Ω,P; Ct).

3.3 Well-posedness and regularity of forward problem

Let D ⊂ Rd, d ∈ {1, 2, 3} be a convex polygonal domain, with the boundary ∂D consisting of a
finite number of line or plane segments. We assume furthermore that D ⊆ Td. Let ϕ|D denote the
restriction of any ϕ ∈ S′(Rd) to D, which is in turn given by the element ϕ|D ∈ D′(D) such that

D′(D)〈ϕ|D, v〉D(D) = S′(Rd)〈ϕ, v0〉S(Rd), v ∈ D(D),

where v0 ∈ D(Rd) ⊂ S(Rd) denotes the zero-extension of any v ∈ D(D) (cf. [32, Section 2]).
According to [32, Theorem 1.29] there exists for any b ∈ Bs

p a unique, one-periodic extension

extper(b) : Rd → R, so that b = extper(b)|D, see also [28, Section 4.2] for further details.
The restriction of bT given in Definition 3.2 to D ⊆ Td is thus given by

bT,D(ω) := (extperbT (ω))|D. (28)

We call bT,D a Bs
p(D)-valued random variable.
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Remark 3.7. Note that bT,D is not (necessarily) periodic if D ( Td, but merely the restriction
of a periodic function from the torus Td. Assuming D ⊆ Td for the sake of brevity does not have
any substantial impact on the following results: In case that D 6⊂ Td is a bounded domain, we
could extend Definition (3.2) from the torus Td to a sufficiently large (periodic) domain [−L,L]d,
with L > 1 such that D ⊂ [−L,L]d. We would then simply define bT,D as the restriction of a
L-periodic function on this enlarged domain.

Now we set a = exp(bT,D) in (2) to obtain the elliptic forward problem with Besov random tree
prior to find u(ω) : D → R for given ω ∈ Ω such that

−∇ · (exp(bT,D(ω))∇u(ω)) = f in D, u(ω) = 0 on ∂D. (29)

Theorem 3.8. [28, Theorem 3.9] Let bT,D be given in (28) for p ∈ [1,∞), s > 0 and β ∈ [0, 1],
so that sp > d. Furthermore, let f ∈ V ′. Then the following assertions hold.

1.) There exists almost surely a unique weak solution u(ω) ∈ V to (29) and u : Ω → V is strongly
measurable.

2.) For sufficiently small κ > 0 in (22), there are constants q ∈ (1,∞) and C > 0 such that

‖u‖Lq(Ω,P;V ) ≤ C‖f‖V ′ <∞
{

for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.

3.) Let f ∈ H, r ∈ (0, s− d
p ) ∩ (0, 1], let r0 ∈ (0, r) if r < 1, and r0 = 1 if r = 1. For sufficiently

small κ > 0 in (22), there are constants q ∈ (1,∞) and C > 0 such that .

‖u‖Lq(Ω,P;H1+r0 (D)) ≤ C‖f‖H <∞
{

for q ∈ [1, q) if p = 1 and

for any q ∈ [1,∞) if p > 1.

We observe that the non-negative diffusion coefficient in the forward PDE (29) is not lower-
bounded away from zero. We also remark that the condition ”for sufficiently small κ > 0” in part
2.) and 3.) of Theorem 3.8 only applies for p = 1, and ensures that exp(‖bT,D‖L∞(D)) ∈ Lq(Ω),
or, respectively, exp(‖bT,D‖Cr(D)) ∈ Lq(Ω), for some (κ-dependent) q ≥ 1.

3.4 Pathwise approximation of the forward problem

To obtain a tractable approximation of bT in (23), we truncate the wavelet series expansion after
N ∈ N scales to obtain the truncated random tree Besov prior

bT,N (ω) :=
∑

(j,k,l)∈IT (ω)
j≤N

ηjX
l
j,k(ω)ψ

l
j,k, ω ∈ Ω. (30)

The corresponding diffusion problem in weak form with truncated coefficient for fixed ω ∈ Ω is to
find uN (ω) ∈ V such that for all v ∈ V

∫

D

exp(bT,N (ω)|D)∇uN (ω) · ∇vdx = V ′〈f, v〉V . (31)

The solution uN : Ω → V to Problem (31) with truncated coefficient is still not fully tractable,
as it takes values in the infinite-dimensional Hilbert space V . Thus, we consider Galerkin-finite
element approximations of uN for a fixed truncation index N in the remainder of this section.

As a first step, we discretize the convex domain D ⊂ Td, d ∈ {1, 2, 3} by a sequence of simplices
(intervals/triangles/tetrahedra) or parallelotopes (intervals/ parallelograms/parallelepipeds), de-
noted by (Kh)h∈H. The refinement parameter h > 0 takes values in a countable index set
H ⊂ (0,∞) and corresponds to the longest edge of a simplex/parallelotope K ∈ Kh. We im-
pose the following assumptions on (Kh)h∈H to obtain a sequence of ”well-behaved” triangulations.
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Assumption 3.9. The sequence (Kh)h∈H satisfies:

1. Admissibility: For each h ∈ H, Kh consists of open, non-empty simplices/parallelotopes K
such that

• D =
⋃

K∈Kh
K,

• K1 ∩K2 = ∅ for any two K1,K2 ∈ Kh such that K1 6= K2, and

• the intersection K1 ∩ K2 for K1 6= K2 is either empty, a common edge, a common
vertex, or (in space dimension d = 3) a common face of K1 and K2.

2. Shape-regularity: Let ρK,in and ρK,out denote the radius of the inner and outer circle, re-
spectively, for a given K ∈ Kh. There is a constant ρ > 0 such that

ρ := sup
h∈H

sup
K∈Kh

ρK,out

ρK,in
<∞.

Based on a given tesselation Kh, we define the space of piecewise (multi-)linear finite elements

Vh :=

{
{v ∈ V | v|T is linear for all K ∈ Kh}, if Kh consists of simplices,

{v ∈ V | v|T is d-linear for all K ∈ Kh}, if Kh consists of parallelotopes.

Clearly, Vh ⊂ V is a finite-dimensional space and we define nh := dim(Vh) ∈ N. This yields for
fixed ω ∈ Ω the fully discrete problem to find uN,h(ω) ∈ Vh such that for all vh ∈ Vh

∫

D

aN (ω)∇uN,h(ω) · ∇vhdx = V ′〈f, vh〉V . (32)

The combined truncation and FE-approximation error is bounded by the next result.

Theorem 3.10. [28, Theorems 4.4., 4.7 and 4.8] Let (Kh)h∈H be a sequence of triangulations
satisfying Assumption 3.9, and let u, uN and uN,h be the pathwise weak solutions to (29), (30)
and (32) for given N ∈ N and h ∈ H. Furthermore, let p ∈ [1,∞) and s > 0 such that sp > d.

For any f ∈ H, sufficiently small κ > 0 in (22), any r ∈ (0, s− d
p ) ∩ (0, 1] and t ∈ (0, s− d

p ),

there are constants q ∈ (1,∞) and C > 0 such that for any N ∈ N and h ∈ H there holds

‖u− uN‖Lq(Ω,P;V ) ≤ C2−Nt

{
for q ∈ [1, q) if p = 1,

for any q ∈ [1,∞) if p > 1,

‖uN − uN,h‖Lq(Ω,P;V ) ≤ Chr

{
for q ∈ [1, q) if p = 1,

for any q ∈ [1,∞) if p > 1,

‖uN − uN,h‖Lq(Ω,P;H) ≤ Ch2r

{
for q ∈ [1, q) if p = 1,

for any q ∈ [1,∞) if p > 1.

4 Inverse Problem with Besov Random Tree Prior

Consider again the Bayesian inverse problem setting from Section 2, where we assume that log(a)
in (2) is given by a Besov random tree prior, i.e. a = exp(bT,D). We verify Assumption 2.2 in this
setting to ensure that Proposition 2.3 and Corollary 2.4 are valid.

Lemma 4.1. Let the assumptions of Theorem 3.8 hold with q ≥ 2, let log(a) in (2) be given by a
Besov random tree prior as a = exp(bT,D), and let ρ be given in (7). Then, Assumption 2.2 holds
for Φ and ρ.
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Proof. By Theorem 3.8 we obtain that u ∈ Lq(Ω,P;V ). This implies that there is a constant
Cu > 0 and a set Ωu ∈ A with P(Ωu) > 0, such that ‖u(ω)‖V ≤ Cu for all ω ∈ Ωu. Now let λ > 0
be fixed and define χ := λ+ ‖O‖

((H
θO
0 )′)k

Cu. For all ω ∈ Ωu and δ ∈ Bλ(0) we then obtain

Φ(ω; δ) ≤ | log(ρ(δ − [O ◦ u](ω)))| ≤ sup
x∈Bχ(0)

| log(ρ(x))| ≤ k

2
| log(2π det(Σ))|+ 1

2
‖Σ−1‖2χ2 <∞.

Hence, Φ satisfies Item 1 of Assumption 2.2 with Ωλ := Ωu and

κ1(λ) :=
k

2
| log(2π det(Σ))|+ 1

2
‖Σ−1‖2(λ+ ‖O‖

((H
θO
0 )′)k

Cu)
2.

To show Item 2, we fix ω ∈ Ω and let δ, δ′ ∈ Bλ(0). By (7), we obtain

|Φ(ω; δ)− Φ(ω; δ′)| =
∣∣∣∣log

(
ρ(δ − [O ◦ u](ω))
ρ(δ′ − [O ◦ u](ω))

)∣∣∣∣

=
1

2

∣∣−δ⊤Σ−1δ + (δ′)⊤Σ−1(δ′) + 2[O ◦ u](ω))⊤Σ−1(δ − δ′)
∣∣

≤ 1

2

∣∣−δ⊤Σ−1(δ − δ′) + (δ′)⊤Σ−1(δ′ − δ)
∣∣+
∣∣[O ◦ u](ω))⊤Σ−1(δ′ − δ)

∣∣

≤
(
max(‖δ‖2, ‖δ′‖2) + ‖O‖

((H
θO
0 )′)k

‖u(ω)‖V
)
‖Σ−1‖2‖δ − δ′‖2

≤
(
λ+ ‖O‖

((H
θO
0 )′)k

‖u(ω)‖V
)
‖Σ−1‖2‖δ − δ′‖2.

Since u ∈ L2(Ω,P;V ) by Theorem 3.8, Item 2 of Assumption 2.2 holds with

κ2(λ, ω) :=
(
λ+ ‖O‖

((H
θO
0 )′)k

‖u(ω)‖V
)
‖Σ−1‖2.

Remark 4.2. Let λmin > 0 denote the smallest eigenvalue of Σ. From the proof of Lemma 4.1
it is apparent that κ1(λ) = O(λ−1

min), κ2(λ, ω) = O(λ−1
min) for fixed ω and λ. Hence, the bounds

in Assumption 2.2 deteriorate in the ”small noise-limit” when λmin → 0. Consequently, C(λ) =

O(λ−1
min) for fixed λ > 0 in Proposition 2.3, and c(λ) = O(λ

k
2

min) in Corollary 2.4 with the choice
of κ1 as in the proof of Lemma 4.1.

The (exact) posterior Pδ from (8) is in general out of reach, as only biased samples uN,h ≈ u
as in (32) of the forward problem are available. Therefore, we consider the approximated posterior

dPδ,N,h(ω) :=
exp (−ΦN,h(ω; δ)) dP(ω)

ZN,h(δ)
, (33)

with discrete Bayesian potential and normalizing constant given by

ΦN,h(ω; δ) := − log (ρ(δ − [O ◦ uN,h](ω))) , and ZN,h(δ) :=

∫

Ω

exp (−ΦN,h(ω; δ)) dP(ω) > 0.

Proposition 4.3. Let the assumptions of Theorem 3.10 hold such that q ≥ 4 in case that p = 1.
Then, for any λ > 0 there is a C(λ) > 0, independent of N and h, such that

dHell(Pδ,Pδ,N,h) ≤ C(λ)(2−Nt + h(2−θO)r) for all δ ∈ Bλ(0).

We need a uniform lower bound on ZN,h(δ) to prove Proposition 4.3:

Lemma 4.4. Let the assumptions of Theorem 3.10 hold. Then, for any λ > 0 there is a constant
c(λ) > 0, independent of N and h, such that

ZN,h(δ) ≥ c(λ) > 0 for all δ ∈ Bλ(0). (34)
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Proof. By Theorem 3.10, there is a constant C̃ > 0 such that for all N ∈ N and h ∈ H there holds

‖u− uN,h‖L1(Ω,P;V ) ≤ C(2−Nt + hr) ≤ C̃ <∞. (35)

Since u ∈ L1(Ω,P;V ), this implies by the reverse triangle inequality that

‖uN,h‖L1(Ω,P;V ) ≤ C̃ + ‖u‖L1(Ω,P;V ) <∞. (36)

Now define C̃u := 2(C̃ + ‖u‖L1(Ω,P;V )) > 0, and the set

Ω̃u := {ω ∈ Ω
∣∣‖uN,h‖V ≤ C̃u} ∈ A.

The set Ω̃u depends in general on N and h. We have by Markov’s inequality, Inequality (36) and

the definition of C̃u that

P(Ω̃u) = 1− P(‖uN,h‖V > C̃u) ≥ 1− ‖uN,h‖L1(Ω,P;V )

C̃u

≥ 1

2
, (37)

holds for all N ∈ N and h ∈ H. Now let λ > 0 be fixed. For all ω ∈ Ω̃u and δ ∈ Bλ(0) we obtain

ΦN,h(ω; δ) ≤ | log(ρ(δ − [O ◦ uN,h](ω)))| ≤ sup
x∈Bχ(0)

| log(ρ(x))| <∞,

where χ := λ + ‖O‖
((H

θO
0 )′)k

C̃u and the last estimate is finite by continuity of log ◦ρ : Rk → R.

Hence, ΦN,h satisfies the first part of Assumption 2.2 with Ωλ := Ω̃u with

κ1(λ) := sup
x∈Bχ(0)

| log(ρ(x))| <∞,

due to (37). The claim now follows analogously to the proof of Corollary 2.4, since P(Ω̃u) and
κ1(λ) are bounded uniformly in N and h.

Proof of Proposition 4.3: The proof basically follows the proof of [14, Proposition 10], where we
substitute the estimate from Theorem 3.10 at the appropriate positions. Since both Pδ and Pδ,N,h

are absolutely continuous with respect to P, we have for fixed λ > 0 and any δ ∈ Bλ(0) that

2dHell(Pδ,Pδ,N,h)
2

=

∫

Ω

(
Z(δ)−1/2 exp

(
−1

2
Φ(ω; δ)

)
− ZN,h(δ)

−1/2 exp

(
−1

2
ΦN,h(ω; δ)

))2

dP(ω)

≤ 2

∫

Ω

Z(δ)−1

(
exp

(
−1

2
Φ(ω; δ)

)
− exp

(
−1

2
ΦN,h(ω; δ)

))2

dP(ω)

+ 2

∫

Ω

(
Z(δ)−1/2 − ZN,h(δ)

−1/2
)2

exp (−ΦN,h(ω; δ))P(ω)

:= 2(I + II).

(38)

To bound I we use Taylor-expansion and that Σ in (9) is positive definite to obtain

∣∣∣∣exp
(
−1

2
Φ(ω; δ)

)
− exp

(
−1

2
ΦN,h(ω; δ)

)∣∣∣∣

≤ 1

2
exp

(
−1

2

k log (2π det(Σ))

2

)
|Φ(ω; δ)− ΦN,h(ω; δ)|

≤ C |Φ(ω; δ)− ΦN,h(ω; δ)| ,
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where C > 0 is a deterministic constant. Now let Cρ ∈ (0,∞) be the Lipschitz constant of ρ in (7).
We use the bound in (38) together with Hölder’s inequality to bound the first term by

I ≤ C

∫

Ω

Z(δ)−1 |Φ(ω; δ)− ΦN,h(ω; δ)|2 dP(ω)

= C

∫

Ω

Z(δ)−1 |ρ(δ − [O ◦ u](ω))− ρ(δ − [O ◦ uN,h](ω))|2 dP(ω)

≤ C
C2

ρ‖O‖2
((H

θO
0 )′)k

Z(δ)

∫

Ω

‖u(ω)− uN,h(ω)‖2HθO
dP(ω)

≤ C

Z(δ)

∫

Ω

‖u(ω)− uN (ω)‖2V + ‖uN (ω)− uN,h(ω)‖2HθO
dP(ω)

≤ C

Z(δ)

∫

Ω

‖u(ω)− uN (ω)‖2V + ‖uN (ω)− uN,h(ω)‖2θOV ‖uN (ω)− uN,h(ω)‖2(1−θO)
H dP(ω)

≤ C

Z(δ)

(
‖u− uN‖2L2(Ω,P;V ) + ‖uN − uN,h‖2θOL4θO (Ω,P;V )

‖uN − uN,h‖2(1−θO)

L4(1−θO)(Ω,P;H)

)
.

We then use Theorem 3.10 with q := 4max(θO, (1− θO)) ≤ 4 to derive the estimate

I ≤ C

Z(δ)
(2−2Nt + h2θOrh2(1−θO)2r) ≤ C

Z(δ)
(2−Nt + h(2−θO)r)2.

The second term is bounded by

II =
(
Z(δ)−1/2 − ZN,h(δ)

−1/2
)2
ZN,h(δ)

≤ ZN,h(δ)

min(Z(δ), ZN,h(δ))3
|ZN,h(δ)− Z(δ)|2

≤ ‖ρ‖L∞(Rk)

min(Z(δ), ZN,h(δ))3
|ZN,h(δ)− Z(δ)|2 .

Similar as for I, the Lipschitz continuity of ρ and Theorem 3.10 then yield

|ZN,h(δ)− Z(δ)|2 =

∣∣∣∣
∫

Ω

ρ(δ − [O ◦ uN,h](ω))− ρ(δ − [O ◦ u](ω))dP(ω)
∣∣∣∣
2

≤ C(2−Nt + h(2−θO)r)2.

Thus, the claim follows by Lemmas 4.1 and 4.4, and with Corollary 2.4 since

dHell(Pδ,Pδ,N,h) ≤ C
max(1, ‖ρ‖L∞(Rk))

min(1, Z(δ), ZN,h(δ))3/2
(2−Nt + h(2−θO)r) ≤ C

c(λ)3/2
(2−Nt + h(2−θO)r).

Let Eδ,N,h(·) := EPδ,N,h
(·) denote the expectation with respect to the approximated posterior

Pδ,N,h. The bound in Proposition 4.3 controls the difference of Eδ and Eδ,N,h.

Theorem 4.5. Let (X , ‖·‖X ) be an arbitrary Banach space and let ϕ ∈ L2(Ω,P;X ). Under the
assumptions of Theorem 3.10, there is for any λ > 0 a constant C(λ) > 0, independent of ϕ, N
and h, such that

‖Eδ(ϕ)− Eδ,N,h(ϕ)‖X ≤ C(λ)‖ϕ‖L2(Ω,P;X )(2
−Nt + h(2−θO)r) for all δ ∈ Bλ(0).
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Proof. We fix λ > 0 and arbitrary δ ∈ Bλ(0). Clearly, the density ρ is continuous and bounded
on Rk, hence ‖ρ‖L∞(Rk) <∞. This together with Corollary 2.4 and ϕ ∈ L2(Ω,P;X ) then shows

‖ϕ‖2L2(Ω,Pδ;X ) =

∫

Ω

‖ϕ(ω)‖2X
exp (−Φ(ω; δ))

Z(δ)
dP(ω)

=
1

Z(δ)

∫

Ω

‖ϕ(ω)‖2Xρ(δ − G(ω))dP(ω)

≤ ‖ρ‖L∞(D)

c(λ)
‖ϕ‖2L2(Ω,P;X ) <∞.

Thus, ϕ ∈ L2(Ω,Pδ;X ) is bounded uniformly for δ ∈ Bλ(0). We find in the same fashion that
ϕ ∈ L2(Ω,Pδ,N,h;X ) is bounded uniformly in N , h and for δ ∈ Bλ(0), as Lemma 4.4 shows that

‖ϕ‖2L2(Ω,Pδ,N,h;X ) =
1

ZN,h(δ)

∫

Ω

‖ϕ(ω)‖2Xρ(δ − [O ◦ uN,h](ω))dP(ω)

≤ ‖ρ‖L∞(D)

c(λ)
‖ϕ‖2L2(Ω,P;X ) <∞.

By [30, Lemma 6.37] we then obtain

‖Eδ(ϕ)− Eδ,N,h(ϕ)‖X ≤ 2

(
2
‖ρ‖L∞(D)

c(λ)

)1/2

‖ϕ‖L2(Ω,P;X )dHell(Pδ,Pδ,N,h),

and the claim follows for C(λ) := 2
(
2
‖ρ‖L∞(D)

c(λ)

)1/2
by Proposition 4.3 .

5 Markov Chain Monte Carlo

We use Markov chain Monte Carlo (MCMC) sampling for the (approximate) posterior measure
Pδ,N,h, where we assume that δ ∈ Bλ(0) for a fixed λ > 0. For a concise notation, we equilibrate
truncation and FE error by assuming h(2−θO)r ≃ 2−Nt, and use the abbreviations Ph := Pδ,N,h

and Eh := Eδ,N,h throughout.

5.1 Singlelevel Markov chain Monte Carlo

Given the current state ω(k), we draw a candidate v(k) ∼ Q(ω(k); ·), where Q(ω(k); ·) : A → [0, 1]
is a given proposal probability measure on (Ω,A), depending on the current state ω(k). We
further define the measures ν and ν⊤ on Ω× Ω via dν(ω, v) := Q(ω; dv)dPh(ω) and dν(ω, v)

⊤ :=
Q(v; dω)dPh(v) for any (ω, v) ∈ Ω×Ω, and suppose that Q is chosen such that ν⊤ ≪ ν. The new
proposal is accepted as next state, i.e. ω(k+1) = v(k), with acceptance probability

α(ω(k), v(k)) := min

{
1,
dν⊤(ω(k); v(k))

dν(ω(k); v(k))

}
. (39)

Note that α in (39) is well-defined due to the assumption ν⊤ ≪ ν. If v(k) is rejected, we keep the
current state ω(k+1) = ω(k). This approach is a variant of the Metropolis-Hastings algorithm and
generates a Markov chain (ω(k), k ∈ N) with stationary distribution Ph. Clearly, the generated
samples (ω(k), k ∈ N) are correlated in a non-trivial way. It is well-known that a good choice of
proposal density Q leads to low correlation and an efficient algorithm. We will in particular focus
on the independence sampler, where Q(ω(k); dv(k)) = dP(v(k)), that is, the proposal v(k) is drawn
from the prior measure P, independent of the current state ω(k) of the Markov chain.

Now let ω(1), . . . , ω(M), M ∈ N be a sequence of MCMC samples from Ph. We aim to estimate
the posterior mean of ϕ : Ω → R, ω 7→ [Ψ ◦ u](ω), where Ψ : V → R is a deterministic functional
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and u is the solution to (29). The corresponding Markov chain Monte Carlo estimator of Eh(ϕ)
is then denoted by

Eh
M (ϕ) :=

1

M

M∑

i=1

ϕ(ω(i)). (40)

The sampling error of the Markov chain Monte Carlo estimator is bounded by the next result.

Lemma 5.1 (Geometric ergodicity of independence sampler). Let Q denote the distribution of
the initial sample ω(1) and let PQ be the probability measure on the probability space generated
by the Markov chain Monte Carlo independence sampler. Furthermore, we denote by EQ the
expectation with respect to PQ. There exists C = C(λ) > 0 (recall that δ ∈ Bλ(0)) such that for
all ϕ ∈ L2(Ω,P) and h ∈ H there holds

EQ
((

Eh(ϕ)− Eh
M (ϕ)

)2) ≤ C‖ϕ‖2L2(Ω,P)M
−1. (41)

Proof. Lemma 4.4 yields for any h ∈ H and N ∈ N the uniform lower bound

ZN,h(δ) ≥ c(λ) > 0 for all δ ∈ Bλ(0),

and hence

ess sup
ω∈Ω

exp(−ΦN,h(ω; δ))

ZN,h(δ)
≤ ‖ρ‖∞

c(λ)
<∞.

We assume that ‖ρ‖∞

c(λ) > 1 without loss of generality. Let Q(n)(ω̃ ; ·) : Ω → [0, 1] denote the

the distribution of the Markov chain after n steps when starting from (a fixed) ω̃ ∈ Ω. By [29,
Theorem 1 and Eq. (13)] it holds that for any A ∈ A that

∣∣∣∣
∫

A

Q(n)(ω̃, dω)− Ph(A)

∣∣∣∣ ≤ C

(
1− c(λ)

‖ρ‖∞

)n

,

thus the Markov chain converges geometrically to the target measure (note that C depends on the
distribution of the initial sample ω̃.) The error bound (41) then follows exactly in the same way
as for the log-normal case in [12, Lemma B.2 (p. 41/.42)], and is thus omitted here.

Remark 5.2. We remark that the subsequent error analysis of the MCMC estimator in (40) and
its multilevel extension in Subsection 5.2 does not rely on the independence sampler as proposal
kernel. Our results rather extend to any choice of Q in (39) that satisfies a geometric ergodicity
result as in Lemma 5.1.

We may only sample from an approximated quantity of interest (QoI) Ψ ◦ uN ′,h′ ≈ ϕ, where
h′ > 0 and N ′ ∈ N are discretization parameters as in Theorem 3.10, that not necessarily need to
coincide with h and N from Eh. We make the following assumptions on Ψ to bound the resulting
discretization error.

Assumption 5.3. Let Ψ : V → R and let u : Ω → V be the pathwise weak solution to (29).

1.) Let θΨ ∈ [0, 1], let Ψ : HθΨ(D) → R be a Fréchet-differentiable functional and denote by

Ψ′ : HθΨ(D) → L(HθΨ(D);R) = (HθΨ(D))′

the Fréchet-derivative of Ψ. There are constants C > 0, ρ1, ρ2 ≥ 0 such that for all v ∈ HθΨ(D)

|Ψ(v)| ≤ C(1 + ‖v‖ρ1

HθΨ (D)
), ‖Ψ′(v)‖L(HθΨ (D);R) ≤ C(1 + ‖v‖ρ2

HθΨ (D)
). (42)

2.) There holds u ∈ Lq(Ω;V ) and there are constants t > 0, r ∈ (0, 1], such that Theorem 3.10
holds for q := 6max(ρ1, ρ2 + 1).
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Remark 5.4. Assumption 5.3 is natural, and includes in particular bounded linear functionals
Ψ, where ρ1 = 1 and ρ2 = 0. Moreover, the condition q = 6max(ρ1, ρ2+1) ≥ 6 in the second part
is necessary to to bound the MSE in Theorem 5.9 below. However, this restriction only applies in
case that p = 1, since q may be arbitrary large in Theorems 3.8 and 3.10 for p > 1.

We record the following result to bound the approximation error.

Theorem 5.5. Under Assumption 5.3, there is a constant C > 0, such that for any N ′ ∈ N and
h′ ∈ H there holds

‖Ψ(u)−Ψ(uN ′,h′)‖L6(Ω) ≤ C
(
2−tN ′

+ h′(2−θΨ)r
)

(43)

Proof. The claim is shown in the second part of the proof of [28, Theorem 5.4].

Remark 5.6. The estimate (43) implies in particular the weaker bound

‖Ψ(u)−Ψ(uN ′,h′)‖L2(Ω) ≤ C
(
2−tN ′

+ h′(2−θΨ)r
)
,

which will be used in Corollary 5.7 below. On the other hand, we require the bound with respect to
L6(Ω) in (43) to bound the mean-squared error of the multilevel MCMC estimator in Theorem 5.9
in the next subsection.

Based on (43), we assume that 2−tN ′ ≃ h′(2−θΨ)r for simplicity and consider the approximated
QoI ϕh′ := Ψ(uN ′,h′). The overall error of the Markov chain Monte Carlo estimator then depends
on the regularity of the functionals O and Ψ. For notational convenience we introduce the variables

ηO := 2− θO ∈ [1,
3

2
), and ηΨ := 2− θΨ ∈ [1, 2]. (44)

Corollary 5.7. Under Assumption 5.3, there is a C > 0, independent of h and h′, such that

EQ
((

Eδ(ϕ)− Eh
M (ϕh′)

)2) ≤ C
(
h2ηOr + (h′)2ηΨr +M−1

)
.

Proof. We consider the error splitting

EQ
((

Eδ(ϕ)− Eh
M (ϕh′)

)2) ≤ 3EQ
(
(Eδ(ϕ)− Eh(ϕ))

2
)

+ 3EQ
(
(Eh(ϕ)− Eh(ϕh′))

2
)

+ 3EQ
((

Eh(ϕh′)− Eh
M (ϕh′)

)2)

:= 3(I + II + III).

As ϕ ∈ L2(Ω,P) and 2−Nt ≃ hηOr, the term I is bounded by Theorem 4.5 via

I = (Eδ(ϕ)− Eh(ϕ))
2
= C(λ)‖ϕ‖L2(Ω,P;X )(2

−2Nt + h2ηOr) ≤ Ch2ηOr.

We use 2−N ′t ≃ (h′)ηΨr, Theorems 4.5 and 5.5 to bound the term II via

II = (E(ϕ− ϕh′) + Eh(ϕ− ϕh′)− E(ϕ− ϕh′))
2

≤ 2E(|ϕ− ϕh′ |2) + 2 (Eh(ϕ− ϕh′)− E(ϕ− ϕh′))
2

≤ CE(|ϕ− ϕh′ |2)(1 + h2ηOr)

≤ C(h′)2ηΨr.

The claim now follows with Lemma 5.1, as the term III is bounded by

III = EQ
((

Eh(ϕh′)− Eh
M (ϕh′)

)2) ≤ C‖ϕh′‖2L2(Ω,P)M
−1 ≤ C‖ϕ‖2L2(Ω,P)M

−1. (45)
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5.2 Multilevel Markov chain Monte Carlo

Now let L ∈ N and consider refining sequences h0 > · · · > hL and N0 < · · · < NL of approximation
parameters. We further denote the approximated posterior on level ℓ = 0, . . . , L by Eℓ := Eδ,Nℓ,hℓ

.
Given a fixed ℓ, we choose L′(ℓ) ∈ N and let the approximated QoI on levels ℓ′ = 0, . . . , L′(ℓ) be
given by ϕℓ′ := Ψ(uN ′

ℓ′
,h′

ℓ′
). We then approximate Eδ(ϕ) using telescopic sums via

Eδ(ϕ) ≈ EL(ϕ) =
L∑

ℓ=1

Eℓ(ϕ)− Eℓ−1(ϕ) + E0(ϕ)

≈
L∑

ℓ=1

Eℓ(ϕL′(ℓ))− Eℓ−1(ϕL′(ℓ)) + E0(ϕL′(0))

=

L∑

ℓ=1

L′(ℓ)∑

ℓ′=1

Eℓ(ϕℓ′ − ϕℓ′−1)− Eℓ−1(ϕℓ′ − ϕℓ′−1) +

L∑

ℓ=1

Eℓ(ϕ0)− Eℓ−1(ϕ0)

+

L′(0)∑

ℓ′=1

E0(ϕℓ′ − ϕℓ′−1) + E0(ϕ0).

(46)

We further introduce the truncation function

Iℓ(ω) := 1{Φℓ(ω,δ)≤Φℓ−1(ω,δ)} ∈ {0, 1}, ℓ = 1, . . . , L, (47)

where Φℓ(ω, δ) is the level ℓ-approximation of the Bayesian potential, i.e,

Φℓ(ω, δ) := − log (ρ(δ − [O ◦ uNℓ,hℓ
](ω))) . (48)

Following [12, Section 4 and Proposition A.1], this allows us to represent the expansion in (46) via

L∑

ℓ=1

Eℓ(ϕL′(ℓ))− Eℓ−1(ϕL′(ℓ)) + E0(ϕL′(0))

=

L∑

ℓ=1

L′(ℓ)∑

ℓ′=0

Eℓ(A
(1)
ℓ,ℓ′) + Eℓ−1(A

(2)
ℓ,ℓ′) + Eℓ(A

(3)
ℓ )Eℓ−1(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

+

L∑

ℓ=1

L′(ℓ)∑

ℓ′=0

Eℓ−1(A
(5)
ℓ )Eℓ(A

(6)
ℓ,ℓ′ +A

(7)
ℓ,ℓ′) +

L′(ℓ)∑

ℓ′=1

E0(ϕℓ′ − ϕℓ′−1) + E0(ϕ0),

(49)

where the terms A(1) −A(8) are given for ϕ−1 := 0 by

A
(1)
ℓ,ℓ′ := (1− exp(Φℓ(ω, δ)− Φℓ−1(ω, δ)))(ϕℓ′ − ϕℓ′−1)Iℓ,

A
(2)
ℓ,ℓ′ := (exp(Φℓ−1(ω, δ)− Φℓ(ω, δ))− 1)(ϕℓ′ − ϕℓ′−1)(1− Iℓ),
A

(3)
ℓ := (exp(Φℓ(ω, δ)− Φℓ−1(ω, δ))− 1)Iℓ,

A
(4)
ℓ,ℓ′ := (ϕℓ′ − ϕℓ′−1)Iℓ,
A

(5)
ℓ := (1− exp(Φℓ−1(ω, δ)− Φℓ(ω, δ)))(1− Iℓ),

A
(6)
ℓ,ℓ′ := exp(Φℓ(ω, δ)− Φℓ−1(ω, δ))(ϕℓ′ − ϕℓ′−1)Iℓ,

A
(7)
ℓ,ℓ′ := (ϕℓ′ − ϕℓ′−1)(1− Iℓ),

A
(8)
ℓ,ℓ′ := exp(Φℓ−1(ω, δ)− Φℓ(ω, δ))(ϕℓ′ − ϕℓ′−1)(1− Iℓ).

(50)

We now replace the expectations Eℓ in (49) by Markov chain Monte Carlo estimators Eℓ
Mℓ,ℓ′

(·),
where the number of samples Mℓ,ℓ′ depends on both discretization levels ℓ and ℓ′. This yields the
multilevel Markov chain Monte Carlo (ML-MCMC) estimator
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EL(ϕ) :=

L∑

ℓ=1

L′(ℓ)∑

ℓ′=0

Eℓ
Mℓ,ℓ′

(A
(1)
ℓ,ℓ′) + Eℓ−1

Mℓ,ℓ′
(A

(2)
ℓ,ℓ′)

+ Eℓ
Mℓ,ℓ′

(A
(3)
ℓ )Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′) + Eℓ−1

Mℓ,ℓ′
(A

(5)
ℓ )Eℓ

Mℓ,ℓ′
(A

(6)
ℓ,ℓ′ +A

(7)
ℓ,ℓ′)

+

L′(ℓ)∑

ℓ′=1

E0
M0,ℓ′

(ϕℓ′ − ϕℓ′−1) + E0
M0,0

(ϕ0).

(51)

For technical reasons, we require the following assumption on the ML-MCMC estimator.

Assumption 5.8. Let L ∈ N be given and fix a discretization level ℓ ∈ {0, . . . , L}. The estimators

(Eℓ
Mℓ,ℓ′

(A
(3)
ℓ ), Eℓ

Mℓ,ℓ′
(A

(6)
ℓ,ℓ′ +A

(7)
ℓ,ℓ′)) in (51) are independent of (Eℓ−1

Mℓ,ℓ′
(A

(5)
ℓ ), Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)).

Furthermore, all estimators in (51) are independent with respect to ℓ ∈ {0, . . . , L}, meaning the
Markov chains for each posterior refinement level ℓ ∈ {0, . . . , L} are generated independently.

Assumption 5.8 is necessary to derive the mean-squared error in Theorem 5.9, without strength-
ening Lemma 5.1 to fourth moments. For fixed ℓ = 0, . . . , L we denote by Pℓ the probability
measure on the probability space generated by all Markov chains with posterior refinement level
ℓ. The combination of all L + 1 measures Pℓ yields with the second part of Assumption 5.8 the
product probability measure PML

L := P0 ⊗ · · · ⊗ PL, and we denote the associated expectation by
EML
L . With this at hand we are able to quantify the MSE of the ML-MCMC algorithm:

Theorem 5.9. Let Assumptions 5.3 and 5.8 hold, and let h0 ∈ H denote the coarsest level FE
refinement parameter. For any fixed 0 < ε < 1 set

L :=

⌈− log2(ε)

ηOr
+ log2(h0)

⌉
, L′(ℓ) = L′ :=

⌈
L
ηO
ηΨ

⌉
for ℓ = 0, . . . , L, and

hℓ = h02
−ℓ, hℓ′ = h02

−ℓ′ , Nℓ =
⌈
− log2(hℓ)

ηOr

t

⌉
, Nℓ′ =

⌈
− log2(hℓ′)

ηΨr

t

⌉
,

for ℓ′ = 0, . . . , L′(ℓ), ℓ = 0, . . . , L.

Furthermore, set the number of samples Mℓ,ℓ′ on each level as

Mℓ,ℓ′ :=





⌈h−2rηO

L w0,0⌉, for ℓ = ℓ′ = 0,

⌈h−2rηO

L h2rηO

ℓ wℓ,0⌉, for ℓ = 1, . . . , L and ℓ′ = 0,

⌈h−2rηO

L h2rηΨ

ℓ′ w0,ℓ′⌉, for ℓ = 0 and ℓ′ = 1, . . . , L′(0),

⌈h−2rηO

L h2rηO

ℓ h2rηΨ

ℓ′ wℓ′,ℓ⌉, for ℓ = 1, . . . , L and ℓ′ = 1, . . . , L′(ℓ),

where the weights wℓ,ℓ′ > 0 are selected such that there is a Cw > 0, independent of L, satisfying

w
−1/2
0,0 +

L′(0)∑

ℓ=1

w
−1/2
ℓ,0 +

L′(0)∑

ℓ′=1

w
−1/2
0,ℓ′ +

L∑

ℓ=1

L′(ℓ)∑

ℓ′=1

w
−1/2
ℓ,ℓ′ ≤ Cw <∞. (52)

Then, there is a C > 0, independent of ε, such that

EML
L

(
(Eδ(ϕ)− EL(ϕ))

2
)1/2

≤ Cε.

We remark that it is always possible to select admissible weights wℓ,ℓ′ that satisfy the uniform
bound in (52). Appropriate choices of wℓ,ℓ′ to achieve (quasi-)optimal computational complexity
depend on the parameters r, ηO, ηΨ and d, and are given in Theorem 5.11 below.
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Proof of Theorem 5.9. We use the error splitting

EML
L

(
(Eδ(ϕ)− EL(ϕ))

2
)1/2

≤ |Eδ(ϕ)− EL(ϕ)|

+

∣∣∣∣∣EL(ϕ)−
(

L∑

ℓ=1

Eℓ(ϕL′(ℓ))− Eℓ−1(ϕL′(ℓ)) + E0(ϕL′(0))

)∣∣∣∣∣

+ EML
L



(

L∑

ℓ=1

Eℓ(ϕL′(ℓ))− Eℓ−1(ϕL′(ℓ)) + E0(ϕL′(0))− EL(ϕ)

)2



1/2

= I + II + III.

The first term is bounded with Theorem 4.5 and the choices of L and NL by

I ≤ C(2−NLt + hηOr
L ) ≤ C(h02

−L)ηOr ≤ Cε.

We expand the first term in II and use Theorems 4.5 and 5.5 to obtain the bound

II =

∣∣∣∣∣

L∑

ℓ=1

Eℓ(ϕ)− Eℓ−1(ϕ)− (Eℓ(ϕL′(ℓ))− Eℓ−1(ϕL′(ℓ))) + E0(ϕ)− E0(ϕL′(0))

∣∣∣∣∣

≤
L∑

ℓ=1

|Eℓ(ϕ− ϕL′(ℓ))− Eℓ−1(ϕ− ϕL′(ℓ))|+ |E0(ϕ)− E0(ϕL′(0))|

≤ C

L∑

ℓ=0

‖ϕ− ϕL′(ℓ)‖L2(Ω)h
ηOr
ℓ

≤ C

L∑

ℓ=0

hηΨr
L′(ℓ)h

ηOr
ℓ

≤ C(h02
−L)ηOr

L∑

ℓ=0

(h02
−ℓ)ηOr

≤ Cε.

To bound III, we are going to use the representation (49) and bound the estimation error

with respect to all terms A
(1)
ℓ,ℓ′ , . . . , A

(8)
ℓ,ℓ′ separately. Let Eℓ denote the expectation with respect to

Pℓ, the probability measure on the space generated by the Markov chains on level ℓ. We have by
Taylor-expansion, (47), (9) and (48)

|(1− exp(Φℓ(ω, δ)− Φℓ−1(ω, δ)))Iℓ|
≤ |Φℓ(ω, δ)− Φℓ−1(ω, δ)|

=
1

2
[O ◦ (uNℓ,hℓ

− uNℓ−1,hℓ−1
)](ω)⊤Σ−1(2δ + [O ◦ (uNℓ,hℓ

+ uNℓ−1,hℓ−1
)](ω))

≤ C‖uNℓ,hℓ
(ω)− uNℓ−1,hℓ−1

(ω)‖HθO (1 + ‖uNℓ,hℓ
(ω) + uNℓ−1,hℓ−1

(ω)‖HθO )

≤ C
(
‖u(ω)− uNℓ−1,hℓ−1

(ω)‖HθO + ‖u(ω)− uNℓ,hℓ
(ω)‖HθO

)

·
(
1 + ‖uNℓ,hℓ

(ω)‖HθO + ‖uNℓ−1,hℓ−1
(ω)‖HθO

)
,

(53)

where C = C(Σ, λ,O) is independent of ℓ. Now let us first consider the case ℓ′ ≥ 1. We obtain by
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Lemma 5.1, the estimate in (53) and Hölder’s inequality

Eℓ
((

Eℓ(A
(1)
ℓ,ℓ′)− Eℓ

Mℓ,ℓ′
(A

(1)
ℓ,ℓ′)

)2)1/2

≤ CM
−1/2
ℓ,ℓ′ ‖(1− exp(Φℓ(·, δ)− Φℓ−1(·, δ)))Iℓ(ϕℓ′ − ϕℓ′−1)‖L2(Ω)

≤ CM
−1/2
ℓ,ℓ′ ‖|Φℓ(·, δ)− Φℓ−1(·, δ)||ϕℓ′ − ϕℓ′−1|‖L2(Ω)

≤ CM
−1/2
ℓ,ℓ′

(
‖u− uNℓ−1,hℓ−1

‖L6(Ω;HθO ) + ‖u− uNℓ,hℓ
‖L6(Ω;HθO )

)

·
(
1 + ‖uNℓ,hℓ

‖L6(Ω;HθO ) + ‖uNℓ−1,hℓ−1
‖L6(Ω;HθO )

)
‖ϕ− ϕℓ′‖L6(Ω).

As in the proof of Proposition 4.3, we then use Theorem 3.10 to show that

‖u− uNℓ,hℓ
‖L6(Ω;HθO ) ≤ ‖u− uNℓ

‖L6(Ω;V ) + ‖uNℓ
− uNℓ,hℓ

‖L6(Ω;HθO )

≤ C2−Nℓt + ‖uNℓ
− uNℓ,hℓ

‖θOL6(Ω;V )‖uNℓ
− uNℓ,hℓ

‖1−θO
L6(Ω;H)

≤ C(2−Nℓt + h
(2−θO)r
ℓ ).

(54)

This shows in particular

‖uNℓ,hℓ
‖L6(Ω;HθO ) ≤ ‖uNℓ,hℓ

− u‖L6(Ω;HθO ) + ‖u‖L6(Ω;HθO ) ≤ C(1 + ‖u‖L6(Ω;HθO )), (55)

where C = C(N0, h0), and the last estimate is independent of Nl and hℓ. Since hℓ−1 = 2hℓ and

2−Nℓt = h
(2−θO)r
ℓ = hηOr

ℓ by the choice of Nℓ, the estimates (54), (55) and Theorem 5.5 now show

Eℓ
((

Eℓ(A
(1)
ℓ,ℓ′)− Eℓ

Mℓ,ℓ′
(A

(1)
ℓ,ℓ′)

)2)1/2

≤ CM
−1/2
ℓ,ℓ′ hηOr

ℓ hηΨr
ℓ′ .

Similarly, we find for ℓ′ ≥ 1 and due to hℓ−1 = 2hℓ that

Eℓ
((

Eℓ−1(A
(2)
ℓ,ℓ′)− Eℓ−1

Mℓ,ℓ′
(A

(2)
ℓ,ℓ′)

)2)1/2

≤ CM
−1/2
ℓ,ℓ′ hηOr

ℓ hηΨr
ℓ′ .

To treat the error with respect to the third term in (49), we use the triangle inequality to obtain

Eℓ
((

Eℓ(A
(3)
ℓ )Eℓ−1(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)− Eℓ

Mℓ,ℓ′
(A

(3)
ℓ )Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

)2)1/2

≤ Eℓ
((

Eℓ(A
(3)
ℓ )− Eℓ

Mℓ,ℓ′
(A

(3)
ℓ )
)2

Eℓ−1(A
(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

2

)1/2

+ Eℓ
(
Eℓ

Mℓ,ℓ′
(A

(3)
ℓ )2

(
Eℓ−1(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)− Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

)2)1/2

≤ |Eℓ−1(A
(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)|Eℓ

((
Eℓ(A

(3)
ℓ )− Eℓ

Mℓ,ℓ′
(A

(3)
ℓ )
)2)1/2

+
√
2|Eℓ(A

(3)
ℓ )|Eℓ

((
Eℓ−1(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)− Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

)2)1/2

+
√
2Eℓ
((

Eℓ
Mℓ,ℓ′

(A
(3)
ℓ )− Eℓ(A

(3)
ℓ )
)2)1/2

· Eℓ
((

Eℓ−1(A
(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)− Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

)2)1/2

.

(56)

The last line follows from the basic inequality (c1 + c2)
2 ≤ 2(c21 + c22) for c1, c2 ∈ R together with

Assumption 5.8 on the independence of Eℓ
Mℓ,ℓ′

(A
(3)
ℓ ) and Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)) with respect to the

21



measure Pℓ. Theorems 4.5 and 5.5 yield for ℓ′ ≥ 1 with |Iℓ| ≤ 1 that

|Eℓ−1(A
(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)| ≤ ‖A(4)

ℓ,ℓ′ +A
(8)
ℓ,ℓ′‖L2(Ω) ≤ ChηΨr

ℓ′ . (57)

As for the bound (54), we obtain by (53), Hölder’s inequality and Theorem 3.10 that

|Eℓ(A
(3)
ℓ )| ≤ ‖A(3)

ℓ ‖L2(Ω) ≤ Eℓ

(
|(exp(Φℓ(·, δ)− Φℓ−1(·, δ))− 1)Iℓ|2

)1/2

≤ C
(
‖u− uNℓ−1,hℓ−1

‖L4(Ω,P;HθO ) + ‖u− uNℓ,hℓ
‖L4(Ω,P;HθO )

)

· (1 + ‖u‖L4(Ω,P;HθO ))

≤ ChηOr
ℓ .

(58)

Substituting (57) and (58) in (56) thus shows

Eℓ
((

Eℓ(A
(3)
ℓ )Eℓ−1(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)− Eℓ

Mℓ,ℓ′
(A

(3)
ℓ )Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

)2)1/2

≤ ChηΨr
ℓ′ Eℓ

((
Eℓ(A

(3)
ℓ )− Eℓ

Mℓ,ℓ′
(A

(3)
ℓ )
)2)1/2

+ ChηOr
ℓ Eℓ

((
Eℓ−1(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)− Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

)2)1/2

+
√
2Eℓ
((

Eℓ
Mℓ,ℓ′

(A
(3)
ℓ )− Eℓ(A

(3)
ℓ )
)2)1/2

· Eℓ
((

Eℓ−1(A
(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)− Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

)2)1/2

.

We then use once again (57), (58) and the same arguments as for the bound on A
(1)
ℓ,ℓ′ to see that

Eℓ
((

Eℓ(A
(3)
ℓ )Eℓ−1(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)− Eℓ

Mℓ,ℓ′
(A

(3)
ℓ )Eℓ−1

Mℓ,ℓ′
(A

(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′)

)2)1/2

≤ C

(
hηΨr
ℓ′

‖A(3)
ℓ ‖L2(Ω)

M
1/2
ℓ,ℓ′

+ hηOr
ℓ

‖A(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′‖L2(Ω)

M
1/2
ℓ,ℓ′

+
‖A(3)

ℓ ‖L2(Ω)‖A(4)
ℓ,ℓ′ +A

(8)
ℓ,ℓ′‖L2(Ω)

Mℓ,ℓ′

)

≤ C

(
hηOr
ℓ hηΨr

ℓ′

M
1/2
ℓ,ℓ′

+
hηOr
ℓ hηΨr

ℓ′

Mℓ,ℓ′

)

≤ CM
−1/2
ℓ,ℓ′ hηOr

ℓ hηΨr
ℓ′ ,

holds for ℓ′ ≥ 1, where the last line follows since Mℓ,ℓ′ ≥ 1. Analogously, we deduce that

Eℓ
((

Eℓ−1(A
(5)
ℓ )Eℓ(A

(6)
ℓ,ℓ′ +A

(7)
ℓ,ℓ′)− Eℓ−1

Mℓ,ℓ′
(A

(5)
ℓ )Eℓ

Mℓ,ℓ′
(A

(6)
ℓ,ℓ′ +A

(7)
ℓ,ℓ′)

)2)1/2

≤ CM
−1/2
ℓ,ℓ′ hηOr

ℓ hηΨr
ℓ′ .

For the case that ℓ′ = 0 we lose the factor hηΨr
ℓ′ in all estimates for III, since ϕℓ′−1 = 0 by

definition. Repeating the previous arguments then yields for ℓ = 1, . . . , L

Eℓ
((

Eℓ(A
(1)
ℓ,0)− Eℓ

Mℓ,0
(A

(1)
ℓ,0)
)2)1/2

≤ CM
−1/2
ℓ,0 hηOr

ℓ ,

Eℓ
((

Eℓ(A
(2)
ℓ,0)− Eℓ

Mℓ,0
(A

(2)
ℓ,0)
)2)1/2

≤ CM
−1/2
ℓ,0 hηOr

ℓ ,

Eℓ
(
Eℓ(A

(3)
ℓ )Eℓ−1(A

(4)
ℓ,0 +A

(8)
ℓ,0)− Eℓ

Mℓ,0
(A

(3)
ℓ )Eℓ−1

Mℓ,0
(A

(4)
ℓ,0 +A

(8)
ℓ,0)
)
≤ CM

−1/2
ℓ,0 hηOr

ℓ ,

Eℓ
(
Eℓ−1(A

(5)
ℓ )Eℓ(A

(4)
ℓ,0 +A

(8)
ℓ,0)− Eℓ−1

Mℓ,0
(A

(5)
ℓ )Eℓ

Mℓ,0
(A

(4)
ℓ,0 +A

(8)
ℓ,0)
)
≤ CM

−1/2
ℓ,0 hηOr

ℓ .
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Finally, we also have

Eℓ
((

E0(ϕℓ′ − ϕℓ′−1)− E0
M0,ℓ′

(ϕℓ′ − ϕℓ′−1)
)2)1/2

≤ CM
−1/2
0,ℓ′ hηΨr

ℓ′ ,

as well as

Eℓ
((

E0(ϕ0)− E0
M0,0

(ϕ0)
)2)1/2

≤ CM
−1/2
0,0 .

We now collect all estimates and use (49) and (52) to bound III by

III ≤ C


M−1/2

0,0 +

L′(0)∑

ℓ′=1

M
−1/2
0,ℓ′ hηΨr

ℓ′ +

L∑

ℓ=1

M
−1/2
ℓ,0 hηOr

ℓ +

L∑

ℓ=0

L′(ℓ)∑

ℓ′=1

M
−1/2
ℓ,ℓ′ hηOr

ℓ hηΨr
ℓ′




≤ ChηOr
L


w−1/2

0,0 +

L′(0)∑

ℓ′=1

w
−1/2
0,ℓ′ +

L∑

ℓ=1

w
−1/2
ℓ,0 +

L∑

ℓ=1

L′(ℓ)∑

ℓ′=1

w
−1/2
ℓ,ℓ′




≤ Cε.

We need another assumption on the sampling cost to derive complexity estimates for the
ML-MCMC estimator.

Assumption 5.10. One sample of Φℓ(·; δ) = − log(ρ(δ − uNℓ,hℓ
)) and ϕℓ = Ψ(uNℓ,hℓ

) with
uNℓ,hℓ

∈ Vhℓ
and nℓ := dim(Vhℓ

) = O(h−d
ℓ ) is realized in O(nℓ) work and memory.

Theorem 5.11. Let Assumptions 5.3, 5.8 and 5.10 hold. For any given ε > 0, there are ML-
MCMC parameters L,L′, hℓ, Nℓ,Mℓ,ℓ′ such that the ML-MCMC estimator satisfies

EML
L

(
(Eδ(ϕ)− EL(ϕ))

2
)1/2

≤ Cε, (59)

with computational cost CMLMC for ε→ 0 of order

CMLMC =





O(ε−2) if 2rmin(ηO, ηΨ) > d,

O(ε−2| log2(ε)|3) if 2rmax(ηO, ηΨ) > d and 2rmin(ηO, ηΨ) = d,

O(ε−2| log2(ε)|5) if 2rηO = 2rηΨ = d,

O(ε−d/(rmin(ηO,ηΨ))) if 2rmax(ηO, ηΨ) = d and 2rmin(ηO, ηΨ) < d,

O(ε−d/(rmin(ηO,ηΨ))−ǫ) if 2rmax(ηO, ηΨ) < d.

(60)

The last complexity estimate for 2rmax(ηO, ηΨ) < d holds for any ǫ > 0.

Remark 5.12. The first three estimates of CMLMC require that d ∈ {1, 2}, since r ∈ (0, 1],
ηO ∈ [1, 32 ) and ηΨ ∈ [1, 2]. Further, for the frequently used parameter set r = ηO = ηΨ = 1 we
recover (essentially) an asymptotic complexity of order O(ε−d) if d ≥ 2, which corresponds to the
cost of a single sample with spatial resolution ε.

Proof of Theorem 5.11. For given ε > 0, we set the ML-MCMC parameters L,L′, hℓ, Nℓ,Mℓ,ℓ′ as
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in Theorem 5.9. The weights wℓ,ℓ′ in Mℓ,ℓ′ are given by wℓ,ℓ′ = wℓwℓ′ , where we choose

wℓ :=





(ℓ+ 1)α1 if 2ηOr > d,

1 + L2
1{ℓ>0} if 2ηOr = d and 2ηΨr ≥ d,

2α2ℓ if 2ηOr = d and 2ηΨr < d,

2(d−2ηOr)(L−ℓ)α3 if 2ηOr < d,

and

wℓ′ :=





(ℓ′ + 1)α1 if 2ηΨr > d,

1 + (L′)21{ℓ>0} if 2ηΨr = d and 2ηOr ≥ d,

2α2ℓ if 2ηΨr = d and 2ηOr < d,

2(d−2ηΨr)(L−ℓ)α3 if 2ηΨr < d,

for parameters α1 > 2, α2 ∈ (0, d) and α3 ∈ (0, 1) to be further specified below. In each scenario
the choice of wℓ,ℓ′ satisfies (52) with a constant Cw > 0 uniformly in L, thus we have that

EML
L

(
(Eδ(ϕ)− EL(ϕ))

2
)1/2

≤ Cε,

by Theorem 5.9, and it remains to bound the computational complexity.
Under Assumption 5.10 and since ε ≃ (h02

−L)ηOr the cost to sample EL(ϕ) is bounded by

CMLMC ≤ C


M0,0h

−d
0 +

L∑

ℓ=1

Mℓ,0h
−d
ℓ +

L′(0)∑

ℓ′=1

M0,ℓ′h
−d
ℓ′ +

L∑

ℓ=1

L′(ℓ)∑

ℓ′=1

Mℓ,ℓ′(h
−d
ℓ + h−d

ℓ′ )




≤ Cε−2


h−d

0 w0,0 + h2ηOr−d
0

L∑

ℓ=1

2(d−2ηOr)ℓwℓ + h2ηΨr−d
0

L′(0)∑

ℓ′=1

2(d−2ηΨr)ℓ′wℓ′




+ Cε−2h
2(ηO+ηΨ)r−d
0

L∑

ℓ=1

2(d−2ηOr)ℓwℓ

L′(ℓ)∑

ℓ′=1

2−2ηΨrℓ′wℓ′

+ Cε−2h
2(ηO+ηΨ)r−d
0

L∑

ℓ=1

2−2ηOrℓwℓ

L′(ℓ)∑

ℓ′=1

2(d−2ηΨr)ℓ′wℓ′

≤ Cε−2

(
1 +

L∑

ℓ=1

2(d−2ηOr)ℓwℓ

(
1 +

L∑

ℓ′=1

2−2ηΨrℓ′wℓ′

)

+

L′∑

ℓ′=1

2(d−2ηΨr)ℓ′wℓ′

(
1 +

L∑

ℓ=1

2−2ηOrℓwℓ

))
.

(61)

Here, the last line follows since L′(ℓ) = L′ is independent of ℓ. The first sum with respect to ℓ is
then bounded by

L∑

ℓ=1

2(d−2ηOr)ℓwℓ =





∑L
ℓ=1 2

(d−2ηOr)ℓ(ℓ+ 1)α1 ≤ C1 if 2ηOr > d,∑L
ℓ=1 1 + L2 ≤ C2L

3 if 2ηOr = d and 2ηΨr ≥ d,∑L
ℓ=1 2

α2ℓ ≤ C32
α2L if 2ηOr = d and 2ηΨr < d,∑L

ℓ=1 2
(d−2ηOr)(α3L+(1−α3)ℓ) ≤ C42

(d−2ηOr)L if 2ηOr < d.

The constants C1, C2, C3, C4 ∈ (0,∞) are independent of L, and therefore of ε. Since L ≤
C| log2(ε)| and ε ≤ C2−LηOr, there is a C > 0, independent of ε, such that

L∑

ℓ=1

2(d−2ηOr)ℓwℓ ≤





C if 2ηOr > d,

C| log2(ε)|3 if 2ηOr = d and 2ηΨr ≥ d,

Cε−α2/(ηOr) if 2ηOr = d and 2ηΨr < d,

Cε2−d/(ηOr) if 2ηOr < d.

(62)
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Similarly, we conclude by ε ≃ 2−LηOr ≃ 2−L′ηΨr that there is C > 0, independent of ε, such that

L′(ℓ)∑

ℓ′=1

2(d−2ηΨr)ℓ′wℓ′ ≤





C if 2ηΨr > d,

C| log2(ε)|3 if 2ηΨr = d and 2ηOr ≥ d,

Cε−α2/(ηΨr) if 2ηΨr = d and 2ηOr < d,

Cε2−d/(ηΨr) if 2ηΨr < d.

(63)

Whenever 2ηOr = d and 2ηΨr ≥ d, there holds by L ≤ C| log2(ε)| that
L∑

ℓ=1

2−2ηOrℓwℓ ≤ L2
L∑

ℓ=1

2−dℓ < C| log2(ε)|2.

Next, in case that 2ηOr = d and 2ηΨr < d we have by α2 < d = 2ηOr that

L∑

ℓ=1

2−2ηOrℓwℓ =
L∑

ℓ=1

2(−d+α2)ℓ <∞.

Moreover, in case that 2ηOr < d holds, we have wℓ ≤ 2(d−2ηOr)α3L and hence

L∑

ℓ=1

2−2ηOrℓwℓ ≤ 2(d−2ηOr)α3L
L∑

ℓ=1

2−2ηOrℓ ≤ Cεα3(2−d/(ηOr)).

Altogether, this shows that there is C > 0 such that for all L ≥ 1

L∑

ℓ=1

2−2ηOrℓwℓ ≤





C| log2(ε)|2 if 2ηOr = d and 2ηΨr ≥ d,

Cεα3(2−d/(ηOr)) if 2ηOr < d,

C otherwise.

(64)

As α2 < d also holds for 2ηOr < d and 2ηΨr = d, one may conclude analogously that

L′(ℓ)∑

ℓ′=1

2−2ηΨrℓ′wℓ′ ≤





C| log2(ε)|2 if 2ηΨr = d and 2ηOr ≥ d,

Cεα3(2−d/(ηΨr)) if 2ηΨr < d,

C otherwise.

(65)

The first three bounds for CMLMC in (60) then follow right away by combining the estimates (62)–
(65) with (61).

Now we consider the case 2ηOr = d and d > 2ηΨr, where we choose

α2 ∈
(
0,
d

2

(
d

2ηΨr
− 1

)]
∩ (0, d)

and α3 = 1
2 to obtain with d

ηΨr > 2 and d = 2ηOr that

CMLMC ≤ Cε−2
(
1 + ε−α2/(ηOr)(1 + εα3(2−d/(ηΨr))) + ε2−d/(ηΨr)(1 + C)

)

≤ C
(
ε−2−α2/(ηOr)+α3(2−d/(ηΨr)) + ε−d/(ηΨr)

)

≤ C
(
ε−α22/d−1−d/(2ηΨr) + ε−d/(ηΨr)

)

≤ Cε−d/(ηΨr).

Analogously, if 2ηOr < d and 2ηΨr = d, we let

α2 ∈
(
0,
d

2

(
d

2ηOr
− 1

)]
∩ (0, d),
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and α3 = 1
2 to obtain that CMLMC ≤ Cε−d/(ηOr).

In the final case where max(2ηOr, 2ηOr) < d holds, we have that

CMLMC ≤ Cε−2
(
1 + ε2−d/(ηOr)(1 + εα3(2−d/(ηΨr))) + ε2−d/(ηΨr)(1 + εα3(2−d/(ηOr)))

)

≤ C
(
εα3(2−d/(rmin(ηO,ηΨ)

)
ε−d/(rmin(ηO,ηΨ))

≤ Cε−d/(min(ηO,ηΨ)r)−ǫ,

where ǫ := −α3(2− d/(rmin(ηO, ηΨ)) > 0 can be made arbitrary small by choosing a sufficiently
small α3 ∈ (0, 1) (however, note that C = C(α3) in (59) is only uniform in L and ε if α3 > 0, but
we obtain that C(α3) = O(L2) = O(| log2(ε)|2) for α3 = 0.)

6 Numerical Experiments

6.1 Bayesian inverse problem in 1D

Let T1 = [0, 1] be the one-dimensional torus, let D := T, and consider the elliptic (forward)
problem to find u(ω) : D → R for given ω ∈ Ω such that

−∇ · (exp(bT (ω))∇u(ω)) = 10 in (0, 1), u(ω) = 0 on {0, 1}. (66)

The log-diffusion coefficient bT in (66) is a Besov random tree prior with parameters s = 8
5 , p =

5
3

and wavelet density β = 4
5 . For the Bayesian inverse problem, we sample a realization of u(ω) for

given ω (also referred to as ”ground truth”) and consider the parameter-to-observation map

G : Ω → Rk, ω 7→
(
u(ω, xi), i = 1, . . . , k

)⊤
, for 0 < x1 < · · · < xk < 1,

where k = 9 and xi := 0.1 · i for i = 1, . . . , 9. Hence, the observation functional O is a linear
functional O ∈ (V ′)k. To generate the synthetic data, we approximate u on a FE grid on [0, 1]
with 211 equidistant nodes, and by truncating the Besov random tree prior bT after N = 11 scales
to obtain a feasible log-diffusion bT,N ≈ bT (as s − d

p = 1 the resulting pathwise error is of order

O(2−11) by Theorem 3.10). A plot of the ground truth, the corresponding fine approximation of
u and the observations is given on the left panel in Figure 1. The noisy observations are given by

δ = G(ω) + ϑ,

where ϑ ∼ N (0, σ2I9) with σ = 0.1.
We aim to approximate the posterior expectations Eδ(Ψi(u)) for i = 1, 2, where

Ψ1(u) :=

(∫

D

∇u · ∇u dx
) 1

2

and Ψ2(u) :=

∫

D

u dx

are the energy norm and spatial mean of u, respectively. Assumption 5.3 holds for this QoIs with
θΨ1 = 1, θΨ2 = 0 and with ρ1 = 1, ρ2 = 0 in either case. We use the ML-MCMC estimator
from Section 5.2 with initial FE mesh width h0 := 2−3 and test the cases L ∈ {2, . . . , 6}. The
ML-MCMC parameters are chosen as in Theorem 5.9 (for t = r = s − d

p = 1), where we have
used ηΨ = 1 for both the energy norm and the spatial mean for simplicity. Using ηΨ = 2
for the spatial mean requires a large parameter α, otherwise we obtain essentially Mℓ,ℓ′ = 1
for ℓ, ℓ′ ≥ 1. But if α is large, we do not gain a significant reduction in computational time.
Since 2rmin(ηO, ηΨ) > d for all ηΨ ∈ [1, 2], the asymptotic complexity of order O(ε−2) remains
unaffected from this simplification. We choose the ML-MCMC weights wℓ = (ℓ+1)α, wℓ′ = (ℓ′+1)α

with α = 3. According to Theorem 5.11, this yields a RMSE of order O(2−(L+3)) with work O(22L)
for any L.

We use the single-level MC ratio estimator from [26, Section 4.1] with FE meshwidth href =
2−11, scale truncation Nref = 11, and Mref = 222 samples to obtain a reference solution in our
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Figure 1: Left: Plot of the synthetic data, that is, the sampled Besov random tree prior, corresponding PDE
solution u and point observations (black dots). Right: Time-to-error plot of ML-MCMC estimator for the energy
norm and the spatial mean with maximum refinements hL = 2−3−L for L = 2, . . . , 6. As predicted, an error of
order O(ε) is achieved with computational complexity of order O(ε−2).

test example. The resulting error of this reference is of order O(2−11), and therefore negligible
when compared to the ML-MCMC estimator with L ≤ 6. We sample MML = 64 independent
realizations of each ML-MCMC estimator for a given L to calculate the empirical RMSE based on
the reference solution. The results are depicted on the right in Figure 1. One clearly sees that an
empirical error of order O(ε) is achieved in O(ε−2) computational time, confirming our theoretical
analysis in Section 5.2.

6.2 Bayesian inverse problem in 2D

Let T2 = [0, 1]2 be the two-dimensional torus, let D := T2, and consider the elliptic (forward)
problem to find u(ω) : D → R for given ω ∈ Ω such that

−∇ · (exp(bT (ω))∇u(ω)) = 10 in (0, 1)2, u(ω) = 0 on ∂D. (67)

The log-diffusion coefficient bT in (67) is a Besov random tree prior with parameters s = 12
5 , p = 5

3
and wavelet density β = 1

2 . We sample again a realization of u(ω) for a given ω as ”ground truth”
and now consider the parameter-to-observation map

G : Ω → Rk, ω 7→
(
u(ω, (xi, yj)), i, j = 1, . . . ,

√
k
)⊤
,

where k = 36 and with observation points xi, yj ∈ {0.1, 0.26, 0.42, 0.58, 0.74, 0.9}. This yields an
observation functional O /∈ (V ′)k, but rather O ∈ ((H1+ε

0 (D))′)k for any ε > 0. However, since ε
may be arbitrary small we treat O as if ηO = 1 holds in our experiments. The synthetic data is
sampled by bilinear FEs on an equidistant grid with 210 nodes in each coordinate direction, and
by truncating the Besov random tree prior bT after N = 10 scales. The resulting pathwise error
is then of order O(2−10) by Theorem 3.10. A plot of the ground truth, the corresponding fine
approximation of u and the observations are given in Figure 2.

We approximate again the posterior expectations Eδ(Ψi(u)) for i = 1, 2, where Ψ1 and Ψ2

are the functionals corresponding to the energy norm and spatial mean, respectively. We test the
ML-MCMC estimator from Section 5.2 with bilinear finite elements, initial mesh width h0 := 2−3

and L ∈ {2, . . . , 5}. The MLMC-parameters are chosen as in Theorem 5.11 (for t = r = s− d
p = 1):
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Figure 2: Left: Plot of the synthetic data, that is, the sampled Besov random tree prior on T2 with parameters
s = 12

5
, p = 5

3
and β = 1

2
. Right: Corresponding PDE solution u and point observations (black dots).

For the energy norm (Ψ1) it holds that ηΨ = 1, hence 2rηO = 2rηΨ = d and we set the
ML-MCMC weights now as wℓ = wℓ′ = 1 + 3 · L2

1{ℓ>0}. We found that multiplying wℓ, wℓ′ by a
factor of three for ℓ, ℓ′ > 0 stabilizes convergence, while this clearly does not affect the asymptotic
cost of the estimator. For the spatial mean (Ψ2) it holds that ηΨ = 2, hence 2rmin(ηO, ηΨ) = d
and 2rmax(ηO, ηΨ) > d, and we exploit the increased smoothness of Ψ2 to reduce computational
cost. We therefore set the ML-MCMC weights as wℓ = 1 + 3 · L2

1{ℓ>0} and wℓ′ = (ℓ′ + 1)6.
For our examples in space dimension d = 2, all ML-MCMC estimators allowed considerable

reductions in CPU-time upon allowing a burn-in period of the first Markov chains at each dis-
cretization level as follows: for a fixed discretization level ℓ (of the posterior approximation) and
ℓ′ = 0 we discarded the first 20% of samples of the largest Markov chain corresponding to the
level (ℓ, 0). For ℓ′ ≥ 1, we then used the last accepted sample of the previous chain on (ℓ, ℓ′−1) to
initialize the new chain with respect to the levels (ℓ, ℓ′), without another burn-in phase. We repeat
this procedure for all ℓ = 0, . . . , L, where the initial values of the first chains are chosen indepen-
dently with respect to ℓ. This modified estimator satisfies in particular Assumption 5.8. To justify
our burn-in approach we report the results of the corresponding ML-MCMC estimators without
burn-in phase for ℓ′ = 0, that initialize the Markov chains for each pair (ℓ, ℓ′) independently.

We again use the single-level MC ratio estimator from [26, Section 4.1] with FE meshwidth
href = 2−9, scale truncation Nref = 9, and Mref = 218 samples to obtain a reference solution for
our test example. The resulting error of the reference is now of order O(2−9), which still seems
to be sufficient for our experiments. We sample MML = 64 independent realizations of each ML-
MCMC estimator for a given L to calculate the empirical RMSE based on the reference solution.
The results are depicted in Figure 3 and Table 1. One clearly sees that an empirical error of order
O(ε) is achieved in O(ε−2| log(ε)|2) computational time with the burned-in estimator for both
the energy norm and the spatial mean. This is somewhat surprising at first sight, as from our
complexity analysis, we would expect complexity of order O(ε−2| log(ε)|5) for the energy norm by
Theorem 5.11 and the choice of ML-MCMC weights.

We further see that the initial burn-in phase and the sequential initialization with respect to
ℓ′ significantly reduces the empirical RMSE, while the computational times of both estimators are
comparable, see Table 1. This effect is especially pronounced for the estimator of the spatial mean,
which does not seem to converge at all without burn-in. This is explained since very few samples
(essentially Mℓ,ℓ′ = O(1)) are generated for ℓ′ ≥ 1 in this case. A burn-in phase and initialization
of the previous level therefore massively benefits these short chains, while they do not enter the
asymptotic realm without burn-in phase on the coarsest level and proper initialization.
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Figure 3: Time-to-error plot of the ML-MCMC estimator for the energy norm (blue circles) and the spatial mean
(orange stars). The estimators with burn-in on the coarsest level ℓ′ = 0 and sequential initialization achieve an
error O(ε) with computational complexity of order O(ε−2| log(ε)|2) and have a significantly lower empirical error
than their counterparts without burn-in phase.

Level L (finest resolution) 2 3 4 5

RMSE without burn-in
RMSE with burn-in

7.6692 22.9367 16.8583 6.0254
2.2673 4.7504 8.3776 35.5614

CPU time with burn-in
CPU time without burn-in

1.1372 1.1109 1.1142 1.1045
1.0692 1.1341 1.0811 1.1812

Table 1: Ratios of empirical RMSE and CPU time for the ML-MCMC estimators of the energy norm (first row) and
the spatial mean (second row). Burn-in and sequential initialization achieve a significant reduction of the RMSE,
at an additional cost of less than 20%.
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