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Super-resolution of positive near-colliding

point sources ∗

Ping Liu† Habib Ammari†

In this paper, we analyze the capacity of super-resolution of one-dimensional

positive sources. In particular, we consider the same setting as in [2] and generalize

the results there to the case of super-resolving positive sources. To be more

specific, we consider resolving d positive point sources with p ⩽ d nodes closely-

spaced and forming a cluster, while the rest of the nodes are well separated.

Similarly to [2], our results show that when the noise level ϵ≲ SRF−2p+1, where

SRF = (Ω∆)−1 with Ω being the cutoff frequency and ∆ the minimal separation

between the nodes, the minimax error rate for reconstructing the cluster nodes is

of order 1
Ω

SRF2p−1ϵ, while for recovering the corresponding amplitudes
{

a j

}
the

rate is of order SRF2p−1ϵ. For the non-cluster nodes, the corresponding minimax

rates for the recovery of nodes and amplitudes are of order ϵ
Ω

and ϵ, respectively.

Our numerical experiments show that the Matrix Pencil method achieves the

above optimal bounds when resolving the positive sources.

1 INTRODUCTION

In recent years, the problem of super-resolution (SR), which seeks to extract fine details of a

signal from its noisy Fourier data in a bounded frequency domain, draws increasing interest in

the field of applied mathematics. In particular, considerable progress has been made in the

study of super-resolution of sparse signals, e.g. a host of algorithms [3, 9, 22, 25, 24, 21, 20, 7]

were devised for resolving signals with a sparse prior. The sparse signals are frequently modeled

as discrete measures

F (x) =
d∑

j=1

a jδ
(
x −x j

)
, x j ∈R,

where δ is the Dirac’s δ-distribution. Let F [F ] denote the Fourier transform of F :

F [F ](s) =

∫∞

−∞

F (x)e−2πi sx dx.

*This work was supported in part by the Swiss National Science Foundation grant number 200021–200307.
†Department of Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland

(ping.liu@sam.math.ethz.ch, habib.ammari@math.ethz.ch).
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The noisy spectral data of the signal F is modeled as a function Φ satisfying,

|Φ(s)−F [F ](s)|⩽ ϵ, s ∈ [−Ω,Ω], (1.1)

where ϵ> 0 represents the noise level and Ω> 0 is the cutoff frequency. The sparse SR problem

considered in this paper reads: given Φ as above, estimate the unknown parameters of F ,

namely the amplitudes
{

a j

}
and the nodes

{
x j

}
. The minimax error rate for recovering the

nodes and amplitudes from the spectral data Φ(s) has been established in [2]. In the present

paper, we aim at exploring the corresponding minimax error rate for resolving positive signals.

Since our result is a generalization of the result in [2] which deals with complex signals,

we utilize the same notation, concepts, and configurations as those in [2] for the sake of

consistency of the two papers and the convenience of reading.

1.1 MAIN CONTRIBUTION

The main contribution of this paper is the generalization of the estimates in [2] for the minimax

error rate for complex signals in the off-the-grid setting to the case of resolving positive signals.

We consider the case where the nodes
{

x j

}
can take arbitrary real values and the amplitudes{

a j

}
are known to be positive. We consider the same distribution of nodes as in [2] where it

is assumed that p nodes (approximately uniformly distributed), xκ, . . . , xκ+p−1, form a small

cluster and the rest of the nodes are away from all the other nodes (see Definition 2.4 below).

We show in Theorem 2.3 that for ϵ≲ (Ω∆)2p−1 with ∆ being the minimum separation of the

clustered nodes, in the worst-case scenario, the errors of recovered nodes x ′
j

and amplitudes

a′
j
> 0 by any minimax algorithm (see Definition 2.2 below), satisfy

• For the non-cluster nodes:

max
j∉{κ,...,κ+p−1}

∣∣∣x j −x ′
j

∣∣∣≍
ϵ

Ω
,

max
j∉{κ,...,κ+p−1}

∣∣∣a j −a′
j

∣∣∣≍ ϵ;

• For the cluster nodes:

max
j∈{κ,...,κ+p−1}

∣∣∣x j −x ′
j

∣∣∣≍
ϵ

Ω
(Ω∆)−2p+2,

max
j∈{κ,...,κ+p−1}

∣∣∣a j −a′
j

∣∣∣≍ ϵ(Ω∆)−2p+1.

Our results reveal that the minimax error rates for recovering the nodes and amplitudes of

positive signals in the super-resolution problem are the same as those for resolving general

complex signals [2]. In particular, let the SR factor be defined by SRF := (Ω∆)−1. Then the

condition number of the cluster nodes scales like SRF2p−1 in the super-resolution regime. On

the other hand, the condition number of the non-cluster nodes will not be amplified by the

SRF. Thus, the non-cluster nodes
{

x j

}
j∉{κ,...,κ+p−1}

can be recovered with much better stability

than the cluster nodes.
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The main novelty we rely in analyzing the case of positive signals lies in a crucial observation

in estimating the lower bound of diameter of the error set (Definition 2.3). In particular, in

Theorem 4.1, we observe and demonstrate that the recovered and the underlying signals in

the example constructed in [2] can actually be positive signals at the same time.

We also examine the performance limit of the Matrix Pencil method in resolving positive

signals by numerical experiments and the observed phase transition phenomenon exactly

verifies our theory for the minimax error rate. This also indicates that the Matrix Pencil method

has the optimal performance in super-resolving positive sources.

1.2 RELATED WORK AND DISCUSSION

In 1992, Donoho first studied the possibility and difficulties of super-resolving multiple sources

from noisy measurements. In particular, he considered measures supported on a lattice

{k∆}∞
k=−∞

and regularized by a so-called “Rayleigh index”. The measurement is then the noisy

Fourier transform of the discrete measure with cutoff frequency Ω. He derived both the lower

and upper bounds for the minimax error of the amplitude recovery in terms of the noise level,

grid spacing, cutoff frequency, and Rayleigh index. His results emphasize the importance of

the sparsity in the super-resolution. The results were improved in recent years for the case

when resolving n-sparse on-the-grid sources [6]. Concretely, the authors of [6] showed that

the minimax error rate for amplitudes recovery scales like SRF 2n−1ϵ, where ϵ is the noise level

and SRF := 1
∆Ω

is the super-resolution factor. Similar results for multi-clumps cases were also

derived in [1, 10].

A closely related work to the present paper is [2], in which the authors derived sharp minimax

errors for the location and the amplitude recovery of off-the-grid sources. They showed that

for complex sources satisfying the (p,h,T,τ,η)-clustered configuration (Definition 2.4) and

ϵ≲ (SRF )−2p+1 with p being the number of the clustered nodes, the minimax error rate for

reconstructing of the clustered nodes is of the order (SRF )2p−2 ϵ
Ω

, while for recovering the

corresponding amplitudes the rate is of the order (SRF )2p−1ϵ. Moreover, the corresponding

minimax rates for the recovery of the non-clustered nodes and amplitudes are of the order
ϵ
Ω

and ϵ, respectively. As mentioned above, in the present paper we have generalized these

results to the case when resolving positive sources. Thus, the minimax error estimations for

super-resolving both one-dimensional complex and positive sources are well established now.

On the other hand, in order to characterize the exact resolution in the number and location

recovery, in the earlier works [15, 14, 13, 11, 12] the authors have defined the so-called "compu-

tational resolution limits", which characterize the minimum required distance between point

sources so that their number and locations can be stably resolved under certain noise level. It

was shown that the computational resolution limits for the number and location recoveries

in the k-dimensional super-resolution problem should be bounded above by respectively

Cnum (k,n)
Ω

(
σ

mmin

) 1
2n−2

and
Csupp (k,n)

Ω

(
σ

mmin

) 1
2n−1

, where Cnum(k,n) and Csupp (k,n) are certain con-

stants depending on the source number n and the space dimensionality k. In particular, these

results were generalized to the case when resolving positive sources in [12]. In this paper, a

similar idea is used to generalize the miminax error estimate to the positive cases.

For other works related to the limit of super-resolution, we refer the readers to [19, 4] for
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understanding the resolution limit from the perceptive of sample complexity and to [23, 5] for

the resolving limit of some algorithms.

For the super-resolution of positive sources, to the best of our knowledge, the theoretical

possibility for the super-resolution of positive sources was first considered in [8], where the

authors characterized exactly the sparsity of the on-the-grid signal x and the possibility of

super-resolution in certain sense. Their definition and results focused on the possibility of

overcoming Rayleigh limit in the presence of sufficient small noise, while our work analyzes

the non-asymptotic behavior of the reconstructions.

In recent years, some researchers analyzed the stability of some super-resolution algorithms

in a non-asymptotic regime [21, 20, 7] and derived similar stability results to those proved in

this paper, which exhibit the optimal performance of these algorithms.

1.3 ORGANIZATION OF THE PAPER

The paper is organized in the following way. Section 2 presents the main results of the minimax

error rate and Section 3 exhibits the performance of Matrix Pencil method by numerical

experiments. Section 4 proves the main results stated in Section 2.

2 MINIMAX BOUND FOR THE LOCATION AND AMPLITUDE RECOVERIES

In this section, we present minimax error estimates for the location and amplitude recoveries

in the super-resolution of positive signals.

2.1 NOTATION AND PRELIMINARIES

We shall denote by Pd ,P +
d

the parameter space of respectively general and positive signals F

with amplitudes a j ’s and real, distinct and ordered nodes x j ’s:

Pd =

{
(a,x) : a = (a1, . . . , ad ) ∈C

d ,x = (x1, . . . , xd ) ∈R
d , x1 < x2 < . . . < xd

}
,

P
+
d =

{
(a,x) : a = (a1, . . . , ad ) ∈ (R+)d ,x = (x1, . . . , xd ) ∈R

d , x1 < x2 < . . . < xd

}
,

and identify the F ’s with their parameters (a,x) ∈Pd or P
+
d

. We denote

∥F∥∞ = max(∥a∥∞,∥x∥∞) .

We shall also denote the orthogonal coordinate projections of a signal F to the j -th node and

j -th amplitude, respectively, by Px, j : Pd (P +
d

) →R and Pa, j : Pd (P +
d

) →C(R+).

Let L∞[−Ω,Ω] be the space of bounded complex-valued functions defined on [−Ω,Ω] with

the norm ∥e∥∞ = max|s|⩽Ω |e(s)|.

Definition 2.1. Given Ω > 0 and U ⊆ P
+
d

, we denote by F(Ω,U ) the class of all admissible

reconstruction algorithms, i.e.,

F(Ω,U ) =
{

f : L∞[−Ω,Ω] →U
}

.
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Definition 2.2. Let U ⊂P
+
d

. We consider the minimax error rate in estimating a signal F ∈U

from Ω-bandlimited data as in (1.1), with a measurement error ϵ> 0:

E
+(ϵ,U ,Ω) = inf

f∈F(Ω,U )
sup
F∈U

sup
∥e∥∞⩽ϵ

∥F − f(F [F ]+e)∥∞.

Note that in order to analyze how the minimax error rate relates to the separation of the

nodes and the magnitudes of the amplitudes, we will consider U ∈P
+
d

with certain specific

constraints in the following discussions.

Similarly, the minimax errors of estimating the individual nodes and the amplitudes of F ∈U

are defined respectively by

E
+,x, j (ϵ,U ,Ω) = inf

f∈F(Ω,U )
sup
F∈U

sup
∥e∥⩽ϵ

∣∣Px, j (F )−Px, j (f(F (F )+e))
∣∣ ,

E
+,a, j (ϵ,U ,Ω) = inf

f∈F(Ω,U )
sup
F∈U

sup
∥e∥∞⩽ϵ

∣∣Pa, j (F )−Pa, j (f(F (F )+e))
∣∣ .

For a fixed F ∈P
+
d

, we define the positive and general ϵ-error set as follows.

Definition 2.3. The error set of positive signals E+
ϵ,Ω

(F ) ⊂ P
+
d

is the set consisting of all the

signals F̂ ∈P
+
d

with ∣∣F [F̂ ](ω)−F [F ](ω)
∣∣⩽ ϵ, ω ∈ [−Ω,Ω]. (2.1)

Moreover, the error set of general signal Eϵ,Ω(F ) ⊂ Pd is the set consisting of all the F̂ ∈ Pd

satisfying (2.1).

We will denote by E
+,x, j
ϵ (F ) = E

+,x, j

ϵ,Ω
(F ) and E

+,a, j
ϵ (F ) = E

+,a, j

ϵ,Ω
(F ) the projections of the error

set of positive signals onto the individual nodes and the amplitudes components, respectively:

E
+,x, j

ϵ,Ω
(F ) =

{
x′j ∈R :

(
a′,x′

)
∈ E+

ϵ,Ω(F )
}
≡ Px, j E+

ϵ,Ω(F ),

E
+,a, j

ϵ,Ω
(F ) =

{
a′

j ∈R
+ :

(
a′,x′

)
∈ E+

ϵ,Ω(F )
}
≡ Pa, j E+

ϵ,Ω(F ).

Furthermore, we denote by E
x, j
ϵ (F ) = E

x, j

ϵ,Ω
(F ) and E

a, j
ϵ (F ) = E

a, j

ϵ,Ω
(F ) the projections of the

error set of general signals onto the individual nodes and the amplitudes components, respec-

tively:

E
x, j

ϵ,Ω
(F ) =

{
x′j ∈R :

(
a′,x′

)
∈ Eϵ,Ω(F )

}
≡ Px, j Eϵ,Ω(F ),

E
a, j

ϵ,Ω
(F ) =

{
a′

j ∈C :
(
a′,x′

)
∈ Eϵ,Ω(F )

}
≡ Pa, j Eϵ,Ω(F ).

For any subset V of a normed vector space with norm ∥ ·∥, the diameter of V is given by

diam(V ) = sup
v′,v′′∈V

∥∥v′−v′′
∥∥
∞

.

By the theory of optimal recovery [18, 16, 17], the minimax errors are directly linked to the

diameter of the corresponding projections of the error set. More specifically, we have the

following proposition that is similar to Proposition 2.4 in [2].
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Proposition 2.1. For U ⊂P
+
d

,Ω> 0,1⩽ j ⩽ d and ϵ> 0, we have

1

2
sup

F :E+
1
2 ϵ,Ω

(F )⊆U

diam
(
E+

1
2
ϵ,Ω

(F )
)
⩽ E

+(ϵ,U ,Ω)⩽ sup
F∈U

diam
(
E+

2ϵ,Ω(F )
)

,

1

2
sup

F :E+
1
2 ϵ,Ω

(F )⊆U

diam

(
E
+,x, j
1
2
ϵ,Ω

(F )

)
⩽ E

+,x, j (ϵ,U ,Ω)⩽ sup
F∈U

diam
(
E
+,x, j

2ϵ,Ω
(F )

)
,

1

2
sup

F :E+
1
2 ϵ,Ω

(F )⊆U

diam

(
E
+,a, j
1
2
ϵ,Ω

(F )

)
⩽ E

+,a, j (ϵ,U ,Ω)⩽ sup
F∈U

diam
(
E
+,a, j

2ϵ,Ω
(F )

)
.

(2.2)

2.2 UNIFORM ESTIMATES OF MINIMAX ERROR FOR CLUSTERED CONFIGURATIONS

Similarly to [2], the main goal of this paper is to estimate E
+,x, j (ϵ,U ,Ω),E+,a, j (ϵ,U ,Ω), where

U ⊂ P
+
d

are certain compact subsets of P
+
d

consisting of signals with p ⩽ d nodes that are

nearly uniformly distributed, forming a cluster. To be more specific, the set U is defined as

follows; See also [2, Definition 2.5].

Definition 2.4. (Uniform cluster configuration)

Given 0 < τ,η⩽ 1 and 0 < h ⩽ T , a node vector x = (x1, . . . , xd ) ∈R
d is said to form a (p,h,T,τ,η)-

clustered configuration, if there exists a subset of p nodes xc =
{

xκ, . . . , xκ+p−1

}
⊂ x, p ⩾ 2, which

satisfies the following conditions:

(i) for each x j , xk ∈ xc , j ̸= k,

τh ⩽
∣∣x j −xk

∣∣⩽ h;

(ii) for xℓ ∈ x\xc and x j ∈ x,ℓ ̸= j ,

ηT ⩽
∣∣xℓ−x j

∣∣⩽ T.

One of the main contributions of [2] is an upper bound on diam
(
Eϵ,Ω(F )

)
, and its coordinate

projections, for any signal F forming a clustered configuration as above. Here, we generalize

the result to the positive signal cases, which is a direct consequence of [2, Theorem 2.6].

Theorem 2.1. (Upper bound)

Let the positive signal F = (a,x) ∈P
+
d

, such that x forms a (p,h,T,τ,η)-clustered configuration

and 0 < m ⩽ ∥a∥. Then, there exist positive constants C1, . . . ,C5, depending only on d , p,m, such

that for each
C4

ηT
⩽Ω⩽ C5

h
and ϵ⩽C3(Ωτh)2p−1, it holds that

diam
(
E
+,x, j

ϵ,Ω
(F )

)
⩽

C1

Ω
ϵ×

{
(Ωτh)−2p+2, x j ∈ xc ,

1, x j ∈ x\xc ,

diam
(
E
+,a, j

ϵ,Ω
(F )

)
⩽C2ϵ×

{
(Ωτh)−2p+1, x j ∈ xc ,

1, x j ∈ x\xc .
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Proof. By Theorem 2.6 in [2], under the same condition we have

diam
(
E

x, j

ϵ,Ω
(F )

)
⩽

C1

Ω
ϵ×

{
(Ωτh)−2p+2, x j ∈ xc ,

1, x j ∈ x\xc ,

diam
(
E

a, j

ϵ,Ω
(F )

)
⩽C2ϵ×

{
(Ωτh)−2p+1, x j ∈ xc ,

1, x j ∈ x\xc .

On the other hand, note that for ϵ> 0, according to the definition of diam(·) we have

diam
(
E
+,x, j

ϵ,Ω
(F )

)
≤ diam

(
E

x, j

ϵ,Ω
(F )

)
, diam

(
E
+,a, j

ϵ,Ω
(F )

)
≤ diam

(
E

a, j

ϵ,Ω
(F )

)
.

This proves the theorem.

The above estimates are optimal, as shown by our next main theorem. This is the main

contribution of our paper, by which we non-trivially generalize the results in [2, Theorem 2.7].

For simplicity and without loss of generality, we assume that the index κ is fixed in the result

below.

Theorem 2.2. (Lower bound)

Let m ⩽ M ,2 ⩽ p ⩽ d ,τ⩽ 1
p−1

,η <
1
d

,T > 0 be fixed. There exist positive constants C ′
1 . . . ,C ′

5,

depending only on d , p,m, M, such that for every Ω,h satisfying h ⩽C ′
4T and Ωh ⩽C ′

5, there

exists F = (a,x) ∈P
+
d

, with x forming a (p,h,T,τ,η)-clustered configuration, and with 0 < m ⩽

∥a∥ ≤ M <∞, such that for certain indices j1, j2 ∈ {κ, . . . ,κ+p −1} and every ϵ⩽C ′
3(Ωτh)2p−1,

it holds that

diam
(
E
+,x, j

ϵ,Ω
(F )

)
⩾

C ′
1

Ω
ϵ×

{
(Ωτh)−2p+2, j = j1,

1, ∀ j ∉ {κ, . . . ,κ+p −1},

diam
(
E
+,a, j

ϵ,Ω
(F )

)
⩾C ′

2ϵ×

{
(Ωτh)−2p+1, j = j2,

1, ∀ j ∉ {κ, . . . ,κ+p −1}.

Proof. See the proof in Section 4.

Thus combining Theorems 2.1 and 2.2 with Proposition 2.1 now, we can obtain the following

theorem for the optimal rates of the minimax errors E
+,x, j ,E+,a, j . This generalizes Theorem

2.8 in [2].

Theorem 2.3. Let m > 0,2 ⩽ p ⩽ d ,τ <
1

2(p−1)
,η <

1
2d

,T > 0 be fixed. There exist constants

c1,c2,c3, depending only on d , p,m such that for all
c1

ηT
⩽ Ω ⩽ c2

h
and ϵ ⩽ c3(Ωτh)2p−1, the

minimax error rates for the set

U :=U (p,d ,h,τ,η,T,m)

=
{
(a,x) ∈P

+
d : 0 < m ⩽ ∥a∥ ≤ M <∞,x forms a (p,h,T,τ,η)-clustered configuration

}

satisfy the following:
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• For the non-cluster nodes:

∀ j ∉ {κ, . . . ,κ+p −1} :

{
E
+,x, j (ϵ,U ,Ω) ≍ ϵ

Ω
,

E
+,a, j (ϵ,U ,Ω) ≍ ϵ.

• For the cluster nodes:

max
j=κ,...,κ+p−1

E
+,x, j (ϵ,U ,Ω) ≍

ϵ

Ω
(Ωτh)−2p+2,

max
j=κ,...,κ+p−1

E
+,a, j (ϵ,U ,Ω) ≍ ϵ(Ωτh)−2p+1.

The proportionality constants in the above statements depend only on d , p,m, M.

Proof. The proof is the same as the one for Theorem 2.8 in [2]. Here, we present the details

for the convenience of reading and completeness. Let C3,C ′
3,C4,C ′

4,C5,C ′
5 be the constants

from Theorems 2.1 and 2.2. Let c1 = C4 and c2 = min
(
C5,C ′

5,C4C ′
4

)
. Let c1

ηT
⩽ Ω ⩽ c2

h
, and

ϵ⩽ c3(Ωτh)2p−1, where c3 ⩽min
(
C3,C ′

3

)
will be determined below. It can be verified that Ω,h

and ϵ as above satisfy the conditions of both Theorems 2.1 and 2.2.

Upper bound Directly follows from the upper bounds in Theorem 2.1 and Proposition 2.1.

Lower bound Denote Uϵ =

{
F ∈U : E+

1
2
ϵ,Ω

(F ) ⊆U

}
. In order to prove the lower bounds on

E
+,x, j and E

+,a, j , by Proposition 2.1 it suffices to show that there exists an F ∈Uϵ ̸= ; such

that the conclusions of Theorem 2.2 are satisfied for this F . Note that the set U has a non-

empty interior. Furthermore, one can choose m′, M ′ satisfying m < m′ < M ′ < M , and also

T ′ = 0.99T,τ′ = 2τ and η′ = 2η, such that

U ′
=U

(
p,d ,h,τ′,η′,T ′,m′, M ′

)
⊂U , ∂U ′

∩∂U =;.

By the construction of U ′, there exist positive constants C̃1,C̃2, independent of Ω,h and τ,η,

such that

inf
u∈∂U ,u′∈∂U ′

∣∣Px, j (u)−Px, j

(
u′

)∣∣⩾ C̃1 ×

{
τh, x j ∈ xc ,

ηT, x j ∈ x\xc ;

inf
u∈∂U ,u′∈∂U ′

∣∣Pa, j (u)−Pa, j

(
u′

)∣∣⩾ C̃2.

(2.3)

Now, we use the fact that ϵ< c3(Ωτh)2p−1. Applying Theorem 2.1 to an arbitrary positive signal

F ′ ∈U ′ and using the conditions 1
Ω
⩽

ηT
c1

and Ωτh ⩽Ωh ⩽ c2, we obtain that

diam

(
E
+,x, j
1
2
ϵ

(
F ′

))
⩽

{
C1c3

2
τh, x j ∈ xc ,

C1c3

2Ω
(Ωτh)2p−1 ⩽ C1c3

2c1
c

2p−1
2 ηT, x j ∈ x\xc ;

diam

(
E
+,a, j
1
2
ϵ

(
F ′

))
⩽

{
C2c3

2
, x j ∈ xc ,

C2c3

2
c

2p−1
2 , x j ∈ x\xc .

(2.4)

Next, we set c3 = min
(
C3,C ′

3,C ′′
3

)
, where

C ′′
3 = min(1,c1)×min

(
1,c

−2p+1
2

)
×min

(
2C̃1

C1
,

2C̃2

C2

)
.
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Combining (2.3) and (2.4), we obtain that E+
1
2
ϵ,Ω

(F ′) ⊆U , i.e. F ′ ∈Uϵ. Since F ′ ∈U ′ is arbitrary,

we conclude that U ′ ⊆Uϵ. Since clearly U ′ ̸= ;, applying Proposition 2.1 and Theorem 2.2

finishes the proof.

3 NUMERICAL OPTIMALITY OF MATRIX PENCIL METHOD (MP METHOD)

Theorem 2.3 establishes the optimal error rate for super-resolving the locations and amplitudes

of positive sources. In this section, we demonstrate by numerical experiments the optimal

performance of MP method in recovering the locations of positive sources. Note that the

numerical experiments in [2] have already demonstrated the optimal performance of Matrix

Pencil method for resolving general sources. Here we conduct experiments similar to those in

[2] but focusing on the case of resolving positive sources.

3.1 REVIEW OF THE MP METHOD

In this section, we review the MP method . We assume that the noisy Fourier data of the signal

F is given by

Y(ω) =
d∑

j=1

a j e−2πi x jω+ϵ(ω), ω ∈ [−Ω,Ω].

The measurements are usually taken at N evenly spaced points, ω1 =−Ω,ω2 =−Ω+h, · · · ,ωN =

Ω with h being the spacing. From the measurement

Y = (Y(ω1),Y(ω2), · · · ,Y(ωN ))⊤ (3.1)

and N̂ = ⌊
N−1

2
⌋, we assemble the (N̂ +1)× (N̂ +1) Hankel matrix

H =




Y(ω1) Y(ω2) · · · Y(ωN̂ )

Y(ω2) Y(ω3) · · · Y(ωN̂+1)

· · · · · ·
. . . · · ·

Y(ωN̂ ) Y(ωN̂+1) · · · Y(ω2N̂+1)




. (3.2)

Let Hu := H[1 : N̂ , :] (and Hl := H [2 : N̂ +1, :]) be the N̂ × (N̂ +1) matrix obtained from the

Hankel matrix H given by (3.2) by selecting the first N̂ rows (respectively, the second to the

(N̂ +1)-th rows). It turns out that, in the noiseless case, e−2πi x j h ,1 ≤ j ≤ n, are exactly the

nonzero generalized eigenvalues of the pencil Hl − zHu . In the noisy case, when the sources

are well-separated, each of the first n nonzero generalized eigenvalues of the pencil Hl − zHu

is close to e−2πi x j h for some j . We summarize the Matrix Pencil method in Algorithm 1.

3.2 NUMERICAL EXPERIMENTS

We conduct 1000 random experiments (the randomness was in the choice of a j , x j ,ϵ) to ex-

amine the error amplification in the recovery of the nodes and amplitudes. In particular, we

consider recovering p = 2 cluster nodes and 1 non-cluster node and their corresponding ampli-

tudes. Each single experiment is summarized in Algorithm 2. The results are shown in Figure

9



Algorithm 1: The Matrix Pencil algorithm

Input: Source number d , measurement: Y in (3.1);

1: Let N̂ = ⌊
N−1

2
⌋. Formulate the (N̂ +1)× (N̂ +1) Hankel matrix H given by (3.2) from Y,

and the matrices Hu ,Hl ;

2: Compute the truncated Singular Value Decomposition (SVD) of Hu , Hl of order d :

Hu =U1Σ1V ∗
1 , Hl =U2Σ2V ∗

2 ,

where U1,U2,V1,V2 are N̂ ×d matrices and Σ1,Σ2 are d ×d matrices;

3: Generate the reduced pencil

Ĥu =U∗
2 U1Σ1V ∗

1 V2, Ĥl =Σ2,

where Ĥu , Ĥl are d ×d matrices;

4: Compute the generalized eigenvalues {ẑ j } of the reduced pencil (Ĥu ,Ĥl ), and put

{x̂ j } = {arg(ẑ j )}, j = 1, · · · ,n, where the arg(z) is the argument of z;

5: Solving the linear least squares problem

b̂ = arg min
b∈Cd

||Y−V b||2 ,

where V is the Vandermonde matrix V =
(
e−2πi x̂ jωk

) j=1,··· ,d

k=1,··· ,N ;

6: Compute â j by |b̂ j |;

Return: The estimated x̂ j ’s and â j ’s.

3.1 and we observe that the error amplification is consistent with what we have predicted, i.e.,

the error amplification factors for resolving nodes and amplitudes are respectively SRF 2p−2

and SRF 2p−1 for the cluster nodes with size p. Moreover, for resolving non-cluster nodes, both

the corresponding error amplification factors are bounded by a small constant.
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Algorithm 2: A single experiment

Input: p,d , N ,ϵ;

1: Construct the signal F with p closely-spaced sources and d −p non-clustered sources;

2: Generate the measurement Y defined by (3.1) with ϵ being the noise level;

3: Execute the MP method (Algorithm 1) and obtain FMP =
(
aMP ,xMP

)
. The nodes in

xMP are ordered in an increasing manner;

4: for each j do
Compute the error for node j :

e j =

∣∣∣xMP
j −x j

∣∣∣ .

The success for node j is defined as

Succ j =

(
e j <

minℓ̸= j

∣∣xℓ−x j

∣∣

3

)
.

if Succ j == true then
Compute normalized node error amplification factor

Kx, j =

∣∣∣x j −xMP
j

∣∣∣ ·Ω

ϵ
;

Compute normalized amplitude error amplification factor

Ka, j =

∣∣∣a j −aMP
j

∣∣∣
ϵ

;

Return:
(
Kx, j ,Ka, j ,Succ j

)
for each node j = 1, . . . ,d .

4 PROOF OF THEOREM 2.2

4.1 NORMALIZATION

Similarly to [2], for ease of exposition, we should normalize the cluster configuration in some

of the following discussions. Let us first define the scale transformation on P
+
d

.

Definition 4.1. For F =
∑d

j=1
a jδ

(
x −x j

)
∈P

+
d

and T > 0, we define SCT : P +
d
→P

+
d

as follows:

SCT (F )(x) =
d∑

j=1

a jδ
(
x −

x j

T

)
.

By the scale property of the Fourier transform, we have that for any ϵ> 0,

SCT

(
E+
ϵ,Ω(F )

)
= E+

ϵ,ΩT (SCT (F )) .

Thus the following proposition holds.
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(a) (b)

Figure 3.1: The error amplification factors. For the cluster nodes, the error amplification

factors Kx, j ,Ka, j scale like SRF 2p−2,SRF 2p−1, respectively. For the non-cluster

nodes, both error amplification factors are bounded by a small constant.

Proposition 4.1. Let F = (a,x) ∈P
+
d

and T > 0. Then, for any ϵ> 0 and 1⩽ j ⩽ d, we have

diam
(
E
+,x, j

ϵ,Ω
(F )

)
= T diam

(
E
+,x, j

ϵ,ΩT (SCT (F ))
)

,

diam
(
E
+,a, j

ϵ,Ω
(F )

)
= diam

(
E
+,a, j

ϵ,ΩT (SCT (F ))
)

.

4.2 AUXILIARY LEMMAS

In this subsection, we introduce some notation and lemmas that are used in the following

proofs. Set

φs(t ) =
(
1, t , · · · , t s

)⊤
. (4.1)

Lemma 4.1. Let t1, · · · , tk be k different real numbers and let t be a real number. We have

(
Dk (k −1)−1φk−1(t )

)
j =Π1≤q≤k,q ̸= j

t − tq

t j − tq
,

where Dk (k −1) :=
(
φk−1(t1), · · · ,φk−1(tk )

)
with φk−1(·) defined by (4.1).

Proof. This is [14, Lemma 5].

The following proposition is the main result for proving Theorem 2.2 and we present its

detailed proof in Section 4.4.

Proposition 4.2. Let F = (a,x) ∈P
+
d

, such that x forms a (p,h,1,τ,η)-clustered configuration,

with cluster nodes xc =
(
x1, . . . , xp

)
(according to Definition 2.4), and with a ∈ (R+)d satisfying

m ⩽ ∥a∥⩽ M. Then, there exist constants c1,k1,k2,k3,k4, depending only on (d , p,τ,m, M),
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such that for all ϵ< c1(Ωh)2p−1 and Ωh ⩽ 2, there exists a signal Fϵ ∈P
+
d

satisfying, for some

j1, j2 ∈ {1, . . . , p},

∣∣Px, j1
(Fϵ)−Px, j1

(F )
∣∣⩾

k1

Ω
(Ωh)−2p+2ϵ,

∣∣Pa, j2
(Fϵ)−Pa, j2

(F )
∣∣⩾ k2(Ωh)−2p+1ϵ,

∣∣Px, j (Fϵ)−Px, j (F )
∣∣⩾

k3

Ω
ϵ, x j ∈ x\xc ,

∣∣Pa, j (Fϵ)−Pa, j (F )
∣∣⩾ k4ϵ, x j ∈ x\xc ,

|F (Fϵ) (s)−F (F )(s)|⩽ ϵ, |s|⩽Ω.

4.3 PROOF OF THEOREM 2.2

Proof. After employing Proposition 4.2, the arguments for proving Theorem 2.2 is just the

same as those in [2]. We present the details as follows.

Let a ∈ (R+)d be any positive amplitude vector satisfying m ⩽ ∥a∥ ⩽ M . Let Ω, h satisfy

Ωh ⩽ 2, and choose nodes x satisfying that

xc
=

(
x1 = 0, x1 = τh, . . . , xp = (p −1)τh

)
,

and the rest of the non-cluster nodes are equally spaced in ((p−1)τh,1). Now, let h′ = (p−1)τh

and τ′ = 1
p−1

. Clearly, x is a
(
p,h′,1,τ′,η

)
-clustered configuration for all sufficiently small h

(for instance h <
1
d
< 1−η(d −p +1)).We now can apply Proposition 4.2 to the signal F = (a,x).

It then follows that for ϵ< c1(p −1)2p−1(Ωτh)2p−1 and Ωh <
2

(p−1)τ , there exist j1, j2 ∈ {1, . . . , p}

such that

diam
(
E
+,x, j1

ϵ,Ω
(F )

)
⩾

k1

Ω
(p −1)−2p+2ϵ(Ωτh)−2p+2,

diam
(
E
+,a, j2

ϵ,Ω
(F )

)
⩾ k2ϵ(p −1)−2p+1(Ωτh)−2p+1.

Moreover,

diam
(
E
+,x, j

ϵ,Ω
(F )

)
⩾

k3

Ω
ϵ, x j ∈ x\xc ,

diam
(
E
+,a, j

ϵ,Ω
(F )

)
⩾ k4ϵ, x j ∈ x\xc .

For the general case that F = (a,x) ∈P
+
d

such that x forms a (p,h,T,τ,η)-clustered configu-

ration, we consider SCT (F ) = (a, x̃), x̃ = (x̃1, · · · , x̃d ), where x̃ j =
x j

T
, j = 1, · · · ,d . Now the node

vector x̃ forms a (p, h
T

,1,τ,η)-clustered configuration. Applying Proposition 4.1 and the above

results, we obtain that

diam
(
E
+,x, j1

ϵ,Ω
(F )

)
= T diam

(
E
+,x, j1

ϵ,ΩT
(SCT (F ))

)
⩾

k1

Ω
(p −1)−2p+2ϵ(Ωτh)−2p+2,

diam
(
E
+,a, j2

ϵ,Ω
(F )

)
= diam

(
E
+,a, j2

ϵ,ΩT
(SCT (F ))

)
⩾ k2ϵ(p −1)−2p+1(Ωτh)−2p+1,

diam
(
E
+,x, j

ϵ,Ω
(F )

)
= T diam

(
E
+,x, j

ϵ,ΩT
(SCT (F ))

)
⩾

k3

Ω
ϵ, x j ∈ x\xc ,

diam
(
E
+,a, j

ϵ,Ω
(F )

)
= diam

(
E
+,a, j

ϵ,ΩT
(SCT (F ))

)
⩾ k4ϵ, x j ∈ x\xc .
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This finishes the proof of Theorem 2.7 with C ′
1 = max

(
k1

(p−1)2p−2 ,k3

)
, C ′

2 = max
(
k4, k2

(p−1)2p−1

)
,C ′

3 =

c1(p −1)2p−1,C ′
4 =

1
d

and C ′
5 = 2.

4.4 PROOF OF PROPOSITION 4.2

We separate the proof into three steps.

Step 1.

In this step we prove the following theorem.

Theorem 4.1. Given the parameters 0 < h ⩽ 2,0 < τ⩽ 1,0 < m ⩽ M <∞, let the signal F =

(a,x) ∈P
+
p with a ∈ (R+)p form a single uniform cluster as follows:

• (centered) xp =−x1;

• (uniform) for 1⩽ j < k ⩽ p we have

τh ⩽
∣∣x j −xk

∣∣⩽ h;

• m ⩽
∥∥a j

∥∥⩽ M.

Then, there exist constants K1, . . . ,K5 depending only on (d ,τ,m, M) such that for every ϵ <

K5h2d−1, there exists a signal Fϵ = (b,y) ∈P
+
p satisfying the following conditions:

(i) mk (F ) = mk (Fϵ) for k = 0,1, . . . ,2p −2, where

mk (F ) :=
p∑

j=1

a j xk
j ; (4.2)

(ii) m2p−1 (Fϵ) = m2p−1(F )+ϵ;

(iii) K1h−2p+2ϵ⩽ ∥x−y∥⩽K2h−2p+2ϵ;

(iv) K3h−2p+1ϵ⩽ ∥a−b∥⩽K4h−2p+1ϵ.

Proof. The case for F = (a,x) ∈Pp and Fϵ = (b,y) ∈Pp is the Theorem 6.2 in [2]. Now we prove

that for the case when a ∈ (R+)p , from condition (i) in the theorem we actually have b ∈ (R+)p .

Let b j ’s be elements in b and y j ’s be elements in Y. We first consider the case when x j∗ = yq∗

for certain j∗, q∗. If bq∗ ̸= a j∗ , then condition (i) in the theorem yields that

Bβ= Aα, (4.3)

where α= (a1, · · · , a j∗−1, a j∗ −bq∗ , a j∗+1, · · · , ap )⊤, β= (b1, · · · ,bq∗−1,bq∗+1, · · · ,bp ) and

A =
(
φ2p−2(x1), · · · ,φ2p−2(xp )

)
, B =

(
φ2p−2(y1), · · · ,φ2p−2(yq∗−1),φ2p−2(yq∗+1), · · · ,φ2p−2(yp )

)
,

with φ2p−2(·) being defined by (4.1). Since all the elements in α are nonzero by bq∗ ̸= a j∗ and

a j > 0,1 ≤ j ≤ p, A contains p different Vandermonde vectors (φ2p−2(·)), and B contains at

most p −1 Vandermonde vectors, it is impossible to have (4.3) by [15, Theorem 3.12]. Thus,
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we must have bq∗ = a j∗ > 0 for x j∗ = yq∗ . Next, we prove that bq > 0 for those yq that are not

equal to any of the x j ’s. Without loss of generality, we can actually assume that all the yq ’s are

not equal to any of the x j ’s. Further, since (b,y) ∈Pp and (a,x) ∈P
+
p , all the yq ’s and x j ’s are

distinct from each other. We now claim that

x1 < y1 < x2 < y2 < ·· · < xp < yp , or y1 < x1 < y2 < x2 < ·· · < yp < xp . (4.4)

We denote the x j , y j ’s from left to right by t1 < t2 < ·· · < t2p and the corresponding a j ,−b j ’s by

α1, · · · ,α2p . By condition (i), it follows that

Aα= 0,

where α = (α1, · · · ,α2p )⊤ and A =
(
φ2p−2(t1), · · · ,φ2p−2(t2p )

)
with φ2p−2(·) being defined by

(4.1). Thus we can have

−α2pφ2p−2(t2p ) =
(
φ2p−2(t1), · · · ,φ2p−2(t2p−1)

)
(α1, · · · ,α2p−1)⊤,

and hence

−α2p

(
φ2p−2(t1), · · · ,φ2p−2(t2p−1)

)−1
φ2p−2(t2p ) = (α1, · · · ,α2p−1)⊤. (4.5)

If claim (4.4) does not hold, we have tq = x jq
and tq+1 = x jq+1 for certain q, jq . Applying

Lemma 4.1 to (4.5) and considering the q-th and (q +1)-th elements in the vectors, we have

−α2pΠ1≤ j≤2p−1, j ̸=q

t2p − t j

tq − t j
=αq , (4.6)

−α2pΠ1≤ j≤2p−1, j ̸=q+1

t2p − t j

tq+1 − t j
=αq+1. (4.7)

Observe first that, for 1 ≤ k ≤ 2p −1, Π1≤ j≤2p−1, j ̸=k (t2p − t j ) is always positive. Moreover, it

is obvious that Π1≤ j≤2p−1, j ̸=q (tq − t j ) and Π1≤ j≤2p−1, j ̸=q+1(tq+1 − t j ) have different signs in

(4.6) and (4.7), respectively. It follows that αq and αq+1 are of different signs. But the αq and

αq+1 are amplitudes of positive sources located at respectively xq and xq+1, which yields a

contradiction. Thus the case that tq = x jq
and tq+1 = x jq+1 for certain q, jq will not happen

and the claim (4.4) is thus proved.

Suppose y1 < x1 < y2 < x2 < ·· · < yp < xp (the another case can be proved in the same

manner), we now prove that the b j ’s are all positive. By the setting,

t2 j−1 = y j , t2 j = x j , j = 1, · · · , p.

Since for j = 1, · · · ,2p −1, we have

−α2pΠ1≤k≤2p−1,k ̸= j

t2p − tk

t j − tk
=α j . (4.8)

For 1 ≤ j ≤ 2p −1, Π1≤k≤2p−1,k ̸= j (t2p − tk ) is always positive. For j = 2p −1, since α2p = ap > 0,

−α2pΠ1≤k≤2p−1,k ̸=2p−1(t2p−1 − tk ) is negative in (4.8). Thus we have α2p−1 < 0. In the same

fashion, we see that α j > 0 for even j and α j < 0 for odd j . Note that α2 j−1 =−b j , j = 1, · · · , p.

This proves that Fϵ is positive. On the other hand, the above arguments also indicate that there

exist such positive signals F and Fϵ satisfy condition (i). This completes the proof of Theorem

4.1.
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Step 2. Now we start to prove Proposition 4.2. It is similar to the proof in [2]. Here, we

present the details for completeness. Define F c and F nc to be the cluster and the non-cluster

parts of F ∈P
+
d

, respectively, i.e.,

F c
=

∑

x j∈xc

a jδ
(
x −x j

)
,

F nc
=

∑

x j∈x\xc

a jδ
(
x −x j

)
.

We first analyze the non-cluster nodes. We construct that

F nc
ϵ =

∑

x j∈x\xc

a′
jδ

(
x −x ′

j

)

where a′
j
= a j +

ϵ
4(d−p)

and x ′
j
= x j +

ϵ
8πΩM(d−p)

. For |s|⩽Ω, the difference between the Fourier

transforms of F nc
ϵ and F nc satisfies

∣∣F [F nc
ϵ ](s)−F [F nc ](s)

∣∣≤
∑

x j∈x\xc

∣∣∣a j e2πx j s
−a′

j e
2πi x ′

j
s
∣∣∣

⩽
∑

x j∈x\xc

(∣∣∣a j e2πx j s
(
1−e

2πi ϵ
8πΩM(d−p)

s
)∣∣∣+

ϵ

4(d −p)

)

⩽
ϵ

4
+

ϵ

4
=

ϵ

2
.

(4.9)

Note that a′
j
> 0 since a′

j
= a j +

ϵ
4(d−p)

.

We next analyze the cluster nodes. Without loss of generality, we suppose that x1 +xp = 0.

Next, define a blowup of F c by Ω as

F c
(Ω) = SC 1

Ω

(
F c

)
=

∑

x j∈xc

a jδ
(
x −Ωx j

)

where SC is defined by Definition 4.1. Let h̃ =Ωh and c1 = K5(p,τ,m, M) as in Theorem 4.1.

Let ϵ⩽ c1(Ωh)2p−1. Now, we apply Theorem 4.1 with parameters p, h̃,τ,m, M , ϵ̃= c2ϵ and the

signal F c
(Ω)

, where c2 ⩽ 1 will be determined below. We can obtain a signal F c
(Ω),ϵ

∈P
+
p such

that the following hold for the difference of signals H = F c
(Ω),ϵ

−F c
(Ω)

:

mk (H) = 0, k = 0,1, . . . ,2p −2, m2p−1(H) = ϵ̃; (4.10)

while also, for some j1, j2 ∈ {1, . . . , p}

∣∣∣Px, j1

(
F c

(Ω),ϵ

)
−Px, j1

(
F c

(Ω)

)∣∣∣⩾K1(Ωh)−2p+2ϵ̃,
∣∣∣Px, j

(
F c

(Ω),ϵ

)
−Px, j

(
F c

(Ω)

)∣∣∣⩽K2(Ωh)−2p+2ϵ̃, j = 1, . . . , p,
∣∣∣Pa j2

(
F c

(Ω),ϵ

)
−Pa, j2

(
F c

(Ω)

)∣∣∣⩾K3(Ωh)−2p+1ϵ̃.

(4.11)

Now, considering

F c
ϵ = SCΩ

(
F c

(Ω),ϵ

)
,
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we obtain that

∣∣Px, j1

(
F c
ϵ

)
−Px, j1

(
F c

)∣∣⩾
K1

Ω
(Ωh)−2p+2ϵ̃,

∣∣Pa, j2

(
F c
ϵ

)
−Pa, j2

(
F c

)∣∣⩾K3(Ωh)−2p+1ϵ̃.

From the above definitions, we have HΩ = SCΩ(H) = F c
ϵ −F c . We next show that there is a

choice of c2 such that

|F [HΩ](s)|⩽
ϵ

2
, |s|⩽Ω. (4.12)

Put ω= s/Ω. Then, by F [HΩ] (s) =F [H ](ω), the above inequality is equivalent to

|F [H ](ω)| ≤
ϵ

2
, |ω| ≤ 1. (4.13)

Step 3. In this step we prove that (4.13) holds for a choice of c2. Note that we have the

following Taylor expansion of F [H ](ω):

F [H ](ω) =
∞∑

k=0

1

k !
mk (H)(−2πιω)k . (4.14)

Next we apply the following Taylor domination property [2, Theorem 6.3] which is a corollary

of the Turán’s First Theorem [26, Theorem 6.1].

Theorem 4.2. Let H =
∑2p

j=1
β jδ

(
x − t j

)
, and put R = min j=1,...,2p

∣∣t j

∣∣−1
> 0. Then, for all

k ⩾ 2p, we have the so-called Taylor domination property

|mk (H)|Rk ⩽

(
2ek

2p

)2p

max
ℓ=0,1,...,2p−1

|mℓ(H)|Rℓ.

Recall that H = F c
(Ω),ϵ

− F c
(Ω)

. By Definition 2.4, the nodes of F c
(Ω)

is inside the interval[
−

Ωh
2

, Ωh
2

]
. The nodes of F c

(Ω),ϵ
, by (4.11), satisfy

∣∣∣Px, j

(
F c

(Ω),ϵ

)∣∣∣⩽
Ωh

2
+K2(Ωh)−2p+2ϵ̃⩽

Ωh

2
+K2(Ωh)−2p+2c1(Ωh)2p−1

= (Ωh)

(
c1K2 +

1

2

)
.

Since Ωh ⩽ 2 by assumption, we can conclude that the factor R in Theorem 4.2 is greater than

C4 =
1

2
(
c1K2+

1
2

) .

Now, we continue the proof of (4.13). By Theorem 4.2 and (4.10), we have for k ⩾ 2p,

|mk (H)|⩽

(
e

p

)2p

k2p R2p−1−k ϵ̃⩽C5C
2p−1−k
4 k2p ϵ̃.

Plugging this into (4.14) we obtain that

|F (H)(ω)|⩽
ϵ̃|2πω|2p−1

(2p −1)!
+C5C

2p−1
4 ϵ̃

∑

k⩾2p

(
2π|ω|

C4

)k k2p

k !
.
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Let ζ= 2π|ω|
C4

and by |ω| ≤ 1, we further have

|F (H)(ω)|⩽C6ϵ̃
∑

k⩾2p−1

ζk k2p

k !
⩽C7ϵ̃.

Therefore, we can choose c2 = min
(
1, 1

2C7

)
to ensure that

|F (H)(ω)|⩽
ϵ

2
, |ω|⩽ 1,

which shows (4.12).

Finally, we construct the signal Fϵ = F nc
ϵ +F c

ϵ . Thus we have

|Fϵ(s)−F (s)| ≤
∣∣F nc

ϵ (s)−F nc (s)
∣∣+

∣∣F c
ϵ (s)−F c (s)

∣∣≤ ϵ, s ∈ [−Ω,Ω].

This completes the proof of Proposition 4.2 with k1 = K1,k2 = K3,k3 =
1

8πΩM(d−p)
,k4 =

1
4(d−p)

.
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