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MULTILEVEL DOMAIN UNCERTAINTY QUANTIFICATION

IN COMPUTATIONAL ELECTROMAGNETICS

RUBÉN AYLWIN, CARLOS JEREZ-HANCKES, CHRISTOPH SCHWAB, AND JAKOB ZECH

Abstract. We continue our study [Domain Uncertainty Quantification in Computational Elec-
tromagnetics, JUQ (2020), 8:301–341] of the numerical approximation of time-harmonic elec-
tromagnetic fields for the Maxwell lossy cavity problem for uncertain geometries. We adopt the
same affine-parametric shape parametrization framework, mapping the physical domains to a
nominal polygonal domain with piecewise smooth maps. The regularity of the pullback solutions
on the nominal domain is characterized in piecewise Sobolev spaces. We prove error conver-
gence rates and optimize the algorithmic steering of parameters for edge-element discretizations
in the nominal domain combined with: (a) multilevel Monte Carlo sampling, and (b) multilevel,
sparse-grid quadrature for computing the expectation of the solutions with respect to uncertain
domain ensembles. In addition, we analyze sparse-grid interpolation to compute surrogates of
the domain-to-solution mappings. All calculations are performed on the polyhedral nominal do-
main, which enables the use of standard simplicial finite element meshes. We provide a rigorous
fully discrete error analysis and show, in all cases, that dimension-independent algebraic con-
vergence is achieved. For the multilevel sparse-grid quadrature methods, we prove higher order
convergence rates which are free from the so-called curse of dimensionality, i.e. independent of
the number of parameters used to parametrize the admissible shapes. Numerical experiments
confirm our theoretical results and verify the superiority of the sparse-grid methods.

1. Introduction

In recent years, computational uncertainty quantification (computational UQ for short) has
emerged as a sub-discipline of computational science and engineering. A broad theme within com-
putational UQ is the efficient numerical analysis of parametric partial differential equation models
in science and engineering. They are usually based on parametric families of domains which are
homeomorphic, in particular, to one fixed nominal reference domain via parametric families of
diffeomorphisms. In the common case that the parametric dependence involves possibly infinitely
many parameters, the solution families become likewise infinite-parametric. The numerical ap-
proximation of such parametric solution sets is costly due to the usually large number of numerical
approximations of parametric solutions that must be generated to approximate the entire para-
metric solution family. In the presently considered time-harmonic Maxwell equation model, the
physical domain is necessarily three-dimensional, which is an additional source of computational
complexity.

The present paper addresses the formulation and error analysis of multilevel Monte-Carlo
(MLMC) Finite Element (FE) schemes for efficient computational domain uncertainty quantifica-
tion of time-harmonic, electromagnetic scattering from parametric families of lossy cavities in a
bounded domain in three-dimensional space.

1.1. Previous work. The question of shape recovery in time-harmonic acoustic and electromag-
netic scattering subject to noisy measurements of far-fields has received increasing attention in
recent years. Classical shape calculus suggests that under certain conditions, the dependence of the
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forward-map from scatterer shape to far-field is continuous and differentiable in suitable topolo-
gies (cf. [17] and references therein). This continuous dependence implies strong measurability of
solution families corresponding to random ensembles of admissible domains, thereby justifying the
use of Monte-Carlo sampling to explore the solution manifold.

In the discipline of computational uncertainty quantification, one is interested in numerically ap-
proximating parametric solution families corresponding to parametric representations of admissible
shapes, e.g., by Fourier-, wavelet- or Karhúnen-Loève -expansions. Naturally, many-parametric
representations of shapes will imply many-parametric solution families, thereby mandating sam-
pling and interpolation of parametric solutions in high-dimensional parameter domains. A broad
class of forward data-to-solution maps which arise in shape uncertainty quantification have been
shown to be holomorphic as maps between—possibly complexified—Banach spaces. We refer to
[24, 26, 15] and the references there for proofs of this so-called Shape Holomorphy of PDEs. This
property has been used in [2] for the numerical analysis of UQ in the time-harmonic propagation
of electromagnetic waves in lossy cavities in R

3. In this last reference, we developed a single-
level algorithm whose convergence properties were analyzed; in particular, dimension-independent
convergence rates of suitable sparse-grid interpolation and approximation algorithms for the many-
parametric dependence were shown. Moreover, we showed that these algorithms outperform the
corresponding Monte-Carlo sampling considerably, also for many-parametric shape representa-
tions.

The present paper develops the corresponding multilevel algorithms and their error analysis.
As is well-known from previous work, e.g., [4, 14], for scalar, parametric PDEs, the analysis of
the multilevel FE algorithms does require additional regularity of the parametric solution families.
Specifically, we require holomorphy of the parametric, time-harmonic solutions for a Maxwell-like,
non-homogeneous problem on a so-called nominal—reference—domain, with non-homogeneous
coefficients resulting from the pullback of the parametric, physical domain to this nominal domain.
The requited regularity results for solutions of Maxwell-like equations in the nominal domain,
for non-constant coefficients of low differentiability, were recently obtained in [1]. The shape
holomorphy results required for the error analysis of the multilevel Smolyak quadrature algorithms
is developed in the present paper.

1.2. Paper Layout. The structure of this text is as follows. In Section 2, we present the governing
equations and the problem formulation of Maxwell’s equations on a lossy cavity in three space
dimensions. Specifically, we focus on the parametric model of the cavity’s uncertain shape, and of
the variational form of the governing equations. We set in particular notation, and recapitulate
basic or known results on the unique solvability of the forward model; particular attention is paid
to a priori bounds which are uniform over all realizations of domains. The presented approach opts
for the so-called domain-mapping formulation, whereby all realizations of domains which occur in
numerical simulation are mathematically formulated on one fixed, so-called nominal domain. As
we show here, these entails the need to numerically solve a potentially large number of Maxwell-like
PDEs with variable, metric-dependent coefficients in the nominal domain.

Section 3 addresses the discretization of the parametric forward problem, in particular edge-
elements in the nominal domain (cf. Section 3.2). Section 4 describes the mathematical setting of
regularity of the parametric solution families. In comparison to the error analysis of the single-level
Smolyak quadrature algorithms in [2], stronger parametric regularity results are required. Sec-
tion 5.1 recapitulates the MLMC algorithm, and Section 5.2 the corresponding multilevel Smolyak
quadrature one. Finally, Section 6 contains several numerical experiments to illustrate our the-
oretical results, confirming in particular the superior accuracy versus cost performance of the
multilevel version compared to the single-level algorithms from [2].

1.3. General notation. Let m ∈ N0 := {0} ∪ N and let D ⊂ R
d be an open and bounded

Lipschitz domain, then Cm(D) and Cm(D;C) denote the set of m-times continuously differentiable
functions with real and complex values in D, respectively. Furthermore, C∞(D) denotes the space
of infinitely differentiable functions in D and we write Cm

0 (D) for the set of elements of Cm(D)
with compact support on D—analogous definitions apply for C∞(D;C) and Cm

0 (D;C).
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For k ∈ N0, we write Pk(D;Cd) the space of functions from D to C
d, such that each of their

d components is a polynomial with complex coefficients of total degree k or smaller. P̃k(D;Cd)
represents the space of functions in Pk(D;Cd) which have polynomials of degree exactly k on each
component.

The set of all bounded antilinear mappings from a Banach space X to C is written as X∗ and
is referred to as the dual space of X. The norm and duality product of a Banach space shall
be denoted by the use of subscript (‖ · ‖X and 〈·, ·〉X×X∗ , respectively). For a pair of Banach
spaces X and Y , the set of all linear mappings from X to Y is denoted L(X;Y ). For s ≥ 0 and
p ≥ 1, Lp(D) denotes the Banach space of p-integrable functions over D, while W s,p(D) denotes
the standard Sobolev spaces of order s as defined in [29, Chap. 3], where we use the convention
W 0,p(D) = Lp(D). If p = 2, we shall use the standard notation Hs(D) = W s,2(D). Furthermore,
the norm and semi-norm of Hs(D) are denoted as ‖ · ‖s,D and | · |s,D, respectively.

Let p ≥ 1 and let (Ω,F,ν) be a probability space, where we take Ω to be a sample space, F
a σ-algebra on Ω and ν a probability measure. Given a separable Hilbert space X, we say that
a function f : Ω → X is measurable (or a random variable) if for every Borel set B ⊂ X there
holds that {ζ ∈ Ω : f(ζ) ∈ B} ∈ F, we say that f is strongly measurable if it is the pointwise
limit of a sequence of simple functions {fn}n∈N, and we say that f is Bochner integrable if it
is strongly measurable and limn→∞

∫
Ω
‖f(ζ) − fn(ζ)‖X dν(ζ) = 0. Moreover, if f : Ω → X is

Bochner integrable, its integral over Ω is defined as
∫
Ω
f(ζ) dν(ζ) := limn→∞

∫
Ω
fn(ζ) dν(ζ). We

denote the Bochner space of p integrable, measurable mappings in (Ω,F,ν) with values in X as
Lp(Ω,F,ν;X). When the σ-algebra on Ω and the probability measure are clear from the context,
we will denote the norm of φ ∈ Lp(Ω,F,ν;X) as ‖φ‖Lp(Ω;X). For further details we refer to
[16, 18, 25].

In general, boldface symbols will be used to differentiate the vector-valued counterparts of scalar
functions and functional spaces, e.g., L2(D) denotes the functional space of vector-valued functions
with each of its d-components in L2(D). In particular, the L2(D)-inner product is denoted (·, ·)D.
Functional spaces built of tensor quantities are to be identified by indicating the range of the
elements it contains, eg., L2(D;Cd×d) represents the space of tensor-valued functions with each of
their d2 entries belonging to L2(D).

Euclidean norms in R
d are denoted by ‖ · ‖Rd , while the induced matrix norm is denoted by

‖ · ‖Rd×d with analogous versions when in C
d and C

d×d. The Jacobian of a differentiable function
U : D → C

d is written as dU : D → C
d×d. For a general square matrix A ∈ C

d×d, we write the
transpose matrix of A as A⊤, its determinant as det(A) and its inverse as A−1, when it exists.
Finally, the overline notation will be used to represent complex conjugation as well as the closure
of a set.

2. Maxwell’s equations on a lossy cavity

We begin this section by stating the time-harmonic Maxwell’s lossy cavity problem and its
functional framework.

2.1. Functional spaces for Maxwell’s equations. Let D be an open and bounded Lipschitz
domain in R

3 with simply connected boundary ∂D, exterior Dc := R
3 \ D and with exterior unit

normal vector n—pointing from D to Dc. We recall the standard functional spaces required to
formulate Maxwell problems:

H(curl; D) := {U ∈ L2(D) : curlU ∈ L2(D)},

H(curl curl; D) := {U ∈ H(curl; D) : curlU ∈ H(curl; D)},

H(div;D) := {U ∈ L2(D) : divU ∈ L2(D)},

and introduce, for m ∈ N0 and p ≥ 1, extensions of H(curl; D) and H(div;D) to spaces with
additional regularity and arbitrary integrability,

Wm,p(curl; D) := {U ∈ Wm,p(D) : curlU ∈ Wm,p(D)}, Hm(curl; D) := Wm,2(curl; D),

Wm,p(div;D) := {U ∈ Wm,p(D) : divU ∈Wm,p(D)}, Hm(div;D) := Wm,2(div;D),
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with associated norms

‖U‖Wm,p(curl;D) := (‖U‖p
Wm,p(D) + ‖ curlU‖p

Wm,p(D))
1
p ,

‖U‖Wm,p(div;D) := (‖U‖p
Wm,p(D) + ‖ divU‖p

Wm,p(D))
1
p ,

for p ∈ [1,∞) and the usual modification for p = ∞. We point out that W 0,2(curl; D) ≡
H(curl; D) and W 0,2(div;D) ≡ H(div;D).

Definition 2.1. For U ∈ C
∞(D) we define the following trace operators:

γDU := n× (U× n)|∂D, γ×DU := (n×U)|∂D and γNU := (n× curlU)|∂D,

as the Dirichlet trace, flipped Dirichlet trace and Neumann trace operators, respectively.

The trace operators in Definition 2.1 may be extended to continuous linear functionals from

H(curl; D) and H(curl curl; D) to subsets of H− 1
2 (∂D) := H

1
2 (∂D)

∗
. Specifically, we consider

the following trace spaces (cf. [6, 8]):

H
− 1

2

div (∂D) := {U ∈ (n× (H
1
2 (∂D)× n))∗ : div∂D U ∈ H− 1

2 (∂D)},

H
− 1

2

curl(∂D) := {U ∈ (H
1
2 (∂D)× n)∗ : curl∂D U ∈ H− 1

2 (∂D)},

where div∂D and curl∂D are, respectively, the surface divergence and surface scalar curl operators

and H
− 1

2

curl(∂D) = H
− 1

2

div (∂D)
∗

(cf. [7, Thm. 2] and [30, Rmk. 3.32]). Then, the operators in
Definition 2.1 may be continuously extended as

γD :H(curl; D) → H
− 1

2

curl(∂D),

γ×D :H(curl; D) → H
− 1

2

div (∂D),

γN :H(curl curl; D) → H
− 1

2

div (∂D).

We also introduce the space of functions with well defined curl and null flipped Dirichlet trace:

H0(curl; D) := {U ∈ H(curl; D) : γ×DU = 0 on ∂D},

which is a closed subspace of H(curl; D). Finally, for U and V ∈ H(curl; D) there holds the
following integration by parts formula [6, Eq. (27)]:

(U, curlV)D − (curlU,V)D = −〈γ×DU, γDV〉∂D (2.1)

where 〈·, ·〉∂D denotes the duality between H
− 1

2

div (∂D) and H
− 1

2

curl(∂D).

2.2. Lossy cavity problem. We consider the EM cavity problem for a time-harmonic dependence
eıωt with circular frequency ω > 0 and ı2 = −1 on D. The electric permittivity is denoted
ε(x) ∈ L∞(D;C3×3) and the magnetic permeability is denoted as µ(x) ∈ L∞(D;C3×3), where
losses are represented by their respective imaginary parts. With the current density J ∈ L2(D),
Maxwell’s equations in D read

curlE+ ıωµH = 0 in D,

ıωεE− curlH = −J in D.
(2.2)

Assuming the pointwise inverse µ−1 ∈ L∞(D;C3×3) to be well defined, the system in (2.2) can be
reduced to

curlµ−1 curlE− ω2εE = −ıωJ in D. (2.3)

We further impose perfect electric conductor (PEC) boundary conditions on ∂D,

γ×DE = 0 on ∂D. (2.4)

Remark 2.2. Under the assumption that the pointwise inverse µ−1 : D → C
3×3 belongs to

L∞(D;C3×3), any weak solution E, H ∈ H(curl; D) of (2.2) gives a weak solution of (2.3) and
viceversa by setting

H :=
ı

ω
µ−1 curlE.
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2.3. Existence and uniqueness of solutions. By multiplying (2.3) by a test function V ∈
H0(curl; D) and integrating by parts, using (2.1), one derives the usual weak formulation of the
Maxwell lossy cavity problem (2.3)–(2.4).

Problem 2.3 (Maxwell cavity problem). We seek E ∈ H0(curl; D) such that, with

a(U,V) :=

∫

D

µ−1 curlU · curlV dx−

∫

D

ω2εU ·V dx,

F (V) := −ıω

∫

D

J ·V dx,

(2.5)

for all U, V ∈ H0(curl; D), it holds that

a(E,V) = F (V) ∀ V ∈ H0(curl; D).

We will work under a positivity assumption for the parameters defining a(·, ·) (cf. [2, 21]).

Proposition 2.4. Assume that J ∈ L2(D), that ε, µ−1 ∈ L∞(D;C3×3) and that there exist θ ∈ R

and α > 0 such that

inf
0 6=ζ∈C3

ess inf
x∈D

min

{
Re(ζ⊤eıθµ(x)−1ζ)

‖ζ‖2
C3

,
−Re(ζ⊤eıθω2ε(x)ζ)

‖ζ‖2
C3

}
≥ α, (2.6)

holds. Then, Problem 2.3 has a unique solution E ∈ H0(curl; D) and

‖E‖H(curl;D) ≤
1

α
‖F‖H0(curl;D)∗ , (2.7)

for F in (2.5) and α > 0 as in (2.6).

Proof. Under our assumptions, the sesquilinear form eıθa(·, ·) is coercive and continuous on the
space H0(curl; D), i.e.,

Re(eıθa(U,U)) ≥ α‖U‖2H(curl;D)

Re(eıθa(U,V)) ≤ C(‖µ−1‖L∞(D;C3×3) + ‖ε‖L∞(D;C3×3))‖U‖H(curl;D)‖V‖H(curl;D),

for all U, V in H0(curl; D), and with a constant C > 0 independent of the parameters µ−1 and
ε. The complex Lax-Milgram lemma (see, e.g., [34, Chap. VI, Thm. 1.4]) implies

E 7→ eıθa(E, ·) : H0(curl; D) → H0(curl; D)∗

to be an isomorphism, so that

E 7→ a(E, ·) : H0(curl; D) → H0(curl; D)∗

is an isomorphism as well. Additionally, the Lax-Milgram lemma gives the a priori bound on the
solution in (2.7). �

Due to Remark 2.2, we may recover the magnetic field as H := ı
ω
µ−1 curlE, from where the

pair E and H belong to H(curl; D) and solve (2.2).

2.4. Domain perturbations. We consider Maxwell’s lossy cavity problem (Problem 2.3) on a

family of domains given as perturbations of D̂ ⊂ R
3, an open and bounded Lipschitz domain

henceforth referred to as the nominal domain. The set of admissible domain perturbations is T

and we set DT := T(D̂) for every T ∈ T. In order to consider Maxwell’s equations on the family
of domains {DT}T∈T, we will require suitable extensions of the data ε, µ and J to every perturbed
domain, as well as assumptions on T. Furthermore, in order to prove uniform convergence rates of
finite element solutions of Maxwell’s equations on these perturbed domains we enforce smoothness

conditions on D̂ ⊂ R
3, the perturbations T ∈ T and the data ε, µ and J.

Assumption 2.5. Fix N ∈ N, q > 3, ϑ ∈ (0, 1), θ ∈ R and α, αs > 0. We assume the existence of

an open, convex and bounded domain DH ⊂ R
3 such that DT := T(D̂) ⊂ DH for all T ∈ T and

assume that the following conditions hold:

(i) the nominal domain D̂ ⊂ R
3 is a bounded and path connected domain of class CN,1,
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(ii) the set of admissible domain perturbations T is a compact subset of CN,1(D̂) such that

every T ∈ T is bijective and such that T−1 ∈ C
N,1(DT), det(dT) > 0 everywhere on D̂

and

ϑ ≤ ‖det dT‖
L∞(D̂), ‖ det dT−1‖

L∞(D̂), ‖T‖
C0,1(D̂), ‖T−1‖C0,1(DT) ≤ ϑ−1, (2.8)

(iii) the magnetic permeability is invertible everywhere on DH and there holds that ε, µ and
µ−1 belong to WN,∞(DH ;C3×3), and that J belongs to WN,q(div;DH),

(iv) ε and µ−1 satisfy

inf
0 6=ζ∈C3

ess inf
x∈DH

min

{
Re(ζ⊤eıθµ(x)−1ζ)

‖ζ‖2
C3

,
−Re(ζ⊤eıθω2ε(x)ζ)

‖ζ‖2
C3

}
≥ α, (2.9)

(v) ε and µ satisfy

inf
0 6=ζ∈C3

ess inf
x∈DH

min

{
Re(ζ⊤µ(x)ζ)

‖ζ‖2
C3

,
Re(ζ⊤ε(x)ζ)

‖ζ‖2
C3

}
≥ αs.

Remark 2.6. Note that item (iv) in Assumption 2.5 implies a rotated positivity property on
the permittivity µ that could be used to replace item (v) in the same assumption. We choose,
however, to include both conditions for brevity and simplicity, since they will be required for
different purposes. Item (iv) allows us to ensure existence and uniqueness of Maxwell’s equations
on each one of the uncertain domains (cf. Proposition 2.4), while item (v) is required in [1] to ensure
the unique solvability of an auxiliary problem and in order to prove the smoothness properties of
solutions to Maxwell’s equations (cf. Theorem 2.15 below).

Remark 2.7. We recall the identity, CN,1(D̂) = WN+1(D̂) (cf. [17, Sec. 2.6.4]), since we will often
employ Sobolev norms of the transformations T ∈ T.

We can then consider the following family of T-dependent problems.

Problem 2.8 (Maxwell cavity problem on perturbed domains). For each T ∈ T, we seek ET ∈
H0(curl; DT) such that, with

aT(U,V) :=

∫

DT

µ−1 curlU · curlV − ω2εU ·V dx,

FT(V) := −ıω

∫

DT

J ·V dx,

for all U, V ∈ H0(curl; DT), it holds that

aT(ET,V) = FT(V) ∀ V ∈ H0(curl; DT).

Under Assumption 2.5, and arguing as in Section 2.3, there exists a unique solution ET ∈
H0(curl; DT) to Problem 2.8 for each T ∈ T satisfying an a priori bound.

Proposition 2.9. Under Assumption 2.5 and for each T ∈ T, Problem 2.8 has a unique solution
ET ∈ H0(curl; DT) satisfying

‖ET‖H(curl;DT) ≤
ω

α
‖J‖L2(DT), (2.10)

for α > 0 as in (2.9).

Proof. The uniqueness and existence of a solution to Problem 2.8 follows from Assumption 2.5
and the Lax-Milgram lemma as in the proof of Proposition 2.4. Furthermore, the reasoning in the
proof of Proposition 2.4 also yields

‖ET‖H(curl;DT) ≤
1

α
‖FJ,T‖H0(curl;DT)∗ .

The estimate (2.10) then follows from

‖FJ,T‖H0(curl;DT)∗ ≤ ω‖J‖L2(DT)

since J ∈ L2(DT) by assumption. �
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2.5. Pullback to the nominal domain. As in [2, 26], rather than considering Maxwell’s equa-
tions on each domain {DT}T∈T, we pull back Problem 2.8 to a family of variational problems set

on D̂ through an appropriate curl-conforming pullback given, for any T ∈ T, as the extension to
H(curl; DT) of

ΦT(U) := dT⊤(U ◦T) (2.11)

for U ∈ C
∞(DT;C

3).

Lemma 2.10 (Lemma 2.2 in [26]). Under Assumption 2.5, for each T ∈ T the mapping in

(2.11) can be extended to an isomorphism ΦT : H(curl; DT) → H(curl; D̂). In addition, ΦT :

H0(curl; DT) → H0(curl; D̂) is an isomorphism. Furthermore, for U ∈ H(curl; DT), it holds
that

curlΦT(U) = det(dT) dT−1 curlU ◦T

in L2(D̂).

We introduce the following family of T-dependent problems over H0(curl; D̂).

Problem 2.11 (Nominal Maxwell cavity problem). For each T ∈ T, we seek ÊT ∈ H0(curl; D̂)
such that, with

âT(Û, V̂) :=

∫

D̂

[
µ−1 ◦T

det(dT)
dTcurl Û · dTcurl V̂ − ω2(ε ◦T) det(dT) dT−⊤Û · dT−⊤V̂

]
dx̂,

F̂T(V̂) := −ıω

∫

D̂

det(dT)(J ◦T) · dT−⊤V̂ dx̂,

(2.12)

for all Û, V̂ ∈ H0(curl; D̂), it holds that

âT(ÊT, V̂) = F̂T(V̂) ∀ V̂ ∈ H0(curl; D̂). (2.13)

Remark 2.12. Note that the sesquilinear and antilinear forms in (2.12) may be written as

âT(Û, V̂) =

∫

D̂

[
µ−1
T

curl Û · curl V̂ − ω2εTÛ · V̂
]
dx̂,

F̂T(V̂) = −ıω

∫

D̂

JT · V̂ dx̂,

where

µT := det(dT) dT−1 (µ ◦T) dT−⊤,

εT := det(dT) dT−1 (ε ◦T) dT−⊤,

JT := det(dT) dT−1 (J ◦T) .

Also, Lemma 3.59 in [30] yields,

div JT = det(dT) div (J ◦T) ,

whenever J ∈ H(div;DH).

Due to Lemma 2.10, Problem 2.11 is equivalent to Problem 2.8, in the sense that, for a fixed

T ∈ T, ÊT ∈ H0(curl; D̂) is a solution to Problem 2.11 if and only if Φ−1
T

(ÊT) ∈ H0(curl; DT)
is a solution to Problem 2.8; we refer to [2, 26] for more details.

Theorem 2.13. Under Assumption 2.5 and for all T ∈ T, Problem 2.11 has a unique solution

ÊT ∈ H0(curl; D̂) satisfying

‖ÊT‖H(curl;D̂) ≤ C
ω

α
‖J‖L2(DT), (2.14)

where α > 0 is as in (2.9) and the constant C > 0 is independent of T ∈ T.
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Proof. Under our assumptions, Proposition 2.11 in [2] ensures that

Re(eiθâT(Û, Û)) ≥ αϑ3‖Û‖2
H(curl;D̂)

and
∣∣∣âT(Û, V̂)

∣∣∣ ≤ C‖Û‖
H(curl;D̂)‖V̂‖

H(curl;D̂)

for all U, V ∈ H(curl; D̂) and all T ∈ T, where the positive continuity constant C depends on ϑ
but is independent of T ∈ T. The complex Lax-Milgram Lemma then ensures the existence and
uniqueness of the solution to Problem 2.11 for each T ∈ T and the a priori bound

‖ÊT‖H(curl;D̂) ≤ ϑ−3ω

α
‖JT‖L2(D̂),

where JT is as in Remark 2.12. Assumption 2.5 and a change of variables yield,

‖JT‖L2(D̂) ≤ ϑ−2‖J ◦T‖
L2(D̂) ≤ ϑ−

5
2 ‖J‖L2(DT), (2.15)

and (2.14) follows. �

Remark 2.14. Note that we have not yet made use of the smoothness properties of the domain D̂
nor of the parameters ε, µ and J nor of the transformations T ∈ T specified in Assumption 2.5.
In fact, all of the results in Sections 2.4 and 2.5 hold with N = 0 in Assumption 2.5.

2.6. Spatial regularity. We continue by recalling a regularity statement for the solution of (2.2)
from [1] (also, see [28, 35] for earlier but less sharp results establishing H1-regularity).

Theorem 2.15 (Theorem 9 in [1]). Fix N ∈ N, q > 3 and αs > 0 and let D ⊂ R
3 be an open and

bounded domain of class CN,1. Assume the parameters ε, µ and J to satisfy

ε, µ ∈ WN,q(D;C3×3), J ∈ WN−1,q(div;D),

inf
0 6=ζ∈C3

ess inf
x∈D

min

{
Re(ζ⊤µ(x)ζ)

‖ζ‖2
C3

,
Re(ζ⊤ε(x)ζ)

‖ζ‖2
C3

}
≥ αs,

and that the imaginary parts of ε and µ are symmetric and let R > 0 be such that

R > max(‖ε‖WN,q(D;C3×3), ‖µ‖WN,q(D;C3×3)).

Then, there exists a positive constant C depending on R, ω, q, αs and D such that any weak
solution pair E, H ∈ H(curl; D) of (2.2) belong to WN,q(D) and satisfy

‖E‖WN,q(D) + ‖H‖WN,q(D) ≤ C(‖E‖L2(D) + ‖H‖L2(D) + ‖J‖WN−1,q(div;D)).

Remark 2.16. The fact that the constant C in Theorem 2.15 depends on µ and ε only through
R > 0 is not explicitly stated in [1], but follows from the proof of [1, Thm. 9] and the references
therein.

We now adapt Theorem 2.15 to our setting and prove, under Assumption 2.5, a uniform (on
T ∈ T) smoothness result for the solution of Problem 2.11.

Theorem 2.17. Let Assumption 2.5 hold. Then, for each T ∈ T, the solution ÊT ∈ H0(curl; D̂)

to Problem 2.11 belongs to WN,q(curl; D̂), with the bound

‖ÊT‖WN,q(curl;D̂) ≤ C‖J‖WN−1,q(div;DH),

where the constant C > 0 depends on T but is independent of T ∈ T.

Proof. Theorem 2.13 yields the existence and uniqueness of a solution ÊT ∈ H0(curl; D̂) to
Problem 2.11 for each T ∈ T. Due to Remark 2.2 and recalling the notation therein introduced,
we have

ĤT := ıω−1µ−1
T

curl ÊT,

then ÊT and ĤT are weak solution pair to the system:

curl ÊT + ıωµTĤT = 0 in D̂,

ıωεTÊT − curl ĤT = −JT in D̂.
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The product rule then yields

‖µT‖WN,q(D̂) ≤ C(T)‖µ ◦T‖
WN,q(D̂),

‖εT‖WN,q(D̂) ≤ C(T)‖ε ◦T‖
WN,q(D̂),

‖JT‖WN−1,q(D̂) ≤ C(T)‖J ◦T‖
WN−1,q(D̂),

‖ div JT‖WN−1,q(D̂) ≤ C(T)‖ div JT ◦T‖
WN−1,q(D̂),

(2.16)

where the constant C(T) > 0 depends continuously on T ∈ T ⋐ C
N,1(D̂). Repeated application

of the chain rule (cf. [11, Lemma 1] and [12, Lemma 3]) yields,

‖ε ◦T‖
WN,q(D̂) ≤ C

(
1 + ‖T‖

WN,∞(D̂)

)N
‖ det(dT)−1‖

1
q

L∞(D̂)
‖ε‖WN,q(DT)

≤ C
(
1 + ‖T‖

WN,∞(D̂)

)N
‖ det(dT)−1‖

1
q

L∞(D̂)
‖ε‖WN,q(DH), (2.17)

where the constant C > 0 is independent of T ∈ T. Analogously,

‖µ ◦T‖
WN,q(D̂) ≤ C

(
1 + ‖T‖

WN,∞(D̂)

)N
‖ det(dT)−1‖

1
q

L∞(D̂)
‖µ‖WN,q(DH),

‖J ◦T‖
WN−1,q(D̂) ≤ C

(
1 + ‖T‖

WN−1,∞(D̂)

)N−1

‖ det(dT)−1‖
1
q

L∞(D̂)
‖J‖WN−1,q(DH),

‖ div J ◦T‖
WN−1,q(D̂) ≤ C

(
1 + ‖T‖

WN−1,∞(D̂)

)N−1

‖ det(dT)−1‖
1
q

L∞(D̂)
‖ div J‖WN−1,q(DH).

(2.18)

The combination of the estimates in (2.16) with those in (2.17) and (2.18) imply that

εT, µT ∈ WN,q(D̂;C3×3), JT ∈ WN−1,q(div; D̂).

Furthermore, for every ζ ∈ C
3 and x̂ ∈ D̂ we have, due to Assumption 2.5, that

∣∣ζ⊤
(
dT−1 (ε ◦T) dT−⊤

)
(x̂)ζ

∣∣ ≥ αs‖ dT
−⊤(x̂)ζ‖2

C3 (2.19)

≥ αs‖ dT(x̂)‖−2
C3×3‖ζ‖

2
C3 ≥ cαsϑ

2‖ζ‖2
C3 ,

with an analogous computation for
∣∣ζ⊤(dT−1µ ◦T dT−⊤)(x̂)ζ

∣∣, where the constant c > 0 fol-
lows from the equivalence of norms over finite dimensional spaces and is independent of T ∈ T.
Therefore, there holds that

inf
0 6=ζ∈C3

ess inf
x∈D̂

min

{
Re(ζ⊤µT(x̂)ζ)

‖ζ‖2
C3

,
Re(ζ⊤εT(x̂)ζ)

‖ζ‖2
C3

}
≥ cϑ3αs,

where the additional power in ϑ follows from the bound for det(T) in Assumption 2.5. Theorem

2.15 then ensures that ÊT and ĤT belong to WN,q(D̂) together with the bound

‖ÊT‖WN,q(D̂) + ‖ĤT‖WN,q(D̂) ≤ C(‖ÊT‖L2(D̂) + ‖ĤT‖L2(D̂) + ‖JT‖WN−1,q(div;D̂)), (2.20)

where the constant C > 0 depends on R > max(‖εT‖WN,q(D̂;C3×3), ‖µT‖WN,q(D̂;C3×3)), ω, q, αs, ϑ

and D̂. The product rule and the previous estimates for µT (2.16) then yield

‖ curl ÊT‖WN,q(D̂) = ω‖µTĤT‖WN,q(D̂) ≤ C(T)‖ĤT‖WN,q(D̂),

‖ĤT‖L2(D̂) = ω−1‖µ−1
T

curl ÊT‖L2(D̂) ≤ c(T)‖ curl ÊT‖L2(D̂),
(2.21)
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where the constants C(T) > 0 and c(T) > 0 depend on µ ∈ WN,q(DH ;C3×3) and, continuously,

on T ∈ T ⋐ C
N,1(D̂). A combination of the estimates in (2.20), (2.21) and (2.14) then yields

‖ÊT‖WN,q(D̂) + ‖ curl ÊT‖WN,q(D̂)

≤ (1 + C(T))
(
‖ÊT‖WN,q(D̂) + ‖ĤT‖WN,q(D̂)

)

≤ C(1 + C(T))
(
‖ÊT‖L2(D̂) + ‖ĤT‖L2(D̂) + ‖JT‖WN−1,q(div;D̂)

)

≤ C(1 + c(T))(1 + C(T))
(
‖ÊT‖L2(D̂) + ‖ curl ÊT‖L2(D̂) + ‖JT‖WN−1,q(div;D̂)

)

≤ C(1 + c(T))(1 + C(T))(1 + CJ(T))
Cϑ

α
‖J‖WN−1,q(div;DH), (2.22)

where the constant C > 0 is as in (2.20), C(T) > 0 and c(T) > 0 are as in (2.21), Cϑ > 0 and α > 0
are as in (2.14), with the dependence on ω > 0 has been absorbed by the constant C. CJ(T) > 0
follows from combining the estimates for JT and div JT in (2.16) and (2.18). The compactness

of T in C
N,1(D̂) together with the continuous dependence of the constants on T ∈ C

N,1(D̂) then
ensures a uniform bound on T ∈ T in (2.22). �

Theorem 2.17 will ensure a uniform bound on the convergence rates of finite element approxima-

tions of the fields ÊT and will allow for the design of multilevel algorithms in the approximation of

the expectation of the mapping T 7→ ÊT. We continue our analysis by studying the approximation
of solutions to Problem 2.11 by the finite element method.

3. Discrete solution

To compute a discrete finite element approximation to the solution of Problem 2.11, the test and
trial space H0(curl; D) in (2.13) is to be replaced with a finite dimensional subspace. Since the

PDE coefficients defining âT(·, ·) and F̂T(·) in Problem 2.11 are not constant, the corresponding
stiffness matrix must itself be approximated by means of numerical quadrature on each element
of the mesh, which introduces a further source of error. Following [2, 3], in this section we discuss
existence, uniqueness and the approximation properties of such a discrete solution. However, first
we provide a framework to accommodate non-polyhedral domains.

3.1. Pullback to a polyhedral domain. The regularity result in Theorem 2.17 requires the

domain D̂ ⊂ R
3 to possess a CN,1-boundary for some N ∈ N, which precludes polyhedral domains

and the usage of standard tetrahedral meshes. We circumvent this problem by pulling back the
respective Maxwell problems to a polyhedral domain, henceforth referred to as the computational
domain, satisfying the following assumption.

Assumption 3.1. Let D̃ ⊂ R
3 be a polyhedral domain, referred to as the computational domain.

There exists a bijective bi-Lipschitz map T̂ mapping D̃ onto D̂. For n ∈ N, there are two sets of

pairwise disjoint subsets of D̃ and D̂, {D̃j}
n
j=1 and {D̂j}

n
j=1, respectively, such that the domains

{D̃j}
n
j=1 are polyhedral, the domains {D̂j}

n
j=1 are Lipschitz, and it holds that

D̂ = int




n⋃

j=1

D̂j


 , D̃ = int




n⋃

j=1

D̃j


 ,

T̂|D̃j
: D̃j → D̂j , T̂|D̃j

∈ C
N,1(D̃j), T̂−1|D̂j

∈ C
N,1(D̂j) ∀j ∈ {1, . . . , n},

where N ∈ N is as in Assumption 2.5.

For each T ∈ T, we introduce the mapping

T̃ := T ◦ T̂ : D̃ → DT,

and the set of admissible computational perturbations T̃ := {T̃ : T̃ := T ◦ T̂ ∀T ∈ T}. Figure 1
illustrates the setting of Assumption 3.1.
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D̃

D̃1

D̃2

D̃3

D̃4

D̂

D̂1

D̂2

D̂3

D̂4

DT

T(D̂1)

T(D̂2)

T(D̂3)

T(D̂4)

T̂ T ∈ T

T̃ ∈ T̃

Figure 1. Setting for domain transformations. The domains D̂ and D̃, as well

as the transformation T̂ : D̃ → D̂ are considered fixed. For a family of domain

transformations T, the physical domains are given as DT = T(D̂) for T ∈ T, or

equivalently as T̃(D̃) for T̃ = T ◦ T̂ ∈ T̃ := T ◦ T̂. The pullback solution on the

smooth nominal domain D̂ can be shown to belong to a certain regularity class.
This allows to deduce convergence rates for finite element approximations of the

pullback solutions computed on the polyhedral domain D̃.

Definition 3.2. Let D̃ be as in Assumption 3.1. For m ∈ N and p ∈ [1,∞], we introduce

Wm,p
pw (D̃) := {U ∈ Lp(D̃) : U|D̃j

∈ Wm,q(D̃j) ∀ j ∈ {1, . . . , n}}

with

‖U‖
W

m,p
pw (D̃) :=




n∑

i=j

‖U|D̃j
‖p
Wm,p(D̃j)




1
p

,

if p <∞ and the usual adjustment in case p = ∞.

Definition 3.3. Let D̃ be as in Assumption 3.1. For m ∈ N and p ∈ [1,∞], we introduce

Wm,p
pw (curl; D̃) := {U ∈ Wm,p

pw (D̃) : curlU ∈ Wm,p
pw (D̃)},

with

‖U‖
W

m,p
pw (curl;D̃) :=

(
‖U‖p

W
m,p
pw (D̃)

+ ‖ curlU‖p
W

m,p
pw (D̃)

) 1
p

,

if p <∞ and the usual adjustment in case p = ∞. Furthermore, for any m ∈ N, we set

Hm
pw(curl; D̃) := Wm,2

pw (curl; D̃).

Remark 3.4. Under Assumptions 2.5 and 3.1, compactness of T ⋐ C
N,1(D̂) and continuity of T 7→

T ◦ T̂ : CN,1(D̂) → WN+1,∞
pw (D̃) imply the compactness of T̃ = {T ◦ T̂ : T ∈ T} ⊆ WN+1,∞

pw (D̃).

Lemma 3.5. Let Assumptions 3.1 hold and let U ∈ H0(curl; D̂) ∩ Wm,p(curl; D̂) for m ∈ N

with m ≤ N , where N ∈ N is as in Assumption 3.1, and p > 1. Then, with T̂ : D̃ → D̂ as in

Assumption 3.1 and Φ
T̂
: H0(curl; D̂) → H0(curl; D̃) as in (2.11) and Lemma 2.10, it holds that

Φ
T̂
U belongs to H0(curl; D̃) ∩Wm,p

pw (curl; D̃), with

‖Φ
T̂
U‖

W
m,p
pw (curl;D̃) ≤ C‖U‖

Wm,p(curl;D̂), (3.1)

where the constant C > 0 is independent of U ∈ H0(curl; D̂) ∩Wm,p(curl; D̂).

Proof. Take an arbitrary U ∈ H0(curl; D̂) ∩Wm,p(curl; D̂). Lemma 2.10 gives,

Φ
T̂
U = dT̂⊤U ◦ T̂ and curlΦ

T̂
U = det(dT̂) dT̂−1 curlU ◦ T̂,

and Φ
T̂
U ∈ H0(curl; D̃). Fix j ∈ {1, . . . , n}. By Assumption 3.1, T̂ ∈ WN+1,∞(D̃j), according

to [11, Lemma 1]—also see [12, Lemma 3]—it holds that U|D̂j
◦ T̂, curlU|D̂j

◦ T̂ ∈ Wm,p(D̃j).
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Repeatedly applying the chain rule—as in the proof of Theorem 2.17—yields the existence of

C > 0, independent of U ∈ H0(curl; D̂), such that

‖U ◦ T̂‖
Wm,p(D̃j)

≤ C
(
1 + ‖T̂‖

W
m,∞
pw (D̃)

)m
‖ det(dT̂)−1‖

1
p

L∞(D̃)
‖U‖

Wm,p(D̂j)
,

‖ curlU ◦ T̂‖
Wm,p(D̃j)

≤ C
(
1 + ‖T̂‖

W
m,∞
pw (D̃)

)m
‖ det(dT̂)−1‖

1
p

L∞(D̃)
‖ curlU‖

Wm,p(D̂j)
.

Furthermore dT̂ ∈ WN,∞(D̃j ;C
3×3) and therefore Φ

T̂
U|D̃j

∈ Wm,p(D̃j) for all j ∈ {1, . . . , n}.

Analogously, we have that det(dT̂) dT̂−1 ∈ WN,∞(D̃j ;C
3×3) (upon recalling that det(dT̂) dT̂−1

is the cofactor matrix of dT̂) and therefore curlΦ
T̂
U|D̃j

∈ Wm,p(D̃j) for all j ∈ {1, . . . , n}. The

estimate (3.1) then follows by the product rule. �

Problem 3.6 (Computational Maxwell cavity problem). For each T ∈ T, we seek ẼT ∈ H0(curl; D̃)
such that with

ãT(Ũ, Ṽ) :=

∫

D̃

[
µ−1

T̃
curl Ũ · curl Ṽ − ω2ε

T̃
Ũ · Ṽ

]
dx̃

F̃T(Ṽ) := −ıω

∫

D̃

J
T̃
· Ṽ dx̃,

for all Ũ, Ṽ ∈ H0(curl; D̃), it holds that

ãT(ẼT, Ṽ) = F̃T(Ṽ) ∀ Ṽ ∈ H0(curl; D̃),

where T̃ := T ◦ T̂, T̂ : D̃ → D̂ is as in Assumption 3.1 and µ
T̃

, ε
T̃

and J
T̃

are as in Remark 2.12.

Theorem 3.7. Let Assumptions 2.5 and 3.1 hold. Then, for each T ∈ T, there is a unique

solution ẼT ∈ H0(curl; D̃) to Problem 3.6 that satisfies ẼT ∈ H0(curl; D̃) ∩ WN,q
pw (D̃), where

N ∈ N and q ≥ 3 are as in Assumption 2.5, with the bound

‖ẼT‖WN,q
pw (curl;D̃) ≤ C‖J‖WN−1,q(div;DH), (3.2)

where the constant C > 0 depends on T but is independent of T ∈ T.

Proof. Under our assumptions, we may repeat our analysis in Sections 2.4 through 2.6 on D̃

instead of on D̂, so that for each T̃ ∈ T̃ there is a unique ẼT ∈ H0(curl; D̃) that solves Problem

3.6. Moreover, as before, it holds that ẼT ≡ Φ
T̂
ÊT, where T̂ : D̃ → D̂ is as in Assumption 3.1,

Φ
T̂

: H0(curl; D̂) → H0(curl; D̃) is as in Lemma 2.10 and ÊT ∈ H0(curl; D̂) is the solution of

Problem 2.11 (cf. [2, 26] for more details). Then, Theorem 2.17 yields ÊT ∈ WN,q(curl; D̂) with
the bound

‖ÊT‖WN,q(curl;D̂) ≤ C‖J‖WN−1,q(div;DH),

where the positive constant C depends on T̃ but is independent of T̃ ∈ T̃. Lemma 3.5 then yields
a positive constant C such that,

‖Φ
T̂
ÊT‖WN,q

pw (curl;D̃) ≤ C‖ÊT‖WN,q(curl;D̂),

for each T ∈ T, so that the result then follows from the equivalence ẼT ≡ Φ
T̂
ÊT. �

3.2. Finite elements. We now introduce discretization spaces for Problem 3.6. We shall consider
a sequence of affine meshes {τhi

}i∈N, indexed by their positive mesh-sizes, on the computational

domain D̃.

Assumption 3.8. Let D̃ be as in Assumption 3.1. There exist constants s ∈ (0, 1), C1 > 0, C2 > 0
and a sequence of meshes {τhi

}i∈N such that for all i ∈ N the following conditions hold:

(i) τhi
is a set of pairwise disjoint tetrahedrons generally denoted K such that

D̃ = int


 ⋃

K∈τhi

K


 ,
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(ii) there exists a partition of τhi
=
⋃n

j=1 τhi,j such that,

D̃j = int


 ⋃

K∈τhi,j

K


 ,

for all j ∈ {1, . . . , n},
(iii) τhi

is a shape-regular and quasi-uniform mesh (cf. [20, Chap. 1]),
(iv)

C1s
i ≤ hi ≤ C2s

i. (3.3)

We denote an arbitrary mesh on the sequence {τhi
}i∈N as τh. Note that condition (iv) in

Assumption 3.8 implies limi→∞ hi = 0.

Remark 3.9. Equation (3.3) ensures that the cardinality |τhi
| of the mesh τhi

increases. Specifically,
it holds that

Cs,3s
−3i ≤ dim(P c

k (τhi
)) ≤ Cs,4s

−3i, (3.4)

for a second pair of positive constants Cs,3 and Cs,4. This will be relevant for the multilevel results
presented in Section 5.

In the following, we assume given a reference tetrahedron K̆ ⊂ R
3 such that for every K ∈ τh

there is an affine bijective map TK : K̆ 7→ K. For an arbitrary tetrahedron K, we shall make use
of the following space of polynomial functions of degree k ∈ N,

P c
k (K) := Pk−1

(
K;C3

)
⊕ {p ∈ P̃k

(
K,C3

)
: x · p(x) = 0 ∀ x ∈ K}.

The curl-conforming edge finite element (FE) on a tetrahedron K is given by the triple

(K,P c
k (K),Σc

k(K)),

where Σc
K is a set of uni-solvent linear functionals over P c

k (K) (cf. [30, Sec. 5.5]). The curl-
conforming FE space—satisfying the PEC boundary condition (2.4)—on an affine mesh τh ∈
{τhi

}i∈N is then built as follows

P c
k (τh) := {V ∈ H0(curl; D̃) : V|K ∈ P c

k (K) ∀K ∈ τh}.

For the sake of brevity, we avoid specifying all properties satisfied by the mappings TK as well as
those satisfied by the space P c

k (τh) (see [20] and [30] and references therein).

3.3. Discrete problem, Quadrature error and Strang’s Lemma. We continue by stating
the fully discrete version of Problem 2.11 and briefly comment on the conditions required of the
quadrature rules used to approximate the integrals defining ãT(·, ·) and F̃T(·) in Problem 3.6 to
ensure convergence rates of the solution to the fully discrete problem. For a more detailed analysis
we refer to [2, 3].

3.3.1. Numerical quadrature. On the fixed reference tetrahedron K̆, we define a quadrature rule
Q : C0(K̆;C) → C as

Q(f) :=

L∑

l=1

w̆lf(b̆l),

for certain quadrature nodes (b̆l)
L
l=1 ⊆ K̆ and quadrature weights (w̆l)

L
l=1 ⊆ R\{0}. Given a

(nondegenerate) tetrahedron K and the affine bijective element map TK : K̆ → K we obtain a
transformed quadrature rule QK : C(K;C) → C on K via

QK(f) :=

L∑

l=1

wl,Kf(bl,K) where wl,K := |det(dTK)| w̆l, bl,K := TK(b̆l). (3.5)
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3.3.2. Discrete variational formulation. Approximating all the integrals in Problem 3.6 with quad-
ratures Q•

K as in (3.5)—on each element K of the mesh τh—leads to the following sesquilinear
and antilinear forms:

ãh;T(Ũh, Ṽh) :=
∑

K∈τh

Q1
K

(
µ−1

T̃
curl Ũh · curl Ṽh

)
− ω2Q2

K

(
ε
T̃
Ũh · Ṽh

)
, (3.6)

and

F̃h;T(Ṽh) := −ıω
∑

K∈τh

Q2
K

(
J
T̃
· Ṽh

)
, (3.7)

for all Ũh, Ṽh ∈ P c
k (τh), where we have used the same notation as in the statement of Problem

3.6, Q1
K and Q2

K are two different quadrature rules on each K ∈ τh, constructed from two different

quadrature rules Q1 and Q2 over K̆ as indicated in equation (3.5). Since the quadrature rules
require pointwise function evaluations to be well-defined, here µ−1 : DH → C

3×3, ε : DH → C
3×3

and J : DH → C
3 are required to be continuous in each element K ∈ τh. Function evaluations on

the boundary of an element K are understood with respect to the interior limit on the element
K. With the previous definitions at hand, we arrive at the fully discrete variational problem.

Problem 3.10 (Fully discrete computational Maxwell cavity problem). For each T ∈ T, we seek

ẼT,h ∈ P c
k(τh) such that

ãh;T(ẼT,h, Ṽh) = F̃h;T(Ṽh) ∀ Ṽh ∈ P c
k(τh). (3.8)

Theorem 3.11. Let Assumptions 2.5, 3.1 and 3.8 hold and assume that the weights of the quadra-
tures Q1, Q2 are positive and at least one of the following two conditions:

(i) The nodes defining Q1 and Q2 are Pk−1(K̆;C) and Pk(K̆;C)-unisolvent, respectively.

(ii) Q1 and Q2 are exact on P2k−2(K̆;C) and P2k(K̆;C), respectively.

Then, there exists a unique solution ẼT,h ∈ P c
k (τh) of Problem 3.10 and it holds that

‖ẼT,h‖H(curl;D̃) ≤ C
ω

α
‖J‖L2(DT), (3.9)

where α > 0 is as in (2.9) and the constant C > 0 is independent of the mesh-size and of T ∈ T,
but depends on ϑ in (2.8).

Proof. The discrete coercivity
∣∣∣ãh;T(Ũh, Ũh)

∣∣∣ ≥ Cα‖Ũh‖
2
H(curl;D̃)

∀ Ũh ∈ P c
0 (τh),

where α > 0 is as in (2.9) and C > 0 is independent of both the mesh-size and T ∈ T, but depends
on ϑ in (2.8), was shown in [2, Thm. 3.13]. The continuity

∣∣∣ãh;T(Ũh, Ṽh)
∣∣∣ ≤ C‖Ũh‖H(curl;D̃)‖Ṽh‖H(curl;D̃) ∀ Ũh, Ṽh ∈ P c

0 (τh),

on the other hand, follows from [2, Lem. 3.12], where C > 0 is as before and not necessarily the
same in each appearance. Moreover, by an application of [2, Lem. 3.12 (i)] we have that

∣∣∣F̃h;T(Ṽh)
∣∣∣ =

∣∣∣∣∣ω
∑

K∈τh

Q2
K

(
J
T̃
· Ṽh

)∣∣∣∣∣ ≤ Cω
∑

K∈τh

‖J
T̃
‖L2(K)‖Ṽh‖L2(K) ∀ Ṽh ∈ P c

0 (τh),

for C > 0 as before. Together with our assumptions, the Cauchy-Schwartz inequality and (2.15),
the complex Lax-Milgram Lemma then ensures the existence and uniqueness of the solution to
Problem 3.10 for each T ∈ T and the a priori bound in (3.9). �

Remark 3.12. Much like the results in Sections 2.4 and 2.5, Theorem 3.11 makes no use of the

smoothness of D̂, the parameters ε, µ and J or of the transformations T ∈ T, and still hold true
when N = 0 in Assumption 2.5.
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3.3.3. Discretization error. The discretization error ‖ẼT − ẼT,h‖H(curl;D̃) may be bounded with

the help of Strang’s Lemma. The following results—studied first in [2, Sec. 3] and later generalized

in [3]— will give sufficient conditions on the quadrature rules defining ãh;T(·, ·) and F̃h;T(·) to
ensure bounds on the discretization error with respect to the mesh-size. We begin by stating
Strang’s Lemma (cf. [13]).

For Ũ ∈ H0(curl; D̃) and arbitrary i ∈ N and T ∈ T, set

A1,T,i(Ũ) := inf
Ũhi

∈P c
k
(τhi

)
‖Ũ− Ũhi

‖
H(curl;D̃) + sup

Ṽhi
∈P c

k (τhi
)

Ṽhi
6=0

|ãT(Ũhi
, Ṽhi

)− ãh;T(Ũhi
, Ṽhi

)|

‖Ṽhi
‖
H(curl;D̃)

,

A2,T,i := sup
Ṽhi

∈P c
k (τhi

)

Ṽhi
6=0

|F̃T(Ṽhi
)− F̃h;T(Ṽhi

)|

‖Ṽhi
‖
H(curl;D̃)

.

Lemma 3.13. Under the assumptions of Theorems 2.13 and 3.11, there exist unique solutions

ẼT ∈ H0(curl; D̃) and ẼT,hi
∈ P c

k (τhi
) of Problems 3.6 and 3.10, respectively, and c > 0 inde-

pendent of the mesh-size and of T ∈ T such that

‖ẼT − ẼT,hi
‖
H(curl;D̃) ≤ c(A1,T,i(ẼT) + A2,T,i),

holds for every i ∈ N and T ∈ T.

We continue by stating relevant consistency error estimates that will permit a later application
of Strang’s Lemma. They correspond to adaptations to our context of Theorems 2 and 3 in [3]
(cf. Lemmas 3.15 and 3.16 in [2]).

Lemma 3.14. Let Assumptions 2.5, 3.1 and 3.8 hold. If the quadrature rule Q2 on K̆ is exact
on polynomials of degree k+N − 1, where N ∈ N is as in Assumption 2.5, then, for any sequence

{Ṽhi
}i∈N with Ṽhi

∈ P c
k (τhi

) for all i ∈ N, it holds that

|F̃T(Ṽhi
)− F̃h;T(Ṽhi

)| ≤ ChNi |D̃|
1
2
− 1

q ‖J‖WN,q(DH)‖Ṽhi
‖0,D̃,

for each T ∈ T, where q > 3 is as in Assumption 2.5 and the constant C > 0 is independent of
i ∈ N and T ∈ T.

Proof. Fix i ∈ N and T ∈ T and recall T̃ := T ◦ T̂ for T̂ : D̃ → D̂ as in Assumption 3.1. An
application of the chain and product rules as in the proof of Theorem 2.17 yields, together with
Assumption 3.1, for any j ∈ {1, . . . , n} with n ∈ N as in Assumption 3.1, that

‖J
T̃
‖
WN,q(D̃j)

≤ C‖J‖
WN,q(T(D̂j))

.

The constant C may be chosen independently of T ∈ T, so that J
T̃
∈ WN,q

pw (D̃) and

‖J
T̃
‖
W

N,q
pw (D̃) ≤ C‖J‖WN,q(DT) ≤ C‖J‖WN,q(DH), (3.10)

for C > 0 not necessarily the same in each appearance. Then, and for any Ṽhi
∈ P c

k (τhi
), Lemma

7 in [3] yields
∣∣∣F̃T(Ṽhi

)− F̃h;T(Ṽhi
)
∣∣∣ ≤ ChNi

∑

K∈τhi

|K|
1
2
− 1

p ‖JT‖WN,p(K)‖V̂hi
‖0,K , (3.11)

where the positive constant is independent of i ∈ N and T ∈ T. Then, using that J
T̃
∈ WN,p

pw (D̃)
with p > 2 and Assumption 3.8, Hölder’s inequality yields

∑

K∈τhi

|K|
1
2
− 1

q ‖J
T̃
‖WN,q(K)‖Ṽhi

‖0,K ≤ |D̃|
1
2
− 1

q ‖J
T̃
‖
W

N,q
pw (D̃)‖Ṽhi

‖0,D̃. (3.12)

Combining the estimates in (3.10), (3.11) and (3.12) yields the required result. �
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Lemma 3.15. Let Assumptions 2.5, 3.1 and 3.8 hold. If the quadrature rules Q1 and Q2 on K̆
are exact on polynomials of degree k +N − 2 and k +N − 1, respectively, where N ∈ N is as in

Assumption 2.5, then, for any pair of sequences {Ũhi
}i∈N and {Ṽhi

}i∈N with Ũhi
, Ṽhi

∈ P c
k (τhi

)
for all i ∈ N, it holds that

|ãT(Ũhi
, Ṽhi

)− ãh;T(Ũhi
, Ṽhi

)| ≤ hNi C‖Ũhi
‖
HN

pw(curl;D̃)‖Ṽhi
‖
H(curl;D̃),

for each T ∈ T, where the constant C > 0 is independent of i ∈ N and T ∈ T.

Proof. An analogous reasoning as that in the proof of Lemma 3.14 shows that there exists a
constant C > 0 such that

‖µ−1

T̃
‖
WN,∞(D̃j ;C3×3) ≤ C‖µ−1‖

WN,∞(T(D̂j);C3×3),

‖ε
T̃
‖
WN,∞(D̃j ;C3×3) ≤ C‖ε‖

WN,∞(T(D̂j);C3×3),

for any T ∈ T and j ∈ {1, . . . , n}—n ∈ N is as in Assumption 3.1. Therefore, we have that

ε
T̃
, µ−1

T̃
∈ WN,∞

pw (D̃;C3×3), with

‖µ−1

T̃
‖
W

N,∞
pw (D̃;C3×3) ≤ C‖µ−1‖WN,∞(DT;C3×3),

‖ε
T̃
‖
W

N,∞
pw (D̂;C3×3) ≤ C‖ε‖WN,∞(DT;C3×3),

(3.13)

for C > 0 as before.
Fix i ∈ N and T ∈ T. For any pair Ũhi

, Ṽhi
∈ P c

k (τhi
) [3, Lemma 6]—also [3, Thm. 2]—yields

|ãT(Ũhi
, Ṽhi

)− ãh;T(Ũhi
, Ṽhi

)|

≤ ChNi
∑

K∈τhi

Cε
T̃
,K‖Ũhi

‖N,K‖Ṽhi
‖0,K + Cµ−1

T̃
,K‖ curl Ũhi

‖N,K‖ curl Ṽhi
‖0,K , (3.14)

where, for each K ∈ τhi
, we have defined

Cε
T̃
,K := ω2‖ε

T̃
‖WN,∞(K) and Cµ−1

T̃
,K := ‖µ−1

T̃
‖WN,∞(K),

and the constant C > 0 is independent of ε, µ ∈ WN,∞(DH ;C3×3), i ∈ N and T ∈ T. Since

ε
T̃
, µ−1

T̃
∈ WN,∞

pw (D̃;C3×3), we have that
∑

K∈τhi

Cε
T̃
,K‖Ũhi

‖N,K‖Ṽhi
‖0,K + Cµ−1

T̃
,K‖ curl Ũhi

‖N,K‖ curl Ṽhi
‖0,K

≤ Cε
T̃

∑

K∈τhi

‖Ũhi
‖N,K‖Ṽhi

‖0,K + Cµ−1

T̃

∑

K∈τhi

‖ curl Ũhi
‖N,K‖ curl Ṽhi

‖0,K

≤ max(Cε
T̃
, Cµ−1

T̃

)
∑

K∈τhi

‖Ũhi
‖N,K‖Ṽhi

‖0,K + ‖ curl Ũhi
‖N,K‖ curl Ṽhi

‖0,K

≤ max(Cε
T̃
, Cµ−1

T̃

)
∑

K∈τhi

‖Ũhi
‖HN (curl;K)‖Ṽhi

‖H(curl;K)

≤ max(Cε
T̃
, Cµ−1

T̃

)‖Ũhi
‖
HN

pw(curl;D̃)‖Ṽhi
‖
H(curl;D̃), (3.15)

where

Cε
T̃
:= ω2‖ε

T̃
‖
W

N,∞
pw (D̃) and Cµ−1

T̃

:= ‖µ−1

T̃
‖
W

N,∞
pw (D̃).

Combining the estimates in (3.13), (3.14) and (3.15) yields the required result. �

In virtue of the requirements of Lemmas 3.14 and 3.15, we continue under the next assumption
on the data ε, µ and J as well as on the quadrature rules used to construct the sesquilinear and
antilinear forms in (3.6) and (3.7).

Assumption 3.16. Recall k ∈ N as the polynomial degree of the finite element spaces P c
k (τh) and

let N ∈ N be as in Assumption 2.5. We assume that k ≤ N , that the weights of the quadratures
Q1 and Q2 are positive, that Q1 and Q2 are exact on polynomials of degree k+N−2 and k+N−1,
respectively, and at least one of the following two conditions is satisfied
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(i) The nodes defining Q1 and Q2 are Pk−1(K̆;C) and Pk(K̆;C)-unisolvent, respectively.

(ii) Q1 and Q2 are exact on P2k−2(K̆;C) and P2k(K̆;C), respectively.

The combination of Lemmas 3.14 and 3.15 together with Strang’s Lemma (Lemma 3.13) yields

the following estimate for the convergence rate of ẼT,h to ẼT, solutions to Problems 3.10 and 3.6,
respectively.

Theorem 3.17. Let Assumptions 2.5, 3.1, 3.8 and 3.16 hold. Then, for any T ∈ T, there exists

a unique solution of Problem 3.10, ẼT,hi
∈ P c

k (τhi
), which satisfies

‖ẼT − ẼT,hi
‖
H(curl;D̃) ≤ Chki ‖J‖WN,q(DH),

where ẼT ∈ H0(curl; D̃) is the solution of Problem 3.6, N ∈ N and q > 3 are as in Assumption
3.16 and the constant C > 0 is independent of i ∈ N and T ∈ T.

Proof. Fix i ∈ N and T ∈ T. Theorems 3.7 and 3.11 ensure the existence of unique solutions ẼT

and ẼT,hi
for each i ∈ N of Problems 3.6 and 3.10, respectively. Furthermore, Theorem 3.7 also

states the piecewise smoothness of the solution of Problem 3.6, i.e., ẼT ∈ WN,q
pw (curl; D̃), with

the bound

‖ẼT‖WN,q
pw (curl;D̃) ≤ C‖J‖WN−1,q(div;DH), (3.16)

where the constant C > 0 is independent of T ∈ T. Note that our assumption that J ∈ WN,q(DH)
in Assumption 3.16 implies that J ∈ WN−1,q(div;DH). Moreover, since q > 3 we have that

ẼT ∈ HN
pw(curl; D̃) with

‖ẼT‖HN
pw(curl;D̃) ≤ C‖ẼT‖WN,q

pw (curl;D̃), (3.17)

for C > 0 independent of T ∈ T. Now, let Ic
k : HN (curl; D̃) → P c

k (τhi
) be the canonical

curl-conforming interpolation operator (cf. [30, Sec. 5.5]), which is a bounded operator in the

H(curl; D̃)-norm in P c
k (τhi

) for any N ∈ N (see [30, Lemma 5.38]). Lemmas 3.13 (Strang’s
Lemma), 3.14 and 3.15 then yield,

‖ẼT − ẼT,hi
‖
H(curl;D̃)

≤ C
[
‖ẼT − Ic

k(ẼT)‖H(curl;D̃) + hNi

(
‖Ic

k(ẼT)‖HN
pw(curl;D̃) + |D̃|

1
2
− 1

q ‖J‖WN,q(DH)

)]
,
(3.18)

where C > 0 may be chosen to be independent of both i ∈ N and T ∈ T. Since the approximation
and continuity properties of Ic

k hold on each mesh element K ∈ τhi
(cf. [30, Lem. 5.48, Thm. 5.41

& Rmk. 5.42]), they also hold on D̂j for each j ∈ {1, . . . , n} by virtue of Assumption 3.1, so that

‖ẼT − Ic
k(ẼT)‖H(curl;D̃) ≤ chki ‖ẼT‖Hk

pw(curl;D̃),

‖Ic
k(ẼT)‖HN

pw(curl;D̃) ≤ c‖ẼT‖HN
pw(curl;D̃),

(3.19)

where c > 0 is, once again, independent of i ∈ N and T ∈ T. A combination of the estimates in
(3.16), (3.17), (3.18) and (3.19) yields,

‖ẼT − ẼT,hi
‖
H(curl;D̃)

≤ C
[
hki ‖ẼT‖Hk

pw(curl;D̃) + hNi

(
‖ẼT‖HN

pw(curl;D̃) + |D̃|
1
2
− 1

q ‖J‖WN,q(DH)

)]

≤ C(1 + |D̂|
1
2
− 1

q )hki ‖J‖WN,q(DH)

where the constant C > 0 is not necessarily the same in each appearance but is always independent
of i ∈ N and T ∈ T. �
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4. Parametric solutions

We now introduce a rigorous framework to treat domain uncertainties described by infinite-
dimensional parametrizations of admissible perturbations T. Proving convergence rates for the
approximation of the parametric solution will require smoothness results with respect to the pa-
rameters. In particular, we recall shape holomorphy results [26] and also discuss higher-order
spatial regularity of these extensions. As such, the current section serves as preparation for the
subsequent convergence results.

4.1. Admissible parameters. We shall allow the perturbations T ∈ T to be given through a

random variable with values in the compact set T ⋐ C
N,1(D̂) (see Assumption 2.5). Let, in the

following,

ZN := C
N,1(D̂;C3), (4.1)

and

Z := C
0,1(D̂;C3). (4.2)

Note that we have continuous embedding ZN →֒ Z. Throughout, elements of ZN will always
additionally be interpreted to belong to Z without distinction in the notation. Moreover, and as
in [2], we will also require the data ε, µ and J to possess holomorphic extensions to an open set in
C

3 containing the hold-all domain DH . We shall work under the following assumption on T and
on the data.

Assumption 4.1. There exists an open set ODH
⊂ C

3, such that DH ⊂ ODH
, and holomorphic

extensions of ǫ, µ and J (for which we use the same notation) to ODH
satisfying, for some θ ∈ R,

α > 0 and αs > 0, the following bounds:

inf
0 6=ζ∈C3

ess inf
x∈ODH

min

{
Re(ζ⊤eıθµ(x)−1ζ)

‖ζ‖2
C3

,
−Re(ζ⊤eıθω2ε(x)ζ)

‖ζ‖2
C3

}
≥ α,

inf
0 6=ζ∈C3

ess inf
x∈ODH

min

{
Re(ζ⊤µ(x)ζ)

‖ζ‖2
C3

,
Re(ζ⊤ε(x)ζ)

‖ζ‖2
C3

}
≥ αs.

4.2. Holomorphic extension in H0(curl; D̃). We now show that the solution map possesses
certain holomorphic extensions. The term solution map here refers to the function mapping each
perturbation T ∈ T to the solution of either Problem 3.6 or 3.10. By holomorphic we mean that
this map is complex Fréchet differentiable as a function between two complex Banach spaces.

Before proceeding, we rewrite the T ∈ T-dependent quantities in the sesquilinear and antilinear
forms defining Problems 3.6 and 3.10 so that the dependence on T ∈ T is made explicit. Then,
with the notation introduced in Remark 2.12, it holds that

µ
T̃
= det(dT̂) dT̂−1 det(dT ◦ T̂)(dT ◦ T̂)−1(µ ◦T ◦ T̂)(dT ◦ T̂)−⊤ dT̂−⊤,

ε
T̃
= det(dT̂) dT̂−1 det(dT ◦ T̂)(dT ◦ T̂)−1(ε ◦T ◦ T̂)(dT ◦ T̂)−⊤ dT̂−⊤,

J
T̃
= det(dT̂) dT̂−1 det(dT ◦ T̂)(dT ◦ T̂)−1(J ◦T ◦ T̂).

(4.3)

The structure of the coefficients in (4.3) is only slightly different from the structure of the
coefficients considered in [2, Sec. 4]. Specifically, the coefficients only differ by the composition with

the fixed transformation T̂ : D̃ → D̂ and by the product with T̂-depending quantities. Therefore,
the proofs of Theorems 4.2 and 4.3, establishing holomorphic extensions of the continuous and
discrete solution maps. Indeed, mapping each T ∈ T to the solutions of Problems 3.6 and 3.10
are only slight variations of the proofs of Theorems 4.5 and 4.8 in [2] and are omitted for brevity.

4.2.1. Exact solution.

Theorem 4.2. Let Assumptions 2.5, 3.1 and 4.1 hold. Then, there exists an open set OT ⊆ Z,

with T ⊆ OT, and a holomorphic function Ẽ : OT → H0(curl; D̃) such that, for every T ∈ OT,
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there exists a unique solution ẼT ∈ H0(curl; D̃) of Problem 3.6 and ẼT = Ẽ(T). Moreover, it
holds that

sup
T∈OT

‖Ẽ(T)‖
H(curl;D̃) <∞. (4.4)

The bound in (4.4) is not stated explicitly in [2, Thm. 4.5], but can be achieved by choosing
the open superset OT of the compact set T small enough (as in [2, Thm. 4.8]).

4.2.2. Discrete solution. Using the discrete holomorphy result [2, Thm. 4.8], we obtain a discrete
version of Theorem 4.2. Recall that k denotes the fixed polynomial degree of our approximation
spaces introduced in Section 3.2.

Theorem 4.3 (Theorem 4.8 in [2]). Let the assumptions of Theorem 4.2, as well as Assumptions
3.8 and 3.16 hold. Then, there exists an open set OT ⊆ Z independent of the mesh τh ∈ {τhi

}i∈N,

with T ⊆ OT, and holomorphic functions Ẽh : OT → P c
k (τh) such that, for every T ∈ OT, there

exists a unique solution ẼT,h ∈ P c
k (τh) of Problem 3.10 and ẼT,h = Ẽh(T). Moreover,

sup
T∈OT

‖Ẽh(T)‖
H(curl;D̃) <∞.

Remark 4.4. The fact that we may take the open set OT as a subset of Z in Theorems 4.2 and
4.3 follows from Remarks 2.14 and 3.12.

4.3. Extension in WN,q
pw (curl; D̃). In addition to establishing existence of holomorphic exten-

sions in H0(curl; D̃) with quantified bounds on the size of the holomorphy domains, proving
dimension-independent convergence rate bounds of multilevel algorithms requires higher order
spatial regularity. For our analysis it will suffice that the solution map allows an extension as a

mapping to WN,q
pw (curl; D̃), but we shall not require holomorphy with respect to this topology.

4.3.1. Exact Solution.

Proposition 4.5. Let Assumptions 2.5, 3.1 and 4.1 hold. Then, with OT ⊆ Z and Ẽ as in
Theorem 4.2, there exists an open set ON,T ⊂ ZN with T ⊆ ON,T ⊆ OT such that for every

T ∈ ON,T it holds that Ẽ(T) ∈ WN,q
pw (curl; D̂), where N ∈ N and q > 3 are as in Assumption

3.16. In addition, one has

sup
T∈ON,T

‖Ẽ(T)‖
W

N,q
pw (curl;D̃) <∞. (4.5)

Proof. In the proof of Theorem 2.17 (see (2.19)), we showed that for every T ∈ T and x ∈ DH

there holds that

Re(ζ⊤εT(x)ζ) ≥ αs‖ dT
−⊤(x)ζ‖2

C3 ≥ αs‖ dT(x)‖−2
C3×3‖ζ‖

2
C3 ≥ cαsϑ

2‖ζ‖2
C3 ,

Re(ζ⊤µT(x)ζ) ≥ αs‖ dT
−⊤(x)ζ‖2

C3 ≥ αs‖ dT(x)‖−2
C3×3‖ζ‖

2
C3 ≥ cαsϑ

2‖ζ‖2
C3 ,

for all T ∈ T and x ∈ DH , where αs > 0 is as in Assumption 4.1, ϑ ∈ (0, 1) as in Assumption 2.5,
and c > 0 is a constant independent of T ∈ T. An analogous computation shows that

−Re(ζ⊤eıθεT(x)ζ) ≥ α‖ dT−⊤(x)ζ‖2
C3 ≥ α‖ dT(x)‖−2

C3×3‖ζ‖
2
C3 ≥ cαϑ2‖ζ‖2

C3 ,

Re(ζ⊤eıθµ−1
T

(x)ζ) ≥ α‖ dT−⊤(x)ζ‖2
C3 ≥ α‖ dT(x)‖−2

C3×3‖ζ‖
2
C3 ≥ cαϑ2‖ζ‖2

C3 ,

where α > 0 and θ ∈ R are as in Assumption 4.1 and ϑ ∈ (0, 1) and c > 0 are as before. Under
our assumptions, we can find a bounded open set around each T ∈ T, denoted NT, such that,

inf
L∈NT

inf
0 6=ζ∈C3

ess inf
x∈D̂

min

{
Re(ζ⊤eıθµL(x̂)

−1ζ)

‖ζ‖2
C3

,
−Re(ζ⊤eıθεL(x̂)ζ)

‖ζ‖2
C3

}
≥ α̃ :=

cαϑ3

2
,

inf
L∈NT

inf
0 6=ζ∈C3

ess inf
x∈D̂

min

{
ζ⊤µL(x̂)ζ

‖ζ‖2
C3

,
ζ⊤εL(x̂)ζ

‖ζ‖2
C3

}
≥ α̃s :=

cαsϑ
3

2
,

(4.6)

where, for L ∈ NT, µL and εL are as in Remark 2.12. The compactness of T implies that we
can cover T by a finite number of such sets NT, whose union yields an open and bounded set
denoted ON,T on which there hold the uniform coercivity conditions in (4.6). Decreasing the open
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set ON,T if necessary, together with an application of Theorem 3.7 yields the uniform bound in
(4.5) (cf. Theorem 2.17 for the dependence of the constant C > 0 in (3.2) on T ∈ T. �

4.3.2. Discrete Solution. For the discrete solution, Proposition 4.5 and Theorem 3.17 imply the
following uniform approximation result. Its proof results from arguments analogous to those in
the proof of Proposition 4.5.

Proposition 4.6. Let Assumptions 2.5 through 4.1 hold. Then, with the holomorphic mappings

Ẽ : T → H0(curl; D̃) and Ẽh : T → P c
k (τh) introduced in Theorems 4.2 and 4.3, respectively, there

holds that

sup
T∈ON,T

‖Ẽ(T)− Ẽhi
(T)‖

H(curl;D̃) ≤ CBN,T,Jh
k
i ,

with

BN,T,J := sup
T∈ON,T

‖Ẽ(T)‖
HN

pw(curl;D̃) + ‖J‖CN (ODH
),

for each i ∈ N, where N ∈ N and q > 3 are as in Assumption 2.5, k ≤ N is as in Assumption
3.16, ON,T ⊂ ZN is as in Proposition 4.5 and the constant C > 0 is independent of the mesh-size.

4.4. Parameter discretization. Numerical computations require to suitably discretize the pa-
rameter set T in Assumption 4.1. To this end, set U := [−1, 1]N and assume that

{T̃j}j∈N0
⊂ ZN

is a summable sequence in ZN (see (4.1)), i.e.,

{‖T̃j‖ZN
}j∈N0

∈ ℓ1(N0).

For y ∈ U , as in [2] we define

σ(y) := T0 +
∑

j∈N

yjTj ∈ ZN →֒ Z, (4.7)

and we consider the set of admissible domain perturbations to be given as

T := {σ(y) : y ∈ U}. (4.8)

The continuity of σ : U → T and the compactness of U , with the product topology (see [31,
Sec. 12.2]) yields the compactness of T in ZN . Hence, for every y ∈ U , σ(y) ∈ T is an expansion
of a perturbation T ∈ ZN in terms of the sequence y. Throughout what follows, we interpret

item (ii) in Assumption 2.5 as an Assumption on the sequence {‖T̃j‖ZN
}j∈N0

, i.e., we assume that

{‖T̃j‖ZN
}j∈N0

is such that item (ii) in Assumption 2.5 holds. Moreover, introducing the infinite

product probability measure µ = ⊗j∈N
λ
2 , where λ denotes the Lebesgue measure on [−1, 1], we

can consider σ in (4.7) as a random variable on the probability space (U,B,µ), where B is the
infinite product Borel σ-algebra on U . Under Assumption 4.1, Problem 3.6 has a unique solution

for each y ∈ U , which we shall denote by Ẽ(y) ∈ H0(curl; D̃), more precisely, with the solution

map Ẽ from Theorem 4.2,

Ẽ(y) := Ẽ(σ(y)) ∈ H0(curl; D̃). (4.9)

Similarly, the discrete problem (Problem 3.10) possesses a unique solution

Ẽh(y) := Ẽh(σ(y)) ∈ P c
k (τh), (4.10)

where Ẽh is as in Theorem 4.3. Thus, our goal is to approximate the expected values of the

mappings Ẽ : U → H0(curl; D̃) and Ẽh : U → P c
k (τh).

Furthermore, Theorems 4.2 and 4.3, together with the continuity of σ : U → T in (4.7) and the
compactness of U with the product topology (cf. [31, Sec. 12.2]) yield the following result.

Proposition 4.7. Let Assumptions 2.5 through 4.1 hold. Further assume that, for σ : U → ZN as

in (4.7), it holds that {‖Tj‖ZN
}j∈N belongs to ℓ1(N). Then, the mappings Ẽ and Ẽh in (4.9) and
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(4.10), respectively, are such that Ẽ ∈ L2(U,B,µ;H0(curl; D̃)) and Ẽh ∈ L2(U,B,µ;P c
k (τh)).

Moreover, under the assumptions of Proposition 4.6, there holds that

‖E(Ẽ− Ẽhi
)‖

H(curl;D̃) ≤ CBN,T,Jh
k
i ,

‖Ẽhi+1
− Ẽhi

‖
L2(U ;H(curl;D̃)) ≤ CBN,T,Jh

k
i+1,

for each i ∈ N, where the constant C > 0 is independent of the mesh-size, N ∈ N, q > 3 and
k ≤ N are as in Assumption 3.16, and ON,T ⊂ ZN is as in Proposition 4.5.

Proof. From our assumption that {‖Tj‖ZN
}j∈N belongs to ℓ1(N) there follows that the mapping

σ : U → ZN is continuous, while Theorems 4.2 and 4.3 imply the continuity of the mappings

Ẽ : T → H0(curl; D̃) and Ẽh : T → P c
k (τh), respectively. Since, the composition Ẽ and Ẽh are

defined as the compositions of Ẽ and Ẽh, respectively, with the continuous mapping σ, there holds
that they are continuous as well. An application of Corollary A.2.3 in [36] then gives the Bochner

integrability of Ẽ : U → H0(curl; D̃) and Ẽh : U → P c
k (τh), with

(∫

U

‖Ẽ(y)‖2
H(curl;D̃)

dµ(y)

) 1
2

≤ sup
T∈OT

‖Ẽ(T)‖
H(curl;D̃) <∞,

(∫

U

‖Ẽh(y)‖
2
H(curl;D̃)

dµ(y)

) 1
2

≤ sup
T∈OT

‖Ẽh(T)‖
H(curl;D̃) <∞,

where OT ⊂ Z is as in Theorems 4.2 and 4.3. Moreover, by an application of Proposition 4.6 and
for each i ∈ N, we have that

‖E(Ẽ− Ẽhi
)‖

H(curl;D̃) ≤

∫

U

‖Ẽ(y)− Ẽhi
(y)‖

H(curl;D̃) dµ(y) ≤ CBN,T,Jh
k
i ,

and, for each i ∈ N,

‖Ẽhi+1
− Ẽhi

‖
L2(U ;H(curl;D̃)) ≤ ‖Ẽ− Ẽhi+1

‖
L2(U ;H(curl;D̃)) + ‖Ẽ− Ẽhi

‖
L2(U ;H(curl;D̃))

≤ CBN,T,J(h
k
i+1 + hki )

≤ CBN,T,J

(
1 +

C2

sC1

)
hki+1,

where ON,T ⊂ ZN is as in Proposition 4.5, N ∈ N is as in Assumptions 2.5 and 3.1, q > 3 is as in
Assumption 3.16, C > 0 is as in Proposition 4.6 and 0 < C1 ≤ C2 are as in Assumption 3.8. �

5. Multilevel Approximation

5.1. Multilevel Monte Carlo. To present the Multilevel Monte Carlo (MLMC) method, we
briefly recall some useful definitions and results. For further details, we refer to [4, 14, 22] and the
references therein.

5.1.1. Single level Monte Carlo method. Let X be a separable Hilbert space. For a Bochner
integrable random variable f : U → X, the Monte Carlo (MC) method attempts to approximate
the expected value of f by its mean over a finite set of N ∈ N independent and identically
distributed sample evaluations over U ,

QMC
N (f) :=

1

N

N∑

i=1

f(y(i)),

where {y(i)}
N
i=1 are independent uniform random variables on a probability space (Ω,F,ν) with

values in U (so that QMC
N (f) : Ω → X is, in itself, a random variable on (Ω,F,ν) with values in

X). If f belongs to L2(U,B,µ;X), then the following convergence estimate for the MC method
holds (cf. [4, Lemma 4.1]),

‖QMC
N (f)− E(f)‖L2(Ω;X) ≤ N− 1

2 ‖f‖L2(U ;X).

Moreover, if each evaluation f(y(i)(ζ)), for ζ ∈ Ω, cannot be computed exactly but can only
be approximated by a numerical method yielding an approximation to the random variable f ,
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denoted fh—where the subindex h signifies, as before, the precision of the method—, then it holds
that (cf. [14, Section 2.1])

‖QMC
N (fh)− E(f)‖L2(Ω;X) ≤ ‖QMC

N (fh)− E(fh)‖L2(Ω;X) + ‖E(fh − f)‖L2(Ω;X)

≤ N− 1
2 ‖fh‖L2(U ;X) + ‖E(fh − f)‖X .

The previous estimate implies that the number of samples N needs to be chosen proportional to
‖E(fh − f)‖−2

X —assuming ‖fh‖L2(U ;X) remains bounded—to balance the error contributions in
the upper bound.

5.1.2. Multilevel Monte Carlo method. The MLMC method differs from the standard single level
MC Galerkin discretization in that it employs simultaneously different discretization levels of the
random variable f , namely {fhi

}Li=1 for L ∈ N, to approximate E(f):

QMLMC
L (f) :=

L∑

i=1

QMC
NL,i

(fhi
− fhi−1

), (5.1)

where {NL,i}
L
i=1 ⊂ N corresponds to the number of samples at each level, fh0

≡ 0 and we assume
that ‖E(fhi

−f)‖X decreases as the sub-index i increases, i.e. the precision of the method increases
with i. Then, under the same assumptions as before,

‖QMLMC
L (f)− E(f)‖L2(Ω;X)

≤ ‖QMLMC
L (f)−

L∑

i=1

E(fhi
− fhi−1)‖L2(Ω;X) + ‖E(fhL

− f)‖L2(Ω;X)

≤
L∑

i=1

N
− 1

2

L,i ‖fhi
− fhi−1

‖L2(Ω;X) + ‖E(fhL
− f)‖X . (5.2)

5.1.3. Multilevel Monte Carlo for Problem 2.11. We now return to our specific setting and compute
convergence estimates for the approximation, via the MLMC method, of the expected value of

Ẽ : U → H0(curl; D̃), as in (4.9), through the approximations given by Ẽh : U → P c
k (τh) as

in (4.10). Under its respective assumptions, Proposition 4.7 ensures that both Ẽ(y) and Ẽh(y)

belong to L2(U,B,µ;H0(curl; D̂)) as well as the error estimates required to effectively bound the
MLMC error. The number of samples NL,i (5.2) of each level will be chosen so that the convergence

rate of the MLMC method is the same as that of the FE approximation of Ẽ, namely hk. To
estimate the total work of the method, we see that the computation of the MLMC estimator

at level L requires us to solve for Ẽhi
− Ẽhi−1

at NL,i random points in U , corresponding to

[dim(P c
k (τhi

))+dim(P c
k (τhi−1

))]NL,i degrees of freedom1. Hence, we define the following quantity
as an estimate of the computational complexity of the method

work(QMLMC
L ) :=

L∑

i=1

NL,i

[
dim(P c

k (τhi
)) + dim(P c

k (τhi−1
))
]
. (5.3)

Theorem 5.1. Let Assumptions 2.5 through 4.1 hold and let Ẽ : U → H0(curl; D̃) be as in (4.9).
Then, tere is a choice of {NL,i}

L
i=1 for each L ∈ N, such that

‖QMLMC
L (Ẽ)− E(Ẽ)‖

L2(Ω;H(curl;D̃)) ≤ CBN,T,Jh
k
L, (5.4)

where the constant C > 0 is independent of L—hence, of the mesh-size—and N ∈ N, q > 3 and
k ≤ N are as in Assumption 3.16. Furthermore, the total work is bounded by

work(QMLMC
L ) =




O
(
dim(P c

k (τhL
)) log (dim(P c

k (τhL
)))

2+2δ
)

if k = 1,

O
(
dim(P c

k (τhL
))

2
3
k
)

if k > 1,

for any δ > 0.

1Here, we take Ẽh0
≡ 0 and dim(P c

k
(τh0

)) = 0, as before.
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Proof. From (5.2) and Proposition 4.7 it follows that

‖QMLMC
L (Ẽ)− E(Ẽ)‖

L2(Ω;H(curl;D̃))

≤ ‖E(Ẽ− ẼhL
)‖

H(curl;D̃) +

L∑

i=1

N
− 1

2

L,i ‖Ẽhi
− Ẽhi−1

‖
L2(U ;H(curl;D̃))

≤ CBN,T,J

(
hkL +

L∑

i=1

N
− 1

2

L,i h
k
i

)
,

where C > 0 is as in Proposition 4.7. We take, for each L ∈ N and i ∈ {1, . . . , L}, NL,i =
O((hi/hL)

2ki2+2δ) for arbitrary δ > 0, so that

L∑

i=1

N
− 1

2

L,i h
k
i ≤ ChkL

L∑

i=1

i−(1+δ),

where C > 0 is independent of L ∈ N, and (5.4) follows upon noticing that the last sum is bounded
for all L ∈ N and δ > 0. We continue with the bounding the total work of the MLMC method.
From (5.3) and Remark 3.9, it follows that

work(QMLMC
L ) ≤ Cs,4(1 + s3)

L∑

i=1

NL,is
−3i,

where s ∈ (0, 1) is as in Assumption 3.8. Recalling item (iv) from Assumption 3.8, we may express
our choice for NL,i as NL,i = O(s2k(i−L)i2+2δ) so that

work(QMLMC
L ) ≤ Cs,4(1 + s3)

L∑

i=1

i2+2δs2k(i−L)−3i

≤ Cs,4(1 + s3)s−2kL
L∑

i=1

i2+2δs(2k−3)i.

If k > 1, then 2k − 3 > 0—recall k ∈ N—and the claimed bound on the total work follows from
(3.4). If k = 1,

work(QMLMC
L ) ≤ Cs,4(1 + s3)s−2kL

L∑

i=1

i2+2δs(2k−3)i

= Cs,4(1 + s3)s−3L
L∑

i=1

i2+2δs(3−2k)(L−i)

≤ Cs,4(1 + s3)s−3L
L−1∑

j=0

(L− j)2+2δs(3−2k)j

≤ Cs,4(1 + s3)s−3LL2+2δ
L−1∑

j=0

s(3−2k)j ,

where the last sum is bounded for all L ∈ N and the bound on the total work follows, again, from
(3.4). �

We may then use Theorem 5.1 to bound the approximation error of the MLMC method with
respect to the total required work.

Corollary 5.2. Under the assumptions of Theorem 5.1, there is a choice of {NL,i}
L
i=1 such that

‖QMLMC
L (Ẽ)− E(Ẽ)‖

L2(U ;H(curl;D̃)) ≤ CBN,T,Jwork(QMLMC
L )−κ(k),
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where k ∈ N is the corresponding convergence rate in Proposition 4.6, C > 0 is as in Theorem
5.1, and

κ(k) :=

{
1

3+δ
if k = 1,

1
2 if k > 1,

for arbitrary δ > 0.

5.2. Multilevel Smolyak. The Smolyak algorithm provides a method for multi-dimensional
polynomial interpolation of functions on sparse-grids. Recalling the well-known construction re-
quires to introduce some standard notation first. The set of finitely supported multi-indices is
denoted by

F := {ν = (νj)j∈N ∈ N
N

0 : |ν| <∞},

where |ν| :=
∑

j∈N
νj . For two multi-indices ν = (νj)j∈N, µ = (µj)j∈N ∈ F we will write µ ≤ ν if

µj ≤ νj for all j ∈ N. A set Λ ⊆ F will be called downward closed if

(ν ∈ Λ and µ ≤ ν) ⇒ µ ∈ Λ

and it will be called finite in case it is of finite cardinality.

5.2.1. Smolyak interpolation and quadrature. Let (χj)j∈N0
be a sequence of so-called R-Leja points,

as constructed for example in [10]. In particular, the (χj)j∈N0
are distinct and χj ∈ [−1, 1]

for all j ∈ N0. These points will represent, in the following, one-dimensional interpolation and
quadrature points. In principle, other points could also be used, however this sequence has a
known construction and the favourable property that the Lebesgue constant of {χj}

n
j=0 grows at

most polynomially as n→ ∞ (see [10]).
For n ∈ N0 let In : C0([−1, 1]) → Pn be the polynomial interpolation operator interpolating a

function in (χj)
n
j=0, i.e.

(Inf)(y) =

n∑

j=1

f(χj)

n∏

i=0
i 6=j

y − χi

χj − χi

y ∈ [−1, 1],

where empty products are understood to equal to one. For a multi-index ν ∈ F , we set Iν :=⊗
j∈N

Iνj
, meaning that

Iνf(y) =
∑

µ≤ν

f((χµj
)j∈N)

∏

j∈N

νj∏

i 6=µj

(yj − χi)/(χµj
− χi),

for every y = (yj)j∈N ∈ U . For a finite downward closed set Λ ⊆ F the Smolyak interpolant
IΛ : C0(U) → C0(U) is defined with the so-called combination formula as

(IΛf)(y) :=
∑

ν∈F

cΛ,νIν(y), cΛ,ν :=
∑

{e∈{0,1}N : ν+e∈Λ}

(−1)|e|.

This interpolation operator satisfies IΛf = f for all f ∈ span{yν : ν ∈ Λ} (cf. [36, Lemma 1.3.3]).
Similarly, with the numerical integration Qνf :=

∫
U
Iνf , we set

QΛf :=
∑

ν∈F

cΛ,νQν(y),

which gives a quadrature rule for which QΛf =
∫
U
f(y) dµ(y) for all f ∈ span{yν : ν ∈ Λ}.

For more details about the construction and the properties of IΛ and QΛ we refer for example to
[5, 27, 9, 36].
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5.2.2. Multilevel algorithm. To define a multilevel algorithm, we first associate to every multi-
index ν a work level wν , or for short w = (wν)ν∈F . With (τhi

)i∈N as in Assumption 3.8, we shall
assume for all ν ∈ F that

wν ∈ {dim(P c
k (τhi

)) : i ∈ N} ∪ {0},

so that wν corresponds to the dimension of a FEM space. Furthermore |w| :=
∑

ν∈F wν < ∞.
For every i ∈ N this then yields a finite multi-index set

Γj(w) := {ν ∈ F : wν ≥ dim(P c
k (τhi

))}. (5.5)

The multilevel interpolation operator is defined as

IML
w Ẽ :=

∑

j∈N

IΓi(w)(Ẽhi
− Ẽhi−1

) (5.6)

and the multilevel quadrature operator as

QML
w Ẽ :=

∑

j∈N

QΓi(w)(Ẽhi
− Ẽhji1

), (5.7)

where Ẽhj
∈ P c

k (τhj
), as earlier, is the discrete solution of (3.8). Here it is assumed that Γj(w)

is downward closed for every j ∈ N, so that IΓj(w) and QΓj(w) are well defined. Furthermore, we

point out again our convention Ẽ0 ≡ 0.

As a measure of the work required to compute IML
w Ẽ and QML

w Ẽ we consider the total number of

degrees of freedom of all required function approximations. For example, computing IΓj(w)Ẽhj
−

Ẽhj−1
) or QΓj(w)(Ẽhj

− Ẽhj−1
) requires to evaluate both approximations Ẽhj

: U → P c
k (τhj

) and

Ẽhj−1
: U → P c

k (τhj−1
) to E : U → H0(curl; D̃), at |Γj(w)| points in U . This corresponds to

(dim(P c
k (τhj

)) + dim(P c
k (τhj−1

)))|Γj(w)| degrees of freedom. In total

work(w) :=
∑

j∈N

(dim(P c
k (τhj

)) + dim(P c
k (τhj−1

)))|Γj(w)| (5.8)

counts the degrees of freedom of all FE approximations required for the computation of the mul-
tilevel interpolant/quadrature.

5.2.3. Abstract convergence theory. We now recall an approximation result for multilevel Smolyak
interpolation and quadrature from [36], also see [37]. It provides a statement about the algebraic
convergence rate that is achievable in terms of work(w) in (5.8). Implementing the method
requires to determine the work levels w = (wν)ν∈F a priori. We comment on possible choices
when presenting numerical experiments in Section 6. We first recall the assumptions under which
the subsequent convergence results are valid.

Assumption 5.3. The spaces X, Z and ZN are complex Banach spaces and there holds the continu-
ous embedding ZN →֒ Z. For a summable sequence (ψj)j∈N ⊆ ZN denote σ(y) =

∑
j∈N

yjψj ∈ Z

for y ∈ U and set P := {σ(y) : y ∈ U} ⊆ Z. There exists a constant M > 0, two summability
exponents p ∈ (0, 1), pN ∈ [p, 1) and a FE method convergence rate α > 0 such that, with (τhj

)j∈N

as in Assumption 3.8, the following is satisfied

(i) (‖ψj‖Z)j∈N0
∈ ℓp(N0) and (‖ψj‖ZN

)j∈N0
∈ ℓpN (N0),

(ii) there exists an open set OP ⊆ Z and a Fréchet differentiable function Ẽ : OP → X such

that P ⊆ OP and supξ∈OP
‖Ẽ(ξ)‖X ≤M ,

(iii) there exists an open set OP,N ⊆ ZN and Fréchet differentiable functions Ẽhj
: OP → X

for every j ∈ N such that P ⊆ OP,N and for every j ∈ N

sup
ξ∈OP

‖Ẽ(ξ)− Ẽhj
(ξ)‖X ≤M and sup

ξ∈OP,N

‖Ẽ(ξ)− Ẽhj
(ξ)‖X ≤Mdim(P c

k (τhj
))−α.

The functions Ẽ : U → X and Ẽhj
: U → X are given by Ẽ(y) = Ẽ(σ(y)) and Ẽhj

(y) = Ẽhj
(σ(y))

for all y ∈ U and j ∈ N.
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The following theorem follows [36, Thm. 3.2.11] and [36, Thm. 3.2.12]. These bounds rely on
the fact that the sequence (dim(P c

k (τhj
)))j∈N of FE degrees of freedom increases exponentially in

the sense of Remark 3.9.

Theorem 5.4. Let (τhj
)j∈N satisfy Assumption 3.8. Let p ∈ (0, 1), pN ∈ [p, 1) and α > 0 be such

that Ê and (Êw)w∈W satisfy Assumption 5.3. Then, there exists C <∞ and

(i) a sequence (wn)n∈N of sequences of work levels, such that |wn| → ∞ as n→ ∞ and

‖Ẽ− IML
wn

Ẽ‖C0(U ;X) ≤ Cwork(wn)
−rI , rI := min

{
α,

α(p−1 − 1)

α+ p−1 − pN−1

}
,

(ii) a sequence (wn)n∈N of sequences of work levels, such that |wn| → ∞ as n→ ∞ and

∥∥∥∥
∫

U

Ẽ(y) dµ(y)−QML
wn

Ẽ

∥∥∥∥
X

≤ Cwork(wn)
−rQ , rQ := min

{
α,

α(2p−1 − 1)

α+ 2p−1 − 2pN−1

}
.

Moreover, in both cases Γj(wn) in (5.5) is finite and downward closed for all j ∈ N and all n ∈ N.

5.2.4. Multilevel Interpolation. Applying Thm. 5.4 in our setting we obtain the following theorem
for sparse-grid approximation.

Theorem 5.5. Fix N ∈ N and q > 3. Let k ∈ N be less or equal to N where k denotes the
polynomial degree of the FEM ansatz space. For some p ∈ (0, 1), pN ∈ [p, 1) let (cp. (4.1), (4.2))

(‖T̃j‖Z)j∈N0
∈ ℓp(N0), (‖T̃j‖ZN

)j∈N0
∈ ℓps(N0).

Suppose that with T = {σ(y) : y ∈ U} as in (4.7)–(4.8), Assumptions 2.5 through 4.1 are
satisfied. Then, there exists C < ∞ and a sequence (wn)n∈N of sequences of work levels, such

that, |wn| → ∞ as n→ ∞ and for all n ∈ N, the solution Ẽ(y) := Ẽσ(y) of Problem 3.6 satisfies

‖Ẽ(·)− (IML
wn

Ẽ)(·)‖C0(U ;X) ≤ Cwork(wn)
−rI with rI = min

{
k

3
,

k
3 (p

−1 − 1)

α+ p−1 − pN−1

}
,

and where IML
wn

Ẽ in (5.6) is defined with the discrete solutions Ẽhj
∈ P c

k (τhj
) of (3.8). Moreover,

Γj(wn) in (5.5) is finite and downward closed for all j ∈ N and all n ∈ N.

Proof. We need to verify that Assumption 5.3 holds with α := k
3 and the spaces

X := H0(curl; D̃), Z := C
0,1(D̂;C3) and ZN := C

N,1(D̂;C3).

Then the statement is an immediate consequence of Thm. 5.4. In the following we choose the
constant k ∈ N equal to N .

Assumption 5.3 (i) holds by assumption. The existence of an open set OT ⊆ Z containing T

and a bounded holomorphic function Ẽ : OT → X such that Ẽ(y) = Ẽ(σ(y)) for all y ∈ U follows
by Theorem 4.2. This shows Assumption 5.3 (ii). Finally, Prop. 4.6 implies the existence of a
suitable open set ON,T ⊆ ZN containing T, and constant M , and bounded holomorphic maps

Ẽ : OT → X such that

sup
ξ∈OT

‖Ẽ(ξ)− Ẽhj
(ξ)‖

H0(curl;D̃) ≤M

and

sup
ξ∈OP,N

‖Ẽ(ξ)− Ẽhj
(ξ)‖

H0(curl;D̃) ≤ Chki ≤ Cdim(P c
k (τhj

))−
k
3 .

This shows that Assumption 5.3 (iii) is satisfied. �
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5.2.5. Multilevel Quadrature. In the same fashion, we obtain a result for multilevel quadrature.

Theorem 5.6. Let the assumptions of Theorem 5.5 be satisfied. Then there exists C <∞ and a
sequence (wn)n∈N of sequences of work levels, such that |wn| → ∞ as n → ∞ and for all n ∈ N

the solution Ẽ(y) of Problem 3.6 satisfies

‖E(Ẽ(·))−(QML
wn

Ẽ)(·)‖
H0(curl;D̃) ≤ Cwork(wn)

−rQ where rQ = min

{
k

3
,

k
3 (2p

−1 − 1)

α+ 2p−1 − 2pN−1

}
,

where QML
wn

Ẽ in (5.7) is defined with the discrete solutions Ẽhj
∈ P c

k (τhj
) of (3.8). Moreover

Γj(wn) in (5.5) is finite and downward closed for all j ∈ N and all n ∈ N.

Proof. Assumption 5.3 holds by the same arguments as in the proof of Thm. 5.5. The statement
thus follows by Thm. 5.4. �

6. Numerical experiments

We now present a numerical experiment in order to confirm our results in Theorems 5.1, 5.4,
5.5 and 5.6. Our numerical implementation of Problem 2.11 was carried out through the open
source softwares GetDP [19] and GMSH [23].

6.1. Problem Setting. For Nc ∈ N, we consider D̃ := [−1, 1]3 and parametric transformations
given by,

σ(y) := T0 +Θ

Nc∑

j=1

yjTj , T0 = I, Tj = j−ρ−1x3 sin(2πjx1)ê3,

where Θ ∈ (0, 12 ) is a scale parameter and ρ > 1 determines the decay properties of the sequences
(‖Tj‖Z)j∈N0

and (‖Tj‖ZN
)j∈N0

. Specifically, with ZN and N ∈ N as in (4.1) and ρ > N , we
impose

(‖Tj‖Z)j∈N0
∈ ℓp, ∀ 1 > p >

1

ρ
,

(‖Tj‖ZN
)j∈N0

∈ ℓpN , ∀ 1 > pN >
1

ρ−N
.

We fix the current J as a polynomial of first degree on DH := [−2, 2]3 and choose ǫ and µ as
factors of the identity matrix. The quadratures Q1

K̆
and Q2

K̆
used to build the sesquilinear and

antilinear forms in (3.6) and (3.7), respectively, are 5-points Gaussian quadrature rules—exact on
polynomials of degree 3— and we consider only first order Nédélec elements for the discretization of

H0(curl; D̃), i.e., k = 1 in Section 3.2. Theorem 3.17 then requires N ≥ 1 to ensure a convergence
rate up to ρ = 1 with respect to the mesh-size h—or 1

3 with respect to the dimension of P c
1 (τh).

Numerical experiments—for brevity, not presented here—verify the convergence rate of order
N = 1 with respect to the mesh size. Moreover, for linear functionals of the electric fields G ∈
H0(curl; D̃)∗ we may prove, through Theorem 4.2.14 in [32], that G(Ẽh(T)) converges to G(Ẽ(T))

at twice the rate with respect to the mesh-size (ρ = 2 in our context) at which Ẽh(T) converges

to Ẽ(T). We choose G as

G(U) :=

∫

D̂

g(x) ·U(x) dx,

for all U ∈ H(curl; D̃), where g is chosen as a polynomial in P2(DH ;R3). Hence, for any U ∈
P c

1 (τh), we may compute G(Uh) exactly through the use of appropriate Gaussian quadrature

rules. Henceforth, we concern ourselves only with the approximation of G(Ẽ(y)) for y ∈ U and of
its expected value over U . Moreover, for a fair comparison between the MLMC method and the
multilevel Smolyak algorithm, we truncate the dimension of the sample space, so that we consider
U := [−1, 1]50.
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6.2. Number of samples for the MLMC method. For our multilevel algorithms, we employ

five meshes of the domain D̃, with 323, 3′208, 16′009, 117′370 and 707′141 degrees of freedom.
Table 1 indicates the number of samples taken on each mesh for the multilevel Monte Carlo method.
The expected value of the squared error is then computed as the average over 6 realizations of the
method.

DoF L = 1 L = 2 L = 3 L = 4 L = 5
323 1 9 69 1025 11271

3’208 - 2 13 203 2273
16’009 - - 4 48 537
11’7370 - - - 6 69
707’141 - - - - 9

Table 1. Number of samples per mesh (identified with their corresponding de-
grees of freedom) used in each realization of the MLMC method. We remark that
these do not correspond to the {NL,i}

L
i=1 in (5.1), but to the total number of

computations carried on each mesh (e.g., for L = 3 we take N3,1 = 60, N3,2 = 9
and N3,3 = 4).

6.3. Interpolation and quadrature results. Figure 2 displays the interpolation error:

‖G(Ẽ(·))− (IML
wn

G(Ẽ))(·)‖C0(U,C), (6.1)

with respect to the total work of the Smolyak algorithm (as in (5.8)), where the supremum in the

computation of the C0(U)-norm in (6.1) is approximated by taking the maximum of G(Ê(y)) −

(IML
wn

G(Ê))(y) on random points in U . Figure 3, on the other hand, displays the quadrature errors
of the multilevel Smolyak algorithm

∥∥∥QML
wn
G(Ẽ)− E

(
G(Ẽ)

)∥∥∥
L2(Ω,C)

,

against the total work of the algorithm (as in (5.8)), and of the MLMC method,

‖QMLMC
L (G(Ẽ))− E

(
G(Ẽ)

)
‖L2(Ω,C),

against its corresponding total work (as in (5.3)), where E(G(Ẽ)) is estimated through an overkill
computation of the multilevel Smolyak algorithm. The figures display only the results computed
with the first four meshes, so that the comparison against the overkill computation shows both the
meshing error—coming from the finite element discretization—and the quadrature error—arising
from both algorithms.

For ρ = 2, we have that for p ∈ (1/2, 1)

(‖Tj‖Z)j∈N0
∈ ℓp.

However, we cannot prove a summability property of (‖Tj‖Z)j∈N0
(recall N = 1). Considering,

however, ρ = 2 + ǫ for small ǫ > 0 yields,

(‖Tj‖Z)j∈N0
∈ ℓp, ∀ 1 > p >

1

2 + ǫ
,

(‖Tj‖ZN
)j∈N0

∈ ℓpN , ∀ 1 > pN >
1

1 + ǫ
,

and the convergence rate of the multilevel Smolyak interpolation operator is given by (cf. Theorem
5.4),

min

{
2

3
,

2
3 (2 +

1
2ǫ− 1)

2
3 + 2 + 1

2ǫ− 1− 1
2ǫ

}
= min

{
2

3
,
2
3 (1 +

1
2ǫ)

5
3

}
=

2

5

(
1 +

1

2
ǫ

)
.
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Figure 2. Interpolation error. The theoretical asymptotic convergence rates are
0.4− ǫ for ρ = 2 and 2

3 for ρ = 3.
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Figure 3. Quadrature error. Theoretical asymptotic convergence rates are 1
2 for

MLMC and 2
3 for ML Smolyak quadrature.

On the other hand, the convergence rate for the multilevel Smolyak quadrature will be given by
(cf. Theorem 5.6),

min

{
2

3
,

2
3 (4 + ǫ− 1)

2
3 + 4 + ǫ− 2− ǫ

}
= min

{
2

3
,
2
3 (3 + ǫ)

8
3

}
= min

{
2

3
,
3

4

(
1 +

1

3
ǫ

)}
=

2

3
.
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An analogous computation for the case ρ = 3 yields the convergence rate of κ = 2
3 for both the

multilevel Smolyak interpolation and quadrature operators.

7. Conclusions and future work

We have extended our original work [2] concerning shape UQ for Maxwell’s lossy cavity problem
to multilevel versions of MC and Smolyak quadrature and interpolation. Theoretically, regularity
results for pullback solutions on the nominal domain are required in suitable Sobolev spaces.
Algorithmically, we have then shown much better convergence rates and computational costs
of parametric implementations of edge FE in the nominal domain. Our numerical experiments
confirm our theoretical findings and pave the way for other EM applications or other approximation
methods for the approximation of parametric solution manifolds such as deep neural networks, see
e.g. [33].
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