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Abstract

Designing devices composed of many small resonators is a challenging problem that can easily
incur significant computational cost. Can asymptotic techniques be used to overcome this often
limiting factor? Integral methods and asymptotic techniques have been used to derive concise
characterisations for scattering by resonators, but can these be generalised to systems of many
dispersive resonators whose material parameters have highly non-linear frequency dependence? In
this paper, we study halide perovskite resonators as a demonstrative example. We extend previous
work to show how a finite number of coupled resonators can be modelled concisely in the limit of
small radius. We also show how these results can be used as the basis for an inverse design strategy,
to design resonator systems that resonate at specific frequencies.
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1 Introduction

When multiple resonators are allowed to influence one another coupling interactions take place, which
can often be complex and difficult to model. Understanding how these interactions depend on the
shapes, sizes and positions of resonators has allowed scientists and engineers to design devices with
exotic and remarkable properties. Some notable examples include effectively negative material pa-
rameters [22, 27], cloaking devices [20, 10] and bio-inspired structural colouration [24, 29]. The word
metamaterial is a broad term that is often used as a catchall term to encompass materials whose
emergent properties arise due to geometry and structure (as opposed to purely from chemistry) [16].

For designing complex devices, it is valuable to be able to model systems of coupled resonators
without the need for expensive numerical simulations (e.g. with commercial finite element packages).
For this reason, there has been significant mathematical interest in developing concise models for
coupled resonator systems. A prominent field in this direction is multiple scattering theory [25]. These
techniques are particularly effective for modelling either small (point) scatterers or systems whose
geometry admits explicit representations (e.g. cylinders or spheres) [26, 12]. To describe resonators
with general, possibly complex, shapes, integral methods can be used [5]. On top of this, asymptotic
techniques have helped provide concise characterisations of complex problems. Homogenisation can
be used characterise the effective properties of materials with periodic [8, 14], quasi-periodic [9] or
random [11] micro-structures. Local properties can also be deduced through asymptotic approaches.
For example, asymptotic expansions can be computed when resonators are very small or have highly
contrasting material parameters [3, 4].

Extending existing asymptotic and integral methods to models of dispersive resonators, with phys-
ically realistic material parameters, has proved to be a challenging problem. Some recent progress has
been made for the well-known Drude model [6] and for halide perovskites [2]. In these cases, resonant
frequencies of the coupled resonator system cannot be found by solving a simple eigenvalue problem,
as the associated eigenvalue problem inherits the non-linearity of the permittivity relation.

In this work, we will focus on halide perovskites, as a demonstrative example of the asymptotic and
integral techniques we will exploit. Halide perovskites are materials which are increasingly being used
in optical devices. Their underly chemisty consists of octohedral-shaped crystalline lattices containing
atoms of heavier halides, such as chlorine, bromine and iodine [1]. When used in microscopic devices,
their high absorption coefficient helps absorb the complete visible spectrum. This, combined with the
fact that they are cheap and easy to manufacture, means they are playing a prominent role in the
production of electromagnetic devices [13, 15, 19, 23, 28].

In this paper, we will use integral methods to study a broad class of geometries of halide perovskite
resonators. This extends the theory developed in [2] for one and two resonators to the case of three
or more halide perovskite nano-particles. In section 2, we will present the integral formulation of the
resonance problem that we are studying. We will use asymptotic techniques to show how this system
can be approximated in the case that the resonators are small. In section 3, we will show how these
results can be used to find the resonant frequencies of a coupled system of circular halide perovskite
resonators and present numerical visualisations. Our results will be for a two-dimensional differential
system, however we will show (in the appendix) how these results can easily be modified to three
dimensions.

In the final part of this paper, in section 4, we will use our asymptotic results to treat an inverse
design problem. In particular, given three wavelengths of visible light, we will show that a system of
three identical circular halide perovskite resonators can be chosen to resonate at those wavelengths
and present an efficient strategy for deriving the appropriate geometry. This problem is inspired by
the sensitivity of retinal receptor cells to three colours of light (red, blue and green). This shows
that, with the help of our mathematical insight, it is possible to add customisable colour perception
to bioinspired artificial eyes [13, 18].

2 Asymptotic analysis
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2.1 Problem setting

Let us consider N ∈ N halide perovskite resonators D1, D2, . . . , DN occupying a bounded domain
Ω ⊂ Rd, for d ∈ {2, 3}. We assume that the resonators have permittivity given by

ε(ω, k) = ε0 +
α

β − ω2 + ηk2 − iγω
, (2.1)

where α, β, γ, η are positive constants. This is motivated by the formula for the permittivity of halide
perovskites reported in [19]. The non-linear dependence on both the frequency ω and the wavenumber
k are responsible for the complex, dispersive behaviour of the material. We assume that the particles
are non-magnetic, so that the magnetic permeability µ0 is constant on all of Rd.

We consider the Helmholtz equation as a model for the propagation of time-harmonic waves with
frequency ω. This is a reasonable model for the scattering of transverse magnetic polarised light
(see e.g. [21, Remark 2.1] for a discussion). The wavenumber in the background Rd \ Ω is given by
k0 := ωε0µ0 and we will use k to denote the wavenumber within Ω. Let us note here that, from now
on, we will suppress the dependence of k0 on ω for brevity. We, then, consider the following Helmholtz
model for light propagation:































∆u+ ω2ε(ω, k)µ0u = 0 in Ω,

∆u+ k20u = 0 in Rd \ Ω,
u|+ − u|− = 0 on ∂Ω,
∂u
∂ν

|+ − ∂u
∂ν

|− = 0 on ∂Ω,

u(x)− uin(x) satisfies the outgoing radiation condition as |x| → ∞,

(2.2)

where uin is the incident wave, assumed to satisfy

(∆ + k20)uin = 0 in Rd,

and the appropriate outgoing radiation condition is the Sommerfeld radiation condition, which requires
that

lim
|x|→∞

|x| d−1
2

(

∂

∂|x| − ik0

)

(

u(x)− uin(x)
)

= 0. (2.3)

In particular, we are interested in the case of small resonators. Thus, we will assume that there exists
some fixed domain D, which the the union of N disjoint subsets D = D1 ∪D2 ∪ · · · ∪DN , such that
Ω is given by

Ω = δD + z, (2.4)

for some position z ∈ Rd and characteristic size 0 < δ ≪ 1. Then, making a change of variables, the
Helmholtz problem (2.2) becomes

{

∆u+ δ2ω2ε(ω, k)µ0u = 0 in D,

∆u+ δ2k20u = 0 in Rd \D,
(2.5)

along with the same transmission conditions on ∂D and far-field behaviour. We are interested in the
subwavelength behaviour of the system, which occurs when δ ≪ k−1

0 . We will study this by performing
asymptotics in the regime that the frequency ω is fixed while the size δ → 0. We will characterise
solutions to (2.2) in terms of the system’s resonant frequencies. For a given wavenumber k, we define
ω = ω(k) to be a resonant frequency if it is such that there exists a non-trivial solution u to (2.2) in
the case that uin = 0.

2.2 Integral formulation

Let G(x, k) be the outgoing Helmholtz Green’s function in Rd, defined as the unique solution to
(∆ + k2)G(x, k) = δ0(x) in Rd, along with the outgoing radiation condition (2.3). It is well known
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that G is given by

G(x, k) =

{

− i
4H

(1)
0 (k|x|), d = 2,

− eik|x|

4π|x| , d = 3,
(2.6)

where H
(1)
0 is the Hankel function of first kind and order zero. Then, from e.g. [2], we have the

following result, which gives an integral representation of the scattering problem.

Theorem 2.1 (Lippmann-Schwinger integral representation formula). The solution to the Helmholtz
problem (2.2) is given by

u(x)− uin(x) = −δ2ω2ξ(ω, k)

∫

D

G(x− y, δk0)u(y)dy, x ∈ Rd, (2.7)

where the function ξ : C → C describes the permittivity contrast between D and the background and is
given by

ξ(ω, k) = µ0(ε(ω, k)− ε0).

Since the domains D1, . . . , DN are disjoint, the field u − uin scattered by the N particles can be
written as

(u− uin)(x) = −δ2ω2ξ(ω, k)
N
∑

i=1

∫

Di

G(x− y, δk0)u(y), for x ∈ Rd. (2.8)

We are interested in understanding how the formula (2.7) behaves in the case that δ is small. For
this, the asymptotic expansions of the Green’s function will be of great help. Although, we have to
distinguish the cases of two and three dimensions, since these expansions differ in each case. We will
work on the two-dimensional setting as the asymptotic expansions are more complicated. The same
method can be used in three-dimensions, although the analysis is slightly easier. We present some of
the key details in Appendix A.1.

2.3 Two-dimensional analysis

Let us assume that we work in dimension d = 2 and let us consider N halide perovskite resonators
D1, D2, . . . , DN , made from the same material. We define the operators Kδk0

Di
and Rδk0

DiDj
, for i, j =

1, 2, . . . , N , i 6= j, as follows.

Definition 2.2. We define the integral operators Kδk0
Di

and Rδk0
DiDj

, for i, j = 1, 2, ..., N , by

Kδk0
Di

: u
∣

∣

Di
∈ L2(Di) 7−→ −

∫

Di

G(x− y, δk0)u(y)dy
∣

∣

∣

Di

∈ L2(Di)

and

Rδk0
DiDj

: u
∣

∣

Di
∈ L2(Di) 7−→ −

∫

Di

G(x− y, δk0)u(y)dy
∣

∣

∣

Dj

∈ L2(Dj).

We continue by recalling from [2] some results concerning the asymptotic behaviour of these integral
operators.

Definition 2.3. We define the integral operators M δk0
Di

and N δk0
DiDj

for i, j = 1, 2, . . . , N , i 6= j, as

M δk0
Di

:= K̂δk0
Di

+K
(0)
Di

+ (δk0)
2 log(δk0γ̂)K

(1)
Di

,

and

N δk0
DiDj

:= K̂δk0
DiDj

+R
(0)
DiDj

+ (δk0)
2 log(δk0γ̂)R

(1)
DiDj

,
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where

K
(0)
Di

: u
∣

∣

∣

Di

∈ L2(Di) 7−→
∫

Di

G(x− y, 0)u(y)dy
∣

∣

∣

Di

∈ L2(Di),

K̂δk0
Di

: u
∣

∣

∣

Di

∈ L2(Di) 7−→ − 1

2π
log(γ̂δk0)

∫

Di

u(y)dy
∣

∣

∣

Di

∈ L2(Di),

K
(1)
Di

: u
∣

∣

∣

Di

∈ L2(Di) 7−→
∫

Di

∂

∂k
G(x− y, k)

∣

∣

∣

k=0
u(y)dy

∣

∣

∣

Di

∈ L2(Di),

and

R
(0)
DiDj

: u
∣

∣

∣

Di

∈ L2(Di) 7−→
∫

Di

G(x− y, 0)u(y)dy
∣

∣

∣

Dj

∈ L2(Dj),

K̂δk0
DiDj

: u
∣

∣

∣

Di

∈ L2(Di) 7−→ − 1

2π
log(γ̂δk0)

∫

Di

u(y)dy
∣

∣

∣

Dj

∈ L2(Dj),

R
(1)
DiDj

: u
∣

∣

∣

Di

∈ L2(Di) 7−→
∫

Di

∂

∂k
G(x− y, k)

∣

∣

∣

k=0
u(y)dy

∣

∣

∣

Dj

∈ L2(Dj).

Proposition 2.4. For the integral operators Kδk0
Di

and Rδk0
DiDj

, we can write

Kδk0
Di

= M δk0
Di

+O
(

δ4 log(δ)
)

, and Rδk0
DiDj

= N δk0
DiDj

+O
(

δ4 log(δ)
)

, (2.9)

as δ → 0 and with k0 fixed.

Then, the resonance problem is to find ω ∈ C, such that there exists (u1, u2, . . . , uN ) ∈ L2(D1)×
L2(D2)× · · · × L2(DN ), ui 6= 0, for i = 1, . . . , N, such that













1− δ2ω2ξ(ω, k)M δk0
D1

−δ2ω2ξ(ω, k)N δk0
D2D1

. . . −δ2ω2ξ(ω, k)N δk0
DND1

−δ2ω2ξ(ω, k)N δk0
D1D2

1− δ2ω2ξ(ω, k)M δk0
D2

. . . −δ2ω2ξ(ω, k)N δk0
DND2

...
...

. . .
...

−δ2ω2ξ(ω, k)N δk0
D1DN

−δ2ω2ξ(ω, k)N δk0
D2DN

. . . 1− δ2ω2ξ(ω, k)M δk0
DN























u1
u2
...

uN











=











0
0
...
0











, (2.10)

To ease the notation in what follows, let us define a modified version of the modulo function. This
is modified to always return strictly positive values (this is important it will be used for matrix indices
later). In particular, it is chosen so that N⌊N⌋ = N for any N ∈ N.

Definition 2.5. Given N ∈ N, we denote by ⌊N⌋ : N → {1, 2, . . . , N} a modified version of the
modulo function, i.e. the remainder of euclidean division by N . In particular, for all M ∈ N, there
exists unique τ ∈ Z≥0 and r ∈ N with 0 < r ≤ N , such that

M = τ ·N + r.

Then, we define M⌊N⌋ to be
M⌊N⌋ := r.

We now wish to make an additional assumption on the dimensions of the nano-particles. This will
allow us to prove an approximation for the values of the modes ui on each particle. The assumption is
one of diluteness, in the sense that the particles are small relative to the separation distances between
them. To capture this, we introduce the parameter ρ to capture the radii of the reference particles
D1, . . . , DN . We define ρ = 1

2 maxi(diam(Di)) where diam(Di) is defined as

diam(Di) = sup{|x− y| : x, y ∈ Di}. (2.11)

Then, in the case that ρ is small, we have the following lemma, which will be used later.
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Lemma 2.6. For all i = 1, . . . , N and for characteristic size δ of the same order as ρ, we can write
that

ui = 〈u, φ(δ)
i 〉φ(δ)

i +O(ρ2), (2.12)

as ρ → 0, where φ
(δ)
i denotes the eigenvector associated to the particle Di of the potential M δk0

Di
and

ρ > 0 denotes the particle size parameter of D1, . . . , DN . Here, δ and ρ are of the same order in the
sense that δ = O(ρ) and ρ = O(δ). In this case, the error term holds uniformly for any small δ and ρ

in a neighbourhood of 0.

Proof. We refer to Appendix A.2.

We can now state the main result in the two-dimensional case.

Theorem 2.7. The scattering resonance problem in two dimensions becomes, at leading order as
δ → 0 and ρ → 0, with δ = O(ρ) and ρ = O(δ), finding ω ∈ C such that

det(L) = 0,

where the matrix L is given by

Lij =







〈N δk0
DiDi+1⌊N⌋

φ
(δ)
i , φ

(δ)
i+1⌊N⌋〉, if i = j,

−Bi(ω, δ)〈N δk0
DjDi

φ
(δ)
j , φ

(δ)
i 〉〈N δk0

DiDi+1⌊N⌋
φ
(δ)
i , φ

(δ)
i+1⌊N⌋〉, if i 6= j.

(2.13)

Here, k0 = µ0ε0ω and

Bi(ω, δ) :=
δ2ω2ξ(ω, k)

1− δ2ω2ξ(ω, k)ν
(i)
δ

, i = 1, 2, ..., N, (2.14)

with ν
(i)
δ and φ

(δ)
i being the eigenvalues and the respective eigenvectors associated to the particle Di of

the potential M δk0
Di

, for i = 1, 2, . . . , N .

Proof. We observe that the integral formulation (2.10) is equivalent to











u1
u2
...

uN











− δ2ω2ξ(ω, k)M































N
∑

j=1,j 6=1

N δk0
DjD1

uj

N
∑

j=1,j 6=2

N δk0
DjD2

uj

...
N
∑

j=1,j 6=N

N δk0
DjDN

uj































=











0
0
...
0











, (2.15)

where M is the diagonal matrix given by

Mij =







(

1− δ2ω2ξ(ω, k)M δk0
Di

)−1
, if i = j,

0, if i 6= j,

for i, j = 1, . . . , N . From the pole-pencil decomposition, for i = 1, 2, . . . , N , we have

(

1− δ2ω2ξ(ω, k)M δk0
Di

)−1
(·) = 〈·, φ(δ)

i 〉φ(δ)
i

1− δ2ω2ξ(ω, k)ν
(i)
δ

+Ri[ω](·).
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We recall that, from [2], the remainder term Ri[ω](·) can be neglected. Thus, (2.15) gives











u1
u2
...

uN











− δ2ω2ξ(ω, k)M̃































N
∑

j=1,j 6=1

N δk0
DjD1

uj

N
∑

j=1,j 6=2

N δk0
DjD2

uj

...
N
∑

j=1,j 6=N

N δk0
DjDN

uj































=











0
0
...
0











,

where M̃ is the diagonal matrix given by

M̃ij =







〈·,φ
(δ)
i 〉φ

(δ)
i

1−δ2ω2ξ(ω,k)ν
(i)
δ

, if i = j,

0, if i 6= j.

This is equivalent to the following system

ui −
δ2ω2ξ(ω, k)

1− δ2ω2ξ(ω, k)ν
(i)
δ

N
∑

j=1,j 6=i

〈N δk0
DjDi

uj , φ
(δ)
i 〉φ(δ)

i = 0, for each i = 1, . . . , N. (2.16)

Then, applying the operator N δk0
DiDi+1⌊N⌋

to (2.16) for each i and taking the product with φ
(δ)
i+1⌊N⌋,

gives

〈N δk0
DiDi+1⌊N⌋

ui, φ
(δ)
i+1⌊N⌋〉 − Bi(ω, δ)

N
∑

j=1,j 6=i

〈N δk0
DjDi

uj , φ
(δ)
i 〉〈N δk0

DiDi+1⌊N⌋
φ
(δ)
i , φ

(δ)
i+1⌊N⌋〉 = 0, (2.17)

for each i = 1, . . . , N . We observe that for j = 1, . . . , N , from Lemma 2.6, the following approximation
formula holds

uj ≃ 〈u, φ(δ)
j 〉φ(δ)

j .

Applying this to (2.17), we get

〈N δk0
DiDi+1⌊N⌋

φ
(δ)
i , φ

(δ)
i+1⌊N⌋〉〈u, φ

(δ)
i 〉 − Bi(ω, δ)

N
∑

j=1,j 6=i

〈N δk0
DjDi

φ
(δ)
j , φ

(δ)
i 〉〈N δk0

DiDi+1⌊N⌋
φ
(δ)
i , φ

(δ)
i+1⌊N⌋〉〈u, φ

(δ)
j 〉 = 0,

(2.18)

for each i = 1, . . . , N . This system has the matrix representation

L













〈u, φ(δ)
1 〉

〈u, φ(δ)
2 〉
...

〈u, φ(δ)
N 〉













=











0
0
...
0











, (2.19)

where L is given by (2.13), which is the desired result.

Corollary 2.7.1. For i = 1, . . . , N , we can write

φ
(δ)
i = 1̂Di

,
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ρ ρ

ρ

κ

κ κD1 D2

D3

Figure 1: A system of three identical circular resonators can be modelled concisely using our asymptotic
method. We study halide perovskite resontators D1, D2 and D3 of radius ρ, made from the same
material, with centers placed at a distance κ from each other.

where 1̂Di
=

1Di√
|Di|

and |Di| is used to denote the volume of Di. This also implies that for 1 ≤ i, j ≤ N ,

Lij =















〈N δk0
DiDi+1⌊N⌋

1̂Di
, 1̂Di+1⌊N⌋

〉, if j = i,

−Bi(ω, δ)〈N δk0
DiDi+1⌊N⌋

1̂Di
, 1̂Di+1⌊N⌋

〉2, if j = i+ 1⌊N⌋,
−Bi(ω, δ)〈N δk0

DiDj
1̂Di

, 1̂Dj
〉〈N δk0

DiDi+1⌊N⌋
1̂Di

, 1̂Di+1⌊N⌋
〉, otherwise.

(2.20)

Proof. We have that the eigenvectors φ
(δ)
i , i = 1, 2, ..., N , given the asymptotic expansion of the

operator M δk0
Di

, can be approximated φ
(δ)
i = 1̂Di

+O( 1
log(δ)), where 1̂Di

=
1Di√
|Di|

. Then, we can directly

see the symmetry argument
〈N δk0

DiDj
1̂Di

, 1̂Dj
〉 = 〈N δk0

DjDi
1̂Dj

, 1̂Di
〉.

This implies that
Li,i+1⌊N⌋ = −Bi(ω, δ)〈N δk0

DiDj
1̂Di

, 1̂Di+1⌊N⌋〉2,
which gives the desired result.

3 Computation of the coupled resonant frequencies

In Theorem 2.7, we have derived an asymptotic formula for the resonant frequencies. This amounts to
finding the ω such that det(L(ω)) = 0. In this section, we will show how to use this asymptotic formula
to calculate the resonant frequencies for physical examples. This calculation is not straightforward,
since in the integral operators have highly non-linear dependence on ω. However, an explicit formula
can be derived under an additional assumption. Furthermore, Muller’s method can be used to find
the the frequencies for which the coefficient matrix is singular, given appropriate initial guesses.

3.1 Example: Three circular resonators

Let us consider the case of having three identical circular halide perovskite resonators D1, D2 and D3.
We will assume that the particles are placed at the same distance κ from each other. This geometry
is sketched in Figure 1 and will serve as a suitable example to demonstrate our method. In order to
ease the notation, let us write

N12(ω, δ) := 〈N δk0
D1D2

1̂D1 , 1̂D2〉, N23(ω, δ) := 〈N δk0
D2D3

1̂D2 , 1̂D3〉, N31(ω, δ) := 〈N δk0
D3D1

1̂D3 , 1̂D1〉.
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In order to accelerate the numerical computations and facilitate explicit analytic results, we will
make an additional assumption. This assumption is that Nij(ω, δ) has no a priori dependence on the
frequency ω. This is justified in the specific case of halide perovskite nano-particles since ε0 is of the
same magnitude as the characteristic size δ. Further, since we are working with the frequencies of
the visible light, it holds that ω is of the same magnitude as δ−2. Thus, it is reasonable to assume
that δk0 is constant with respect to ω. Since the dependence of Nij on ω always takes this form, we
can assume it to be approximately independent of ω. We will make this assumption for the results
presented in this subsection, and it will be of great importance in studying the inverse design problem
in the following section. We write N12(ω, δ) = N12(δ), N23(ω, δ) = N23(δ) and N31(ω, δ) = N31(δ).
Also, since the resonators are identical, it means that they are made from the same material and have
the same symmetry. As a result, it holds that B1(ω, δ) = B2(ω, δ) = B3(ω, δ) =: B(ω, δ). Thus, the
matrix L can be rewritten as

L =





N12(δ) −B(ω, δ)N12(δ)
2 −B(ω, δ)N12(δ)N31(δ)

−B(ω, δ)N12(δ)N23(δ) N23(δ) −B(ω, δ)N23(δ)
2

−B(ω, δ)N31(δ)
2 −B(ω, δ)N23(δ)N31(δ) N31(δ)



 . (3.1)

Then, seeking ω such that det(L) = 0, gives that

2N12(δ)N23(δ)N31(δ)B(ω, δ)3 +
(

N12(δ)
2 +N23(δ)

2 +N31(δ)
2
)

B(ω, δ)2 − 1 = 0. (3.2)

We solve (3.2) for B(ω, δ) and denote the three solutions by Bi, for i = 1, 2, 3. Then, solving for ω ∈ C

in (2.14), we have

[

µ0αδ
2 + Bi + Biµ0αδ

2ν(δ)
]

ω2 + iBiγω − Biβ − Biηk
2 = 0,

from which we obtain

ωi =

−iBiγ ±
√

−B2
i γ

2 + 4
(

Biβ + Biηk2
)(

µ0αδ2 + Bi + Biµ0αδ2ν(δ)
)

2
(

µ0αδ2 + Bi + Biµ0αδ2ν(δ)
) , i = 1, 2, 3. (3.3)

It is helpful to illustrate these results by comparing the case of three resonators to one- and two-
particle systems. We plot all these frequencies as a function of the particle size in Figure 2. The

resonant frequency for one particle is denoted by ω
(1)
s and the subwavelength frequencies for the case

of two particles will be denoted by ω
(2)
mon and ω

(2)
dip. These systems were explored in detail in [2],

where it was shown that that ω
(2)
mon < ω

(1)
s < ω

(2)
dip as a result of the hybridization. For the case of three

particles, we denote the frequencies by ω
(3)
1 , ω

(3)
2 and ω

(3)
3 , and we observe that there is also an ordering

between them ω
(3)
1 < ω

(3)
2 < ω

(3)
3 . Parameter values are chosen to corresponding to methylammonium

lead chloride (MAPbCl3), which is a popular halide perovskite [19]. We notice that the resonant
frequencies for these resonators lies in the range of visible frequencies, when the particles are hundreds
of nanometres in size. This puts the system in the appropriate subwavelength regime that was required

for our asymptotic method. As δ → 0, the frequencies of the different cases converge to ω
(1)
s . This is

because the nano-particles behave as isolated, identical resonators when δ is very small. Then, as δ

increases, we observe that there is a separation between the frequencies of the two particle and three

particle case ω
(3)
1 < ω

(2)
mon < ω

(3)
2 < ω

(2)
dip < ω

(3)
3 . In Figures 2(b) and 2(c), we can see more clearly this

separation. This is the effect of the hybridization on the system of resonators.

4 Inverse design

In this section, we will use our asymptotic results to tackle an inverse design problem. Let us assume
that we are given three identical two-dimensional circular halide perovskite resonators D1, D2 and D3

9



Figure 2: Behaviour of the subwavelength resonances for small circular nano-particles of radius δ. For
three circular methylammonium lead chloride nano-particles, we see how the hybridization causes the

frequencies ω
(3)
1 , w

(3)
2 and ω

(3)
3 to shift, relative to the uncoupled resonant frequency of a single particle.

We compare them with the hybridized frequencies ω
(2)
mon, ω

(2)
dip of the two circular particle case and the

resonant frequency ω
(1)
s of the single particle. All the resonators are identical, in the sense that they

are the same size and made from the same material (methylammonium lead chloride).

of radius ρ ∈ R>0 and three frequencies ω1, ω2, ω3 ∈ C. Again, we will assume that we are working
with nano-particles and that the frequencies given are of the visible light, and so of order δ−2. We
want to find the appropriate geometry such that the system of three particles resonates at ω1, ω2 and
ω3. This toy problem is inspired by human vision, which is sensitive to three different colours, and the
desire to design systems capable of giving colour perception to bioinspired artificial eyes made from
halide perovskites [13, 18].

Let us denote the separation distances as

α1 = dist(D1, D2), α2 = dist(D2, D3), α3 = dist(D1, D3).

The configuration is sketched in Figure 3. Then, our problem is finding α1, α2, α3 ∈ R, such that

det(L)(ω1, δ) = det(L)(ω2, δ) = det(L)(ω3, δ) = 0,

where L is the coefficient matrix given by (2.20). This translates into finding (α1, α2, α3) ∈ R3, such
that























2B(ω1, δ)
3N12(δ)N23(δ)N13(δ) + B(ω1, δ)

2
(

N12(δ)
2 +N23(δ)

2 +N13(δ)
2
)

− 1 = 0,

2B(ω2, δ)
3N12(δ)N23(δ)N13(δ) + B(ω2, δ)

2
(

N12(δ)
2 +N23(δ)

2 +N13(δ)
2
)

− 1 = 0,

2B(ω3, δ)
3N12(δ)N23(δ)N13(δ) + B(ω3, δ)

2
(

N12(δ)
2 +N23(δ)

2 +N13(δ)
2
)

− 1 = 0.

(4.1)

Our design strategy will have two steps. First, we will find the appropriate characteristic size in
order for (4.1) to admit a solution. Then, we derive the condition on the separation distances that is
required to give the desired resonant frequencies.

4.1 Linearity of off-diagonal entries

In order to handle (4.1), it will be helpful to establish how the coefficients Nij depend on the distances
between the particles, in the case that δ is small. Let us first show the following lemma which we will
use later and is a consequence of working with small, circular particles.
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ρ ρ

ρ

α1

α3 α2

D1 D2

D3

Figure 3: Our asymptotic results can be used to design a system of three identical resonators with
specific resonant frequencies. We study a system of three identical circular halide perovskite resontators
D1, D2 and D3, each with radius ρ, with centers placed at distances dist(D1, D2) = α1, dist(D2, D3) =
α2 and dist(D1, D3) = α3.

Lemma 4.1. Let d ∈ R be fixed and A ∈ C be given by A = R cos(t) + iR sin(t), where R, t ∈ R.
Then, as R → 0, we have that

|A+ d| = |A|+ d+O(R).

Proof. We observe that

|A+ d|2 = |R cos(t) + iR sin(t) + d|2

= R2 cos2(t) + 2dR cos(t) + d2 +R2sin2(t)

and

(

|A|+ d
)2

= R2 cos2(t) +R2 sin2(t) + 2d|R cos(t) + iR sin(t)|+ d2.

Hence, as R → 0,

|A+ d|2 =
(

|A|+ d
)2

+O(R),

which gives the desired result.

We will now state a fundamental result which contributes a lot to the analysis of the system.

Theorem 4.2. There exists S = S(δ),Q = Q(δ) ∈ C, such that as δ → 0

Nij(δ) = S+Qdist(Di, Dj) +O(δ4), i, j = 1, . . . , N,

where dist(Di, Dj) denotes the distance between the unscaled particles Di and Dj, which does not
depend on δ.

Proof. Let us recall that

Nij(δ) = 〈N δk0
DiDj

1̂Di
, 1̂Dj

〉

= 〈K̂δk0
DiDj

1̂Di
, 1̂Dj

〉+ 〈R(0)
DiDj

1̂Di
, 1̂Dj

〉+ (δk0)
2 log(δk0γ̂)〈R(1)

DiDj
1̂Di

, 1̂Dj
〉.
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We will look at this expression term by term. We observe that

〈K̂δk0
DiDj

1̂Di
, 1̂Dj

〉 = − 1

2π
log(δk0γ̂)

∫

Dj

∫

Di

1̂Di
(y)dy1̂Dj

(x)dx.

Since there is no distance element appearing in the integrand, there is not dependence on the distance
between the particles Di and Di. Thus, this is a constant with respect to the resonator distance,

Kij := 〈K̂δk0
DiDj

1̂Di
, 1̂Dj

〉 (4.2)

Next, we have

〈R(0)
DiDj

1̂Di
, 1̂Dj

〉 = − 1

2π

∫

Dj

∫

Di

log |x− y|1̂Di
(y)dy1̂Dj

(x)dx

= − 1

2π
√

|Di||Dj |

∫ 2π

0

∫ ρ

0

∫ 2π

0

∫ ρ

0
log
∣

∣

∣
rxe

itx − rye
ity + dist(Di, Dj)

∣

∣

∣
ryrxdrydtydrxdtx

where we have changed to polar coordinates and used the fact that the particles are circular and
identical. From this, we also get |D1| = |D2| = |D3| = πρ2. In addition, using the Taylor expansion
of the logarithm function and Lemma 4.1, we have

log
∣

∣

∣rxe
itx − rye

ity + dist(Di, Dj)
∣

∣

∣ ≃
∣

∣

∣rxe
itx − rye

ity
∣

∣

∣+ dist(Di, Dj)− 1 +O(ρ2).

If we define

R(0) := − 1

2π2ρ2

∫ 2π

0

∫ ρ

0

∫ 2π

0

∫ ρ

0

(∣

∣

∣rxe
itx − rye

ity
∣

∣

∣− 1
)

ryrxdrydtydrxdtx,

then we have that

〈R(0)
DiDj

1̂Di
, 1̂Dj

〉 = R(0) − ρ2

2
dist(Di, Dj) +O(ρ4). (4.3)

The last term can be rewritten as

〈R(1)
DiDj

1̂Di
, 1̂Dj

〉 = − i

4π

∫

Dj

∫

Di

1

|x− y| 1̂Di
(y)dy1̂Dj

(x)dx

=
−i

4π2ρ2

∫ 2π

0

∫ ρ

0

∫ 2π

0

∫ ρ

0

ryrx
∣

∣

∣rxeitx − ryeity + dist(Di, Dj)
∣

∣

∣

drydtydrxdtx

Again, using the Taylor expansion and Lemma 4.1, we have

1
∣

∣

∣rxeitx − ryeity + dist(Di, Dj)
∣

∣

∣

≃ 2 + dist(Di, Dj)−
∣

∣

∣
rxe

itx − rye
ity
∣

∣

∣
+O(ρ2)

Hence, defining

R(1) :=
−i

4π2ρ2

∫ 2π

0

∫ ρ

0

∫ 2π

0

∫ ρ

0

(

2−
∣

∣

∣rxe
itx − rye

ity
∣

∣

∣

)

ryrxdrydtydrxdtx,

gives

〈R(1)
DiDj

1̂Di
, 1̂Dj

〉 = R(1) − iρ2

4
dist(Di, Dj) +O(ρ4). (4.4)

Gathering the results (4.2), (4.3) and (4.4), we obtain

Nij(δ) = Kij +R(0) + (δk0)
2 log(δk0γ̂)R

(1) +

[

−ρ2

2
− iρ2

4
(δk0)

2 log(δk0γ̂)

]

dist(Di, Dj) +O(δ4),

(4.5)
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and thus, by defining

Sij := Kij +R(0) + (δk0)
2 log(δk0γ̂)R

(1)

and

Q := −ρ2

2
− iρ2

4
(δk0)

2 log(δk0γ̂),

we get

Nij(δ) = Sij +Qdist(Di, Dj) +O(δ4).

Since the particles are identical, we have directly that S12 = S23 = S13 =: S, from which the result
follows.

Remark. We note that this theorem can also be generalized to the cases where the resonators are not
circular. The adaptation required would be a change in the definitions of S and Q.

The above theorem allows us to write

N12 = S+Qα1 +O(δ4), N23 = S+Qα2 +O(δ4) and N13 = S+Qα3 +O(δ4). (4.6)

4.2 Condition on characteristic size

The first thing that we wish to understand is when the system (4.1) has a solution. Let us write

X = N12N23N13 and Y = N2
12 +N2

23 +N2
13.

Then, (4.1) becomes










2B(ω1, δ)
3X + B(ω1, δ)

2Y − 1 = 0,

2B(ω2, δ)
3X + B(ω2, δ)

2Y − 1 = 0,

2B(ω3, δ)
3X + B(ω3, δ)

2Y − 1 = 0.

(4.7)

Using the Gauss elimination process, we get that the following equation needs to be satisfied

B(ω3, δ)
2
[

B(ω1, δ)
3−B(ω2, δ)

3
][

B(ω3, δ)−B(ω1, δ)
]

= B(ω2, δ)
2
[

B(ω1, δ)
3−B(ω3, δ)

3
][

B(ω2, δ)−B(ω1, δ)
]

.

Expanding this, we obtain that the characteristic size δ needs to satisfy

δ2ν(δ) =
−1

3ω2
1ξ(ω1, k)ω2

2ξ(ω2, k)ω2
3ξ(ω3, k)

·
[

ω4
1ξ(ω1, k)

2ω6
3ξ(ω3, k)

3 − ω6
1ξ(ω1, k)

3ω4
3ξ(ω3, k)

2+

+ ω6
2ξ(ω2, k)

3ω4
3ξ(ω3, k)

2 − ω4
1ξ(ω1, k)

2ω6
2ξ(ω2, k)

3 + ω6
1ξ(ω1, k)

3ω4
2ξ(ω2, k)

2−

− ω4
2ξ(ω2, k)

2ω6
3ξ(ω3, k)

3
]

·
[

ω2
1ξ(ω1, k)ω

4
2ξ(ω2, k)

2 + ω2
2ξ(ω2, k)ω

4
3ξ(ω3, k)

2+

+ ω4
1ξ(ω1, k)

2ω2
3ξ(ω3, k)− ω2

1ξ(ω1, k)ω
4
3ξ(ω3, k)

2 − ω4
2ξ(ω2, k)

2ω2
3ξ(ω3, k)

− ω4
1ξ(ω1, k)

2ω2
2ξ(ω2, k)

]−1
,

(4.8)

for (4.7) to have a solution.
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4.3 Condition on separation distances

We assume that the condition (4.8) is satisfied. Then, we can reduce our study of the system (4.7) to
finding a solution to

{

2B(ω1, δ)
3X + B(ω1, δ)

2Y − 1 = 0,

2B(ω2, δ)
3X + B(ω2, δ)

2Y − 1 = 0.
(4.9)

This gives

X =
B(ω2, δ)

2
[

B(ω2, δ)− B(ω1, δ)
]

−
[

B(ω2, δ)
3 − B(ω1, δ)

3
]

2B(ω1, δ)B(ω2, δ)2
[

B(ω2, δ)B(ω1, δ)2 − B(ω1, δ)3
] (4.10)

and

Y =
B(ω2, δ)

3 − B(ω1, δ)
3

B(ω1, δ)2B(ω2, δ)2
[

B(ω2, δ)− B(ω1, δ)
] . (4.11)

Fixing these values for X and Y and varying α3 ∈ R, we get from (4.1),

α2(α3) =
1

Q



−S±

√

−C ±
√

C2 − 4X2(S+Qα3)2

2(S+Qα3)2



 , (4.12)

where C = (S+Qα3)
2[(S+Qα3)

2 − Y ] and

α1(α3) =
1

Q





X
(

S+Qα2(α3)
)(

S+Qα3

) − S



 . (4.13)

Let us also note here, that in order for the distances found to make geometric sense, we require

∣

∣

∣α3 − α2(α3)
∣

∣

∣ ≤ α1(α3) ≤
∣

∣

∣α3 + α2(α3)
∣

∣

∣, (4.14)

which gives an additional condition on α3 ∈ R. Therefore, we conclude that the distances α1, α2 and
α3 must lie in the one-dimensional space given by











α1(α3)
α2(α3)
α3



 : α3 ∈ R such that (4.14) holds and δ ∈ R is given by (4.8)







. (4.15)

5 Conclusion

We have developed an approach for modelling a coupled system of many subwavelength halide per-
ovskite resonators. Their highly dispersive material parameters makes this a challenging problem, but,
given their rapidly growing usage in electromagnetic devices, efficient mathematical methods like ours
are becoming increasingly valuable. Our method is sufficiently concise that we have been able to use
it for an inverse design problem, which would have required significant computational effort to solve
using numerical simulation methods. These results can accelerate the design of advanced photonic
devices [15, 17], including those with complicated structures and geometries, such as the biomimetic
eye developed by [13].
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A Appendix

A.1 Three dimensions

Here, we present the fundamentals of the analysis of the problem in the three-dimensional setting.
We consider N ∈ N halide perovskite resontators D1, D2, . . . , DN , made from the same material. We
consider the integral operators Kδk0

Di
and Rδk0

DiDj
, for i, j = 1, 2, ..., N defined as in Definition 2.2. Then,

the following lemma is a direct consequence of these definitions.

Lemma A.1. The scattering problem (2.8) can be restated, using the Definition 2.2, as













1− δ2ω2ξ(ω, k)Kδk0
D1

−δ2ω2ξ(ω, k)Rδk0
D2D1

. . . −δ2ω2ξ(ω, k)Rδk0
DND1

−δ2ω2ξ(ω, k)Rδk0
D1D2

1− δ2ω2ξ(ω, k)Kδk0
D2

. . . −δ2ω2ξ(ω, k)Rδk0
DND2

...
...

. . .
...

−δ2ω2ξ(ω, k)Rδk0
D1DN

−δ2ω2ξ(ω, k)Rδk0
D2DN

. . . 1− δ2ω2ξ(ω, k)Kδk0
DN























u|D1

u|D2

...
u|DN











=











uin|D1

uin|D2

...
uin|DN











.

(A.1)

Thus, the scattering resonance problem is to find ω such that the operator in (A.1) is singular, or
equivalently, such that there exists (u1, u2, ..., uN ) ∈ L2(D1)×L2(D2)× ...×L2(DN ), (u1, u2, ..., uN ) 6=
0, such that













1− δ2ω2ξ(ω, k)Kδk0
D1

−δ2ω2ξ(ω, k)Rδk0
D2D1

. . . −δ2ω2ξ(ω, k)Rδk0
DND1

−δ2ω2ξ(ω, k)Rδk0
D1D2

1− δ2ω2ξ(ω, k)Kδk0
D2

. . . −δ2ω2ξ(ω, k)Rδk0
DND2

...
...

. . .
...

−δ2ω2ξ(ω, k)Rδk0
D1DN

−δ2ω2ξ(ω, k)Rδk0
D2DN

. . . 1− δ2ω2ξ(ω, k)Kδk0
DN























u1
u2
...

uN











=











0
0
...
0











. (A.2)

This gives the main result of the three-dimensional case.

Theorem A.2. The scattering resonance problem in three dimensions becomes finding ω ∈ C, such
that

det(K) = 0

where the matrix K is given by

Kij =







〈Rδk0
DiDi+1⌊N⌋

φ
(δ)
i , φ

(δ)
i+1⌊N⌋〉, if i = j,

−Ai(ω, δ)〈Rδk0
DjDi

φ
(δ)
j , φ

(δ)
i 〉〈Rδk0

DiDi+1⌊N⌋
φ
(δ)
i , φ

(δ)
i+1⌊N⌋〉, if i 6= j.

(A.3)

where k0 = µ0ε0ω and

Ai(ω, δ) :=
δ2ω2ξ(ω, k)

1− δ2ω2ξ(ω, k)λ
(i)
δ

, i = 1, ..., N, (A.4)

where λ
(i)
δ and φ

(δ)
i are the eigenvalues and the respective eigenvectors associated to the particle Di of

the potential Kδk0
Di

, for i = 1, 2, . . . , N .
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Proof. We observe that (A.2) is equivalent to












1− δ2ω2ξ(ω, k)Kδk0
D1

0 . . . 0

0 1− δ2ω2ξ(ω, k)Kδk0
D2

. . . 0
...

...
. . .

...

0 0 . . . 1− δ2ω2ξ(ω, k)Kδk0
DN























u1
u2
...

uN











− δ2ω2ξ(ω, k)













0 Rδk0
D2D1

. . . Rδk0
DND1

Rδk0
D1D2

0 . . . Rδk0
DND2

...
...

. . .
...

Rδk0
D1DN

Rδk0
D2DN

. . . 0























u1
u2
...

uN











=











0
0
...
0











,

which gives











u1
u2
...

uN











− δ2ω2ξ(ω, k)N































N
∑

j=1,j 6=1

Rδk0
DjD1

uj

N
∑

j=1,j 6=2

Rδk0
DjD2

uj

...
N
∑

j=1,j 6=N

Rδk0
DjDN

uj































=











0
0
...
0











, (A.5)

where N is the diagonal matrix given by

Nij =







(

1− δ2ω2ξ(ω, k)Kδk0
Di

)−1
, if i = j,

0, if i 6= j.

Let us now apply a pole-pencil decomposition on the operators
(

1 − δ2ω2ξ(ω, k)Kδk0
Di

)−1
, for i =

1, 2, . . . , N . We see that

(

1− δ2ω2ξ(ω, k)Kδk0
Di

)−1
(·) = 〈·, φ(δ)

i 〉φ(δ)
i

1− δ2ω2ξ(ω, k)λ
(i)
δ

+Ri[ω](·),

where λ
(i)
δ and φ

(δ)
i are the eigenvalues and the respective eigenvectors of the potential Kδk0

Di
associated

to the particleDi, for i = 1, 2, . . . , N . We also recall that the remainder terms Ri[ω](·) can be neglected
([2]). Then, (A.5) becomes











u1
u2
...

uN











− δ2ω2ξ(ω, k)Ñ































N
∑

j=1,j 6=1

Rδk0
DjD1

uj

N
∑

j=1,j 6=2

Rδk0
DjD2

uj

...
N
∑

j=1,j 6=N

Rδk0
DjDN

uj































=











0
0
...
0











,

where the matrix Ñ is given by

Ñij =







〈·,φ
(δ)
i 〉φ

(δ)
i

1−δ2ω2ξ(ω,k)λ
(i)
δ

, if i = j,

0, if i 6= j.
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This is equivalent to the system of equations

ui −
δ2ω2ξ(ω, k)

1− δ2ω2ξ(ω, k)λ
(i)
δ

N
∑

j=1,j 6=1

〈Rδk0
DjDi

uj , φ
(δ)
i 〉φ(δ)

i = 0, for each i = 1, . . . , N.

We apply on the i-th line the operator Rδk0
DiDi+1⌊N⌋

and then take the product with φ
(δ)
i+1⌊N⌋. Then, we

find that

〈Rδk0
DiDi+1⌊N⌋

ui, φ
(δ)
i+1⌊N⌋〉 −

δ2ω2ξ(ω, k)

1− δ2ω2ξ(ω, k)λ
(i)
δ

N
∑

j=1,j 6=i

〈Rδk0
DjDi

uj , φ
(δ)
i 〉〈Rδk0

DiDi+1⌊N⌋
φ
(δ)
i , φ

(δ)
i+1⌊N⌋〉 = 0,

(A.6)

for each i = 1, . . . , N . Then, using the definition (A.4), the system (A.6) becomes

〈Rδk0
DiDi+1⌊N⌋

ui, φ
(δ)
i+1⌊N⌋〉 − Ai(ω, δ)

N
∑

j=1,j 6=i

〈Rδk0
DjDi

uj , φ
(δ)
i 〉〈Rδk0

DiDi+1⌊N⌋
φ
(δ)
i , φ

(δ)
i+1⌊N⌋〉 = 0, (A.7)

for each i = 1, . . . , N . Applying (2.12) to (A.7), we reach the linear system of equations

K













〈u, φ(δ)
1 〉

〈u, φ(δ)
2 〉
...

〈u, φ(δ)
N 〉













=











0
0
...
0











, (A.8)

where K is the matrix given by (A.3).

A.2 Proof of Lemma 2.6

Proof. We will show that the approximation formula (2.12) holds for sufficiently small ρ → 0, when δ

is also small. It is important to check the uniformity of these results with respect to δ. In particular,
we will take ρ > 0 such that ρ → 0 at the same rate as δ → 0. That is, ρ = O(δ) and δ = O(ρ). This
gives the uniformity of the error term with respect to small characteristic size δ.

Our argument is based on Theorem 2.10 of [7]. In particular, once we have shown that the
assumptions of this Theorem hold, Lemma 2.6 will follow directly. We will present this proof in the
two-dimensional setting, but it could easily be modified to three dimensions. Also, for simplicity, we
will consider identical resonators, but the proof will be the same for particles of different sizes.

Recall that in Corollary 2.7.1 we showed that φ
(δ)
i = 1̂Di

, for i = 1, 2, .., N . As a result, the desired

approximation ui ≃ 〈u, φ(δ)
i 〉φ(δ)

i +O(ρ2) from (2.12) is equivalent to ui ≃ 〈u, 1̂Di
〉1̂Di

+O(ρ2). Then,
we define the operator pδ as follows

pρ : ui ∈ L2(Di) 7−→ 〈u, 1̂Di
〉1̂Di

∈ L2(D), (A.9)

To be able to use Theorem 2.10 of [7], the conditions that need to be satisfied are the following:

1. It holds that

lim
ρ→0

‖pρui‖L2(D) = ‖ui‖L2(D), ∀i = 1, . . . , N.

2. For every compact set C ⊂ C \ {0}, it holds

sup
ω∈C

‖L‖sup < ∞,

uniformly for all δ > 0 and all ρ > 0, where the norm ‖ · ‖sup is defined for a square matrix
P ∈ CN×N as ‖P‖sup = sup1≤i,j≤N |Pij |.
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3. 〈u, 1̂Di
〉1̂Di

converges regularly to ui, i.e.

• limρ→0 ‖Lpρu−Fu‖sup = 0, where Fu denotes our system without the use of the approxi-
mation formula (2.12).

• For every subsequence ρ′ of ρ, it holds that limρ′→0 ‖ui − pρ′ui‖L2(D) = 0, ∀i = 1, . . . , N.

Let us proceed to their proof.

A.2.1 First condition: Convergence in norm

We have that

‖pρui‖L2(D) =

(

∫

D

∣

∣

∣

∣

∫

D

u(y)1̂Di
(y)dy1̂Di

(x)

∣

∣

∣

∣

2

dx

) 1
2

=

(

1

|Di|2
∫

Di

∣

∣

∣

∣

∫

Di

u(y)dy

∣

∣

∣

∣

dx

) 1
2

=
1

√

|Di|

∣

∣

∣

∣

∫

Di

u(y)dy

∣

∣

∣

∣

.

Then, from the Cauchy-Schwartz inequality,

‖pρui‖L2(D) ≤
1

√

|Di|

(∫

Di

|u(y)|2dy
∫

Di

1dy

) 1
2

= ‖ui‖L2(D).

We can also see that, as ρ → 0,

‖ui‖L2(D) → 0.

Hence, we have that

lim
ρ→0

‖pρui‖L2(D) = ‖ui‖L2(D). (A.10)

A.2.2 Second condition: Matrix norm boundedness

We need to show that, for every compact C ⊂ C \ {0},

sup
ω∈C

‖L‖sup = sup
ω∈C

(

sup
1≤i,j≤N

|Lij |
)

< ∞. (A.11)

Indeed, let C denote a compact subset of C \ {0}. Then, C is closed and bounded, which implies that
there exist s1, s2 ∈ C such that |s1| ≤ |ω| ≤ |s2|, for all ω ∈ C. This gives the following bounds

log |s1| ≤ log |ω| ≤ log |s2| and |s1|2 log |s1| ≤ |ω|2 log |ω| ≤ |s2|2 log |s2|, (A.12)

and so, from Definition 2.3, we get

sup
ω∈C

∣

∣

∣〈N δk0
DjDi

1̂Dj
, 1̂Di

〉
∣

∣

∣ < ∞. (A.13)

for all i, j = 1, . . . , N, with i 6= j. Also, using (2.14) and (A.12), we get that there exist F1,F2 ∈ [0,∞)
such that

F1 ≤ |B(ω, δ)| ≤ F2

for all ω ∈ C, which gives

sup
ω∈C

∣

∣

∣B(ω, δ)
∣

∣

∣ < ∞. (A.14)

Applying (A.13) and (A.14) to the definition of L in (2.20), we obtain the desired bound (A.11).
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A.2.3 Third condition: Approximation convergence

For the next part, we have to show a convergence result as ρ → 0 on the matrix formulations of the
problem before and after using (2.12). We will provide this in the setting of three resonators, since
the calculations are lengthy and similar for N ∈ N particles and so can be easily extrapolated. In this

case, we have Lpρu =
(

(Lpρu)1, (Lpρu)2, (Lpρu)3
)⊤

, where

(Lpρu)i =〈N δk0
DiDi+1⌊3⌋

1̂Di
, 1̂Di+1⌊3⌋

〉〈u, 1̂Di
〉 − B(ω, δ)〈N δk0

DiDi+1⌊3⌋
1̂Di

, 1̂Di+1⌊3⌋
〉2〈u, 1̂Di+1⌊3⌋

〉

− B(ω, δ)〈N δk0
DiDi+1⌊3⌋

1̂Di
, 1̂Di+1⌊3⌋

〉〈N δk0
Di+2⌊3⌋Di

1̂Di+2⌊3⌋
, 1̂Di

〉〈u, 1̂Di+2⌊3⌋
〉,

for i = 1, 2, 3 and we define Fu to be our system before the approximation, i.e.

Fu =











〈N δk0
D1D2

u1, 1̂D2〉 − B(ω, δ)
[

〈N δk0
D2D1

u2, 1̂D1〉+ 〈N δk0
D3D1

u3, 1̂D1〉
]

〈N δk0
D1D2

1̂D1 , 1̂D2〉
〈N δk0

D1D2
u1, 1̂D2〉 − B(ω, δ)

[

〈N δk0
D2D1

u2, 1̂D1〉+ 〈N δk0
D3D1

u3, 1̂D1〉
]

〈N δk0
D1D2

1̂D1 , 1̂D2〉
〈N δk0

D3D1
u3, 1̂D1〉 − B(ω, δ)

[

〈N δk0
D1D3

u1, 1̂D3〉+ 〈N δk0
D2D3

u2, 1̂D3〉
]

〈N δk0
D3D1

1̂D3 , 1̂D1〉











.

We want to show that

lim
ρ→0

‖Lpρu−Fu‖sup = 0. (A.15)

Indeed, let us treat this difference at each entry separately. Since, the operators repeat themselves
with different indices, and the particles are identical, whatever we show for the first entry holds for
the rest. Hence, our study focuses on

W := lim
ρ→0

∣

∣

∣〈N δk0
D1D2

1̂D1 , 1̂D2〉〈u, 1̂D1〉 − B(ω, δ)〈N δk0
D1D2

1̂D1 , 1̂D2〉2〈u, 1̂D2〉

− B(ω, δ)〈N δk0
D1D2

1̂D1 , 1̂D2〈N δk0
D3D1

1̂D3 , 1̂D1〉〈u, 1̂D3〉 −
(

〈N δk0
D1D2

u1, 1̂D2〉

− B(ω, δ)
[

〈N δk0
D2D1

u2, 1̂D1〉+ 〈N δk0
D3D1

u3, 1̂D1〉
]

〈N δk0
D1D2

1̂D1 , 1̂D2〉
)∣

∣

∣

We are going to split W into three differences

W1 := 〈N δk0
D1D2

1̂D1 , 1̂D2〉〈u, 1̂D1〉 − 〈N δk0
D1D2

u1, 1̂D2〉,

W2 := B(ω, δ)〈N δk0
D2D1

u2, 1̂D1〉〈N δk0
D1D2

1̂D1 , 1̂D2〉 − B(ω, δ)〈N δk0
D1D2

1̂D1 , 1̂D2〉2〈u, 1̂D2〉
and

W3 := B(ω, δ)〈N δk0
D3D1

u3, 1̂D1〉〈N δk0
D1D2

1̂D1 , 1̂D2〉 − B(ω, δ)〈N δk0
D1D2

1̂D1 , 1̂D2〈N δk0
D3D1

1̂D3 , 1̂D1〉〈u, 1̂D3〉.

We will study them separately to show the convergence result. Let us recall that for u ∈ L2(D)

N δk0
DiDj

u = K̂δk0
DiDj

u+R
(0)
DiDj

u+ (δk0)
2 log(δk0γ̂)R

(1)
DiDj

u.

Then, we have

W1 =
1

|D1|
√

|D2|
〈N δk0

D1D2
1D1 , 1D2〉〈u, 1D1〉 −

1
√

|D2|
〈N δk0

D1D2
u1, 1D2〉

=
1

|D1|
√

|D2|
〈K̂δk0

D1D2
1D1 , 1D2〉〈u, 1D1〉 −

1
√

|D2|
〈K̂δk0

D1D2
u1, 1D2〉+

+
1

|D1|
√

|D2|
〈R(0)

D1D2
1D1 , 1D2〉〈u, 1D1〉 −

1
√

|D2|
〈R(0)

D1D2
u1, 1D2〉+

+ (δk0)
2 log(δk0γ̂)

(

1

|D1|
√

|D2|
〈R(1)

D1D2
1D1 , 1D2〉〈u, 1D1〉 −

1
√

|D2|
〈R(1)

D1D2
u1, 1D2〉

)
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We observe that

1

|D1|
√

|D2|
〈K̂δk0

D1D2
1D1 , 1D2〉〈u, 1D1〉 −

1
√

|D2|
〈K̂δk0

D1D2
u1, 1D2〉 =

= − 1

|D1|
√

|D2|
1

2π
log(δk0γ̂)

∫

D2

∫

D1

dydx

∫

D1

u(x)dx− 1
√

|D2|
1

2π
log(δk0γ̂)

∫

D2

∫

D1

u(y)dydx

= − 1

2π
log(δk0γ̂)

∫

D1

u(x)dx

[

1

|D1|
√

|D2|
|D1||D2| −

1
√

|D2|
|D2|

]

= 0.

Also,

1

|D1|
√

|D2|
〈R(0)

D1D2
1D1 , 1D2〉〈u, 1D1〉 −

1
√

|D2|
〈R(0)

D1D2
u1, 1D2〉 =

=
1

|D1|
√

|D2|

∫

D2

∫

D1

log |x− y|dydx
∫

D1

u(x)dx− 1
√

|D2|

∫

D2

∫

D1

log |x− y|u(y)dydx

= W(1)
1 .

We know that for y ∈ D1 and x ∈ D2, it holds

log |α1 − 2ρ| ≤ log |x− y| ≤ log |α1 + 2ρ|. (A.16)

This gives

√

|D2| log |α1 − 2ρ|
∫

D1

u(x)dx−
√

|D2| log |α1 + 2ρ|
∫

D1

u(x)dx ≤ W(1)
1 (A.17)

and

W(1)
1 ≤

√

|D2| log |α1 + 2ρ|
∫

D1

u(x)dx−
√

|D2| log |α1 − 2ρ|
∫

D1

u(x)dx. (A.18)

It is direct that as ρ → 0, the left hand side of (A.17) and the right hand side of (A.18), both converge
to 0. Thus, as ρ → 0,

W(1)
1 → 0.

Then,

1

|D1|
√

|D2|
〈R(1)

D1D2
1D1 , 1D2〉〈u, 1D1〉 −

1
√

|D2|
〈R(1)

D1D2
u1, 1D2〉 =

=
1

|D1|
√

|D2|

∫

D2

∫

D1

1

|x− y|dydx
∫

D1

u(x)dx− 1
√

|D2|

∫

D2

∫

D1

u(y)

|x− y|dydx

= W(2)
1 .

We know that for y ∈ D1 and x ∈ D2, it holds

1

|α1 + 2ρ| ≤
1

|x− y| ≤
1

|α1 − 2ρ| . (A.19)

This gives

√

|D2|
|α2 + 2ρ|

∫

D1

u(x)dx−
√

|D2|
|α2 − 2ρ|

∫

D1

u(x)dx ≤ W(2)
1 (A.20)
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and

W(2)
1 ≤

√

|D2|
|α2 − 2ρ|

∫

D1

u(x)dx−
√

|D2|
|α2 + 2ρ|

∫

D1

u(x)dx (A.21)

Again, we see that as ρ → 0, the left hand side of (A.20) and the right hand side of (A.21), both
converge to 0. Thus, as ρ → 0,

W(2)
1 → 0.

Thus, gathering these results, we get that

W1 = W(1)
1 + (δk0)

2 log(δk0γ̂)W(2)
1 ,

which, at hand, shows that, as ρ → 0,

W1 → 0.

Let us now show the convergence of W2 as ρ → 0. Then, we note that this also gives the convergence
of W3, since the calculations are of the same order. Keeping in mind that limρ→0 B(ω, δ) is finite, we
will study

W̃2 :=
W2

B(ω, δ) = 〈N δk0
D2D1

u2, 1̂D1〉〈N δk0
D1D2

1̂D1 , 1̂D2〉 − 〈N δk0
D1D2

1̂D1 , 1̂D2〉2〈u, 1̂D2〉,

which is

W̃2 =
[

〈K̂δk0
D2D1

u2, 1̂D1〉〈K̂δk0
D1D2

1̂D1 , 1̂D2〉 − 〈K̂δk0
D1D2

1̂D1 , 1̂D2〉2〈u, 1̂D2〉
]

+

+
[

〈R(0)
D2D1

u2, 1̂D1〉〈R
(0)
D1D2

1̂D1 , 1̂D2〉 − 〈R(0)
D1D2

1̂D1 , 1̂D2〉2〈u, 1̂D2〉
]

+

+
(

(δk0)
2 log(δk0γ̂)

)2[

〈R(1)
D2D1

u2, 1̂D1〉〈R
(1)
D1D2

1̂D1 , 1̂D2〉 − 〈R(1)
D1D2

1̂D1 , 1̂D2〉2〈u, 1̂D2〉
]

+

+
[

〈K̂δk0
D1D2

1̂D1 , 1̂D2〉〈R
(0)
D2D1

u2, 1̂D1〉+ 〈K̂δk0
D1D2

u2, 1̂D1〉〈R
(0)
D2D1

1̂D2 , 1̂D1〉

− 2〈K̂δk0
D1D2

1̂D1 , 1̂D2〉〈R
(0)
D1D2

1̂D1 , 1̂D2〉〈u, 1̂D2〉
]

+

+ (δk0)
2 log(δk0γ̂)

[

〈K̂δk0
D1D2

1̂D1 , 1̂D2〉〈R
(1)
D2D1

u2, 1̂D1〉+ 〈K̂δk0
D1D2

u2, 1̂D2〉〈R
(1)
D2D1

1̂D2 , 1̂D1〉

− 2〈K̂δk0
D1D2

1̂D1 , 1̂D2〉〈R
(1)
D1D2

1̂D1 , 1̂D2〉〈u, 1̂D2〉
]

+

+ (δk0)
2 log(δk0γ̂)

[

〈R(0)
D1D2

1̂D1 , 1̂D2〉〈R
(1)
D2D1

u2, 1̂D1〉+ 〈R(0)
D1D2

u2, 1̂D2〉〈R
(1)
D2D1

1̂D2 , 1̂D1〉

− 2〈R(0)
D1D2

1̂D1 , 1̂D2〉〈R
(1)
D1D2

1̂D1 , 1̂D2〉〈u, 1̂D2〉
]

=: W̃(1)
2 + W̃(2)

2 +
(

(δk0)
2 log(δk0γ̂)

)2
W̃(3)

2 + W̃(4)
2

+ (δk0)
2 log(δk0γ̂)W̃(5)

2 + (δk0)
2 log(δk0γ̂)W̃(6)

2 .

We will consider each of the W̃(i)
2 , i = 1, . . . , 6 separately. We observe that

W̃(1)
2 =

1

4π2
log(δk0γ̂)

2
[ 1

|D1|
√

|D2|

∫

D1

∫

D2

u(y)dydx

∫

D1

∫

D2

dydx−

− 1

|D1||D2|
√

|D2|

(∫

D1

∫

D2

dydx

)2 ∫

D2

u(y)dy
]

= 0.

Then,

W̃(2)
2 = 〈R(0)

D1D2
1̂D1 , 1̂D2〉

[

〈R(0)
D2D1

u2, 1̂D1〉 − 〈R(0)
D1D2

1̂D1 , 1̂D2〉〈u, 1̂D2〉
]

.
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We know that, as ρ → 0,

〈R(0)
D1D2

1̂D1 , 1̂D2〉 → 0

and, up to changing the indices, from (A.17) and (A.18), we have shown that as ρ → 0

〈R(0)
D2D1

u2, 1̂D1〉 − 〈R(0)
D1D2

1̂D1 , 1̂D2〉〈u, 1̂D2〉 → 0.

Thus, as ρ → 0, it holds that

W̃(2)
2 → 0.

In the same reasoning, we have,

W̃(3)
2 =

(

(δk0) log(δk0γ̂)
)2

〈R(1)
D2D1

1̂D2 , 1̂D1〉
[

〈R(1)
D2D1

u2, 1̂D1〉 − 〈R(1)
D2D1

1̂D2 , 1̂D1〉
]

where, as ρ → 0,

〈R(1)
D1D2

1̂D1 , 1̂D2〉 → 0

and, up to changing the indices, from (A.20) and (A.21), we have, as ρ → 0

〈R(1)
D2D1

u2, 1̂D1〉 − 〈R(1)
D1D2

1̂D1 , 1̂D2〉〈u, 1̂D2〉 → 0.

Hence, as ρ → 0,

W̃(3)
2 → 0.

Now,

W̃(4)
2 =

1

|D1|
√

|D2|

∫

D1

∫

D2

u(y)dydx

∫

D1

∫

D2

log |x− y|dydx+

+
1

|D1|
√

|D2|

∫

D1

∫

D2

dydx

∫

D1

∫

D2

log |x− y|u(y)dydx−

− 2

|D1||D2|
√

|D2|

∫

D1

∫

D2

dydx

∫

D1

∫

D2

log |x− y|dydx
∫

D2

u(y)dy

=
√

|D2|
∫

D1

∫

D2

log |x− y|u(y)dydx− 1
√

|D2|

∫

D1

∫

D2

log |x− y|dydx
∫

D2

u(y)dy.

Using the bounds (A.16), we have

|D1|
√

|D2|
(

log |α1 − 2ρ| − log |α1 + 2ρ|
)

∫

D2

u(y)dy ≤ W̃(4)
2 ,

and

W̃(4)
2 ≤ |D1|

√

|D2|
(

log |α1 + 2ρ| − log |α1 − 2ρ|
)

∫

D2

u(y)dy,

which gives, as ρ → 0,

W̃(4)
2 → 0.

Then,

W̃(5)
2 =

1

|D1|
√

|D2|

∫

D1

∫

D2

u(y)dydx

∫

D1

∫

D2

1

|x− y|dydx+

+
1

|D1|
√

|D2|

∫

D1

∫

D2

dydx

∫

D1

∫

D2

1

|x− y|u(y)dydx−

− 2

|D1||D2|
√

|D2|

∫

D1

∫

D2

dydx

∫

D1

∫

D2

1

|x− y|dydx
∫

D2

u(y)dy

=
√

|D2|
∫

D1

∫

D2

1

|x− y|u(y)dydx− 1
√

|D2|

∫

D1

∫

D2

1

|x− y|dydx
∫

D2

u(y)dy.
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Using the bounds (A.19), we have

|D1|
√

|D2|
(

1

α1 + 2ρ
− 1

α1 − 2ρ

)∫

D2

u(y)dy ≤ W̃(5)
2 ,

and

W̃(5)
2 ≤ |D1|

√

|D2|
(

1

α1 − 2ρ
− 1

α1 + 2ρ

)∫

D2

u(y)dy,

which gives, as ρ → 0,

W̃(5)
2 → 0.

Finally,

W̃(6)
2 =

1

|D1|
√

|D2|

∫

D1

∫

D2

log |x− y|u(y)dydx
∫

D1

∫

D2

1

|x− y|dydx+

+
1

|D1|
√

|D2|

∫

D1

∫

D2

log |x− y|dydx
∫

D1

∫

D2

1

|x− y|u(y)dydx−

− 2

|D1||D2|
√

|D2|

∫

D1

∫

D2

log |x− y|dydx
∫

D1

∫

D2

1

|x− y|dydx
∫

D2

u(y)dy.

Here, we combine the bounds (A.16) and (A.19) and get

2|D1|
√

|D2|
(

log |α1 − 2ρ|
|α1 + 2ρ| − log |α1 + 2ρ|

|α1 − 2ρ|

)∫

D2

u(y)dy ≤ W̃(6)
2 ,

and

W̃(6)
2 ≤ 2|D1|

√

|D2|
(

log |α1 + 2ρ|
|α1 − 2ρ| − log |α1 − 2ρ|

|α1 + 2ρ|

)∫

D2

u(y)dy,

which gives, as ρ → 0,

W̃(6)
2 → 0.

Thus, we have shown that for all i = 1, . . . , 6, as ρ → 0,

W̃(i)
2 → 0,

which shows that

W̃2 → 0, as ρ → 0.

Also, repeating these calculation and re-indexing, we get

W3 → 0, as ρ → 0.

Therefore, we have that

W = 0, (A.22)

and hence, (A.15) follows.
Let us now move to the last part of the proof. We observe that for each i = 1, . . . , N,

‖ui − pρui‖L2(D) ≤ ‖u‖L2(D) + ‖pρu‖L2(D) = 2‖u‖L2(D),
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where we have used (A.10), and we have that,

‖ui‖L2(D) =

(∫

Di

|u(y)|2dy
)

→ 0, as ρ → 0.

Therefore, we obtain

‖ui − pρui‖L2(D) → 0, as ρ → 0,

and so, for each subsequence of ρ′ ∈ R, such that ρ′ → 0,

lim
ρ′→0

‖ui − pρ′ui‖L2(D) = 0. (A.23)

Hence, since (A.10), (A.11) and (A.23) hold, we have shown that all the assumptions of Theorem
2.10 in [7] hold. Thus, we conclude that, the approximation formula (2.12) holds.
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