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Abstract

We show that defect modes in infinite systems of resonators have corresponding modes in finite
systems which converge as the size of the system increases. We study the generalized capacitance
matrix as a model for three-dimensional coupled resonators with long-range interactions and con-
sider defect modes that are induced by compact perturbations. If such a mode exists, then there
are elements of the discrete spectrum of the corresponding truncated, finite system converging
algebraically to each element of the pure point spectrum. This result, which concerns periodic
lattices of arbitrary dimension in a three-dimensional differential system, is in contrast with the
exponential convergence observed in one-dimensional problems. This is due to the presence of long-
range interactions in the system, which gives a dense matrix model and shows that exponential
convergence cannot be expected in physical systems.

Mathematics Subject Classification (MSC2010): 35J05, 35C20, 35P20.

Keywords: finite crystals, metamaterials, edge effects, capacitance coefficients, subwavelength reso-
nance

1 Introduction

Much of the physical literature concerning wave propagation in periodic media relies on a believable but
highly non-trivial piece of logic. That is, researchers want to be able to relate the spectral properties
of infinite periodic structures with truncated, finite versions of the same material. The motivation for
this is that infinite periodic structures can be described very concisely using Floquet-Bloch analysis
[12]. However, finite, truncated versions of the structure are often required when it comes to either
numerical or physical experiments. It is perfectly plausible that the two structures should behave
similarly, particularly away from the edges of the truncated structure and especially when the truncated
structure is very large. However, a precise convergence theory relating the spectra of these two quite
different differential operators is, in general, yet to be developed.

The many interesting phenomena that occur at the edges of periodic arrays have been studied in
some detail [10]. For example, there is a tendency for wave energy to be localized to the edges of the
structure, taking the form of surface waves [15, 20]. This is an example of an edge effect and highlights
that there will always be fundamental differences between how infinite and truncated structures interact
with waves. Another important question that has been explored in this field, and is intimately related
to the results presented in this work, is the extent to which waves incident on the edge of a truncated
periodic structure can excite Bloch waves in the structure (thus, replicating the behaviour of its infinite
counterpart) [11, 18, 19].

The central question of this work is the extent to which the resonant spectra of infinite and truncated
structures can be related. We will focus on localized modes which decay quickly outside of some
compact region, meaning they are less severely affected by edge effects. Additionally, localized modes
are the eigenmodes of interest for many wave guiding applications. Existing results have shown that
in certain one-dimensional systems, any defect mode of the infinite structure will have a corresponding
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mode in the truncated structure converging to the defect mode as the size tends to infinity [13, 14, 16].
A defect mode is a mode that is created by making a perturbation to introduce a defect to the
periodic structure. Such a mode is characterized by being spatially localized (in the sense that it
decays quickly enough to be square integrable along the axis or axes of periodicity) and having an
eigenfrequency that belongs to the pure point spectrum of the perturbed periodic operator. The
terminology “pure point spectrum” and “defect mode eigenfrequency” are preferred by spectral analysts
and wave physicists, respectively, and we will use them somewhat interchangeably here. The rest of
the spectrum will typically be composed of the continuous spectrum, which corresponds to the Bloch
modes that propagate through the material without decaying.

In previous works, it was shown that the convergence of defect mode eigenfrequency to the pure
point spectrum of the infinite periodic operator was exponential with respect to the size of the trun-
cated array [13, 14, 16]. These results concerned one-dimensional systems (or, equivalently, tridiagonal
matrix models). In this work, we study the generalized capacitance matriz, which is a dense resonator
model that includes long-range interactions [1]. We will recall how this model can be derived from a
three-dimensional scattering problem with high-contrast resonators. However, it can be viewed more
generally as a canonical model for coupled resonators. In this setting, we will prove that any defect
mode eigenfrequency of the infinite structure has a sequence of eigenvalues of the truncated structures
converging to it. However, in contrast to the one-dimensional and tridiagonal models explored previ-
ously, we observed that this convergence is algebraic. This occurs due to the structure of the problem
and is an inherent consequence of the density of the matrix model. We believe that similar behaviour
will be observed in other multi-dimensional differential systems and dense matrix models.

This paper is split into three main parts. In Section 2, we introduce the matrix model (the
generalized capacitance matrix) that we will study and prove some elementary properties that lay
the foundations for the subsequent analysis. Section 3 contains the main results of this work, which
show that the truncated structures have eigenfrequencies that converge to the pure point spectrum
of the infinite structure. Finally, in Section 4, we present numerical evidence for the convergence of
the truncated spectra to the continuous spectrum. Proving convergence to these Bloch modes remains
an open problem; however, the constructive nature of the generalized capacitance matrix approach
presented in this work provides a promising platform for future investigations.

2 The generalized capacitance matrix model

In this section, we will introduce the generalized capacitance matrix model that will be the object
of this study. Its definition uses layer potentials to capture the (potentially complex) shapes of the
resonators. In Appendix A we briefly present asymptotic results showing how this model can be
deduced from a subwavelength resonance problem with a system of high-contrast resonators. Finally,
we will prove a convergence result for the capacitance coefficients that will be the basis of the theorems
in subsequent sections.

2.1 Definition

We study a system of periodically repeated resonators in a lattice in R3. We take lattice vectors
Ii,...,lqg € R? where 0 < d < 3, and let A denote the lattice generated by these vectors. In other
words,

A= {m111+~-~+mdld | m; GZ}.

At this point, we remark that there are three possible cases: d = 1, corresponding to a chain of
resonators; d = 2, corresponding to a screen of resonators; or d = 3, corresponding to a crystal of
resonators. For simplicity, we assume that the lattice is aligned with the first d coordinate axes.

We take Y C R? to be a single unit cell,

{c1ly + zoe2 + 2363 | 0 < 1 < 1,292,253 €R}, d=1,
Y =q{ali+calo+a3e3|0<cp,c0<1zz €R}Y, d=2,
{eili +calo+c3l3 | 0 < ¢q, 00,03 < 1}, d=3.



We let D C Y be a collection of N resonators contained in Y

N
D =D,
i=1

where D,, are disjoint domains in Y with boundary dD; € C'* for s > 0. In the periodic lattice, we
let D* = D; +m, for m € A, and then denote the full lattice as

p=J GD;”.

meNi=1
We will define a finite system of resonators resulting from truncation of the periodic lattice. Let
I C A be all lattice points within distance r from the origin
I.={meA||m|<r}.

We define the finite collection of resonators Dy = Di(r) as

Ds(r) = U D +m.

In this setting, D is a finite lattice where D is the single, repeated unit. The goal is to clarify in which
sense the spectral properties of a finite, but large, lattice can be approximated by the corresponding
infinite one.

We let G be the Green’s function for Laplace’s equation in three dimensions:

1
dr|z|’

G(z) =

Given a bounded domain Q C R3, we then define the single layer potential Sq : L*(0Q) — H(0Q) as

Salpl(x) = ” Gz —y)p(y) do(y), =€ 0.

Specifically, Sq is known to be invertible [7]. For a finite lattice, we define the capacitance coefficients
as
(CF"™)ij(r) = Sp, [xopy] do, (2.1)
aDm
for 1 < 4,57 < N and m,n € I.. Here, we explicitly indicate the dependence of the size r of the
truncated lattice. For m,n € I, we observe that C{""(r) is a matrix of size N x N, while the block
matrix Cf = (Cf*") is a matrix of size N|I,.| x N|I,|.

We next define the capacitance coefficients for the infinite lattice. We begin by defining the dual
lattice A* of A as the lattice generated by o, ..., aq satisfying «; - [; = 27d;; and Pia; = 0, for
1,7 = 1,...,d. We define the Brillouin zone Y* as Y* := (Rd X {0})/A*7 where 0 is the zero-vector in
R3~4. We remark that Y* can be written as Y* = Y} x {0}, where Y; has the topology of a torus in
d dimensions.

When o ¢ Y \ {0}, we can define the quasi-periodic Green’s function G*(z) as

G (z) == Z G(x —m)el ™. (2.2)

meA

The series in (2.2) converges uniformly for z and y in compact sets of RY, with x # y and a # 0. Given
a bounded domain ) C Y, we can then define the quasi-periodic single layer potential S& : L2(9Q) —
H(0Q) as

Salel(x) = - Gz —y)e(y) do(y), e (2.3)

For € Y* and for 1 < i,5 < N, the quasi-periodic capacitance matrix (“dual-space” representation)
is the N x N-matrix defined as

Ge = / (58) " [xon,] do. (2.4)

i
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Figure 1: This work studies the convergence of the eigenfrequencies of defect modes in a truncated periodic
material to the spectrum of the corresponding infinite material. We use capacitance matrices as a canonical
model for many-body scattering of time-harmonic waves. The aim of this work is to show how eigenvalues of
the finite capacitance matriz Ct(r) converge to those of the real-space capacitance matriz €. The calligraphic
font for € denotes the fact that this is an infinite matriz. Our strategy is to compare the spectrum of Ct(r) with
the truncated capacitance matriz Cy(r), which is obtained by truncating all but a finite O(r) number of rows
in €, before letting r — oo. Throughout this work, we use the block matriz notation (C™");; to refer to the
i,7 €{1,...,N} entry of the n,m € A block in a matriz C.
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Figure 2: An example of a localized defect mode for a system of 31 resonators. The eigenvalues of the finite ma-

trix B;Ct are computed, where Ct is the generalized capacitance matrixz for a system of evenly spaces resonators
and By is the identity matriz but with the central entry (By)dy = 2.

For 1 <i,7 < N, we can then define the “real-space” capacitance coeflicients at the lattice point m by

1 ~ .
m Le M da. 2.
Cy v /* Cije da (2.5)

Here, C’?j corresponds to the diagonal block which contains the capacitance coefficients of the resonators
within a single unit cell. We use the notation € to denote the infinite matrix that contains all the C77
coefficients, for all 1 <4,j < N and all m € A.

A final, important quantity for the analysis in this work is the truncated capacitance matrix C}.
This is obtained by keeping only N|I,| x N|I,| coefficients from €, to give a matrix that is the same
size as Ct. A schematic of the various pieces of notation used in this article and how they related to
each other is given in Figure 1. The proof strategy deployed in this work is to compare the spectra of
Ct with that of C, and then let » — oo in order to approximate the spectrum of €. In particular, the
modes that we will compare are defect modes, which are spatially localized modes that exist due to
the presence of defects in the otherwise periodic material, an example of which is shown in Figure 2.

We will model defect modes through pre-multiplication by a defect matrix 2. For each m € A, we
let B™ be an N x N diagonal matrix

oo - 0
0 b - 0

Br=1 . . . . (2.6)
o 0 - o}

where the diagonal entries b are real-valued parameters. In this work, we only consider compact
defects, where b;* = 1 for all but finitely many ¢ and m. For the infinite structure, we let ‘B be the
infinite block-diagonal matrix that contains B™ for all m € A. Under the assumption on the ", B is
said to be a compact perturbation of the identity. The spectrum of the infinite structure is given by
the solutions to the spectral problem

BCu = Au. (2.7)

For the finite structure of size r, we let By be the block-diagonal matrix (B™), m € I, and consider
the spectral problem
B;Cru = \u.

An example of such a defect mode is shown in Figure 2. A system of 31 resonators is modelled, with
the finite defect matrix By chosen to be the identity, perturbed so that its central element is (By)?; = 2.

The generalized capacitance matrix serves not only as a canonical model for coupled resonators
(whose interaction terms decay as r~1), but can also be derived from first principles in certain physical
settings. For example, in Appendix A we briefly explain how this model arises for a system of high-
contrast resonators in which case the eigenstates of the generalized capacitance matrix fully characterize
the subwavelength resonant spectrum of the system.

2.2 Convergence of capacitance coefficients

Based on the layer-potential characterization of capacitance, we prove in this section that the capaci-
tance coeflicients of a large but finite structure converge, as the size grows, to corresponding coefficients



of the infinite structure. We begin with the following result, which collects some well-known results
on the capacitance matrices [1, §].

Lemma 2.1. Let C% and Ct be the quasi-periodic and finite capacitance matriz, respectively. Then
(i) C and Cy are symmetric, positive definite matrices;
(ii) C* and C are strictly diagonally dominant matrices;
(iii) We have (C*)s > 0 and (CF"™) i > 0. Moreover, for i # j and m # n we have (é"‘)ij <0 and
(Cf™); < 0.

The next result shows that a fixed block of the infinite capacitance matrix is approximately equal
to corresponding block of the capacitance matrix of the finite structure. In other words, the finite-
structure capacitance coeflicients can be approximated through the infinite structure as long as we are
sufficiently far away from the edges of the finite structure.

Theorem 2.2. For fired m,n € A, we have as r — oo,
: mn _ m—n
Tll)rgo cit(r)y=0C .

Proof. Firstly, observe that
Sp; [7/)] = Z SD+m[¢m]a

mel,
where ¥, = ¥|sp+m. Recall that the quasi-periodic single-layer potential is defined as

S814] = /8 , X Gla=y=mio() do
Given ¢ € L?(D), we define ¢2, € L?(D + m) as
o2 (y) = ¢y — m)e' ™.

Then it is clear that
Splo] = Z Sp+mlPm]-

meA
We can then decompose

S8lé) = 3 Sppmlot] + /8 Y Gy me () do

mel, meA\I,
= Sp,[¢°] + R*[4],
where, in the operator norm, R* = o(1) as r — co. From the Neumann series, we now have
(83) ' xon.] = Sp, [x¢] + o(1), (2.8)

where x§ is defined as
@ = xoppen
mel,
From Lemma B.2 in Appendix B, we know that the error term in (2.8) holds uniformly in a. If
m,n € I, are fixed and 4, j = 1, ..., N, we then have from (2.8) that

1 .
m-n _ ____ _la'(m—n) 1 a )
“ |Y*|/*/3Die Sp; [x§]do da +o(1)

_ Sp) [xopr] do +o(1)
aDm

= (Cf")i;(r) + o(1).
This proves the claim. O

The numerical results presented in Figure 3 demonstrate the convergence of the capacitance co-
efficients, as established by Theorem 2.2. We plot [(Cf){; — CY,| for both a one-dimensional and a
two-dimensional lattice and show that this error converges algebraically to zero as the size of the finite
lattice increases.
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Figure 3: Convergence of the capacitance coefficient of large finite lattices. (a) A one-dimensional lattice with
a single resonator in the unit cell (N =1). (b) A two-dimensional lattice with a single resonator in the unit
cell (N = 1). In both cases, we plot |(Cy)}1 — C| for increasing numbers of resonators r. Here, the error
scales as O(r~33) for sufficiently small r.

3 Convergence to pure point spectrum

In this section, we study a problem where the infinite structure has a pure point spectrum, correspond-
ing to a localized mode. We introduce a defect to the model in order to create such a mode. For a
finite, truncated structure, there will be an eigenvalue arbitrarily close to the pure point spectrum.

3.1 Example of a defect structure

Before developing any convergence theory, we present an example of a defect structure exhibiting a
pure point spectrum, corresponding to a localized mode. We take a lattice with a single resonator
N =1 inside each unit cell. We take a single resonator with perturbed (“defect”) material parameter.

In other words,
1, 0,
m— { m # (3.1)

v 1+2, m=0,

for some parameter x > —1. The eigenvalues of the (infinite-dimensional) generalized capacitance
matrix B¢ in this setting was studied in [2]. It was found that A is an eigenvalue of B¢ if and only if
it is a root of the equation

T A

da=1, 3.2
[Y*| Jy« A= A¢ (3-2)

where Ay is the single eigenvalue of the quasi-periodic capacitance matrix C° of the unperturbed
periodic structure. This equation has a solution A = \g precisely in the case x > 0. In other words, the



defect induces an eigenvalue \g in the pure point spectrum of B€, corresponding to an exponentially
localized eigenmode. An example of such a localized eigenmode was shown in Figure 2.

3.2 Convergence of defect modes

In this section, we prove that, if the infinite structure has a localized mode, there will be an eigenvalue
of the truncated structure arbitrarily close to the localized frequency.

We let € denote the infinite capacitance matrix. As before, we let C; denote the capacitance matrix
of a finite structure of size N|I.| x N|I.|. Furthermore, we let C; denote the truncated matrix of €
of size N|I.| x N|I.|, and similarly let B; be the truncation of B. At this point, we emphasize that
Cy is “nonphysical” in the sense that it does not correspond to a capacitance matrix associated to any
physical structure but, rather, to the finite matrix obtained by simply truncating the infinite matrix
¢.

We assume that B€ has a localized eigenmode u, and let uy be the truncation of u of size N|I.|.
The first result follows only from the decay of the localized mode.

Lemma 3.1. Assume that B is a compact perturbation of the identity, such that BE has a localized
eigenmode u with corresponding eigenvalue \. Then there is an eigenvalue A = \(r) of ByC} satisfying

lim 5\(7“) =\

r—00

Proof. We let u; be the infinite vector obtained by padding u; with 0. Since u is in £2(A), for any ¢ > 0
we can choose large enough r so that
[[u—uellez <e.

Since BE is a bounded operator, we then have
[[Au — BCuy||p2 < Ke,
for some K > 0. Restricting to the finite block of size r, we have
[[Muy — By Crug||2 < Ke.

I}l other words, A is in the Ke-pseudospectrum of B{C}, and since B;C} is normal, we have an eigenvalue
A of ByC} satisfying .
IA(r) — Al = Ke.

This proves the claim. O
Next, we study the properties of Ct as the size of the finite structure increases.

Lemma 3.2. Fori=1,..., N + 1, assume that B; C R? are disjoint, connected domains and let

N N4l
B = U B, B= U B;.
n=1 n=1
Let Cij, éij denote the capacitance coefficients associated to B and E, respectively. Then
Ciy <Cy i=1,..,N.

Proof. We will use a variational characterization of the capacitance coefficients. Let H = {v €
HL (R3) | v(x) ~ |z|~! as @ — oo} and let

V:{UEH|U|aBj :51‘]‘ fOI‘jZl,...,N},
9:{U€H|’U|35j :(51‘]‘ fOI‘jZl,...,N—I—l}.

Observe that V C V. Tt then follows that

Cii = min/ [Vol? dz < min/ V|2 dz = Cy;.
vEV Jr3 ey Jr3



Remark 3.3. Lemma 3.2 states that the diagonal capacitance coefficients will always increase when
adding additional resonators. In the physical situation of electrostatics this result is intuitive: the
self-capacitance of a conductor can only increase if additional conductors are introduced.

Lemma 3.4. Asr — oo, we have ||Ct|2 < K for some K independent of r.

Proof. We know that the capacitance matrix Cf is diagonally dominant:

(€™ > > (€™l

nEL,j#i

for any 4, m. For fixed ¢ and m, we know from Lemma 3.2 that (C{*™);;(r) is increasing in r, and for
all » we have
(Cmm) ( )< CO

21

where, as before, C¥ is the corresponding entry of the infinite capacitance matrix €. In particular, the
eigenvalues of C¢(r) are bounded as r — oo, which shows the claim. O

As discussed above, the matrix C; appearing in Lemma 3.1 is nonphysical, as it is a truncation
of the matrix for the infinite system. Instead, we need to phrase the result for the matrix Cf, which
describes the finite system. The following theorem is the main result of this section.

Theorem 3.5. Assume that B is a compact perturbation of the identity, such that B has a localized
eigenmode u with corresponding eigenvalue \. Then there is an eigenvalue A= )\( ) of B:Ct satisfying

lim A(r) = A.

r—00

Proof. We let
K, = SUIS ICe(r) = Cil2,
>

and observe from Lemma 3.4 that K < oco. We also let

Ky = || Btll2-
Given € > 0, we pick rp > 0 such that the following four terms are small:
[Co.e—Coll2 <

5 5
||Bf<Ct_CO,t) < 1 ||Bf(cf—Co,f)U0,t||2 < -

4

€ €
1Ky’ lus—uotll2 < 1K Ky
for all r large enough; the first inequality follows from Theorem 2.2 while the subsequent inequalities
follow from the £?(A)-decay of u. Here, Cot,u0,t, and Cp ¢ are the truncations of Ci, u¢, and Ct to the
smaller lattice of radius r¢ (padded with zero where needed for the matrix operations). We know from
Lemma 3.1 that we can take r large enough so that ByCy has an eigenvalue X of distance ¢ from .

We then have
BiCruy = BiCyuy + Br(Cr — Cy)(uy — uo,t) + Br(Cor — Co ) uot
+ Bi(Cy — Co g)up s — Be(Cy — Cop)uoe-  (3.3)

Then
[(BtCr — ByCy)ugll2 < e,

which means that there is an eigenvalue A of distance  from A, and hence |A — \| < 2e. O

Remark 3.6. As an example, B and € as given in Section 3.1 satisfy the assumptions of Theorem 3.5.
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Figure 4: Convergence of the frequency of the defect modes, for a defect on the central resonator (with x =1)
created by perturbing a single entry of B. (a) A one-dimensional lattice with a single resonator in the unit
cell (N = 1). Here, the difference between the defect frequency computed for a finite structure and for the
corresponding infinite structure scales as O(r~'*), where r is the length of the truncated structure. This is
shown in the upper plot. The lower plot shows the spectrum of successively larger lattices. The defect frequency
for the infinite structure is computed using (3.2). In the geometry sketch on the right, the corresponding entry
b1 from the matriz B is shown above each resonator. (b) A two-dimensional square lattice with a single
resonator in the unit cell (N = 1). Here, the error scales as O(r~>?), where r is the width of the (square)
truncated structure.
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Figure 5: Convergence of the frequency of the defect modes in a lattice with resonators arranged in pairs (N = 2)
and a defect corresponding to the two central resonators being removed. This gives two topologically protected
edge modes. Here, the error scales as O(r='") for the even mode and O(r=>®) for the odd mode, where r is
the length of the truncated structure.

3.3 Numerical illustration

Figure 4 shows the convergence of the difference between the defect frequency computed for a finite
structure and for the corresponding infinite structure, computed analytically using e.g. (3.2). It
is evident that the frequency converges algebraically, unlike related work on one-dimensional systems
where the truncated frequency converges exponentially as a function of the length of the finite structure
[14]. This holds irrespective of the dimensionality d € {1,2,3} of the lattice: the results in Figure 4a
are for a one-dimensional lattice while Figure 4b shows a two-dimensional square lattice.

The reason for the algebraic convergence observed in this matrix model is the presence of long-
range interactions between the coupled resonators (which scale inversely with the distance between
resonators) and the fact that the capacitance matrix has all non-zero entries. Conversely, the exponen-
tial convergence observed in one-dimensional models, e.g. by [13, 14, 16|, is due to the fact that the
corresponding capacitance matrix is tridiagonal in this case [9]. It can be shown that the exponential
convergence is a general property of tridiagonal matrix systems, whereas the algebraic convergence
observed here is typical of three-dimensional scattering problems, where interactions scale inversely
with distances.

Remark 3.7. Comparing Figure 4a and Figure 3a, it appears that the error of the frequency of the
defect mode is inheriting the O(r~1#) convergence of the capacitance coefficients. Similar behaviour
is observed for the square lattice, whereby O(r~3-3) convergence is observed both for the defect mode
in Figure 4b and the capacitance coefficient in Figure 3b. While this is unsurprising, it turns out not
to be the case for other types of compact defect. For example, in Figure 5 we show the convergence of
the defect modes in a dislocated Su-Schrieffer-Heeger (SSH) lattice, which is a one-dimensional lattice
of resonators arranged in pairs (so N = 2). This system supports two defect modes that are known
to be topologically protected and benefit from enhanced robustuness properties (see [3] for details). The
even mode experiences O(r~7) convergence while the odd mode converges at a faster O(r=3-%) rate.
Understanding these different convergence rates is a valuable question for future study.

4 Convergence to continuous spectrum

Through numerical illustrations, we can illustrate how the discrete spectrum of the truncated structure
approximates the Floquet-Bloch spectral bands of the infinite structure. Making analytic statements
relating these two quantities, however, is a challenging problem that is beyond the scope of the present
work. The two spectra have very different fundamental characteristics and a greater understanding
of the edge effects that occur at the ends of the finite structure would be needed in order to make
progress on this fiendish question.

We now outline the method used to compute the discrete band structure which, given the set of
eigenpairs (w;,u;) of a truncated structure, approximates the band structure of the periodic struc-
ture. If we take the size r of the truncated structure to be reasonably large, the eigenmode u; will
approximately be a linear combination of Bloch modes with frequency w;. To compare the discrete

11



eigenvalues of the truncated problem to the continuous spectrum of the periodic problem, we ’reverse
engineer’ the appropriate quasi-periodicities o corresponding to these Bloch modes. Observe that u;
is a vector of length N|I,.|. If we let (u;).m denote the vector of length N associated to cell m € A, we
define the truncated Floquet transform of u; as

(U)o = D (U)me ™™,  a€Y™ (4.1)

mel,

Observe that (u;)q is a vector of length N. Looking at the 2-norm ||(4;)a||2 as a function of «, this
function has distinct peaks at certain values of a. We then take the quasi-periodicitiy associated to
the mode u; as

argmax||(; )2 (4.2)

acY™

Note that the symmetry of the problem means that if o is an approximate quasi-periodicity then so
will —a be. In cases of additional symmetries of the lattice, we expect additional symmetries of the
quasi-periodicities.
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(b) Periodic pairs of resonators (N = 2)

Figure 6: The continuous spectrum of the infinite structure and the discrete spectrum of the truncated structure
for a one-dimensional lattices. (a) Single periodic resonators (N = 1) with a truncated structure consisting of
50 resonators. (b) Periodic pairs of resonators (N = 2) with a truncated structure containing 100 resonators.
In both cases, the truncated Floguet transform (4.1) is used to approzimate the quasi-periodicity of the truncated
modes.

Figure 6a shows the subwavelength continuous spectrum of an infinite array of resonators, which
takes the form of a single spectral band. It is plotted alongside the discrete spectrum of a truncated
array of 50 resonators, for which the quasi-periodicities have been approximated using the method
outlined above. The discrete band structure mostly follows closely the infinite one, even for this
relatively small truncated array. The frequencies close to zero are not exhibited in the finite structure,
as the edge effects have the greatest effect on low-frequency modes. We would need to consider a much
larger truncated structure to capture the lowest frequency part of the spectrum.

This behaviour can also be observed in more complicated structures. In Figure 6b, we compare the
continuous and truncated spectra of an array of resonators arranged in pairs (dimers). The truncated
structure has 100 resonators arranged in 50 pairs. This geometry is an example of the famous SSH
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(b) Honeycomb lattice

Figure 7: Examples of continuous and discrete spectra of the infinite and truncated structures, respectively. (a)
A square lattice with two resonators per unit cell, resulting in two bands separated by a gap. (b) A honeycomb
lattice with Dirac cones at the vertices of the Brillouin zone. In both cases, the truncated structure have 800
resonators and the truncated Floquet transform is used to approximate the quasi-periodicity of the truncated
modes.

chain [17] which has been shown to have fascinating topological properties [5]. This system has two
subwavelength spectral bands and the truncated modes are split between approximating the two bands.

Additionally, we can consider this method for lattices of higher dimension. Figure 7a shows the
case of a square lattice of resonator dimers. Similarly to Figure 6b, there is a band gap between the
first and the second bands, and we see a close agreement between the discrete and the continuous band
structure. Figure 7b shows a similar figure in the case of a honeycomb lattice, where the finite lattice
is truncated along zig-zag edges of the lattice. As shown in [6], there are Dirac cones on each corner
of the Brillouin zone. In the truncated structure, in addition to the “bulk modes” whose frequencies
closely agree with the continuous spectrum, there are “edge modes” which are localized around the
edges and whose points in the band structure lie away from the continuous bands.

5 Concluding remarks

In this work, we have demonstrated the convergence of defect modes in large resonator arrays to the
corresponding modes in the infinite, periodic structure. We have studied this using the generalized
capacitance matrix, which is a canonical model for three-dimensional wave scattering by resonant
systems with long-range interactions. Our conclusions could also be generalized to other models,
since the decay of the Helmholtz Green’s function is the key feature that underpins our results. In
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particular, the long-range “1/r” decay is the cause of the algebraic convergence we observe, in contrast
to the exponential convergence observed in analogous one-dimensional settings.

A significant advantage of the model used in this work is that the Bloch modes, in addition to
the defect modes, are also concisely characterized. As detailed in Section 4, this provides a numerical
method for approximating the continuous spectrum. Importantly, this constructive approach presents
a possible avenue for proving statements about the convergence of eigenvalues to the continuous spec-
trum. We see developing this convergence theory as a challenging but important problem for future
investigation. Even in one-dimensional models, demonstrating convergence to the continuous spectrum
remains an open problem.

Data availability

No new data were created or analyzed in this study.

A Asymptotic derivation of the model

In this brief appendix, we recall how the generalized capacitance matrix arises through an asymptotic
treatment of a system of coupled high-contrast resonators. In particular, it can be used to characterize
the subwavelength (i.e. asymptotically low-frequency) resonance of the system. For more details and
a review of extensions to other settings (such as non-Hermitian and time-modulated systems) see [1].

We will present the results for a finite system of resonators. Analogous results hold for infinite
periodic systems, by modifying the Green’s function appropriately [1]. We suppose that the material
inclusions D; C R3, as considered already in this work, represent the material inclusions that will act
as our resonators. We consider the scattering of time-harmonic waves with frequency w and will solve
a Helmholtz scattering problem in three dimensions. This Helmholtz problem, which can be used to
model acoustic, elastic and polarized electromagnetic waves, represents the simplest model for wave
propagation that still exhibits the rich phenomena associated to subwavelength physics.

We use v; denote the wave speed in each resonator D;. In which case, k; = w/v; is the wave number
in D;. Similarly, the wave speed and wave number in the background medium are denoted by v and
k. Finally, we must introduce the material contrast parameters d1,...,dy. These parameters describe
the contrast between the material inside D; and the background material. For example, in the case of
an acoustic system, d; is the density of the material inside D; divided by the density of the background
material. We will want these contrast parameters to be small (an air bubble in water is one famous
example in the setting of acoustics). Then for the domain

N
D= J JWDi+m),

mel, 1=1

we consider the Helmholtz resonance problem

Au+k*u=0 in R4\ D,
Au+Eu =0 inD;+m, fori=1,...,N, m€ I,
uly —ul-=0 on 0D, (A1)
Ju ou ) '
i—| ——=—| =0 ondD;+mfori=1,...,N, me€ I,
ov n ov|_
u(z) satisfies the Sommerfeld radiation condition,
where the Sommerfeld radiation condition says that
- 0
lim |x\% (— - ik) w =0, uniformly in all directions z/|z|, (A.2)

and guarantees that energy is radiated outwards by the scattered solution.
The asymptotic regime we consider is that the material contrast parameters are all small while the
wave speeds are all of order one. That is, there exists some § > 0 such that

0; =0(6) and wv,v;,=0(1) as 6 —0, fori=1,...,N. (A.3)
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Within this setting, we are interested in solutions to the resonance problem (A.1) that are subwavelength
in the sense that
w—0 as 6—0. (A.4)

To be able to characterize the subwavelength resonant modes of this system, we must define the
generalized capacitance coefficients. Recall the capacitance coefficients (Cf*");; from (2.1). Then, we
define the corresponding generalized capacitance coefficient as

2
o 51’01

- m
| D]

(C"" )i (CF")is (A.5)
where |D?"| is the volume of the bounded subset DI*. Then, the eigenvalues of C¢ determine the
subwavelength resonant frequencies of the system, as prescribed by the following theorem.

Theorem A.l1. Consider a system of N|I.| subwavelength resonators in R3. For sufficiently small
§ > 0, there exist N|I,.| subwavelength resonant frequencies wi(6),...,wn|z,|(8) with non-negative real
parts. Further, the subwavelength resonant frequencies are given by

Wn =1 +0() as §—0,

where {\, :n=1,...,N|I.|} are the eigenvalues of the generalized capacitance matriz Cs, which satisfy
An =0(5) as § — 0.

A similar result exists for an infinite periodic structure, in terms of the eigenvalues of the generalized
quasi-periodic capacitance matrix, as defined in (2.4), see [1] for details.

The definition (A.5) clarifies the motivation for pre-multiplying by the perturbation matrix B
to describe defects. When 9B is a compact perturbation of the identity, it describes defects that
correspond to changing the material parameters on a finite number of resonators, so that the quantity
§;v? corresponding to those resonators is altered.

B Uniformity across the Brillouin zone

In this appendix, we provide additional details of the proof of Theorem 2.2. The main result is
Lemma B.2, which shows that (S%)~! is in operator norm, uniformly bounded for « in a neighbourhood
of 0. The analysis is similar to [4, Section 3.3].

From e.g. [7], we have a dual-space representation of G given by

N 1 ei(a+q)-z _elax 1 ei(a+q)-a:
W= 2 e " WIaE W], 2 TaraE
qeA* q€A*\{0}
Define the periodic Green’s function G as
1 iq-x
GOz) = —— Z ¢ 5
Y| = ldl
q€A*\{0}
For « close to zero, we then have
—1 io - . 1)?
G () Cdacw L (@8) 60y 1+ 0(al).

Yl Yl 2Vl
Consequently, for « close to zero, we have the an expansion of the single-layer potential S3:

1 |
“TRE Jy V@~ P /aDO‘ (E-yy) do

R S RN Sl X
T oY el /E,D( (z —y)) ¢(y) do + Sp[¥](z) + Olal). (B.1)

SplYl(z) =

Lemma B.1. If S%[p| = Kxap for some constant K and some p € L*(0D) satisfying fBD pdo =0,
then ¢ = 0.
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Proof. For x € R3\ D, define V(z) := 8% [p](z). Then V solves the following differential problem,
AV =0 in R3\ D,
Vi =K on 9D, (B.2)
V(z+m)=V(z) forallmeA.

Moreover, using the jump relations and integration by parts, we have that
/ pdo=K IVV|*da = 0.
oD Y\D

If K # 0, it follows from (B.2) that fy\D |VV|? dz # 0 which is a contradiction. In other words we
must have K = 0, so that S} [¢] = 0 and [, ¢ do = 0. From [4, Lemma 3.7], we have that ¢ = 0. O

Lemma B.2. |[(8%)7!|, in operator norm, is bounded for o in a neighbourhood of 0.

Proof. To reach a contradiction, we assume that S%[¢] = O(|a]) for some ¢, which can be written as
¢ = ¢o + |a|p1, where ¢¢ is nonzero, does not depend on «, and ¢; = O(1) as || — 0. Also define
v = rq7- From (B.1) it follows that

(Z)o do = O7
oD

61(v) da+i/8Dv-<x—y>¢o<y> do = O(jal),

oD

K —ivee [ oot [ (v @o=9)*60(w) do +[Y|Shién] = O(lal).
oD oD

where K is constant as function of z. Simplifying, we have that

1 2 1 5
3] =) de =) [ venanmdo s [ v nlon o
In total we get ( )
2(v-x

Splo(z) = K(v) +

|Y| /(')D(V : y)¢0(y) dJa

where K is constant in . Observe that S%[¢o](x) is independent of v. As a function of z, this function
is constant for 2 € v, and so this function is constant for all z. From Lemma B.1 we get that ¢g = 0
which proves the claim. [
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