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The superresolving capacity for number and location recoveries in the super-

resolution of positive sources is analyzed in this work. Specifically, we introduce

the computational resolution limit for respectively the number detection and lo-

cation recovery in the one-dimensional super-resolution problem and quanti-

tatively characterize their dependency on the cutoff frequency, signal-to-noise

ratio, and the sparsity of the sources. As a direct consequence, we show that tar-

geting at the sparest positive solution in the super-resolution already provides

the optimal resolution order. These results are generalized to multi-dimensional

spaces. Our estimates indicate that there exist phase transitions in the corre-

sponding reconstructions, which are confirmed by numerical experiments. Our

theory fills in an important puzzle towards fully understanding the super-resolution

of positive sources.
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1. Introduction

In recent years, the development of super-resolution optical microscopy led to a revolu-

tionary improvement of resolution through the use of different technical approaches. This

impressive success has generated significant interest in studying the super-resolution al-

gorithms and the fundamental superresolving capability. In this paper, we aim to study
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the superresolving capacity of the number and locations recovery in the super-resolution of

positive sources. To be more specific, we consider the following mathematical model. Let

µ=
∑n

j=1
a jδy j

, a j > 0 be a positive discrete measure, where y j ∈ R, j = 1, · · · ,n, represent the

location of the point sources and a j > 0, j = 1, · · · ,n, their amplitudes. Noting that y j ’s are

the supports of the Dirac masses in µ. In this paper we will use support recovery instead of

location reconstruction. We denote by

mmin = min
j=1,··· ,n

a j , dmin = min
p 6= j

|yp − y j |.

The measurement is the noisy Fourier data of µ in a bounded interval, that is,

Y(ω) =Fµ(ω)+W(ω) =
n
∑

j=1

a j e i y jω+W(ω), ω ∈ [−Ω,Ω], (1.1)

with W(ω) being the noise and Ω the cutoff frequency of the imaging system. We assume that

|W(ω)| <σ, ω ∈ [−Ω,Ω],

with σ being the noise level. The above measurement model is chosen for convenience. All

the results in this paper also hold for the case when taking measurement at a sufficient num-

ber of evenly-spaced points as what was considered in [26]. Thus our results can be applied

to practical situations and real-world problems.

The super-resolution problem we are interested in is to recover the positive discrete mea-

sure µ from the above noisy measurement Y. We note that the super-resolution problem is

closely related to the line spectral estimation problem [26] which is at the core of diverse fields

such as wireless communications and array processing. Note also that the measurement con-

sidered in (1.1) is related to the imaging of convolution of point sources and a band-limited

point spread function f .

1.1. Literature review

Fundamental limits. In [17,37,38], the authors analyzed the resolution limit in the detection

of two closely-spaced point sources based on the statistical inference theory, but their theory

has not been generalized to the case when there are more than two sources in the signal. The

mathematical theory for analyzing the fundamental limit in superresolving multiple point

sources was pioneered by Donoho [13] in 1992. In that work, he considered a grid setting

where a discrete measure is supported on a lattice with spacing ∆ and regularized by a so-

called "Rayleigh index". The problem is to reconstruct the amplitudes of the grid points from

their noisy Fourier data in [−Ω,Ω] with Ω being the band limit. His main contribution is esti-

mating the corresponding minimax error in the recovery, which emphasizes the importance

of the sparsity of sources for the super-resolution. It was improved in recent years for the case

when only n point sources are presented. In [11], the authors considered resolving n-sparse

point sources supported on a grid and showed that the minimax error of amplitude recovery

in the presence of noise with magnitudeσ scales exactly as SRF 2n−1σ, where SRF := 1
∆Ω

is the

super-resolution factor. The case of multi-clustered point sources was considered in [4, 20]
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and similar minimax error estimates were derived. Moreover, in [2, 5] the authors considered

the minimax error for recovering the amplitudes and locations of off-the-grid point sources.

They showed that for σ/ (SRF )−2p+1, where p is the number of point sources in a cluster, the

minimax error for the amplitude and the location recoveries scale respectively as (SRF )2p−1σ,

(SRF )2p−2σ/Ω, while for the single non-clustered source away from other sources, the corre-

sponding minimax error for the amplitude and the location recoveries scale respectively as σ

and σ/Ω. We also refer the readers to [8, 28] for understanding the resolution limit from the

perspective of sample complexity and to [10, 42] for the resolving limit of some algorithms.

On the other hand, in order to characterize the exact resolution in resolving multiple point

sources like the classical Rayleigh limit, in the earlier works [23–27] we defined the con-

cept of "computational resolution limit" as the minimum required distance between point

sources so that their number and locations can be stably resolved under certain noise level.

By developing a non-linear approximation theory in a so-called Vandermonde space, we

derived sharp bounds for computational resolution limits in one- and multi-dimensional

super-resolution problems. In particular, we showed that the computational resolution limits

for number and location recoveries should be respectively
Cnum(n,k)

Ω

(

σ
mmin

) 1
2n−2

and
Csupp(n,k)

Ω

(

σ
mmin

) 1
2n−1

,

where Cnum(n,k),Csupp(n,k) are constants depending only on source number n and space di-

mensionality k. In this paper, we will generalize these results to the super-resolution problem

of positive sources.

Reconstruction algorithms. Due to the importance of super-resolution in applications, a

number of sophisticated super-resolution algorithms have been developed over the years.

Among those algorithms, a class of algorithms called subspace methods have exhibited favourable

performance and have been used frequently in engineering applications. Specific exam-

ples include MUltiple SIgnal Classification (MUSIC) [35], Estimation of Signal Parameters

via Rotational Invariance Technique (ESPRIT) [34], and Matrix Pencil Method [18]. Note that

these algorithms date back to the work of Prony [32]. Despite the appealing performance

of the subspace methods in practical applications, their stability properties are not yet well-

understood. The asymptotic results on the stability of MUSIC algorithm in the presence of

Gaussian noise were derived just slightly after its emerging [9, 40, 41]. But only until recent

years, some steps towards understanding the stability of MUSIC, ESPRIT and Matrix-Pencil

Method in the non-asymptotic regime were taken in [22], [21] and [28], respectively. Never-

theless, the error tolerance derived in these papers are not as strong as our estimates here

for the resolution limit in location reconstruction. On the other hand, it was shown numeri-

cally in [5, 21, 22] that these subspace methods actually achieve the optimal resolution order.

Thus the theoretical demonstrations for the performance limits of subspace methods in the

non-asymptotic regime are still important open problems.

In recent years, inspired by the idea of sparse modeling and compressed sensing, many

sparsity promoting algorithms have been proposed for the super-resolution problem. For

example, in the groundbreaking work of Candès and Fernandez-Granda [7], it was proved

that off-the-grid sources can be exactly recovered from their low-frequency measurements

by a TV minimization under a minimum separation condition. It invokes active researches

in the off-the-grid algorithms, among them we would like to mention the BLASSO [3, 15, 31]

and the atomic norm minimization method [43, 44]. Both methods were proved to be able to
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stably recover the source under a minimum separation condition or a non-degeneracy condi-

tion. BLASSO (Beurling LASSO) is an off-the-grid generalization of l 1 regularization (LASSO),

and exhibits excellent performance in the off-the-grid source recovery [15, 31]. The atomic

norm minimization method is shown to form a nearly minimax optimal estimator when

tackling line spectral estimation problems [6, 43]. Nevertheless, these convex optimization

algorithms usually require a minimum separation distance of several Rayleigh limits (see, for

instance, [19, 31, 42]) for the general source recovery, which may limit their applicability to

superresolve closely-spaced point sources.

Super-resolution of positive sources. To the best of our knowledge, the theoretical possibil-

ity for the super-resolution of positive sources was first considered in [14]. Specifically, the

authors defined

ω(σ;x) = sup
{∥

∥x′−x
∥

∥

1 :
∥

∥K x′−K x
∥

∥

2 6σ and x′ > 0
}

,

where x,x′ are vectors of length M (sources are on a grid) and K consists of the first m rows of

the M ×M discrete Fourier transform, and said that x admits super-resolution if

ω(σ;x) → 0 as σ→ 0.

They demonstrated for x ≥ 0 that: (a) If x has 1
2

(m − 1) or fewer non-zero elements then x

admits super-resolution; (b) If 1
2

(m +1) divides M , there exists x with 1
2

(m +1) non-zero ele-

ments yet does not admit super-resolution; (c) If x has more than m non-zero elements then

x does not admit super-resolution. Their definition and results focused on the possibility of

overcoming Rayleigh limit in the presence of sufficient small noise and hence demonstrated

the possibility of super-resolution. See also [16] for a shorter exposition of the same idea.

In recent years, some researchers analyzed the stability of specific super-resolution algo-

rithms in a non-asymptotic regime [12, 29, 30]. To be more specific, it was shown in [30] that

a simple convex optimization program can already superresolve the positive sources (on a

grid) to nearly optimal. The authors of [30] demonstrated that under certain conditions the

deviation between the algorithm’s output x̂ and the ground truth x obeys the following rela-

tion

‖x̂−x‖1 ≈C ·SRF2r ·σ,

where r is the Rayleigh index. The theory was later generalized to the off-the-grid setting

in [29] where the authors analyzed the stability of the reconstruction of high frequency in-

formation. In a different line of research, the authors studied in [12] the amplitude and sup-

port recoveries of positive discrete measures for a so-called BLASSO convex program. They

demonstrated that when σ/λ,σ/d 2n−1
min

and λ/d 2n−1
min

are sufficiently small (with λ being the

regularization parameter, σ the noise level, n the source number, dmin the minimum separa-

tion distance between two sources), there exists a unique solution to the BLASSO program

consisting of exactly n point sources. The amplitudes and locations of the solution both

converge toward those of the ground truth when the noise and the regularization parame-

ter decay to zero faster than d 2n−1
min

. Note that this result is consistent with our estimates in

the current paper, showing that the BLASSO achieves the optimal resolution order, which is

quite impressive.
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1.2. Main contribution

The main contribution of this paper is quantitative characterizations of the resolution limits

to number detection and location recovery in the super-resolution of positive sources. Ac-

curate detection of the source number (model order) is important in the super-resolution

problem and many parametric estimation methods require the model order as a priori in-

formation. But there are few theoretical results which address the issue when the number of

underlying sources is greater than two. In [26, 27], the first results for capacity of the num-

ber detection in the super-resolution of general sources are derived. Here we generalize the

estimates to the case of positive sources, which is also the first result for understanding the

capacity of superresolving positive sources. Specifically, we introduce the computational res-

olution limit D
+
num for the detection of n point sources (see Definition 2.2), and derive the

following sharp bounds:

2e−1

Ω

( σ

mmin

) 1
2n−2 <D

+
num ≤

4.4πe

Ω

( σ

mmin

) 1
2n−2

, (1.2)

where σ
mmin

is viewed as the inverse of the signal-to-noise ration (SNR). It follows that exact

detection of the source number is possible when the minimum separation distance of point

sources dmin is greater than 4.4πe
Ω

(

σ
mmin

) 1
2n−2

, and impossible without additional a priori infor-

mation when dmin is less than 2e−1

Ω

(

σ
mmin

) 1
2n−2

.

Following the same line of argument for the number detection problem, we also consider

the support recovery in the super-resolution of positive sources. We introduce the compu-

tational resolution limit D
+
supp for the support recovery (see Definition 2.4) and derive the

following bounds:

2e−1

Ω

( σ

mmin

) 1
2n−1 <D

+
supp ≤

5.88πe

Ω

( σ

mmin

) 1
2n−1

. (1.3)

As a consequence, the resolution limit D
+
supp is of the order O( 1

Ω

(

σ
mmin

) 1
2n−1

). It follows that

stable recovery (in certain sense) of the source locations is possible when the minimum sep-

aration distance of point sources dmin is greater than 5.88πe
Ω

(

σ
mmin

) 1
2n−1

, and impossible without

additional a priori information when dmin is less than 2e−1

Ω

(

σ
mmin

) 1
2n−1

. To further emphasize

that the separation distance O

(

1
Ω

(

σ
mmin

) 1
2n−1

)

is necessary for a stable location reconstruction,

we construct an example showing that if the sources are separated below the c
Ω

(

σ
mmin

) 1
2n−1

for

certain constant c, the recovered locations can be very unstable.

As a direct consequence of our estimates, we analyze the stability for a sparsity-promoting

algorithm (l0 minimization) in superresolving positive sources and show that it already achieves

the optimal order of the resolution. These estimates for the resolution limits are also gener-

alized to multi-dimensional spaces.

The quantitative characterizations of the resolution limits D
+
num and D

+
supp imply phase

transition phenomena in the corresponding reconstructions, which are confirmed here by

numerical experiments.
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Also, our techniques offer a way to analyze the capability of resolving positive sources,

which itself may have important applications.

1.3. Organization of the paper

The paper is organized in the following way. Section 2 presents the estimates for the resolu-

tion limit in the one-dimensional super-resolution of positive sources. Section 3 extends the

estimates to multi-dimensional spaces. Section 4 proves the results in Section 2. In Sections

5 and 6, we verify the phase transition in respectively the number detection and location re-

covery problems. Section 7 concludes the paper. In Appendix A, we prove several auxiliary

lemmas and useful inequalities.

2. Resolution limits for super-resolution in one-dimensional

space

We present in this section our main results on the resolution limit for the super-resolution of

one-dimensional positive sources. All the results shall be proved in Section 4. We consider

the case when the point sources are tightly spaced and form a cluster. To be more specific,

we define the interval

I (n,Ω) :=
[

−
(n −1)π

2Ω
,

(n −1)π

2Ω

]

,

which is of length of several Rayleigh limits and assume that y j ∈ I (n,Ω),1 ≤ j ≤ n. The re-

construction process is usually targeting at some specific solutions in a so-called admissible

set, which comprises of discrete measures whose Fourier data are sufficiently close to Y. In

our problem, we introduce the following concept of positive σ-admissible discrete measures.

We denote in this section
∣

∣

∣

∣ f
∣

∣

∣

∣

∞ = maxω∈[−Ω,Ω] | f (ω)|.

Definition 2.1. Given measurement Y, we say that µ̂ =
∑k

j=1
â jδŷ j

, â j > 0 is a positive σ-

admissible discrete measure of Y if
∣

∣

∣

∣F [µ̂]−Y
∣

∣

∣

∣

∞ <σ.

The set of positive σ-admissible measures of Y characterizes all possible solutions to our

super-resolution problem with the given measurement Y. Following similar definitions in

[25–27], we define the following computational resolution limit for the number detection in

the super-resolution of positive sources. The reason for the definition is the fact that detect-

ing the correct source number in µ is impossible without additional a prior information when

there exists one positive σ-admissible measure with less than n supports.

Definition 2.2. The computational resolution limit to the number detection problem in the

super-resolution of one-dimensional positive source is defined as the smallest nonnegative

number D
+
num such that for all positive n-sparse measure

∑n
j=1

a jδy j
, a j > 0, y j ∈ I (n,Ω) and

the associated measurement Y in (1.1), if

min
p 6= j

|y j − yp | ≥D
+
num ,

then there does not exist any positive σ-admissible measure of Y with less than n supports.
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The notion of “computational resolution limit” emphasizes the essential impossibility of

correct number detection for very close source by any means. Also, this notion depends cru-

cially on the signal-to-noise ratio and the sparsity of the source, which is different from all

classical resolution limits [1, 33, 36, 39, 45] that depend only on the cutoff frequency. We now

present sharp bounds for this computational resolution limit D
+
num . The following upper

bound for it is a direct consequence of [26, Theorem 1].

Theorem 2.1. Let Y be a measurement generated by a positive measure µ=
∑n

j=1
a jδy j

, which

is supported on I (n,Ω). Let n ≥ 2 and assume that the following separation condition is satis-

fied

min
p 6= j

∣

∣

∣yp − y j

∣

∣

∣≥
4.4πe

Ω

( σ

mmin

) 1
2n−2

. (2.1)

Then there do not exist any positive σ-admissible measures of Y with less than n supports.

Theorem 2.1 gives an upper bound for the computational resolution limit D
+
num . This up-

per bound is shown to be sharp for the super-resolution of general discrete source (not pos-

itive) by a lower bound derived in [26], but the result is unknown for the case of resolving

positive sources. We next present a lower bound of D
+
num which is the main result of this

paper.

Theorem 2.2. For given 0 < σ ≤ mmin and integer n ≥ 2, there exist positive measures µ =
∑n

j=1
a jδy j

with n supports and µ̂=
∑n−1

j=1
â jδŷ j

with (n−1) supports such that ||F [µ̂]−F [µ]||∞ <
σ. Moreover,

min
1≤ j≤n

∣

∣a j

∣

∣= mmin, min
p 6= j

∣

∣yp − y j

∣

∣=
2e−1

Ω

( σ

mmin

) 1
2n−2

.

The above result gives a lower bound for the computational resolution limit D
+
num to the

number detection problem. Combined with Theorem 2.1, it reveals that the computational

resolution limit for number detection satisfies

2e−1

Ω

( σ

mmin

) 1
2n−2 <D

+
num ≤

4.4πe

Ω

( σ

mmin

) 1
2n−2

.

We remark that similarly to the results of [2, 5, 26], our bounds are the worst-case bounds,

and one may achieve better bounds for the case of random noise.

We now consider the location (support) recovery problem in the super-resolution of posi-

tive sources. We first introduce the following concept of δ-neighborhood of a discrete mea-

sure.

Definition 2.3. Let µ =
∑n

j=1
a jδy j

be a discrete measure and let 0 < δ be such that the n in-

tervals (yk −δ, yk +δ),1 ≤ k ≤ n are pairwise disjoint. We say that µ̂ =
∑n

j=1
â jδŷ j

is within

δ-neighborhood of µ if each ŷ j is contained in one and only one of the n intervals (yk −δ, yk +
δ),1 ≤ k ≤ n.

According to the above definition, a measure in a δ-neighbourhood preserves the inner

structure of the real source. For any stable support recovery algorithm, the output should
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be a measure in some δ-neighborhood, otherwise it is impossible to distinguish which is the

reconstructed location of some y j ’s. We now introduce the computational resolution limit

for stable support recoveries. For ease of exposition, we only consider measures supported

in I (n,Ω), where n is the number of supports.

Definition 2.4. The computational resolution limit to the stable support recovery problem in

the super-resolution of one-dimensional positive sources is defined as the smallest nonnegative

number D
+
supp such that for all positive n-sparse measures

∑n
j=1

a jδy j
, a j > 0, y j ∈ I (n,Ω) and

the associated measurement Y in (1.1), if

min
p 6= j

|y j − yp | ≥D
+
supp ,

then there exists δ > 0 such that any positive σ-admissible measure for Y with n supports in

I (n,Ω) is within a δ-neighbourhood of µ.

To state the results on the resolution limit to stable support recovery, we introduce the

super-resolution factor which is defined as the ratio between Rayleigh limit π
Ω

(for point

spread function si nc(x)2) and the minimum separation distance of sources dmin := minp 6= j |yp−
y j |:

SRF :=
π

Ωdmin
.

As a direct consequence of [26, Theorem 2], we have the following theorem giving the upper

bound of D
+
supp .

Theorem 2.3. Let n ≥ 2, assume that the positive measure µ =
∑n

j=1
a jδy j

is supported on

I (n,Ω) and that

min
p 6= j

∣

∣yp − y j

∣

∣≥
5.88πe

Ω

( σ

mmin

) 1
2n−1

. (2.2)

If µ̂=
∑n

j=1
â jδŷ j

, â j > 0 supported on I (n,Ω) is a positive σ-admissible measure for the mea-

surement generated by µ, then µ̂ is within the dmin

2
-neighborhood of µ. Moreover, after reorder-

ing the ŷ j ’s, we have
∣

∣

∣ŷ j − y j

∣

∣

∣≤
C (n)

Ω
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n, (2.3)

where C (n) = n24n−2e2nπ− 1
2 .

Theorem 2.3 gives an upper bound to the computational resolution limit D
+
supp . We next

show that the order of the upper bound is optimal.

Theorem 2.4. For given 0 <σ≤ mmin and integer n ≥ 2, let

τ=
e−1

Ω

( σ

mmin

) 1
2n−1

. (2.4)

Then there exist a positive measureµ=
∑n

j=1
a jδy j

with n supports at {−(n−1
2

)τ,−(n−5
2

)τ, · · · , (n−
3
2

)τ} and a positive measure µ̂ =
∑n

j=1
â jδŷ j

with n supports at {−(n − 3
2

)τ,−(n − 7
2

)τ, · · · , (n −
1
2

)τ} such that

||F [µ̂]−F [µ]||∞ <σ, min
1≤ j≤n

|a j | = mmin.
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Since the minimum distance between y j ’s is dmin = 2τ, thus for the positive σ-admissible

measure µ̂, it is obviously that the ŷ j ’s are not in any δ-neighborhood of y j ’s for δ≤ dmin

2
(for

δ> dmin

2
the intervals in Definition 2.3 are overlapped). According to Definition 2.4, Theorem

2.4 implies D
+
supp > 2e−1

Ω

(

σ
mmin

) 1
2n−1

. Thus we conclude that

2e−1

Ω

( σ

mmin

) 1
2n−1 <D

+
supp ≤

5.88πe

Ω

( σ

mmin

) 1
2n−1

.

To further demonstrate that the order O

(

1
Ω

(

σ
mmin

) 1
2n−1

)

is essentially optimal for stable loca-

tion reconstruction, we present an example with a new distribution of the source locations

as follows.

Proposition 2.1. For given 0 <σ< mmin and integer n ≥ 2, let

τ=
0.2e−1

Ωs
2n+1
2n−1

( σ

mmin

) 1
2n−1

. (2.5)

Then there exist a positive measureµ=
∑n

j=1
a jδy j

with n supports at {t j =− sn−2
2

τ+ ( j−2)s
2

τ, j =

2,4, · · · ,2n} and a positive measure µ̂=
∑n

j=1
â jδŷ j

with n supports at {t j = t
4⌈ j+1

4
⌉−2

+(−1)
j+1

2 τ, j =
1,3,5, · · · ,2n −1} such that

||F [µ̂]−F [µ]||∞ <σ, min
1≤ j≤n

|a j | = mmin.

Note that the n underlying sources in µ are spaced by

sτ=
0.4e−1

Ωs
2

2n−1

( σ

mmin

) 1
2n−1

.

Proposition 2.1 reveals that when the n point sources are separated by c
Ω

(

σ
mmin

) 1
2n−1

for some

constant c, the recovered source locations from the σ-admissible measures can be very un-

stable; see Figure 2.1.

Remark 2.1. Note that all of our results hold for the case when the sources are supported on

a grid. Specifically, we consider the grid points t j = j∆, j = 1, · · · , N , where N and ∆ are the

number and spacing of grid points, respectively, and assume the sources are supported on the

grid. Assume also that the grid spacing ∆ ≤ e−1

Ω

(

σ
mmin

) 1
2n−1

for fixed n and mmin. By Theorem

2.4, we can construct two positive measures µ=
∑n

q=1 aqδt jq
and µ̂=

∑n
q=1 âqδt̂ jq

supported on

the grid with completely different supports such that the difference of their Fourier data is less

than the noise level and the minimum separation of sources is equal or less than 2e−1

Ω

(

σ
mmin

) 1
2n−1

with minq=1,··· ,n aq = mmin.

Remark 2.2. Note that our estimates for both the resolution limits in the number detection

and support recovery already improve the estimates in [26] for the case of general sources.
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Figure 2.1: An example of unstable location recovery.

2.1. Stability analysis of sparsity-promoting algorithms

Nowadays, sparsity-promoting algorithms are popular methods in image processing, signal

processing and many other fields. By our results for the resolution limits, we can derive a

sharp stability result for the l0 minimization in the super-resolution of positive sources. We

consider the following l0-minimization problem:

min
ρ supported on O , ρ is a positive discrete measure

∣

∣

∣

∣ρ
∣

∣

∣

∣

0 subject to |Fρ(ω)−Y(ω)| <σ, ω ∈ [−Ω,Ω],

(2.6)

where ||ρ||0 is the number of Dirac masses representing the discrete measure ρ. As a corollary

of Theorems 2.1 and 2.3, we have the following theorem for its stability.

Theorem 2.5. Let n ≥ 2 and σ ≤ mmin. Let the measurement Y in (1.1) be generated by a

positive n-sparse measure µ=
∑n

j=1
a jδy j

, y j ∈ I (n,Ω). Assume that

dmin := min
p 6= j

∣

∣yp − y j

∣

∣≥
5.88πe

Ω

( σ

mmin

) 1
2n−1

. (2.7)

Let O in the minimization problem (2.6) be (or be included in) I (n,Ω) , then the solution to (2.6)

contains exactly n point sources. For any solution µ̂=
∑n

j=1
â jδŷ j

, it is in a dmin

2
-neighborhood

of µ. Moreover, after reordering the ŷ j ’s, we have

∣

∣ŷ j − y j

∣

∣≤
C (n)

Ω
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n, (2.8)

where C (n) = n24n−2e2nπ− 1
2 .
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Theorem 2.5 reveals that sparsity promoting over admissible solutions can resolve the source

locations to the resolution limit level. It provides an insight that theoretically sparsity-promoting

algorithms would have excellent performance on the super-resolution of positive sources,

which already have been corroborated by [12,29,30]. Especially, under the separation condi-

tion (2.7), any tractable sparsity-promoting algorithms (such as total variation minimization

algorithms [7]) rendering the sparsest solution could stably reconstruct all the source loca-

tions.

3. Resolution limits for super-resolution in multi-dimensional

spaces

In this section, combining the estimates in Section 2 and [24, 25], we present our main re-

sults on the resolution limits to the super-resolution of positive sources in multi-dimensional

spaces. Let us first introduce the model setting. We consider the source as the n-sparse posi-

tive measure

µ=
n
∑

j=1

a jδy j
,

where δ denotes Dirac’s δ-distribution in R
k , y j ∈R

k ,1 ≤ j ≤ n, represent the locations of the

point sources and a j > 0,1 ≤ j ≤ n are their amplitudes. Denote by

mmin = min
j=1,··· ,n

|a j |, dmin = min
p 6= j

||yp −y j ||2. (3.1)

The available measurement is the noisy Fourier data of µ in a bounded region, that is,

Y(ω) =Fµ(ω)+W(ω) =
n
∑

j=1

a j e i y j ·ω+W(ω), ω ∈R
k , (3.2)

where with slight abuse of notation Fµdenotes the Fourier transform ofµ in the k-dimensional

space, Ω is the cut-off frequency, and W is the noise. We assume that

||W(ω)||∞ <σ, ||ω||2 ≤Ω,

where σ is the noise level and
∣

∣

∣

∣ f (ω)
∣

∣

∣

∣

∞ := max
ω∈Rk ,||ω||2≤Ω | f (ω)| in this section. We are in-

terested in the resolution limit for resolving a cluster of tightly-spaced point sources. Thus,

we denote by

B k
δ (x) :=

{

y
∣

∣

∣ y ∈R
k , ||y−x||2 < δ

}

,

and assume that y j ∈ B k
(n−1)π

2Ω

(0), j = 1, · · · ,n, or equivalently ||y j ||2 <
(n−1)π

2Ω
.

We then define positive σ-admissible measures and computational resolution limits in the

k-dimensional space analogously to those in the one-dimensional case.

Definition 3.1. Given measurement Y, we say that the positive measure µ̂ =
∑m

j=1
â jδŷ j

, ŷ j ∈
R

k , is a positive σ-admissible discrete measure of Y if

||F µ̂(ω)−Y(ω)||∞ <σ, for all ||ω||2 ≤Ω, ω ∈R
k .

11



Definition 3.2. The computational resolution limit to the number detection problem in k-

dimensional space is defined as the smallest nonnegative number D
+
k,num

such that for all pos-

itive n-sparse measures
∑n

j=1
a jδy j

,y j ∈ B k
(n−1)π

2Ω

(0) and the associated measurement Y in (3.2),

if

min
p 6= j

||y j −yp ||2 ≥D
+
k,num ,

then there does not exist any positive σ-admissible measure with less than n supports for Y.

As a consequence of [25, Theorem 2.3], we have the following result for the upper bound of

the D
+
k,num

.

Theorem 3.1. Let n ≥ 2 and the measurement Y in (3.2) be generated by a positive n-sparse

measure µ =
∑n

j=1
a jδy j

,y j ∈ B k
(n−1)π

2Ω

(0). There is a constant Cnum(k,n) which has an explicit

form such that if

min
p 6= j ,1≤p, j≤n

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

2
≥

Cnum(k,n)

Ω

( σ

mmin

) 1
2n−2

(3.3)

holds, then there do not exist any positive σ-admissible measures of Y with less than n sup-

ports.

We next show that the above upper bound is optimal in terms of the signal-to-noise ratio.

Theorem 3.2. For given 0 < σ ≤ mmin and integer n ≥ 2, there exist positive measures µ =
∑n

j=1
a jδy j

with n supports, and µ̂=
∑n−1

j=1
â jδŷ j

with (n−1) supports such that ||F [µ̂]−F [µ]||∞ <
σ. Moreover,

min
1≤ j≤n

|a j | = mmin, min
p 6= j

∣

∣

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

∣

∣

2
=

2e−1

Ω

( σ

mmin

) 1
2n−2

.

Proof. Considerγ=
∑2n−1

j=1
a jδt j

with t1 = (−(n−1)τ,0, · · · ,0),t2 = (−(n−2)τ,0, · · · ,0), · · · ,t2n−1 =

((n −1)τ,0, · · · ,0) and τ= e−1

Ω

(

σ
mmin

) 1
2n−2

. For every ω= (ω1,ω2, · · · ,ωk )⊤,

Fγ(ω) =
2n−1
∑

j=1

a j e i t j ·ω =
2n−1
∑

j=1

a j e i (−n+ j )τω1 , |ω1| ≤Ω.

This reduces the estimation of Fγ(ω) to the one-dimensional case. Combined with Theorem

2.2, there exist a2 j−1 > 0, a2 j < 0,1 ≤ j ≤ n,min j=1,··· ,n |a2 j−1| = mmin, so that
∣

∣

∣

∣Fγ(ω)
∣

∣

∣

∣

∞ <σ.

As a consequence,

µ=
n
∑

j=1

a2 j−1δt2 j−1
, µ̂=

n−1
∑

j=1

−a2 jδt2 j

satisfy all the conditions of the theorem.

The above results indicate that

C1,k (n)

Ω

( σ

mmin

) 1
2n−2 <D

+
k,num ≤

C2,k (n)

Ω

( σ

mmin

) 1
2n−2

,
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with C1,k (n),C2,k (n) being certain constants. An interesting open problem is to improve these

constants. Two of the authors of this paper have made a progress in this direction [24].

To state the estimates for the resolution limits to the location recovery, we introduce the

following concepts which are analogue to those in the one-dimensional case.

Definition 3.3. Let µ=
∑n

j=1
a jδy j

be a positive n-sparse discrete measure in R
k and let δ > 0

be such that the n balls B k
δ

(y j ),1 ≤ j ≤ n, are pairwise disjoint. We say that µ̂ =
∑n

j=1
â jδŷ j

is

within δ-neighborhood of µ if each ŷ j is contained in one and only one of the n balls B k
δ

(y j ),1 ≤
j ≤ n.

Definition 3.4. The computational resolution limit to the stable support recovery problem in

k-dimensional space is defined as the smallest non-negative number D
+
k,supp

such that for any

positive n-sparse measure µ=
∑n

j=1
a jδy j

,y j ∈ B k
(n−1)π

2Ω

(0) and the associated measurement Y in

(3.2), if

min
p 6= j ,1≤p, j≤n

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

2
≥D

+
k,supp ,

then there exists δ> 0 such that any σ-admissible measure of Y with n supports in B k
(n−1)π

2Ω

(0) is

within a δ-neighbourhood of µ.

As a consequence of [25, Theorem 2.7], we have the following result on the characterization

of D
+
k,supp

.

Theorem 3.3. Let n ≥ 2. Let the measurement Y in (3.2) be generated by a positive n-sparse

measureµ=
∑n

j=1
a jδy j

,y j ∈ B k
(n−1)π

2Ω

(0) in the k-dimensional space. There is a constant Csupp (k,n)

which has an explicit form such that if

dmin := min
p 6= j

∣

∣

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

∣

∣

2
≥

Csupp (k,n)

Ω

( σ

mmin

) 1
2n−1

(3.4)

holds, then for any µ̂=
∑n

j=1
â jδŷ j

, ŷ j ∈ B k
(n−1)π

2Ω

(0) being a positive σ-admissible measure of Y, µ̂

is within the dmin

2
-neighborhood of µ. Moreover, after reordering the ŷ j ’s, we have

∣

∣

∣

∣

∣

∣ŷ j −y j

∣

∣

∣

∣

∣

∣

2
≤

C (k,n)

Ω
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n, (3.5)

where SRF := π
Ω

is the super-resolution factor and C (k,n) has an explicit form.

Theorem 3.3 gives an upper bound for the computational resolution limit for the stable

support recovery in the k-dimensional space. This bound is optimal in terms of the order of

the signal-to-noise ratio, as is shown by the theorem below.

Theorem 3.4. For given 0 <σ≤ mmin and integer n ≥ 2, let

τ=
e−1

Ω

( σ

mmin

) 1
2n−1

. (3.6)
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Then there exist a positive measureµ=
∑n

j=1
a jδy j

,y j ∈R
k , with n supports at {(−(n−1

2
)τ,0, · · · ,0), (−(n−

5
2

)τ,0, · · · ,0), · · · , ((n− 3
2

)τ,0, · · · ,0)} and a positive measure µ̂=
∑n

j=1
â jδŷ j

, ŷ j ∈R
k , with n sup-

ports at {(−(n − 3
2

)τ,0, · · · ,0), (−(n − 7
2

)τ,0, · · · ,0), · · · , ((n − 1
2

)τ,0, · · · ,0)} such that

∣

∣

∣

∣F [µ̂]−F [µ]
∣

∣

∣

∣

∞ <σ, min
1≤ j≤n

|a j | = mmin.

Proof. Similar to the discussions in the proof of Theorem 3.2, the problem can be reduced to

the one-dimensional case. Then leveraging Theorem 2.4 proves the result.

Theorem 3.4 provides a lower bound to the computational resolution limit D
+
k,supp

. Com-

bined with Theorem 3.3, it reveals that

C3,k (n)

Ω

( σ

mmin

) 1
2n−1 <D

+
k,supp ≤

C4,k (n)

Ω

( σ

mmin

) 1
2n−1

for certain constants C3,k (n),C4,k (n).

Remark 3.1. Compared to the one-dimensional case in Section 2, the upper bounds of multi-

dimensional computational resolution limits for the number detection and location recovery

in the super-resolution of positive sources has the same dependence on the signal-to-noise ra-

tio and cutoff frequency. Moreover, their dependence on the dimensionality are indicated by

the constant factors in the upper bound. We conjecture that the optimal constants may be in-

dependent of the source number n. Note that the constant factors in the bounds have been

improved in [24] to nearly optimal for the two-dimensional case.

4. Proofs of main results

We first introduce some notation and lemmas that are used in the following proofs. Set

φs(t ) =
(

1, t , · · · , t s
)⊤

. (4.1)

We recall the Stirling formula that

p
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n . (4.2)

Lemma 4.1. Let t1, · · · , tk be k different real numbers and let t be a real number. We have

(

Dk (k −1)−1φk−1(t )
)

j =Π1≤q≤k,q 6= j

t − tq

t j − tq
,

where Dk (k −1) :=
(

φk−1(t1), · · · ,φk−1(tk )
)

with φk−1(·) defined by (4.1).

Proof. This is [26, Lemma 5]. For the reader’s convenience, we present a simple proof here.

We denote
(

Dk (k −1)−1
)

j q = b j q . Observe that

(

Dk (k −1)−1φk−1(t )
)

j =
k
∑

q=1

b j q t q−1.

14



We have
k
∑

q=1

b j q (tp )q−1 = δ j p , ∀ j , p = 1, · · · ,k,

where δ j p is the Kronecker delta function. Then the polynomial P j (x) =
∑k

q=1 b j q xq−1 satis-

fies P j (t1) = 0, · · · ,P j (t j−1) = 0,P j (t j ) = 1,P j (t j+1) = 0, · · · ,P j (tk ) = 0. Therefore, it must be the

Lagrange polynomial

P j (x) =Π1≤q≤k,q 6= j

x − tq

t j − tq
.

It follows that

(

Dk (k −1)−1φk−1(t )
)

j =Π1≤q≤k,q 6= j

t − tq

t j − tq
.

4.1. Proof of Theorem 2.2

Proof. Step 1. Let

τ=
e−1

Ω

( σ

mmin

) 1
2n−2

(4.3)

and t1 =−(n−1)τ, t2 =−(n−2)τ, · · · , tn = 0, tn+1 = τ, · · · , t2n−1 = (n−1)τ. Consider the follow-

ing system of linear equations:

Aa = 0, (4.4)

where A =
(

φ2n−3(t1), · · · ,φ2n−3(t2n−1)
)

with φ2n−3(·) being defined by (4.1). Since A is un-

derdetermined, there exists a nontrivial solution a = (a1, · · · , a2n−1)⊤ to (4.4). By the linear

independence of the any (2n −2) column vectors of A, we can show that all a j ’s are nonzero.

By a scaling of a, we can assume that a2n−1 > 0 and

min
1≤ j≤n

|a2 j−1| = mmin. (4.5)

We define

µ=
n
∑

j=1

a2 j−1δt2 j−1
, µ̂=

n−1
∑

j=1

−a2 jδt2 j
.

We shall show that the intensities in µ̂ and µ are all positive and ||F [µ̂]−F [µ]||∞ < σ in the

subsequent steps.

Step 2. We first analyze the sign of each a j , j = 1, · · · ,2n −1, based on a2n−1 > 0. The equa-

tion (4.4) implies that

−a2n−1φ2n−3(t2n−1) =
(

φ2n−3(t1), · · · ,φ2n−3(t2n−2)
)

(a1, · · · , a2n−2)⊤,

and hence

−a2n−1

(

φ2n−3(t1), · · · ,φ2n−3(t2n−2)
)−1

φ2n−3(t2n−1) = (a1, · · · , a2n−2)⊤.
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Together with Lemma 4.1, we have

−a2n−1Π1≤q≤2n−2,q 6= j

t2n−1 − tq

t j − tq
= a j , (4.6)

for j = 1, · · · ,2n −2. Observe first that Π1≤q≤2n−2,q 6= j (t2n−1 − tq ) is always positive for 1 ≤ j ≤
2n−2. For j = 2n−2, since a2n−1 > 0, −a2n−1Π1≤q≤2n−2,q 6=2n−2(t2n−2− tq ) is negative in (4.6).

Thus we have a2n−2 < 0. In the same fashion, we see that a j < 0 for even j and a j > 0 for odd

j . Hence the intensities in µ̂ and µ are all positive.

Step 3. We demonstrate that ||F [µ̂]−F [µ]||∞ <σ. Observe that

||F [µ̂]−F [µ]||∞ = max
x∈[−Ω,Ω]

|F (γ)(x)|, (4.7)

where γ=
∑2n−1

j=1
a jδt j

and

F [γ](x) =
2n−1
∑

j=1

a j e i t j x =
2n−1
∑

j=1

a j

∞
∑

k=0

(i t j x)k

k !
=

∞
∑

k=0

Qk (γ)
(i x)k

k !
. (4.8)

Here, Qk (γ) =
∑2n−1

j=1
a j t k

j
. By (4.4), we have Qk (γ) = 0,k = 0, · · · ,2n−3. We next estimate Qk (γ)

for k > 2n −3.

Step 4. We estimate
∑2n−1

j=1
|a j | first. We begin by ordering a j ’s such that

mmin = |a j1
| ≤ |a j2

| ≤ · · · ≤ |a j2n−1
|.

Then (4.4) implies that

a j1
φ2n−3(t j1

) =
(

φ2n−3(t j2
), · · · ,φ2n−3(t j2n−1

)
)

(−a j2
, · · · ,−a j2n−1

)⊤,

and hence

a j1

(

φ2n−3(t j2
), · · · ,φ2n−3(t j2n−1

)
)−1

φ2n−3(t j1
) = (−a j2

, · · · ,−a j2n−1
)⊤.

Together with Lemma 4.1, we have

a j1
Π2≤q≤2n−2

t j1
− t jq

t j2n−1
− t jq

=−a j2n−1
.

Further,

∣

∣a j2n−1

∣

∣=
∣

∣a j1

∣

∣Π2≤q≤2n−2

∣

∣t j1
− t jq

∣

∣

∣

∣t j2n−1
− t jq

∣

∣

=
∣

∣a j1

∣

∣Π2≤q≤2n−2

∣

∣t j1
− t jq

∣

∣

∣

∣t j2n−1
− t jq

∣

∣

∣

∣t j1
− t j2n−1

∣

∣

∣

∣t j2n−1
− t j1

∣

∣

=
∣

∣a j1

∣

∣

Π2≤q≤2n−1

∣

∣t j1
− t jq

∣

∣

Π1≤q≤2n−2

∣

∣t j2n−1
− t jq

∣

∣

≤
∣

∣a j1

∣

∣

max j1=1,··· ,2n−1Π2≤q≤2n−1

∣

∣t j1
− t jq

∣

∣

min j2n−1=1,··· ,2n−1Π1≤q≤2n−2

∣

∣t j2n−1
− t jq

∣

∣

.

(4.9)

Thus, based on the distribution of t j ’s and (4.5), we have

|a j2n−1
| ≤

(2n −2)!

((n −1)!)2
|a j1

| ≤
(2n −2)!

((n −1)!)2
mmin,
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and consequently,

2n−1
∑

j=1

|a j | =
2n−1
∑

q=1

|a jq
| ≤ (2n −1)|a j2n−1

| ≤
(2n −1)!

((n −1)!)2
mmin. (4.10)

It follows that for k ≥ 2n −2,

|Qk (γ)| =|
2n−1
∑

j=1

a j t k
j | ≤

2n−1
∑

j=1

|a j |
(

(n −1)τ
)k ≤

(2n −1)!

((n −1)!)2
mmin

(

(n −1)τ
)k

.

Step 5. Using (4.8), we have

max
x∈[−Ω,Ω]

∣

∣F [γ](x)
∣

∣≤
∑

k≥2n−2

(2n −1)!

((n −1)!)2
mmin

(

(n −1)τ
)k Ω

k

k !

=
(2n −1)!mmin(n −1)2n−2(τΩ)2n−2

((n −1)!)2 (2n −2)!

+∞
∑

k=0

(τΩ)k (2n −2)!(n −1)k

(k +2n −2)!

<
(2n −1)mmin(n −1)2n−2(τΩ)2n−2

((n −1)!)2

+∞
∑

k=0

(

τΩ

2

)k

≤
(2n −1)mmin(n −1)2n−2(τΩ)2n−2

((n −1)!)2

1

0.8

(

by (4.3),
τΩ

2
≤ 0.2

)

≤
(2n −1)mmin

2π(n −1)
(eτΩ)2n−2 1

0.8
.

(

by (4.2)
)

Finally, using (4.3) and the inequality that (2n−1)
2π(n−1)

1
0.8

< 1, we obtain

max
x∈[−Ω,Ω]

∣

∣F [γ](x)
∣

∣<σ.

This completes the proof.

4.2. Proof of Theorem 2.4

Proof. Let t1 =−(n − 1
2

)τ, t2 =−(n − 3
2

)τ, · · · , tn =−τ
2

, tn+1 = τ
2

, · · · , t2n = (n − 1
2

)τ. Consider the

following system of linear equations:

Aa = 0, (4.11)

where A =
(

φ2n−2(t1), · · · ,φ2n−2(t2n)
)

with φ2n−2(·) being defined in (4.1). Since A is underde-

termined, there exists a nontrivial solution a = (a1, · · · , a2n)⊤. By the linear independence of

any (2n −1) column vectors of A, all a j ’s are nonzero. By a scaling of a, we can assume that

a2n < 0 and

min
1≤ j≤n

|a2 j−1| = mmin. (4.12)

We define

µ=
n
∑

j=1

a2 j−1δt2 j−1
, µ̂=

n
∑

j=1

−a2 jδt2 j
.
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Similar to Step 2 in the proof of Theorem 2.2, we can show that a2 j−1 > 0, j = 1, · · · ,n, and

a2 j < 0, j = 1, · · · ,n. Thus both µ̂ and µ are positive measures. Similar to Step 4 in the proof of

Theorem 2.2, we can show that

2n
∑

j=1

|a j | ≤
(2n)!

n!(n −1)!
mmin. (4.13)

We now prove that

||F [µ̂]−F [µ]||∞ ≤ max
x∈[−Ω,Ω]

|F [γ](x)| <σ,

where γ=
∑2n

j=1
a jδt j

. Indeed, (4.13) implies, for k ≥ 2n −1,

|
2n
∑

j=1

a j t k
j | ≤

2n
∑

j=1

|a j |((n −1/2)τ)k ≤
(2n)!

n!(n −1)!
mmin ((n −1/2)τ)k .

On the other hand, similar to expansion (4.8), we can expand F [γ] and have

Qk (γ) = 0, k = 0, · · · ,2n −2 and |Qk (γ)| ≤
(2n)!

n!(n −1)!
mmin ((n −1/2)τ)k ,k ≥ 2n −1.

Therefore, for |x| ≤Ω,

max
x∈[−Ω,Ω]

∣

∣F [γ](x)
∣

∣≤
∑

k≥2n−1

(2n)!

n!(n −1)!
mmin ((n −1/2)τ)k |x|k

k !
≤

∑

k≥2n−1

(2n)!

n!(n −1)!
mmin ((n −1/2)τ)k Ω

k

k !

=
(2n)!mmin(n −1/2)2n−1(τΩ)2n−1

n!(n −1)!(2n −1)!

+∞
∑

k=0

(τΩ)k (2n −1)!(n −1/2)k

(k +2n −1)!

<
2nmmin(n −1/2)2n−1(τΩ)2n−1

n!(n −1)!

+∞
∑

k=0

(

τΩ

2

)k

=
2nmmin(n −1/2)2n−1(τΩ)2n−1

n!(n −1)!

1

0.8

(

(2.4) implies
τΩ

2
≤ 0.2

)

≤
nmmin(n −1/2)2n−1

πnn+ 1
2 (n −1)n− 1

2

(eτΩ)2n−1 1

0.8

(

by (4.2)
)

≤
n

π(n −1/2)
mmin(eτΩ)2n−1 1

0.8

<σ.
(

by (2.4) and
n

π(n −1/2)

1

0.8
< 1

)

It follows that ||F [µ̂]−F [µ]||∞ <σ.

4.3. Proof of Proposition 2.1

Proof. Step 1. For j ∈ {1,2, · · · ,2n}, set t j = − sn−2
2

τ+ ( j−2)s
2

τ if j is even and t j = t
4⌈ j+1

4
⌉−2

+

(−1)
j+1

2 τ otherwise. Consider the following system of linear equations:

Aa = 0,
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where A =
(

φ2n−2(t1), · · · ,φ2n−2(t2n)
)

with φ2n−2(·) defined in (4.1). Since A is underdeter-

mined, there exists a nontrivial solution a = (a1, · · · , a2n)⊤. Also, by the linear independence

of any (2n −1) column vectors of A, we can show that all a j ’s are nonzero. By a scaling of a,

we can assume that a2n > 0 and

min
1≤ j≤n

|a2 j | = mmin. (4.14)

We define

µ=
n
∑

j=1

a2 jδt2 j
, µ̂=

n
∑

j=1

−a2 j−1δt2 j−1
.

Similar to Step 2 in the proof of Theorem 2.2, we can show that a2 j−1 < 0, j = 1, · · · ,n, and

a2 j > 0, j = 1, · · · ,n. Thus, both µ̂ and µ are positive measures.

Step 2. We now estimate
∑2n

j=1
|a j |. Reorder a j such that

mmin = |a j1
| ≤ |a j2

| ≤ · · · ≤ |a j2n
|.

Similar to Step 4 in the proof of Theorem 2.2, we have

a j1
Π2≤q≤2n−1

t j1
− t jq

t j2n
− t jq

=−a j2n
. (4.15)

We next estimate Π2≤q≤2n−1

∣

∣

∣

t j1
−t jq

t j2n
−t jq

∣

∣

∣. Note that

Π2≤q≤2n−1

∣

∣t j1
− t jq

∣

∣

∣

∣t j2n
− t jq

∣

∣

=
(

Π2≤q≤2n−1

∣

∣t j1
− t jq

∣

∣

∣

∣t j2n
− t jq

∣

∣

)

·
∣

∣t j1
− t j2n

∣

∣

∣

∣t j2n
− t j1

∣

∣

=
Π2≤q≤2n

∣

∣t j1
− t jq

∣

∣

Π1≤q≤2n−1

∣

∣t j2n
− t jq

∣

∣

≤
max j∈{1,2,...,2n}Πi∈{1,2,...,2n},i 6= j

∣

∣ti − t j

∣

∣

min j∈{1,2,...,2n}Πi∈{1,2,...,2n},i 6= j

∣

∣ti − t j

∣

∣

.

(4.16)

We separate {t j } j=1,2,...,2n into four classes: C1 = {t4 j−2}
⌈ n

2
⌉

j=1
,C2 = {t4 j }

⌊ n
2
⌋

j=1
,C3 = {t4 j−3}

⌈ n
2
⌉

j=1
,C4 =

{t4 j−1}
⌊ n

2
⌋

j=1
; See Figure 4.1 for an illustration. The points in each class are evenly-spaced, by

which we can estimate the right-hand side of (4.16).

Note that

max
j∈{1,2,...,2n}

Πp∈{1,2,...,2n},p 6= j |tp − t j | = max
k=1,2,3,4

(

max
x∈Ck

Πy∈{t1,t2...,t2n },y 6=x |x − y |
)

≤ max
k=1,2,3,4

(

max
x∈Ck

Πp=1,2,3,4Πy∈Cp ,y 6=x |x − y |
)

=: max
k=1,2,3,4

cmax
k ,

(4.17)

and

min
j∈{1,2,...,2n}

Πp∈{1,2,...,2n},p 6= j |tp − t j | = min
k=1,2,3,4

(

min
x∈Ck

Πy∈{t1,t2...,t2n },y 6=x |x − y |
)

≥ min
k=1,2,3,4

(

min
x∈Ck

Πp=1,2,3,4Πy∈Cp ,y 6=x |x − y |
)

=: min
k=1,2,3,4

cmin
k .

(4.18)
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Figure 4.1: Distribution of source locations.

The estimates of maxk=1,2,3,4 cmax
k

and mink=1,2,3,4 cmin
k

are detailed in Lemmas A.3 and A.4 in

Appendix A. With the aid of them we control the left-hand side of (4.16) that

Π2≤q≤2n−1

|t j1
− t jq

|
|t j2n

− t jq
|
≤

τ2n−1s2n−1
(

2⌈n
2
⌉
)

!
(

2⌈n
2
⌉−1

)

!

τ2n−1s2n−3 ·
(

(2⌊ ⌊
n
2
⌋

2
⌋−1)!

)4
≤

s2e11

π2
(n +1)1022n−8, (4.19)

where the last inequality is obtained by Lemma 4.2 in the following step.

Step 3.

Lemma 4.2. For n ≥ 2, we have

(

2⌈n
2
⌉
)

!
(

2⌈n
2
⌉−1

)

!
(

(2⌊ ⌊
n
2
⌋

2
⌋−1)!

)4
≤

e11

π2
(n +1)1022n−8.

Proof. Recall the Stirling approximation of factorial, that is,

p
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n . (4.20)
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For n ≤ 11, the inequality can be checked by calculation. For n > 11, we have

(

2⌈n
2
⌉
)

!
(

2⌈n
2
⌉−1

)

!
(

(2⌊ ⌊
n
2
⌋

2
⌋−1)!

)4
≤

e2−4⌈ n
2
⌉+1(2⌈n

2
⌉)2⌈ n

2
⌉+ 1

2 · (2⌈n
2
⌉−1)2⌈ n

2
⌉− 1

2

(
p

2π)4(2⌊ ⌊
n
2
⌋

2
⌋−1)4(2⌊

⌊ n
2 ⌋
2

⌋−1)+2e−4(2⌊
⌊ n

2 ⌋
2

⌋−1)

≤
1

4π2

e3−2n

e−4(2· n
4
−1)

·
(2( n

2
+ 1

2
))2n+2

(2( n
4
− 3

4
)−1)4(2( n

4
− 3

4
)−1)+2

=
1

4eπ2

(n +1)2n+2

( n
2
− 5

2
)2n−8

=
1

4eπ2
(n +1)10

(

2+
6

n
2
− 5

2

)2n−8

=
1

4eπ2
(n +1)1022n−8

(

1+
6

n −5

)12· n−5
6

+2

≤
e11

4π2

(

1+
6

n −5

)2

(n +1)1022n−8 ≤
e11

π2
(n +1)1022n−8.

Step 4. Thus, combined (4.15) and (4.19), we have

∣

∣a j2n

∣

∣≤
e11s2

π2
(n +1)1022n−8

∣

∣a j1

∣

∣ ,

and consequently,

2n
∑

j=1

|a j | ≤
2n
∑

q=1

|a jq
| ≤ 2n

e11s2

π2
(n +1)1022n−8mmin. (4.21)

It then follows that for k ≥ 2n −1,

∣

∣

∣

∣

∣

2n−1
∑

j=1

a j t k
j

∣

∣

∣

∣

∣

≤
2n−1
∑

j=1

|a j |
( sn

2
τ
)k

≤
2n(n +1)10e11s2

π2
22n−8mmin

( sn

2
τ
)k

.

Step 5. We now prove that

||F [µ̂]−F [µ]||∞ ≤ max
x∈[−Ω,Ω]

|F [γ](x)| <σ,

where γ=
∑2n

j=1
a jδt j

. On the other hand, similar to expansion (4.8), we can expand F [γ] and

have

Qk (γ) = 0, k = 0, · · · ,2n −2 and |Qk (γ)| ≤
2n(n +1)10e11s222n−8

π2
mmin

( sn

2
τ
)k

, k ≥ 2n −1.
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Therefore, for |x| ≤Ω and n ≥ 6, we have

|F [γ](x)| ≤
∑

k≥2n−1

2n(n +1)10e11s2

π2
22n−8mmin

( sn

2
τ
)k |x|k

k !

≤
∑

k≥2n−1

2n(n +1)10e11s2

π2
22n−8mmin

( sn

2
τ
)k Ω

k

k !

≤
2e11

π2
·

s2n(n +1)1022n−8mmin · ( snτΩ
2

)2n−1

(2n −1)!

+∞
∑

k=0

( sτΩ
2

)k (2n −1)!nk

(k +2n −1)!

<
e11

26π2
·

(τΩ)2n−1s2n+1mminn(n +1)10n2n−1

(2n −1)!
·
+∞
∑

k=0

(

sτΩ

2

)k

≤
e11

26π2
(τΩ)2n−1s2n+1mmin

(n +1)10n2ne2n−1

p
2π(2n −1)2n− 1

2

+∞
∑

k=0

(

sτΩ

2

)k (

by Stirling’s formula (4.2)
)

≤38 ·0.22n−1σ ·
n(n +1)10

p
2n −1

n2n−1

(2n −1)2n−1

+∞
∑

k=0

(

sτΩ

2

)k (

by separation condition (2.5)
)

=38 ·0.12n−1σ ·
n(n +1)10

p
2n −1

(

n

n − 1
2

)2n−1
1

1−0.04

(

(2.5) implies
sτΩ

2
≤ 0.04

)

≤38e ·0.12n−1σ ·
n(n +1)10

p
2n −1

1

1−0.04

<σ
(

38e ·0.12n−1 ·
n(n +1)10

p
2n −1

1

1−0.04
< 1 for n ≥ 6

)

.

It then follows that ||F [µ̂]−F [µ]||∞ <σ.

Now consider the case when 2 ≤ n ≤ 5. By (4.19), we have

Π2≤q≤2n−1

|t j1
− t jq

|
|t j2n

− t jq
|
≤

s2
(

2⌈n
2
⌉
)

!
(

2⌈n
2
⌉−1

)

!
(

(2⌊ ⌊
n
2
⌋

2
⌋−1)!

)4
,

and consequently,
2n
∑

j=1

|a j | ≤ 2n
s2

(

2⌈n
2
⌉
)

!
(

2⌈n
2
⌉−1

)

!
(

(2⌊ ⌊
n
2
⌋

2
⌋−1)!

)4
.

By similar arguments as those for the case when n ≥ 6, we can show that for 2 ≤ n ≤ 5,

|F [γ](x)| <σ.

5. Phase transition in the number detection

In this section, employing the sweeping singular-value-thresholding number detection algo-

rithm introduced in [26], we verify the phase transition phenomenon for the number detec-

tion in the super-resolution of positive sources.
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5.1. Review of the sweeping singular-value-thresholding number detection
algorithm

In [26], the authors proposed a number detection algorithm called sweeping single-value-

thresholding number detection algorithm. It determines the number of sources by thresh-

olding on the singular value of a Hankel matrix formulated from the measurement data.

To be more specific, suppose the measurement is taken at M evenly-spaced points ω1 =
−Ω,ω2, · · · ,ωM =Ω, that is,

Y(ω j ) =Fµ(ω j )+W(ω j ), j = 1, · · · , M .

We choose a partial measurement at the sample points zt = ω(t−1)r+1 for t = 1, · · · ,2s + 1,

where s ≥ n and r = (M − 1) mod 2s. For ease of exposition, assume r = M−1
2s

. Then zt =
ω(t−1) M−1

2s
+1 =−Ω+ t−1

s
Ω (since ω1 =−Ω, ωM =Ω) and the partial measurement is

Y(zt ) =Fµ(zt )+W(zt ), 1 ≤ t ≤ 2s +1.

Assemble the following Hankel matrix by the measurements that

H(s) =













Y(−Ω) Y(−Ω+ 1
s
Ω) · · · Y(0)

Y(−Ω+ 1
s
Ω) Y(−Ω+ 2

s
Ω) · · · Y( 1

s
Ω)

· · · · · · . . . · · ·
Y(0) Y( 1

s
Ω) · · · Y(Ω)













. (5.1)

We observe that H(s) has the decomposition

H(s) = D AD⊤+∆,

where A = diag(e−i y1Ωa1, · · · ,e−i ynΩan) and D =
(

φs(e i y1
Ω

s ), · · · ,φs(e i yn
Ω

s )
)

with φs(ω) being

defined as (1,ω, · · · ,ωs)⊤ and

∆=













W(−Ω) W(−Ω+ 1
s
Ω) · · · W(0)

W(−Ω+ 1
s
Ω) W(−Ω+ 2

s
Ω) · · · W( 1

s
Ω)

...
...

. . .
...

W(0) W( 1
s
Ω) · · · W(Ω)













.

We denote the singular value decomposition of H(s) as

H(s) = Û Σ̂Û∗,

where Σ̂= diag(σ̂1, · · · , σ̂n , σ̂n+1, · · · , σ̂s+1) with the singular values σ̂ j , 1 ≤ j ≤ s+1, ordered in

a decreasing manner. From [26], we have the following theorem for the threshold to deter-

mine the source number.

Theorem 5.1. Let s ≥ n and µ=
∑n

j=1
a jδy j

with y j ∈ I (n,Ω),1 ≤ j ≤ n. We have

σ̂ j ≤ (s +1)σ, j = n +1, · · · , s +1. (5.2)
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Moreover, if the following separation condition is satisfied

min
p 6= j

|yp − y j | >
πs

Ω

(2n(s +1)

ζ(n)2

σ

mmin

) 1
2n−2

, (5.3)

where ζ(n) =
{

( n−1
2

!)2, n is odd,

( n
2

)!( k−2
2

)!, n is even,
then

σ̂n > (s +1)σ. (5.4)

Based on this theorem, the threshold should be (s+1)σ and the following Algorithm 1 was

proposed to detect the source number for fixed s.

Algorithm 1: Singular-value-thresholding number detection algorithm

Input: Number s, Noise level σ;

Input: measurement: Y = (Y(ω1), · · · ,Y(ωM ))⊤;

1: r = (M −1) mod 2s, Ynew = (Y(ω1),Y(ωr+1), · · · ,Y(ω2sr+1))⊤;

2: Formulate the (s +1)× (s +1) Hankel matrix H(s) from Ynew , and compute the

singular value of H(s) as σ̂1, · · · , σ̂s+1 distributed in a decreasing manner;

4: Determine n by σ̂n > (s +1)σ and σ̂ j ≤ (s +1)σ, j = n +1, · · · , s +1;

Return: n.

In Algorithm 1, the s ≥ n should be properly chosen to have a good resolution. To address

this issue, a sweeping strategy was utilized and the following Algorithm 2 was proposed. It

was shown in [26] that the Algorithm 2 achieves the optimal resolution order.

Algorithm 2: Sweeping singular-value-thresholding number detection algorithm

Input: Noise level σ, measurement: Y = (Y(ω1), · · · ,Y(ωM ))⊤;

Input: nmax = 0

for s = 1 : ⌊M−1
2

⌋ do

Input s,σ,Y to Algorithm 1, save the output of Algorithm 1 as nr ecover ;

if nr ecover > nmax then
nmax = nr ecover

Return nmax .

5.2. Phase transition

We know from Section 2 that the resolution limit to the number detection problem in super-

resolution of positive sources is bounded from below and above by C1

Ω
( σ

mmin
)

1
2n−2 and C2

Ω
( σ

mmin
)

1
2n−2 ,

respectively for some constants C1,C2. This indeed implies a phase transition phenomenon

in the problem. Specifically, recall that the super-resolution factor is SRF = π
dminΩ

and the
mmin

σ can be viewed as the signal-to-noise ratio SN R. Taking the logarithm of both sides of

the two bounds, we can conclude that the exact number detection is guaranteed if

log(SN R) > (2n −2)log(SRF )+ (2n −2)log
C1

π
,
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and may fail if

log(SN R) < (2n −2)log(SRF )+ (2n −2)log
C2

π
.

As a consequence, we expect that in the parameter space of logSN R−logSRF , there exist two

lines both with slope 2n −2 such that the number detection is successful for cases above the

first line and unsuccessful for cases below the second. In the intermediate region between

the two lines, the number detection can be either successful or unsuccessful from case to

case. This is clearly demonstrated in the numerical experiments below.

We fix Ω = 1 and consider n point sources randomly spaced in
[

− (n−1)π
2

, (n−1)π
2

]

with pos-

itive amplitudes a j ’s. The noise level is σ and the minimum separation distance between

sources is dmin. We perform 10000 random experiments (the randomness is in the choice of

(dmin,σ, y j , a j )) to detect the source number based on Algorithm 2. Figure 5.1 shows the re-

sults for n = 2,4, respectively. In each case, two lines of slope 2n −2 strictly separate the blue

points (successful detection) and red points (unsuccessful detection) and in-between is the

phase transition region. It clearly elucidates the phase transition phenomenon of Algorithm

2 and is consistent with our theory.

(a) detection success (b) detection fail (c) phase transition region

(d) detection success (e) detection fail (f) phase transition region

Figure 5.1: Plots of the successful and the unsuccessful number detection by Algorithm 2 de-

pending on the relation between log(SRF ) and log( mmin

σ ). (a) illustrates that two

positive point source can be exactly detected if log( mmin

σ ) is above a line of slope

2 in the parameter space. Conversely, for the same case, (b) shows that the num-

ber detection fails if log( mmin

σ ) falls below another line of slope 2. (c) highlights

the phase transition region which is bounded by the black slashes in (a) and (b).

(d),(e) and (f) illustrate parallel results for four positive point sources.
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6. Phase transition in the location recovery

In this section, by the MUSIC algorithm we verify the phase transition phenomenon for the

location recovery in the super-resolution of positive sources.

6.1. Review of the MUSIC algorithm

In this section we review the MUSIC algorithm. From the measurement Y = (Y(ω1),Y(ω2), · · · ,Y(ωM ))⊤

and M̂ = ⌊M−1
2

⌋, we assemble the (M̂ +1)× (M̂ +1) Hankel matrix,

H =













Y(ω1) Y(ω2) · · · Y(ωM̂ )

Y(ω2) Y(ω3) · · · Y(ωM̂+1)

· · · · · · . . . · · ·
Y(ωM̂ ) Y(ωM̂+1) · · · Y(ω2M̂+1)













. (6.1)

We perform the following singular value decomposition for H,

H = Û Σ̂Û∗ = [Û1 Û2]diag(σ̂1, σ̂2, · · · , σ̂n , σ̂n+1, · · · , σ̂M̂+1)[Û1 Û2]∗,

where Û1 = (Û (1), · · · ,Û (n)),Û2 = (Û (n + 1), · · · ,Û (M̂ + 1)) with n being the source number.

Then we denote the orthogonal projection to the space Û2 by P̂2x = Û2(Û∗
2 x). For a test vector

Φ(x) = (1,e i hx , · · · ,e i M̂hx )⊤ with h being the spacing parameter, we define the MUSIC imaging

functional

Ĵ (x) =
||Φ(x)||2

||P̂2Φ(x)||2
=

||Φ(x)||2
||Û∗

2 Φ(x)||2
.

The local maximizers of Ĵ (x) indicate the locations of the point sources. In practice, we test

evenly spaced points in a specified interval and plot the discrete imaging functional and then

determine the source locations by detecting the peaks. We present the peak selection algo-

rithm as Algorithm 4 and summarize the MUSIC algorithm in Algorithm 3 below.

Algorithm 3: MUSIC algorithm

Input: Measurements: Y = (Y(ω1), · · · ,Y(ωM ))⊤, sampling distance h, source number n;

Input: Region of test points [T S,T E ] and spacing of test points T PS;

1: Let M̂ = ⌊M−1
2

⌋, formulate the (M̂ +1)× (M̂ +1) Hankel matrix X̂ from Y;

2: Compute the singular vector of X̂ as Û (1),Û (2), · · · ,Û (M̂ +1) and formulate the noise

space Û2 = (Û (n +1), · · · ,Û (M̂ +1));

3: For test points x’s in [T S,T E ] evenly spaced by T PS, construct the test vector

Φ(x) = (1,e i hx , · · · ,e i M̂hx )⊤;

4: Plot the MUSIC imaging functional Ĵ (x) = ||Φ(x)||2
||Û∗

2 Φ(x)||2
;

5: Select the peak locations ŷ j ’s in the Ĵ (x) by Algorithm 4;

Return ŷ j ’s.
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Algorithm 4: Peak selection algorithm

Input: Image I MG = ( f (x1), · · · , f (xN ));

Input: Peak compare range PC R, differential compare range DC R, differential

compare threshold DC T ;

1: Initialize the Local maximum points LMP = [ ], peak points PP = [ ];

2: Differentiate the image I MG to get the D I MG = ( f ′(x1), · · · , f ′(xN ));

3: for j = 1 : N do

if f (x j ) = max( f (x j−PC R ), f (x j−PC R+1), · · · , f (x j+PC R )) then

LMP appends x j ;

4: for x j in LMP do

if max(| f ′(x j−DC R )|, | f ′(x j−DC R+1)|, · · · , | f ′(x j+DC R )|) ≥ DC T then

PP appends x j ;

Return: PP .

6.2. Phase transition

The derived bounds for the resolution limit D
+
supp of the location recovery in the super-

resolution of positive sources implies a phase transition in the problem. Taking the logarithm

of both sides of the two bounds, we can draw a conclusion that the location recovery is stable

if

log(SN R) > (2n −1)log(SRF )+ (2n −1)log
C3

π
,

and may be unstable if

log(SN R) < (2n −1)log(SRF )+ (2n −1)log
C4

π
,

for certain constants C3,C4. Similar to the number detection, we expect that in the parameter

space of logSN R − logSRF , there exist two lines both with slope 2n−1 such that the location

recovery is stable for cases above the first line and unstable for cases below the second. This

phase transition phenomenon has been demonstrated numerically using the Matrix Pencil

method, MUSIC and ESPRIT in [5, 20–22] for resolving general sparse sources.

In what follows, we shall conduct numerical experiments to demonstrate the phase transi-

tion phenomenon for the MUSIC algorithm in the super-resolution of positive sources. For

simplicity, we fix Ω = 1 and consider n = 2 or 4 positive point sources separated with min-

imum separation dmin. We perform 10000 random experiments (the randomness is in the

choice of (dmin,σ, y j , a j ) to recover the source locations using Algorithm 3. The recovery is

deemed stable only if n locations ŷ j ’s are recovered and they are in a dmin

2
-neighborhood of

the ground truth; see Algorithm 5 for details in a single experiment. As is shown in Figure 6.1,

in each case, two lines with slope 2n −1 strictly separate the blue points (stable recoveries)

and red points (unstable recoveries), and in-between is the phase transition region. This is

exactly the predicted phase transition phenomenon by our theory. It also demonstrates that

the MUSIC can resolve the location of positive point sources with optimal resolution order.
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Algorithm 5: A single experiment

Input: Sources µ=
∑n

j=1
a jδy j

, source number n;

Input: Measurements: Y

Input source number n and measurement Y to Algorithm 3 and save the output as

ŷ1, · · · , ŷk , which are ordered in an increasing manner;

if k==n then

Compute the reconstruction error for the source location y j that e j := |ŷ j − y j |;
if max j=1,··· ,n e j <

minp 6= j |yp−y j |
2

then
Return Stable

else
Return Unstable

else
Return Unstable.

(a) recovery success (b) recovery fail (c) phase transition region

(d) recovery success (e) recovery fail (f) phase transition region

Figure 6.1: Plots of the stable and the unstable location recoveries by Algorithm 3 in view of

the relation between log(SRF ) and log( mmin

σ ). (a) illustrates that the locations of

two positive point sources can be stably recovered if log( mmin

σ ) is above a line of

slope 3 in the parameter space. Conversely, for the same case, (b) shows that the

locations cannot be stably recovered by MUSIC if log( mmin

σ ) falls below another line

of slope 3. (c) highlights the phase transition region which is bounded by the black

slashes in (a) and (b). (d),(e) and (f) illustrate parallel results for four positive point

sources.
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7. Conclusions and future works

In this paper, we have introduced the resolution limit for respectively the number detection

and the location recovery in the super-resolution of positive sources. We have quantitatively

characterized the two limits by establishing their sharp upper and lower bounds. We have

also verified the phase transition phenomena that predicted by our theory in the number

detection and support recovery problems.

Our new technique provides a way to analyze the resolving capability of the super-resolution

of positive sources. The applications of the technique introduced here to other problems will

be presented in a near future.

A. Auxiliary lemmas

The following results can be easily proved.

Lemma A.1. Let n ∈N
+ and τ> 0 and let C = { j = 1,2, . . . ,n}. Then

(1):

⌈
n

2
⌉ ∈ argmin

z∈C

Πx∈C ,x 6=z |x − z|, (A.1)

and

min
z∈C

Πx∈C ,x 6=z |x − z| =
(

⌈
n

2
⌉−1

)

!
(

⌊
n

2
⌋
)

!; (A.2)

(2):

argmax
z∈C

Πx∈C ,x 6=z |x − z| = {1,n}, (A.3)

and

max
z∈C

Πx∈C ,x 6=z |x − z| = (n −1)!. (A.4)

Lemma A.2. Let n ∈N
+ and let p, q ∈ R be such that p > q > 0. For the following three sets of

evenly spaced points C1 := {x j = ( j −1)p, j = 1, . . . ,n}, C2 := {y j = ( j −1)p −q, j = 1, . . . ,n}, and

C3 := {y j = ( j −1)p −q, j = 1, . . . ,n +1}, we have

(1): argminz∈C2
Π

n
j=1

|z −x j | ⊂ {y⌊ n
2
⌋+1, y⌊ n

2
⌋+2}, and

min
z∈C2

Π
n
i=1|z −xi | =Π

⌈ n
2
⌉−1

j=0

(

min(p −q, q)+p j
)

·Π⌊ n
2
⌋−1

j=0

(

max(p −q, q)+p j
)

; (A.5)

(2): argminz∈C3
Π

n
j=1

|z −x j | ⊂ {y⌊ n
2
⌋+1, y⌊ n

2
⌋+2}, and

min
z∈C3

Π
n
j=1|z −x j | =Π

⌈ n
2
⌉−1

j=0

(

min(p −q, q)+p j
)

·Π⌊ n
2
⌋−1

j=0

(

max(p −q, q)+p j
)

; (A.6)

(3): y1 ∈ argmaxz∈C2
Π

n
j=1

|z −x j |, and

max
z∈C2

Π
n
j=1|z −x j | =Π

n−1
j=0

(

q +p j
)

; (A.7)

(4): argmaxz∈C3
Π

n
j=1

|z −x j | ⊂ {y1, yn+1}, and

max
z∈C3

Π
n
i= j |z −x j | =Π

n−1
j=0

(

max(p −q, q)+p j
)

. (A.8)

29



Proof. Cases (3) and (4) are obvious. For cases (1) and (2), we only need to prove case (2). We

verify firstly that for any integer k with 0 < k < ⌊n
2
⌋+1,

Π
n
j=1|yk −x j | >Π

n
j=1|yk+1 −x j |. (A.9)

This holds since

Π
n
j=1|yk −x j | =Π

k−1
j=1 |yk −x j | ·Πn−1

j=k |yk −x j | · |yk −xn |

and

Π
n
j=1|yk+1 −x j | = |yk+1 −x1| ·Πk

j=2|yk+1 −x j | ·Πn
j=k+1|yk+1 −x j |.

As Πk−1
j=1

|yk −x j | =Π
k
j=2

|yk+1−x j |, Πn−1
j=k

|yk −x j | =Π
n
j=k+1

|yk+1−x j | and |yk −xn | ≥ |yk+1−x1|
due to the geometrical structure of C1,C3, we have (A.9). A similar argument gives that for

any integer k with ⌊n
2
⌋+2 < k < n +2,

Π
n
j=1|yk −x j | >Π

n
j=1|yk−1 −x j |. (A.10)

This proves that argminz∈C3
Π

n
j=1

|z − x j | ⊂ {y⌊ n
2
⌋+1, y⌊ n

2
⌋+2} and thus the minimum value can

be checked directly.

Lemma A.3. For cmax
j

, j = 1,2,3,4, defined in (4.17), we have

max
j=1,2,3,4

cmax
j ≤ τ2n−1s2n−1

(

2⌈
n

2
⌉
)

!
(

2⌈
n

2
⌉−1

)

!.

Proof. We study cmax
j

, j = 1,2,3,4, term by term. The definition of cmax
1 yields

cmax
1 = max

x∈C1

Πk=1,2,3,4Πy∈Ck ,y 6=x |x − y |

≤ max
x∈C1

Πy∈C1,y 6=x |x − y | ·max
x∈C1

Πy∈C2
|x − y | ·max

x∈C1

Πy∈C3
|x − y | ·max

x∈C1

Πy∈C4
|x − y |.
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Note that, by Lemmas A.1 and A.2, we have

max
x∈C1

Πy∈C1,y 6=x |x − y | ≤ τ⌈
n
2
⌉−1

(

Π
⌈ n

2
⌉−1

j=1
(2s j )

)

(case (2) in Lemma A.1)

≤ τ⌈
n
2
⌉−1s⌈

n
2
⌉−1

(

2⌈
n

2
⌉−1

)

!!.

max
x∈C1

Πy∈C2
|x − y | ≤ τ⌊

n
2
⌋
(

Π
⌊ n

2
⌋−1

j=0
(2s j + s)

)

(cases (3) or (4) in Lemma A.2)

≤ τ⌊
n
2
⌋s⌊

n
2
⌋
(

2⌊
n

2
⌋−2

)

!!.

max
x∈C1

Πy∈C3
|x − y | ≤ τ⌈

n
2
⌉
(

Π
⌈ n

2
⌉−1

j=0
(2s j +1)

)

(case (3) in Lemma A.2)

≤ τ⌈
n
2
⌉s⌈

n
2
−1⌉

(

2⌈
n

2
⌉
)

!!.

max
x∈C1

Πy∈C4
|x − y | ≤ τ⌊

n
2
⌋
(

Π
⌊ n

2
⌋−1

j=0
(2s j +2s −1)

)

(cases (3) or (4) in Lemma A.2)

≤ τ⌊
n
2
⌋s⌊

n
2
⌋
(

2⌊
n

2
⌋−1

)

!!.

Thus

cmax
1 ≤ τ2n−1s2n−1

(

2⌈
n

2
⌉−2

)

!!
(

2⌊
n

2
⌋−1

)

!!
(

2⌈
n

2
⌉−1

)

!!
(

2⌊
n

2
⌋
)

!!

= τ2n−1s2n−2
(

2⌈
n

2
⌉−1

)

!
(

2⌊
n

2
⌋
)

!.

Regarding cmax
2 , we have

cmax
2 = max

x∈C2

Πk=1,2,3,4Πy∈Ck ,y 6=x |x − y |

≤ max
x∈C2

Πy∈C1
|x − y | ·max

x∈C2

Πy∈C2,y 6=x |x − y | ·max
x∈C2

Πy∈C3
|x − y | ·max

x∈C2

Πy∈C4
|x − y |.
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Note that, by Lemmas A.1 and A.2, we have

max
x∈C2

Πy∈C1
|x − y | ≤ τ⌈

n
2
⌉
(

Π
⌈ n

2
⌉−1

j=0
(2s j + s)

)

(cases (3) in Lemma A.2)

≤ τ⌈
n
2
⌉s⌈

n
2
⌉
(

2⌈
n

2
⌉−1

)

!!.

max
x∈C2

Πy∈C2,y 6=x |x − y | ≤ τ⌊
n
2
⌋−1

(

Π
⌊ n

2
⌋−1

j=1
(2s j )

)

(case (2) in Lemma A.1)

≤ τ⌊
n
2
⌋−1s⌊

n
2
⌋−1

(

2⌊
n

2
⌋−2

)

!!.

max
x∈C2

Πy∈C3
|x − y | ≤ τ⌈

n
2
⌉
(

Π
⌈ n

2
⌉−1

j=0
(2s j + s +1)

)

(case (3) in Lemma A.2)

≤ τ⌈
n
2
⌉s⌈

n
2
⌉
(

2⌈
n

2
⌉
)

!!.

max
x∈C2

Πy∈C4
|x − y | ≤ τ⌊

n
2
⌋
(

Π
⌊ n

2
⌋−1

j=0
(2s j + s −1)

)

(case (3) in Lemma A.2)

≤ τ⌊
n
2
⌋s⌊

n
2
⌋
(

2⌊
n

2
⌋−1

)

!!.

Thus

C max
2 ≤ τ2n−1s2n−1

(

2⌈
n

2
⌉−1

)

!!
(

2⌊
n

2
⌋−2

)

!!
(

2⌈
n

2
⌉
)

!!
(

2⌊
n

2
⌋−1

)

!!

= τ2n−1s2n−1
(

2⌈
n

2
⌉
)

!
(

2⌊
n

2
⌋−1

)

!.

As for cmax
3 , we have

cmax
3 = max

x∈C3

Πk=1,2,3,4Πy∈Ck ,y 6=x |x − y |

≤ max
x∈C3

Πy∈C1
|x − y | ·max

x∈C3

Πy∈C2
|x − y | · max

x∈C3,y 6=x
Πy∈C3

|x − y | ·max
x∈C3

Πy∈C4
|x − y |.
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Note that, by Lemmas A.1 and A.2, we obtain

max
x∈C3

Πy∈C1
|x − y | ≤ τ⌈

n
2
⌉
(

Π
⌈ n

2
⌉−1

j=0
(2s j +1)

)

, (case (3) in Lemma A.2)

≤ τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

2⌈
n

2
⌉−1

)

!!.

max
x∈C3

Πy∈C2
|x − y | ≤ τ⌊

n
2
⌋
(

Π
⌊ n

2
⌋−1

j=0
(2s j + s +1)

)

, (case (3) or (4) in Lemma A.2)

max
x∈C3

Πy∈C3,y 6=x |x − y | ≤ τ⌈
n
2
⌉−1

(

Π
⌈ n

2
⌉−1

j=1
(2s j )

)

, (case (2) in Lemma A.1)

≤ τ⌈
n
2
⌉−1s⌈

n
2
⌉−1

(

2⌈
n

2
⌉−2

)

!!.

max
x∈C3

Πy∈C4
|x − y | ≤ τ⌊

n
2
⌋
(

Π
⌊ n

2
⌋−1

j=0
(2s j +2s −2)

)

. (case (3) or (4) in Lemma A.2)

Thus

C max
3 ≤ τ2n−1s2⌈ n

2
⌉−2

(

2⌈
n

2
⌉−1

)

! ·
(

Π
⌊ n

2
⌋−1

j=0
(2s j + s +1)(2s j +2s −2)

)

≤ τ2n−1s2⌈ n
2
⌉−2

(

2⌈
n

2
⌉−1

)

! ·
(

Π
⌊ n

2
⌋−1

j=0
(2s j + s)(2s j +2s)

)

= τ2n−1s2n−3
(

2⌈
n

2
⌉−1

)

!
(

2⌊
n

2
⌋
)

!.

Finally, we study cmax
4 . We have

max
x∈C4

Πy∈C1
|x − y | ≤ τ⌈

n
2
⌉(Π

⌈ n
2
⌉−1

j=0
(2s j +1)), (case (3) in Lemma A.2)

≤ τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

2⌈
n

2
⌉−1

)

!!

max
x∈C4

Πy∈C2
|x − y | ≤ τ⌊

n
2
⌋(Π

⌊ n
2
⌋−1

j=0
(2s j + s −1)), (case (3) in Lemma A.2)

≤ τ⌊
n
2
⌋s⌊

n
2
⌋
(

2⌊
n

2
⌋
)

!!

max
x∈C4

Πy∈C3
|x − y | ≤ τ⌈

n
2
⌉(Π

⌈ n
2
⌉−1

j=0
(2s j +2)), (case (3) in Lemma A.2)

≤ τ⌈
n
2
⌉s⌈

n
2
⌉
(

2⌈
n

2
⌉−1

)

!!.

max
x∈C4

Πy∈C4,y 6=x |x − y | ≤ τ⌊
n
2
⌋−1(Π

⌊ n
2
⌋−1

j=1
(2s j )). (case (2) in Lemma A.1)

≤ τ⌊
n
2
⌋−1s⌊

n
2
⌋−1

(

2⌊
n

2
⌋−2

)

!!.

33



Thus

cmax
4 ≤ τ2n−1s2n−1

(

2⌈
n

2
⌉−1

)

!! ·
(

2⌊
n

2
⌋
)

!! ·
(

2⌈
n

2
⌉−1

)

!! ·
(

2⌊
n

2
⌋−2

)

!!

≤ τ2n−1s2n−1
(

2⌈
n

2
⌉
)

!
(

2⌈
n

2
⌉−1

)

!.

By concluding above discussions, we have

max
j=1,2,3,4

cmax
j ≤ τ2n−1s2n−1

(

2⌈
n

2
⌉
)

!
(

2⌈
n

2
⌉−1

)

!.

Lemma A.4. For cmin
j

, j = 1,2,3,4, defined in (4.18), we have

min
j=1,2,3,4

cmin
j ≥ τ2n−1s2n−3 ·

(

(2⌊
⌊n

2
⌋

2
⌋−1)!

)4

.

Proof. We evaluate cmin
k

,k = 1,2,3,4. For cmin
1 ,

cmin
1 = min

x∈C1

Πk=1,2,3,4Πy∈Ck ,y 6=x |x − y |

≥ min
x∈C1

Πy∈C1,y 6=x |x − y | ·min
x∈C1

Πy∈C2
|x − y | ·min

x∈C1

Πy∈C3
|x − y | ·min

x∈C1

Πy∈C4
|x − y |.

By using Lemmas A.1 and A.2, we have

min
x∈C1

Πy∈C1
|x − y | = τ⌈

n
2
⌉−1

Π
⌈
⌈ n

2 ⌉
2

⌉−1

j=1
( j ·2s) ·Π⌊

⌈ n
2 ⌉
2

⌋
j=1

( j ·2s), (case (1) in Lemma A.1)

= τ⌈
n
2
⌉−1s⌈

n
2
⌉−1

(

(2⌈
⌈n

2
⌉

2
⌉−2)!! · (2⌊

⌈n
2
⌉

2
⌋)!!

)

≥ τ⌈
n
2
⌉−1s⌈

n
2
⌉−1

(

(2⌊
⌊n

2
⌋

2
⌋−2)!! · (2⌊

⌊n
2
⌋

2
⌋)!!

)

.

min
x∈C1

Πy∈C2,y 6=x |x − y | = τ⌊
n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=0

(

s +2s j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

j=0

(

s +2s j
)

, (case (1) or (2) in Lemma A.2)

= τ⌊
n
2
⌋s⌊

n
2
⌋
(

(2⌈
⌊n

2
⌋

2
⌉−1)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

≥ τ⌊
n
2
⌋s⌊

n
2
⌋
(

(2⌊
⌊n

2
⌋

2
⌋−1)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

.
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Furthermore,

min
x∈C1

Πy∈C3
|x − y | = τ⌈

n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=0

(

1+2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

k=0
(2s −1+2sk) (case (1) in Lemma A.2)

≥ τ⌈
n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=1

(

2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

k=0
(s +2sk)

= τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌈
⌈n

2
⌉

2
⌉−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

≥ τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌊
⌈n

2
⌉

2
⌋−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

≥ τ⌊
n
2
⌋s⌊

n
2
⌋−1 ·

(

2⌊
⌊n

2
⌋

2
⌋−1

)

!.

min
x∈C1

Πy∈C4
|x − y | = τ⌊

n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=0

(

1+2s j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

k=0
(2s −1+2sk) (case (1) or (2) in Lemma A.2)

≥ τ⌊
n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=1

(

2s j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

k=0
(s +2sk)

= τ⌊
n
2
⌋s⌊

n
2
⌋−1

(

(2⌈
⌊n

2
⌋

2
⌉−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

≥ τ⌊
n
2
⌋s⌊

n
2
⌋−1

(

2⌊
⌊n

2
⌋

2
⌋−1

)

!.

By combining estimates in the above four cases, it follows that

cmin
1 ≥ τ2n−1s2n−3

(

2⌊
⌊n

2
⌋

2
⌋
)

!

((

2⌊
⌊n

2
⌋

2
⌋−1

)

!

)3

.

Regarding cmin
2 , we have

cmin
2 = min

x∈C2

Πk=1,2,3,4Πy∈Ck ,y 6=x |x − y |

≥ min
x∈C2

Πy∈C1
|x − y | ·min

x∈C2

Πy∈C2,y 6=x |x − y | ·min
x∈C2

Πy∈C3
|x − y | ·min

x∈C2

Πy∈C4
|x − y |.
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Note that by Lemmas A.1 and A.2 we have

min
x∈C2

Πy∈C1
|x − y | = τ⌈

n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=0

(

s +2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

j=0

(

s +2s j
)

(case (1) or (2) in Lemma A.2)

= τ⌈
n
2
⌉s⌈

n
2
⌉
(

(2⌈
⌈n

2
⌉

2
⌉−1)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

≥ τ⌈
n
2
⌉s⌈

n
2
⌉
(

(2⌈
⌊n

2
⌋

2
⌉−1)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

.

min
x∈C2

Πy∈C2,y 6=x |x − y | = τ⌊
n
2
⌋−1

Π
⌈
⌊ n

2 ⌋
2

⌉−1

j=1
( j ·2s) ·Π⌊

⌊ n
2 ⌋
2

⌋
j=1

( j ·2s) (case (1) in Lemma A.1)

= τ⌊
n
2
⌋−1s⌊

n
2
⌋−1

(

(2⌈
⌊n

2
⌋

2
⌉−2)!! · (2⌊

⌊n
2
⌋

2
⌋)!!

)

≥ τ⌊
n
2
⌋−1s⌊

n
2
⌋−1

(

(2⌈
⌊n

2
⌋

2
⌉−2)!! · (2⌊

⌊n
2
⌋

2
⌋)!!

)

.

min
x∈C2

Πy∈C3
|x − y | = τ⌈

n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=0

(

s −1+2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

k=0
(s +1+2sk) (case (1) or (2) in Lemma A.2)

≥ τ⌈
n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=1

(

2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

k=0
(s +2sk)

= τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌈
⌈n

2
⌉

2
⌉−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

≥ τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌊
⌈n

2
⌉

2
⌋−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

= τ⌈
n
2
⌉s⌈

n
2
⌉−1(2⌊

⌈n
2
⌉

2
⌋−1)!.

min
x∈C2

Πy∈C4
|x − y | = τ⌊

n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=0

(

s −1+2s j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

k=0
(s +1+2sk) (case (1) in Lemma A.2)

≥ τ⌊
n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=1

(

2s j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

k=0
(s +2sk)

= τ⌊
n
2
⌋s⌊

n
2
⌋−1

(

(2⌈
⌊n

2
⌋

2
⌉−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

≥ τ⌊
n
2
⌋s⌊

n
2
⌋−1

(

(2⌊
⌊n

2
⌋

2
⌋−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

= τ⌊
n
2
⌋s⌊

n
2
⌋−1(2⌊

⌊n
2
⌋

2
⌋−1)!.
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Thus,

cmin
2 ≥ τ2n−1s2n−3 ·

(

(2⌈
⌊n

2
⌋

2
⌉−1)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

·
(

(2⌈
⌊n

2
⌋

2
⌉−2)!! · (2⌊

⌊n
2
⌋

2
⌋)!!

)

· (2⌊
⌈n

2
⌉

2
⌋−1)! · (2⌊

⌊n
2
⌋

2
⌋−1)!

= τ2n−1s2n−3 · (2⌈
⌊n

2
⌋

2
⌉−1)! · (2⌊

⌊n
2
⌋

2
⌋)! · (2⌊

⌈n
2
⌉

2
⌋−1)! · (2⌊

⌊n
2
⌋

2
⌋−1)!

≥ τ2n−1s2n−3 · (2⌊
⌊n

2
⌋

2
⌋)! ·

(

(2⌊
⌊n

2
⌋

2
⌋−1)!

)3

.

We then turn to estimate cmin
3 . We have that

cmin
3 = min

x∈C3

Πk=1,2,3,4Πy∈Ck ,y 6=x |x − y |

≥ min
x∈C3

Πy∈C1
|x − y | ·min

x∈C3

Πy∈C2
|x − y | ·min

x∈C3

Πy∈C3,y 6=x |x − y | ·min
x∈C3

Πy∈C4
|x − y |.

By Lemmas A.1 and A.2, it follows that we

min
x∈C3

Πy∈C1
|x − y | = τ⌈

n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=0

(

1+2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

j=0

(

2s −1+2s j
)

(case (1) or (2) in Lemma A.1)

≥ τ⌈
n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=1

(

2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

j=0

(

s +2s j
)

= τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌈
⌈n

2
⌉

2
⌉−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

≥ τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌊
⌊n

2
⌋

2
⌋−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

= τ⌈
n
2
⌉s⌈

n
2
⌉−1(2⌊

⌊n
2
⌋

2
⌋−1)!.

min
x∈C3

Πy∈C2
|x − y | = τ⌊

n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=0

(

s −1+2s j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

k=0
(s +1+2sk) (case (1) in Lemma A.1)

= τ⌊
n
2
⌋
(

s⌊
n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=0

(

s −1

s
+2 j

)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

j=0

(

s +1

s
+2 j

)

)

≥ τ⌊
n
2
⌋
(

s⌊
n
2
⌋ ·

1

2
·Π⌈

⌊ n
2 ⌋
2

⌉−1

j=1

(

2 j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

j=0

(

1+2 j
)

)

=
1

2
τ⌊

n
2
⌋s⌊

n
2
⌋
(

Π
⌈
⌊ n

2 ⌋
2

⌉−1

j=1

(

2 j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

j=0

(

1+2 j
)

)

=
1

2
τ⌊

n
2
⌋s⌊

n
2
⌋
(

(2⌈
⌊n

2
⌋

2
⌉−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

≥
1

2
τ⌊

n
2
⌋s⌊

n
2
⌋
(

(2⌊
⌊n

2
⌋

2
⌋−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

≥
1

2
τ⌊

n
2
⌋s⌊

n
2
⌋(2⌊

⌊n
2
⌋

2
⌋−1)!.
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min
x∈C3

Πy∈C3,y 6=x |x − y | = τ⌈
n
2
⌉−1

Π
⌈
⌈ n

2 ⌉
2

⌉−1

j=1
( j ·2s) ·Π⌊

⌈ n
2 ⌉
2

⌋
j=1

( j ·2s) (case (1) in Lemma A.2)

= τ⌈
n
2
⌉−1s⌈

n
2
⌉−1

(

(2⌈
⌈n

2
⌉

2
⌉−2)!! · (2⌊

⌈n
2
⌉

2
⌋)!!

)

≥ τ⌈
n
2
⌉−1s⌈

n
2
⌉−1

(

(2⌊
⌈n

2
⌉

2
⌋−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

= τ⌈
n
2
⌉−1s⌈

n
2
⌉−1(2⌊

⌈n
2
⌉

2
⌋−1)!.

min
x∈C3

Πy∈C4
|x − y | = τ⌊

n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=0

(

2+2s j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

k=0
(2s −2+2sk) (case (1) or (2) in Lemma A.2)

≥ 2τ⌊
n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=1

(

2s j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

k=0
(s +2sk)

= 2τ⌊
n
2
⌋s⌊

n
2
⌋−1

(

(2⌈
⌊n

2
⌋

2
⌉−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

≥ 2τ⌊
n
2
⌋s⌊

n
2
⌋−1

(

(2⌊
⌊n

2
⌋

2
⌋−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

= 2τ⌊
n
2
⌋s⌊

n
2
⌋−1(2⌊

⌊n
2
⌋

2
⌋−1)!.

Thus,

cmin
3 ≥ ·τ2n−1s2n−3 · (2⌊

⌊n
2
⌋

2
⌋−1)! · (2⌊

⌊n
2
⌋

2
⌋−1)! · (2⌊

⌈n
2
⌉

2
⌋−1)! · (2⌊

⌊n
2
⌋

2
⌋−1)!

≥ τ2n−1s2n−3 ·
(

(2⌊
⌊n

2
⌋

2
⌋−1)!

)4

Finally, regarding cmin
4 , we write

cmin
4 = min

x∈C4

Πk=1,2,3,4Πy∈Ck ,y 6=x |x − y |

≥ min
x∈C4

Πy∈C1
|x − y | ·min

x∈C4

Πy∈C2
|x − y | ·min

x∈C4

Πy∈C3
|x − y | ·min

x∈C4

Πy∈C4,y 6=x |x − y |.

Note that, by Lemmas A.1 and A.2, we obtain

min
x∈C4

Πy∈C1
|x − y | = τ⌈

n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=0

(

1+2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

j=0

(

2s −1+2s j
)

(case (1) in Lemma A.1)

≥ τ⌈
n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=1

(

2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

j=0

(

s +2s j
)

= τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌈
⌈n

2
⌉

2
⌉−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

≥ τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌊
⌈n

2
⌉

2
⌋−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

= τ⌈
n
2
⌉s⌈

n
2
⌉−1(2⌊

⌈n
2
⌉

2
⌋−1)!.
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min
x∈C4

Πy∈C2
|x − y | = τ⌊

n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=0

(

s −1+2s j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

k=0
(s +1+2sk) (case (1) in Lemma A.1)

= τ⌊
n
2
⌋
(

s⌊
n
2
⌋
Π

⌈
⌊ n

2 ⌋
2

⌉−1

j=0

(

s −1

s
+2 j

)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

j=0

(

s +1

s
+2 j

)

)

≥ τ⌊
n
2
⌋
(

s⌊
n
2
⌋ ·

1

2
·Π⌈

⌊ n
2 ⌋
2

⌉−1

j=1

(

2 j
)

·Π⌊
⌊ n

2 ⌋
2

⌋−1

j=0

(

1+2 j
)

)

=
1

2
τ⌊

n
2
⌋s⌊

n
2
⌋
(

(2⌈
⌊n

2
⌋

2
⌉−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

≥
1

2
τ⌊

n
2
⌋s⌊

n
2
⌋
(

(2⌊
⌊n

2
⌋

2
⌋−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

=
1

2
τ⌊

n
2
⌋s⌊

n
2
⌋(2⌊

⌊n
2
⌋

2
⌋−1)!.

min
x∈C4

Πy∈C3
|x − y | = τ⌈

n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=0

(

2+2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

k=0
(2s −2+2sk) (case (1) in Lemma A.1)

≥ 2τ⌈
n
2
⌉
Π

⌈
⌈ n

2 ⌉
2

⌉−1

j=1

(

2s j
)

·Π⌊
⌈ n

2 ⌉
2

⌋−1

k=0
(s +2sk)

= 2τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌈
⌈n

2
⌉

2
⌉−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

≥ 2τ⌈
n
2
⌉s⌈

n
2
⌉−1

(

(2⌊
⌈n

2
⌉

2
⌋−2)!! · (2⌊

⌈n
2
⌉

2
⌋−1)!!

)

= 2τ⌈
n
2
⌉s⌈

n
2
⌉−1(2⌊

⌈n
2
⌉

2
⌋−1)!.

min
x∈C4

Πy∈C4,y 6=x |x − y | = τ⌊
n
2
⌋−1

Π
⌈
⌊ n

2 ⌋
2

⌉−1

j=1
( j ·2s) ·Π⌊

⌊ n
2 ⌋
2

⌋
j=1

( j ·2s) (case (1) in Lemma A.2)

= τ⌊
n
2
⌋−1s⌊

n
2
⌋−1

(

(2⌈
⌊n

2
⌋

2
⌉−2)!! · (2⌊

⌊n
2
⌋

2
⌋)!!

)

≥ τ⌊
n
2
⌋−1s⌊

n
2
⌋−1

(

(2⌊
⌊n

2
⌋

2
⌋−2)!! · (2⌊

⌊n
2
⌋

2
⌋−1)!!

)

= τ⌊
n
2
⌋−1s⌊

n
2
⌋−1(2⌊

⌊n
2
⌋

2
⌋−1)!.

Thus,

cmin
4 ≥ τ2n−1s2n−3 · (2⌊

⌊n
2
⌋

2
⌋−1)! · (2⌊

⌊n
2
⌋

2
⌋−1)! · (2⌊

⌈n
2
⌉

2
⌋−1)! · (2⌊

⌊n
2
⌋

2
⌋−1)!

≥ τ2n−1s2n−3 ·
(

(2⌊
⌊n

2
⌋

2
⌋−1)!

)4

.

Summarizing all claims above finishes the proof.
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