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Abstract

The semiclassical (or Hagedorn) wavepackets depending on a fixed set of param-
eters are an orthonormal L

2-basis of generalized coherent states. They have been
used to solve numerically the time-dependent Schrödinger equation in its semiclas-
sical formulation, yet their localization property makes them inefficient in case of
non-local phenomena such as quantum tunneling. In order to overcome this diffi-
culty, we use simultaneously a few members of several bases with different parame-
ters. We propose an algorithm to expand a given wavefunction in terms of multiple
families of Hagedorn wavepackets; each family can then be accurately and efficiently
propagated using modern semiclassical time-splittings.

1 Introduction

The semiclassical formulation of the time-dependent Schrödinger equation involves a small
parameter (denoted ε2 below), see e.g. [26, II.2.3], [24]. An L2-orthonormal basis that
is suitable for such models are the parametrized semiclassical (recently called Hagedorn
[17, 18]) wavepackets. The numerical methods based upon them combine time-splitting
methods with spectral grid free methods in space that work best for localized semiclassical
solutions [11, 25, 14, 5, 15, 24]. However, they are very inefficient when non-local phenom-
ena have to be represented [13]. A short outline of the main ingredients of these methods
is given in the next section; the idea is that the parameters of such a basis (family) evolve
classically (i.e. are governed by some specific ordinary differential equations), while the
corrections of the coefficients of the members of the basis expansion are computed via
a Galerkin method. The evolution of the coefficients does not influence the evolution of
the parameters. Hence, only short-time semiclassical propagation can be accurate, while
long-time propagation or non-localized phenomena cannot be reproduced easily [13].
We attempt to overcome these two drawbacks by the following idea. At each time-step
we write the solution as a superposition of several well localized families of semiclassical
wavepackets. By linearity of the Schrödinger equation, we can use the known very efficient
semiclassical propagation algorithms for each of the localized families for a short time and
reassemble the solution when needed. The essential part of this procedure is the spawning
of the families of Hagedorn wavepackets. We call spawning the creation of a superposition
of well localized wavepackets that approximates a given possibly non-localized wavefunc-
tions: a set of different parameters responsible for the different families is proposed. Since
each family is a basis, such a representation of the wavefunction is not unique and it is
not obvious how to choose the involved families. Spawning Gaussians has already been
done in several contexts, e.g. in [7, 23, 4]. Based on the original idea of Bargmann
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[3], adaptive phase space lattice propagation methods using standard linear algebra tech-
niques were addressed [6]; since the algorithms are too expensive, modern linear algebra
techniques as tensor trains are used [16]. We propose now a different spawning technique.
To respect the symmetry between space and momentum, we use phase space represen-
tations of wavefunctions. Explicit analytical formulas for the Fourier–Bros–Iagolnitzer
(FBI) transform and for the Husimi transform of the Hagedorn wavepackets are known
and summarized in Section 3. To achieve a well localized expansion we use so-called local-
ization operators [8]. We introduce them in Section 4. The spawning process is explained
in Section 5 and consists of two parts. First, we determine a new set of parameters by
fitting a Gaussian mixture to the Husimi transform of the target wavefunction. This is
done by a modified expectation maximization algorithm [10] that seeks to minimize the
cross-entropy or Kullback-Leibler divergence to the target wavefunction [1]. In a second
step, the localization operators, the orthogonality of the members of a family, and the
analytical formulas for the FBI transforms of the involved Hagedorn wavepackets are used
to compute the coefficients in the new expansions. Section 5 ends with a didactic example
that illustrates the spawning process and the fast decay of the coefficients in the expan-
sions. In Section 6, we combine this new spawning technique with modern semiclassical
propagation algorithms to solve numerically the time-dependent Schrödinger equation for
two benchmark problems. We investigate models that exhibit tunneling, a non-local phe-
nomenon that is notoriously difficult in the semiclassical limit of quantum dynamics: the
problem of the Eckart potential [27, 13], which leads to scattering-like tunneling and the
doublewell potential, which evolves into delocalized confined solutions.

2 Hagedorn Wavepackets

The Hagedorn wavepackets were developed in [17] and [18]. However, we use the notation
of [11]. Let q, p ∈ R

d and Q,P ∈ C
d×d with

QTP − P TQ = 0 and Q∗P − P ∗Q = 2i id, (2.1)

where Q∗ denotes conjugate-transpose and QT denotes transpose without complex con-
jugation. Condition (2.1) holds if and only if the matrix

F :=

(
Re (Q0) Im (Q0)
Re (P0) Im (P0)

)

is symplectic. Thus we also call these conditions the symplecticity condition. Finally, we
abbreviate Π := (q, p,Q, P ). Using the vector-valued raising and lowering operators

Rε [Π] :=
i√
2ε2

(
P ∗ (x− q) −Q∗ (−iε2∇x − p

))

Lε [Π] := − i√
2ε2

(
P T (x− q) −QT

(
−iε2∇x − p

))
(2.2)

we define for k ∈ N
d
0 the Hagedorn wavepackets ϕε

k [Π] recursively by

ϕε
0 [Π] (x) :=

(
πε2
)− d

4 (detQ)− 1

2 exp
(

i
2ε2 (x− q)T

PQ−1 (x− q) + i
ε2p

T (x− q)
)

and
ϕε

k+ej
[Π] := 1√

kj+1
Rε

j [Π]ϕε
k [Π] (2.3)
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for all k ∈ N
d
0 and all j ∈ {1, . . . , d}. We denote ej the j-th member of the canonical basis

in R
d. Then, the three-term recurrence [26, (2.7)]

Q
(√

kj + 1ϕε
k+ej

(x)
)d

j=1
=
√

2
ε2 (x− q)ϕε

k (x) −Q
(√

kjϕ
ε
k−ej

(x)
)d

j=1
(2.4)

holds (the terms with negative entries in the multi-indices are treated as zero). We see
here the difference to the simple tensor product of one-dimensional Hermite functions:
the matrix Q mixess the coordinates in a non-trivial way. The obtained functions form
an orthonormal basis of L2

(
R

d
)
, see [18]. All members of the basis share the same

Π, so we call such a basis a family of Hagedorn wavepackets. The parameters q and
p are respectively the means in the physical and in the frequency space, while the he
matrices Q and P are related to the localization of the wavepackets in these spaces [18].
A wavefunction ψ ∈ L2

(
R

d
)

can thus be approximated by the linear combination

ψ (x) =
∑

k∈K
ckϕ

ε
k [Π] (x) , (2.5)

where K ⊂ N0 is a multi-index set and ck ∈ C for all k ∈ K. A common choice for K is
[11, Sec.5.4]

K =

{
k ∈ N

d
0 |

d∏

j=1

(1 + kj) ≤ K

}
(2.6)

with some truncation constant K ∈ N. As in the case of Hermite functions in one
dimension, we are faced with a spectral method for the space approximation that does
not need any artificial boundary conditions and that is in principle grid free. Constructed
with the application to semiclassical quantum-dynamics in mind, the approximation is
very efficient for localized wavefunctions, but it is very expensive for non-localized ones.

3 Phase Space Representations

Throughout this chapter, we fix parameters Π0 = (q0, p0, Q0, P0) such that Q0 and P0

satisfy the symplecticity condition (2.1). Our goal is to find analytic expressions for
two phase space representations of the Hagedorn functions ϕε

k [Π0] that can be evaluated
efficiently.

3.1 FBI Transform

The FBI transform of a wavefunction yields a complex valued phase space representation.
It was developed in [21] and the abbreviation stands for Fourier–Bros–Iagolnitzer [12,
Ch. 3.3]. There are different conventions for the transform and we will use the one from
[22]. Let q, p ∈ R

d and consider a multi-index k ∈ N
d. Let us shorten the notation

ϕε
k [q, p] := ϕε

0 [q, p, Id, iId]

for a Hagedorn function with standard parameters Q = Id and P = iId. Moreover, let

g [q, p] (q, p) := e
i

2ε2 pT qϕε
0 [q, p] (x) (3.1)

=
(
πε2
)− d

4 exp
(
− 1

2ε2 ‖x− q‖2 + i
ε2p

T
(
x− q

2

))
.
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In this notation, the FBI transform Bε [ψ] : Rd × R
d → C of a wavefunction ψ ∈ L2

(
R

d
)

is defined by the L2 inner product

Bε [ψ] (q, p) := (2πε)− d
2 〈g [q, p] , ψ〉

= (2πε)− d
2 e− i

2ε2 pT q〈ϕε
0 [q, p] , ψ〉.

Note the different convention in [25], where the authors omit the factor e
i

2ε2 pT q. The FBI
transform is a complex valued phase space representation of ψ. It is worth noting that
for all ψ1, ψ2 ∈ L2 (R), we have

〈ψ1, ψ2〉L2(Rd) = 〈Bε [ψ1] ,Bε [ψ2]〉L2(R2d),

which follows from the well-known resolution of identity property of coherent states

IdL2(Rd) = (2πε)−d

∫

Rd×Rd

ϕε
0 [q, p] 〈ϕε

0 [q, p] , · 〉 dq dp. (3.2)

This will be important because it means that the FBI transform Bε preserves the angles
between and hence the orthonormality of the members of a single family of semiclassical
wavepackets. The FBI transform of the Hagedorn function ϕε

k [Π0] can be computed
analytically [25, Prop 5], where Π0 = (q0, p0, Q0, P0) is sucht that Q0 and P0 satisfy
symplecticity condition (2.1). We only state the result for k = 0, namely

Bε [ϕε
0 [Π0]] (q, p) =

(
πε2
)− d

2 (det (Z0))
− 1

2 e
− 1

2ε2
(q−q0)2+ i

ε2
pT

( q
2

−q0

)

e
1

2ε2
zT

0
(q,p)Q0Z−1

0
z0(q,p),

where
z0 (q, p) := (q − q0) − i (p− p0) and Z0 := Q0 − iP0. (3.3)

In the special case of Q = Id and P = i Id we have

Bε [ϕε
0 [q0, p0]] (q, p) =

(
2πε2

)− d
2 e− i

2ε2
pT

0
q0 e− 1

4ε2
|z0(q,p)|2 .

In contrast to [25, Prop 5], the multiplicative complex phase does not depend on (q, p) and
this is the reason why we use this convention for the FBI transform. Getting rid of these
oscillations makes numerical evaluation more stable and the phase space plots readable.
In order to evaluate Bε [ϕε

k [Π0]] for k 6= 0, we use the following three-term recurrence.

Proposition 3.1. Let ε > 0 and d ∈ N. Moreover, let Π0 = (q0, p0, Q0, P0) be parameters
where Q0 and P0 satisfy the symplecticity condition (2.1). The FBI transforms

Bk :=

{
Bε [ϕε

k [Π0]] , if k1, . . . , kd ≥ 0

0 , else

of the Hagedorn functions satisfy the three-term recurrence

(Q0 − iP0)




√
k1 + 1Bk+e1

(q, p)
...√

kd + 1Bk+ed
(q, p)


 =

√
2
ε2 z0 (q, p)Bk (q, p)−

(
Q0 − iP0

)



√
k1 Bk−e1

(q, p)
...√

kd Bk−ed
(q, p)




for all k ∈ N
d
0 and all q, p ∈ R

d, where z0 (q, p) := (q − q0) − i (p− p0).

4



Proof. Consider the lowering operator, see (2.2):

Lε [Π0] = − i√
2ε2

(
P T

0 (x− q0) −QT
0

(
−iε2∇x − p0

))
,

which is the adjoint of the raising operator and hence
√
kj + 1Bε

k+ej
(q, p) = 〈Lε

j [Π0] g
ε [q, p] , ϕε

k [Π0]〉, (3.4)

where gε [q, p] was defined in (3.1). We compute

Lε [Π0] g
ε [q, p] = 1√

2ε2

(
−iP T

0 (x− q0) + iQT
0 (p− p0) −QT

0 (x− q)
)
gε [q, p]

= 1√
2ε2

(
QT

0 ((q − q0) + i (p− p0)) − (Q0 + iP0)
T (x− q0)

)
gε [q, p] .

In the notation (3.3) and with Z̃0 := Q0 + iP0, this can be rewritten as

Lε [Π0] g
ε [q, p] = 1√

2ε2
QT

0 z0 (q, p) gε [q, p] − 1√
2ε2
Z̃T

0 (x− q0) g
ε [q, p] .

We substitute this into (3.4) and get



√
k1 + 1Bk+e1

(q, p)
...√

kd + 1Bk+ed
(q, p)




= 1√
2ε2
Q∗

0 z0 (q, p)Bk (q, p) − 1√
2ε2
Z̃∗

0




〈gε [q, p] , (x− q0)1 ϕ
ε
k [Π0]〉

...
〈gε [q, p] , (x− q0)d ϕ

ε
k [Π0]〉


 .

We replace the term (x− q0) using the three-term recurrence for Hagedorn wavepack-
ets (2.4)

(x− q0) ϕ
ε
k [Π0] =

√
ε2

2
Q0




√
k1 + 1ϕε

k+e1
[Π0]

...√
kd + 1ϕε

k+ed
[Π0]


+

√
ε2

2
Q0




√
k1 ϕ

ε
k−e1

[Π0]
...√

kd ϕ
ε
k−ed

[Π0]


 .

This yields the three-term recurrence

(
Id + 1

2
Z̃∗

0Q0

)



√
k1 + 1Bk+e1

(q, p)
...√

kd + 1Bk+ed
(q, p)




= 1√
2ε2
Q∗

0 z0 (q, p)Bk (q, p) − 1
2
Z̃∗

0Q0




√
k1 Bk−e1

(q, p)
...√

kd Bk−ed
(q, p)




that can be simplified using the symplecticity property (2.1)

QT
0 P0 − P T

0 Q0 = 0 and Q∗
0P0 − P ∗

0Q0 = 2i Id.

The first equation implies
Z̃∗

0 Q0 = Q∗
0

(
Q0 − iP0

)

and the second equation implies

Id + 1
2
Z̃∗

0 Q0 = 1
2
Q∗

0 Z0.

Because Q0Q
∗
0 is real and positive definite [26, Ch. 5,Lem. 1.1], Q∗

0 is invertible. This
concludes the proof.
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Remark 3.1. The matrix Z0 = Q0 − iP0 is invertible and well-conditioned since [25,
Page 19]

(Q0 − iP0)
∗ (Q0 − iP0) = (Q0 + iP0)

∗ (Q0 + iP0) + 4 Id.

3.2 Husimi Transform

The Husimi transform was first introduced in [20]. Let ψ ∈ L2
(
R

d
)

be a wavefunction.
The Husimi transform of ψ is the function on the phase space Hε [ψ] : Rd × R

d → [0,∞)
defined as the absolute value squared of the FBI transform:

Hε [ψ] (q, p) := |Bε [ψ] (q, p)|2.
An equivalent definition can be obtained from the Wigner transform [25, Page 3]

Wε [ψ] (q, p) :=
(
2πε2

)−d
∫

Rd

ψ
(
q + x

2

)
ψ
(
q − x

2

)
eixT p/ε2

dx.

The Husimi transform is just a mollified Wigner transform [25, Page 3]

Hε [ψ] = G ∗W ε [ψ] , G (q, p) =
(
πε2
)−d

exp
(
− 1

ε2

(
q2 + p2

))
,

where ∗ denotes convolution. It follows from the resolution of identity property (3.2) that
∫

Rd×Rd

Hε [ψ] (q, p) dq dp = ‖ψ‖2
L2(Rd).

The Husimi transform is thus a quasi probability density if ‖ψ‖L2 = 1. It is not an honest

probability density because the marginal densities w.r.t. q and p are not equal to |ψ̂|2 and
|ψ|2, respectively. The Husimi transform of a Hagedorn function ϕε

k [Π0] can be computed
analytically, see [25, Prop 5]. For subsequent use, we only need the Husimi transform of
ϕε

0 [Π0]. However, we require a different expression than the one in [25], see Remark 5.2.

Proposition 3.2. Let ε > 0 and d ∈ N. Moreover, let Π0 = (q0, p0, Q0, P0) be parameters
such that the 2d× 2d matrix

F0 :=

(
Re (Q0) Im (Q0)
Re (P0) Im (P0)

)

is symplectic. The Husimi transform of ϕε
0 [Π0] is then given by

Hε [ϕε
0 [Π0]] (q, p) = (2π)− d

2

√
det (Σ) exp

(
−1

2

〈(
q − q0

p− p0

)
,Σ−1

(
q − q0

p− p0

)〉)
,

with covariance matrix
Σ := ε2

2

(
F0F

T
0 + Id

)
.

Proof. We use the fact, that the Husimi transform is just a mollified Wigner transform

Hε [ϕε
0 [Π0]] = Gε ∗ Wε [ϕε

0 [Π0]] , Gε (q, p) =
(
πε2
)−d

exp
(
− 1

ε2

(
q2 + p2

))
.

The Wigner transform Wε [ϕε
0 [Π0]] of ϕε

0 is given by [25, Thm 1]

Wε [ϕε
0 [Π0]] (q, p) =

(
πε2
)−d

exp

(
− 1

ε2

∥∥∥F−1
0

(
q − q0

p− p0

)∥∥∥
2
)
.

This is a Gaussian with mean (q0, p0) and covariance matrix ε2

2
F0F

T
0 . The covariance

matrix of Gε is ε2

2
Id. The convolution is thus a Gaussian with mean (q0, p0) and covariance

matrix Σ = ε2

2
F0F

T
0 + ε2

2
Id.
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4 Localization Operators

The localization operators have been introduced in [8] and are closely related to the FBI
transform. Let F : Rd × R

d → [0, 1] be a function on the phase space. The localization
operator with symbol F is defined as

PF :=
(
2πε2

)−d
∫

Rd×Rd

F (q, p) ϕε
0 [q, p] 〈ϕε

0 [q, p] , · 〉L2 dq dp,

where ϕε
0 [q, p] := ϕε

0 [q, p, Id, iId]. It has the following properties [8].

(i) If F ≡ 1, the resolution of identity (3.2) implies PF = IdL2 .

(ii) Given a partition of unity F1 + . . .+Fn ≡ 1 on the phase space, we obtain a partition
of unity on L2

(
R

d
)

by PF1
+ . . .+ PFn

= IdL2 .

(iii) If F = IdΩ is the characteristic function of a subset Ω ⊆ R
2 of the phase space, then

PFψ decays quickly outside of Ω, i.e. is localized around Ω.

The Hagedorn functions ϕε
k [q0, p0] happen to be the eigenfunctions of PF whenever F is

spherically symmetric around (q0, p0). Moreover, if F is a spherically symmetric Gaussian
with mean (q0, p0), then the eigenvalues decay exponentially [8].

Example 4.1. Let d = 1 for simplicity. Consider the phase space Gaussian

F (q, p) = exp

(
−(q − q0)

2 + (p− p0)
2

2ε2σ2

)
(4.1)

with mean (q0, p0) ∈ R
2 and σ2 > 0. The Galerkin matrix of PF with respect to the

Hagedorn basis ϕε
k [q0, p0] can be computed explicitly, namely (see [8] for the derivation)

Mkj := 〈ϕε
k [q0, p0] , PF ϕ

ε
j [q0, p0]〉L2 =

(
1 + 1

σ2

)−(k+1)
δkj, (4.2)

where δkj denotes the Kronecker delta, i.e. M is diagonal with exponentially decaying
entries and

PF

∞∑

k=0

ckϕ
ε
k [q0, p0] =

∞∑

k=0

(
1 + 1

σ2

)−(k+1)
ckϕ

ε
k [q0, p0] , ck ∈ C.

This encodes the localization property of PF . Recall that the state ϕε
k [q0, p0] for k = 0

minimizes the Heisenberg uncertainty, i.e. wavefunctions cannot be more localized in
phase space. The larger we choose k, the less localized the state becomes. Then PF

suppresses the higher excited states (large k, less localized) exponentially in k.

Example 4.1 can be levaraged to an approximate partition of unity. Consider an equally
spaced grid of Gaussians like (4.1) in phase space. If the grid spacing is small enough, the
pointwise sum of Gaussians will be approximately constant [2] and yield a partition of
unity after multiplication by a suitable factor, see Figure 1 for an example in one dimension
(instead of 2d). By Item (ii) above, this gives rise to an (approximate) partition of unity
on L2

(
R

d
)
. Suppose we want to represent a given wavefunction ψ ∈ L2 (R) by a sum of

members of different families of Hagedorn wavepackets

ψ =
∑

i,j,k

c
i,j
k ϕ

ε
k [qi, pj] , (4.3)
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Figure 1: Gaussian approximate partition of unity using equally spaced normal densities
of unit variance. The smaller the spacing, the better the approximation of the constant
one function. See [2] for details.

where (qi, pj) ∈ R
2 lie on an equally spaced grid in phase space with sufficiently small

spacing, so that approximately
∑

i,j Fi,j ≡ 1, where

Fi,j (q, p) := αF (q − qi, p− pj)

for a suitable normalization factor α depending only on ε and σ2. By Item (ii), we then
have

ψ ≈
∑

i,j

Pi,jψ

and we can project every Pi,jψ onto a Hagedorn family to get the coefficients in (4.3)

c
i,j
k = 〈ϕε

k [qi, pj] , PFi,j
ψ〉L2(Rd) = 〈Bε [ϕε

k [qi, pj]] , Fi,j Bε [ψ]〉L2(R2d).

This is closely related to an idea from [23], where the authors also use a Gaussian ap-
proximate partition of unity in order to expand with respect to an equally spaced grid of
coherent states. Our work differs in two essential ways.

1. We use the higher excited states ϕε
k [q, p], while [23] only considers k = 0 in (4.3).

2. We do not use a grid, but we choose (automatically) just a few suitable points
(qm, pm) in the phase space.

The details on how to obtain the (qm, pm) for a given ψ are explained in the next section.
This also requires a different symbol Fm associated with (qm, pm). We will choose the
symbol

Fm (q, p) =
rmH

ε
0 (q − qm, p− pm)∑

ℓ rℓH
ε
0 (q − qℓ, p− pℓ)

,

where r1, r2, . . . are positive and sum to one, and

Hε
0 (q, p) := Hε [ϕε

0 [0, 0]] (q, p) =
(
2πε2

)− 1

2 exp
(
− 1

2ε2

(
q2 + p2

))

is the Husimi function of the Hermite function of order zero. Observe that
∑

m Fm ≡ 1
so that

∑
m PFm

= IdL2 .

8



5 Spawning Semiclassical Wavepackets

Our goal is to approximate a given wavefunction ψ ∈ L2
(
R

d
)

as a linear combination of
n ∈ N Hagedorn families, that is

ψ ≈
n∑

m=0

∑

k∈K
c

(m)
k ϕε

k [qm, pm] (5.1)

from some coefficient vectors c(m) ∈ C
|K| and a truncated multi-index K set as in (2.6).

In principle, we could use parameter sets different from Πm = (qm, pm, Id, iId), but this
did not improve the results, see Remark 5.2. The following is worth noting.

(i) Since the Hagedorn wavepackets are an orthonormal basis, a single family would be
enough to approximate ψ given that K is sufficiently large.

(ii) The two functions ϕε
j [qm, pm] and ϕε

k [qm, pm] of the same family are orthogonal if
j 6= k. Functions of different parameters (qℓ, pℓ) 6= (qm, pm) are never orthogonal.

Item (i) means that we seek points (qm, pm) in phase space that yield sparse coefficients
meaning

|c(m)
k |

|c(m)
0 |

decays fast as |k| → ∞.

Item (ii) means that for given points (qm, pm), we want to determine c(m) by a method that
can use the orthogonality within the families, but cares also about the non-orthogonality
across the families. The localization operators achieve both at the same time as we will
see below. We will now explain our expansion scheme that consists of two steps.

5.1 Fit the Parameters (Expectation Maximization)

The parameters (qm, pm) ∈ R
2d are computed by fitting a Gaussian mixture to the Husimi

transform Hε := Hε [ψ] of our target function ψ, that is

Hε (q, p) ≈ f (q, p) :=
n∑

m=1

rm H
ε
0 [qm, pm] (q, p) (5.2)

for some means (qm, pm) and some mixture probabilities rm ∈ [0, 1] with r1 + . . .+ rn = 1.
To this end, we will use the associated partition of unity on phase space

Fm :=
rmH

ε
0 [qm, pm]

n∑
ℓ=1

rℓH
ε
0 [qℓ, pℓ]

.

In the context of Bayesian inference, Fm (q, p) is usually denoted by π (m|q, p) and is called
the posterior probability given (q, p). In order to determine good parameters rm, qm, pm

of the fitting problem (5.2), we use a modification of the well-known expectation maxi-
mization (EM) algorithm from [10]. We start with an initial guess for the parameters
rm, qm, pm, where 1 ≤ m ≤ n. The algorithm then alternates N -times between the fol-
lowing two steps.

9



E-Step: Compute the normalization constants

r̂m =

∫

Rd×Rd

Fm (q, p)Hε (q, p) dqdp,

where 1 ≤ m ≤ n.

M-Step: Obtain a new candidate (q̂m, p̂m) for the mean of index m by computing its expec-
tation under the density

fm (q, p) := r̂−1
m Fm (q, p) Hε (q, p) .

This means, we compute for all 1 ≤ m ≤ n the integral

(
q̂m

p̂m

)
=

1

r̂m

∫

Rd×Rd

(
q

p

)
Fm (q, p)Hε (q, p) dqdp. (5.3)

Then we replace (qm, pm) by (q̂m, p̂m) and rm by r̂m for all 1 ≤ m ≤ n. This changes
also the partition of unity F1, . . . , Fn.

While we use Hε, the classical EM works on samples thereof. This variation apeared in [1,
Ch. 3.3]. In the discrete case, this algorithm seeks to maximize the log-likelihood of the
observed data. In our (continuous) case, it seeks to minimize [1, Ch. 3.3] the cross-entropy
or Kullback-Leibler divergence

D (Hε‖f) :=

∫

Rd×Rd

Hε (q, p) log

(
Hε (q, p)

f (q, p)

)
dqdp. (5.4)

It is known that D (Hε‖f) ≥ 0. Moreover, D (Hε‖f) = 0 if and only if Hε = f .

Remark 5.1. The classical EM-algorithm learns the mixture distribution from samples
(x1, k1) , . . . , (xN , kN) ∈ R

2d according to the (unknown) Husimi density Hε. We obtain
the classical EM from our algorithm if we replace Hε by the empirical density [1, A.2]

Hε
emp :=

1

N

N∑

i=1

δ(xi,ki),

where δ(x,k) is the delta distribution at (x, k). For example, the Kullback-Leibler diver-
gence turns into the negative log-likelihood if we replace Hε by Hε

emp

D
(
Hε

emp‖f
)

= − 1

N

N∑

i=1

log f (xi, ki) .

Likewise we can recover the classical EM updates for r̂m and (q̂m, p̂m), see [1, A.2].

Since
∑

m Fm ≡ 1, we have

D (Hε‖f) =
n∑

m=1

r̂m log

(
r̂m

rm

)
+

n∑

m=1

r̂m D
(
r̂−1

m Fm H
ε ‖Hε

0 [qm, pm]
)
. (5.5)

Another reason for the choice of (q̂m, p̂m) in (5.3) is due to the following proposition,
which also proves that it can only decrease the Kullback-Leibler divergence.

10



Proposition 5.1. Fix rm and Fm for all 1 ≤ m ≤ n, the pair (q̂m, p̂m) in (5.3) satisfies

(
q̂m

p̂m

)
= arg min

(q̃,p̃)

D
(
r̂−1

m Fm H
ε ‖Hε

0 [q̃, p̃]
)

Proof. The gradient w.r.t. (q̃, p̃) is

∇̃D
(
r̂−1

m Fm H
ε ‖Hε

0 [q̃, p̃]
)

= − 1

ε2

(
q̂m − q̃

p̂m − p̃

)

The Hessian equals the positive definite matrix 1
ε2 Id. Setting the gradient to zero finishes

the proof.

Example 5.1. In order to be able to see the algorithm at work, we consider an example
in dimension d = 1 with n = 6 families:

ψ (x) = c̃
(1)
0 ϕε

0 [q1, p1] + · · · + c̃
(6)
0 ϕε

0 [q6, p6] , (5.6)

where the parameters and coefficients are in Table 1. The Husimi transform Hε [ψ] of

m 1 2 3 4 5 6

c̃
(m)
0 0.5 0.2 + 0.2i −0.5 + 0.4i −0.5 0.25 + 0.25i 0.75 + 0.1i

(qm, pm) (0, 0) (4,−1) (5,−1)
(

11
2
, 11

2

) (
−5

2
, 3
)

(−6,−2)

Table 1: Parameters and coefficients of the linear combination (5.6).

ψ along with the centers of the initial and final Gaussians mixtures are plotted in Fig-
ure 2. We have used equal mixture probabilities rm = 1

5
for the initial Gaussian mixture;
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Figure 2: The Husimi transform of ψ and the centers of the means before the first iteration
(left) and after the last iteration (right).

the initial centers were intentionally selected far from the solution in order to give the
optimization algorithm a harder task. Then 30 iterations of the EM-algorithm were per-
formed. The Kullback-Leibler divergence D (Hε‖f) vs. the number of iterations is shown
in Figure 3. All phase space integrals are computed using 64 Gauss-Hermite quadrature
points translated to the corresponding previous guess (qm, pm) for the mean of the corre-
sponding mixture component. Note that exponential convergence is only due to the very
simple setting we are using here. In general the convergence of EM can be very slow [9].
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Figure 3: Kullback-Leibler divergence D (Hε‖f) after each iteration. At the last iteration,
the Kullback-Leibler divergence equals 0.09350535240053634.

Remark 5.2. So far we have only fitted a mixture of Gaussians with identity covariance
matrix. But we could also fit the covariance matrices in (5.2). Doing so, we have to
respect the constraint on the covariance matrix of Husimi groundstates

Σ =
ε2

2

(
F0F

T
0 + Id

)
, (5.7)

where F0 is symplectic, see Proposition 3.1. A simple sub-family of symplectic 2d × 2d
matrices is given by

F0 (α) =

(
eα 0
0 e−α

)
, α ∈ R.

In this case, we can explicitly compute the maximum likelihood estimator for α and thus
an update in the EM-algorithm for the covariance matrices

Σ (α) =
ε2

2

(
e2α + 1 0

0 e−2α + 1

)
= ε2 cosh (α) exp

(
α

(
1 0
0 −1

))

By direct computation, we find

det (Σ (α)) =
(
ε2 cosh (α)

)2d

d

dα
log (det (Σ (α))) = 2d tanh (α)

d

dα
Σ−1 =

ε2

cosh2 (α)

(
1 0
0 −1

)
.

Using these expressions we can compute the derivative w.r.t. α of the Kullback-Leibler
divergence like in the proof of Proposition 5.1. Setting it to zero, we obtain

α̂ = tanh−1 (β) , β :=
−d+

√
d2 + S2

ε

Sε

,

where

Sε =
1

ε2N

N∑

i=1

(
‖q̂m − xi‖2 − ‖p̂m − ki‖2

)
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in the descrete case (see Remark 5.1) and

Sε =
1

ε2 r̂m

∫

Rd×Rd

(
‖q̂m − q‖2 − ‖p̂m − p‖2

)
Fm (q, p) Hε (q, p) dqdp

in the continuous case. Here, (q̂m, p̂m) are updates for the means, which remain the same
for any parametrization of Σ. Note that α̂ is well defined since β ∈ (−1, 1) and β → 0 as
Sε → 0. However, optimizing for Σ did not gave better results in our simulations, except
for very specific cases. Moreover, not respecting the constraint (5.7) at all also leads to
worse results. Hence we stick to Σ = Id.

5.2 Compute the Coefficients (Localization Operators)

Recall that we want to expand a given wavefunction ψ ∈ L2
(
R

d
)

as in Equation (5.1),
that is

ψ ≈
n∑

m=0

∑

k∈K
c

(m)
k ϕε

k [qm, pm] , (5.1)

We have already obtained the parameters (qm, pm) ∈ R
2d by fitting a Gaussian mixture

Hε [ψ] (q, p) ≈
n∑

m=1

rm H
ε
0 [qm, pm] (q, p)

to the Husimi transform of ψ. We use the corresponding posteriors

Fm :=
rmH

ε
0 [qm, pm]

n∑
ℓ=1

rℓH
ε
0 [qℓ, pℓ]

as symbols for the localization operators from Section 4, that is

PFm
:=
(
2πε2

)−d
∫

Rd×Rd

Fm (q, p) ϕε
0 [q, p] 〈ϕε

0 [q, p] , · 〉L2 dq dp.

Due to the partition of unity property F1 + . . . Fn ≡ 1, we have PF1
+ . . . + PFn

= IdL2

and thus
ψ = PF1

ψ + . . .+ PFn
ψ.

The function PFm
ψ is concentrated in the phase space near (qm, pm). In order to obtain the

coefficients in (5.1) we can simply project it onto the corresponding Hagedorn wavepacket

c
(m)
k := 〈ϕε

k [qm, pm] , PFm
ψ〉L2(Rd) = 〈Bε [ϕε

k [qm, pm]] , Fm Bε [ψ]〉L2(R2d), (5.8)

where Bε denotes the Bargmann transform from Section 3.1. We use the three-term
recurrence of Proposition 3.1 and Gauss-Hermite quadrature translated to (qm, pm) to
compute the phase space integral on the right. Due to the localization property of PFm

,
this will typically yield quickly decaying coefficients.

Example 5.2. We consider the same wave function ψ as in Example 5.1, that is

ψ (x) = c̃
(1)
0 ϕε

0 [q1, p1] + · · · + c̃
(6)
0 ϕε

0 [q6, p6] ,

13



where the means and coefficients are in Table 1. We take the exact means (q1, p1) , . . . , (q6, p6)
and project onto the corresponding truncated Hagedorn wavepackets

ψ ≈
6∑

m=1

63∑

k=0

c
(m)
k ϕε

k [qm, pm] ,

where the coefficients c
(m)
k have been computed by (5.8). The L2-error between ψ and our

approximation is 1.12 · 10−5. Each of the six phase space integrals was computed by a
grid of 64 × 64 Gauss-Hermite quadrature points translated to (qm, pm). In Figure 4 we
can see the FBI transform of ψ and the strongly localized functions PFm

ψ. In Figure 5 we
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Figure 4: The FBI transforms of ψ (left) and PFm
ψ for m = 1, . . . , 6 (right). The color

indicates the complex phase eiα for α ∈ [0, 2π) at each point.

have assigned a color to each Hagedorn family. We see that the corresponding posterior
Fm really cuts off the other families, so that the projection yields exponentially decaying
coefficients as shown in the same figure.
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Figure 5: For m = 1, . . . , 6 and k = 0, . . . , 63, we show the partition of unity Fm (left)

and the coefficients |c(m)
k |2 (right) and in the corresponding colors. The black dots on the

left indicate the means (qm, pm). The color labels the six different families.

6 Application: Tunneling

The semiclassical formulation of the time-dependent Schrödinger equation with potential
V : Rd → R is

−iε2∂tψ (x, t) =
(

− ε4

2
∆ + V (x, t)

)
ψ (x, t) , ψ (x, 0) = ψ0 (x) , (6.1)
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where x ∈ R
d, t ∈ R and ε > 0. The semiclassical splitting [11] is a possible algorithm to

propagate a single Hagedorn family

ψ (x) =
∑

k∈K
cke

iS(t)/ε2

ϕε
k [q, p,Q, P ] (x)

according to this equation. We refer to [5] for details about the semiclassical splitting.
The basic idea for propagation by a time step h is as follows.

1. Write V = Uq +Wq, where U is the quadratic Taylor expansion of V (x) at x = q.

2. Propagate ψ by h
2

according to the Hamiltonian − ε4

2
∆ + Uq(0). This is achieved

simply by propagating the parameters according to the classical equations of motion

q̇ = p, ṗ = −∇V (q) , Q̇ = P, Ṗ = −∇2V (q)Q, Ṡ =
1

2
pTp− Uq(0) (q) .

The coefficients ck remain fixed.

3. Propagate the resulting wavefunction by h according to the Hamiltonian Wq(h/2) by
a Galerkin method that changes the coefficients ck and keeps the parameters fixed.

4. Propagate the parameters by h
2

according to − ε4

2
∆ + Uq(h/2) similar to Step 2.

This is basically a Strang splitting between − ε4

2
∆+Uq and W . The semiclassical splitting

has been improved by more sophisticated splittings that treat W as a perturbation. In
the simulations below, we use an enhancement proposed in [5, Chapter 3.4] that has
roughly the same computational effort as the semiclassical splitting, but is of improved
order ε2h6 + ε4h4 and thus performs particularly well for small ε, see [5] for details.

6.1 Eckart Potential

As an example of quantum mechanical tunneling with delocalization in space, we consider
the Eckart potential

V (x) =
V0

cosh2 (ax)
,

where V0 = 0.038008 and a = 0.94485808231. At time t = 0 we have a particle described
by the wavefunction ϕε

0 [Π], where Π := (q, p,Q, P ) with

q := −7.5589045088306, p := 0.2478854736792

and
Q := 3.5355339059327, P := 0.2828427124746 i,

see Figure 6. The model parameter is ε = 0.1530417681822, see Figure 6. This setting
is also treated in [27] and [13] in the context of Hagedorn wavepackets. However, note
the different convention ~ =̂ ε2 in the present work and ~ =̂ ε in [13]. This inital data is
then projected onto a linear combination of Hagedorn families with K = 64 coefficients.
All phase space integrals were computed by a grid of 64 × 64 translated Gauss-Hermite
quadrature points. The starting values (at any time step) for the EM-algorithm are
plotted in Figure 7. We perform 30 iterations of the EM-algorithm. In every iteration, we
discard all Gaussians with weight r̂m < 10−6. The effective number of Hagedorn families
used for propagation is plotted in Figure 8 (left). We use a time step of size h = 0.01 and

15



10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

1

2

3

4

5

wa
ve

fu
nc

tio
n

×10 1

| (x, t=0)|2
V(x)

Phase

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

po
te
nt
ia
l

×10 2

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

1

2

3

4

5

wa
ve

fu
nc

tio
n

×10 1

| (x, t=53.2)|2
V(x)

Phase

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

po
te
nt
ia
l

×10 2

Figure 6: Initial wave function (left) and numerical solution (right) at time t = 53.2 or
54.93964 femtoseconds. The dotted line shows the Eckart potential.
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Figure 7: The 103 starting values for the means in the EM-algorithm (Eckart poential).

solve until time T = 70 which corresponds to 72.289 femtoseconds [13, IV]. After every
280 steps, we re-expand the propagated wavefunction. This corresponds to the jumps
of the blue curve in Figure 8, which is the L2 difference to the reference solution. The
latter is the solution given by a splitting of order 8 in time [19, p. 145] with a time step
size h = 0.01, together with a Fourier approximation in space on an equidistant grid on
[−40, 40] with 16384 points. Note that the error stems mostly from the re-expansions
and not from the propagation. In the example in Section 6.2 it is exactly the other way
around. The reason is that here the exact solution has very heavy tails, which cannot
be approximated well by Gaussians with identity covariance matrix. The cumulative
execution time of the re-expansion and the propagation is split like 51% (re-expansion)
and 49% (propagation). In Figure 8 (right) we show the tunneling probability

∫ ∞

0

|ψ (x, t)|2 dx

according to the numerical solution. We obtain the same result as in [13, Fig. 3 (b)]. Fi-
nally, Figure 9 shows the energy along the numerical solution. This is again in accordance
with the results in [13, Fig. 2].

6.2 Doublewell Potential (1D)

We consider a doublewell potential

V (x) = x4 − x2

that is tailored to produce a suitable phase space picture to illustrate our spawning of
wavepackets, see Figure 13. To make use of the high-order splitting methods, we choose
the small value ε = 0.1 for the model parameter. The initial data is ϕε

0 [0.9, 0.0], see
Figure 11 (right). We use a time step of size h = 0.05 and simulate until time T =
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Figure 9: Left: Kinetic energy, potential energy and total energy along the numerical
solution of the Eckart potential. Right: Drift of total energy along the numerical solution.

10. Every 5 time steps we re-expand the numerical solution by families with K = 64
coefficients. We initialize the EM-algorithm each time with the (qm, pm) pairs in Figure 11
(left). We perform 30 iterations of the algorithm and discard all Gaussians with weight
r̂m < 10−6. Figure 10 shows the L2-error to a reference solution and the effective number
of families in use (left), along with the position representation of the wavefunction at time
t = 5.5. The reference solution is computed as in the previous example, now with a time
step size h = 0.05 and on an equidistant grid on [−2, 2] with 4096 points. Note that the
error is coming mostly from the propagation and not from the re-expansion, opposed to
our observation in Section 6.1. Unlike in the previous example, the cumulative execution
time is split up very unevenly like 97% (re-expansion) and 3% (propagation). In Figure 12
we see the energy along the solution. Figure 13 shows the FBI transform of the numerical
solution. We can see how the wavepackets are spawned and propagated in phase space.

6.3 Doublewell Potential (2D)

In this section, we consider the two dimensional doublewell potential

V (x) = x4
1 − x2

1 + 1
2

(
x2 − 1

8
x2

1

)2
,
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Figure 10: Left: L2-error and number of families. Right: position representation of the
wavefunction at time t = 5.5. The dotted line represents the doublewell potential.
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Figure 11: Left: The 116 starting values for the means in the EM-algorithm for the
doublewell potential. Right: FBI transform of the initial wave function. The red dot
marks the mean.

where x = (x1, x2) ∈ R
2. The model parameter is again ε = 0.1. The initial data is the

Hagedorn groundstate ϕε
0 [q, p], where

q =

(
0.9

0.405

)
and q =

(
0
0

)
.

We use a time step of size h = 0.05 and simulate until time T = 6. Every 5 time steps we
re-expand the numerical solution by families with index set given by Equation (2.6) for
K = 64. We use a 4-dimensional Gauss-Hermite quadrature for all phase space integrals.
In the EM-algorithm, we use 164 quadrature points and for the localization operators we
use 324 quadrature points. In both cases, the quadrature points are translated to the
means of the corresponding Gaussians in phase space. We initialize the EM-algorithm
each time with Gaussians of means

(
q(1), 0, p(1), 0

)T
,

where the
(
q(1), p(1)

)
pairs run over the values in Figure 14 (left). Then we perform 10

iterations of the algorithm and discard all Gaussians with weight r̂m < 10−5. In Figure 14
(right) we see the number of families in use and the error to a reference solution. The
latter is again computed as in the two previous examples, with a time step size h = 0.05
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Figure 12: Left: Kinetic energy, potential energy and total energy along the numerical
solution of the doublewell potential (1D). Right: Drift of total energy along the numerical
solution.

and on an equidistant spatial grid on [−4, 4]× [−1, 1], with spacing 2−7 in both directions.
The energy along the solution is plotted in Figure 15. The cumulative execution time is
again split up very unevenly like 99% (re-expansion) and 1% (propagation). Finally, we
show the position representation of the numerical solution (not the FBI transform) and
of the reference solution in Figure 16.

6.4 Computational Effort

The computational effort of the re-expansion is quadratic in the number of families in
use. On the other hand, the time evolution is linear in the number of families since every
family is propagated independently. The re-expansion is the bottleneck of this time prop-
agation scheme. The most expensive part in the re-expansion is the EM-algorithm and
the computation of the involved phase space integrals. Unlike the integrals that typically
appear in an ansatz the pure physical space, our integrals in the phase space are not
highly-oscillatory, hence they are easier to compute. In higher dimensions, we can replace
the Gauss-Hermite Quadrature by a Monte-Carlo quadrature with importance sampling.
The latter is done by sampling according to the Gaussian mixture associated with the
propagated wavefunction. We have applied such a Monte-Carlo quadrature with impor-
tance sampling to the examples of the last section. We have observed that this requires
also to change the threshold for ignoring mixture components and the number of itera-
tions of the EM-algorithm, which makes the two approaches a bit harder to compare. In
general, we have obtained similar results with similar computational effort in these one-
dimensional examples. However, in case of a larger number of dimensions d, the use of a
(quasi-) Monte-Carlo integration maybe be indispensable. This suggests that the method
can possibly be improved by choosing a more efficient optimization algorithm to deter-
mine the parameters of the wavepackets and the symbols of the associated localization
operators.
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Figure 13: FBI transform of the numerical solution at times t = 2, 3, 4.5, 6, 8, 10 (from
top-left to bottom-right, before the re-expansion) for the doublewell potential (1D). The
red dots mark the means of the Hagedorn families.
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Figure 14: Left: The 46 starting values for the means in the EM-algorithm, projected onto
the first coordinates of position and momentum. Right: Error and number of families at
different times for the numerical solution of the doublewell potential (2D)
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