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Abstract

In an open, bounded Lipschitz polygon Ω ⊂ R
2, we establish weighted analytic regularity for a

semilinear, elliptic PDE with analytic nonlinearity and subject to a source term f which is analytic
in Ω. The boundary conditions on each edge of ∂Ω are either homogeneous Dirichlet or homogeneous
Neumann BCs.

The presently established weighted analytic regularity of solutions implies exponential convergence
of various approximation schemes: hp-Finite Elements, Reduced Order Models via Kolmogorov n-
widths of solution sets in H1(Ω), quantized tensor formats and certain deep neural networks.

1 Introduction

The efficient numerical approximation of solutions of elliptic PDEs in corner domains has received much
attention in the past decades. It was motivated by many applications in engineering and the sciences,
by the development of the Finite Element Methods (FEM) and their analysis, and by the advance of
elliptic regularity theory in corner domains. As is well known by now (see, e.g., [8, 19] and the references
there), mathematical statements of high regularity of solutions in Sobolev spaces require either the use
of the corner weights (as in [8, 19]) or the use of Besov-Triebel-Lizorkin spaces with summability indices
0 < p < 1 as developed e.g. in [10] and the references there. The former regularity results facilitate the
development of optimal order FEM approximations on so-called graded meshes whereas the latter are at
the core of approximation classes for adaptive FEM (AFEM). See, e.g., [21] and the references there.

These developments pertained to the so-called h-FEM, which achieves convergence by (possibly adap-
tive) mesh refinement, at fixed polynomial order of the elements. An alternative concept is furnished
by the more general, so-called hp-FEM. There, mesh refinements and polynomial degree increase are
combined. It has been proved in 80ies in a number of landmark papers by I. Babuška and B.Q. Guo
that hp-FEM can achieve exponential rates of convergence for linear elliptic PDEs in polygonal domains,
with analytic data (source term and inhomogeneous boundary data). A key ingredient in the theory is
the weighted analytic regularity of solutions. Regularity results of this type in corner domains for linear
elliptic PDEs appeared also in the 80ies. We mention only [5, 9, 2].

While analyticity of solutions of nonlinear, elliptic PDEs with analytic data (coefficients, nonlinearity,
domain) are classical (e.g. [20, Chap. 5.8] and the references there), results on analytic regularity for
nonlinear elliptic PDE in corner domains and with singular nonlinearity appeared recently in [15, 16, 18,
11]. In particular, in [16] weighted, analytic regularity of solutions to nonlinear Schrödinger eigenvalue
problems with cubic nonlinearity and with singular potential exhibiting a point singularity at the origin
was established. This problem arises in models of electron structure in atoms. In [16], analytic regularity
is quantified in term of weightfunctions being given as powers of the distance to the origin, which is
assumed to coincide with the position of nucleus.

To establish weighted analytic regularity and exponential convergence of hp-FE discretizations for a
class of semilinear, scalar elliptic PDEs in a polygon Ω with analytic nonlinearity, and subject to analytic
data, is the topic of the present paper. This is achieved by localization of the PDE near corners of Ω.
As in [16], a scale of corner-weighted Sobolev spaces with radial weight functions, being powers of the
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distance to the corners of Ω, is employed. The bootstrapping argument which quantifies the derivative
bounds on the weak solution of the semilinear boundary value problem is an adaptation of the arguments
in [16], with particular modifications to handle arbitrary, polynomial growth at infinity of the nonlinear
term. A novel combinatorial identity is used in the inductive bootstrapping argument to maintain tight,
analytic, bounds on the corner-weighted norms of weak solutions with respect to the differentiation order.

The layout of the present paper is as follows. In Sections 1.1-1.2 we provide a variational formulation of
the semilinear elliptic boundary value problem, recapitulate notation and, in Section 1.3, definitions and
basic properties of corner-weighted function spaces of Sobolev type. In Section 2, we recapitulate corner-
weighted regularity shift results for the linear Poisson equation. Section 3 then contains the proof of the
main result of the present paper: weighted analytic regularity for the weak solutions of the semilinear
elliptic PDE with analytic in the polygon Ω forcing. The final Section 4 then addresses some direct
consequences from the analytic regularity results: exponential approximability of the weak solution by
hp-Finite Element Methods, and exponential bounds on Kolomogorov n-widths of the (nonlinear) solution
manifold. Appendix A contains some auxiliary results supporting the proof of the main result.

1.1 Problem Formulation

Let Ω ⊂ R
2 be a polygon with n ≥ 3 vertices ci and n straight open edges Γi. We assume vertices and

edges to be enumerated in clockwise order, with indexing modulo n, i.e. ci = ci+n for all i ∈ Z.
For 1 ≤ i ≤ n, Γi connects ci and ci+1 so that ∂Γi = {ci, ci+1}. We denote by ωi ∈ (0, 2π) the internal

angle at ci. In particular, then, the polygon Ω has a Lipschitz boundary Γ = ∂Ω [8].
We study the analytic regularity of solutions of the following semilinear elliptic PDE in Ω

−∆u+ λu2k+1 = f in Ω . (1.1)

Here, λ ≥ 0 and k ∈ N0, with the case λ = 0 corresponding to the linear Poisson equation, which was
studied in [2] and the case k = 0, λ > 0 corresponding to a linear, reaction-diffusion boundary value
problem.

The PDE (1.1) is completed by boundary conditions: on edge Γi, we impose either homogeneous
Dirichlet or homogeneous Neumann BCs.

γ0(u) = 0 or γ1(u) = 0 on Γi . (1.2)

Here, γ0 and γ1 are the weak trace and normal derivative operators, respectively. We denote the BCs in
(1.2) abstractly as B(u) = 0, with the boundary operator B|Γi

∈ {γ0, γ1} depending on whether Γi is a
Dirichlet or Neumann edge. We collect the indices i ∈ {1, ..., n} corresponding to Dirichlet edges in the
index set D, and the remaining indices in N (with membership in D or N again understood modulo n),
so that D and N are a partition of {1, ..., n}, and B|Γi = γ0 for i ∈ D. We assume throughout D ≠ ∅, i.e.

there is at least one edge Γi where γ0(u) = 0 . (1.3)

With these conventions, we set

H1
D(Ω) = {v ∈ H1(Ω) : γ0(v) = 0 on Γi, i ∈ D} . (1.4)

Due to (1.3),
∑
i∈D |Γi| > 0, and there holds the Poincaré inequality: there exists a constant C > 0 such

that
∀v ∈ H1

D(Ω) : ∥v∥L2(Ω) ≤ C∥∇v∥L2(Ω) . (1.5)

In particular, therefore, on H1
D(Ω), the expression ∥∇v∥L2(Ω) is a norm.

We will show that given data f in a corner-weighted, analytic space B0
β(Ω) ∩ L2(Ω), any generalized

solution u ∈ H1
D(Ω) to (1.1) will be contained in a corresponding analytic space B2

β(Ω). Here, the corner-

weighted analytic function classes B2
β and B0

β will be introduced later in Section 1.3.1 and the notion

“generalized solution” refers to variational solutions which are defined as follows.

2



Given f ∈ L2(Ω), we seek u ∈ H1
D(Ω) such that

∀v ∈ H1
D(Ω) :

∫

Ω

∇u · ∇v + λu2k+1v dx =

∫

Ω

fv dx . (1.6)

It can be shown by following the proof of [23, Proposition 27.21] and using the property that the nonlinear
term u2k+1 is strictly monotone (see, e.g., [23, Example 25.5]) that for every f ∈ L2(Ω) there exists a
unique generalized solution u ∈ H1

D(Ω) of (1.6).
The proof that u ∈ B2

β(Ω) for f ∈ B0
β(Ω) ∩ L2(Ω) will be based on a local regularity-shift result in a

sector obtained for the linear Poisson problem in [2] and a corner-weighted L2-estimate of (the derivatives
of) the nonlinearity λu2k+1.

1.2 Notation

We denote N = {1, 2, 3, ...} the natural numbers, and N0 = N ∪ {0} = {0, 1, 2, ...}. For any multi-
index α = (α1, α2) ∈ N

2
0, we write ∂α = ∂α1

x ∂α2
y , Dα = ∂α1

r ∂α2

θ and |α| = α1 + α2. Factorials α!
are defined as α! = α1!α2! with the convention 0! := 1. We denote with an underline n-dimensional
tuples β = (β1, . . . , βn) ∈ R

n. We suppose that for multi-indices and n-dimensional tuples, arithmetic
operations and inequalities such as γ < β are understood component-wise: e.g., β+k = (β1+k, . . . , βn+k)
for all k ∈ N; furthermore, we indicate, e.g., β > 0 if βi > 0 for all i ∈ {1, . . . , n}. For a ∈ R,
we denote its nonnegative real part as [a]+ = max(0, a). For a nonnegative integer k, we denote by
N>k = {n ∈ N : n > k} and by N≥k = {n ∈ N : n ≥ k}.

For any α, γ ∈ N
2
0 or i, j ∈ N, we denote by δα,γ or δi,j the Kronecker function which equals 1 if the

two parameters are identical and which vanishes otherwise.
Given an angle ω ∈ (0, 2π) and a radius δ ∈ (0,+∞], we define the sector Qδ,ω with vertex at the

origin
Qδ,ω := {(r, θ) ∈ R

2|r ∈ (0, δ), θ ∈ (0, ω)}. (1.7)

For any corner ci and a radius δ ∈ (0,min( 14 mini,j∈{1,2,··· ,n},i ̸=j d(ci, cj), 1)), we set

Qδ,ωi
(ci) := ci + {(r, θ) ∈ R

2|r ∈ (0, δ), θ ∈ (0, ωi)}. (1.8)

Here the polar coordinate system is assumed to be such that the half line ci + {θ = 0} contains Γi−1 (so
that ci + {θ = ωi} contains Γi).

1.3 Function spaces

For x ∈ Ω and for i ∈ {1, . . . , n}, let ri(x) := dist(x, ci). We recall from [2] the n-tuple of corner-weight
exponents β = (β1, ..., βn) ∈ (0, 1)n and the corresponding corner weight function

Φβ(x) :=
n∏

i=1

rβi

i (x), x ∈ Ω .

1.3.1 Weighted spaces in the whole domain Ω

For any k, l ∈ N0 with k ≥ l and for any β ∈ (0, 1)n, we introduce corner-weighted norms ∥v∥Hk,l
β (Ω) by

∥v∥2
Hk,l

β (Ω)
:= ∥v∥2Hl−1(Ω) +

k∑

|α|=l

∥Φβ+|α|−l∂
αv∥2L2(Ω), (1.9)

where the term ∥v∥2Hl−1(Ω) is dropped if l = 0. See [2, Sec.1.2].

We also define the following weighted analytic function classes

Blβ(Ω) :=

{
v ∈

⋂

k≥l

Hk,l
β (Ω) : ∃C,A > 0 s. t. ∥Φβ+|α|−l∂

αv∥L2(Ω) ≤ CA|α|−l(|α|−l)!, ∀|α| ≥ l

}
. (1.10)
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1.3.2 Weighted spaces in a sector

In a sector Qδ,ω, we define, for all k ∈ N0 and β ∈ R, the corner-weighted space W k
β (Qδ,ω) of functions v

with finite norm ∥v∥Wk
β (Qδ,ω) given by

∥v∥2Wk
β (Qδ,ω) =

∑

|α|≤k

∥rβ−k+α1Dαv∥2L2(Qδ,ω). (1.11)

For k, l ∈ N0 with k ≥ l and for β ∈ R, Hk,l
β (Qδ,ω) denote the space of functions with finite norm

∥v∥2
Hk,l

β (Qδ,ω)
:= ∥v∥2Hl−1(Qδ,ω) +

∑

l≤|α|≤k

∥rα1+β−lDαv∥2L2(Qδ,ω),

where the first term is omitted if l = 0.
For l ∈ N0 and β ∈ R, the weighted analytic class in polar coordinates is defined by

Blβ(Qδ,ω) =



v ∈

∞⋂

k,l

Hk,l
β (Qδ,ω) : ∃C,A > 0 s. t. ∥rα1+β−lDαv∥L2(Qδ,ω) ≤ CA|α|−l(|α| − l)!, ∀|α| ≥ l



 .

(1.12)

The definition of the spaces Hk,l
β (Qδ,ω) and Blβ(Qδ,ω) follows from replacing Φβ+|α|−l in (1.9) and

(1.10) with rβ+|α|−l.
We require the following two lemmas regarding the relation between those spaces in Qδ,ω.

Lemma 1.1. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1). Then the following equivalence relations hold for
any l ∈ {0, 1, 2} and N0 ∋ k ≥ l:

v ∈ Hk,l
β (Qδ,ω) ⇔ v ∈ Hk,l

β (Qδ,ω), v ∈ Blβ(Qδ,ω) ⇔ v ∈ Blβ(Qδ,ω), v ∈ H1,1
β (Qδ,ω) ⇔ v ∈W 1

β (Qδ,ω).

For a proof we refer to [2, Theorem 1.1, Theorem 2.1, Lemma A.2].

Lemma 1.2. Let 0 < δ ≤ 1, ω ∈ (0, 2π), β ∈ (0, 1). Then the following imbedding relations hold:

1. W 2
β (Qδ,ω) ⊂ H2,2

β (Qδ,ω) ⊂ C0(Qδ,ω).

2. If v ∈ H2,2
β (Qδ,ω) and v((0, 0)) = 0, then v ∈W 2

β (Qδ,ω).

For the proof of this lemma, see [2, Lemma 1.1, Lemma A.1, Lemma A.2] and [3, Section 2].

2 Poisson problem in a sector

The inductive proof of weighted, analytic regularity will require a W 2
β -regularity shift for the linear

principal part of the differential operator in the problem (1.1). By localization, this regularity shift
estimate is only required locally, in the vicinity of each corner. Consider thus functions u which satisfy
the following Poisson problem in any finite sector Qδ,ω with 0 < δ <∞,

−∆u = f in Qδ,ω, B(u) = 0 on ∂Qδ,ω \ {r = δ}. (2.1)

Following the proofs of [2, Lemma 2.2-2.8, Theorem 2.1] item by item, we have the following result.

Proposition 2.1. Let β ∈ (0, 1) such that β > 1 − π
ω for either Dirichlet or Neumann BCs, i.e. if

B|∂Qδ,ω\{r=δ} ∈ {γ0, γ1} and assume that β > 1− π
2ω for mixed boundary conditions, i.e. if B|∂Qδ,ω∩{θ=0} =

γ0 and B|∂Qδ,ω∩{θ=γ} = γ1. Furthermore, in (2.1) assume f ∈ Lβ(Qδ,ω).
Then there exists a constant Csec > 1 such that any u which satisfies (2.1) weakly satisfies u ∈

H2,2
β (Qδ,ω) and there holds the a-priori estimate

∥u− u(0, 0)∥W 2
β (Qδ/2,ω) ≤ Csec(∥f∥Lβ(Qδ,ω) + ∥u∥H1(Qδ,ω\Qδ/2,ω)). (2.2)

4



3 Weighted analytic regularity of the solution

Applying [20, Lemma 5.8.6, Lemma 5.8.6’] we derive the analyticity of u and of λu2k+1 in the interior of
Ω and up to analytic parts of the boundary ∂Ω.

Proposition 3.1. For any 0 < δ ≤ 1
4 mini,j∈{1,2,··· ,n},i ̸=j d(ci, cj), any solution u to (1.1) and, for this

u, λu2k+1 for k ∈ N are analytic in Ω \ (∪ni=1Qδ/2,ωi
(ci)).

By the Sobolev embedding H1(Ω) →֒ Lq(Ω) valid for any q ∈ (1,+∞) and by the Hölder inequality,
one obtains that for any u ∈ H1(Ω) and any β ∈ (0, 1)n, λu2k+1 ∈ L2(Ω) ⊂ Lβ(Ω). Therefore, we can

move λu2k+1 to the right-hand side in (1.1) and consider in Ω

−∆u = f − λu2k+1 in Ω, B(u) = 0 on ∂Ω . (3.1)

Now Lemma 1.2 and Proposition 2.1 imply

Lemma 3.2. Let δ ∈ (0, 14 mini,j∈{1,2,··· ,n},i ̸=j d(ci, cj)) and let f ∈ Lβ(Ω) where β ∈ (0, 1)n satisfies that

for any i ∈ {1, 2, · · · , n}, βi > 1− π
ωi

if {i− 1, i} ⊂ D or {i− 1, i} ⊂ N and βi > 1− π
2ωi

otherwise.

Then any solution u ∈ H1
D(Ω) to (1.1) satisfies u|Qδ,ωi

(ci) ∈ H2,2
βi

(Qδ,ωi
(ci)) ⊂ C0(Qδ,ωi

(ci)) for
i ∈ {1, 2, · · · , n}.

3.1 Analytic estimates on the nonlinearity

In this subsection we examine the estimate on derivatives of λu2k+1. For this purpose we studyDα(λu2k+1).
The case k = 0 is straightforward. If k > 0, then by Generalized Faà di Bruno formula[6, 14], the

derivatives of u will take a complicated form. To describe it, we introduce the concept of decomposition
of a multi-index α ∈ N

2
0. We say that α ∈ N

2
0 is decomposed into a finite number s of nonzero parts

p1, · · · , ps ∈ N
2
0 with multiplicities m1, · · · ,ms ∈ N if

α =

s∑

i=1

mip
i

holds and all pi are distinct. Set P = (p1, . . . , ps) and M = {m1, . . . ,ms}, we call the triple (s, P ,M) a
decomposition of α. The total multiplicity of M is m :=

∑s
i=1mi.

The generalized Faà di Bruno formula states that for any α ∈ N
2
0 and, for any function g(·) : R → R

and for any u = u(r, θ) with sufficient smoothness, Dαg(u) takes the form

Dαg(u) =
∑

(s,P ,M)∈Dα

C(s,P ,M)
dmg(u)

dum

s∏

i=1

(Dpiu)mi . (3.2)

Here Dα is the set of all possible decompositions of α and

C(s,P ,M) = α!

s∏

i=1

(
1

mi!
(
1

pi!
)mi) > 0,

which depends only on the specific triple (s, P ,M).
In the presently considered case g(u) = λu2k+1, so it suffices to consider decompositions satisfying

m ≤ 2k + 1.
Lemma 3.2 implies L∞-boundedness of dmu2k+1

dum for any m ∈ N in Qδ,ωi
(ci) for i ∈ {1, . . . , n}. To

estimate the weighted-L2 norm of Dα(λu2k+1) based on (3.2) near each corner, we bound all individual

terms
∏s
i=1(Dpiu)mi and the combinatorial constants C(s,P ,M). For the first step, we need the following

two lemmas which provide weighted interpolation estimates in a sector. The proofs of these lemmas are
along the lines proposed in [11, Lemma 4.2], and are based on dyadic decomposition of the sector and
scaling of an interpolation inequality in domains satisfying a cone condition(see [1]). These techniques
are useful in treating singularities in a corner.
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Lemma 3.3. Assume given δ ∈ (0,+∞), ω ∈ (0, 2π], k ∈ N and β ∈ (0, 1). Then, there exists a
constant Cint = Cint(δ, ω, k, β) > 0 such that for any function ϕ : Qδ,ω → R for which there exists α ∈ N

2
0

satisfying, for any l ∈ N with 2 ≤ l ≤ 2k + 1,

max
|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥L2(Qδ,ω) <∞ ,

there holds the following bound

∥r β
l +α1Dαϕ∥L2l(Qδ,ω) ≤ Cint∥rβ−2+α1Dαϕ∥

1
l

L2(Qδ,ω)

· (
∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥
l−1
l

L2(Qδ,ω) + α
l−1
l

1 ∥rβ−2+α1Dαϕ∥
l−1
l

L2(Qδ,ω)).

The proof of this lemma is given in Appendix A.

Lemma 3.4. Let δ ∈ (0,+∞), ω ∈ (0, 2π], k ∈ N and β ∈ (0, 1).
Then there exists a constant Ct = Ct(δ, ω, k, β) > 1 such that for all ϕ ∈ H2,2

β (Qδ,ω) with ∥ϕ −
ϕ(0, 0)∥W 2

β (Qδ,ω) < 1 and such that there exist A,E > 1 and i ∈ N satisfying

∥rβ−2+α1Dαϕ∥L2(Qδ,ω) ≤ A|α|−2Eα2(|α| − 2)!, ∀α ∈ N
2
0 : 2 ≤ |α| ≤ i+ 1,

it holds for any 1 ≤ |α| ≤ i and any 2 ≤ l ≤ 2k + 1 that,

∥rβ/l+α1Dαϕ∥L2l(Qδ,ω) ≤ CtA
|α|−1Eα2+1(|α| − 1)!.

Proof. We fix δ, ω, k, β and any ϕ satisfying the conditions in this lemma with some A,E > 1 and i ∈ N.
By lemma 3.3, there exists Cint > 0 depending on δ, ω, k, β such that for any 1 ≤ |α| ≤ i and any

2 ≤ l ≤ 2k + 1,

∥r β
l +α1Dαϕ∥L2l(Qδ,ω) ≤ Cint∥rβ−2+α1Dαϕ∥

1
l

L2(Qδ,ω)

· (
∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥
l−1
l

L2(Qδ,ω) + α
l−1
l

1 ∥rβ−2+α1Dαϕ∥
l−1
l

L2(Qδ,ω))

≤ Cintmax
(
(A|α|−2Eα2(|α| − 2)!, 1

) 1
l ·

(
3(A|α|−1Eα2+1(|α| − 1)!)

l−1
l +max

(
A|α|−2Eα2(|α| − 1)!, 1

) l−1
l
)

≤ 4CintA
|α|−1Eα2+1(|α| − 1)!.

This implies that Ct := 4Cint satisfies all conditions of this lemma.

We investigate the constant C(s,P ,M) in (3.2). In the estimation of higher-order derivatives of the
quadratic nonlinearity (u · ∇)u for the Navier-Stokes equation in [11, Lemma 4.5], another kind of
combinatorial constant

(
α
η

)
for α, η ∈ N

2
0 appears in the expansion of higher-order derivatives. Their

control with respect to the differentiation order is achieved in [11] using a combinatorial identity.
Here, however, we do not derive a particular combinatorial identity that is best suited to bound the

nonlinearity in problem (1.1). Instead, the following lemma provides sufficient control of C(s,P ,M). Its
statement needs the introduction of the following auxiliary variable: Given a multi-index α ∈ N

2
0 and

A,E > 0, we define

I[α,A,E] :=
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)

s∏

i=1

(A|pi|−1Ep
i
2+1(|pi| − 1)!)mi . (3.3)

Then the following estimate holds.

Lemma 3.5. Let A > E > 0. Then for any |α| ≥ 1 and any |η| = 1,

I[α+η,A,E] ≤ (|α|+ 1)AEη2I[α,A,E].
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See Appendix A for the proof.
We are ready to present the following corner-weighted regularity estimate on the nonlinearity.

Lemma 3.6 (weighted regularity estimate on the nonlinearity).
Fix δ ∈ (0, 1), ω ∈ (0, 2π], λ ∈ R, k ∈ N0 and β ∈ (0, 1).

There exists a constant Cnon = Cnon(δ, ω, β, λ, k) > 0 such that for any ϕ ∈ H2,2
β (Qδ,ω) with

∥ϕ∥H2,2
β (Qδ,ω) < 1 and ∥ϕ − ϕ(0, 0)∥W 2

β (Qδ,ω) < 1 for which there exist i ∈ N and constants A > E > 1

such that, for 2 ≤ |α| ≤ i+ 1, hold the bounds

∥rβ−2+α1Dαϕ∥L2(Qδ,ω) ≤ A|α|−2Eα2(|α| − 2)! ,

there holds, for 1 ≤ |α| ≤ i,

∥rβ+α1Dα(λϕ2k+1)∥L2(Qδ,ω) ≤ CnonA
|α|−1Eα2+1|α|! . (3.4)

We remark that due to Lemma 1.2, the value of ϕ at the point {r = 0} is well-defined.

Proof. Without loss of generality we assume that λ > 0. With the condition ∥ϕ∥H2,2
β (Qδ,ω) < 1 and

Lemma 1.2 we may assume max0≤j≤2k+1 ∥∂
jφ2k+1

∂φj ∥L∞(Qδ,ω) ≤ K for some K = K(δ, ω, β, k) > 0 . The

assumptions δ < 1 and ∥ϕ− ϕ(0, 0)∥W 2
β (Qδ,ω) < 1 imply, for any 1 ≤ |α| ≤ i+ 1,

∥rβ+α1Dα(λϕ)∥L2(Qδ,ω) ≤ λ∥rβ−2+α1Dαϕ∥L2(Qδ,ω) ≤ λmax(A|α|−2Eα2(|α|−2)!, 1) ≤ λA|α|−1Eα2+1(|α|−1)!,

so the case k = 0 is verified for any Cnon ≥ λ.
Consider the case k > 0. By (3.2), the generalized Hölder inequality and Lemma 3.4, for any 1 ≤

|α| ≤ i we have,

∥rβ+α1Dα(λϕ2k+1)∥L2(Qδ,ω)

≤ λ∥
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)
∂mϕ2k+1

∂ϕm

s∏

i=1

(r
β
m+pi1Dpiϕ)mi∥L2(Qδ,ω)

≤ λK
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)∥
s∏

i=1

(r
β
m+pi1Dpiϕ)mi∥L2(Qδ,ω)

≤ λK
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)

s∏

i=1

∥r β
m+pi1Dpiϕ∥mi

L2m(Qδ,ω)

≤ λKC2k+1
t

∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)

s∏

i=1

(A|pi|−1Ep
i
2+1(|pi| − 1)!)mi

= λKC2k+1
t I[α,A,E].

It suffices to show that there exists a constant Cnon > 0 such that for any 1 ≤ |α| ≤ i

λKC2k+1
t I[α,A,E] ≤ CnonA

|α|−1Eα2+1|α|!. (3.5)

It is easy to verify that the only possible decomposition for α with |α| = 1 is α = 1·α and C(1,{α},{1}) =

1: it holds Dαϕ2k+1 = ∂φ2k+1

∂φ · Dαϕ. Therefore, for |α| = 1 and for any Cnon ≥ λKC2k+1
t ,

λKC2k+1
t I[α,A,E] =λKC

2k+1
t C(1,{α},{1})A

0Eα2+1(0!) = λKC2k+1
t Eα2+1 ≤ CnonE

α2+1.

We show now that for any Cnon ≥ λKC2k+1
t , (3.5) holds for 1 ≤ |α| ≤ i. The case |α| = 1 is already

checked from the above equality and we consider all α such that 1 ≤ |α| ≤ i by mathematical induction.
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Assume now that (3.5) is true for 1 ≤ |α| ≤ j < i. For any |α| = j + 1, we select |η| = 1 such that
α− η ∈ N

2
0. Then Lemma 3.5 implies that

λKC2k+1
t I[α,A,E] ≤ λKC2k+1

t (j + 1)AEη2I[α−η,A,E]

≤ (j + 1)AEη2(λKC2k+1
t I[α−η,A,E])

≤ (j + 1)AEη2 × CnonA
jE(α2−η2)+1j!

≤ CnonA
j+1Eα2+1(j + 1)!.

Therefore (3.5) holds for |α| = j + 1. Repeating this step validates (3.5) for 1 ≤ |α| ≤ i. Summarizing
the case k > 0 and k = 0 shows that we could set Cnon := λmax(KC2k+1

t , 1) to satisfy the requirement
of this lemma.

3.2 Weighted analytic regularity near corners

By Lemma 1.2 and Lemma 3.2, we may fix δ ∈ (0,min( 14 mini,j∈{1,2,··· ,n},i ̸=j d(ci, cj), 1)) such that
∥u− u(ci)∥W 2

β (Qδ,ωi
(ci)) < 1 at each corner.

We are now in position to prove local weighted analytic regularity estimates near all corners. The
inductive claim used here is similar to the one shown in the proof of [11, Lemma 4.7].

Lemma 3.7. Let β ∈ (0, 1)n such that that for any i ∈ {1, 2, · · · , n}, βi > 1 − π
ωi

if {i − 1, i} ⊂ D or

{i − 1, i} ⊂ N and βi > 1 − π
2ωi

otherwise. Furthermore, let u ∈ H1
D(Ω) be the weak solution to (1.1)

with right hand side f ∈ B0
β(Ω) ∩ L2(Ω).

Then there exists Au, Eu > 1 such that for all i ∈ {1, 2, · · · , n},
∥rβi−2+α1Dαu∥L2(Qδ/2,ωi

(ci)) ≤ A|α|−2
u E[α2−2,0]+

u (|α| − 2)! ∀α ∈ N
2
0 : |α| ≥ 2.

Proof. In each sector Qδ,ωi(ci), we rewrite (1.1), (1.2) as

− (∂2r +
1

r
∂r +

1

r2
∂2θ )u = f − λu2k+1 in Qδ,ωi(ci), B(u) = 0 on Γ̂i, (3.6)

where Γ̂i = ∂Qδ,ωi
(ci) ∩ ∂Ω, f ∈ B0

β(Ω). Lemma 1.1 and Proposition 3.1 then imply that there exists

A1 > 1 (depending on λ) such that for any α ∈ N
2
0,

∥rβi+α1Dα(λu2k+1)∥L2(Qδ,ωi
(ci)\Qδ/2,ωi

(ci)) ≤ A
|α|
1 |α|!, (3.7a)

∥rβi−2+α1Dα(r2f)∥L2(Qδ,ωi
(ci)) ≤ A

|α|
1 |α|!, (3.7b)

and, for all j ∈ N0,
∥rj∂jru∥H1(Qδ,ωi

(ci)\Qδ/2,ωi
(ci)) ≤ Aj1j!. (3.7c)

Define the constants
Au = max(4CsecA1, 108(CsecCnon + 1), 162Cnon). (3.8a)

and
Eu = 18, (3.8b)

Our proof will be based on the following induction assumption.

Induction assumption For j1 ∈ N≥2 and j2 ∈ N with j2 ≤ j1, we say Hj1,j2 holds if

∥rβi−2+α1Dαu∥L2(Qδ/2,ωi
(ci)) ≤ A|α|−2

u E[α2−2,0]+
u (|α| − 2)! ∀α ∈ N

2
0 :





2 ≤ |α| ≤ j1 − 1,

or

|α| = j1 and α2 ≤ j2.

(3.9)

Here Au and Eu are the constants in (3.8a) and (3.8b).
Then H2,2 holds since ∥u− u(ci)∥W 2

βi
(Qδ,ωi

(ci)) < 1.
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Strategy of the proof The proof consists of two steps:
1. We will show that for any j ∈ N≥2,

Hj,j =⇒ Hj+1,2. (3.10)

2. We show
∀j ∈ N≥3 ∀l ∈ N, 2 ≤ l < j : Hj,l =⇒ Hj,l+1. (3.11)

Combining (3.10) and (3.11), we obtain that

Hj,j =⇒ Hj+1,j+1, (3.12)

We infer from (3.12) that Hj,j is verified for all j ∈ N≥2. This will conclude the proof.

Step 1: verification of (3.10) We will show equivalently that for any j ∈ N,

Hj+1,j+1 =⇒ Hj+2,2.

If k ≥ 1, then by Lemma 3.6 there exists Cnon > 1 such that for any α ∈ N
2
0 with |α| ≤ j

∥rβi+α1Dα(λu2k+1)∥L2(Qδ/2,ωi
(ci)) ≤ CnonA

j−1
u Eα2+1

u j!,

and if k = 1, then

∥rβi+α1Dαu∥L2(Qδ/2,ωi
(ci)) ≤ ∥rβi−2+α1Dαu∥L2(Qδ/2,ωi

(ci)) ≤ Aj−2
u E[α2−2]+

u j! ≤ CnonA
j−1
u Eα2+1

u j!.

Define v = rj∂jru. Then v solves the boundary value problem

−(∂2r +
1
r∂r +

1
r2 ∂

2
θ )v = rj−2∂jr(r

2(f − λu2k+1)) in Qδ,ωi
(ci),

B(v) = 0 on Γ̂i.
(3.13)

Proposition 2.1 and (3.7a)-(3.7c) now imply
∑

|η|=2

∥rβi−2+η1Dηv∥L2(Qδ/2,ωi
(ci)) ≤ ∥v − v(0, 0)∥W 2

βi
(Qδ/2,ωi

(ci))

≤ Csec(∥rβi+j−2∂jr(r
2(f − λu2k+1))∥L2(Qδ/2,ωi

(ci)) + ∥v∥H1(Qδ,ωi
(ci)\Qδ/2,ωi

(ci)))

≤ Csec(∥rβi+j−2∂jr(r
2f)∥L2(Qδ/2,ωi

(ci)) + ∥rβi+j∂jr(λu
2k+1)∥L2(Qδ/2,ωi

(ci)) + j∥rβi+j−1∂j−1
r (λu2k+1)∥L2(Qδ/2,ωi

(ci))

+ j(j − 1)∥rβi+j−2∂j−2
r (λu2k+1)∥L2(Qδ/2,ωi

(ci)) + ∥v∥H1(Qδ,ωi
(ci)\Qδ/2,ωi

(ci)))

≤ Csec(A
j
1j! + 3CnonA

j−1
u Euj! +Aj1j!)

≤ Csec(2A
j
1j! + 3CnonA

j−1
u Euj!).

For all η ∈ N
2
0 with |η| = 2, it holds

Dηv = rj∂jrDηu+ η1jr
j−1∂j+η1−1

r ∂η2θ u+ [η1 − 1]+j(j − 1)rj−2∂jru.

Therefore, for all η ∈ N
2
0 with |η| = 2,

∥rβi−2+j+η1Dη∂jru∥L2(Qδ/2,ωi
(ci))

≤
∑

|η|=2

∥rβi−2+η1Dηv∥L2(Qδ/2,ωi
(ci)) + 2j∥rβi−2+j+η1∂j+η1−1

r ∂η2θ u∥L2(Qδ/2,ωi
(ci))

+ j(j − 1)∥rβi−2+j∂jru∥L2(Qδ/2,ωi
(ci))

≤ Csec(2A
j
1j! + 3CnonA

j−1
u Euj!) + 3Aj−1

u j!

≤ 2CsecA
j
1j! + (3CsecCnon + 3)Aj−1

u Euj!

≤ Ajuj!,

which validates (3.10).
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Step 2: proof of (3.11) We now fix l ∈ {2, . . . , j − 1} and assume that Hj,l holds true. This implies,
as before, that for any 1 ≤ |α| ≤ j − 2

∥rβi+α1Dα(λu2k+1)∥L2(Qδ/2,ωi
(ci)) ≤ CnonA

|α|−1
u Eα2+1

u |α|!.

So we have

∥rβi−2+(j−l−1)∂j−l−1
r ∂l−1

θ (r2λu2k+1)∥L2(Qδ/2,ωi
(ci))

≤ ∥rβi+(j−l−1)∂j−l−1
r ∂l−1

θ (λu2k+1)∥L2(Qδ/2,ωi
(ci)) + 2(j − l − 1)∥rβi+(j−l−2)∂j−l−2

r ∂l−1
θ (λu2k+1)∥L2(Qδ/2,ωi

(ci))

+ (j − l − 1)(j − l − 2)∥rβi+(j−l−3)∂j−l−3
r ∂l−1

θ (λu2k+1)∥L2(Qδ/2,ωi
(ci))

≤ 3CnonA
j−3
u Elu(j − 2)!.

Multiply the first equation of (3.6) by r2 and differentiate the product by ∂j−l−1
r ∂l−1

θ to obtain

− (r2∂j−l+1
r ∂l−1

θ + 2(j − l − 1)∂j−lr ∂l−1
θ + (j − l − 1)(j − l − 2)∂j−l−1

r ∂l−1
θ

+ r∂j−lr ∂l−1
θ + (j − l − 1)∂j−l−2

r ∂l−1
θ + ∂j−l−1

r ∂l+1
θ )u = ∂j−l−1

r ∂l−1
θ (r2(f − (λu2k+1))).

This is equivalent to

∂j−l−1
r ∂l+1

θ u =

− (r2∂j−l+1
r ∂l−1

θ + 2(j − l − 1)∂j−lr ∂l−1
θ + (j − l − 1)(j − l − 2)∂j−l−1

r ∂l−1
θ

+ r∂j−lr ∂l−1
θ + (j − l − 1)∂j−l−2

r ∂l−1
θ )u− ∂j−l−1

r ∂l−1
θ (r2(f − (λu2k+1))).

Therefore

∥rβi−2+(j−l−1)∂j−l−1
r ∂l+1

θ u∥L2(Qδ/2,ωi
(ci))

≤ ∥rβi−2+(j−l+1)∂j−l+1
r ∂l−1

θ u∥L2(Qδ/2,ωi
(ci)) + 2(j − l − 1)∥rβi−2+(j−l)∂j−lr ∂l−1

θ u∥L2(Qδ/2,ωi
(ci))

+ (j − l − 1)(j − l − 2)∥rβi−2+(j−l−1)∂j−l−1
r ∂l−1

θ u∥L2(Qδ/2,ωi
(ci)) + ∥rβi−2+(j−l−1)∂j−lr ∂l−1

θ u∥L2(Qδ/2,ωi
(ci))

+ (j − l − 1)∥rβi−2+(j−l−1)∂j−l−1
r ∂l−1

θ u∥L2(Qδ/2,ωi
(ci)) + ∥rβi−2+(j−l−1)∂j−l−1

r ∂l−1
θ (r2f)∥L2(Qδ/2,ωi

(ci))

+ ∥rβi−2+(j−l−1)∂j−l−1
r ∂l−1

θ (λr2u2k+1)∥L2(Qδ/2,ωi
(ci))

≤ Aj−2
u E[l−3]+

u (j − 2)! + 2Aj−3
u E[l−3]+

u (j − 2)! +Aj−4
u E[l−3]+

u (j − 2)! +Aj−3
u E[l−3]+

u (j − 3)!

+Aj−4
u E[l−3]+

u (j − 3)! +Aj−2
1 (j − 2)! + 3CnonA

j−3
u Elu(j − 2)!

≤ 6Aj−2
u E[l−3]+

u (j − 2)! +Aj−2
1 (j − 2)! + 3CnonA

j−3
u Elu(j − 2)!

≤ Aj−2
u El−1

u (j − 2)! = Aj−2
u E[l−1]+

u (j − 2)! .

Therefore (3.11) holds true. The proof is completed by applying the strategy to show (3.12).

3.3 Weighted analytic regularity in the polygon

The main result of this paper is now a straightforward consequence of the corner-weighted, analytic
estimates of solutions and classical results on interior and boundary regularity.

Theorem 3.8. Let β ∈ (0, 1)n such that that for any i ∈ {1, 2, · · · , n}, βi > 1 − π
ωi

if {i − 1, i} ⊂ D or

{i − 1, i} ⊂ N and βi > 1 − π
2ωi

otherwise. Furthermore, let u ∈ H1
D(Ω) be the weak solution to (1.1)

with right hand side f ∈ B0
β(Ω) ∩ L2(Ω). Then u ∈ B2

β(Ω).

Proof. We have analyticity of u in the interior and up to analytic parts of the boundary. In addition,
Lemma 3.2 and Lemma 3.7 show that u ∈ B2

β(Qδ/2,ωi
(ci)) at each corner ci. Using Lemma 1.1 and

combining these two claims we conclude the proof.
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4 Exponential approximability

The weighted, analytic regularity of solutions in Theorem 3.8 implies, via well-known results on approx-
imation properties of hp-FEM in [9, 22, 7] exponential approximability by finite-dimensional spaces of
continuous, piecewise polynomial functions of the solution u of (1.1) with data f ∈ B0

β(Ω) ∩ L2(Ω).

Exponential approximability also holds for several other approximation methods: for Reduced Basis and
for Model Order Reduction methods, as the Kolmogorov n-width in H1(Ω) of the solution set of (1.1),
(1.2) for data f ∈ B0

β(Ω) ∩ L2(Ω) decreases exponentially as n → ∞. It also implies corresponding

exponential expressivity of solution sets by certain deep neural networks [17] and tensor-rank bounds for
tensor-structured approximation schemes [13].

Theorem 4.1. Assume that Ω is a polygon with n ≥ 3 straight sides. Consider the nonlinear, elliptic
PDE (1.1), (1.2) for analytic data

f ∈ A := {f ∈ B0
β(Ω) ∩ L2(Ω) : ∥f∥L2(Ω) ≤ 1},

with the corner-weight parameters βi as in Theorem 3.8. Denote by S the solution map of (1.1), (1.2).
Then, there exists a sequence {Vp}p≥1 of so-called hp-Finite Element subspaces of continuous, piece-

wise polynomial functions vp of total degree at most p on a sequence {Tp}p≥1 of nested, regular, partitions
Tp of Ω into triangles T which are obtained from O(p) steps of geometric mesh refinement towards the
corners of Ω, such that there holds, for certain constants b, C > 0 depending on A,

∀u ∈ S(A) : inf
vp∈Vp

∥u− vp∥H1(Ω) ≤ C exp(−b(dimVp)1/3) .

Furthermore, for every n ∈ N, the Kolmogorov n-width dn of the solution set S(A) in H1(Ω) is exponen-
tially small: there holds

dn(S(A);H
1(Ω)) ≤ C exp(−bn1/3) .

In addition, for each u ∈ S(A), there exists a collection of feedforward neural networks {Φε,u}ε with ReLU
activation that can represent solutions u ∈ S(A) of (1.1) with data f ∈ B0

β(Ω) ∩ L2(Ω) with exponential

expressivity in terms of the neural network size M(Φε,u) and depth L(Φε,u) to accuracy ε > 0 in H1(Ω),
i.e. their function-realizations R(Φε,u) satisfy

∥u− R(Φε,u)∥H1(Ω) ≤ ε, M(Φε,u) ≤ C| log(ε)|5, L(Φε,u) ≤ C| log(ε) log(| log(ε)|)|.

Proof. By Theorem 3.8, S(A) ⊂ B2
β(Ω). Then, there exists a sequence {Vp}p≥1 of hp-Finite Element

spaces of continuous, piecewise polynomial functions vp of total degree at most p on a sequence {Tp}p≥1

of nested, regular, simplicial partitions Tp of Ω which are geometrically refined towards the corners of Ω
such that there exists a constant c > 0 so that for all p ∈ N holds

(i) #(Tp) ≤ cp,

(ii) np = dim(Vp) ≤ cp3,

(iii) supf∈B infvp∈Vp ∥S(f)− vp∥H1(Ω) ≤ c exp(−bp) .

We refer, e.g., to [7] for a self-contained proof. This proves the first assertion.
With this (hp-FEM convergence) result in hand, we may bound the Kolmogorov n-width of the set

S(A) ⊂⊂ H1(Ω) as

dn(S(A), H
1(Ω)) = inf

Wn⊂H1(Ω):dim(Wn)=n
sup

u∈S(A)

inf
vn∈Vn

∥u− vn∥H1(Ω)

≤ sup
u∈S(A)

inf
vp∈Vp

∥u− vp∥H1(Ω) ≤ C exp(−bp) .

Here, the infimum in the definition of dn is taken over all subspaces of H1
D(Ω) of finite dimension not

larger than n, and we used that S(A) ⊂ B2
β(Ω), and property (iii) of the hp-FEM.
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The assertion then follows with property (ii) of the hp-FEM.
The final statement on the expression rates of deep ReLU neural networks follows once more from

the inclusion S(A) ⊂ B2
β(Ω) with [17, Theorem 5.6].

The exponential bound on the Kolmogorov n-width in H1(Ω) of the solution manifold S(A) implies
corresponding convergence rates of so-called reduced basis approximations which are generated by greedy
searches. We refer to [12] and to the references there.

5 Conclusion

We summarize the main results of the present work, and indication directions for further research. Given
analytic data f and g in (1.1), we established the analytic regularity of the solution u for the semilinear
elliptic equation (1.1) in a polygon with homogeneous Dirichlet and Neumann boundary conditions. The
analytic regularity shifts are shown in scales of corner-weighted spaces of Kondrat’ev type.

The analysis developed here is also capable of dealing with other similar semilinear elliptic problems.
As an example, it is possible to study the analytic regularity of the solution to (1.1) with λu2k+1 replaced
by any polynomial g(u). For this we only need to modify Lemma 3.6 and the corresponding proof so that
they are suitable for any polynomial g(ϕ) rather than λϕ2k+1. Another possibility would be studying
the solution of (1.1) in a curvilinear domain or with −∆u replaced by a general linear, divergence form
second order elliptic operator L(·) defined by L(u) = −∇ · (A(x)∇u) + b(x) · ∇u with analytic in Ω
coefficient matrix A(x) and advection field b(x). The analytic regularity of the solution u also reveals
the potential to develop exponentially convergent numerical approximation methods such as hp-FEM, or
reduced basis approximations based on subspace sequences obtained via greedy algorithms [4]. It also
implies the exponential convergence of quantized, tensor-formatted approximations [13].

A Proof of Lemma 3.3

We firstly set δ = 1. Consider the dyadic partition given by the sets

Sj :=
{
x ∈ Q1,ω : 2−j−1 < r(x) < 2−j

}
, j ∈ N0,

and denote the linear maps Ψj : S
j → S0 representing homothetic scaling. Denote ϕ̂j := ϕ◦Ψ−1

j : S0 → R

and write D̂α for derivation with respect to polar coordinates (r, θ) in S0. Then, by scaling, for any
q ∈ [1,∞) and any γ ∈ R,

∥rγ+α1Dαϕ∥Lq(Sj) = 2−j(γ+2/q)∥rγ+α1D̂αϕ̂∥Lq(S0). (A.1)

Furthermore, the following interpolation inequality holds in S0 [1, Theorem 3]: there exists C0 > 0
depending on k, ω such that for any 2 ≤ l ≤ 2k + 1, it holds that

∀v ∈ H1(S0) : ∥v∥L2l(S0) ≤ C0∥v∥1−1/l
H1(S0)∥v∥

1/l
L2(S0) . (A.2)

Moreover, there also holds for all v ∈ H1(S0),

∥v∥H1(S0) ≤ 2
√
3
(
∥v∥L2(S0) + ∥∂rv∥L2(S0) + ∥∂θv∥L2(S0)

)
. (A.3)

To check this inequality, we have, by elementary Calculus,

∂x1 = cos θ∂r −
sin θ

r
∂θ, ∂x2 = sin θ∂r +

cos θ

r
∂θ.

These relations yield the following bounds:

∥∂x1
v∥L2(S0) ≤ ∥ cos θ∂rv∥L2(S0) + ∥ sin θ

r
∂θv∥L2(S0) ≤ ∥∂rv∥L2(S0) + 2∥∂θv∥L2(S0),
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and

∥∂x2
v∥L2(S0) ≤ ∥ sin θ∂rv∥L2(S0) + ∥cos θ

r
∂θv∥L2(S0) ≤ ∥∂rv∥L2(S0) + 2∥∂θv∥L2(S0).

Therefore,

∥v∥2H1(S0) ≤ ∥v∥2L2(S0) + ∥∂x1
v∥2L2(S0) + ∥∂x2

v∥2L2(S0)

≤ ∥v∥2L2(S0) +
(
∥∂rv∥L2(S0) + 2∥∂θv∥L2(S0)

)2
+

(
∥∂rv∥L2(S0) + 2∥∂θv∥L2(S0)

)2

≤ ∥v∥2L2(S0) + 2∥∂rv∥2L2(S0) + 8∥∂θv∥2L2(S0) + 8∥∂rv∥L2(S0) · ∥∂θv∥L2(S0)

≤ ∥v∥2L2(S0) + 6∥∂rv∥2L2(S0) + 12∥∂θv∥2L2(S0)

≤ 12
(
∥v∥L2(S0) + ∥∂rv∥L2(S0) + ∥∂θv∥L2(S0)

)2
.

Taking the square root on both sides leads to (A.3). Combining (A.2) and (A.3) and choosing v = rα1Dαϕ
give

∥rα1Dαϕ∥L2l(S0)

≤ 12
1
4C0∥rα1Dαϕ∥1/lL2(S0)


∑

|η|≤1

∥Dη(rα1Dαϕ)∥L2(S0)




1−1/l

≤ 12
1
4C0∥rα1Dαϕ∥1/lL2(S0)


∑

|η|≤1

∥rα1Dα+ηϕ∥L2(S0) + α1∥rα1−1Dαϕ∥L2(S0)




1−1/l

.

Therefore, using the bound 2−|a| ≤ r(x)a ≤ 2|a| valid for all x ∈ S0 and all a ∈ R,

∥rβ/l+α1Dαϕ∥L2l(S0) ≤ 2β/l+2−β12
1
4C0∥rβ−2+α1Dαϕ∥1/lL2(S0)

×


∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥L2(S0) + α1∥rβ−2+α1Dαϕ∥L2(S0)




1−1/l

.

Set C1 := 2(β−2)/(2k+1)+2−β ·12 1
4 ·C0. Scaling back to Sj and using (A.1), we arrive at

∥rβ/l+α1Dαϕ∥L2l(Sj) = 2−j(
β
l +1/l)∥rβ/l+α1D̂αϕ̂∥L2l(S0)

≤ 2−j(β/l+1/l)C1∥rβ−2+α1D̂αϕ̂∥1/lL2(S0)

×


∑

|η|≤1

∥rβ−2+α1+η1D̂α+ηϕ̂∥L2(S0) + α1∥rβ−2+α1D̂αϕ̂∥L2(S0)




1−1/l

≤ 2−j(β/l+1/l)4C1∥rβ−2+α1D̂αϕ̂∥1/lL2(S0)

×


∑

|η|≤1

∥rβ−2+α1+η1D̂α+ηϕ̂∥2L2(S0) + α2
1∥rβ−2+α1D̂αϕ̂∥2L2(S0)




1/2−1/2l

≤ 2−j(β/l+1/l−(β−2+1))4C1∥rβ−2+α1Dαϕ∥1/lL2(Sj)

×


∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥2L2(Sj) + α2
1∥rβ−2+α1Dαϕ∥2L2(Sj)




1/2−1/2l

.
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Setting C2 := (β + 1)/l − (β − 2 + 1) > 1− β > 0, we have

∑

j∈N0

∥rβ/l+α1Dαϕ∥2lL2l(Sj)

≤ 1

1− 2−2lC2
(4C1)

2l
∑

j∈N0

∥rβ−2+α1Dαϕ∥2L2(Sj)

×
∑

j∈N0


∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥2L2(Sj) + α2
1∥rβ−2+α1Dαϕ∥2L2(Sj)



l−1

≤ 1

1− 2−2lC2
(4C1)

2l∥rβ−2+α1Dαϕ∥2L2(Q1,ω(c))

×


∑

j∈N0

(
∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥2L2(Sj) + α2
1∥rβ−2+α1Dαϕ∥2L2(Sj))



l−1

≤ 1

1− 2−2lC2
(4C1)

2l∥rβ−2+α1Dαϕ∥2L2(Q1,ω(c))

×


∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥2L2(Q1,ω(c)) + α2
1∥rβ−2+α1Dαϕ∥2L2(Q1,ω(c))



l−1

≤ 1

1− 2−4(1−β)
(4C1)

2l∥rβ−2+α1Dαϕ∥2L2(Q1,ω(c))

×


∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥2L2(Q1,ω(c)) + α2
1∥rβ−2+α1Dαϕ∥2L2(Q1,ω(c))



l−1

≤ 1

1− 2−4(1−β)
(4C1)

2l∥rβ−2+α1Dαϕ∥2L2(Q1,ω(c))

×


∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥
l−1
l

L2(Q1,ω(c)) + α
l−1
l

1 ∥rβ−2+α1Dαϕ∥
l−1
l

L2(Q1,ω(c))




2l

.

Here we used the fact that ∥·∥lp ≤ ∥·∥l1 for any p ≥ 1 where ∥·∥lp denotes the lp-norm of a sequence. Tak-

ing 2l-th root on both sides concludes the proof of the bound in Q1,ω(c) with Cint = ( 1
1−2−4(1−β) )

1
2l (4C1).

To deal with the case δ ̸= 1, we define Φδ : Qδ,ω → Q1,ω(c) as a homothetic mapping, denote

ϕ̃ := ϕ ◦ Φ−1
δ : Q1,ω(c) → R and write D̃α as the differentiation with respect to polar coordinates

(r, θ) in Qδ,ω. We observe that, for any ϕ : Qδ,ω → R, 2 ≤ l ≤ 2k + 1 and any α ∈ N
2
0,

∥r β
l +α1Dαϕ∥L2l(Qδ,ω) = δ

β
l +

1
l ∥r β

l +α1D̃αϕ̃∥L2l(Q1,ω(c))

and
∥rβ−2+α1Dαϕ∥L2(Qδ,ω) = δβ−2+ 1

l ∥rβ−2+α1D̃αϕ̃∥L2(Q1,ω(c)).

By applying the scaling to ϕ and using our result for δ = 1, we have, for general δ,

∥r β
l +α1Dαϕ∥L2l(Qδ,ω) ≤ Cint · δ

β
l −β+2∥rβ−2+α1Dαϕ∥

1
l

L2(Qδ,ω)

· (
∑

|η|≤1

∥rβ−2+α1+η1Dα+ηϕ∥
l−1
l

L2(Qδ,ω) + α
l−1
l

1 ∥rβ−2+α1Dαϕ∥
l−1
l

L2(Qδ,ω)).

Therefore we could choose Cint = δ
β
l −β+2( 1

1−2−4(1−β) )
1
2l (4C1) to complete the proof. □
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B Proof of Lemma 3.5

We fix α and η. There exists a polynomial ψ(r, θ) of at most order |α| + |η| such that for any |γ| ≥ 1
with γ ≤ α+ η

Dγψ(0, 0) = A|γ|−1Eγ2+1(|γ| − 1)!, (B.1)

and there exists a polynomial g(ψ) of at most order 2k + 1 such that

∂ig(ψ)

∂ψi
|ψ=ψ(0,0) = 1

for any 0 < i ≤ 2k + 1. The construction of above polynomials is based on Hermite interpolation: we
take ψ(r, θ) as an example to explain it.

For any γ ≤ α+ η, the following polynomial of order |γ|

ψγ(r, θ) =
1

γ!
rγ1θγ2

satisfies for any α ∈ N
2
0,

Dαψ(0, 0) = δα,γ .

Therefore
ψ =

∑

γ≤α+η,|γ|≥1

A|γ|−1Eγ2+1(|γ| − 1)!ψγ

will be a satisfactory choice for the required polynomial.
The identity (3.2) yields

Dαg(ψ)|(r,θ)=(0,0) =
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)

s∏

i=1

(A|pi|−1Ep
i
2+1(|pi| − 1)!)mi= I[α,A,E].

and

Dα+ηg(ψ)|(r,θ)=(0,0) =
∑

(s,P ,M)∈Dα+η,m≤2k+1

C(s,P ,M)

s∏

i=1

(A|pi|−1Ep
i
2+1(|pi| − 1)!)mi= I[α+η,A,E].

Now we examine Dα+ηg(ψ)|(r,θ)=(0,0) in a different way: Note that

Dα+ηg(ψ)|(r,θ)=(0,0) = Dη(Dαg(ψ))|(r,θ)=(0,0)

=
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)(Dη
s∏

i=1

(Dpiψ)mi)|(r,θ)=(0,0)

+
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)Dηψ|(r,θ)=(0,0) ·
s∏

i=1

(Dpiψ|(r,θ)=(0,0))
mi

=
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)

s∑

i=1

(mi

s∏

j=1

(Dpiψ|(r,θ)=(0,0))
mj−δi,j · Dpi+ηψ|(r,θ)=(0,0))

+
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)Dηψ|(r,θ)=(0,0) ·
s∏

i=1

(Dpiψ|(r,θ)=(0,0))
mi

=
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)

s∑

i=1

(mi

s∏

j=1

(Dpiψ|(r,θ)=(0,0))
mj · (D

pi+ηψ

Dpiψ
)|(r,θ)=(0,0))
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+
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)Dηψ|(r,θ)=(0,0) ·
s∏

i=1

(Dpiψ|(r,θ)=(0,0))
mi

=
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)

s∏

j=1

(Dpiψ|(r,θ)=(0,0))
mj

s∑

i=1

(mi · (
Dpi+ηψ

Dpiψ
)|(r,θ)=(0,0))

+
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)Dηψ|(r,θ)=(0,0) ·
s∏

i=1

(Dpiψ|(r,θ)=(0,0))
mi .

Therefore, by using (B.1) and noting that A > E > 1 we have:

Dα+ηg(ψ)|(r,θ)=(0,0)

≤
∑

(s,P ,M)∈Dα,m≤2k+1

AEη2
s∑

i=1

(mi|pi|)C(s,P ,M)

s∏

j=1

(Dpiψ|(r,θ)=(0,0))
mi

+
∑

(s,P ,M)∈Dα,m≤2k+1

Eη2+1C(s,P ,M)

s∏

j=1

(Dpiψ|(r,θ)=(0,0))
mi

= (|α|AEη2 + Eη2+1)
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)

s∏

j=1

(Dpiψ|(r,θ)=(0,0))
mi

≤ (|α|+ 1)AEη2
∑

(s,P ,M)∈Dα,m≤2k+1

C(s,P ,M)

s∏

j=1

(Dpiψ|(r,θ)=(0,0))
mi

= (|α|+ 1)AEη2I[α,A,E].

which is exactly what we want to prove. □
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