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Abstract

We present Gradient Gating (G2), a novel framework for improving the performance of
Graph Neural Networks (GNNs). Our framework is based on gating the output of GNN
layers with a mechanism for multi-rate flow of message passing information across nodes of the
underlying graph. Local gradients are harnessed to further modulate message passing updates.
Our framework flexibly allows one to use any basic GNN layer as a wrapper around which
the multi-rate gradient gating mechanism is built. We rigorously prove that G2 alleviates the
oversmoothing problem and allows the design of deep GNNs. Empirical results are presented
to demonstrate that the proposed framework achieves state-of-the-art performance on a variety
of graph learning tasks, including on large-scale heterophilic graphs.

1 Introduction

Learning tasks involving graph structured data arise in a wide variety of problems in science and
engineering. Graph Neural Networks (GNNs) (Sperduti, 1994; Goller & Kuchler, 1996; Sperduti
& Starita, 1997; Frasconi et al., 1998; Gori et al., 2005; Scarselli et al., 2008; Bruna et al., 2014;
Defferrard et al., 2016; Kipf & Welling, 2017; Monti et al., 2017; Gilmer et al., 2017) are a popular
deep learning architecture for graph-structured and relational data. GNNs have been successfully
applied in domains including computer vision and graphics (Monti et al., 2017), recommender
systems (Ying et al., 2018), transportation (Derrow-Pinion et al., 2021), computational chemistry
(Gilmer et al., 2017), drug discovery (Gaudelet et al., 2021), particle physics (Shlomi et al., 2020)
and social networks. See Zhou et al. (2019); Bronstein et al. (2021) for extensive reviews.

Despite the widespread success of GNNs and a plethora of different architectures, several
fundamental problems still impede their efficiency on realistic learning tasks. These include the
bottleneck (Alon & Yahav, 2021), oversquashing (Topping et al., 2021), and oversmoothing (Nt &
Maehara, 2019; Oono & Suzuki, 2020) phenomena. Oversmoothing refers to the observation that
all node features in a deep (multi-layer) GNN converge to the same constant value as the number of
layers is increased. Thus, and in contrast to standard machine learning frameworks, oversmoothing
inhibits the use of very deep GNNs for learning tasks. These phenomena are likely responsible for
the unsatisfactory empirical performance of traditional GNN architectures in heterophilic datasets,
where the features or labels of a node tend to be different from those of its neighbors (Zhu et al.,
2020).

Given this context, our main goal is to present a novel framework that alleviates the oversmooth-
ing problem and allows one to implement very deep multi-layer GNNs that can significantly improve
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performance in the setting of heterophilic graphs. Our starting point is the observation that in
standard Message-Passing GNN architectures (MPNNs), such as GCN (Kipf & Welling, 2017) or
GAT (Velickovic et al., 2018), each node gets updated at exactly the same rate within every hidden
layer. Yet, realistic learning tasks might benefit from having different rates of propagation (flow)
of information on the underlying graph. This insight leads to a novel multi-rate message passing
scheme capable of learning these underlying rates. Moreover, we also propose a novel procedure
that harnesses graph gradients to ameliorate the oversmoothing problem. Combining these elements
leads to a new architecture described in this paper, which we term Gradient Gating (G2).

Main Contributions. We will demonstrate the following advantages of the proposed approach:

• G2 is a flexible framework wherein any standard message-passing layer (such as GAT, GCN,
GIN, or GraphSAGE) can be used as the coupling function. Thus, it should be thought of as a
framework into which one can plug existing GNN components. The use of multiple rates and
gradient gating facilitates the implementation of deep GNNs and generally improves performance.

• G2 can be interpreted as a discretization of a dynamical system governed by nonlinear differential
equations. By investigating the stability of zero-Dirichlet energy steady states of this system, we
rigorously prove that our gradient gating mechanism prevents oversmoothing. To complement
this, we also prove a partial converse, that the lack of gradient gating can lead to oversmoothing.

• We provide extensive empirical evidence demonstrating that G2 achieves state-of-the-art perfor-
mance on a variety of graph learning tasks, including on large heterophilic graph datasets.

2 Gradient Gating

Let G = (V, E ⊆ V × V) be an undirected graph with |V| = v nodes and |E| = e edges (unordered
pairs of nodes {i, j} denoted i ∼ j). The 1-neighborhood of a node i is denoted Ni = {j ∈ V : i ∼ j}.
Furthermore, each node i is endowed with an m-dimensional feature vector Xi; the node features
are arranged into a v ×m matrix X = (Xik) with i = 1, . . . , v and k = 1, . . . ,m.

A typical residual Message-Passing GNN (MPNN) updates the node features by performing
several iterations of the form,

Xn = Xn−1 + σ(Fθ(X
n−1,G)), (1)

where Fθ is a learnable function with parameters θ, and σ is an element-wise non-linear activation
function. Here n ≥ 1 denotes the n-th hidden layer with n = 0 being the input.

One can interpret (1) as a discrete dynamical system in which F plays the role of a coupling
function determining the interaction between different nodes of the graph. In particular, we consider
local (1-neighborhood) coupling of the form Yi = (F(X,G))i = F(Xi, {{Xj∈Ni

}}) operating on
the multiset of 1-neighbors of each node. Examples of such functions used in the graph machine
learning literature (Bronstein et al., 2021) are graph convolutions Yi =

∑

j∈Ni
cijXj (GCN, (Kipf

& Welling, 2017)) and graph attention Yi =
∑

j∈Ni
a(Xi,Xj)Xj (GAT, (Velickovic et al., 2018)).

We observe that in (1), at each hidden layer, every node and every feature channel gets updated
with exactly the same rate. However, it is reasonable to expect that in realistic graph learning
tasks one can encounter multiple rates for the flow of information (node updates) on the graph.
Based on this observation, we propose a multi-rate (MR) generalization of (1), allowing updates
to each node of the graph and feature channel with different rates,

Xn = (1− τ
n)⊙Xn−1 + τ

n ⊙ σ(Fθ(X
n−1,G)), (2)

where τ denotes a v ×m matrix of rates with elements τik ∈ [0, 1]. Rather than fixing τ prior
to training, we aim to learn the different update rates based on the node data X and the local
structure of the underlying graph G, as follows

τ
n(Xn−1,G) = σ̄(F̂

θ̂
(Xn−1,G)), (3)
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where F̂
θ̂
is another learnable 1-neighborhood coupling function, and σ̄ is a sigmoidal logistic

activation function to constrain the rates to lie within [0, 1]. Since the multi-rate message-passing
scheme (2) using (3) does not necessarily prevent oversmoothing (for any choice of the coupling
function), we need to further constrain the rate matrix τ

n. To this end, we note that the graph
gradient of scalar node features y on the underlying graph G is defined as (∇y)ij = yj − yi at
the edge i ∼ j (Lim, 2015). Next, we will use graph gradients to obtain the proposed Gradient
Gating (G2) framework given by

τ̂
n = σ(F̂θ(X

n−1,G)),

τ
n
ik = tanh




∑

j∈Ni

|τ̂n
jk − τ̂

n
ik|

p



 ,

Xn = (1− τ
n)⊙Xn−1 + τ

n ⊙ σ(Fθ(X
n−1,G)),

(4)

where τ̂
n
jk − τ̂

n
ik = (∇τ̂

n
∗k)ij denotes the graph-gradient and τ̂

n
∗k is the k-th column of the rate

matrix τ̂
n and p ≥ 0. Since

∑

j∈Ni
|τ̂n

jk − τ̂
n
ik|

p ≥ 0 for all i ∈ V, it follows that τn ∈ [0, 1]v×m for
all n, retaining its interpretation as a matrix of rates. The sum over the neighborhood Ni in (4)
can be replaced by any permutation-invariant aggregation function (e.g., mean or max). Moreover,

any standard message-passing procedure can be used to define the coupling functions F and F̂
(and, in particular, one can set F̂ = F). As an illustration, Fig. 1 shows a schematic diagram of the
layer-wise update of the proposed G2 architecture.

Xn−1 Xn

Figure 1: Schematic diagram of G2 (4) showing the layer-
wise update of the latent node features X (at layer n). The
norm of the graph-gradient (i.e., sum in second equation in
(4)) is denoted as ‖∇‖pp.

The intuitive idea behind gradient gating in (4) is the following: If for any node i ∈ V local
oversmoothing occurs, i.e., limn→∞

∑

j∈Ni
‖Xn

i −Xn
j ‖ = 0, then G2 ensures that the corresponding

rate τn
i goes to zero (at a faster rate), such that the underlying hidden node feature Xi is no longer

updated. This prevents oversmoothing by early-stopping of the message passing procedure.

3 Properties of G2-GNN

G2 is a flexible framework. An important aspect of G2 (4) is that it can be considered as a
“wrapper” around any specific MPNN architecture. In particular, the hidden layer update for any
form of message passing (e.g., GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018), GIN
(Xu et al., 2018) or GraphSAGE (Hamilton et al., 2017)) can be used as the coupling functions

F, F̂ in (4). By setting τ ≡ I, (4) reduces to

Xn = σ
(
Fθ(X

n−1,G)
)
, (5)
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a standard (non-residual) MPNN. As we will show in the following, the use of a non-trivial
gradient-gated learnable rate matrix τ allows implementing very deep architectures that avoid
oversmoothing.

Maximum Principle for node features. Node features produced by G2 satisfy the following
Maximum Principle.

Proposition 3.1. Let Xn be the node feature matrix generated by iteration formula (4). Then,
the features are bounded as follows:

min (−1, σ) ≤ Xn
ik ≤ max (1, σ) , ∀1 ≤ n, (6)

where the scalar activation function is bounded by σ ≤ σ(z) ≤ σ for all z ∈ R.

The proof follows readily from writing (4) component-wise and using the fact that 0 ≤ τ
n
ik ≤ 1,

for all 1 ≤ i ≤ v, 1 ≤ k ≤ m and 1 ≤ n.

Continuous limit of G2. It has recently been shown (see Avelar et al. (2019); Poli et al. (2019);
Zhuang et al. (2020); Xhonneux et al. (2020); Chamberlain et al. (2021a); Eliasof et al. (2021);
Chamberlain et al. (2021b); Topping et al. (2021); Rusch et al. (2022a) and references therein)
that interesting properties of GNNs (with residual connections) can be understood by taking the
continuous (infinite-depth) limit and analyzing the resulting differential equations.

In this context, we can derive a continuous version of (4) by introducing a small-scale 0 < ∆t < 1
and rescaling the rate matrix τ

n to ∆tτn leading to

Xn = (1−∆tτn)⊙Xn−1 +∆tτn ⊙ σ
(
Fθ(X

n−1,G)
)
. (7)

Rearranging the terms in (7), we obtain

Xn −Xn−1

∆t
= τ

n ⊙
(
σ
(
Fθ(X

n−1,G)
)
−Xn−1

)
. (8)

Interpreting Xn ≈ X(n∆t) = X(tn), i.e., marching in time, corresponds to increasing the number
of hidden layers. Letting ∆t → 0, one obtains the following system of graph-coupled ordinary
differential equations (ODEs):

dX(t)

dt
= τ (t)⊙ (σ (Fθ(X(t),G))−X(t)) , ∀t ≥ 0,

τik(t) = tanh




∑

j∈Ni

|τ̂ik(t)− τ̂jk(t)|
p



 ,

τ̂ (t) = σ̂(F̂
θ̂
(Xn−1,G)).

(9)

We observe that the iteration formula (4) acts as a forward Euler discretization of the ODE system
(9). Hence, one can follow Chamberlain et al. (2021a) and design more general (e.g., higher-order,
adaptive, or implicit) discretizations of the ODE system (9). All these can be considered as design
extensions of (4).

Oversmoothing. Using the interpretation of (4) as a discretization of the ODE system (9), we
can adapt the mathematical framework recently proposed in Rusch et al. (2022a) to study the
oversmoothing problem. In order to formally define oversmoothing, we introduce the Dirichlet
energy defined on the node features X of an undirected graph G as

E(X) =
1

v

∑

i∈V

∑

j∈Ni

‖Xi −Xj‖
2. (10)
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Following Rusch et al. (2022a), we say that the scheme (9) oversmoothes if the Dirichlet energy
decays exponentially fast,

E(X(t)) ≤ C1e
−C2t, ∀t > 0, (11)

for some C1,2 > 0. In particular, the discrete version of (11) implies that oversmoothing happens
when the Dirichlet energy, decays exponentially fast as the number of hidden layers increases
((Rusch et al., 2022a) Definition 3.2).

Next, one can prove the following proposition further characterizing oversmoothing with the
standard terminology of dynamical systems (Wiggins, 2003).

Proposition 3.2. The oversmoothing problem occurs for the ODEs (9) iff the hidden states X∗
i = c,

for all i ∈ V are exponentially stable steady states (fixed points) of the ODE (9), for some c ∈ R
m.

In other words, for the oversmoothing problem to occur for this system, all the trajectories of the
ODE (9) that start within the corresponding basin of attraction have to converge exponentially fast
in time (according to (11)) to the corresponding steady state c. Note that the basins of attraction
will be different for different values of c. The proof of this Proposition is a straightforward adaptation
of the proof of Proposition 3.3 of Rusch et al. (2022a).

Given this precise formulation of oversmoothing, we will investigate whether and how gradient
gating in (9) can prevent oversmoothing. For simplicity, we set m = 1 to consider only scalar node
features (extension to vector node features is straightforward). Moreover, we assume coupling
functions of the form F(X) = A(X)X, expressed element-wise as (see also Chamberlain et al.
(2021a); Rusch et al. (2022a)),

(F(X))i =
∑

j∈Ni

A(Xi,Xj)Xj . (12)

Here, A(X) is a matrix-valued function whose form covers many commonly used coupling functions
stemming from the graph attention (GAT, where Aij = A(Xi,Xj) is learnable) or convolution
operators (GCN, where Aij is fixed). Furthermore, the matrices are right stochastic, i.e., the entries
satisfy

0 ≤ Aij ≤ 1,
∑

j∈Ni

Aij = 1. (13)

Finally, as the multi-rate feature of (9) has no direct bearing on the oversmoothing problem, we
focus on the contribution of the gradient feedback term. To this end, we deactivate the multi-rate
aspects and assume that τ̂i = Xi for all i ∈ V, leading to the following form of (9):

dXi(t)

dt
= τi(t)



σ




∑

j∈Ni

AijXj(t)



−Xi(t)



 , ∀t ≥ 0,

τi(t) = tanh




∑

j∈Ni

‖Xj(t)−Xi(t)‖
p



 .

(14)

Lack of G2 can lead to oversmoothing. We first consider the case where the Gradient Gating
is switched off by setting p = 0 in (14). This yields a standard GNN in which node features are
evolved through message passing between neighboring nodes, without any explicit information about
graph gradients. We further assume that the activation function is ReLU i.e., σ(x) = max(x, 0).
Given this setting, we have the following proposition on oversmoothing:

Proposition 3.3. Assume the underlying graph G is connected. For any c ≥ 0, let X∗
i ≡ c, for all

i ∈ V be a (zero-Dirichlet energy) steady state of the ODEs (14). Moreover, assume no Gradient
Gating (p = 0 in (14)) and

Aij(c, c) = Aji(c, c), and Aij(c, c) ≥ a, 1 ≤ i, j ≤ v, (15)
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with 0 < a ≤ 1 and that there exists at least one node denoted w.l.o.g. with index 1 such that
X1(t) ≡ c, for all t ≥ 0. Then, the steady state X∗

i = c, for all i ∈ V, of (14) is exponentially
stable.

Proposition 3.2 implies that without gradient gating (G2), (9) can lead to oversmoothing. The
proof, presented in SM C.1 relies on analyzing the time-evolution of small perturbations around
the steady state c and showing that these perturbations decay exponentially fast in time (see (19)).

G2 prevents oversmoothing. We next investigate the effect of Gradient Gating in the same
setting of Proposition 3.3. The following Proposition shows that gradient gating prevents over-
smoothing:

Proposition 3.4. Assume the underlying graph G is connected. For any c ≥ 0 and for all i ∈ V,
let X∗

i ≡ c be a (zero-Dirichlet energy) steady state of the ODEs (14). Moreover, assume Gradient
Gating (p > 0) and that the matrix A in (14) satisfies (15) and that there exists at least one node
denoted w.l.o.g. with index 1 such that X1(t) ≡ c, for all t ≥ 0. Then, the steady state X∗

i = c, for
all i ∈ V is not exponentially stable.

The proof, presented in SM C.2 clearly elucidates the role of gradient gating by showing that
the energy associated with the quasi-linearized evolution equations (SM Eqn. (20)) is balanced
by two terms (SM Eqn. (22)), both resulting from the introduction of gradient gating by setting
p > 0 in (14). One of them is of indefinite sign and can even cause growth of perturbations around
a steady state c. The other decays initial perturbations. However, the rate of this decay is at
most polynomial (SM Eqn. (27)). For instance, the decay is merely linear for p = 2 and slower
for higher values of p. Thus, the steady state c cannot be exponentially stable and oversmoothing
is prevented. This justifies the intuition behind gradient gating, namely, if oversmoothing occurs
around a node i, i.e., limn→∞

∑

j∈Ni
‖Xn

i −Xn
j ‖ = 0, then the corresponding rate τ

n
i goes to zero

(at a faster rate), such that the underlying hidden node feature Xi stops getting updated.

4 Experimental Results

In this section, we present an experimental study of G2 on both synthetic and real datasets. We use
G2 with three different coupling functions: GCN (Kipf & Welling, 2017), GAT (Velickovic et al.,
2018) and GraphSAGE (Hamilton et al., 2017). The code can be found at https://github.com/tk-
rusch/gradientgating.

Effect of G2 on Dirichlet energy. Given that oversmoothing relates to the decay of Dirichlet
energy (11), we follow the experimental setup proposed by Rusch et al. (2022a) to probe the
dynamics of the Dirichlet energy of Gradient-Gated GNNs, defined on a 2-dimensional 10 × 10
regular grid with 4-neighbor connectivity. The node features X are randomly sampled from U([0, 1])
and then propagated through a 1000-layer GNN with random weights. We compare GAT, GCN
and their gradient-gated versions (G2-GAT and G2-GCN) in this experiment. Fig. 2 depicts on
log-log scale the Dirichlet energy of each layer’s output with respect to the layer number. We clearly
observe that GAT and GCN oversmooth as the underlying Dirichlet energy converges exponentially
fast to zero, resulting in the node features becoming indistinguishable. In practice, the Dirichlet
energy for these architectures is ≈ 0 after just ten hidden layers. On the other hand, and as
suggested by the theoretical results of the previous section, adding G2 decisively prevents this
behavior and the Dirichlet energy remains (near) constant, even for very deep architectures (up to
1000 layers).

G2 for very deep GNNs. Oversmoothing inhibits the use of large number of GNN layers. As
G2 is designed to alleviate oversmoothing, it should allow very deep architectures. To test this
assumption, we reproduce the experiment considered in Chamberlain et al. (2021a): a node-level
classification task on the Cora dataset using increasingly deeper GCN architectures. In addition to
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Figure 2: Dirichlet energy E(Xn) of layer-wise
node features Xn propagated through a GAT,
GCN and their gradient gated versions (G2-
GAT, G2-GCN).
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Figure 3: Test accuracies of GCN with gradient
gating (G2-GCN) as well as plain GCN and
GCN combined with other methods on the Cora
dataset for increasing number of layers.

G2, we also compare with two recently proposed mechanisms to alleviate oversmoothing, DropEdge
(Rong et al., 2020) and GraphCON (Rusch et al., 2022a). The results are presented in Fig. 3,
where we plot the test accuracy for all the models with the number of layers ranging from 2 to
128. While a plain GCN seems to suffer the most from oversmoothing (with the performance
rapidly deteriorating after 8 layers), GCN+DropEdge as well as GCN+GraphCON are able to
mitigate this behavior to some extent, although the performance eventually starts dropping (after
16 and 64 layers, respectively). In contrast, G2-GCN exhibits a small but noticeable increase in
performance for increasing number of layers, reaching its peak performance for 128 layers. This
experiment suggests that G2 can indeed be used in conjunction with deep GNNs, potentially
allowing performance gains due to depth.

Table 1: Normalized test MSE on multi-
scale node-level regression tasks.

Chameleon Squirrel
#Nodes 2,277 5,201
#Edges 31,421 198,493

GCN 0.207± 0.039 0.143± 0.039
G2-GCN 0.137± 0.033 0.070± 0.028

GAT 0.207± 0.038 0.143± 0.039
G2-GAT 0.136± 0.029 0.069± 0.029

G2 for multi-scale node-level regression. We test
the multi-rate nature of G2 on node-level regression tasks,
where the target node values exhibit multiple scales. Due
to a lack of widely available node-level regression tasks, we
propose regression experiments based on the Wikipedia
article networks Chameleon and Squirrel, (Rozemberczki
et al., 2021). While Chameleon and Squirrel are already
widely used as heterophilic node-level classification tasks,
the original datasets consist of continuous node targets
(average monthly web-page traffic). We normalize the
provided webpage traffic values for every node between
0 and 1 and note that the resulting node values exhibit
values on a wide range of different scales ranging between 10−5 and 1 (see Fig. 4). Table 1 shows
the test normalized mean-square error (mean and standard deviation based on the ten pre-defined
splits in Pei et al. (2020)) for two standard GNN architectures (GCN and GAT) with and without
G2. We observe from Table 1 that adding G2 to the baselines significantly reduces the error,
demonstrating the advantage of using multiple update rates.

G2 for varying homophily (Synthetic Cora). We test G2 on a node-level classification task
with varying levels of homophily on the synthetic Cora dataset Zhu et al. (2020). Standard GNN
models are known to perform poorly in heterophilic settings. This can be seen in Fig. 5, where we
present the classification accuracy of GCN and GAT on the synthetic-Cora dataset with a level
of homophily varying between 0 and 0.99. While these models succeed in the homophilic case
(reaching nearly perfect accuracy), their performance drops to ≈ 20% when the level of homophily
approaches 0. Adding G2 to GCN or GAT mitigates this phenomenon: the resulting models reach a
test accuracy of over 80%, even in the most heterophilic setting, thus leading to a four-fold increase
in the accuracy of the underlying GCN or GAT models. Furthermore, we notice an increase in
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Figure 5: Test accuracy of GCN and GAT with /
without gradient gating (G2) on synthetic Cora
with a varying level of true label homophily.

performance even in the homophilic setting. Moreover, we compare with a state-of-the-art model
GGCN (Yan et al., 2021), which has been recently proposed to explicitly deal with heterophilic
graphs. From Fig. 5 we observe that G2 performs on par and slightly better than GGCN in strongly
heterophilic settings.

Table 2: Results on heterophilic graphs. The three best performing methods are highlighted in red
(First), blue (Second), and violet (Third).

Texas Wisconsin Film Squirrel Chameleon Cornell
Hom level 0.11 0.21 0.22 0.22 0.23 0.30
#Nodes 183 251 7,600 5,201 2,277 183
#Edges 295 466 26,752 198,493 31,421 280
#Classes 5 5 5 5 5 5

GGCN 84.86± 4.55 86.86± 3.29 37.54± 1.56 55.17± 1.58 71.14± 1.84 85.68± 6.63
GPRGNN 78.38± 4.36 82.94± 4.21 34.63± 1.22 31.61± 1.24 46.58± 1.71 80.27± 8.11
H2GCN 84.86± 7.23 87.65± 4.98 35.70± 1.00 36.48± 1.86 60.11± 2.15 82.70± 5.28
FAGCN 82.43± 6.89 82.94± 7.95 34.87± 1.25 42.59± 0.79 55.22± 3.19 79.19± 9.79
MixHop 77.84± 7.73 75.88± 4.90 32.22± 2.34 43.80± 1.48 60.50± 2.53 73.51± 6.34
GCNII 77.57± 3.83 80.39± 3.40 37.44± 1.30 38.47± 1.58 63.86± 3.04 77.86± 3.79
Geom-GCN 66.76± 2.72 64.51± 3.66 31.59± 1.15 38.15± 0.92 60.00± 2.81 60.54± 3.67
PairNorm 60.27± 4.34 48.43± 6.14 27.40± 1.24 50.44± 2.04 62.74± 2.82 58.92± 3.15
GraphSAGE 82.43± 6.14 81.18± 5.56 34.23± 0.99 41.61± 0.74 58.73± 1.68 75.95± 5.01
GCN 55.14± 5.16 51.76± 3.06 27.32± 1.10 31.52± 0.71 38.44± 1.92 60.54± 5.30
GAT 52.16± 6.63 49.41± 4.09 27.44± 0.89 36.77± 1.68 48.36± 1.58 61.89± 5.05
MLP 80.81± 4.75 85.29± 3.31 36.53± 0.70 28.77± 1.56 46.21± 2.99 81.89± 6.40

G2-GAT 84.59± 5.55 87.65± 4.64 37.30± 0.87 46.48± 1.41 64.12± 1.96 87.30± 4.84
G2-GCN 84.86± 3.24 87.06± 3.19 37.09± 1.16 39.62± 2.91 55.83± 2.88 86.49± 5.27
G2-GraphSAGE 87.57± 3.86 87.84± 3.49 37.14± 1.01 64.26± 2.38 71.40± 2.38 86.22± 4.90

Heterophilic datasets. In Table 2, we test the proposed framework on several real-world
heterophilic graphs (with a homophily level of ≤ 0.30) (Pei et al., 2020; Rozemberczki et al., 2021)
and benchmark it against baseline models GraphSAGE (Hamilton et al., 2017), GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2018) and MLP (Goodfellow et al., 2016), as well as recent
state-of-the-art models on heterophilic graph datasets, i.e., GGCN (Yan et al., 2021), GPRGNN
(Chien et al., 2020b), H2GCN (Zhu et al., 2020), FAGCN (Bo et al., 2021), MixHop (Abu-El-Haija
et al., 2019), GCNII (Chen et al., 2020), Geom-GCN (Pei et al., 2020), PairNorm (Zhao & Akoglu,
2019). We can observe that G2 added to GCN, GAT or GraphSAGE outperforms all other methods
(in particular recent methods such as GGCN, GPRGNN, H2GCN that were explicitly designed to
solve heterophilic tasks). Moreover, adding G2 to the underlying base GNN model improves the
results on average by 45.75% for GAT, 45.4% for GCN and 18.6% for GraphSAGE. Finally, we
wish to highlight that G2-GraphSAGE outperforms the current state-of-the-art on the Squirrel
dataset by over 16.5%.
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Table 3: Results on large-scale datasets.

snap-patents arXiv-year genius
Hom level 0.07 0.22 0.61
#Nodes 2,923,922 169,343 421,961
#Edges 13,975,788 1,166,243 984,979
#Classes 5 5 2

MLP 31.34± 0.05 36.70± 0.21 86.68± 0.09
GCN 45.65± 0.04 46.02± 0.26 87.42± 0.37
GAT 45.37± 0.44 46.05± 0.51 55.80± 0.87
MixHop 52.16± 0.09 51.81± 0.17 90.58± 0.16
LINKX 61.95± 0.12 56.00± 1.34 90.77± 0.27
LINK 60.39± 0.07 53.97± 0.18 73.56± 0.14
GCNII 37.88± 0.69 47.21± 0.28 90.24± 0.09
APPNP 32.19± 0.07 38.15± 0.26 85.36± 0.62
GloGNN 62.09± 0.27 54.68± 0.34 90.66± 0.11
GPR-GNN 40.19± 0.03 45.07± 0.21 90.05± 0.31
ACM-GCN 55.14± 0.16 47.37± 0.59 80.33± 3.91

G2-GraphSAGE 69.50± 0.39 63.30± 1.84 90.85± 0.64

Large-scale graphs. Given the ex-
ceptional performance of G2- Graph-
SAGE on small and medium sized het-
erophilic graphs, we test the proposed
G2 (applied to GraphSAGE, i.e., G2-
GraphSAGE) on large-scale datasets.
To this end, we consider three differ-
ent experiments based on large graphs
from Lim et al. (2021a), which range
from highly heterophilic (homophily
level of 0.07) to fairly homophilic (ho-
mophily level of 0.61). The sizes range
from large graphs with ∼170K nodes
and ∼1M edges to a very large graph
with ∼3M nodes and ∼14M edges.

Table 3 shows the results of G2-
GraphSAGE together with other stan-
dard GNNs, as well as recent state-of-the-art models, i.e., MLP(Goodfellow et al., 2016), GCN
(Kipf & Welling, 2017), GAT (Velickovic et al., 2018), MixHop (Abu-El-Haija et al., 2019), LINK(X)
(Lim et al., 2021b), GCNII (Chen et al., 2020), APPNP (Klicpera et al., 2018), GloGNN (Li
et al., 2022), GPR-GNN (Chien et al., 2020a) and ACM-GCN (Luan et al., 2021). We can see
that G2-GraphSAGE significantly outperforms current state-of-the-art (by up to 13%) on the two
heterophilic graphs (i.e., snap-patents and arXiv-year). Moreover, G2-GraphSAGE is on-par with
the current state-of-the-art on the homophilic graph dataset genius.

We conclude that the proposed gradient gating method can successfully be scaled up to large
graphs, reaching state-of-the-art performance, in particular on heterophilic graph datasets.

5 Related Work

Gating. Gating is a key component of our proposed framework. The use of gating (i.e., the
modulation between 0 and 1) of hidden layer outputs has a long pedigree in neural networks and
sequence modeling. In particular, classical recurrent neural network (RNN) architectures such as
LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Cho et al., 2014) rely on gates to modulate
information propagation in the RNN. Given the connections between RNNs and early versions of
GNNs (Zhou et al., 2019), it is not surprising that the idea of gating has been used in designing
GNNs Bresson & Laurent (2017); Li et al. (2016). However, to the best of our knowledge, the use
of local graph-gradients to further modulate gating in order to alleviate the oversmoothing problem
is novel, and so is its theoretical analysis.

Multi-scale methods. The multi-rate gating procedure used in G2 is a particular example of
multi-scale mechanisms. The use of multi-scale neural network architectures has a long history.
An early example is Hinton & Plaut (1987), who proposed a neural network with each connection
having a fast changing weight for temporary memory and a slow changing weight for long-term
learning. The classical convolutional neural networks (CNNs, LeCun et al. (1989)) can be viewed as
multi-scale architectures for processing multiple spatial scales in images (Bai et al., 2020). Moreover,
there is a close connection between our multi-rate mechanism (4) and the use of multiple time
scales in recently proposed sequence models such as UnICORNN (Rusch & Mishra, 2021) and long
expressive memory (LEM) (Rusch et al., 2022b).

Neural differential equations. Ordinary and partial differential equations (ODEs and PDEs)
are playing an increasingly important role in designing, interpreting, and analyzing novel graph
machine learning architectures Avelar et al. (2019); Poli et al. (2019); Zhuang et al. (2020); Xhonneux
et al. (2020). Chamberlain et al. (2021a) designed attentional GNNs by discretizing parabolic
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diffusion-type PDEs. Di Giovanni et al. (2022) interpreted GCNs as gradient flows minimizing a
generalized version of the Dirichlet energy. Chamberlain et al. (2021b) applied a non-Euclidean
diffusion equation (“Beltrami flow”) yielding a scheme with adaptive spatial derivatives (“graph
rewiring”), and Topping et al. (2021) studied a discrete geometric PDE similar to Ricci flow to
improve information propagation in GNNs. Eliasof et al. (2021) proposed a GNN framework arising
from a mixture of parabolic (diffusion) and hyperbolic (wave) PDEs on graphs with convolutional
coupling operators, which describe dissipative wave propagation. Finally, Rusch et al. (2022a)
used systems of nonlinear oscillators coupled through the associated graph structure to rigorously
overcome the oversmoothing problem. In line with these works, one contribution of our paper is a
continuous version of G2 (9), which we used for a rigorous analysis of the oversmoothing problem.
Understanding whether this system of ODEs has an interpretation as a known physical model is a
topic for future research.

6 Discussion

We have proposed a novel framework, termed G2, for efficient learning on graphs. G2 builds on
standard MPNNs, but seeks to overcome their limitations. In particular, we focus on the fact
that for standard MPNNs such as GCN or GAT, each node (in every hidden layer) is updated at
the same rate. This might inhibit efficient learning of tasks where different node features would
need to be updated at different rates. Hence, we equip a standard MPNN with gates that amount
to a multi-rate modulation for the hidden layer output in (4). This enables multiple rates (or
scales) of flow of information across a graph. Moreover, we leverage local (graph) gradients to
further constrain the gates. This is done to alleviate oversmoothing where node features become
indistinguishable as the number of layers is increased.

By combining these ingredients, we present a very flexible framework (dubbed G2) for graph
machine learning wherein any existing MPNN hidden layer can be employed as the coupling function
and the multi-rate gradient gating mechanism can be built on top of it. Moreover, we also show that
G2 corresponds to a time-discretization of a system of ODEs (9). By studying the (in)-stability of
the corresponding zero-Dirichlet energy steady states we rigorously prove that gradient gating can
mitigate the oversmoothing problem, paving the way for the use of very deep GNNs within the
G2 framework. In contrast, the lack of gradient gating is shown to lead to oversmoothing.

We also present an extensive empirical evaluation to illustrate different aspects of the proposed
G2 framework. Starting with synthetic, small-scale experiments, we demonstrate that i) G2 can
prevent oversmoothing by keeping the Dirichlet energy constant, even for a very large number
of hidden layers, ii) this feature allows us to deploy very deep architectures and to observe that
the accuracy of classification tasks can increase with increasing number of hidden layers, iii) the
multi-rate mechanism significantly improves performance on node regression tasks when the node
features are distributed over a range of scales, and iv) G2 is very accurate at classification on
heterophilic datasets, witnessing an increasing gain in performance with increasing heterophily.

This last feature was more extensively investigated, and we observed that G2 can significantly
outperform baselines as well as recently proposed methods on both benchmark medium-scale and
large-scale heterophilic datasets, achieving state-of-the-art performance. Thus, by a combination
of theory and experiments, we demonstrate that the G2-framework is a promising approach for
learning on graphs.

Future work. As future work, we would like to better understand the continuous limit of G2,
i.e., the ODEs (9), especially in the zero spatial-resolution limit and investigate if the resulting
continuous equations have interesting geometric and analytical properties. Moreover, we would
like to use G2 for solving scientific problems, such as in computational chemistry or the numerical
solutions of PDEs. Finally, the promising results for G2 on large-scale graphs encourage us to use
it for even larger industrial-scale applications.

10



Acknowledgements.

The research of TKR and SM was performed under a project that has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (Grant Agreement No. 770880). MM would like to acknowledge the IARPA
(contract W911NF20C0035), NSF, and ONR for providing partial support of this work. MB is
supported in part by ERC Grant No. 724228 (LEMAN).

References

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learning,
pp. 21–29. PMLR, 2019.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In ICML, 2021.

P. H. C. Avelar, A. R. Tavares, , M. Gori, and L. C. Lamb. Discrete and continuous deep residual
learning over graphs. arXiv preprint, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. In Advances
in Neural Information Processing Systems, pp. 770–778, 2020.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in
graph convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 3950–3957, 2021.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv:1711.07553, 2017.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
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Supplementary Material for:
Gradient Gating for Deep Multi-Rate Learning on Graphs

A Additional experiments

In this section, we describe additional empirical results to complement those in the main text.

On the multi-rate effect of G2. Here, we analyze the performance of G2 on the multi-scale
node-level regression task of the main text. As we see in the main text, G2 applied to GCN or GAT
outperforms their plain counterparts (GCN and GAT) on the multi-scale node-level regression task
by more than 50% on Chameleon and more than 100% on Squirrel. The question therefore arises
whether this better performance can be explained by the multi-rate nature of gradient gating.

To empirically analyse this, we begin by adding a control parameter α to G2 (4) as follows,

Xn = (1− (τn)
α
)⊙Xn−1 + (τn)

α ⊙ σ(Fθ(X
n−1,G)).

Clearly, setting α = 1 recovers the original gradient gating message-passing update,

Xn = (1− τ
n)⊙Xn−1 + τ

n ⊙ σ(Fθ(X
n−1,G)),

while setting α = 0 disables any explicit multi-rate behavior and a plain message-passing scheme is
recovered,

Xn = σ(Fθ(X
n−1,G)).

Note that by continuously changing α from 0 to 1 controls the level of multi-rate behavior in the
proposed gradient gating method.

In Fig. 6 we plot the test NMSE of the best performing G2-GCN and G2-GAT on the Chameleon
multi-scale node-level regression task for increasing values of α ∈ [10−3, 1] in log-scale. We can
see that the test NMSE monotonically decreases (lower error means better performance) for both
G2-GCN and G2-GAT for increasing values of α, i.e., increasing level of multi-rate behavior. We
can conclude that the multi-rate behavior of G2 is instrumental in successfully learning multi-scale
regression tasks.
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Figure 6: Test NMSE on the multi-scale
chameleon node-level regression task of G2-
GCN and G2-GAT for continuously decreasing
level of multi-rate behavior.
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Figure 7: Test accuracies of G2-GraphSAGE on
Texas and Wisconsin graph datasets for varying
values of p in (4).

On the sensitivity of performance of G2 to the hyperparameter p. The proposed gradient
gating model implicitly depends on the hyperparameter p, which defines the multiple rates τ , i.e.,

τ̂
n = σ̂(F̂θ(X

n−1,G)),

τ
n
ik = tanh




∑

j∈Ni

|τ̂nik − τ̂njk|
p



 .
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While any value p > 0 can be used in practice, a standard hyperparameter tuning procedure (see B
for the training details) on p has been applied in every experiment included in this paper. Thus,
it is natural to ask how sensitive the performance of G2 is with respect to different values of the
hyperparameter p.

To answer this question, we trained different G2-GraphSAGE models on the Texas as well as the
Wisconsin graph datasets for different values of p ∈ [1, 5]. Fig. 7 shows the resulting performance of
G2-GraphSAGE. We can see that different values of p do not significantly change the performance of
the model. However, including the hyperparameter p to the hyperparameter fine-tuning procedure
will further improve the overall performance of G2.

B Training details

All small and medium-scale experiments have been run on NVIDIA GeForce RTX 2080 Ti, GeForce
RTX 3090, TITAN RTX and Quadro RTX 6000 GPUs. The large-scale experiments have been run
on Nvidia Tesla A100 (40GiB) GPUs.

All hyperparameters were tuned using random grid search. Table 4 shows the rounded hyperpa-
rameter p in G2 (4) of each best performing network.

Table 4: Rounded hyperparameter p in G2 of each best performing network.

Texas Wisconsin Film Squirrel Chameleon Cornell snap-patents arXiv-year genius

G2-GAT 3.06 1.68 1.23 3.48 3.54 3.54 / / /
G2-GCN 3.93 2.92 3.79 1.99 1.08 3.87 / / /
G2-GraphSAGE 4.47 1.14 2.89 3.04 2.00 3.27 1.60 3.40 4.40

C Mathematical Details

In this section, we provide proofs for Propositions 3.3 and 3.4 in the main text. We start with the
following technical result which is necessary in the subsequent proofs.

A Poincare Inequality on Connected Graphs. Poincare inequalities for functions (Evans,
2010) bound function values in terms of their gradients. Similar bounds on node values in terms of
graph-gradients can be derived and a particular instance is given below,

Proposition C.1. Let G = (V,E) be a connected graph and the corresponding (scalar) node features
are denoted by yi ∈ R, for all i ∈ V. Let y1 = 0. Then, the following bound holds,

∑

i∈V

y2
i ≤ d∆1

∑

i∈V

∑

j∈Ni

|yj − yi|
2, (16)

where d = max
i∈V

deg(i) and ∆1 is the eccentricity of the node 1.

Proof. Fix a node i ∈ V. By assumption, the graph G is connected. Hence, there exists a path
connecting i and the node 1. Denote the shortest path as P(i, 1). This path can be expressed
in terms of the nodes ℓi,1 with 0 ≤ ℓ ≤ δ, where 0i,1 = 1 and δi,1 = i. For any ℓ, we require
ℓi,1 ∼ (ℓ+ 1)i,1. Moreover, δi,1 is the graph distance between the nodes i and 1 and ∆1 = max

i∈V
δi,1

is the eccentricity of the node 1.
Given the node feature yi, we can rewrite it as,

yi = y1 +

δ−1∑

ℓ=0

y(ℓ+1)i,1 − yℓi,1 =

δ−1∑

ℓ=0

y(ℓ+1)i,1 − yℓi,1 ,

as by assumption y1 = 0.
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Using Cauchy-Schwartz inequality on the previous identity yields,

y2
i ≤ ∆1

δ−1∑

ℓ=0

(
y(ℓ+1)i,1 − yℓi,1

)2
.

Summing the above inequality over i ∈ V and using the fact that ℓi,1 ∼ (ℓ+ 1)i,1, we obtain the
desired Poincare inequality (16).

C.1 Proof of Proposition 3.3 of Main Text

Proof. By the definition of exponential stability, we consider a small perturbation around the
steady state c and study whether this perturbation grows or decays in time. To this end, define the
perturbation as,

X̂i = Xi − c, 1 ≤ i ≤ v. (17)

A tedious but straightforward calculation shows that these perturbations evolve by the following
linearized system of ODEs,

dX̂i(t)

dt
=
∑

j∈Ni

Aij(c, c)
(

X̂j − X̂i

)

, ∀t, ∀i ∈ V. (18)

Multiplying x̂i to both sides of (18) yields,

X̂i

dX̂i(t)

dt
=
∑

j∈Ni

Aij(c, c)X̂i

(

X̂j − X̂i

)

,

⇒
dX̂2

i (t)

dt
=
∑

j∈Ni

Aij(c, c)
(

X̂2
j − X̂2

i

)

−
∑

j∈Ni

Aij(c, c)
(

X̂j − X̂i

)2

.

Summing the above identity over all nodes i ∈ V yields,

d

dt

∑

i∈V

X̂2
i (t) =

∑

i∈V

∑

j∈Ni

Aij(c, c)
(

X̂2
j − X̂2

i

)

−
∑

i∈V

∑

j∈Ni

Aij(c, c)
(

X̂j − X̂i

)2

=
1

2

∑

i∈V

∑

j∈Ni

(Aij(c, c)−Aj,i(c, c))
︸ ︷︷ ︸

=0 (15)

(

X̂2
j − X̂2

i

)

−
1

2

∑

i∈V

∑

j∈Ni

(Aij(c, c) +Aj,i(c, c))
︸ ︷︷ ︸

=2Aij (15)

(

X̂j − X̂i

)2

,

= −
∑

i∈V

∑

j∈Ni

Aij(c, c)
(

X̂j − X̂i

)2

,

≤ −a
∑

i∈V

∑

j∈Ni

(

X̂j − X̂i

)2

, (by (15)),

≤ −
a

d∆1

∑

i∈V

X̂2
i .

Here, the last inequality comes from applying the Poincare inequality (16) for the perturbations X̂

and from the fact that by assumption X̂1 = 0.
Applying Grönwall’s inequality yields,

∑

i∈V

X̂2
i (t) ≤

∑

i∈V

X̂2
i (0)e

−
a

d∆1
t
. (19)

Thus, the initial perturbations around the steady state c are damped down exponentially
fast and the steady state c is exponentially stable implying that this architecture will lead to
oversmoothing.
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C.2 Proof of Proposition 3.4 of Main Text

Proof. As in the proof of Proposition 3.3, we consider small perturbations of form (17) of the
steady state c and investigate how these perturbations evolve in time. Assuming that the initial
perturbations are small, i.e., that there exists an 0 < ǫ << 1 such that max

i∈V
|x̂i(0)| ≤ ǫ, we perform

a straightforward calculation to obtain that the perturbations (for a short time) evolve with the
following quasi-linearized system of ODEs,

dX̂i(t)

dt
= τ i(t)

∑

j∈Ni

Aij(c, c)
(

X̂j − X̂i

)

, ∀i ∈ V,

τ i(t) =
∑

j∈Ni

|X̂j(t)− X̂i(t)|
p, ∀i ∈ V.

(20)

Note that we have used the fact that σ′(x) = 1 and tanh′(0) = 1 in obtaining (20) from (14).
Next, we multiply x̂i to both sides of (20) to obtain,

X̂i

dX̂i(t)

dt
=
∑

j∈Ni

Aij(c, c)τ iX̂i

(

X̂j − X̂i

)

,

⇒
dX̂2

i (t)

dt
=
∑

j∈Ni

Aij(c, c)τ i

(

X̂2
j − X̂2

i

)

−
∑

j∈Ni

Aij(c, c)τ i

(

X̂j − X̂i

)2
(21)

Trivially,
|X̂j − X̂i|

p ≤ τ i, ∀j ∈ Ni, ∀i.

Applying this inequality to the last line of the identity (21), we obtain,

dX̂2
i (t)

dt
≤
∑

j∈Ni

Aij(c, c)τ i

(

X̂2
j − X̂2

i

)

−
∑

j∈Ni

Aij(c, c)
∣
∣
∣X̂j − X̂i

∣
∣
∣

p+2

.

Summing the above inequality over i ∈ V leads to,

d

dt

∑

i∈V

X̂2
i (t) ≤

∑

i∈V

∑

j∈Ni

Aij(c, c)τ i

(

X̂2
j − X̂2

i

)

−
∑

i∈V

∑

j∈Ni

Aij(c, c)
∣
∣
∣X̂j − X̂i

∣
∣
∣

p+2

≤
1

2

∑

i∈V

∑

j∈Ni

Aij(c, c) (τ i − τ j)
(

X̂2
j − X̂2

i

)

(Aij = Aj,i)

− a
∑

i∈V

∑

j∈Ni

∣
∣
∣X̂j − X̂i

∣
∣
∣

p+2

(from (15)).

Therefore, we have the following inequality,

d

dt

∑

i∈V

X̂2
i (t) ≤ T1 − T2,

T1 =
1

2

∑

i∈V

∑

j∈Ni

Aij(c, c) (τ i − τ j)
(

X̂2
j − X̂2

i

)

T2 = a
∑

i∈V

∑

j∈Ni

∣
∣
∣X̂j − X̂i

∣
∣
∣

p+2

.

(22)

We analyze the differential inequality (22) by starting with the term T1 in (22). We observe that
this term does not have a definite sign and can be either positive or negative. However, we can
upper bound this term in the following manner. Given that the right-hand side of the ODE system
(20) is Lipschitz continuous, the well-known Cauchy-Lipschitz theorem states that the solutions x̂
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depend continuously on the initial data. Given that max
i∈V

|X̂i(0)| ≤ ǫ << 1 and the bounds on the

hidden states (1), there exists a time t > 0 such that

max
i∈V

|X̂i(t)| ≤ 1, ∀t ∈ [0, t].

Using the definitions of τ and the right stochasticity of the matrix A, we easily obtain the
following bound,

|T1| ≤ 2p+1d
2
v, (23)

where d = max
i∈V

deg(i).

On the other hand, the term T2 in (22) is clearly positive. Hence, the solutions of resulting
ODE,

d

dt

∑

i∈V

X̂2
i (t) ≤ −T2, (24)

will clearly decay in time. The key question is whether or not the decay is exponentially fast. We
answer this question below.

To this end, we have the following calculation using the Hölder’s inequality,

∑

i∈V

∑

j∈Ni

∣
∣
∣X̂j − X̂i

∣
∣
∣

2

≤
(
dv
) p

p+2




∑

i∈V

∑

j∈Ni

∣
∣
∣X̂j − X̂i

∣
∣
∣

p+2





2
p+2

,

⇒
1

(
dv
) p

2




∑

i∈V

∑

j∈Ni

∣
∣
∣X̂j − X̂i

∣
∣
∣

2





p+2

2

≤
∑

i∈V

∑

j∈Ni

∣
∣
∣X̂j − X̂i

∣
∣
∣

p+2

.

Observing that X̂1 = 0 by assumption, we can applying the Poincare inequality (16) in the above
inequality to further obtain,

1

d
p+1

v
p

2∆
p+2

2

1

(
∑

i∈V

|X̂i|
2

) p+2

2

≤
∑

i∈V

∑

j∈Ni

∣
∣
∣X̂j − X̂i

∣
∣
∣

p+2

.

Hence, from the definition of T2 (22), we have,

T2 ≥
a

d
p+1

v
p

2∆
p+2

2

1

(
∑

i∈V

|X̂i|
2

) p+2

2

. (25)

Therefore, the differential inequality (24) now reduces to,

d

dt

∑

i∈V

X̂2
i (t) ≤ −

a

d
p+1

v
p

2∆
p+2

2

1

(
∑

i∈V

|X̂i|
2

) p+2

2

. (26)

The differential inequality (26) can be explicitly solved to obtain,

∑

i∈V

X̂2
i (t) ≤

(

2 + pt
a

d
p+1

v
p

2∆
p+2

2

1

∑

i∈V

X̂2
i (0)

p

2

)− 2
p ∑

i∈V

X̂2
i (0). (27)

From (27), we see that the initial perturbations decay but only algebraically at a rate of t−
2
p in

time. For instance, the decay is only linear in time for p = 2 and even slower for higher value of p.
Combining the analysis of the terms T1,2 in the differential inequality (22), we see that the one

of the terms can lead to a growth in the initial perturbations whereas the second term only leads to
polynomial decay. Even if the contribution of the term T1 ≡ 0, the decay of initial perturbations is
only polynomial. Thus, the steady state c is not exponentially stable.
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Remark C.2. We note that the Proposition 3.4 assumes a certain structure of the matrix A in
(14). A careful perusal of the proof presented above reveal that this assumptions can be further
relaxed. To start with, if the matrix A(c, c) is not symmetric, then there will be an additional term
in the inequality (22), which would be proportional to Aij −Aji. This term will be of indefinite
sign and can cause further growth in the perturbations of the steady state c. In any case, it can
only further destabilize the quasi-linearized system. The assumption that the entries of A are
uniformly positive amounts to assuming positivity of the weights of the underlying GNN layer.
This can be replaced by requiring that the corresponding eigenvalues are uniformly positive. If
some eigenvalues are negative, this will cause further instability and only strengthen the conclusion
of lack of (exponential) stability. Finally, the assumption that one node is not perturbed during the
quasi-linearization is required for the Poincare inequality (16). If this is not true, an additional
term, of indefinite sign, is added to the inequality (22). This term can cause further growth of the
perturbations and will only add instability to the system. Hence, all the assumptions in Proposition
3.4 can be relaxed and the conclusion of lack of exponential stability of the zero-Dirichlet energy
steady state still holds.
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