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A STABLE AND JUMP-AWARE PROJECTION ONTO A DISCRETE
MULTI-TRACE SPACE.

MARTIN AVERSENG∗

Abstract. This work is concerned with boundary element methods on singular geometries,
specifically, those falling in the framework of “multi-screens” by Claeys and Hiptmair. We construct
a stable quasi-interpolant which preserves piecewise linear jumps on the multi-trace space. This
operator is the boundary element analog of the Scott-Zhang quasi-interpolant used in the analysis of
finite-element methods. More precisely, let Γ be a multi-screen resolved by a triangulation (MΓ,h),
and let Vh(Γ) be the space of continuous piecewise-linear multi-traces on Γ. We construct a linear
operator Πh : H1/2(Γ) → Vh(Γ) with the following properties: (i) ∥Πhu∥H1/2 ≤ Ch ∥u∥

H1/2(Γ) for all

u ∈ H
1/2(Γ), (ii) Πhuh = uh for uh ∈ Vh(Γ) and, (iii) [Πhu] = 0 for every single trace u ∈ H1/2([Γ]).

The stability constant Ch only depends on the aspect ratio of the elements of MΩ,h, where MΩ,h is
a tetrahedral mesh of Ω extending MΓ,h. We deduce uniform bounds for the stability of the discrete

jump lifting, and the equivalence of the H̃1/2 norm with a discrete quotient norm.
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1. Introduction. The motivation for this work is the numerical analysis of
boundary element methods for applications involving geometric singularities. Inte-
gral equations, and their resolution by the boundary element methods, are by now
well developed on Lipschitz domains, see e.g. [27, 31]. In the past 30 years, a lot
of effort has been dedicated to extend the range of geometries that one may tackle,
both theoretically and numerically. Initially “screens” and “cracks” were considered,
[10, 35, 37] and more complex geometries were studied in recent works [12, 16, 17].
For a selection of real-life studies using such complex geometric models in various
types of applications, see [2, 13, 21, 23, 26, 33, 38] and references therein.

The numerical analysis of boundary element methods in such singular geometries
involves at least three main challenges, compared to the case of a Lipschitz regular
obstacle. First, at the theory level, one has to give a suitable definition for the function
spaces in which the boundary integral operators naturally act. For instance, when the
obstacle Γ is an infinitely thin screen, the spaces H1/2(Γ) and H−1/2(Γ) are no longer
dual to each other, and the weakly singular operator (resp. hypersingular operator)

act in H̃−1/2(Γ) (resp. H̃1/2(Γ)). We refer to [11] for a survey on Sobolev spaces on
“rough” (possibly fractal) sets. The second challenge, which is connected to the first
one, is that second-kind formulations are difficult to design for singular obstacles, and,
when it comes to first-kind integral equations, the known preconditioning methods,
with Calderón preconditioning as a prominent example [14, 34], must be adapted to
take the singularity into account [3, 4, 8, 9, 25, 29]. Finally, for the a priori analysis
and convergence theory, one must develop a good understanding of the singularity
of the solutions of the scattering problems (see e.g. [20, 24]). This knowledge is
important in order to choose the proper mesh refinement method (e.g. h-p refinement
[7, 36]), and to quantify the order of convergence of the numerical solutions.

In this work, we make a step in addressing those challenges for a class of sin-
gular geometric models called “multi-screens” [16, 17]. Essentially, multi-screens are
arrangements of two-dimensional surfaces in R

3, which may intersect each other in
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complex ways. In particular, they combine two types of singularities: sharp edges (the
boundary of the screen) and junction lines and points. Because of the latter, a multi-
screen may fail to be a manifold at some locations. For such geometries, an adapted
functional framework has been recently established by Claeys and Hiptmair [16, 17],
and was applied with a lot of success in the context of domain decomposition methods
[18]. In parallel, the first numerical implementation of a first-kind boundary element
method for multi-screens has recently appeared in [15], and ideas for corresponding
preconditioners are emerging [5, 19].

The aim of this paper is to construct a stable quasi-interpolant which preserves
piecewise linear jumps on the multi-trace space. The properties of the operator that
we construct are completely analogous to those of the celebrated Scott-Zhang quasi-
interpolant of [32] (see also the recent work [22] on a related interpolant for discrete
differential forms). The Scott-Zhang operator has a tremendous importance for the
numerical analysis of strongly elliptic equations in Lipschitz domains. Its main use
is to analyze the approximation of functions by piecewise polynomials (see [1, Thm
1.1]). It can also be used to derive uniform bounds on discrete jump liftings, see e.g.
[28, Lemma 1.56], which are commonly used in domain decomposition methods. The
operator we construct here (restricted to piecewise linear functions, and not general
polynomial order as in [32]) similarly implies uniform bounds for a discrete jump

lifting on the jump space H̃1/2([Γ]). Its properties are used to analyze some new
preconditioners for the boundary element methods on multi-screens in [5, 19]. We
also expect that it will be useful for the a priori analysis of the convergence of the
boundary element solution to the true solution.

The remainder of this work is organized as follows. In Section 2, we introduce the
necessary notation to state our main result. The construction of the quasi-interpolant
involves a (primal) basis of the discrete multi-trace space, which is introduced in
Section 4. This allows to give the definition of the quasi-interpolant Πh and prove
its properties in Section 5. A central role in those proofs is played by a set of “dual”
basis functions, whose construction is presented in Section 6. This construction is the
main novelty of this work.

2. Notations and main result.
Simplices and meshes. An n-simplex (n = 2 for a triangle or 3 for a tetrahedron)

is the closed convex hull of n+1 affinely independent points in R
3 called its vertices.

A face of a simplex S is a (n− 1)-simplex spanned by n vertices of S.
A n-dimensional mesh M is a finite set of n-simplices such that if K,K ′ ∈ M,

then the intersection K ∩K ′ is either empty, or equal to a common subsimplex (i.e.
a vertex, edge, or face) of both K and K ′. The set of faces of a mesh M, denoted
by F(M), is the set of faces of the simplices of M. The boundary ∂M of an n-
dimensional mesh M is defined as the subset of F(M) whose elements are the face
of exactly one n-simplex in M. The geometry of M, denoted by |M|, is the union of
all of its elements, i.e.

|M| =
⋃

K∈M

K .

Given γ > 0, we say that a mesh M is γ-shape-regular if it satisfies

hK
ρK

≥ γ , ∀K ∈ M ,

where hK is the diameter of K and ρK is the radius of the largest ball contained in K.
A mesh M is regular if its geometry is an n-dimensional (piecewise linear) manifold.
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In what follows, we fix a Lipschitz polyhedron Ω ⊂ R
3, that is, a connected open

set such that there holds Ω = |MΩ| , for some regular tetrahedral mesh MΩ. We also
fix a set Γ = |MΓ|, where MΓ is a triangular mesh satisfying

MΓ ⊂ F(MΩ) \ ∂MΩ .

We do not require MΓ to be regular, however, we impose that Γ be a multi-screen,
in the sense of Claeys and Hiptmair [16]. For instance, MΓ may be as in Figure 2.1.

Figure 2.1. Possible choice of mesh MΓ.

Function spaces. For an open set U , let C∞
c (U) be the set of real-valued functions

u that are infinitely differentiable and compactly supported on U . We denote by
H1(U) the Sobolev space of real-valued functions u which are square-integrable on U
and such that there exists a square-integrable vector field p ∈ (L2(U))3 satisfying

∫

U

u divφ = −

∫

U

p · φ , ∀φ ∈ (C∞
c (U))3 .

Writing ∇u := p the weak gradient of u on U , a norm on H1(U) is defined by

∥u∥2H1(U) := ∥u∥2L2(U) + ∥∇u∥2L2(U) .

Let H1
0,Γ(Ω) be the closure of C

∞
c (Ω\Γ) in H1(Ω). The multi-trace space H1/2(Γ)

(see [16]) is the Hilbert space defined by the quotient

H
1/2(Γ) := H1(Ω \ Γ)/H1

0,Γ(Ω) .

Let πD : H1(Ω \ Γ) the corresponding canonical surjection, and H1/2([Γ]) the single-
trace space, which is the closed subspace of H1/2(Γ) defined by

H1/2([Γ]) := πD(H
1(Ω)) .

In turn, the jump space H̃1/2(Γ) is the Hilbert space defined by the quotient

H̃1/2(Γ) := H
1/2(Γ)/H1/2([Γ]) ,

and [·] will denote the corresponding canonical surjection.
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Finite-dimensional subspaces. If MΩ,h and MΓ,h are meshes of Ω and Γ (possibly
different from MΩ and MΓ), we say that the pair (MΩ,h,MΓ,h) is trace-compatible if
MΓ,h ⊂ F(MΩ,h)\∂MΩ,h. Given a trace-compatible pair (MΩ,h,MΓ,h), let Vh(Ω\Γ)
be the finite-dimensional subspace of H1(Ω\Γ) consisting of piecewise linear functions
on MΩ, that is,

Vh(Ω \ Γ) :=
{
u ∈ H1(Ω \ Γ)

∣∣ u|K is affine ∀K ∈ MΩ

}
.

Finally, define
Vh(Γ) := πD(Vh(Ω \ Γ)) , Ṽh(Γ) := [Vh(Γ)] .

Main result. The goal of this work is to prove the following result.

Theorem 2.1. For each γ0 > 0, there exists a constant C(γ0) > 0 such that the
following holds. Suppose that (MΩ,h,MΓ,h) is a trace-compatible pair of meshes of
Ω and Γ, and assume that MΩ,h and MΓ,h are γ0-shape-regular. Then there exists a
linear operator Πh : H1/2(Γ) → Vh(Γ) such that

(i) ∥Πhu∥H1/2 ≤ C(γ0) ∥u∥H1/2 for all u ∈ H
1/2(Γ),

(ii) Πhuh = uh for all uh ∈ Vh(Γ), that is, Πh is a projection,
(iii) u ∈ H1/2([Γ]) =⇒ Πhu ∈ H1/2([Γ]).

Notice the analogy with [32]: H
1/2(Γ) plays the role of H1(Ω), and jumps play the

role of boundary values. The definition of Πh is given in Definition 5.1. The proof of
Theorem 2.1 is also inspired by [32], but the essential difficulty is the construction of
suitable “dual basis functions”.

Remark 2.2. The stability constant depends on the aspect ratio of the elements
of the mesh MΩ,h, and not just MΓ,h. Although our proof requires this condition, we
conjecture that the result still holds if we only assume that MΓ,h is γ0-shape-regular
and that its elements are sufficiently small.

3. Applications. Theorem 2.1 has the following important consequences. First,
it gives a uniform bound for the stability of the discrete jump lifting Φh : Ṽh(Γ) →
Vh(Γ), defined by

Φh : [wh] 7→ uh

where uh is the unique minimizer of the H
1/2 norm over the set of wh +H1/2([Γ]) ∩

Vh(Γ).

Corollary 3.1 (Uniform bound for the discrete jump lifting). Let the assump-
tions of Theorem 2.1 be satisfied. Then there holds

(3.1) ∥Φhϕ̃h∥H1/2 ≤ C(γ0) ∥ϕ̃h∥H̃1/2 , ∀ϕ̃h ∈ Ṽh(Γ) .

Proof. By definition of the quotient norm on H̃1/2(Γ), and due to the Hilbert
structure on this space, there exists a continuous harmonic lifting Φ, that is, an
isometry

Φ : H̃1/2(Γ) → H
1/2(Γ)

such that [Φϕ̃] = ϕ̃ and

∥Φϕ̃∥
H1/2 = ∥ϕ̃∥H̃1/2 , ∀ϕ̃ ∈ H̃1/2(Γ) .

We claim that the operator Ψh : Ṽh(Γ) → H
1/2(Γ), defined by Ψh := Πh ◦Φ, satisfies

the property

(3.2) ∀ϕ̃h ∈ Ṽh(Γ) , [Ψhϕ̃h] = ϕ̃h .
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In other words, Ψh is a right-inverse of the jump operator on Ṽh(Γ). Provided that this
holds, we have by the minimization property of Φh, and using Theorem 2.1 property
(i):

∀ϕ̃h ∈ Ṽh(Γ) , ∥Φhϕ̃h∥H1/2(Γ) ≤ ∥Ψhϕ̃h∥H1/2

≤ C(γ0) ∥Φϕ̃h∥H1/2 = C(γ0) ∥ϕ̃h∥H̃1/2 .

It remains to show the property eq.(3.2). For this, fix ϕ̃h ∈ Ṽh(Γ) and let

vh := Ψhϕ̃h .

Furthermore, pick wh ∈ Vh(Γ) such that [wh] = ϕ̃h. Since [Φϕ̃h − wh] = 0, it follows
by Theorem 2.1 (ii) and (iii) that

0 = [Πh(Φϕ̃h − wh)] = [Πh(Φϕ̃h)−Πhwh] = [vh]− [wh] = [vh]− ϕ̃h .

This shows that [vh] = ϕ̃h, concluding the proof.

Theorem 2.1 can also be used to prove the equivalence on Ṽh(Γ) of the H̃
1/2 norm

and the discrete quotient norm Nh, defined by

∀ϕ̃h ∈ Ṽh(Γ) , Nh(ϕ̃h) := inf {∥uh∥H1/2 | uh ∈ Vh(Γ) s.t. [uh] = ϕ̃h} .

Corollary 3.2. Let the assumptions of Theorem 2.1 be satisfied. Then for all
ϕ̃h ∈ Ṽh(Γ), there holds

inf {∥vh∥H1/2 | vh ∈ Vh(Γ) s.t. [vh] = ϕ̃h}

≤ C(γ0) inf
{
∥v∥

H1/2

∣∣∣ v ∈ H
1/2(Γ) s.t. [v] = ϕ̃h

}
,

or in other words, one has the norm equivalence

(3.3)
1

C(γ0)
Nh(ϕ̃h) ≤ ∥ϕ̃h∥H̃1/2 ≤ Nh(ϕ̃h) .

Proof. The right inequality in eq. (3.3) follows from the definition of the quotient

norm on H̃1/2(Γ). Reciprocally, if ϕ̃h ∈ Ṽh(Γ), then by Corollary 3.1, we have

inf
{
∥vh∥H1/2(Γ)

∣∣∣ vh ∈ Vh(Γ) s.t. [vh] = ϕ̃h

}
≤ ∥Φhϕ̃h∥H1/2(Γ) ≤ Ch ∥ϕ̃h∥H̃1/2 ,

giving the left inequality.

The rest of this work is dedicated to prove Theorem 2.1. From now on, we fix a
constant γ0 > 0 and a γ0-regular pair of trace-compatible meshes MΓ,h and MΩ,h.
The dependence in h will be omitted from some of the notation. We shall also use
the letter C to denote a generic positive constants which only depends on Γ, Ω and
γ0, but is, in particular, independent on the size of the elements of MΓ,h and MΩ,h.

4. Basis of the discrete multi-trace space. In order to construct the operator
Πh of Theorem 2.1, we first construct a basis of Vh(Γ). The main ideas are from [6].
Let us denote by {x1 , . . . ,xN} be the vertices of MΩ,h with the common vertices
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of MΩ,h and MΓ,h given by x1, . . . ,xM . Let Vh(Ω) be the space of functions in
Vh(Ω \ Γ), which are continuous. Notice that

Vh(Ω) = H1(Ω) ∩ Vh(Ω \ Γ) .

Let {φi}1≤i≤N be the nodal basis of Vh(Ω), that is, the set of elements of Vh(Ω)
defined by

φi(xi′) = δi,i′ , 1 ≤ i, i′ ≤ N .

For each i ∈ {1, . . . , N}, the star of xi, denoted by st(xi,MΩ,h), is the set of tetra-
hedra K ∈ MΩ,h containing xi as a vertex. We define a graph G(xi) with

• Nodes: The elements of st(xi,MΩ,h)
• Edges: The pairs {K,K ′} ⊂ st(xi,MΩ) such that K and K ′ share a face
not contained in MΓ.

Let γi,1, . . . , γi,qi be the connected components of G(xi), and let

|γi,j | :=
⋃

K∈γi,j

K .

Let us write

H(Ω) :=
{
(i, j) ∈ N

2
∣∣ 1 ≤ i ≤ N , 1 ≤ j ≤ qi

}
.

For (i, j) ∈ H(Ω), we denote by φi,j the split basis function of Vh(Ω \ Γ) on γi,j ,
which is defined by

φi,j(x) :=

{
φi(x) for x ∈ int(|γi,j |) ,

0 otherwise.

where int(|γi,j |) is the interior of |γi,j |.

Lemma 4.1. The split basis functions {φi,j}(i,j)∈H(Ω) form a basis of Vh(Ω \ Γ).

Proof. Suppose that there exist real coefficients λi,j such that

(4.1) ∀x ∈ Ω ,
∑

(i,j)∈H(Ω)

λi,jφi,j(x) = 0 .

Fix (i0, j0) ∈ H(Ω) and let K ∈ γi,j . Let (yn)n∈N be a sequence of points in the
interior of K, such that

lim
n→∞

yn = xi0 .

It is easy to show that limn→∞ φi,j(yn) → δi,i0δj,j0 . Therefore, applying eq. (4.1)
to yn and passing to the limit, we conclude that λi0,j0 = 0. This proves that the
functions φi,j are linearly independent.

Next, we consider uh ∈ Vh(Ω \ Γ). For each (i, j) ∈ H(Ω), we fix a tetrahedron
Ki,j ∈ γi,j and a sequence (yi,jn )n∈N converging to xi from Ki,j , as above. Let
λi,j = limn→∞ uh(y

i,j
n ). We prove that

(4.2) uh =
∑

(i,j)∈H(Ω)

λi,jφi,j ,

by showing that this equality holds on the interior of each tetrahedron K ∈ MΩ,h.
Suppose that the vertices of K are xi0 , . . . ,xi3 , and for each p ∈ {0, . . . , 3}, let jp be
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such that K ∈ γip,jp . Let ypn be a sequence of points in the interior of K converging
to xip . We claim that

(4.3) lim
n→∞

φi,j(y
p
n) = δi,ipδj,jp , lim

n→∞
uh(y

p
n) = λip,jp .

As before, the first limit can be shown easily. The second one is obvious if K = Kip,jp .
If K shares a face F /∈ MΓ with Kip,jp , then it is a consequence of the well-known
property that for u ∈ H1(Ω \ Γ), the traces of u of F from K and Kip,jp must
agree. Otherwise, by definition of G(xi), one can consider a face-connected path of
tetrahedra from K to Kip,jp , and the desired limit is established by repeating the
previous argument for each pair of consecutive tetrahedra in this path.

Having shown the property (4.3), we conclude that the linear functions defined
on K by each side of eq. (4.2) have a common limit at 4 affinely independent points,
thus they are equal on K. This concludes the proof of the lemma.

For uh ∈ Vh(Ω \ Γ), we will denote by uh(γi,j) the coefficient of uh on the split basis
function φi,j . On Vh(Ω \ Γ), we introduce the discrete l2 scalar product

∀(u, v) ∈ Vh(Ω \ Γ)× Vh(Ω \ Γ) , [u, v]l2 :=

N∑

i=1

qi∑

j=1

u(γi,j)v(γi,j) ,

Let Yh(Ω) be the [·, ·]l2 orthogonal complement of Vh(Ω). Let

H̃ := {(i, j) ∈ H(Ω) | qi > 1 and j ≤ qi − 1} ,

and for (i, j) ∈ H̃, define

φ̃i,j := φi,j − φi,qi .

Using that {φi}1≤i≤N is a basis of Vh(Ω), together with the property

φi =

qi∑

j=1

φi,j ,

and Lemma 4.1, a simple algebraic reasoning shows that {φ̃i,j}(i,j)∈H̃ is a basis of

Yh(Ω). Define

ηi := πD(φi) , η̃i,j := πD(φ̃i,j) .

Let Vh([Γ]) := Vh ∩ H1/2([Γ]) and Yh(Γ) := πD(Yh(Ω)). In summary, we have the
following result:

Lemma 4.2. There holds

Vh(Γ) = Vh([Γ])⊕ Yh(Γ) .

Moreover, {ηi}1≤i≤M is a basis of Vh([Γ]) and {η̃i,j}(i,j)∈H̃ is a basis of Yh(Γ).

5. Definition of the quasi-interpolant. We now define the quasi-interpolant
Πh : H1/2(Γ) → Vh(Γ), much in the same way as in [32]. We refer to [16] for the
definition of the space H−1/2(Γ) and the duality pairing ⟨⟨· , ·⟩⟩ : H1/2(Γ)×H

−1/2(Γ) →
R. Also recall the operator πN : H(div,Ω \ Γ) → H

−1/2(Γ).
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Definition 5.1. Let Πh : H1/2(Γ) → Vh(Γ) be the operator defined by

∀u ∈ H
1/2(Γ) , Πhu :=

M∑

k=1

⟨⟨u ,ψk⟩⟩ηk +
∑

(i,j)∈H̃

⟨⟨u ,ψi,j⟩⟩η̃i,j .

where ψk = πN (wk), ψi,j = πN (wi,j), and the vector fields wk and wi,j are given in
Proposition 5.2.

Proposition 5.2 (Dual basis functions). There exists two sets of vector fields
{wk}1≤k≤N and {wi,j}(i,j)∈H̃ satisfying the following properties:

wk ∈ H(div,Ω \ Γ) , wi,j ∈ H(div,Ω) ,

supp(wk) ⊂ |st(xk,MΩ,h)| , supp(wi,j) ⊂ |st(xi,MΩ,h)| ,

∥wk∥∞ ≤ Ch−2
k , ∥divwk∥∞ ≤ Ch−3

k ,

∥wi,j∥∞ ≤ Ch−2
i , ∥divwi,j∥∞ ≤ Ch−3

i ,

and the orthogonality relations
(5.1)



∫

Ω\Γ

∇φk ·wk′ + φk divwk′ = δk,k′ ,

∫

Ω\Γ

∇φ̃i,j ·wk′ + φi,j divwk′ = 0

∫

Ω\Γ

∇φk ·wi′,j′ + φk divwi′,j′ = 0 ,

∫

Ω\Γ

∇φ̃i,j ·wi′,j′ + φ̃i,j divwi′,j′ = δi,i′δj,j′

for all (k, k′) ∈ {1, . . . , N}2 and ((i, j), (i′, j′)) ∈ H̃2, where hi is the diameter of
|st(xi,MΩ,h)|.

The proof of this proposition is the object of the next section. From the relations
(5.1), it follows that

{
⟨⟨ηk ,ψk′⟩⟩ = δk,k′ , ⟨⟨ηk ,ψi′,j′⟩⟩ = 0 ,

⟨⟨η̃i,j ,ψk′⟩⟩ = 0 , ⟨⟨η̃i,j ,ψi′,j′⟩⟩ = δi,i′δj,j′ ,

which implies that Πh is indeed a projection on Vh(Γ). Moreover, since wi,j ∈
H(div,Ω), we have ψi,j ∈ H−1/2([Γ]) (where H−1/2([Γ]) is the Neumann single trace
space, cf. [16]), ensuring that the property

∀u ∈ H1/2([Γ]) , Πhu ∈ Vh([Γ]) ,

is satisfied, due to the polarity of H1/2([Γ]) and H−1/2([Γ]) [16, Prop. 6.3]. This
proves properties (ii) and (iii) of Theorem 2.1, so it remains to prove the uniform
H

1/2 stability of Πh. For this, we mostly follow the method of [32]. We consider
another projection Zh : H1(Ω \ Γ) → Vh(Ω \ Γ) with the property that

(5.2) πD ◦ Zh = Πh ◦ πD .

We shall need yet another set of dual basis functions (ψi)M+1≤i≤N , which are defined
as in [32]. Namely, for each i ∈ {M+1, . . . , N}, we pick a tetrahedron Ki such that xi
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is a vertex of Ki. Then, ψi is defined as the L2 dual affine function on Ki associated
to xi. Let

Zhf :=

N∑

i=M+1

(∫

Ki

ψi(x)f(x)dx

)
φi+

M∑

i=1

⟨⟨πD(f) ,ψi⟩⟩φi+
∑

(i,j)∈H̃

⟨⟨πD(f) ,ψi,j⟩⟩φ̃i,j .

It is immediate that Zh is a projection and that eq. (5.2) is satisfied. For a tetrahedron
K ∈ MΩ,h, we denote by st(K,MΩ,h) the set of tetrahedra of MΩ,h sharing at least
a vertex with K. The estimate of [32, Thm 3.1] carries over for Zh with minor
modifications as we show now.

Lemma 5.3. For f ∈ H1(Ω \ Γ) and K ∈ MΩ,h, there holds

∥Zhf∥H1(K) ≤ C
(
h−1
K ∥f∥L2(SK) + ∥∇f∥L2(SK)

)
,

where SK := |st(K,MΩ,h)| \ Γ.

Proof. We focus on the case K∩Γ ̸= ∅, because K∩Γ = ∅ is settled by [32, Thm.
3.1]. Given a tetrahedron K incident to a face F of MΓ,h, we can write

∥Zhf∥H1(K) ≤
N∑

i=M+1

∣∣∣∣
∫

Ki

ψi(x)f(x)dx

∣∣∣∣ ∥φi∥H1(K)

+

M∑

i=1

|⟨⟨πD(f) , πN (wi)⟩⟩| ∥φi∥H1(K)

+
∑

(i,j)∈H̃

|⟨⟨πD(f) , πN (wi,j)⟩⟩|
∥∥∥φ̃i,j

∥∥∥
H1(K)

by the triangular inequality. The first line of the right hand side is estimated as in
[32, Thm. 3.1]. We furthermore recall the classical inequality

∥φi∥H1(K) ≤ Ch
1/2
K ,

using the shape regularity assumption. A similar estimate holds for φ̃i,j , since φi,j is
either equal to 0 or φi on K. On the other hand, by definition of ⟨⟨· , ·⟩⟩, we have the
expression

⟨⟨πD(f) ,ψi⟩⟩ =

∫

Ω

∇f ·wi + div(wi)f =

∫

SK

∇f ·wi + div(wi)f ,

since wi is zero outside st(xi,MΩ,h) ⊂ SK . By the previous estimates on wi, using
the shape-regularity of MΩ,h and some elementary inequalities, this leads to

|⟨⟨u , πN (wi⟩⟩| ≤ C
(
h
1/2
K ∥∇f∥L2(SK) + h

−1/2
K ∥f∥L2(SK)

)
.

The coefficients involving wi,j are treated similarly. The rest of the proof follows is
as in [32, Thm. 3.1].

Using now exactly the same arguments as in [32, Thm 4.1] and [32, Cor 4.1], we
deduce

(5.3) ∥Zhf∥H1(Ω\Γ) ≤ C ∥f∥H1(Ω\Γ) .
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Remark 5.4. The main tool, to derive (5.3) from Lemma 5.3, is a Bramble-Hilbert
inequality in domains U consisting of face-connected and shape-regular unions of
tetrahedra. To apply this result, a crucial requirement is that the restrictions of
elements Vh(Ω \ Γ) to each tetrahedron K ∈ MΩ span all polynomial functions of
degree 1 in K.

Corollary 5.5. There exists a constant C > 0 only depending on shape-regularity
such that

∀u ∈ H
1/2(Γ) , ∥Πhu∥H1/2 ≤ C ∥u∥

H1/2

Proof. Fix f ∈ H1(Ω \ Γ) such that u = πD(f). Then we have Πhu = πD(Zhf).
Therefore, it holds that ∥Πhu∥H1/2(Γ) ≤ ∥Zhf∥H1(Ω\Γ) by definition of the H1/2 norm.
By the previous lemma, this gives

∥Πhu∥H1/2 ≤ C ∥f∥H1(Ω\Γ) .

This holds for any f ∈ H1(Ω\Γ) such that πD(f) = u. Hence, passing to the infimum,
we conclude

∀u ∈ H
1/2(Γ) , ∥Πhu∥H1/2 ≤ C ∥u∥

H1/2 ,

which proves the claim.

We address the construction of the “dual basis functions” wk and wi,j of Propo-
sition 5.2 in the next section.

6. Construction of the dual basis functions. The main tool for constructing
the required vector fields is the set of bridge functions that we define now. Let
i ∈ {1, . . . , N} and 1 ≤ j, k ≤ qi. We say that {j, k}, with j ̸= k, is a bridge around xi
if there exist two tetrahedra K ∈ γi,j , K

′ ∈ γi,k such that K and K ′ have a common
face F ∈ MΓ,h. The set of bridges around xi is denoted by B(i).

Lemma 6.1 (Bridge functions). For each bridge {j, k} ∈ B(i) with j < k, there
exists a vector field bi,{j,k} ∈ H(div,Ω) such that

supp(bi,{j,k}) ⊂ |st(xi,MΩ,h)| ,

(6.1)
∥∥bi,{j,k}

∥∥ ≤ Ch−2
i ,

∥∥div bi,{j,k}
∥∥ ≤ Ch−3

i ,

and

(6.2) ∀uh ∈ Vh(Ω \ Γ) ,

∫

Ω\Γ

bi,{j,k}∇uh + div(bi,{j,k})uh = uh(γi,j)− uh(γi,k) .

Proof. Given a tetrahedron K, a face F of K and an affine function ψ defined on
F , we define the vector field bK,F,ψ on K by

bK,F,ψ(y) :=
1

h(K,F )

2∑

m=0

ψ(xm)λm(y)(xm − x3) , y ∈ K ,

where {x0,x1,x2} are the vertices of F and λm is the barycentric coordinate of K
associated to xm, and h(K,F ) is the height of K from F . Given a face F ′ of K, we
denote by nK,F ′ the outward pointing normal vector on F ′. With this definition, we
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have h(K,F ) = nK,F · (xm − x3), where m is any number in {0, 1, 2} and x3 is the
vertex of K opposite to F . One can check that

bK,F,ψ · nK,F ′ =

{
ψ if F ′ = F .

0 otherwise

If K ∈ MΩh
, we denote the extension of bK,F,ψ by 0 outside K again by bK,F,ψ. By

what precedes, bK,F,ψ ∈ H(div,Ω \ Γ) if F ∈ MΓ,h.
Fix a bridge {j, k} ∈ B(i), and let Kj ∈ γi,j and Kk ∈ γi,k be two tetrahedra

sharing a face Fjk ∈ MΓ,h. The face Fjk contains the vertex xi. Following [32], we
define an affine function ψ such that, for any affine function ρ,

∫

F

ψ(y)ρ(y) dy = ρ(xi) .

Using pullback and scaling arguments (cf. [32, Lemma 3.1]), one has

(6.3) max
y∈Fjk

|ψ(y)| ≤ Ch−2
Fjk

,

where hF is the diameter of Fjk. With this choice of function ψ, let

bi,{j,k} := bKj ,Fjk,ψ − bKk,Fjk,ψ .

This time, bi,{j,k} ∈ H(div,Ω). It is also clear that supp(bi,{j,k}) ⊂ |st(xi,MΩ,h)|.
The estimate of the L∞ norm of bi,{j,k} in eq. (6.1) is obtained from the bound on
|ψ| (6.3), the bound γ0 on the aspect ratio of Kj and Kk, together with the simple
estimate |λm|∞ ≤ 1. The bound on

∥∥div (bi,{j,k})
∥∥
∞

follows from the previous one,
since bi,{j,k} is linear on each tetrahedron Kj and Kk (using again the control over
the aspect ratio of Kj and Kk).

Fix uh ∈ Vh(Ω \ Γ). We have

∫

Ω\Γ

bi,{j,k}∇uh + div(bi,{j,k})uh

=
∑

(i′,j′)∈H(Ω)

uh(γi′,j′)

∫

Kj

bKj ,Fjk,ψ∇φi′,j′ + div(bKj ,Fjk,ψ)φi′,j′

−
∑

(i′,j′)∈H(Ω)

uh(γi′,j′)

∫

Kk

bKk,Fjk,ψ∇φi′,j′ + div(bKk,Fjk,ψ)φi′,j′ .

(6.4)

Let (i′, j′) ∈ H(Ω) and let ri′,j′ be the trace of φi′,j′ on Fjk from Kj . There holds

∫

Kj

bKj ,Fjk,ψ∇φi′,j′ + div(bKj ,Fjk,ψ)φi′,j′ =

∫

Fjk

ψ(y)ri′,j′(y)dy = ri′,j′(xi) .

If i′ ̸= i, then ri′,j′(xi) = 0. On the other hand, if i′ = i but j′ ̸= j, then φi,j′ is
identically 0 on γi,j , and in particular on Kj . Finally, if i = i′ and j = j′, one has
ri,j(xi) = 1. In summary,

∫

Kj

bKj ,Fjk,ψ∇φi′,j′ + div(bKj ,Fjk,ψ)φi′,j′ = δi,i′δj,j′
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and by the same reasoning,
∫

Kk

bKk,Fjk,ψ∇φi′,j′ + div(bKk,Fjk,ψ)φi′,j′ = δi,i′δk,j′ .

The identity (6.2) follows by injecting the two relations above in eq. (6.4).

If qi = 2, there is a unique bridge function bi,1 at xi, and one can immediately
see that wi,1 := bi,1 fulfills the requirements of Proposition 5.2. In general, the idea
is that one can construct the vector fields wi,j of Proposition 5.2 as a suitable linear
combination of the bridge functions at xi. To see this, we fix i ∈ {1, . . . , N} and
introduce the vector spaces

Fi := Span({φ̃i,j}1≤j≤qi−1) , Gi := Span({bi,{j,k}}{j,k}∈B(i)) .

Note that Gi ⊂ H(div,Ω). Let F ∗
i be the dual of Fi, i.e. the set of linear forms on Fi

and define the operator A : Gi → F ∗
i by

∀(b, uh) ∈ Gi × Fi , (Ab)(uh) :=

∫

Ω\Γ

∇uh · b+ uh div b .

Lemma 6.2. The operator A : Gi → F ∗
i is surjective.

Proof. We start by introducing the graph G∗(xi) defined by
• Nodes: the numbers 1, . . . , qi,
• Edges: the bridges {k, k′}.

The key point is that G∗(xi) is connected (see e.g. [6, Lemma 1.5]). By [30, Lemma
3.9], to prove the lemma, it suffices to show that if uh ∈ Fi is such that

(6.5) (Abi,{j,k})uh = 0 ∀{j, k} ∈ B(i) ,

then uh = 0. Every element vh of Fi satisfies

qi∑

j=1

vh(γi,j) = 0 .

Hence, it remains to show that for 1 ≤ j, k ≤ N ,

(6.6) uh(γi,j) = uh(γi,k) .

When {j, k} ∈ B(i), this relation is a consequence of the assumption (6.5). In general,
we see that (6.6) holds by considering a path from j to k in G∗(xi).

Let {w∗
i,j}1≤j≤qi−1 be the basis of F ∗

i defined by the relations

w∗
i,j(φ̃i,j′) = δj,j′ .

By the previous lemma, there exists an element wi,j ∈ Gi such that A(wi,j) = w∗
i,j .

One has the properties

wi,j ∈ H(div,Ω) , supp(wi,j) ⊂ |st(xi,MΩ,h)| ,

by linearity since those properties hold for all bridge functions at xi. The same
argument allows to check that for all i′ ∈ {1, . . . , N} and (i′′, j′′) ∈ H̃ with i′′ ̸= i,
there holds

∫

Ω\Γ

∇φi′ ·wi,j + φi′ divwi,j = 0 ,

∫

Ω\Γ

∇φ̃i′′,j′′ ·wi,j + φ̃i′′,j′′ divwi,j = 0 .
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Finally, we have

(6.7)

∫

Ω\Γ

∇φ̃i,j′ ·wi,j + φ̃i,j′ divwi,j = δj,j′ ,

by construction. This proves the relations (5.1) for wi,j , and it remains to estimate its
L∞ norm as well as that of its divergence. This is addressed in the following lemma.

Lemma 6.3. One can choose wi,j such that

∥wi,j∥∞ ≤ Ch−2
i , ∥divwi,j∥∞ ≤ Ch−3

i .

Proof. First, we remark that the number qi is bounded independently of the
meshes MΩ,h and MΓ,h. Indeed, one can check that qi is equal to the number of
connected components of B \ Γ, where B is a small enough ball centered at xi. We
shall not prove this assertion in detail, for the sake of conciseness. Let us denote by
Q an upper bound for qi − 1.

Next, since A is surjective and since dim(F ∗
i ) = dim(Fi) = qi − 1, one can find

a set of pairs {{jp, kp}}1≤p≤qi−1 such that {Abi,{jp,kp}}1≤p≤qi−1 is a basis of F ∗
i . In

this basis, w∗
i,j is expressed by

w∗
i,j =

qi−1∑

p=1

λp(Abi,{jp,kp}) .

The coefficients λp are found by solving the linear system

A




λ1
...

λqi−1


 = ej ,

where ej is the j-th vector of the canonical basis of Rqi−1 and the matrix coefficients

(A)p,p′ := φ̃i,p′(γi,jp)− φ̃i,p′(γi,kp)

are integer between −2 and 2. The set SQ of invertible square matrices A of size at
most Q with coefficients in {−2,−1, 0, 1, 2} is finite. Therefore, we can write

(6.8) |λp| ≤ sup
A∈SQ

|||A−1|||∞ , ∀p ∈ {1 , . . . , qi − 1} ,

where, for an element v of Rr and a square r × r matrix M , we have denoted

∥v∥∞ := max
1≤q≤r

|vq| , |||M |||∞ := sup
v∈Rr

∥Mv∥∞
∥v∥∞

.

The bound (6.8) only depends onMΓ (through the numberQ). The proof is concluded
by using the triangular inequality and the bounds (6.1) from Lemma 6.1.

The construction of the vector fields {wk}1≤k≤M of Proposition 5.2 is easier; we
present this now. For each (i, j) ∈ H(Ω), one can construct a vector field ci,j ∈
H(div,Ω \ Γ) such that

∀uh ∈ Vh(Ω \ Γ) ,

∫

Ω\Γ

∇uh · ci,j + uh div(ci,j) = uh(γi,j) .
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With the notation of the proof of Lemma 6.1, it suffices to pick any tetrahedron K in
γi,j with a face F in MΓ,h. We then let ci,j := bK,F,ψ, where ψ is again the L2 dual
linear function associated to xi. Then, for k ∈ {1 , . . . ,M}, we set

wk :=
1

qk

qk∑

l=1

ck,l ,

and this definition fulfills the requirements of Proposition 5.2.
We have thus constructed the vector fields wk and wi,j and shown that they

satisfy the properties stated in Proposition 5.2, and hence the proof of Theorem 2.1
is concluded.
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