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This paper is devoted to elucidating the essence of super-resolution and deals

mainly with the stability of super-resolution and the diffraction limit. The first

discovery is two location-amplitude identities characterizing the relations be-

tween source locations and amplitudes in the super-resolution problem. These

identities allow us to directly derive the super-resolution capability for number,

location, and amplitude recovery in the super-resolution problem and improve

state-of-the-art estimations to an unprecedented level to have practical signifi-

cance. The nonlinear inverse problems studied in this paper are known to be very

challenging and have only been partially solved in recent years. However, thanks

to this paper, we now have a clear and simple picture of all of these problems,

which allows us to solve them in a unified way in just a few pages.

The second crucial result of this paper is the theoretical proof of a two-point

diffraction limit in spaces of general dimensionality under only an assumption on

the noise level. The two-point diffraction limit is given by

R =
4arcsin

(

(

σ
mmin

) 1
2

)

Ω

for σ
mmin

≤ 1
2

, where σ
mmin

represents the inverse of the signal-to-noise ratio (SN R)

and Ω is the cutoff frequency. In the case when σ
mmin

> 1
2

, there is no super-

resolution in certain cases. This solves the long-standing puzzle and debate about

the diffraction limit for imaging (and line spectral estimation) in very general

circumstances. Our results also show that, for the resolution of any two point

sources, when SN R > 2, one can definitely exceed the Rayleigh limit π
Ω

, which

is far beyond common sense. We also find the optimal algorithm that achieves

the optimal resolution when distinguishing two sources. By this work, we hope

to inspire a start of a new period where examining the resolution based on the

signal-to-noise ratio becomes a feasible method in the field of imaging.

*This work was supported in part by the Swiss National Science Foundation grant number 200021–200307.
†Department of Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland

(ping.liu@sam.math.ethz.ch, habib.ammari@math.ethz.ch).
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1. INTRODUCTION

Since the first report of the use of microscopes for observation in the 17th century, optical

microscopes have played a central role in helping to untangle complex biological mysteries.

Numerous scientific advancements and manufacturing innovations over the past three cen-

turies have led to advanced optical microscope designs with significantly improved image

quality. However, due to the physical nature of wave propagation and diffraction, there is a

fundamental diffraction barrier in optical imaging systems which is called the diffraction limit

or resolution limit. This resolution limit is one of the most important characteristics of an

imaging system. In 19th century, Rayleigh gave a well-known criterion for determining the

resolution limit (Rayleigh limit) for distinguishing two point sources, which is extensively used

in optical microscopes for analyzing the resolution. The problem to resolve point sources sep-

arated below the Rayleigh limit is then called super-resolution and is commonly known to be

very challenging for single snapshot. However, Rayleigh’s criterion is based on intuitive notions

and is more applicable to observations with the human eye. It also neglects the effect of the

noise in the measurements and the aberrations in the modeling. On the other hand, due to the

rapid advancement of technologies, modern imaging data is generally captured using intricate

imaging techniques and sensitive cameras, and may also be subject to analysis by complex

processing algorithms. Thus Rayleigh’s deterministic resolution criterion is not well adapted

to current quantitative imaging techniques, necessitating new and more rigorous definitions

of resolution limit with respect to the noise, model and imaging methods [41]. Our previous

works [31, 30, 29, 27] have achieved certain success in this respect and enable us to understand

the performance of some super-resolution algorithms. Nevertheless, the derived estimates

are still lacking enough guiding significance in practice on the possibility of super-resolution.

Here we present new and direct understandings for the stability of super-resolution problem

and substantially improve many estimates to have practical significance. Many astonishing

facts were disclosed by our results, for instance, it is theoretically demonstrated here that the

super-resolution is actually quite possible.

1.1. MATHEMATICAL SUPER-RESOLUTION AND OUR THEORY

This paper is devoted to elucidating the essence of super-resolution and deals mainly with the

stability of super-resolution and the diffraction limit. We consider the imaging problem as

recovering the sources µ=
∑n

j=1
a jδy j

,y j ∈R
k from its noisy Fourier data,

Y(ω) =F [µ](ω)+W(ω) =
n
∑

j=1

a j e i y j ·ω+W(ω), ω ∈R
k , ||ω||2 ≤Ω, (1.1)
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where W represents the total effect of noise and aberrations. This is a common model in

mathematics for theoretically analyzing the imaging problem [16, 6, 3]. It is directly the model

in the frequency domain for the imaging modalities with sinc(||x||2) being the point spread

function [13]. Its discrete form is also a standard model called line spectral estimation in the

fields of array processing, signal processing, and wireless communications. On the other hand,

even for imaging with general point spread functions or optical transfer functions, some of the

imaging enhancements such as inverse filtering method [18] will modify the measurements in

the frequency domain to (1.1). This ensures that our model has sufficient practical background

and significance and that our results can be applied to a wide range of imaging systems.

Due to the diffraction, even if there is no noise, it was widely considered classically that

there is a diffraction limit in distinguishing two sources from their image based on visual

ability of the human eye. Lord Rayleigh studied it and formulated a "resolution limit" based

on the criterion: two point sources observed are regarded as just resolved when the principal

diffraction maximum of one Airy disk coincides with the first minimum of the other. Note

that, based on Rayleigh’s criterion, the corresponding Rayleigh limit for imaging with the point

spread function sinc(||x||2)2 is π
Ω

. On the other hand, it was shown by many mathematical

studies that Rayleigh limit π
Ω

is also the critical limit for the imaging model (1.1). To be more

specific, in [16] Donoho demonstrated that for sources on grid points spacing by ∆≥ π
Ω

, the

stable recovery is possible from (1.1) in dimension one, but the stability becomes much worse

in the case when ∆< π
Ω

. The result of our paper also reveals the particularity of π
Ω

. Thus the

super-resolution problem for model (1.1) is considered to surpass the Rayleigh limit π
Ω

. The

main aim of our paper is to analyze the stability of such super-resolution problems.

From model (1.1) in dimension one, our first discovery is two Location-Amplitude-Identities

characterizing the relations between source locations and amplitudes in the one-dimensional

super-resolution problem. These identities allow us to directly derive the super-resolution

capability for number, location, and amplitude recovery in the super-resolution problem and

improve state-of-the-art estimations to an unprecedented level to have practical significance.

Although these nonlinear inverse problems are known to be very challenging, we now have a

clear and simple picture of all of them, which allows us to solve them in a unified way in just a

few pages. To be more specific, we proved that it is definitely possible to detect the correct

source number when the sources are separated by

min
p ̸= j

∣

∣

∣yp − y j

∣

∣

∣≥
2eπ

Ω

( σ

mmin

) 1
2n−2

,

where y j ’s are one-dimensional source locations and σ
mmin

represents the inverse of the signal-

to-noise ratio (SN R). This substantially improves the estimate in [30] and indicates that super-

resolution in detecting correct source number is definitely possible when mmin

σ ≥ (2e)2n−2.

Moreover, for the case when resolving two sources, the requirement for the separation was

improved to

min
p ̸= j

∣

∣

∣

∣

yp − y j

∣

∣

∣

∣

≥
2arcsin

(

2
(

σ
mmin

) 1
2

)

Ω
,

indicating that surpassing the Rayleigh limit in distinguishing two sources is definitely pos-

sible when SN R > 4. This is the first time where it is demonstrated theoretically that super-
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resolution is actually quite possible. For the stable location recovery, the estimate was im-

proved to

min
p ̸= j

∣

∣yp − y j

∣

∣≥
2.36eπ

Ω

( σ

mmin

) 1
2n−1

as compared to the previous result in [30], indicating that the location recovery is stable when
mmin

σ ≥ (2.36e)2n−1. These results provide us with quantitative understandings of the super-

resolution of multiple sources. Moreover, since our method is rather straightforward, it is very

hard to substantially improve the estimates now and we even roughly know to what extent the

constant factor in the estimates can be improved.

Our second crucial result is the theoretical proof of a two-point diffraction limit in spaces of

general dimensionality under only an assumption on the noise level. It is given by

R =
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
(1.2)

for σ
mmin

≤ 1
2

. In the case when σ
mmin

> 1
2

, there is no super-resolution under certain circum-

stances. This solves the long-standing puzzle and debate about the diffraction limit for imaging

in a very general setting. We also generalize the results to the case when resolving two arbitrary

sources. Our results show that, for the resolution of any two point sources, when SN R > 2, one

can definitely exceed the Rayleigh limit, which is far beyond common sense. When SN R > 4,

one can already achieve 1.5 times improvement of the Rayleigh limit. This very surprising

finding indicates that obtaining resolution far better than the Rayleigh limit is actually very

possible by refined sensors.

Our results can be directly extended to the following more general setting:

Y(ω) =χ(ω)F [µ](ω)+W(ω) =
n
∑

j=1

a jχ(ω)e i y j ·ω+W(ω), ω ∈R
k , ||ω||2 ≤Ω, (1.3)

whereχ(ω) = 0 or 1, χ(0) = 1 andχ(ω) = 1, ||ω||2 =Ω. This enables the application of our results

to imaging from discretely sampled data and line spectral estimations in array processing.

Moreover, our findings can be applied to imaging systems with very general optical transfer

functions. An astonishing fact revealed in this paper is that the two-point resolution is actually

determined by the boundary points of the transfer function and is not that dependent to the

interior frequency information. Also, as revealed in Section 3.1, the measurements at ω= 0

and ||ω|| =Ω are already enough for the algorithm which provably achieves the resolution

limit.

In the last part of the paper, we find an algorithm that achieves the optimal resolution when

distinguishing two sources and conduct many numerical experiments to manifest its optimal

performance and phase transition. Although the noise and the aberration is inevitable and

the point source is not an exact delta point, our results still indicate that super-resolving two

sources in practice is very possible for very general imaging modalities, due to the proved

excellent noise tolerance. We plan to examine the practical feasibility of our method in a near

future.
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To summarize, by this paper we have shed lights on understanding quantitatively when

super-resolution is definitely possible and when is not. It has been disclosed by our results

that super-resolution when distinguishing two sources is far more possible than what was

commonly recognized. By this work, we hope to inspire a start of a new period where examin-

ing the resolution based on the signal-to-noise ratio becomes a feasible method in the field of

imaging, which is also the hope of many physicists and opticists [43]. Especially, we advocate

for our resolution limit being a general signal-to-noise based resolution criterion in practice

for its appealing attributes: being

(i) Simple;

(ii) Mathematically rigorous;

(iii) Effective. When SN R > 2, one can already achieve super-resolution.

(iv) Practically applicable;

(v) Widely applicable. It can be applied to resolving all kinds of two point sources under

mild noise assumption. It can be applied to very general imaging systems and noise

assumptions. It only needs several measurements at ω= 0 and ||ω||2 =Ω which is nearly

the minimum requirement for determining the resolution;

(vi) Algorithmically attainable. There are some algorithms that achieve or nearly achieve the

optimal resolution.

1.2. HISTORY OF THE CLASSICAL DIFFRACTION LIMIT

In 1873, Abbe published his theory of resolution [1, 53], which was historically one of the

first ways to quantify the resolution limit [9]. Later in 1879, Lord Rayleigh [42] proposed

a criterion to assess the two-point resolution limit for resolving two positive sources with

identical intensities, which is still in wide use today. Rayleigh’s choice of resolution limit

is based on the presumed resolving ability of human visual system and considers mostly

the simplicity and the sufficient accuracy of the formula for quantifying the resolution. The

Rayleigh limit results in an ∼ 20% dip in intensity between the two peaks of Airy disks [11, 49].

Schuster pointed out in 1904 [45] that the dip in intensity necessary to indicate resolution

is a physiological phenomenon and there are other forms of spectroscopic investigation

besides that of eye observation. In 1916, Carroll Sparrow gave similar arguments about

Rayleigh’s criterion [49] and proposed a new criterion for the resolution limit which is more

mathematically rigorous. The Sparrow resolution limit is defined as the distance between

two point sources where the images no longer have a dip between the central peaks of each

Airy disk. However, the Sparrow resolution is less relevant to practical use [7, 11] because it

is very signal-to-noise dependent and has no easy comparison to a readily measured value

in real images. In 1927, Houston [25] proposed a criterion according to which the two point

sources are regarded as resolved if the distance between the central maxima of the intensity

distribution equals the full width at half-maximum of the diffraction pattern of either point

sources. The resulted resolution limit, i.e., the full width at half maximum (FWHM), is one
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of the most popular resolution limits in practical use [11]. There are still many other criteria

and discussions for the resolution limit of different imaging systems [5, 34, 35, 20, 39] and the

debates over the diffraction limit are still on going today [11]. We refer the readers to [7, 9, 13]

for more details on the history and debates of the classical two-point resolution limit.

1.3. MATHEMATICALLY RIGOROUS DIFFRACTION LIMIT

The classical resolution criteria mentioned above deal with images that are described by a

known and exact mathematical model of intensity distribution, which were categorized as

calculated images in [43]. However, if one has perfect access to the intensity profile of the

diffraction image of two point sources, one could locate the exact sources despite the diffrac-

tion. There would be no resolution limit for the reconstruction [13, 7]. Thus all the classical

resolution limits are not mathematically rigorous, despite how complex their derivation and

how thoroughly they were discussed. These facts were noticed by many physicists and opticists

[15, 13, 19, 7]. On the other hand, imaging models constructed without any aberration or

irregularity are not practical, because the shape of the point-spread function is never known

exactly and a measurement noise is inevitable [43, 13]. Therefore, a rigorous and practically

meaningful diffraction limit could only be set when taking into account the aberrations and

measurement noises [43, 19]. In particular, these images (detected by detectors in practice)

were categorized as detected images by Ronchi [43] and their resolution was advocated to be

more important to investigate than the resolution defined by those classical criteria. Inspired

by this, many researchers have analyzed the two-point resolution from the perspective of

statistical inference [22, 23, 33, 32, 12, 19, 46, 47, 48]. In these papers, the authors have derived

quasi-explicit formulas or estimations for the minimum SNR that is required to discriminate

two point sources or for the possibility of a correct decision. Although the resolutions (or the re-

quirement) in this respect were thoroughly explored in these works which spanned the course

of several decades, these results are rarely (even never) utilized in the practical applications.

This is mainly because the derived resolution formulas are complicated and the results highly

depend on the statistical model of the noise, which prohibits their applicability. Especially, the

inevitable aberrations in the modeling will not satisfy these statistical assumptions. Overall,

despite many efforts made from the 19th century to date, in practice, our understanding of

when exactly two point sources can or cannot be resolved has rarely risen above heuristic

arguments. In the present paper, as mentioned above, one of our major contributions is the

theoretical and rigorous derivation of the two-point diffraction limit in imaging under only an

assumption on the noise level. The diffraction limit is given by a simple and exact formula

(1.2) and demonstrates that super-resolution is definitely possible when SN R > 2, which is

far beyond common sense. Compared to the former results on the two-point resolution, our

formula is simple, effective and widely applicable due to the extremely general assumption on

the noise and the imaging model.

1.4. SUPER-RESOLUTION OF MULTIPLE SOURCES

For the mathematical theory of super-resolving n point sources or infinity point sources, to

the best of our knowledge, the first result was derived by Donoho in 1992 [16]. He developed
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a theory from the optimal recovery point of view to explain the possibility and difficulties

of super-resolution via sparsity constraint. He considered measures supported on a lattice

{k∆}∞
k=−∞ and regularized by a so-called “Rayleigh index” R. The available measurement is

the noisy Fourier data of the discrete measure with frequency cutoff Ω. He showed that the

minimax error E∗ for the amplitude recovery with noise level σ was bounded as

β1(R,Ω)

(

1

∆

)2R−1

σ≤ E∗ ≤β2(R,Ω)

(

1

∆

)4R+1

σ

for certain small ∆. His results emphasize the importance of sparsity in the super-resolution.

In recent years, due to the impressive development of super-resolution modalities in bio-

logical imaging [21, 54, 24, 4, 44] and super-resolution algorithms in applied mathematics

[6, 17, 40, 52, 51, 38, 37, 14], the inherent super-resolving capacity of the imaging problem

becomes increasingly popular and the one-dimensional case was well-studied. In [10], the

authors considered resolving the amplitudes of n-sparse point sources supported on a grid

and improved the results of Donoho. Concretely, they showed that the scaling of the noise

level for the minimax error should be SRF 2n−1, where SRF := 1
∆Ω

is the super-resolution factor.

Similar results for multi-clumps cases were also derived in [2, 26]. Recently in [3], the authors

derived sharp minimax errors for the location and the amplitude recovery of off-the-grid

sources. They showed that for σ≲ (SRF )−2p+1, where p is the number of nodes that form

a cluster of certain type, the minimax error rate for reconstruction of the clustered nodes is

of the order (SRF )2p−2 σ
Ω

, while for recovering the corresponding amplitudes the rate is of

the order (SRF )2p−1σ. Moreover, the corresponding minimax rates for the recovery of the

non-clustered nodes and amplitudes are σ
Ω

and σ respectively. We also refer the readers to

[36, 7] for understanding the resolution limit from the perceptive of sample complexity and to

[50, 8] for the resolving limit of some algorithms.

On the other hand, in order to characterize the exact resolution rather than the minimax

error in recovering multiple point sources, in the earlier works [31, 30, 29, 27] we have defined

the so-called "computational resolution limits", which characterize the minimum required

distance between point sources so that their number and locations can be stably resolved

under certain noise level. By developing a nonlinear approximation theory in so-called Van-

dermonde spaces, we have derived sharp bounds for computational resolution limits in the

one-dimensional super-resolution problem. In particular, we have showed in [30] that the

computational resolution limits for the number and location recoveries should be bounded

above by respectively 4.4eπ
Ω

(

σ
mmin

) 1
2n−2

and 5.88eπ
Ω

(

σ
mmin

) 1
2n−1

. By these works, we raise our under-

standing of the stability of the super-resolution above only heuristic arguments. In the present

paper, as mentioned, we substantially improve these estimates to have practical significance.

1.5. ORGANIZATION OF THE PAPER

The paper is organized in the following way. In Section 2, we present the theory of location-

amplitude identities. In Section 3, we derive stability results for recovering the number,

locations, and amplitudes of sources in the one-dimensional super-resolution problem. In

Section 4, we derive the exact formula of the two-point resolution limit and, in Section 5, we
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devise algorithms achieving exactly the optimal resolution in distinguishing images from one

and two sources. The Appendix consists of some useful inequalities.

2. LOCATION-AMPLITUDE-IDENTITIES

In this section, we intend to derive two location-amplitude identities that characterize the

relations between source locations and amplitudes in the super-resolution problem. We start

from the following elementary model:

F [µ̂](ω) =F [µ](ω)+w(ω), ω ∈ [0,Ω], (2.1)

where µ̂,µ are discrete measures, F [ f ] =
∫

R
e i yω f (y)d y denotes the Fourier transform, w

represents the noise or the aberration, and Ω is the cutoff frequency of the imaging system.

To be more specific, we set µ =
∑n

j=1
a jδy j

and µ̂ =
∑k

j=1
â jδŷ j

with a j , â j being the source

amplitudes and y j , ŷ j the source locations.

2.1. STATEMENT OF THE IDENTITIES

Based on the above model, we have the following location-amplitude identities.

Theorem 2.1. [Location-amplitude identities] Consider the model

F [µ̂](ω) =F [µ](ω)+w(ω), ω ∈ [0,Ω],

where µ̂=
∑k

j=1
â jδŷ j

with distinct ŷ j ’s and µ=
∑n

j=1
a jδy j

with distinct y j ’s. For any y j , let ŷ j ′

be the one in the set of the ŷ j ’s that is the closest to y j . Denote by S the set containing exactly

yp ,1 ≤ p ≤ n, p ̸= j , and those ŷl , l ̸= j ′, l = 1, · · · ,k, that are not equal to any yp . Then for

any 0 <ω∗ ≤ Ω

#S
such that e i y jω

∗
,e i qω∗

, q ∈ S are still pairwise distinct, we have the following

relations:

â j ′Πq∈S
e i ŷ j ′ω

∗
−e i qω∗

e i y jω∗ −e i qω∗ = a j +
w⊤

1 v

Πq∈S(e i y jω∗ −e i qω∗
)

. (2.2)

Moreover, for any 0 <ω∗ ≤ Ω

#S+1
such that e i y jω

∗
,e i qω∗

, q ∈ S are still pairwise distinct, we have

(e i ŷ j ′ω
∗
−e i y jω

∗
)a j =

(

e i ŷ j ′ω
∗

w1 −w2

)⊤
v

Πq∈S(e i y jω∗ −e i qω∗
)

. (2.3)

Here, w1 = (w(0),w(ω∗), · · · ,w((#s)ω∗))⊤, w2 = (w(1),w(ω∗), · · · ,w((#s +1)ω∗))⊤ and the vector

v is given by

(

(−1)#S
∑

(q1,··· ,q#S )∈S#S

e i q1ω
∗
· · ·e i q#Sω

∗
, (−1)#S−1

∑

(q1,··· ,q#S−1)∈S#S−1

e i q1ω
∗
· · ·e i q#S−1ω

∗
, · · · , (−1)

∑

(q1)∈S1

e i q1ω
∗
,1

)⊤

,

where S j :=
{

(q1, · · · , q j )
∣

∣

∣qt ∈ S,1 ≤ t ≤ j , qt ̸= qt ′ for t ̸= t ′
}

, j = 1, · · · ,#S.
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Theorem 2.1 reveals in depth the essence of the super-resolution problem. From (2.2), we

observe that

â j ′g −a j =
w⊤

1 v

Πq∈S(e i y jω∗ −e i qω∗
)

(2.4)

for a certain g that is close to 1 when ŷ j ′ and y j are close to each other. This shows the relation

between the amplitudes of the underlying sources and the recovered sources. Note that the

quantity wT
1 v in the RHS of (2.4) is from the noise or the aberration and is of order of the noise

level. Thus the stability of the amplitude recovery is obviously determined by 1

Πq∈S (e
i y j ω

∗
−e i qω∗ )

,

which is further determined by the distribution of the locations of the underlying sources

and the recovered ones. As there are around 2n −2 sources in S for a stable recovery, the

noise amplification factor is thus around
(

1
dmin

)2n−2
with dmin being the minimum separation

distance between the sources. This is why the factors
(

1
dmin

)2n−2
,
(

1
dmin

)2n−1
frequently appear

in the stability analysis of the amplitude and the location (by (2.3)) recoveries [3, 30] even

when the problem is explored by methods different from those introduced here. Transforming

the stability of the amplitude recovery into a simpler problem of analyzing 1

Πq∈S (e
i y j ω

∗
−e i qω∗ )

under certain conditions, enables us to derive a stability result for the amplitude recovery in

Section 3.3 in a rather straightforward manner.

On the other hand, identity (2.3) reveals directly the relation between the locations of the

underlying sources and the recovered ones. It is rather obvious now that the stability of

location recovery is exactly determined by σ

Πq∈S (e
i y j ω

∗
−e i qω∗ )

with σ representing the noise level.

By this understanding, we prove in Sections 3.1 and 3.2 respectively the stability of the number

detection and location recovery in the super-resolution problem.

For the convenience of the applications of our location-amplitude identities, we derive the

following corollary, as a direct consequence of Theorem 2.1.

Corollary 2.1. Consider the model

F [µ̂](ω) =F [µ](ω)+w(ω), ω ∈ [0,Ω],

where µ̂=
∑k

j=1
â jδŷ j

with distinct ŷ j ’s and µ=
∑n

j=1
a jδy j

with distinct y j ’s and assume that

|w(ω)| <σ,ω ∈ [0,Ω]. For any y j , let ŷ j ′ be the one in the set of the ŷ j ’s that is the closest to y j .

Denote by S the set containing exactly yp ,1 ≤ p ≤ n, p ̸= j , and those ŷl , l ̸= j ′, l = 1, · · · ,k, that

are not equal to any yp . Then for any 0 <ω∗ ≤ Ω

#S
such that e i y jω

∗
,e i qω∗

, q ∈ S are still pairwise

distinct, we have

∣

∣

∣

∣

∣

â j ′Πq∈S
e i ŷ j ′ω

∗
−e i qω∗

e i y jω∗ −e i qω∗ −a j

∣

∣

∣

∣

∣

<
2#Sσ

Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

. (2.5)

Moreover, for any 0 <ω∗ ≤ Ω

#S+1
such that e i y jω

∗
,e i qω∗

, q ∈ S are still pairwise distinct,

∣

∣

∣(e i ŷ j ′ω
∗
−e i y jω

∗
)a j

∣

∣

∣<
2#S+1σ

Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

. (2.6)
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Proof. This is a direct consequence of Theorem 2.1 in view of

|w⊤
1 v| ≤ 2#Sσ, |(e i ŷ j ′ω

∗
w1 −w2)⊤v| ≤ 2#S+1σ.

2.2. PROOF OF THEOREM 2.1

Proof. Before starting the proof, we first introduce some notation and lemmas. Denote by

φp,q (t ) =
(

t p , t p+1, · · · , t q
)⊤

. (2.7)

The following lemma on the inverse of the Vandermonde matrix is standard.

Lemma 2.2. Let Vk be the Vandermonde matrix
(

φ0,k−1(t1), · · · ,φ0,k−1(tk )
)

. Then its inverse

V −1
k

= B can be specified as follows:

B j q =



























(−1)k−q







∑

1≤m1<...<mk−q≤k

m1,...,mk−q ̸= j

tm1
···tmk−q

∏

1≤m≤k
m ̸= j

(t j−tm)






, 1 ≤ q < k,

1
∏

1≤m≤k
m ̸= j

(t j−tm)
, q = k.

The following lemma can be deduced from the inverse of the Vandermonde matrix and the

readers can check Lemma 5 in [30] for a simple proof, although the numbers there are real

numbers.

Lemma 2.3. Let t1, · · · , tk , be k different complex numbers. For t ∈C, we have

(

V −1
k φ0,k−1(t )

)

j
=Π1≤q≤k,q ̸= j

t − tq

t j − tq
,

where Vk :=
(

φ0,k−1(t1), · · · ,φ0,k−1(tk )
)

with φ0,k−1(·) being defined by (2.7).

Now we start the main proof. We only prove the theorem for ω∗ ≤ Ω

#S+1
. The case when

ω∗ ≤ Ω

#S
for (2.2) is obvious afterwards. From (2.1), we can write

Ââ = Aa +W (2.8)

where â = (â1, · · · , âk )⊤, a = (a1, · · · , an)⊤,W = (w(0), · · · ,w(#S +1))⊤ and

Â =
(

φ0,#S+1(e i ŷ1ω
∗
), φ0,#S+1(e i ŷ2ω

∗
), · · · , φ0,#S+1(e i ŷkω

∗
)
)

,

A =
(

φ0,#S+1(e i y1ω
∗
), φ0,#S+1(e i y2ω

∗
), · · · , φ0,#S+1(e i ynω

∗
)
)

,

with 0 <ω∗ ≤ Ω

#S+1
. We further decompose (2.8) into the following two equations:

â j ′φ0,#S(e i ŷ j ′ω
∗
) = B1b +w1, â j ′φ1,#S+1(e i ŷ j ′ω

∗
) = B2b +w2 (2.9)
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where w1 = (w(0), · · · ,w(#S))⊤, w2 = (w(1), · · · ,w(#S +1))⊤ and

B1 =
(

φ0,#S(e i y1ω
∗
), · · · ,φ0,#S(e i ynω

∗
),φ0,#S(e i ŷ j1

ω∗
), · · · ,φ0,#S(e i ŷ j#S+1−n

ω∗
)
)

,

B2 =
(

φ1,#S+1(e i y1ω
∗
), · · · ,φ1,#S+1(e i ynω

∗
),φ1,#S+1(e i ŷ j1

ω∗
), · · · ,φ1,#S+1(e i ŷ j#S+1−n

ω∗
)
)

with the ŷ jq
’s being contained in S. Thus the b = (b1, · · · ,b#S+1) in (2.9) should be

bl =



















a j , l = j ,

al − âql
, 1 ≤ l ≤ n, l ̸= j ,and yl = ŷql

for certain ql ,

al , 1 ≤ l ≤ n, l ̸= j ,and yl ̸= ŷq , q = 1, · · · ,k,

â jl−n
, l > n.

Note that the fact that bl = a j , l = j is because ŷ j ′ is the point in ŷq ’s that is the closest to y j ,

there is no other ŷq equals to y j . Observe that

B2 = B1diag
(

e i y1ω
∗
, · · · ,e i ynω

∗
,e i ŷ j1

ω∗
, · · · ,e i ŷ j#S+1−n

ω∗
)

, φ1,#S+1(e i ylω
∗
) = e i ylω

∗
φ0,#S(e i ylω

∗
),

we rewrite (2.9) as

â j ′φ0,#S(e i ŷ j ′ω
∗
) = B1b +W1,

e i ŷ j ′ω
∗

â j ′φ0,#S(e i ŷ j ′ω
∗
) = B1diag

(

e i y1ω
∗
, · · · ,e i ynω

∗
,e i ŷ j1

ω∗
, · · · ,e i ŷ j#S+1−n

ω∗
)

b +W2.
(2.10)

Since e i y jω
∗

and all the points e i qω∗
for q in S are pairwise distinct according to the setting

of the theorem, B1 is a regular matrix. We multiply both sides of the above equations by the

inverse of B1 to get from Lemma 2.3 that

â j ′Πq∈S
e i ŷ j ′ω

∗
−e i qω∗

e i y jω∗ −e i qω∗ = a j + (B−1
1 ) j w1, (2.11)

e i ŷ j ′ω
∗

â j ′Πq∈S
e i ŷ j ′ω

∗
−e i qω∗

e i y jω∗ −e i qω∗ = e i y jω
∗

a j + (B−1
1 ) j w2, (2.12)

where (B−1
1 ) j is the j -th row of B−1

1 . By Lemma 2.2, it follows that

(B−1
1 ) j W1 =

∑#S−1
p=0

(

w(p)(−1)#S−p ∑

(q1,··· ,q#S−p )∈S#S−p
e i q1ω

∗ · · ·e i q#S−pω
∗
)

+w(#s)

Πq∈S(y j −q)
. (2.13)

This proves (2.2). Furthermore, equation (2.11) times e i ŷ j ′ω
∗

minus (2.12) yields

(e i ŷ j ′ω
∗
−e i y jω

∗
)a j = (B−1

1 ) j

(

e i ŷ j ′ω
∗

w1 −w2

)

.

Similarly, further expanding (B−1
1 ) j

(

e i ŷ j ′ω
∗

w1 −w2

)

explicitly by Lemma 2.2 yields (2.3). This

completes the proof.

11



3. STABILITY OF SUPER-RESOLUTION

In this section, based on our Location-Amplitude Identities, we analyze the super-resolution

capability of the reconstruction of the numbers, locations, and amplitudes of the off-grid

sources in the super-resolution problem. Note that these problems have been analyzed in

[30, 3] from different perspectives but the proofs are over several tens of pages. Now, by

our method, we have a direct and clear picture of all these problems, which allows us to

prove them in a unified way and in less than ten pages. In particular, this new method

improves the estimation of computational resolution bounds in our previous work [30] to an

unprecedented level to have practical meanings. This is also the ultimate goal of our definition

of computational resolution limits.

We consider only the one-dimensional super-resolution problem since the generalization to

multi-dimensions is straightforward by the method in [29]. Let us introduce the model setting.

We consider the collection of point sources as a discrete measure µ =
∑n

j=1
a jδy j

, where

y j ∈R, j = 1, · · · ,n, represent the location of the point sources and the a j ’s their amplitudes.

Noting that the y j ’s are the supports of the Dirac masses in µ. Throughout the paper, we will

use the supports recovery for a substitution of the location reconstruction.

We denote by

mmin = min
j=1,··· ,n

|a j |, dmin = min
p ̸= j

|yp − y j |. (3.1)

The measurement is the noisy Fourier data of µ in a bounded interval, that is,

Y(ω) =F [µ](ω)+W(ω) =
n
∑

j=1

a j e i y jω+W(ω), ω ∈ [−Ω,Ω], (3.2)

with W(ω) being the noise and Ω the cutoff frequency of the imaging system. We assume that

|W(ω)| <σ, ω ∈ [−Ω,Ω],

with σ being the noise level. Note that although we consider the absolute bound here, our

estimates can be extended to other kinds of bounds of the noise.

Since we focus on the resolution limit case, we consider the case when the point sources are

tightly spaced and form a cluster. To be more specific, we define the interval

I (n,Ω) :=
(

−
(n −1)π

2Ω
,

(n −1)π

2Ω

)

,

which is of the length of several Rayleigh limits and assume that y j ∈ I (n,Ω),1 ≤ j ≤ n. This

assumption is a common assumption for super-resolving the off-the-grid sources [30, 3] and

is necessary for the analysis. Since we are interested in resolving closely-spaced sources, it is

also reasonable.

The reconstruction process is usually targeting at some specific solutions in a so-called

admissible set, which comprises discrete measures whose Fourier data are sufficiently close to

Y. In general, every admissible measure is possibly the ground truth and it is impossible to

distinguish which one is closer to the ground truth without any additional prior information.

In our problem, we introduce the following concept of σ-admissible discrete measures. For

simplicity, we also call them σ-admissible measures.
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Definition 3.1. Given the measurement Y, µ̂=
∑k

j=1
â jδŷ j

is said to be a σ-admissible discrete

measure of Y if
∣

∣F [µ̂](ω)−Y(ω)
∣

∣<σ, ω ∈ [−Ω,Ω].

3.1. STABILITY OF NUMBER DETECTION

In this section, we estimate the super-resolving capability of number detection in the super-

resolution problem. We introduce the concept of computational resolution limit for number

detection [31, 30, 29] and present a sharp bound for it. We improve the estimate substantially

and make it have some practical meaning.

Note the set of σ-admissible measures of Y characterizes all possible solutions to our super-

resolution problem with the given measurement Y. Detecting the source number n is possible

only if all of the admissible measures have at least n supports, otherwise, it is impossible to

detect the correct source number without additional a prior information. Thus, following

definitions similar to those in [30, 31, 29], we define the computational resolution limit for the

number detection problem as follows.

Definition 3.2. The computational resolution limit to the number detection problem in the

super-resolution of one-dimensional source is defined as the smallest nonnegative number Dnum

such that for all n-sparse measure
∑n

j=1
a jδy j

, y j ∈ I (n,Ω) and the associated measurement Y

in (3.2), if

min
p ̸= j

|y j − yp | ≥Dnum ,

then there does not exist any σ-admissible measure of Y with less than n supports.

The definition of “computational resolution limit” emphasizes the essential impossibility

of correctly detecting the number of very close sources by any means, in contrast to the

Rayleigh limit, which only concerns the visual capacity of human eyes. Moreover, it depends

crucially on the signal-to-noise ratio and the sparsity of the sources, which is fundamentally

different from all the classical resolution limits [1, 53, 42, 45, 49] that depend only on the cutoff

frequency. We now present a sharp upper bound for it.

Theorem 3.1. Let Y be a measurement generated by a measure µ=
∑n

j=1
a jδy j

which is sup-

ported on I (n,Ω). Let n ≥ 2 and assume that the following separation condition is satisfied

min
p ̸= j

∣

∣

∣yp − y j

∣

∣

∣≥
2eπ

Ω

( σ

mmin

) 1
2n−2

, (3.3)

where mmin is defined in (3.1). Then there does not exist any σ-admissible measures of Y with

less than n supports. Moreover, for the cases when n = 2 and n = 3, if

min
p ̸= j

∣

∣

∣

∣

yp − y j

∣

∣

∣

∣

≥
2arcsin

(

2
(

σ
mmin

) 1
2

)

Ω
, min

p ̸= j

∣

∣

∣

∣

yp − y j

∣

∣

∣

∣

≥
2π

Ω

( 8σ

mmin

) 1
4

, respectively,

then there does not exist any σ-admissible measures of Y with only n −1 supports.
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Theorem 3.1 gives a better upper bound for the computational resolution limit Dnum com-

pared to the one in [30]. By the new estimate (3.1), it is already possible to surpass the Rayleigh

limit π
Ω

in detecting source number when mmin

σ ≥ (2e)2n−2. Moreover, this upper bound is

shown to be sharp by a lower bound provided in [28]. Thus, we can conclude that

2e−1

Ω

( σ

mmin

) 1
2n−2 <Dnum ≤

2eπ

Ω

( σ

mmin

) 1
2n−2

.

In particular, for the case when n = 2, our estimate demonstrates that when the signal-to-

noise ratio SN R > 4, then the resolution is definitely better than the Rayleigh limit and the

super-resolution can be exactly achieved. This result is already practically important. As we

will see later, our estimate is very sharp and very close to the true diffraction limit.

Remark 3.1. Note that the resolution estimate in Theorem 3.1 for the case when n = 2 holds

in general dimensional spaces. We will discuss the extension in Section 4 and give an exact

two-point resolution there. It is also easy to generalize the estimates in Theorem 3.1 to high-

dimensions by the methods in [29, 27], whereby we can obtain that

C1(k,n)

Ω

( σ

mmin

) 1
2n−2 <Dk,num ≤

C2(k,n)

Ω

( σ

mmin

) 1
2n−2

with the constants C1(k,n),C2(k,n) having explicit forms, for the computational resolution

limit Dk,num defined in the k-dimensional space. This is out of scope of the current paper and

we leave these further estimates to a future work.

Remark 3.2. We remark that our new techniques also provide a way to analyze the stability

of number detection for sources with multi-cluster patterns. Our former method (also the only

one we know of) for analyzing the stability of number detection cannot handle such cases. The

technique here is the first known method that can tackle the issue. But since the current paper

focuses on understanding the resolution limits in the super-resolution, the multi-cluster case is

out of scope and we leave it as a future work.

We now present the proof of Theorem 3.1. The problem being essentially a nonlinear

approximation problem where we have to optimize the approximation over the coupled

factors: source number k, source locations ŷ j ’s and amplitudes â j ’s. This is indeed a very

complicated problem. In [30], we have analyzed for the first time its stability by developing

an approximation theory in the Vandermonde space at the cost of many efforts. Here, taking

advantage of the location-amplitude identities, we can prove it in a rather simple and direct

way. It takes only three pages, while the previous proof in [30] extends over several tens of

pages in different papers. This shows the power of the location-amplitude identities. Moreover,

since it is a simple method, revealing what happened in the number detection problem, the

bound here is nearly optimal for the super-resolution problem (difficult to be substantially

improved). This also means the result of [30] is also very good and that the method used there

does not invoke much amplification in the estimation, even if it looks complex.

In order to prove Theorem 3.1, we denote for an integer k ≥ 1,

ζ(k) =
{

( k−1
2

!)2, if k is odd,

( k
2

)!( k−2
2

)!, if k is even,
ξ(k) =















1
2

, if k = 1,
( k−1

2
)!( k−3

2
)!

4
, if k is odd, k ≥ 3,

( k−2
2

!)2

4
, if k is even.

(3.4)
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We also define for positive integers p, q , and z1, · · · , zp , ẑ1, · · · , ẑq ∈C, the following vector in R
p

ηp,q (z1, · · · , zp , ẑ1, · · · , ẑq ) =













|(z1 − ẑ1)| · · · |(z1 − ẑq )|
|(z2 − ẑ1)| · · · |(z2 − ẑq )|

...

|(zp − ẑ1)| · · · |(zp − ẑq )|













. (3.5)

We recall the following useful lemmas.

Lemma 3.1. Let −π
2
≤ θ1 < θ2 < ·· · < θk ≤ π

2
with minp ̸= j |θp −θ j | = θmin. We have the estimate

Π1≤p≤k,p ̸= j

∣

∣

∣e iθ j −e iθp

∣

∣

∣≥ ζ(k)

(

2θmin

π

)k−1

, j = 1, · · · ,k,

where ζ(k) is defined in (3.4).

Proof. Note that

∣

∣

∣e iθ j −e iθp

∣

∣

∣≥
2

π

∣

∣θ j −θp

∣

∣ , for all θ j ,θp ∈
[

−
π

2
,
π

2

]

. (3.6)

Then we have

Π1≤p≤k,p ̸= j

∣

∣

∣e iθ j −e iθp

∣

∣

∣ ≥
(

2

π

)k−1

Π1≤p≤k,p ̸= j

∣

∣θ j −θp

∣

∣≥ ζ(k)

(

2θmin

π

)k−1

.

Lemma 3.2. Let −π
2
≤ θ1 < θ2 < ·· · < θk+1 ≤ π

2
. Assume that minp ̸= j |θp −θ j | = θmin. Then for

any θ̂1, · · · , θ̂k ∈R, we have the following estimate:

∣

∣

∣

∣

∣

∣ηk+1,k (e iθ1 , · · · ,e iθk+1 ,e i θ̂1 , · · · ,e i θ̂k )
∣

∣

∣

∣

∣

∣

∞
≥ ξ(k)

(

2θmin

π

)k

,

where ηk+1,k is defined as in (3.5).

Proof. See Corollary 7 in [30].

Proof. We are now ready to prove Theorem 3.1. Suppose that µ̂=
∑k

j=1
â jδŷ j

,k ≤ n −1 is an

admissible measure of Y. The model problem (3.2) reads

F [µ̂](ω) =F [µ](ω)+W1(ω), ω ∈ [−Ω,Ω]

for some W1 with |W1(ω)| < 2σ. Note that by adding some point sources in µ̂, from above we

can actually construct µ̂=
∑n−1

j=1
â jδŷ j

such that

F [µ̂](ω) =F [µ](ω)+W2(ω), ω ∈ [−Ω,Ω],
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for some W2 with |W2(ω)| < 2σ. For ease of exposition, we consider in the following that the

measure µ̂ is with n −1 point sources. On the other hand, the above equation implies that

ρ̂ =
∑n−1

j=1
e−ŷ jΩâ jδŷ j

and ρ =
∑n

j=1
e−y jΩa jδy j

satisfy

F [ρ̂](ω) =F [ρ](ω)+W3(ω), ω ∈ [0,2Ω], (3.7)

for some W3 with |W3(ω)| < 2σ,ω ∈ [0,2Ω]. For any y j , let ŷ j ′ be the one in ŷ j ’s that is the

closest to y j and S be the set containing exactly yp ,1 ≤ p ≤ n, p ̸= j , and those ŷl , l ̸= j ′ that

are not equal to any yp . Let ω∗ = 2Ω
2n−2

. Since (3.7) holds, by (2.6) we obtain that

∣

∣

∣(e i ŷ j ′ω
∗
−e i y jω

∗
)a j

∣

∣

∣<
2#S+2σ

Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

.

We first consider the following case:

none of e i ŷ jω
∗

is equal to some e i ypω
∗
. (3.8)

Hence, #S = 2n −3 and above relation gives

1 <
22n−1σ

∣

∣

∣(e i ŷ j ′ω
∗ −e i y jω∗

)a j

∣

∣

∣Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

≤
1

∣

∣

∣(e i ŷ j ′ω
∗ −e i y jω∗

)
∣

∣

∣Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

22n−1σ

mmin

=
1

Πq=1,··· ,n,q ̸= j

∣

∣(e i y jω∗ −e i yqω∗
)
∣

∣Πq=1,··· ,n−1

∣

∣e i y jω∗ −e i ŷqω∗∣
∣

22n−1σ

mmin
.

Therefore, it follows that

1 < min
j=1,··· ,n

1

Πq=1,··· ,n,q ̸= j

∣

∣(e i y jω∗ −e i yqω∗
)
∣

∣

1

Πq=1,··· ,n−1

∣

∣e i y jω∗ −e i ŷqω∗∣
∣

22n−1σ

mmin

≤ max
j=1,··· ,n

1

Πq=1,··· ,n,q ̸= j

∣

∣(e i y jω∗ −e i yqω∗
)
∣

∣

min
j=1,··· ,n

1

Πq=1,··· ,n−1

∣

∣e i y jω∗ −e i ŷqω∗∣
∣

22n−1σ

mmin
.

(3.9)

Denote yqω
∗ by θq and θmin = minp ̸=q |θp −θq |. Since the y j ’s are in I (n,Ω) and ω∗ = 2Ω

2n−2
,

we have that the θ j ’s are in (−π
2

, π
2

). Thus, by Lemma 3.1, we get

max
j=1,··· ,n

1

Πq=1,··· ,n,q ̸= j

∣

∣(e i y jω∗ −e i yqω∗
)
∣

∣

≤
1

ζ(n)

(

π

2θmin

)n−1

. (3.10)

Moreover, using Lemma 3.2 yields

min
j=1,··· ,n

1

Πq=1,··· ,n−1

∣

∣e i y jω∗ −e i ŷqω∗∣
∣

≤
1

ξ(n −1)

(

π

2θmin

)n−1

. (3.11)

Combining the above two estimates, it follows that

1 <
1

ζ(n)ξ(n −1)

(

π

2θmin

)2n−2 22n−1σ

mmin
. (3.12)
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Thus,

θmin ≤π

(

2

ζ(n)ξ(n −1)

) 1
2n−2

(

σ

mmin

) 1
2n−2

,

and consequently,

dmin =
θmin

ω∗ <
(2n −2)π

2Ω

(

2

ζ(n)ξ(n −1)

) 1
2n−2

(

σ

mmin

) 1
2n−2

≤
2πe

Ω

(

σ

mmin

) 1
2n−2

, (3.13)

where dmin := minp ̸=q |yp − yq | and the last inequality is from Lemma A.1.

Therefore, if dmin ≥ 2πe
Ω

(

σ
mmin

) 1
2n−2

, then there is no σ-admissible measure of Y with less than

n supports ŷ j satisfying (3.8). On the other hand, under the same separation condition, for

the case when the ŷ j ’s do not satisfy (3.8), if µ̂=
∑k

j=1
â jδŷ j

,k < n is a σ-admissible measure

of Y, then the measure ρ̂ =
∑k

j=1
â jδŷ j+ϵ,k < n for very small ϵ is also a σ-admissible measure

of Y and satisfies (3.8) together with the same minimum separation condition. This is a

contradiction. Thus, if dmin ≥ 2πe
Ω

(

σ
mmin

) 1
2n−2

, then there is no σ-admissible measure of Y with

less than n supports.

The last part consists in proving the cases when n = 2,3. When n = 3, the result is enhanced

by noting that 2
ζ(n)ξ(n−1)

= 8 in (3.13). When n = 2, the result is enhanced by improving the

estimates (3.10) and (3.11). For (3.10), we now have

1

|e i y1ω∗ −e i y2ω∗ |
≤

1

2sin
(

θmin

2

) ,

where θmin = |y1ω
∗− y2ω

∗| and ω∗ =Ω. For (3.11), we have

1

max j=1,2

∣

∣e i y jω∗ −e i ŷ1ω∗∣
∣

≤
1

2sin
(

θmin

4

) .

Thus, similarly to (3.12), we obtain that

1 <
1

2sin
(

θmin

2

)

1

2sin
(

θmin

4

)

23σ

mmin
≤

1

2sin
(

θmin

2

)

1

sin
(

θmin

2

)

23σ

mmin
=

1

sin
(

θmin

2

)2

4σ

mmin
.

It then follows that

dmin =
θmin

ω∗ <
2arcsin

(

2
(

σ
mmin

) 1
2

)

Ω
,

which completes the proof.

Remark 3.3. Some comments on the previous proof are in order. Note that the only parts in the

proof that will amplify the estimate of the resolution are the noise amplification in Corollary

2.1 and equation (3.9). This shows that our estimate is in fact very sharp and that is difficult

to improve it substantially. In addition, it indicates the path on which we can improve the

estimate, which is also an interesting problem with practical importance. In particular, by
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further improving the estimate of Πq∈S

∣

∣e i y jω
∗ −e i qω∗∣

∣ and the amplification of noise to O(σ) in

Corollary 2.1, it seems that the estimate in (3.9) can at most be improved to

1 <C
1

((n −1)!)2

(

π

2θmin

)2n−2 σ

mmin
,

for certain C and thus we expect to improve at most the requirement of dmin to around

dmin ≥
eπ

2Ω

(

σ

mmin

) 1
2n−2

.

This is very close to the real limit. As for the case when n = 2, indicated by Section 4, we should

expect

dmin ≥
p

2π

Ω

(

σ

mmin

) 1
2n−2

.

3.2. STABILITY OF LOCATION RECONSTRUCTION

We now consider the location (support) recovery problem in the one-dimensional super-

resolution. We first introduce the following concept of δ-neighborhood of a discrete measure.

Definition 3.3. Let µ =
∑n

j=1
a jδy j

be a discrete measure and let 0 < δ be such that the n

intervals (yk−δ, yk+δ),1 ≤ k ≤ n are pairwise disjoint. We say that µ̂=
∑n

j=1
â jδŷ j

is within a δ-

neighborhood of µ if each ŷ j is contained in one and only one of the n intervals (yk−δ, yk+δ),1 ≤
k ≤ n.

According to the above definition, a measure in a δ-neighborhood preserves the inner struc-

ture of the true set of sources. For any stable support recovery algorithm, the output should

be a measure in some δ-neighborhood, otherwise it is impossible to distinguish which is the

reconstructed location of some y j ’s. We now introduce the computational resolution limit for

stable support recoveries. For ease of exposition, we only consider measures supported in

I (n,Ω), where n is the number of sources.

Definition 3.4. The computational resolution limit to the stable support recovery problem in

the super-resolution of one-dimensional source is defined as the smallest nonnegative number

Dsupp such that for all n-sparse measure
∑n

j=1
a jδy j

, y j ∈ I (n,Ω) and the associated measure-

ment Y in (3.2), if

min
p ̸= j

∣

∣y j − yp

∣

∣≥Dsupp ,

then there exists δ> 0 such that any σ-admissible measure for Y with n supports in I (n,Ω) is

within a δ-neighborhood of µ.

To state the results on the resolution limit to stable support recovery, we introduce the

super-resolution factor which is defined as the ratio between Rayleigh limit and the minimum

separation distance of sources:

SRF :=
π

Ωdmin
,

where dmin = minp ̸= j |yp − y j |. Leveraging the location-amplitude identities, we derive the

following theorem for stably recovering the source locations.
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Theorem 3.2. Let n ≥ 2, assume that the measure µ=
∑n

j=1
a jδy j

is supported on I (n,Ω) and

that

dmin := min
p ̸= j

∣

∣yp − y j

∣

∣≥
2.36eπ

Ω

( σ

mmin

) 1
2n−1

. (3.14)

If µ̂=
∑n

j=1
â jδŷ j

supported on I (n,Ω) is aσ-admissible measure for the measurement generated

by µ, then µ̂ is within the dmin

2
-neighborhood of µ. After reordering the ŷ j ’s, we have

∣

∣

∣ŷ j − y j

∣

∣

∣<
C (n)

Ω
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n, (3.15)

where C (n) = 22n− 3
2 e2n−1

(

max(
p

n −2,1)π
)− 1

2 . Moreover, for the case when n = 2, the minimum

separation can be improved to

dmin ≥
3

Ω
arcsin

(

2

(

σ

mmin

) 1
3

)

.

Theorem 3.2 gives an upper bound for the computational resolution limit Dsupp that is

better than the one in [30]. It shows that surpassing the Rayleigh limit in the location recovery

is definitely possible when mmin

σ ≥ (2.36e)2n−1. This upper bound is shown to be sharp by a

lower bound provided in [28], by which we can conclude now that

2e−1

Ω

( σ

mmin

) 1
2n−1 <Dsupp ≤

2.36eπ

Ω

( σ

mmin

) 1
2n−1

.

Especially, for the case when n = 2, our estimate demonstrates that when the signal-to-

noise ratio SN R > 12.5, then the resolution is definitely better than the Rayleigh limit and the

super-resolution can be exactly achieved. This result is already of practical importance.

Remark 3.4. Note that the resolution estimate in Theorem 3.2 for the case when n = 2 holds

in general dimensional spaces. It is also easy to generalize the estimates in Theorem 3.2 to

high-dimensions by the methods of [29, 27], whereby we can obtain that

C3(k,n)

Ω

( σ

mmin

) 1
2n−1 <Dk,supp ≤

C4(k,n)

Ω

( σ

mmin

) 1
2n−1

,

where C3(k,n),C4(k,n) are constants of explicit forms and Dk,supp denotes the computational

resolution limit in the k-dimensional space. Since this is out of scope of the current paper, we

leave such further estimates to a future work.

Remark 3.5. We remark that similar to results in Section 2.1 of [28], by Theorems 3.1 and 3.2,

we can directly show that when

min
p ̸= j

∣

∣yp − y j

∣

∣≥
2.36eπ

Ω

( σ

mmin

) 1
2n−1

,

targeting at a sparest solution in the σ-admissible measure set will give a solution comprising

exactly n sources and the recovered locations are stable.

19



We now present the proof of Theorem 3.2. It follows in a straightforward manner after

employing the location-amplitude identities.

Proof. We first recall the following auxiliary lemma.

Lemma 3.3. For −π
2
≤ θ1 < θ2 < ·· · < θk ≤ π

2
and θ̂1, θ̂2, · · · , θ̂k ∈ [−π

2
, π

2
], if

∣

∣

∣

∣

∣

∣ηk,k (e iθ1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂k )
∣

∣

∣

∣

∣

∣

∞
<

(

2

π

)k

ϵ, and θmin = min
q ̸= j

|θq −θ j | ≥
( 4ϵ

λ(k)

) 1
k

,

where ηk,k is defined by (3.5) and λ(k) is given by

λ(k) =
{

1, k = 2,

ξ(k −2), k ≥ 3,
(3.16)

with ξ(·) being defined in (3.4), then after reordering θ̂ j ’s, we have

∣

∣θ̂ j −θ j

∣

∣<
θmin

2
and

∣

∣θ̂ j −θ j

∣

∣≤
2k−1ϵ

(k −2)!(θmin)k−1
, j = 1, · · · ,k. (3.17)

Proof. See Corollary 9 in [30].

Now we start the proof. Since µ̂ =
∑n

j=1
â jδŷ j

, ŷ j ∈ I (n,Ω) is an admissible measure of Y,

from the model (3.2) we have

F [µ̂](ω) =F [µ](ω)+W1(ω), ω ∈ [−Ω,Ω],

for some W1 with |W1(ω)| < 2σ,ω ∈ [−Ω,Ω]. This implies that ρ̂ =
∑n−1

j=1
e−ŷ jΩâ jδŷ j

and ρ =
∑n

j=1
e−y jΩa jδy j

satisfy

F [ρ̂](ω) =F [ρ](ω)+W2(ω), ω ∈ [0,2Ω], (3.18)

for some W2 with |W2(ω)| < 2σ,ω ∈ [0,2Ω]. For any y j , let ŷ j ′ be the one in ŷ j ’s that is the

closest to y j and let S be the set containing exactly yp ,1 ≤ p ≤ n, p ̸= j , and those ŷl , l ̸= j ′ that

are not equal to any yp . Let ω∗ = 2Ω
2n−1

. Since (3.18) holds, by (2.6) we have

∣

∣

∣(e i ŷ j ′ω
∗
−e i y jω

∗
)a j

∣

∣

∣<
2#S+2σ

Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

. (3.19)

We first consider the following case:

none of e i ŷ jω
∗

is equal to some e i ypω
∗
. (3.20)

Hence, #S = 2n −2 and above relation gives

1 <
22nσ

∣

∣

∣(e i ŷ j ′ω
∗ −e i y jω∗

)a j

∣

∣

∣Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

≤
1

∣

∣

∣(e i ŷ j ′ω
∗ −e i y jω∗

)
∣

∣

∣Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

22nσ

mmin

=
1

Πq=1,··· ,n,q ̸= j

∣

∣(e i y jω∗ −e i yqω∗
)
∣

∣Πq=1,··· ,n
∣

∣e i y jω∗ −e i ŷqω∗∣
∣

22nσ

mmin
.
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Therefore,

1 < min
j=1,··· ,n

1

Πq=1,··· ,n,q ̸= j

∣

∣(e i y jω∗ −e i yqω∗
)
∣

∣

1

Πq=1,··· ,n
∣

∣e i y jω∗ −e i ŷqω∗∣
∣

22nσ

mmin

≤ max
j=1,··· ,n

1

Πq=1,··· ,n,q ̸= j

∣

∣(e i y jω∗ −e i yqω∗
)
∣

∣

min
j=1,··· ,n

1

Πq=1,··· ,n
∣

∣e i y jω∗ −e i ŷqω∗∣
∣

22nσ

mmin
.

It then follows that

max
j=1,··· ,n

Πq=1,··· ,n

∣

∣

∣e i y jω
∗
−e i ŷqω

∗
∣

∣

∣< max
j=1,··· ,n

1

Πq=1,··· ,n,q ̸= j

∣

∣(e i y jω∗ −e i yqω∗
)
∣

∣

22nσ

mmin
.

Denote yqω
∗, ŷqω

∗ by respectively θq , θ̂q and θmin = minp ̸=q |θp −θq |. Since y j ’s in I (n,Ω) and

ω∗ = 2Ω
2n−1

, we have θ j , θ̂ j ’s in
(

−π
2

, π
2

)

. By Lemma 3.1 we further get

max
j=1,··· ,n

Πq=1,··· ,n

∣

∣

∣e i y jω
∗
−e i yqω

∗
∣

∣

∣<
1

ζ(n)

(

π

2θmin

)n−1 22nσ

mmin
. (3.21)

We then utilize Lemma 3.3 to estimate the recovery of the locations. For this purpose, let

ϵ= π2n−1

ζ(n)(θmin)n−1
2σ

mmin
. Then (3.21) is equivalent to

∣

∣

∣

∣

∣

∣ηn,n(e iθ1 , · · · ,e iθn ,e i θ̂1 , · · · ,e i θ̂n )
∣

∣

∣

∣

∣

∣

∞
< (

2

π
)nϵ.

We thus only need to check the following condition:

θmin ≥
( 4ϵ

λ(n)

) 1
n

, or equivalently (θmin)n ≥
4ϵ

λ(n)
. (3.22)

Indeed, by the separation condition (3.14),

θmin = dminω
∗ ≥

2.36πe

n − 1
2

( σ

mmin

) 1
2n−1 ≥π

( 4

λ(n)ζ(n)

2σ

mmin

) 1
2n−1

, (3.23)

where we have used Lemma A.2 in the last inequality. Then

(θmin)2n−1 ≥
4π2n−1

λ(n)ζ(n)

2σ

mmin
,

whence we get (3.22). Therefore, we can apply Lemma 3.3 to get that, after reordering θ̂ j ’s,

∣

∣θ̂ j −θ j

∣

∣<
θmin

2
,

∣

∣θ̂ j −θ j

∣

∣<
2nπ2n−1

ζ(n)(n −2)!(θmin)2n−2

σ

mmin
,1 ≤ j ≤ n.

(3.24)

Finally, we estimate
∣

∣ŷ j − y j

∣

∣. Since
∣

∣θ̂ j −θ j

∣

∣< θmin

2
, it is clear that

∣

∣ŷ j − y j

∣

∣< dmin

2
. Thus µ̂ is

within the dmin

2
-neighborhood of µ. On the other hand,

∣

∣ŷ j − y j

∣

∣=
2n −1

2Ω

∣

∣θ̂ j −θ j

∣

∣ , j = 1, · · · ,n.
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Using (3.24) and Lemma A.3, a direct calculation shows that

∣

∣ŷ j − y j

∣

∣<
C (n)

Ω

(

π

Ωdmin

)2n−2 σ

mmin
, (3.25)

where C (n) = 22n− 3
2 e2n−1

(

max(
p

n −2,1)π
)− 1

2 .

Therefore, if dmin ≥ 2.36πe
Ω

(

σ
mmin

) 1
2n−1

, for any σ-admissible measure µ̂ of Y with n supports

ŷ j ’s in I (n,Ω) satisfying (3.20), µ̂ is in a dmin

2
-neighborhood of µ. Under the same separation

condition, when µ̂=
∑n

j=1
â jδŷ j

is a σ-admissible measure but ŷ j ’s do not satisfy (3.20), then

the source ρ̂ =
∑n

j=1
â jδŷ j+ϵ for very small ϵ is also a σ-admissible measure of Y and satisfies

(3.20) and the same minimum separation condition. ρ̂ is thus in a dmin

2
-neighborhood of µ.

Since ϵ can be arbitrary close to 0, µ̂ is thus in a dmin

2
-neighborhood of µ. In the same manner,

(3.25) holds as well.

The last part is to prove the case when n = 2. When n = 2, by (3.19) we have

∣

∣

∣(e i ŷ1ω
∗
−e i y1ω

∗
)a j

∣

∣

∣<
2#S+2σ

∣

∣e i y1ω∗ −e i y2ω∗∣
∣

∣

∣e i y1ω∗ −e i ŷ2ω∗∣
∣

.

Denote ω∗|y1 − y2| = θmin. Note that |ŷ1 − y1| ≤ |ŷ2 − y1| by the assumption on ŷ1. Thus, if

|ŷ1 − y1|ω∗ ≥ θmin

2
, then we have |ŷ2 − y1|ω∗ ≥ θmin

2
and

2sin

(

θmin

4

)

mmin ≤
∣

∣

∣(e i ŷ1ω
∗
−e i y1ω

∗
)a j

∣

∣

∣<
24σ

2sin
(

θmin

2

)

2sin
(

θmin

4

) .

This yields

sin

(

θmin

2

)

mmin <
23σ

sin
(

θmin

2

)

sin
(

θmin

2

) .

It then follows that

θmin < 2arcsin

(

8σ

mmin

) 1
3

and

dmin =
θmin

ω∗ <
3

Ω
arcsin

(

2

(

σ

mmin

) 1
3

)

,

where we have set ω∗ = 2Ω
3

. Therefore, if

dmin ≥
3

Ω
arcsin

(

2

(

σ

mmin

) 1
3

)

,

then we must have |ŷ1 − y1|ω∗ < θmin

2
and consequently, |ŷ1 − y1| < dmin

2
. In the same manner,

we also have |ŷ2 − y2| < dmin

2
. This completes the proof.

22



3.3. STABILITY OF AMPLITUDE RECONSTRUCTION

We now consider the stability of the amplitude reconstruction. Note that for the off-the-

grid case, it takes several tens pages in [3] to prove the stability of the reconstruction of

each amplitude a j . Here we can take one page to have even stronger understanding for the

amplitude reconstruction.

Theorem 3.3. Let n ≥ 2 and let the measurement Y be generated from any µ=
∑n

j=1
a jδy j

, y j ∈
I (n,Ω) satisfying the separation condition

min
p ̸= j

∣

∣yp − y j

∣

∣≥
C

Ω

( σ

mmin

) 1
2n−1

, (3.26)

for some constant C to ensure a stable location recovery. For any σ-admissible measure of Y,

µ̂=
∑n

j=1
â jδŷ j

, ŷ j ∈ I (n,Ω), we have

∣

∣â j −a j

∣

∣<C1(n)SRF 2n−1σ, (3.27)

for a certain constant C1(n). Moreover, if ŷ j = y j , we have

∣

∣â j −a j

∣

∣<C2(n)SRF 2n−2σ, (3.28)

for a certain constant C2(n).

Proof. In the same manner as for proving Theorem 3.2, we can show that when the separation

distance dmin ≥ C
Ω

(

σ
mmin

) 1
2n−1

for a certain large enough constant C , |ŷ j − y j | < dmin

3
, j = 1, · · · ,n.

Hence, naturally ŷ j is the point in the the set of ŷq ’s that is the closest to y j . We write y j = ŷ j+ϵ j

with 0 ≤
∣

∣ϵ j

∣

∣< dmin

3
. Since µ̂=

∑n
j=1

â jδŷ j
, ŷ j ∈ I (n,Ω) is an admissible measure of Y, from the

model (3.2) we have

F [µ̂](ω) =F [µ](ω)+W1(ω), ω ∈ [0,Ω],

for some W1 with |W1(ω)| < 2σ,ω ∈ [0,Ω]. Let ω∗ = Ω

2n−1
. By (2.5), it follows that

∣

∣

∣

∣

∣

â jΠq∈S
e i ŷ jω

∗ −e i qω∗

e i y jω∗ −e i qω∗ −a j

∣

∣

∣

∣

∣

<
2#Sσ

Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

. (3.29)

Equivalently, we have
∣

∣

∣

∣

∣

â j −a jΠq∈S
e i y jω

∗ −e i qω∗

e i ŷ jω∗ −e i qω∗

∣

∣

∣

∣

∣

<
2#Sσ

Πq∈S

∣

∣e i ŷ jω∗ −e i qω∗∣
∣

. (3.30)

We rewrite its LHS as
∣

∣

∣

∣

∣

â j −a jΠq∈S

(

e i y jω
∗ −e i ŷ jω

∗

e i ŷ jω∗ −e i qω∗ +1

)∣

∣

∣

∣

∣

, (3.31)

and expand that

Πq∈S

(

e i y jω
∗ −e i ŷ jω

∗

e i ŷ jω∗ −e i qω∗ +1

)

= 1+ (e i y jω
∗
−e i ŷ jω

∗
)g (ϵ j ,S, ŷ j , y j ,ω∗) (3.32)
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where

g (ϵ j ,S, ŷ j , y j ,ω∗) =
1

e i y jω∗ −e i ŷ jω∗ f

(

e i y jω
∗ −e i ŷ jω

∗

e i ŷ jω∗ −e i q1ω∗ , · · · ,
e i y jω

∗ −e i ŷ jω
∗

e i ŷ jω∗ −e i qkω∗

)

(3.33)

with f being a polynomial and q1, · · · , qk ∈ S. Thus combining (3.30), (3.31), and (3.32) yields

that
∣

∣â j −a j

∣

∣<
∣

∣

∣a j (e i y jω
∗
−e i ŷ jω

∗
)g (ϵ j ,S, ŷ j , y j ,ω∗)

∣

∣

∣+
2#Sσ

Πq∈S

∣

∣e i ŷ jω∗ −e i qω∗∣
∣

.

Now we estimate the two terms in the RHS of the above equation and hence provide the

estimate of the stability of the amplitude recovery. First, by (2.6), we have

∣

∣

∣a j (e i y jω
∗
−e i ŷ jω

∗
)
∣

∣

∣<
2#S+1σ

Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

.

Second, based on the estimate |ŷ j − y j | < dmin

3
, it is easy to prove that

σ

Πq∈S

∣

∣e i ŷ jω∗ −e i qω∗∣
∣

≤
C3(n)σ

d 2n−2
min

(3.34)

holds for some constant C3(n). The only item left is to bound g (ϵ j ,S, ŷ j , y j ,ω∗). It is not hard

to see that e
i y j ω

∗
−e

i ŷ j ω
∗

e
i ŷ j ω

∗
−e i qt ω

∗ , t = 1, · · · ,k in (3.33) are bounded by 1 since |ŷp − yp | < dmin

3
, p = 1, · · · ,n.

Thus the value of f (· · · ) in (3.33) is bounded by C ′
4(n) for some constant C ′

4(n). This yields

∣

∣g (ϵ j ,S, ŷ j , y j ,ω∗)
∣

∣≤
C4(n)

dmin

for certain constant C4(n). Combining all the above estimates yields

∣

∣â j −a j

∣

∣<
C5(n)

d 2n−1
min

σ

for some constant C5(n). Now we consider the case when ŷ j = y j . This time, by (3.29), we have

∣

∣â j −a j

∣

∣<
2#Sσ

Πq∈S

∣

∣e i y jω∗ −e i qω∗∣
∣

.

Further, by (3.34), we demonstrate (3.28). This completes the proof.

4. TWO-POINT RESOLUTION

Now we have understood the stability of super-resolving multiple point sources. In particular,

we have demonstrated that when the SN R > 4, we can definitely achieve super-resolution

when resolving two point sources. This answers a long-standing puzzle of the super-resolution

and indicates that super-resolution is indeed possible from a single snapshot. But we are

still not satisfied with only estimation, we want to figure out the exact resolution limit for
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distinguishing two point sources. In this section, we will derive the exact formula for the

resolution limit and the well-known diffraction limit.

We consider sources in general spaces Rk and consider the model as follows. The source is

µ=
2

∑

j=1

a jδy j
,

where δ denotes Dirac’s δ-distribution in R
k , y j ∈ R

k , j = 1,2, represent the location of the

point sources and a j ∈C, j = 1,2, their amplitudes. We denote by

mmin = min
j=1,2

|a j |, dmin =
∣

∣

∣

∣y1 −y2

∣

∣

∣

∣

2 . (4.1)

The available measurement is the noisy Fourier data of µ in a bounded region, that is,

Y(ω) =F [µ](ω)+W(ω) =
n
∑

j=1

a j e i y j ·ω+W(ω), ω ∈R
k , ||ω||2 ≤Ω, (4.2)

where F [µ] denotes the Fourier transform of µ in the k-dimensional space, Ω is the cut-off

frequency, and W is the noise. We assume that

|W(ω)| <σ, ω ∈R
k , ||ω||2 ≤Ω,

with σ being the noise level. Similarly to the one-dimensional case, we define the σ-admissible

measure and the positive σ-admissible measure as follows.

Definition 4.1. Given the measurement Y, µ̂=
∑k

j=1
â jδŷ j

is said to be a σ-admissible discrete

measure of Y if
∣

∣F [µ̂](ω)−Y(ω)
∣

∣<σ, ||ω||2 ≤Ω.

If further â j > 0, j = 1, · · · ,k, then µ̂ is said to be a positive σ-admissible discrete measure of Y.

4.1. EXACT DIFFRACTION LIMIT

We first consider the exact diffraction limit problem. Note that by the discussions in the intro-

duction, the classic diffraction limit problem considers distinguishing two positive sources

with identical intensity. To rigorously set the diffraction limit, we introduce the following

diffraction limit which is related to the noise level.

Definition 4.2. The two-point diffraction limit is defined as the largest nonnegative number R

such that for all measures µ=
∑2

j=1 a jδy j
with a1 = a2 > 0, if

∣

∣

∣

∣y1 −y2

∣

∣

∣

∣

2 <R,

then for some image Y in the model (4.2) it is impossible to determine whether the image Y is

generated from one or two sources from the σ-admissible measures defined in (4.1). In other

words, there exists a σ-admissible measure of some Y with only one point source.
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By the definition, when
∣

∣

∣

∣y1 −y2

∣

∣

∣

∣

2 ≥ R, one can definitely distinguish two points with

identical amplitudes from their image, and conversely, if the separation condition fails to hold,

in some cases it is impossible to determine if the image is generated from one or two sources.

Note that Theorem 3.1 already gives an estimate for R, that is,

R ≤
2arcsin

(

2
(

σ
mmin

) 1
2

)

Ω
.

This is already a very accurate estimate compared to the real diffraction limit, but there are

still some small amplifications in the estimates that cannot be reduced trivially, such as the

noise amplification in (2.6). To derive the exact resolution limit, we attack the problem in a

more direct way and establish the following theorem.

Theorem 4.1 (Two-point diffraction limit). Let σ
mmin

≤ 1
2

. The two-point diffraction limit R in

a space of general dimensionality is given by

R =
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
,

where mmin = a1 = a2. When σ
mmin

> 1
2

, no matter what the separation distance is, there are

always some σ-admissible measures of some image Y with only one point source.

Note that Theorem 4.1 resolves the puzzle and debate about the diffraction limit in very

general circumstances. It is important that Theorem 4.1 holds even when one has only two

measurements at ω= 0,Ω. Also, when σ
mmin

< 1
2

, the diffraction limit is already less than the

Rayleigh limit, which is far beyond common sense. Now the formula only holds for the case

when a1 = a2 which may prohibit its applications. In the next two sections, we will generalize

it to more general cases and find that the resolution limit in these cases is still the diffraction

limit.

Now we introduce the proof.

Proof. Step 1. We first prove the one-dimensional case. Let µ =
∑2

j=1 a jδy j
and µ̂ = aδŷ . A

crucial relation is

F [µ̂](ω) =F [µ](ω)+w1(ω), |w1(ω)| < 2σ, ω ∈ [−Ω,Ω]. (4.3)

Note that if (4.3) holds, µ̂ can be a σ-admissible measure of some Y generated by model (4.2).

This time, resolving two point sources is impossible. Conversely, if (4.3) does not hold, µ̂

cannot be any σ-admissible measure of some Y generated by µ as in model (4.2). Thus the

resolution limit R is the constant such that (4.3) holds when |y1 − y2| <R and fails to hold in

the opposite case. Instead of considering all the ω ∈ [−Ω,Ω] directly, we consider

F [µ̂](ω) =F [µ](ω)+w1(ω), |w1(ω)| < 2σ, ω ∈ [0,Ω]. (4.4)
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In the sequel, we intend to find R so that (4.4) holds when |y1 − y2| <R and doe not hold in

the opposite case. Afterward, we will show that (4.3) holds as well under some circumstances

when |y1 − y2| <R.

Step 2. In the setting of diffraction limit, a1 = a2 = mmin. Note that for the general source

locations y1, y2, shifting them by x and get that

F [µ̂](ω)e i xω =F [µ](ω)e i xω+w1(ω)e i xω, |w1(ω)e i xω| < 2σ, ω ∈ [−Ω,Ω],

we can transform the problem into the case when y1 = −y2. Thus we consider that the

underlying source is µ= mminδy1
+mminδy2

with y1 > 0, y1 =−y2. The measure µ̂ is aδŷ with

a and ŷ to be determined.

From (4.4), we get that

w1(ω) = ae i ŷω−mmin(e i y1ω+e i y2ω) = ae i ŷω−2mmin cos
(

y1ω
)

.

We denote dmin := |y1 − y2| and first consider the case when 0 < dmin < π
Ω

. Note that for two

non-negative values x, y , we have

∣

∣

∣xe iθ− y
∣

∣

∣

2
= (x cosθ− y)2 +x2 sin2 = x2 + y2 −2x y cosθ ≥ (x − y)2

and the equality is attained when θ = 0. Since 0 < dmin ≤ π
Ω

(

0 < y1 ≤ π
2Ω

)

, we have cos(y1ω) ≥
0,ω ∈ [0,Ω]. Thus for every ω,

|w1(ω)| ≥
∣

∣|a|−2mmin cos
(

y1ω
)∣

∣

and the minimum is attained when ŷ = 0 and a is a positive number. We now try to find the

condition on y1 so that there exists a satisfying

∣

∣|a|−2mmin cos
(

y1ω
)∣

∣< 2σ, ω ∈ [0,Ω].

This is equivalent to

max
ω,ω′∈[0,Ω]

∣

∣2mmin

(

cos
(

y1ω
)

−cos
(

y1ω
′))∣

∣< 4σ. (4.5)

If dmin = 2y1 ≤ π
Ω

, then 0 ≤ y1ω≤ π
2

,ω ∈ [0,Ω]. Then problem (4.5) becomes

2mmin

∣

∣

∣

∣

1−cos

(

dmin

2
Ω

)∣

∣

∣

∣

< 4σ.

Thus, 4sin
(

dminΩ

4

)2
< 4σ

mmin
, and equivalently

dmin <
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
.
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Note that when dmin <
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
, choosing a = mmin+mmin cos(y1Ω)

2
and ŷ = 0 makes |w1(ω)| <

2σ, ω ∈ [0,Ω] according to the above discussions. As w1(ω) = w1(−ω) this time, the solution

also makes

|w1(ω)| < 2σ, ω ∈ [−Ω,0].

Thus this is exactly the diffraction limit R when 0 < dmin ≤ π
Ω

, and meanwhile σ
mmin

≤ 1
2

. Now,

we consider the case when dmin > π
Ω

and σ
mmin

> 1
2

. We choose the specific case where a = mmin

and ŷ = y1. Then

w1(ω) = mmine i y1ω−mmin(e i y1ω+e i y2ω) = mmine i y2ω, ω ∈ [−Ω,Ω].

Condition σ
mmin

> 1
2

gives

|w1(ω)| < 2σ.

Thus the case when σ
mmin

> 1
2

is meaningless. Indeed, there are always some σ-admissible

measures for some images with only one point source.

Step 3. Now we consider the case when the sources y j ’s are in R
k . We still consider the

crucial relation that

F [µ̂](ω) =F [µ](ω)+w1(ω), |w1(ω)| < 2σ, ||ω||2 ≤Ω. (4.6)

By a similar argument as the one in step 1, we know that the resolution limit R is the constant

such that (4.6) holds when
∣

∣

∣

∣y1 −y2

∣

∣

∣

∣

2 < R and fails to hold in the opposite case. Note that

by choosing suitable axes or transforming the problem, we can make y1 = (y1,0, · · · ,0)⊤,y2 =
(y2,0, · · · ,0)⊤. Consider µ̂= aδŷ, ŷ ∈R

k with a and ŷ to be determined. We now have

F [µ̂](ω)−F [µ](ω) = ae i ŷ·ω−
2

∑

j=1

a j e i y j ·ω = ae i ŷ2:k ·ω2:k e ŷ1ω1 −
2

∑

j=1

a j e i y jω1 .

Thus analyzing when (4.6) holds can be reduced to the one-dimensional case and it is not hard

to see the result for the one-dimensional space still holds for multi-dimensional spaces.

4.2. RESOLUTION LIMIT FOR DETECTING TWO SOURCES

Although we have the exact formula for the diffraction limit now, the specific setting actually

prohibits its applicability. To fully understand the resolution limit in resolving two point

sources and to have strong practical applications, we still want to know the exact value of our

computational resolution limit.

4.2.1. RESOLUTION LIMIT FOR DETECTING TWO POSITIVE SOURCES

We first consider resolving positive sources. We define the computational resolution limit for

resolving positive sources as follows.

28



Definition 4.3. The computational resolution limit to the number detection problem in the

super-resolution of positive sources in general space R
k is defined as the smallest nonnegative

number D
+
k,num

such that for all positive n-sparse measure
∑n

j=1
a jδy j

, a j > 0,y j ∈R
k and the

associated measurement Y in (4.2), if

min
p ̸= j

∣

∣

∣

∣

∣

∣y j −yp

∣

∣

∣

∣

∣

∣

2
≥D

+
k,num ,

then there does not exist any positive σ-admissible measure of Y with less than n supports.

We have the following theorem which shows that the resolution limit is the same as the one

in Theorem 4.1.

Theorem 4.2. For σ
mmin

≤ 1
2

, the resolution limit D
+
k,num

for resolving two positive sources in R
k

is given by

D
+
k,num =

4arcsin

(

(

σ
mmin

) 1
2

)

Ω
.

It can be attained if a1 = a2. When σ
mmin

> 1
2

, no matter what the separation distance is, there

are always some σ-admissible measures of some Y with only one point source.

Importantly, when σ
mmin

< 1
2

, the two-point resolution is already less than the Rayleigh limit

in any dimensional spaces that

D
+
k,num <

π

Ω
,

which far exceeds all expectations. This indicates that, in contrast to what was commonly

supposed, super-resolution from a single snapshot is in fact very possible.

Now we introduce the proof and it is highly non-trivial.

Proof. Step 1. We only need to consider the case when σ
mmin

≤ 1
2

, as the case when σ
mmin

> 1
2

is trivial. Also, we only consider the one-dimensional case since the treatment for multi-

dimensional spaces is similar to the one in the proof of Theorem 4.1.

Similarly to step 1 in the proof of Theorem 4.1, the resolution limit D
+
k,num

should be the

constant such that the following

F [µ̂](ω) =F [µ](ω)+w2(ω), |w2(ω)| < 2σ, ω ∈ [−Ω,Ω], (4.7)

holds when |y1 − y2| <D
+
k,num

and fails to hold in the opposite case. Choosing a suitable axis,

we assume that the underlying source is µ = mminαδy1
+mminδy2

with y1 = −y2, α ≥ 1. We

consider µ̂= aδŷ with a > 0 and ŷ to be determined. We shall prove that if

∣

∣y1 − y2

∣

∣≥
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
,

then (4.7) doesn’t hold for any µ̂ consisting of only one positive source. On the opposite case,

Theorem 4.1 already ensures the existence of such µ̂ making

|w2(ω)| < 2σ, ω ∈ [−Ω,Ω].
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By the above two results, we prove the theorem.

From (4.7), we have that

w2(ω) = ae i ŷω−mmin

(

αe i y1ω+e−i y1ω
)

. (4.8)

In the following proof, we will find a necessary condition for mina>0,α≥1,ŷ∈R |w2(ω)| < 2σ,ω ∈
[−Ω,Ω]. We only consider dmin ≤ π

Ω
, which corresponds to the case when σ

mmin
≤ 1

2
. The other

cases ( σ
mmin

> 1
2

) are trivial.

Step 2. We analyze a necessary condition, that is,

min
a>0,α≥1,ŷ∈R

|w2(Ω)|+ |w2(0)| < 4σ. (4.9)

We thus consider

min
a>0,α≥1,ŷ∈R

∣

∣

∣ae i ŷΩ−mmin

(

αe i y1Ω+e−i y1Ω

)∣

∣

∣+|a −mmin (α+1)| . (4.10)

Let α= 1+h,h ≥ 0, and rewrite the above formula as

min
a>0,h≥0,ŷ∈R

∣

∣

∣ae i ŷΩ−hmmine i y1Ω−2mmin cos(y1Ω)
∣

∣

∣+|a − (2mmin +hmmin)|.

A key observation is that if 2mmin cos(y1Ω)+hmmin ≤ a ≤ 2mmin +hmmin, then we have

min
a>0,h≥0,ŷ∈R

∣

∣

∣ae i ŷΩ−hmmine i y1Ω−2mmin cos(y1Ω)
∣

∣

∣+|a − (2mmin +hmmin)|

≥ min
a>0,h≥0,ŷ∈R,x̂∈R

∣

∣

∣ae i ŷΩ−hmmine i x̂Ω−2mmin cos(y1Ω)
∣

∣

∣+|a − (2mmin +hmmin)|

= min
a>0,h≥0

∣

∣a −hmmin −2mmin cos(y1Ω)
∣

∣+|a − (2mmin +hmmin)|

= min
b∈R, 2mmin cos(y1Ω)≤b≤2mmin

∣

∣b −2mmin cos(y1Ω)
∣

∣+|2mmin −b|

=2mmin −2mmin cos(y1Ω), (4.11)

where the second equality is because a ≥ 2mmin cos(y1Ω)+hmmin, hmmin ≥ 0 and 2mmin cos(y1Ω) =
2mmin cos( dmin

2
Ω) ≥ 0 by dmin ≤ π

Ω
.

On the other hand, letting h = 0, ŷ = 0, we obtain that

min
a>0

∣

∣

∣ae i ŷΩ−hmmine i y1Ω−2mmin cos(y1Ω)
∣

∣

∣+|a − (2mmin +hmmin)|

=min
a>0

∣

∣a −2mmin cos(y1Ω)
∣

∣+|a −2mmin|

=min
a>0

(a −2mmin cos(y1Ω))+2mmin −a
(

choose 2mmin cos(y1Ω) ≤ a ≤ 2mmin

)

=2mmin −2mmin cos(y1Ω).

Together with (4.11), this yields

min
a>0,h≥0,ŷ∈R

∣

∣

∣ae i ŷΩ−hmmine i y1Ω−2mmin cos(y1Ω)
∣

∣

∣+|a − (2mmin +hmmin)|

=2mmin −2mmin cos(y1Ω)
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in the case when 2mmin cos(y1Ω)+hmmin ≤ a ≤ 2mmin +hmmin.

Now we consider the case when a < 2mmin cos(y1Ω)+hmmin. In this case, we have

min
a>0,h≥0,a<2mmin cos(y1Ω)+hmmin,ŷ∈R

∣

∣

∣ae i ŷΩ−hmmine i y1Ω−2mmin cos(y1Ω)
∣

∣

∣+|a − (2mmin +hmmin)|

≥ min
a>0,h≥0,a<2mmin cos(y1Ω)+hmmin

|a − (2mmin +hmmin)|

= min
a>0,h≥0,a<2mmin cos(y1Ω)+hmmin

2mmin +hmmin −a

>2mmin −2mmin cos(y1Ω).

Last, we consider the case when a > 2mmin +hmmin. This time, we have

min
a>0,h≥0,a>2mmin+hmmin,ŷ∈R

∣

∣

∣ae i ŷΩ−hmmine i y1Ω−2mmin cos(y1Ω)
∣

∣

∣+|a − (2mmin +hmmin)|

≥ min
a>0,h≥0,a>2mmin+hmmin,ŷ∈R

∣

∣

∣ae i ŷΩ−hmmine i y1Ω−2mmin cos(y1Ω)
∣

∣

∣

≥ min
a>0,h≥0,a>2mmin+hmmin

a −hmmin −2mmin cos(y1Ω)

>2mmin −2mmin cos(y1Ω).

Therefore, combining the above discussions yields

min
a≥0,h≥0,ŷ∈R

∣

∣

∣ae i ŷΩ−hmmine i y1Ω−2mmin cos(y1Ω)
∣

∣

∣+|a − (2mmin +hmmin)|

=2mmin −2mmin cos(y1Ω),

and i.e.,

min
a≥0,α≥1,ŷ∈R

∣

∣

∣ae ŷΩ−mmin

(

αe i y1Ω+e−i y1Ω

)∣

∣

∣+|a −mmin (α+1)|

=2mmin −2mmin cos(y1Ω).

Thus, (4.9) is equivalent to

2mmin −2mmin cos(y1Ω) < 4σ.

Similarly to the proof of Theorem 4.1, this shows that

dmin <
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
,

and completes the proof.

4.2.2. RESOLUTION LIMIT FOR DETECTING TWO COMPLEX SOURCES

Now we consider super-resolving complex sources. We first define the computational resolu-

tion limit in R
k .
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Definition 4.4. The computational resolution limit to the number detection problem in the

super-resolution of sources in general space R
k is defined as the smallest nonnegative num-

ber Dk,num such that for all n-sparse measures
∑n

j=1
a jδy j

, a j ∈ C,y j ∈ R
k and the associated

measurement Y in (4.2), if

min
p ̸= j

∣

∣

∣

∣

∣

∣y j −yp

∣

∣

∣

∣

∣

∣

2
≥Dk,num ,

then there does not exist any σ-admissible measure of Y with less than n supports.

We have the following theorem.

Theorem 4.3. For σ
mmin

≤ 1
2

, the resolution limit Dk,num for resolving two sources in R
k is given

by

Dk,num =
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
. (4.12)

It can be attained if a1 = a2. When σ
mmin

> 1
2

, no matter what the separation distance is, there

are always some σ-admissible measures of some Y with only one point source.

Theorem 4.3 demonstrates that when σ
mmin

< 1
2

, the two-point resolution for distinguishing

general sources is already better than the Rayleigh limit.

We now prove the theorem.

Proof. Step 1. We only need to analyze the case when σ
mmin

≤ 1
2

, as the case when σ
mmin

> 1
2

is trivial. Also, we only consider the one-dimensional case since the treatment for multi-

dimensional spaces is similar to the one in the proof of Theorem 4.1.

Similarly to step 1 in the proof of Theorem 4.1, the resolution limit Dk,num should be the

constant such that the following estimate:

F [µ̂](ω) =F [µ](ω)+w2(ω), |w2(ω)| < 2σ, ω ∈ [−Ω,Ω], (4.13)

holds when |y1 − y2| <Dk,num and fails to hold in the opposite case.

Step 2. Without loss of generality, we assume the underlying source is

µ= mminαe−iβδy1
+mmine iβδy2

with y1 =−y2, 0 < y1 ≤ π
2Ω

, α≥ 1 and 0 ≤ β≤ π
2

. It is not hard to see that the other cases can

all be transformed to the above setting. We consider µ̂ = ae iγδŷ with a > 0, γ and ŷ to be

determined. We shall prove that if

∣

∣y1 − y2

∣

∣≥
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
,

then (4.13) does not hold for any µ̂ consisting of only one source. On the opposite case,

Theorem 4.1 already ensures the existence of such µ̂ that makes

|w2(ω)| < 2σ, ω ∈ [−Ω,Ω].
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By the two results, we prove the theorem.

From (4.13), we have

w2(ω) = ae iγe i ŷω−mmin

(

αe−iβe i y1ω+e iβe−i y1ω
)

.

We rewrite it as

w2(ω) = ae iγe i ŷω−mmin

(

αe i (y1ω−β) +e i (β−y1ω)
)

. (4.14)

We then analyze w2 by considering the two cases: (1) y1Ω≥β; (2) y1Ω<β.

Part 1: (y1Ω≥β)

In the first case, when y1Ω≥β, we define ω∗ = β
y1

∈ [0,Ω]. Considering

w3(ω) := w2(ω+ω∗) =ae iγe i ŷ(ω+ω∗) −mmin

(

αe i (y1ω−β+y1ω
∗) +e i (β−y1ω

∗−y1ω)
)

=ae iγ+ŷω∗
e i ŷω−mmin

(

αe i (y1ω) +e i (−y1ω)
)

, (4.15)

|w2(ω)| < 2σ,ω ∈ [−Ω,Ω] is equivalent to

|w3(ω)| =
∣

∣

∣ae iγ+ŷω∗
e i ŷω−mmin

(

αe i (y1ω) +e i (−y1ω)
)∣

∣

∣< 2σ, ω ∈ [−Ω−ω∗,Ω−ω∗].

Note that this reduces the problem to a case similar to the one for positive sources. Since the

interval [−Ω−ω∗,Ω−ω∗] includes the interval [−Ω,0], in the same fashion as the proof for

positive sources, we consider the necessary condition that

min
a>0,α≥1,γ∈R,ŷ∈R,ω∗∈[0,Ω]

|w3(−Ω)|+ |w3(0)| < 4σ. (4.16)

Note that minimizing over 0 ≤β≤ y1Ω is now equivalent to minimizing over 0 ≤ω∗ ≤Ω. We

thus consider

min
a>0,α≥1,γ∈R,ŷ∈R,ω∗∈[0,Ω]

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−mmin

(

αe−i y1Ω+e i y1Ω

)∣

∣

∣+
∣

∣

∣ae iγ+ŷω∗
−mmin (α+1)

∣

∣

∣ .

Let α= 1+h,h ≥ 0, and rewrite the above formula as

min
a>0,h≥0,γ∈R,ŷ∈R,ω∗∈[0,Ω]

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−hmmine−i y1Ω−2mmin cos(y1Ω)

∣

∣

∣

+
∣

∣

∣ae iγ+ŷω∗
− (2mmin +hmmin)

∣

∣

∣ .

A key observation is that if 2mmin cos(y1Ω)+hmmin ≤ a ≤ 2mmin +hmmin, we have

min
a>0,h≥0,γ∈R,ŷ∈R,ω∗∈[0,Ω]

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−hmmine−i y1Ω−2mmin cos(y1Ω)

∣

∣

∣

+
∣

∣

∣ae iγ+ŷω∗
− (2mmin +hmmin)

∣

∣

∣

≥ min
a>0,h≥0,γ∈R,ŷ∈R,x̂∈R

∣

∣

∣ae−i ŷΩ−hmmine−i x̂Ω−2mmin cos(y1Ω)
∣

∣

∣+|ae iγ− (2mmin +hmmin)|

= min
a>0,h≥0

∣

∣a −hmmin −2mmin cos(y1Ω)
∣

∣+|a − (2mmin +hmmin)|

= min
b∈R, 2mmin cos(y1Ω)≤b≤2mmin

∣

∣b −2mmin cos(y1Ω)
∣

∣+|2mmin −b|

=2mmin −2mmin cos(y1Ω), (4.17)
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where the second equality is because 2mmin cos(y1Ω)+hmmin ≤ a ≤ 2mmin +hmmin and

2mmin cos(y1Ω) = 2mmin cos( dmin

2
Ω) ≥ 0 by dmin ≤ π

Ω
.

On the other hand, letting h = 0, ŷ = 0,γ= 0,ω∗ = 0, we have

min
a>0

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−hmmine−i y1Ω−2mmin cos(y1Ω)

∣

∣

∣+
∣

∣

∣ae iγ+ŷω∗
− (2mmin +hmmin)

∣

∣

∣ .

=min
a>0

∣

∣a −2mmin cos(y1Ω)
∣

∣+|a − (2mmin +hmmin)|

=min
a>0

(a −2mmin cos(y1Ω))+2mmin −a
(

choose 2mmin cos(y1Ω) ≤ a ≤ 2mmin

)

=2mmin −2mmin cos(y1Ω).

Together with (4.17), this yields

min
a>0,h≥0,γ∈R,ŷ∈R,ω∗∈[0,Ω]

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−hmmine−i y1Ω−2mmin cos(y1Ω)

∣

∣

∣

+
∣

∣

∣ae iγ+ŷω∗
− (2mmin +hmmin)

∣

∣

∣

=2mmin −2mmin cos(y1Ω),

in the case when 2mmin cos(y1Ω)+hmmin ≤ a ≤ 2mmin +hmmin.

Now, we consider the case when a < 2mmin cos(y1Ω)+hmmin. In this case, we have

min
a>0,h≥0,γ∈R,ŷ∈R,ω∗∈[0,Ω]

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−hmmine−i y1Ω−2mmin cos(y1Ω)

∣

∣

∣

+
∣

∣

∣ae iγ+ŷω∗
− (2mmin +hmmin)

∣

∣

∣

≥ min
a>0,h≥0,γ∈R,ω∗∈[0,Ω],a<2mmin cos(y1Ω)+hmmin

|ae iγ+ŷω∗
− (2mmin +hmmin)|

≥ min
a>0,h≥0,a<2mmin cos(y1Ω)+hmmin

|a − (2mmin +hmmin)|

= min
a>0,h≥0,a<2mmin cos(y1Ω)+hmmin

2mmin +hmmin −a

>2mmin −2mmin cos(y1Ω).

Finally, we consider the case when a > 2mmin +hmmin. In this case, we have

min
a>0,h≥0,γ∈R,ŷ∈R,ω∗∈[0,Ω]

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−hmmine−i y1Ω−2mmin cos(y1Ω)

∣

∣

∣

+
∣

∣

∣ae iγ+ŷω∗
− (2mmin +hmmin)

∣

∣

∣

≥ min
a>0,h≥0,γ∈R,ŷ∈R,ω∗∈[0,Ω],a>2mmin+hmmin

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−hmmine−i y1Ω−2mmin cos(y1Ω)

∣

∣

∣

≥ min
a>0,h≥0,a>2mmin+hmmin

a − (2mmin cos(y1Ω)+hmmin)

>2mmin −2mmin cos(y1Ω).
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Therefore, combining all the above discussions, we arrive at

min
a>0,h≥0,γ∈R,ŷ∈R,ω∗∈[0,Ω]

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−hmmine−i y1Ω−2mmin cos(y1Ω)

∣

∣

∣

+
∣

∣

∣ae iγ+ŷω∗
− (2mmin +hmmin)

∣

∣

∣

=2mmin −2mmin cos(y1Ω),

or equivalently,

min
a>0,α≥1,γ∈R,ŷ∈R,ω∗∈[0,Ω]

∣

∣

∣ae iγ+ŷω∗
e−i ŷΩ−mmin

(

αe−i y1Ω+e i y1Ω

)∣

∣

∣+
∣

∣

∣ae iγ+ŷω∗
−mmin (α+1)

∣

∣

∣

=2mmin −2mmin cos(y1Ω).

Thus (4.16) is equivalent to

2mmin −2mmin cos(y1Ω) < 4σ.

Similar to the proof of Theorem 4.1, this yields

dmin <
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
.

Part 2: (y1Ω<β)

In part 2, because y1Ω < β, the trick used in the former proof doesn’t work now. We utilize

another finding for the proof. Suppose dmin ≥
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
and there exist some measure

µ̂= aδŷ so that

|F [µ̂](ω)−Y(ω)| <σ, ω ∈ [−Ω,Ω].

Then, this is in contradiction with (5.3) and (5.4) in Theorem 5.1. Thus we have proved that

dmin <
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
.

Note that this new finding can also be used to prove the first part, but we keep the first part

for a better understanding of the optimization problem and its underlying difficulty. The

new finding comes from an optimal algorithm described in the next section. Now we have

completed the proof.

4.3. TWO-POINT RESOLUTION FOR VERY GENERAL IMAGING MODELS

The two-point resolution estimate in previous sections can actually be generalize to very

general imaging problems as we shall discuss next. We assume that the available measurement

is

Y(ω) =χ(ω)
(

F [µ](ω)+W(ω)
)

=
n
∑

j=1

a jχ(ω)e i y j ·ω+χ(ω)W(ω), ω ∈R
k , ||ω||2 ≤Ω, (4.18)
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where χ(ω) = 0 or 1, χ(0) = 1 and χ(ω) = 1, ||ω||2 =Ω. Moreover, the noise W is assumed to be

bounded:

|W(ω)| <σ, ||ω|| ≤Ω.

For the imaging model (4.18), consider similar definitions to the previous ones for σ-

admissible measures and the computational resolution limit. It is not hard to see that the

estimates in the previous sections still hold and we have the following theorem.

Theorem 4.4. Consider the imaging model (4.18). For σ
mmin

≤ 1
2

, all of the resolution limits

R,D+
k,num

,Dk,num for resolving two sources in R
k are

4arcsin

(

(

σ
mmin

) 1
2

)

Ω
. (4.19)

These resolution limits can be attained if a1 = a2. When σ
mmin

> 1
2

, no matter what the separation

distance is, there are always some σ-admissible measures of some Y corresponding to one point

source.

Compared to (4.2), the model (4.18) is more general, for instance, super-resolution from

discrete measurements can be modeled by (4.18). Thus Theorem 4.4 can be applied directly

to super-resolution in practice and line spectral estimations in array processing. Moreover,

by the inverse filtering methods, our results can be applied to imaging problems with very

general optical transfer functions, such as the one shown in Figure 4.1. We believe that this will

inspire new understandings for the resolution of a number of imaging modalities. We remark

that it is more appropriate to apply Theorem 4.4 to imaging problems where the noise level at

0 and ||ω||2 =Ω are close or comparable after modifying the model to (4.18). When the noise

levels at these sample points are not comparable, we suggest to use the same idea as the one

introduced in the previous sections in order to derive more accurate estimates.

In fact, Theorem 4.4 reveals the fact that the two-point resolution is actually not that related

to the continuous band of frequencies but rather mostly determined by the boundary points.

In particular, in the one-dimensional case, if we have only measurements in [−Ω+ϵ,Ω−ϵ] for

ϵ> 0, then the resolution in (4.19) does not hold anymore. In the multi-dimensional cases,

similar conclusions hold as well. Thus the condition ||ω||2 =Ω is nearly a necessary condition

for Theorem 4.4 to hold.

5. OPTIMAL ALGORITHMS

We now have the exact resolution limit for determining whether the image is generated by

one or two sources. This is a new benchmark for super-resolution and model order detection

algorithms. A natural question is whether we can find the optimal algorithm to distinguish

between one and two sources in the image. Note that, according to our theoretical results,

when the two sources are separated by more than

∣

∣y1 − y2

∣

∣≥
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
,
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Figure 4.1: Optical transfer function.

any algorithm targeting certain solutions in the set of admissible measures provides a solution

with more than one source. But we still cannot confirm that there is more than one source

inside. Only by considering the sparest solution in the set of admissible measures can we

confirm this fact. However, since l0 minimization is intractable, this direction is still unrealistic

and we resort to other means. In [30], a simple singular value thresholding-based algorithm

was proposed to detect the source number. In this section, we consider a variant of it and

theoretically demonstrate that the algorithm exactly attains the resolution limit.

5.1. AN OPTIMAL ALGORITHM FOR DETECTING TWO SOURCES IN DIMENSION ONE

In [30], the authors proposed a number detection algorithm called sweeping singular value

thresholding number detection algorithm. It determines the number of sources by threshold-

ing the singular value of a Hankel matrix formulated from the measurement data. Here we

consider a simple variant of it.

To be more specific, we first assemble the following Hankel matrix from the measurements

(4.2), that is,

H =
(

Y(−Ω) Y(0)

Y(0) Y(Ω)

)

. (5.1)

We denote the singular value decomposition of H as

H = Û Σ̂Û∗,

where Σ̂ = diag(σ̂1, σ̂2) with the singular values σ̂1, σ̂2 ordered in a decreasing manner. We

then determine the source number by a thresholding of the singular values. We derive the

following Theorem 5.1 for the threshold and the resolution of the algorithm.

Theorem 5.1. Consider µ=
∑2

j=1 a jδy j
, y j ∈R and the measurement Y in (4.2) that is generated
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from µ. If the following separation condition is satisfied

∣

∣y1 − y2

∣

∣≥
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
, (5.2)

then we have

σ̂2 > 2σ (5.3)

for σ̂2 being the minimum singular value of the matrix H in (5.1). On the other hand, if there

exists µ̂ consisting of only one source being a σ-admissible measure of Y, then

σ̂2 < 2σ. (5.4)

Proof. Observe that H has the decomposition

H = D AD⊤+∆, (5.5)

where A = diag(e−i y1Ωa1,e−i y2Ωa2) and D =
(

φ1(e i y1Ω),φ1(e i y2Ω)
)

with φ1(ω) being defined as

(1,ω)⊤ and

∆=
(

W(−Ω) W(0)

W(0) W(Ω)

)

.

We denote the singular values of D AD⊤ by σ1,σ2.

We first estimate ||∆||2. We have

max
x2

1+x2
2=1

∣

∣

∣

∣∆(x1, x2)⊤
∣

∣

∣

∣

2

= max
x2

1+x2
2=1

√

(x1W(−Ω)+x2W(0))2 + (x1W(0)+x2W(Ω))2

= max
x2

1+x2
2=1

√

W(0)2 +2x1x2W(0)(W(−Ω)+W(Ω))+x2
1W(−Ω)2 +x2

2W(Ω)2

< max
x2

1+x2
2=1

√

σ2 +4σ2x1x2 + (x2
1 +x2

2)σ2
(

by the condition on the noise
)

=2σ.

Thus we have ||∆||2 < 2σ. By Weyl’s theorem, we have

|σ̂ j −σ j | ≤ ||∆||2 < 2σ, j = 1,2. (5.6)

Now we estimate the minimum singular value of D AD⊤ in the presence of two sources.

Denote σmin(M) and λmin(M) as respectively the minimum singular value and eigenvalue of

matrix M . We have

σmin(D AD⊤) ≥ mminσmin(D)2 = mminλmin(DD∗) = 4mmin sin
(∣

∣

∣

y1 − y2

4

∣

∣

∣Ω

)2
.

Therefore, when (5.2) holds, σmin(D AD⊤) ≥ 4σ. This is σ2 ≥ 4σ. Similarly, by Weyl’s theorem,

|σ̂2 −σ2| ≤ ||∆||2. Thus, σ̂2 ≥ 4σ−||∆||2 > 2σ. Conclusion (5.3) follows.
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On the other hand, note that if there exists µ̂ = â1δŷ1
consisting of one source being a σ-

admissible measure of Y, we can substitute the D in (5.5) by
(

φ1(e i ŷ1Ω)
)

with the W and ∆

being modified. Now we have σ2 = 0 and also ||∆||2 < 2σ. Thus by (5.6) we get |σ̂2| ≤ ||∆||2 < 2σ

and prove (5.4).

We summarize the algorithm in the following Algorithm 1. Note that in practical applications

one can estimate a noise level although not tight and utilize our algorithm to detect the source

number. By Theorem 5.1, for all estimated σ’s less than mmin

2
, our algorithm can achieve

super-resolution.

Algorithm 1: Singular-value-thresholding number detection algorithm

Input: Noise level σ;

Input: Measurement: Y(ω),ω ∈ [−Ω,Ω];

1: Formulate the Hankel matrix

H =
(

Y(−Ω) Y(0)

Y(0) Y(Ω)

)

from measurement Y(ω);

2: Compute the singular value of H as σ̂1, σ̂2 distributed in a decreasing manner;

3: If σ̂2 ≥ 2σ, determine source number n = 2 and otherwise, determine n = 1;

Return: n.

Numerical experiments:

We conduct many numerical experiments to elucidate the performance of Algorithm 1. We

consider Ω= 1 and measurements Y generated by two sources. The noise level is σ and the

minimum separation distance between sources is dmin. We first perform 100000 random

experiments (the randomness is in the choice of (dmin,σ, y j , a j )) and the results were shown in

Figure 5.1 (a)-(c). The green points and red points represent respectively the cases of successful

detection and failed detection. It is indicated that in many cases, our Algorithm 1 can surpass

the diffraction limit. We also conduct 100000 experiments for the worst-case scenario; see

results in Figure 5.1 (d)-(f). As shown numerically, our algorithm successfully detects the

source number when dmin is above the diffraction limit and failed in exactly the opposite

cases. Last, we consider the worst cases when detecting the source number is impossible when
σ

mmin
> 1

2
. The results were presented in Figure 5.1 (g)-(i) and there is no successful case when

σ
mmin

> 1
2

. Note that the failed cases when σ
mmin

< 1
2

and dmin above the diffraction limit is due

to the fact that |e i y1Ω−e i y2Ω| becomes small when |y1 − y2|Ω approaching 2π.

We also conduct several experiments to illustrate that our algorithm can detect the correct

source number even if it seems very unlikely to distinguish the two sources by other methods.

We consider 5 cases where the source number is correctly detected by our algorithm; see

Figure 5.2 (a). However, as shown by Figure 5.2 (b)-(f), their MUSIC images only have one

peak.
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(a) detection results (b) detection success (c) detection fail

(d) detection results (e) detection success (f) detection fail

(g) detection results (h) detection success (i) detection fail

Figure 5.1: Plots of the successful and the unsuccessful number detections by Algorithm 1

depending on the relation between σ
mmin

and dmin. The green points and red points

represent respectively the cases of successful detection and failed detection. The

black line is the diffraction limit derived in Theorem 4.1.

5.2. AN OPTIMAL ALGORITHM FOR DETECTING TWO SOURCES IN MULTI-DIMENSIONAL

SPACES

For detecting two sources in multi-dimensional spaces, we can first apply Algorithm 1 to

the measurement in several one-dimensional subspaces V j ’s and save the outputs, then

determine the source number as the maximum value among these outputs. If some of the V j ’s

are sufficiently close to the space spanned by y2 −y1, it actually achieves similar resolution to

the one in Theorem 5.1.

To be specific, let µ =
∑2

j=1 a jδy j
,y j ∈ R

k and Y(ω),ω ∈ R
k , ||ω||2 ≤ Ω be the associated

measurement in (4.2). We choose N unit vectors v j ’s in R
k and formulate the corresponding
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(a) detection results (b) MUSIC image (c) MUSIC image

(d) MUSIC image (e) MUSIC image (f) MUSIC image

Figure 5.2: Plot (a) is the relation between σ
mmin

and dmin for several cases. Plots (b)-(f) are

MUSIC images of these cases. Note that it is impossible to detect the correct source

number from these MUSIC images.

Hankel matrices Hq ’s as

Hq =
(

Y(−Ωvq ) Y(0)

Y(0) Y(Ωvq )

)

, q = 1, · · · , N . (5.7)

Denoting σ̂q, j the j -th singular value of Hq , we can detect the source number by thresholding

on σ̂q, j ’s. Moreover, we have the following theorem on the resolution and the threshold.

Theorem 5.2. Consider µ=
∑2

j=1 a jδy j
,y j ∈R

k and the measurement Y in (4.2) that is generated

from µ. If

min
q=1,··· ,N

min
(∣

∣∠(y1 −y2,vq )
∣

∣ , π−
∣

∣∠(y1 −y2,vq )
∣

∣

)

= θmin (5.8)

with∠(·, ·) denoting the angle between vectors, and the following separation condition is satisfied

∣

∣

∣

∣y1 −y2

∣

∣

∣

∣

2 ≥
4arcsin

(

(

σ
mmin

) 1
2

)

Ωcosθmin
, (5.9)

then we have

max
q=1,··· ,N

σ̂q,2 > 2σ (5.10)

for σ̂q,2 being the minimum singular value of the Hankel matrix Hq that defined in (5.7). On

the other hand, if there exists µ̂ consisting of only one source being the a σ-admissible measure

of Y, then

σ̂q,2 < 2σ, q = 1, · · · , N . (5.11)
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Proof. By (5.8), there exists vq∗ such that

∣

∣y1 ·vq∗ −y2 ·vq∗
∣

∣= cosθmin

∣

∣

∣

∣y1 −y2

∣

∣

∣

∣

2 ≥
4arcsin

(

(

σ
mmin

) 1
2

)

Ω
.

Hence, similar to the proof of Theorem 5.1, we can show that σ̂q∗,2 > 2σ. This proves (5.9).

Also, we can show (5.11) in the same way as the one in the proof of Theorem 5.1.

We summarize the algorithm as the following Algorithm 2.

Algorithm 2: Multi-dimensional singular-value-thresholding number detection algo-

rithm

Input: Noise level σ, measurement: Y(ω),ω ∈R
k , ||ω||2 ≤Ω;

Input: N unit vectors vq ’s;

for q = 1, · · · , N do
Formulate the Hankel matrix:

Hq =
(

Y(−Ωvq ) Y(0)

Y(0) Y(Ωvq )

)

.

Compute the singular value of H as σ̂1, σ̂2 distributed in a decreasing manner;

if σ̂2 ≥ 2σ then
Return n = 2.

Return n = 1.

Numerical experiments:

We consider detecting two sources in two-dimensional spaces. For large enough N , we

consider

vq =
(

cos
( qπ

N

)

, sin
( qπ

N

))⊤
∈R

2, q = 1, · · · , N . (5.12)

Input vq ’s to Algorithm 2, we then determine the source number by Algorithm 2 from mea-

surements Y(ω). By Theorem 5.2, we can determine the correct number when

∣

∣

∣

∣y1 −y2

∣

∣

∣

∣

2 ≥
4arcsin

(

(

σ
mmin

) 1
2

)

Ωcos
(

π
2N

) .

This indicates that we already have an excellent resolution by leveraging only a few vq ’s. We

use N = 10 unit vectors in the experiments and conduct 100000 random experiments for both

the general and worst cases. As shown in Figure 5.3 (a) and (c), our algorithm successfully

detects the source number when dmin is above nearly the diffraction limit and fails to detect

the source number on some cases when dmin is below the diffraction limit. A very interesting

phenomenon is that, as shown in Figure 5.3 (b), there are many cases in which our algorithm

detects the correct source number even when dmin is much lower than the diffraction limit.

This indicates that the tolerance of the noise of the algorithm is in fact excellent. The reason is

that the worst cases or nearly worst cases actually only happen when the noise satisfies certain

patterns. Because we use the measurements in N one-dimensional subspaces, it becomes
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more difficult for the noises in all the subspaces to satisfy these patterns. Thus the noise

tolerance becomes better in the two-dimensional case.

Note that our theoretical results and algorithms are potentially of great importance in

practical applications. We will examine the super-resolving ability of our algorithm in practical

examples in a future work.

(a) detection results (b) detection success (c) detection fail

Figure 5.3: Plots of the successful and the unsuccessful number detections by Algorithm 2

depending on the relation between σ
mmin

and dmin. The green points and red points

represent respectively the cases of successful detection and failed detection. The

black line is the diffraction limit derived in Theorem 4.1.

A. SOME INEQUALITIES

In this Appendix, we present some inequalities that are used in this paper. We first recall the

following Stirling approximation of factorial

p
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n , (A.1)

which will be used frequently in the subsequent derivations.

Lemma A.1. Let ζ(n) and ξ(n −1) be defined as in (3.4). For n ≥ 2, we have

( 2

ζ(n)ξ(n −1)

) 1
2n−2 ≤

2e

n −1
.

Proof. For n = 2,3,4, it is easy to check that the above inequality holds. Using (A.1), we have

for odd n ≥ 5,

ζ(n)ξ(n −1) = (
n −1

2
!)2

( n−3
2

!)2

4
≥π2(

n −1

2
)n(

n −3

2
)n−2e−(2n−4)

=(n −1)n−2
π2( n−1

2
)n( n−3

2
)n−2e−(2n−4)

(n −1)n−2

=π2e2

(

n −1

2e

)2n−2 (n −3)n−2

(n −2)n−2

≥0.29π2e2

(

n −1

2e

)2n−2 (

since n ≥ 5
)
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and for even n ≥ 6,

ζ(n)ξ(n −1) = (
n

2
)!(

n −2

2
)!

( n−2
2

)!( n−4
2

)!

4

≥π2(
n

2
)

n+1
2 (

n −2

2
)n−1(

n −4

2
)

n−3
2 e−(2n−4)

=(n −1)2n−2
π2( n

2
)

n+1
2 ( n−2

2
)n−1( n−4

2
)

n−3
2 e−(2n−4)

(n −1)2n−2

=π2e2

(

n −1

2e

)2n−2 n
n+1

2 (n −2)n−1(n −4)
n−3

2

(n −1)2n−2

>π2

(

n −1

2e

)2n−2

.

Therefore, for all n ≥ 5,

( 2

ζ(n)ξ(n −1)

) 1
2n−2 ≤

2e

n −1

( 2

π2

) 1
2n−2 ≤

2e

n −1
.

Lemma A.2. Let ζ(n) and λ(n) be defined as in (3.4) and (3.16), respectively. For n ≥ 2, we have

( 8

ζ(n)λ(n)

) 1
2n−1 ≤

2.36e

n − 1
2

.

Proof. For n = 2,3,4,5, the inequality follows from direct calculation. By the Stirling approxi-

mation (A.1), we have for even n ≥ 6,

ζ(n)λ(n) = ζ(n)ξ(n −2) = (
n

2
)!(

n −2

2
)!

( n−4
2

!)2

4

≥π2(
n

2
)

n+1
2 (

n −2

2
)

n−1
2 (

n −4

2
)n−3e−(2n−5)

=(n −
1

2
)2n−1

π2( n
2

)
n+1

2 ( n−2
2

)
n−1

2 ( n−4
2

)n−3e−(2n−5)

(n − 1
2

)2n−1

=(
n − 1

2

2e
)2n−1 π2e422

(n − 1
2

)2

n
n+1

2 (n −2)
n−1

2 (n −4)n−3

(n − 1
2

)2n−3

≥(
n − 1

2

2e
)2n−1 4π2

(n − 1
2

)2
,
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and for odd n ≥ 7,

ζ(n)λ(n) = ζ(n)ξ(n −2) = (
n −1

2
!)2

( n−3
2

)!( n−5
2

)!

4

≥π2(
n −1

2
)n(

n −3

2
)

n−2
2 (

n −5

2
)

n−4
2 e−(2n−5)

=(n −
1

2
)2n−1

π2( n−1
2

)n( n−3
2

)
n−2

2 ( n−5
2

)
n−4

2 e−(2n−5)

(n − 1
2

)2n−1

=(
n − 1

2

2e
)2n−1 π2e422

(n − 1
2

)2

(n −1)n(n −3)
n−2

2 (n −5)
n−4

2

(n − 1
2

)2n−3

≥(
n − 1

2

2e
)2n−1 4π2

(n − 1
2

)2
.

Therefore, for all n ≥ 6,

( 8

ζ(n)λ(n)

) 1
2n−1 ≤

2e

n − 1
2

( (n − 1
2

)28

4π2

) 1
2n−1 ≤

2.36e

n − 1
2

.

Lemma A.3. Let ζ(n) be defined as in (3.4). For n ≥ 2, we have

(n − 1
2

)2n−2

ζ(n)(n −2)!
≤

2n− 3
2 e2n−1

(
p
π)3 max(

p
n −2,1)

.

Proof: By the Stirling approximation formula (A.1), when n is odd and n ≥ 3, we have

(n − 1
2

)2n−2

ζ(n)(n −2)!
=

(n − 1
2

)2n−2

( n−1
2

!)2(n −2)!

≤
(n − 1

2
)2n−2

(
p

2π)3( n−1
2

)n(n −2)n−2+ 1
2 e−(2n−3)

≤
2ne2n

(e
p

2π)3
p

n −2

(n − 1
2

)2n−2

(n −1)n(n −2)n−2
≤

2n− 3
2 e2n−1

(
p
π)3

p
n −2

.

When n is even and n ≥ 4, we have

(n − 1
2

)2n−2

ζ(n)(n −2)!
=

(n − 1
2

)2n−2

( n
2

)!( n−2
2

)!(n −2)!

≤
(n − 1

2
)2n−2

(
p

2π)3( n
2

)
n+1

2 ( n−2
2

)
n−1

2 (n −2)n−2+ 1
2 e−(2n−3)

≤
2ne2n

(e
p

2π)3
p

n −2

(n − 1
2

)2n−2

n
n+1

2 (n −2)
n−1

2 (n −2)n−2
≤

2n− 3
2 e2n−1

(
p
π)3

p
n −2

.

For n = 2, the inequality follows from a direct calculation.
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