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MULTIRESOLUTION KERNEL MATRIX ALGEBRA

H. HARBRECHT, M. MULTERER, O. SCHENK, AND CH. SCHWAB

Abstract. We propose a sparse arithmetic for kernel matrices, enabling effi-
cient scattered data analysis. The compression of kernel matrices by means of
samplets yields sparse matrices such that assembly, addition, and multiplica-
tion of these matrices can be performed with essentially linear cost. Since the
inverse of a kernel matrix is compressible, too, we have also fast access to the
inverse kernel matrix by employing exact sparse selected inversion techniques.
As a consequence, we can rapidly evaluate series expansions and contour inte-
grals to access, numerically and approximately in a data-sparse format, more
complicated matrix functions such as A

α and exp(A). By exploiting the ma-
trix arithmetic, also efficient Gaussian process learning algorithms for spatial
statistics can be realized. Numerical results are presented to illustrate and
quantify our findings.

1. Introduction

The concept of samplets has been introduced in [19] by abstracting the wavelet
construction from [42] to general discrete data sets. A samplet basis is a mul-
tiresolution analysis based on discrete signed measures, where stability is a direct
consequence of the orthogonality of the basis. Samplets are a data-centric approach
and can be constructed for a given data set at linear cost, and such that their mea-
sure integrals vanish for polynomials up to a given degree. Therefore, in view of
this vanishing moment property, kernel matrices which arise in scattered data in-
terpolation problems become quasi-sparse. This means that these kernel matrices
become compressible in samplet coordinates, S-compressible for short, and can be
replaced by a sparse matrix. We call the respective sparsity pattern the compres-
sion pattern. The latter has been characterized in [19, Section 5.3]. In case of point
sets X which are quasi-uniform in the sense of Definition 3.3, the compressed kernel
matrix contains only O(N logN) relevant entries. Here, N denotes the number of
evaluation points.

In the present article, we develop a fast arithmetic for kernel matrices in samplet
representation. By fixing the associated sparsity pattern, we can perform additions
and multiplications of kernel matrices with high precision in essentially linear cost.
A further feature of our analysis is that the inverses of kernel matrices are also
compressible with respect to the same pattern. We can thus employ a fast im-
plementation of an algorithm for computing selected elements of a general sparse
symmetric matrix A, which can be decomposed as A = LDL⊺, where L is lower tri-
angular and D is diagonal. We remark that many applications particularly require
the computation of a subset of the elements of a given matrix inverse. Important ex-
amples are sparse inverse covariance matrix estimation in L1-regularized Gaussian
maximum likelihood estimation [7,24], or integrated nested Laplace approximations
for approximate Bayesian inference [46]. Other examples of computing a subset of
the inverse are electronic structure calculations of materials utilizing multipole ex-
pansions, where the diagonal and occasionally subdiagonals of the discrete Green’s
function are required to determine the electron density [28,29].
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The concrete sparse selected inversion implementation is based on an efficient
supernodal left-looking A = LDL⊺ factorization of A, which is available in the
sparse, direct solver Pardiso [36]. By using Pardiso, also matrix inversion can be
performed rapidly. We emphasize that this inversion computes the exact matrix
inverse of the S-compressed matrix on its matrix pattern. Likewise, the matrix
addition and matrix multiplication are performed exactly (in the absence of round-
ing) on the prescribed matrix pattern. Hence, the relevant matrix coefficients are
computed exactly when adding, multiplying, and inverting S-compressed kernel
matrices. The only error introduced is the matrix compression error induced by
the restriction to the compression pattern.

Having a fast matrix addition and fast matrix inversion at hand enables the fast
evaluation of contour integrals in order to derive more complicated matrix functions,
compare [17]. Up to quadrature errors, these contour integrals are computed exactly
on the prescribed pattern. This is in contrast to previously proposed methods.

As mentioned above, the cost bounds of the algorithms require quasi-uniformity
of the evaluation points which means that the distance between neighboring eval-
uation points is uniformly bounded from below and above by N−1/d, where d ≥ 1
denotes the spatial dimension of the underlying data set. Nonetheless, we empha-
size that all algorithms can still be applied if the quasi-uniformity assumption does
not hold, however invalidating the established cost bounds. We remark that related
algorithms in the context of wavelet discretizations can be found in [4,5,39], which
are however restricted to structured meshes.

The theoretical underpinning of the proposed algorithms will be provided (un-
der certain conditions) by means of pseudodifferential calculus, see, e.g., [23, 43].
The integral operator induced by the kernel of a reproducing kernel Hilbert space
will be assumed in the present paper to correspond (via the Schwarz kernel theo-
rem) to a classical, elliptic pseudodifferential operator, from the Hörmander class
Sm
1,0 [23]. A prominent example is the Matérn class of kernel functions [33], also

called Sobolev splines [12], which are known to generate the Sobolev spaces of
positive order, and correspond to fractional powers of the shifted Laplacian. We
prove that such pseudodifferential operators are compressible in samplet coordi-
nates, meaning that for numerical representation, only the coefficients in the as-
sociated sparse matrix pattern need to be computed. Admissible classes comprise
in particular the smooth Hörmander class Sm

1,0, but also considerably larger ker-
nel classes of finite smoothness, which admit Calderon-Zygmund estimates and an
appropriate operator calculus (e.g. [1,44]). The corresponding operator calculus im-
plies that sums, concatenations, powers and holomorphic functions of self-adjoint,
elliptic pseudodifferential operators yield again pseudodifferential operators. As we
show, as a consequence the corresponding operations on kernel matrices in samplet
coordinates result again in compressible matrices.

The article is structured as follows. In Section 2, we briefly introduce the scat-
tered data framework under consideration and recall the relevant theory for repro-
ducing kernel Hilbert spaces. The construction of samplets and the samplet matrix
compression is the topic of Section 3. The main contribution of this article is Sec-
tion 4. Here, we develop and analyze an approximate arithmetic for compressed
kernel matrices in samplet coordinates. In Section 5, we perform numerical experi-
ments in order to qualify and quantify the matrix arithmetic. Finally, the required
details from the theory pseudodifferential operators, especially the associated cal-
culus, is collected in Appendix A.

Throughout this article, in order to avoid the repeated use of generic but un-
specified constants, by C . D we indicate that C can be bounded by a multiple of
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D, independently of parameters which C and D may depend on. Moreover, C & D
is defined as D . C and C ∼ D as C . D and D . C.

2. Reproducing kernel Hilbert spaces

Let (H, 〈·, ·〉H) be a Hilbert space of functions h : Ω → R, where Ω ⊂ R
d is a

given bounded domain. Note that Ω can also be some lower-dimensional manifold
in R

d. Furthermore, let κ be a symmetric and positive definite kernel, SPD kernel
for short, i.e., [κ(xi,xj)]

N
i,j=1 is a symmetric and positive semi-definite matrix for

each N ∈ N and any point selection x1, . . . ,xN ∈ Ω. We recall that κ is the
reproducing kernel for H, iff κ(x, ·) ∈ H for every x ∈ Ω and h(x) = 〈κ(x, ·), h〉H
for every h ∈ H. In this case, we call (H, 〈·, ·〉H) a reproducing kernel Hilbert space
(RKHS).

Let X := {x1, . . . ,xN} ⊂ Ω denote a set of N mutually distinct points. With
respect to the set X, we introduce the subspace

(1) HX := span{κ(x1, ·), . . . , κ(xN , ·)} ⊂ H.
In what follows, we shall also consider the subspace V := span{δx1

, . . . , δxN
} ⊂ H′,

spanned by the Dirac measures supported at the points of X, i.e.,

δxi
(x) :=

{
1, if x = xi,

0, otherwise.

For a continuous function f ∈ C(Ω), we shall use the notation

(f, δxi
)Ω :=

∫

Ω

f(x)δxi
(dx) = f(xi).

As the kernel κ(x, ·) is the Riesz representer of the point evaluation (·, δx)Ω, we
particularly have

(h, δx)Ω = 〈κ(x, ·), h〉H for every h ∈ H.
The space V is isometrically isomorphic to the subspace HX from (1). We identify

u =

N∑

i=1

uiδxi
∈ V with û =

N∑

i=1

uiκ(xi, ·) ∈ HX .

We endow V in what follows with the inner product

(2) 〈u, v〉V :=

N∑

i=1

uivi, where u =

N∑

i=1

uiδxi
, v =

N∑

i=1

viδxi
.

Note that this inner product is different from the restriction of the canonical one
in H to HX . The latter is given by

〈û, v̂〉H = u⊺Kv

with the symmetric and positive semi-definite kernel matrix

(3) K := [κ(xi,xj)]
N
i,j=1 ∈ R

N×N

and u := [ui]
N
i=1 and v := [vi]

N
i=1.

A consequence of the duality between HX and V is that the H-orthogonal pro-
jection of a function h ∈ H onto HX is given by the interpolant

sh(x) :=
N∑

i=1

αiκ(xi, ·),
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which satisfies sh(xi) = h(xi) for all xi ∈ X. The associated coefficients α = [αi]
N
i=1

are given by the solution to the linear system

(4) Kα = h

with right hand side h = [h(xi)]
N
i=1.

From [47, Corollary 11.33], we have the following approximation result.

Theorem 2.1. Let Ω ⊂ R
d be a bounded Lipschitz domain satisfying an interior

cone condition. Suppose that the Fourier transform of the kernel κ(x− y) satisfies

(5) κ̂(ξ) ∼ (1 + ‖ξ‖22)−τ , ξ ∈ R
d.

Then for 0 ≤ t < ⌈τ⌉ − d/2 − 1, the error between f ∈ Hτ (Ω) and its interpolant
sf,X satisfies the bound

‖f − sf,X‖Ht(Ω) . hτ−t
X,Ω‖f‖Hτ (Ω)

for a sufficiently small fill distance

(6) hX,Ω := sup
x∈Ω

min
xi∈X

‖x− xi‖2.

One class of kernels satisfying the conditions of Theorem 2.1 are the isotropic
Matérn kernels, also called Sobolev splines, see [12]. These kernels play an important
role in applications, for example in spatial statistics [37]. They are given by

(7) κν(r) :=
21−ν

Γ(ν)

(√
2νr

ℓ

)ν

Kν

(√
2νr

ℓ

)

with r := ‖x−y‖2, smoothness parameter ν > 0 and length scale parameter ℓ > 0,
see [33, 37]. Here, Kν denotes the modified Bessel function of the second kind.
Specifically, property (5) holds with

(8) κ̂ν(ξ) = α

(
1 +

ℓ2

2ν
‖ξ‖22

)−ν−d/2

,

where α is a scaling factor depending on ν, ℓ and d, see [33]. As a consequence, the
Matérn kernels are the reproducing kernels of the Sobolev spaces Hν+d/2(Rd), see
also [47].

For half integer values of ν, i.e., for ν = p+1/2 with p ∈ N0, the Matérn kernels
have an explicit representation given by

κp+1/2(r) = exp

(−
√
2νr

ℓ

)
p!

(2p)!

p∑

q=0

(p+ q)!

q!(p− q)!

(√
8νr

ℓ

)p−q

.

The limit case ν → ∞ gives rise to the Gaussian kernel

κ∞(r) = exp

(−r2
2ℓ2

)
.

Our subsequent compression analysis covers the Matérn kernels, but has consid-
erably wider scope. Indeed, rather large classes of pseudodifferential operators will
be admissible. As suitable classes of such operators are known to define an algebra,
properties of arithmetic expressions of the underlying kernels, such as off-diagonal
coefficient decay and matrix compressibility, can directly be inferred. Equally im-
portant, we show that these properties of the operator algebras are to some extent
transferred also to the corresponding finitely represented structures, i.e., we show
the corresponding matrix representation likewise are algebras in the compressed
format. We refer to Appendix A for the details and properties of pseudodifferential
operators in this article.
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3. Samplet matrix compression

3.1. Samplets. Similar to the construction of wavelets, samplets are defined based
on a sequence of spaces {Vj}Jj=0 forming a multiresolution analysis, i.e.,

(9) V0 ⊂ V1 ⊂ · · · ⊂ VJ = V.

Rather than using a single scale from this multiresolution analysis (9), the idea of
samplets is to keep track of the increment of information between two consecutive
levels j and j + 1. Since we have Vj ⊂ Vj+1, we may decompose

(10) Vj+1 = Vj
⊥
⊕ Sj

by using the detail space Sj , where orthogonality is to be understood with respect
to the (discrete) inner product defined in (2).

Of practical interest is the particular choice of the basis Σj of the detail space
Sj in Vj . By choosing a basis Φ0 of V0 and recursively applying the decomposition
(10), we see that the set

ΣJ = Φ0

J⋃

j=0

Σj

forms a basis of VJ = V , which we call a samplet basis.
In order to employ samplets for the compression of kernel matrices, we require

that the measures σj,k ∈ Vj ⊂ H′ have isotropic convex hulls of supports, and are
localized with respect to the corresponding discretization level j, i.e.,

(11) diam(suppσj,k) ∼ 2−j/d,

and that they are stable with respect to the inner product defined in (2), i.e.,

〈σj,k, σj′,k′〉V = 0 for (j, k) 6= (j′, k′).

Furthermore, an essential ingredient is the vanishing moment condition of order
q + 1, i.e.,

(12) (p, σj,k)Ω = 0 for all p ∈ Pq(Ω),

where Pq(Ω) is the space of all polynomials with total degree at most q. We say
then that the samplets have vanishing moments of order q + 1.

Remark 3.1. Associated to each samplet σj,k =
∑N

ℓ=1 βℓδxiℓ
, we find a uniquely

determined function

σ̂j,k :=

N∑

ℓ=1

βℓκ(xiℓ , ·) ∈ HX ,

which also exhibits vanishing moments, i.e.,

〈σ̂j,k, h〉H = 0

for any h ∈ H which satisfies h|suppσj,k
∈ Pq(suppσj,k).

3.2. Construction of samplets. The starting point for the construction of sam-
plets is the discrete multiresolution analysis (9). The particular construction of this
multiresolution analysis is based on a hierarchical clustering of the set X.

Definition 3.2. Let T = (P,E) be a binary tree with vertices P and edges E. We
define its set of leaves as

L(T ) := {ν ∈ P : ν has no sons}.
The tree T is a cluster tree for the set X = {x1, . . . ,xN}, iff the set X is the root
of T and all ν ∈ P \ L(T ) are disjoint unions of their two sons.
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The level jν of ν ∈ T is its distance from the root, i.e., the number of son
relations that are required for traveling from X to ν. The depth J of T is the
maximum level of all clusters. We define the set of clusters on level j as

Tj := {ν ∈ T : ν has level j}.
The cluster tree is balanced, iff |ν| ∼ 2J−jν .

To bound the diameter of the clusters, we introduce the separation radius

(13) qX :=
1

2
min
i 6=j

‖xi − xj‖2

and require X to be quasi-uniform.

Definition 3.3. The data set X ⊂ Ω is quasi-uniform if the fill distance (6) is
proportional to the separation radius (13), i.e., there exists a constant c = c(X,Ω) ∈
(0, 1) such that

0 < c ≤ qX
hX,Ω

≤ c−1.

Roughly speaking, the points x ∈ X are equispaced if X ⊂ Ω is quasi-uniform.
This immediately implies the following result.

Lemma 3.4. Let T be a cluster tree. For ν ∈ T , the bounding box Bν of ν is
the smallest axis-parallel cuboid that contains all points of ν. If X ⊂ Ω is quasi-
uniform, then there holds

|Bν |
|Ω| ∼ |Bν ∩X|

N

with the constant hidden in ∼ depending only on the constant c(X,Ω) in Defini-
tion 3.3. In particular, we have diam(ν) ∼ 2−jν/d for all clusters ν ∈ T .

Samplets are now defined recursively for the cluster tree T employing a two-scale
transform between basis elements on a cluster ν of level j. To this end, we create
scaling distributions Φ

ν
j = {ϕν

j,k} and samplets Σ
ν
j = {σν

j,k} as linear combinations
of the scaling distributions Φ

ν
j+1 of ν’s son clusters. This results in the refinement

relation

(14) [Φν
j ,Σ

ν
j ] := Φ

ν
j+1Q

ν = Φ
ν
j+1

[
Qν

j,Φ,Q
ν
j,Σ

]
.

The transformation matrix Qν
j is computed from the QR decomposition

(15) (Mν
j+1)

⊺ = QR =:
[
Qν

j,Φ,Q
ν
j,Σ

]
R

of the moment matrix

Mν
j+1 :=



(x0, ϕj+1,1)Ω · · · (x0, ϕj+1,|ν|)Ω

...
...

(xα, ϕj+1,1)Ω · · · (xα, ϕj+1,|ν|)Ω


 = [(xα,Φν

j+1)Ω]|α|≤q ∈ R
mq×|ν|

with

mq :=

q∑

ℓ=0

(
ℓ+ d− 1

d− 1

)
≤ (q + 1)d

being the dimension of Pq(Ω). Note that the moment matrix is recursively given,
starting in the leave clusters, in accordance with

(16)

[
Mν

j,Φ,M
ν
j,Σ

]
=
[
(xα, [Φν

j ,Σ
ν
j ])Ω

]
|α|≤q

=
[
(xα,Φν

j+1[Q
ν
j,Φ,Q

ν
j,Σ])Ω

]
|α|≤q

= Mν
j+1[Q

ν
j,Φ,Q

ν
j,Σ] = R⊺.

As R⊺ is a lower triangular matrix, the first k − 1 entries in its k-th column are
zero. This corresponds to (k−1) vanishing moments for the k-th function generated
by the transformation [Qν

j,Φ,Q
ν
j,Σ]. By defining the first mq functions as scaling
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distributions and the remaining as samplets, we obtain samplets with vanishing
moments at least up to order q + 1.

For leaf clusters, we define the scaling distributions by the Dirac measures at
the points xi, i.e., Φν

J := {δxi
: xi ∈ ν}, to make up for the lack of son clusters

that could provide scaling distributions. The scaling distributions of all clusters on
a specific level j then generate the spaces

(17) Vj := span{ϕν
j,k : k ∈ ∆ν

j , ν ∈ Tj},
while the samplets span the detail spaces

(18) Sj := span{σν
j,k : k ∈ ∇ν

j , ν ∈ Tj} = Vj+1

⊥
⊖ Vj .

Combining the scaling distributions of the root cluster with all clusters’ samplets
amounts to the final samplet basis

(19) ΣN := Φ
X
0 ∪

⋃

ν∈T

Σ
ν
jν .

A visualization of a scaling distribution and different samplets on a Swiss roll is
found in Figure 1.

Figure 1. A scaling distribution on the coarsest scale (left) and
samplets on level 2 and 3 (second from the left to right).

By construction, samplets satisfy the following properties, which can directly be
inferred from the corresponding results in [19,20,42].

Theorem 3.5. The spaces Vj defined in equation (17) form the desired multireso-
lution analysis (9), where the corresponding complement spaces Sj from (18) satisfy

Vj+1 = Vj
⊥
⊕ Sj for all j = 0, 1, . . . , J − 1.

The associated samplet basis ΣN defined in (19) constitutes an orthonormal basis
of V and we have:

(1) The number of all samplets on level j behaves like 2j.
(2) The samplets have vanishing moments of order q+1, i.e., there holds (12).
(3) Each samplet is supported in a specific cluster ν. If the points in X are

quasi-uniform, then the diameter of the cluster satisfies diam(ν) ∼ 2−jν/d

and there holds (11).
(4) The coefficient vector ωj,k =

[
ωj,k,i

]
i

of the samplet σj,k on the cluster ν
fulfills

‖ωj,k‖1 ≤
√
|ν|.

(5) Let f ∈ Cq+1(Ω). Then, there holds for a samplet σj,k supported on the
cluster ν that

|(f, σj,k)Ω| ≤
(
d

2

)
diam(ν)q+1

(q + 1)!
‖f‖Cq+1(Ω)‖ωj,k‖1.
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Remark 3.6. Each samplet is a linear combination of the Dirac measures supported
at the points in X. The related coefficient vectors ωj,k in

(20) σj,k =
N∑

i=1

ωj,k,iδxi

are pairwise orthonormal with respect to the inner product (2). The dual samplet
in HX is given by

σ̃j,k =
N∑

i=1

ω̃j,k,iκ(xi, ·), where ω̃j,k := K−1ωj,k,

as there holds

〈σ̃j,k, σ̂j′k′〉H = (σ̃j,k, σj′k′)Ω =
N∑

i,i′=1

ω̃j,k,iωj′,k′,i′
(
κ(xi, ·), δxi′

)
Ω

= ω̃
⊺

j,kKωj′,k′ = δ(j,k),(j′,k′).

3.3. Matrix compression. For the compression of the kernel matrix K from (3),
with samplets of vanishing moment order q + 1, we suppose that kernel κ is q + 1
asymptotically smooth, i.e., there are constants cκ,α,β such that

(21)

∣∣∣∣
∂|α|+|β|

∂xα∂yβ
κ(x,y)

∣∣∣∣ ≤ cκ,α,β‖x− y‖−(|α|+|β|)
2 ∀|α|, |β| ≤ q + 1,

holds for all x,y ∈ Ω. Note that such an estimate can only be valid for continuous
kernels as considered here, but not for singular kernels. However, we observe in
passing that this condition is considerably weaker than the notion of asymptotic
smoothness of kernels in H-matrix theory, cp. [16]. The condition there would
correspond to arbitrary smoothness in (21) with analytic estimates on the constants
cκ,α,β.

Due to (21), we have in accordance with [19, Lemma 5.3] the decay estimate

(22) (κ, σj,k ⊗ σj′,k′)Ω×Ω ≤ cκ,q
diam(ν)q+1 diam(ν′)q+1

dist(νj,k, νj′,k′)2(q+1)
‖ωj,k‖1‖ωj′,k′‖1

for two samplets σj,k and σj′,k′ , with the vanishing moment property of order q+1
and supported on the clusters ν and ν′ such that dist(ν, ν′) > 0.

Estimate (22) holds for a wide range of kernels that obey the so-called Calderón-
Zygmund estimates. It immediately results in the following compression strategy
for kernel matrices in samplet representation, cp. [19, Theorem 5.4], which is well-
known in the context of wavelet compression of operator equations see, e.g., [34].
We remark that we use the Frobenius norm for measuring the error rather than
the operator norm, as it gives control on each matrix coefficient. Nonetheless, we
stress that estimates with respect to the operator norm would be similar.

Theorem 3.7 (S-compression). Set all coefficients of the kernel matrix

KΣ :=
[
(κ, σj,k ⊗ σj′,k′)Ω×Ω

]
j,j′,k,k′

to zero which satisfy the η-admissibility condition

(23) dist(ν, ν′) ≥ ηmax{diam(ν), diam(ν′)}, η > 0,

where ν is the cluster supporting σj,k and ν′ is the cluster supporting σj′,k′ , respec-
tively.

Then, the resulting S-compressed matrix Kη satisfies
∥∥KΣ −Kη

∥∥
F
≤ cη−2(q+1)N

√
log(N).

for some constant c > 0 dependent on the polynomial degree q and the kernel κ.
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Remark 3.8. The η-admissibility condition (23) appears reminiscent to the one
used for hierarchical matrices, compare, e.g., [8] and the references there. However,
in the present context, the clusters ν and ν′ may also be located on different levels,
i.e., jν 6= jν′ in general. As a consequence, the resulting block cluster tree is the
cartesian product T × T rather than the level-wise cartesian product considered in
the context of hierarchical matrices.

The error bounds for S-compression hold for kernel functions κ with finite dif-
ferentiability (especially, with derivatives of order q + 1, cp. [19, Lemma 5.3]), as
opposed to the usual requirement of asymptotic smoothness which appears in the
error analysis of the H-format, see [16] and the references therein.

In case of quasi-uniform point sets X = {xi}Ni=1 in the sense of Definition 3.3,
there holds

1

N2

∥∥KΣ
∥∥2
F
=

1

N2

N∑

i=1

N∑

j=1

|κ(xi,xj)|2 ∼
∫

Ω

∫

Ω

|κ(x,y)|2 dx dy,

i.e.,
∥∥KΣ

∥∥
F
∼ N . Thus, we can refine the above result, see also [19, Corollary 5.5].

Corollary 3.9. In case of quasi-uniform points xi ∈ X, the S-compressed matrix
Kη has only O(N logN) nonzero coefficients, while it satisfies the error estimate

(24)

∥∥KΣ −Kη
∥∥
F∥∥KΣ

∥∥
F

≤ cη−2(q+1)
√

logN.

In [19], an algorithm has been proposed which computes the compressed matrix
Kη in work and memory O(N logN). The key ingredient to achieve this is the use
of an interpolation-based fast multipole method and H2-matrix techniques [3,8,15].

4. Samplet matrix algebra

4.1. Addition and multiplication. To bound the cost for the addition of two
compressed kernel matrices represented with respect to the same cluster tree, it is
sufficient to assume that the points in X are quasi-uniform. Then it is straightfor-
ward to see that the cost for adding such matrices is O(N logN). The multiplication
of two compressed matrices, in turn, is motivated by concatenation C = A ◦ B of
the two pseudodifferential operators A and B. In suitable algebras, the product
C is again a pseudodifferential operator and, hence, compressible. The respective
kernel κC(·, ·) is given by

(25) κC(x,y) =

∫

Ω

κA(x, z)κB(z,y) dz.

Since Ω ⊂ R
d is bounded by assumption, we may without loss of generality

assume Ω ⊂ [0, 1)d. Then, if the distribution of the data points in X = {xi}Ni=1 ⊂ Ω
satisfies the stronger assumption of being asymptotically uniform modulo one, there
holds

(26) lim
N→∞

|Ω|
N

N∑

i=1

(f, δxi
)Ω =

∫

Ω

f(x) dx

for every Riemann integrable function f : Ω → R, cp. [32]. Hence, we may interpret
the matrix product as a discrete version of the convolution (25). In view of (26),
we conclude

(27)

∣∣∣∣κC(x,y)−
|Ω|
N

N∑

k=1

κA(x,xk)κB(xk,y)

∣∣∣∣→ 0 as N → ∞.
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Consequently, the product of two kernel matrices

KA = [κA(xi,xj)]
N
i,j=1, KB = [κB(xi,xj)]

N
i,j=1

yields a S-compressible matrix KA ·KB ∈ R
N×N .

Theorem 4.1. Let X = {xi}Ni=1 ⊂ Ω be asymptotically distributed uniformly mod-
ulo one, cp. (26), and denote by KC the corresponding kernel matrix

KC =
N

|Ω| [κC(xi,xj)]
N
i,j=1

with κC(·, ·) from (25). Then, there holds

‖KC −KAKB‖F
‖KC‖F

→ 0 as N → ∞.

Proof. On the one hand, we conclude from (27) that, as N → ∞,

‖KC −KAKB‖2F =

N∑

i,j=1

[
N

|Ω|κC(xi,xj)−
N∑

k=1

κA(xi, zk)κB(zk,xj)

]2

∼ N4

∫

Ω

∫

Ω

[
κC(x,y)−

|Ω|
N

N∑

k=1

κA(x,xk)κB(xk,y)

]2
dx dy

= o(N4).

On the other hand, we find likewise

‖KC‖2F ∼
∫

Ω

∫

Ω

N2κC(x,y)
2 dx dy ∼ N4.

This implies the assertion. �

Remark 4.2. We mention that the consistency bound in the preceding theorem is
rather crude. Under provision of stronger kernel-function regularity, corresponding
higher convergence rates can be achieved, given that X satisfies appropriate higher-
order quasi-Monte Carlo designs, see, e.g., [9] and the references there.

Let Kη
A,K

η
B,K

η
C be compressed with respect to the same S-compression pattern.

We assume for given ε(η) > 0 that η in (24) is chosen such that
∥∥KΣ −Kη

∥∥
F
≤ ε(η)

∥∥KΣ
∥∥
F
, for K ∈ {KA,KB,KC}.

Then, a repeated application of the triangle inequality yields

‖Kη
C −K

η
AK

η
B‖F

≤ ‖KΣ
C −K

η
C‖F + ‖KΣ

A‖F ‖KΣ
B −K

η
B‖F + ‖Kη

B‖F ‖KΣ
A −K

η
A‖F

≤ ε(η)
(
‖KC‖F + ‖KA‖F ‖KB‖F +

(
1 + ε(η)

)
‖KA‖F ‖KB‖F

)

. ε(η)
(
‖KC‖F + ‖KA‖F ‖KB‖F

)
.

This means that we only need to compute O(N logN) matrix entries to determine
an approximate version (Kη

AK
η
B)

η of the product Kη
A ·Kη

B. We like to stress that
this formatted matrix multiplication is exact on the given compression pattern.
The next theorem gives a cost bound on the matrix multiplication.

Theorem 4.3. Consider two kernel matrices

K
η
A = [a(j,k),(j′,k′)], K

η
B = [b(j,k),(j′,k′)] ∈ R

N×N

in samplet representation which are S-compressed with respect to the compression
pattern induced by the η-admissibility condition (23).
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Then, computing with respect to the same S-compression pattern the matrix
K

η
C = [c(j,k),(j′,k′)] ∈ R

N×N , where the nonzero entries are given by the discrete
inner product

(28) c(j,k),(j′,k′) =
J∑

ℓ=0

∑

m∈∇ℓ

a(j,k),(ℓ,m)b(ℓ,m),(j′,k′),

is of cost O(N log2N).

Proof. To estimate the cost of the matrix multiplication, we shall make use of the
compression rule (23). We assume for all clusters that diam(ν) ∼ 2−j/d if ν is on
level j. Thus, the samplet σj,k has approximately the diameter 2−j/d and, therefore,

only O(2ℓ−j) samplets σℓ,m of diameter ∼ 2−ℓ/d are found in its nearfield if ℓ ≥ j
while only O(1) are found if ℓ < j. For fixed level 0 ≤ ℓ ≤ J in (28), we thus

have at most O(max{2ℓ−max{j,j′}, 1}) nonzero products to evaluate per coefficient
c(j,k),(j′,k′). We assume without loss of generality that j ≥ j′ and sum over ℓ, which

yields the cost O(max{2J−j , j). Per target block matrix Cj,j′ = [c(j,k),(j′,k′)]j,j′ ,

we have O(2max{j,j′}) = O(2j) nonzero coefficients. Hence, the cost for computing
the desired target block is O(2j max{2J−j , j}). We shall next sum over j and j′

J∑

j=0

j∑

j′=0

O(2j max{2J−j , j}) =
J∑

j=0

j∑

j′=0

O(max{N, j2j})

=

J∑

j=0

O(jmax{N, j2j})

= O(N log2N).

�

4.2. Sparse selected inversion. Having addition and multiplication of kernel
matrices at our disposal, we consider the matrix inversion next. To this end, observe
that the inverse A−1 of a pseudodifferential operator A from a suitable algebra of
pseudodifferential operators, provided that it exists, is again a pseudodifferential
operator, see Section A. However, if A is a pseudodifferential operator of negative
order as in the present RKHS case, the operator A−1 is of positive order and hence
gives rise to a singular kernel which does not satisfy the condition (21). Even so,
in the regime of kernel matrices we are rather interested in inverting regularized
pseudodifferential operators, i.e., A + µI, where I denotes the identity. For such
operators, we have the following lemma.

Lemma 4.4. Let A be a pseudodifferential operator of order s ≤ 0 with symmetric
and positive semidefinite kernel function.

Then, for any µ > 0, the inverse of A+ µI can be decomposed into 1
µI −B with

(29) B =
1

µ
(A+ µI)−1A.

Especially, B is also a pseudodifferential operator of order s, which admits a sym-
metric and positive semidefinite kernel function.

Proof. In view of (29), we infer that

(A+ µI)

(
1

µ
I − B

)
=

1

µ
A+ I − (A+ µI)B = I +

1

µ
A− 1

µ
A = I.

Therefore, 1
µI − B is the inverse operator to A + µI. Since A + µI is of order

0, (A + µI)−1 is of order 0, too, and thus (A + µI)−1A is of the same order as
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A. Finally, the symmetry and nonnegativity of B follows from the symmetry and
nonnegativity of A. �

As a consequence of this lemma, the inverse (KA + µI)−1 ∈ R
N×N of the

associated kernel matrix KA + µI ∈ R
N×N is S-compressible in a samplet basis

with respect to the same S-compression pattern as KA. In [18], strong numerical
evidence was presented that a sparse Cholesky factorization of a compressed kernel
matrix can efficiently be computed by means of nested dissection, cf. [13]. This
suggests the computation of the inverse (KA + µI)−1 in samplet basis on the S-
compression pattern of KA by means of selective inversion [30] of a sparse matrix.
The approach is outlined below.

Assume that A ∈ R
N×N is symmetric and positive definite. There are two steps

in the inversion algorithm. The first stage involves factorizing the input matrix A

into A = LDL⊺. The L and D matrices are used in the second phase to compute
the selected components of A−1. The first step will be referred to as factorization
in the following and the second step as selected inversion. To explain the second
step, let A be partitioned according to

A =

[
A11 A12

A
⊺

12 A22

]
.

In particular, the diagonal blocks Aii are also symmetric and positive definite. The
selected inversion is based on the identity

(30) A−1 =

[
A−1

11 +CS−1C⊺ CS−1

S−1C⊺ S−1

]
,

where S := A22+A
⊺

12C is the Schur complement with C := −A−1
11 A12. For sparse

matrices, this block algorithm can efficiently be realized based on the observation
that for the computation of the entries of A−1 on the pattern of L only the entries on
the pattern of L are required, as it is well known from the sparse matrix literature,
cp. [10, 14, 30]. We note that the pattern of A is particularly contained in the
pattern of L.

4.3. Algorithmic aspects. A block selected inversion algorithm has at least two
advantages: Because A is sparse, blocks can be specified in terms of supernodes [30].
This allows us to use level-3 BLAS to construct an efficient implementation by
leveraging memory hierarchy in current microprocessors. A supernode is a group
of nodes with the same nonzero structure below the diagonal in their respective
columns (of their L factor). The supernodal approach for sparse symmetric factor-
ization represents the factor L as a set of supernodes, each of which consists of a
contiguous set of L columns with identical nonzero patterns, and each supernode
is stored as a dense submatrix to take advantage of level-3 BLAS calculations.

Taking these consideration as a starting point, it is natural to employ the se-
lected inversion approach presented in [46] and available in [36] in order to directly
compute the entries on the pattern of the inverse matrix. For the particular imple-
mentation of the selected inversion, we rely on Pardiso. For larger kernel matrices,
which cannot be indexed by 32bit integers due to the comparatively large number
of non-zero entries, we combine the selected inversion with a divide and conquer
approach based on the identity (30). The inversion of the A11 block and of the
Schur complement S are performed with Pardiso (exploiting symmetry), while the
other arithmetic operations, i.e., addition and multiplication, are performed in a
formatted way, compare Theorem 4.3.
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4.4. Matrix functions. Based on the S-formatted multiplication and inversion of
operators represented in samplet basis, certain holomorphic functions of a samplet-
formatted operator also admit S-formatted approximations with, essentially, corre-
sponding approximation accuracies.

To illustrate this, we recall the method in [17]. This approach employs the
contour integral representation

(31) f(A) =
1

2πi

∫

Γ

f(z)(zI −A)−1 dz,

where Γ is a closed contour being contained in the analyticity region of f and
winding once around the spectrum σ(A) in counterclockwise direction. As is well-
known, analytic functions f of elliptic, self-adjoint pseudodifferential operators yield
again pseudodifferential operators in the same algebra, see, e.g., [43, Chap.XII.1].
Hence, B := f(A) is S-compressible provided that f is analytic. Especially, the

S-compressed representation
(
f(Aη)

)η
satisfies

(32)

∥∥BΣ −
(
f(Aη)

)η∥∥
F
≤ ‖BΣ −Bη‖F +

∥∥(f(AΣ)− f(Aη)
)η∥∥

F

≤ ε‖B‖F + L‖AΣ −Aη‖F
≤ ε
(
‖B‖F + L‖A‖F

)
.

Herein, L denotes the Lipschitz constant of the function f . In other words, estimate
(32) implies that the error of the approximation of the S-formatted matrix function(
f(Aη)

)η
is rigorously controlled by the sum of the input error ‖AΣ −Aη‖F and

the compression error for the exact output ‖BΣ −Bη‖F . The latter one is under
control if the underlying pseudodifferential operator is of order s < −d since then
the kernel is continuous and satisfies (21). In the other cases, some analysis is
needed to control this error (see below).

For the numerical approximation of the contour integral (31) one has to apply an
appropriate quadrature formula. Exemplarily, we consider the matrix square root,
i.e., f(z) =

√
z for Rez > 0. This occurs for example in the efficient path simulation

of Gaussian processes in spatial statistics. We shall here apply, see [17, Eq. (4.4)
and comments below], the approximation

(33) A−1/2 ≈ 2E
√
c

πK

K∑

k=1

dn (tk|1− κA)

cn2 (tk|1− κA)

(
A+ w2

kI
)−1

, A1/2 = A ·A−1/2.

Here, sn, cn and dn are the Jacobian elliptic functions [2, Chapter 16], E is the
complete elliptic integral of the second kind associated with the parameter κA :=
c/c [2, Chapter 17], and, for k ∈ {1, . . . ,K},

wk :=
√
c
sn (tk|1− κA)

cn (tk|1− κA)
and tk :=

E

K

(
k − 1

2

)
.

The quadrature approximation (33) of the contour integral (31) for the matrix
square root is known to converge root-exponentially (e.g. [6, Lemma 3.4]) in the
number K of quadrature nodes in (33) of the contour integral. Hence, approximate
representations to algebraic with respect to N consistency orders can be achieved
with K ∼ |ε(η)|, resulting in overall log-linear complexity of numerical realization
of (33) in S-format. We also remark that the quadrature shifts w2

k in the inversions
which occur in (33) act as regularizing “nuggets” of a possibly ill-conditioned A.
The input parameters 0 < c < c shall provide bounds to the spectrum of A, i.e.,
c ≈ λmin(A) and c ≈ λmax(A). Note that we also assume here that A is symmetric
and positive definite. Moreover, we should mention that, except for the quadrature
error, (33) computes the square root (Aη)−1/2 of the compressed input Aη in an



14 H. HARBRECHT, M. MULTERER, O. SCHENK, AND CH. SCHWAB

exact way on the compression pattern when we use the selected inversion algorithm
from Subsection 4.2.

That (Aη)−1/2 is indeed S-compressible is a consequence of the following lemma.

Lemma 4.5. Let A be a pseudodifferential operator of order s ≤ 0 with symmetric
and positive semidefinite kernel function. Then, for any µ > 0, the inverse square
root of A + µI can be written as 1√

µI − B with B being also a pseudodifferential

operator of order s, which admits a symmetric and positive semidefinite kernel
function.

Proof. Straightforward calculation shows that the ansatz

(34) (A+ µI)−1/2 =
1√
µ
I − B

is equivalent to

(A+ µI)

(
1

µ
I − 2√

µ
B + B2

)
= I.

Thus,

B
(

2√
µ
I − B

)
=

1

µ
(A+ µI)−1A,

which in view of (34) is equivalent to

B
(

1√
µ
I + (A+ µI)−1/2

)
=

1

µ
A(A+ µI)−1.

As both, 1√
µI + (A+ µI)−1/2 and (A+ µI)−1, are pseudodifferential of order 0, B

must have the same order as A. �

An alternative to the contour integral for computing the matrix exponential of
a (possibly singular) matrix A is given by the direct evaluation of the power series

exp(A) =

∞∑

k=0

1

k!
Ak.

As we show in the numerical results, this series converges very fast for the present
matrices under consideration which stem from reproducing kernels, since they cor-
respond to compact operators.

5. Numerical results

The computations in this section have been performed on a single node with two
Intel Xeon E5-2650 v3 @2.30GHz CPUs and up to 512GB of main memory1. To
achieve consistent timings, all computations have been carried out using 16 cores.
The samplet compression is implemented in C++11 and relies on the Eigen template
library2 for linear algebra operations. Moreover, the selected inversion is performed
by Pardiso. Throughout this section, we employ samplets with q+1 = 4 vanishing
moments. The parameter for the admissibility condition (23) is set to η = 1.25.
Together with the a priori pattern, which is obtained by neglecting admissible
blocks, we also consider an a posteriori compression by setting all matrix entries
smaller than τ = 10−5/N to zero resulting in the a posteriori pattern.

1The full specifications can be found on https://www.euler.usi.ch/en/research/resources.
2https://eigen.tuxfamily.org/
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5.1. S-formatted matrix multiplication. To benchmark the multiplication, we
consider uniformly distributed random points on the unit hypercube [0, 1]d. As ker-
nel, we consider the exponential kernel (which is the Matérn kernel with smoothness
parameter ν = 1/2 and correlation length ℓ = 1)

(35) κ(x,y) =
1

N
e−‖x−y‖2

Note that we impose the scaling 1/N of the kernel function in order fix the largest
eigenvalue of the kernel matrix as its trace stays uniformly bounded.

We compute the matrix product Kη · K̃η
, where K̃

η
is obtained from Kη by

relatively perturbing each nonzero entry by 10% additive noise, which is uniformly

distributed in [0, 1]. This way, we rule out symmetry effects as K̃
η

will not be
symmetric in general.
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O(N logα N)
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multiplication error
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Figure 2. Computation times for matrix multiplication (left) and
multiplication errors (right).

To measure the multiplication error, we consider the estimator

eF (A) :=
‖AX‖F
‖X‖F

,

where X ∈ R
N×10 is a random matrix with uniformly distributed independent

entries. The left hand side of Figure 2 shows the computation time for a single
multiplication. The dashed lines correspond to the asymptotic rates O(N logαN)
for α = 0, 1, 2, 3. It can be seen that the multiplication time for d = 2 perfectly
reflects the expected essentially linear behavior. Though the graph is steeper for
d = 3, we expect it to flatten further for larger N . The right hand side of the

plot shows the multiplication error eF (K
η · K̃η −Kη ⊡ K̃

η
), where the formatted

multiplication ⊡ is performed on the a posteriori pattern. Taking into account that
the compression errors for Kη are approximately 5.6 · 10−6 for d = 2 and 1.6 · 10−5

for d = 3, the obtained matrix product can be considered to be very accurate.

5.2. S-formatted matrix inversion. In order to assess the numerical perfor-
mance of the matrix inversion, we again consider uniformly distributed random
points on the unit hypercube [0, 1]d. Since the separation radius qX ranges between
4.7 · 10−5 (N = 5000) and 2.8 · 10−7 (N = 10000 000) for d = 2 and 3.8 · 10−4

(N = 5000) and 3.2 · 10−5 (N = 10000 000) for d = 3, we do not expect that Kη

to be invertible. Therefore, we rather consider the regularized version Kη + µI for
a ridge parameter µ > 0.
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Figure 3. Results for d = 2. Left panel: Computation times for
compressed matrix assembly and selected inversion on the a priori
pattern. Dashed lines indicate linear (α = 1) and super-linear
(α = 1.5) scaling, respectively. Right panel: Inversion errors for
ridge parameters ρ = 10−6, 10−4, 10−2.

As our theoretical results suggest that the inverse has the same a priori pattern
as the matrix itself, we first consider the inversion on the a priori pattern for d = 2.

The left hand side of Figure 3 shows the computation times for the inverse matrix
employing Pardiso. The dashed line shows the asymptotic rates O(Nα) for α =
1, 1.5. For N = 1000 000, due to the large amount of non-zero entries, we use the
block inversion with one subdivision. This explains the bump in the computation
time due to the formatted matrix multiplication. Besides this, Pardiso perfectly
exhibits the expected rate of N1.5. The right hand side of the plot shows the error
eF
(
(Kη + µI)−1(Kη + µI) − I

)
for the ridge parameters µ = 10−6, 10−4, 10−2,

where −1 denotes the selected in version on the pattern of Kη. As expected, the
error reduces significantly with increasing ridge parameter.

As the a priori pattern typically exhibits significantly less entries, we also in-
vestigate the inversion on the a posteriori pattern. The corresponding results are
shown in Figure 4

As can be seen on the left hand side of the figure, the selected inversion now even
exhibits a linear behavior, which is explained by the fixed threshold τ , resulting in
successively less entries for increasing N . On the other hand, the errors for the
different ridge parameters, depicted on the right hand side of the same figure,
asymptotically exhibit the same behavior as in the a priori case.

Motivated by the results for d = 2, we consider only the inversion on the a
posteriori pattern for d = 3. The corresponding results are shown in Figure 5.
On the left hand side of the figure, again the computation times are shown. The
dashed lines show the asymptotic rates O(Nα) for α = 1, 2. Until N = 100 000, the
expected quadratic rate is perfectly matched. Due to the large number of non-zeros
in the case d = 3, we have employed the block inversion with three recursion steps
for N > 100 000, resulting in the peculiar linear behavior for the respective values
in the graph. The errors depicted on the right hand side show a behavior similar
to the case d = 2, with a slightly reduced decay.
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Figure 4. Results for d = 2. Left panel: Computation times
for compressed matrix assembly and selected inversion on the a
posteriori pattern. Dashed lines indicate linear (α = 1) and super-
linear (α = 1.5) scaling, respectively. Right panel: Inversion errors
for ridge parameters µ = 10−6, 10−4, 10−2.
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Figure 5. Results for d = 3. Left panel: Computation times for
compressed matrix assembly and selected inversion on the a pos-
teriori pattern. Dashed lines indicate linear (α = 1) and quadratic
(α = 2) scaling, respectively.

Right panel: Inversion errors for ridge parameters µ = 10−6, 10−4, 10−2.

5.3. S-formatted matrix functions. We compute the matrix square root A1/2

and the matrix exponential exp(A) for the exponential kernel

κ(x,y) =
1

N
e−2‖x−y‖2

This time, the data points are randomly subsampled from from a 3D scan of the
head of Michelangelo’s David (The scan is provided by the Statens Museum for
Kunst under the Creative Commens CC0 license), cp. Figure 6. The bounding box
of the bunny is [−0.52, 0.42]× [−0.47, 0.46]× [−0.18, 0.78]. All other parameters are
set as in the examples before. Moreover, we set the ridge parameter to µ = 10−4.
The smallest eigenvalue is estimated by the ridge parameter, while the largest eigen-
value is upper bounded by 1. For the contour integral method for the computation
of the matrix square root, we found stagnation in the error for K ≥ 7 quadrature
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Figure 6. Data points from a 3D scan of the head of Michelan-
gelo’s David. The scan is provided by the Statens Museum for
Kunst under the Creative Commens CC0 license.

points. The corresponding errors eF
(
(Kη + µI)1/2(Kη + µI)1/2 − (Kη + µI)

)
for

different values of N are tabulated in Table 1

N 5 000 10 000 50 000 100 000 234 553
eF 1.43 · 10−3 7.68 · 10−4 3.90 · 10−4 2.82 · 10−4 3.59 · 10−4

Table 1. Errors for the contour integral method for (Kη+µI)1/2.

Finally, Table 2 shows the approximation error eF
(
exp(Kη) − exp (Kη)

)
of

the matrix exponential for different values of N . The true matrix exponential is
estimated by a power series of length 30 directly applied to the matrix X. Here,
we found that the error starts to stagnate for more than 8 terms in the expansion.
The largest eigenvalue satisfies ‖Kη‖2 ≈ 0.337 (estimated by a Rayleigh quotient
iteration with 50 iterations), hence explaining the rapid convergence. Note that we
do not require any regularization here, as just matrix products are computed.

N 5 000 10 000 50 000 100 000 234 553
eF 1.48 · 10−9 5.12 · 10−10 5.51 · 10−11 4.08 · 10−11 1.88 · 10−11

Table 2. Errors for the approximation of exp(Kη) by the power
series of the exponential.

5.4. Gaussian process implicit surfaces. We consider Gaussian process learn-
ing of implicit surfaces. In accordance with [49], we consider a closed surface S = ∂Ω
of dimension d− 1, given by the 0-level set of the function

f : Rd → R, f(x)





= 0, x ∈ S,

> 0, x ∈ Ω,

< 0, x ∈ R
d \ Ω,

i.e.,

S = {x ∈ R
d : f(x) = 0}.

For the function f , we impose a Gaussian process model with covariance function
given by the exponential kernel

κ(x,y) =
1

N
e−6‖x−y‖2
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Figure 7. Left panel: Data points for the surface reconstruction.
Red corresponds to a value of 1, green to a value of 0 and blue to a
value of −1. Middle panel: 0-level set of the posterior expectation
evaluated at a regular grid. Right panel: Standard deviation for
the reconstruction (blue is small, red is large).

and prior mean zero. Then, given the data sites X of size N := |X| and the noisy
measurements y = f(X) + ε, where ε ∼ N (0, µI), the posterior distribution for
the data sites Z ⊂ R

3 is determined by

E[f(Z)|X,y] = KZX(KXX + µI)−1y,

Cov[f(Z)|X,y] = KZZ −KZX(KXX + µI)−1K
⊺

ZX .

Herein, setting M := |Z|, we have KXX = [κ(X,X)] ∈ R
N×N , KZX = [κ(Z,X)] ∈

R
M×N , KZZ = [κ(Z,Z)] ∈ R

M×M .
The matrix KZX can efficiently be computed by using one samplet tree for Z

and a second samplet tree for X, while (KXX + µI)−1 can be computed as in the
previous examples. Hence, the computation of the posterior mean E[f(Z)|X,y] is
straightforward. For X, we use samplets with q + 1 = 4 vanishing moments, while
samplets with q + 1 = 3 vanishing moments are applied for Z. Moreover, we use
an a-posteriori threshold of τ = 10−4/N for K

η
ZX .

Similarly, we can evaluate the covariance in samplet coordinates. However, the
evaluation of the standard deviation

√
diag(Cov[f(Z)|X,y]) requires more care.

Here we just transform KZX with respect to the points in X and evaluate the
diagonal resulting in a computational cost of O

(
MN logN

)
.

The left panel in Figure 7 shows the initial setup. 240 data points with a value
−1 are located on a sphere within the point cloud, 15 507 points with a value of 0
are located at its surface and 1200 points with a value of 1 are located on a box
enclosing it. This results in N = 16 947 data points in total. The ridge parameter
was set to µ = 2 · 10−5. The conditional expectation and the standard deviation
have been computed on a regular grid with M = 8000 000 points. The middle panel
in Figure 7 shows the 0-level set while the right panel shows the standard deviation.
As expected, the standard deviation is lowest close to the data sites (blue is small,
red is large).

6. Conclusion

We have presented a sparse matrix arithmetic for kernel matrices in samplet
coordinates. This arithmetic allows for the rapid addition, multiplication and in-
version of (regularized) kernel matrices, which operations mimick algebras of cor-
responding pseudodifferential operators. The proposed arithmetic extends to S-
formatted, approximate representations of holomorphic functions of S-formatted
approximations of self-adjoint operators, which are likewise realized in log-linear
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complexity. While the addition is straightforward, we have derived an error and
cost analysis for the multiplication, and for the approximate evaluation of holo-
morphic operator-functions in log-linear complexity. The S-formatted approximate
inversion is realized by selective inversion for sparse matrices, which also enables
the computation of general matrix functions by the contour integral approach. The
numerical benchmarks corroborate the theoretical findings for data sets in two and
three dimensions. As a relevant example from computer graphics, we have consid-
ered Gaussian process learning for the computation of a signed distance function
from scattered data.

Appendix A. Pseudodifferential operators

We present basic definitions and terminology from the theory of pseudodifferen-
tial operators, in particular elements of the calculus of pseudodifferential operators,
going back to Seeley [40, 41]. We adopt the notation for the statements of re-
sults on pseudodifferential operators from the monographs of Hörmander [23] and
Taylor [43].

A.1. Symbols. For an order r ∈ R and an open and bounded domain Ω ⊂ R
d with

smooth boundary, the symbol class Sr(Ω×R
d) consists of functions a ∈ C∞(Ω×R

d)
such that, for any K ⋐ Ω and for every α,β ∈ N

d, there exist constants Cα,β(K) >
0 such that

(36) ∀x ∈ K, ξ ∈ R
d :

∣∣∣∂αx ∂βξ a(x, ξ)
∣∣∣ ≤ Cα,β(K)〈ξ〉r−|β|,

where 〈ξ〉 = (1 + ‖ξ‖22)1/2. The class Sr(Ω × R
d) is contained in the Hörmander

class Sr
1,0(Ω × R

d); we shall not require the general classes Sr
ρ,δ(Ω × R

d) (cf. [23])
and, therefore, omit the fine indices.

A function ar ∈ C∞(Ω× R
d\{0}) is called positively homogeneous of degree r if

∀x ∈ Ω, ∀t > 0, 0 6= ξ ∈ R
d : ar(x, tξ) = trar(x, ξ).

Note that then χ(ξ)ar(x, ξ) ∈ Sr(Ω × R
d) for any smooth, nonnegative cut-off

function χ which vanishes identically for ‖ξ‖2 ≤ 1/2 and χ(ξ) ≡ 1 for ‖ξ‖2 ≥ 1.
For a symbol a ∈ Sr(Ω × R

d), the corresponding pseudodifferential operator A is
defined for u ∈ C∞

0 (Ω) via the oscillatory integral (cf. [22])

(37) A(x,−i∂x)u(x) = (2π)−d/2

∫

ξ∈Rd

ei〈x,ξ〉a(x, ξ)û(ξ) dξ, x ∈ Ω.

The set of all pseudodifferential operators A generated via (37) from a symbol
a ∈ Sr(Ω× R

d) is denoted by OPSr(Ω).
A symbol a ∈ Sr(Ω × R

d) is called classical symbol of order r ∈ R if for every
k ∈ N there exist functions ar−k(x, ξ) ∈ Sr−k(Ω × R

d) such that a ∼ ∑
k ar−k

(in the sense of asymptotic expansions of symbols, compare [23]), where ar−k is
homogeneous of degree r−k, i.e., there holds ar−k(x, tξ) = tr−kar−k(x, ξ) for every
t > 0 and for every ξ ∈ R

d with ‖ξ‖2 ≥ 1. As a consequence of the asymptotic
expansion of a ∈ Sr

cl(Ω × R
d), for every α,β ∈ N

d and for every K ⋐ Ω exists a
constant cα,β(K) ∈ (0, 1) such that for every N ∈ N holds
(38)

∀x ∈ K, ξ ∈ R
d :

∣∣∣∣∣∂
α
x ∂

β
ξ

(
a(x, ξ)−

N∑

k=0

ar−k(x, ξ)

)∣∣∣∣∣ ≤ cα,β(K)〈ξ〉r−N−|β|−1.
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A.2. Calculus. Pseudodifferential operators admit calculi which are crucial for the
subsequent matrix arithmetic. We collect properties of the calculi in Sr

cl(Ω × R
d)

that are required throughout the article.

Proposition A.1. (1) A ∈ OPSr
cl implies A⋆ ∈ OPSr

cl.

(2) A ∈ OPSr
cl and B ∈ OPSt

cl implies A+ B ∈ OPS
max{r,t}
cl .

(3) A ∈ OPSr
cl and B ∈ OPSt

cl implies A ◦ B ∈ OPSr+t
cl .

(4) If A ∈ OPSr
cl is invertible and elliptic, then there holds A−1 ∈ OPS−r

cl .

Proof. The asserted properties for OPSr
cl are standard properties for this algebra.

�

In case of the Matérn kernels, expanding (8) asymptotically, as ‖ξ‖2 → ∞,
and comparing with (38), we deduce that the associated integral operator satisfies

Kν ∈ OPS−2ν−d
cl . It follows also from the symbolic calculus in Proposition A.1 that

the inverse K−1
ν ∈ OPS2ν+d

cl . Indeed, the symbol of the inverse corresponds to the

differential operator Aν = α−1(id− ℓ2

2ν∆)ν+d/2 which is of order 2ν + d.

A.3. Kernels. Every continuous function on the cartesian product of two domains
Ω1 and Ω2, κ ∈ C(Ω1 × Ω2), defines an integral operator from C(Ω2) to C(Ω1) by
the formula

(39) (Kφ)(x1) =

∫

Ω2

κ(x1,x2)φ(x2) dx2.

For such kernel functions, we have particularly, cf. [22, Eq. (5.2.1)],

(40) 〈Kφ, ψ〉 = 〈κ, ψ ⊗ φ〉 for all ψ ∈ D(Ω1), φ ∈ D(Ω2),

where we define the space of test functions D(Ω) := C∞
0 (Ω) as usual. The charac-

terization (40) can be extended to distributions κ ∈ D′(Ω1×Ω2) if Kφ is allowed to
be a distribution. Especially, according to the (classical) Schwartz Kernel Theorem,
a (distributional) kernel corresponds in a one-to-one fashion to a linear operator
and vice versa.

Proposition A.2 (Schwartz Kernel Theorem [22, Thm. 5.2.1]). Every distribu-
tional kernel κ ∈ D′(Ω1 × Ω2) induces, via (40), a continuous, linear map from
D(Ω2) to D′(Ω1). Conversely, for every linear map K, there exists a unique distri-
bution K such that (40) holds. The distribution κ is called (distributional) kernel
of K.

Via the Schwartz Kernel Theorem, every classical pseudodifferential operator
A ∈ OPSr

cl(Ω) with symbol a ∈ Sr
cl(Ω × R

d) can be written as a (distributional)
integral operator with (distributional) Schwartz kernel κA. If the order r of the
pseudodifferential operator A ∈ OPSr

cl(Ω) is smaller than −d, its distributional
kernel is continuous and satisfies (21).
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