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Abstract We review well-balanced methods for the faithful approximation of
solutions of systems of hyperbolic balance laws that are of interest to computa-
tional astrophysics. Well-balanced methods are specialized numerical techniques
that guarantee the accurate resolution of non-trivial steady-state solutions, that
balance laws prominently feature, and perturbations thereof. We discuss versatile
frameworks and techniques for generic systems of balance laws for finite volume
and finite difference methods. The principal emphasis of the presentation is on
the algorithms and their implementation. Subsequently, we specialize in hydro-
dynamics’ Euler equations to exemplify the techniques and give an overview of
the available well-balanced methods in the literature, including the classic hydro-
static equilibrium and steady adiabatic flows. The performance of the schemes is
evaluated on a selection of test problems.

Keywords Numerical methods · Hydrodynamics · Source terms · Well-balanced
schemes

1 Introduction

sec:intro

Numerical methods for the approximate solution of balance laws play a central role
in the simulation of many interesting and challenging phenomena in computational
astrophysics. Balance laws take the generic form

∂u

∂t
+∇ · f = s, (1)

{eq:intro_0010}{eq:intro_0010}

where u is the vector of conserved variables, f the flux tensor and s the vector
of source terms, respectively. Examples of balance laws include (ideal) hydrody-
namics or Euler equations, (ideal) magnetohydrodynamics, and radiation (mag-
neto)hydrodynamics, as well as their relativistic counterparts. The origin of the
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source term on the right-hand side may be physical (e.g., chemical reactions, ex-
ternal forces, non-ideal effects), geometric (e.g., curvilinear coordinates) or both
(e.g., curved spacetime).

The faithful modeling of complex astrophysical phenomena with balance laws
is generally not feasible with (semi-)analytical methods alone. Hence, solutions
can only be sought approximately by numerical means. Numerical methods for
(hyperbolic) conservation laws, that is, the homogeneous Eq. (1) with s ≡ 0, are in
a mature stage of development. We refer, for example, to the recent comprehensive
review by Balsara (2017) and references therein. The approximation of balance
laws is often not much more involved and can easily be done by supplementing a
consistent discretization of the source term s. In this way, highly accurate solution
approximations can be obtained efficiently by computational means.

However, there are particular regimes where conventional numerical methods
encounter difficulties1. Balance laws often possess non-trivial steady-state solutions

∇ · f = s, (2)
{eq:intro_0020}{eq:intro_0020}

where the flux divergence exactly balances the source term. Numerical methods do
not necessarily satisfy a discrete version of this subtle equilibrium balance. Conse-
quently, steady states are not resolved exactly but are approximated with an error
of the order of the method’s truncation error. To simulate phenomena near steady
states, the numerical resolution needs to be high enough such that the continu-
ous pile-up of these truncation errors does not obscure the processes of interest
during the simulation timeframe. Especially in multi-dimensional simulations, the
required resolution may entail prohibitively high computational costs.

The shortcoming near steady states was realized early on in the development
of numerical methods for balance laws. This lead to the suggestion to exploit the
steady-state solutions in the discrete representation of the approximate solution
(see, e.g., Glaz and Liu (1984); Glimm et al. (1984); Huang and Liu (1986); Liu
(1979); Roe (1987); van Leer (1984)). The idea is to replace the common (piece-
wise) polynomial approximate solution representation with a (piecewise) steady
one that fulfills the subtle balance Eq. (2) either exactly or approximately. Thereby,
only deviations from steady state induce dynamics which is indeed highly desir-
able. As a matter of fact, this is a generalization of the fundamental property of
numerical methods for the homogeneous equations that only deviations from a
constant state trigger wave motion. As noted by van Leer (1984), the construc-
tion of such steady-state distributions is in general difficult as it requires the local
solution of a boundary value problem for Eq. (2). The solvability is challenging
and a solution can usually only be obtained numerically. The pioneering work by
Eulderink and Mellema (1995); Mellema et al. (1991) suggests constructing an
equilibrium subgrid model by locally approximating equivalent initial value prob-
lems numerically. For example, such equilibrium subgrid models were successfully
constructed for hydrostatic equilibrium by Zingale et al. (2002) and even for gen-
eral relativity by Kastaun (2006). This led to much improved numerical resolution
near equilibrium states.

1 Another commonly encountered regime where difficulties also arise is when the source term
becomes stiff, i.e., when the timescales of the considered balance law are hugely disparate.
Prominent examples are reacting flows such as in combustion and detonation phenomena.
However, we will not tackle this problem in the present text.



Well-balanced methods for Computational Astrophysics 3

An additional design principle was introduced by Cargo and LeRoux (1994)
to overcome the challenges near steady states. They constructed a scheme for
the Euler equations with gravity source terms capable of preserving exactly a
discrete form of hydrostatic equilibrium and termed the scheme as well-balanced

(or, in French, “un schéma équilibre”). A well-balanced numerical method sat-
isfies a discrete form of the equilibrium balance Eq. (2) exactly, independent of
the resolution. Therefore, these methods can accurately resolve solutions that are
small perturbations of equilibrium data. Many such schemes have been developed
since, especially for the shallow water equations with bottom topography used
in environmental applications. In the context of the shallow water equations, the
well-balanced property is also referred to as the exact C-Property put forward in
a seminal paper by Bermudez and Vazquez (1994). We refer to the comprehensive
reviews by Kurganov (2018); Noelle et al. (2010); Xing and Shu (2014), the text-
book by Bouchut (2004) and the references therein for further information. An
extensive review of well-balanced and related schemes for many applications can
also be found in the textbook by Gosse (2013). Moreover, we refer to Amadori
and Gosse (2015) for an extensive theoretical treatment and rigorous numerical
analysis of well-balanced schemes on simple balance laws.

Well-balanced methods for balance laws commonly used in computational as-
trophysics have received much attention in the literature recently. Pioneering
schemes for the Euler equations have been developed by Cargo and LeRoux (1994),
coining the term well-balanced, and LeVeque et al. (1998); LeVeque and Bale
(1999). The latter apply the quasi-steady wave-propagation algorithm of LeV-
eque (1998). Botta et al. (2004) designed a well-balanced finite volume scheme
for numerical weather prediction applications. More recently, a multitude of well-
balanced numerical schemes have been elaborated for the Euler equations in the
literature (Berberich et al., 2018, 2019, 2021a,b; Bispen et al., 2017; Castro and
Parés, 2020; Chandrashekar and Klingenberg, 2015; Chandrashekar and Zenk,
2017; Chertock et al., 2018; Desveaux et al., 2014, 2015; Edelmann et al., 2021;
Franck and Mendoza, 2016; Gaburro et al., 2018; Ghosh and Constantinescu,
2015, 2016; Gómez-Bueno et al., 2021a,b; Grosheintz-Laval and Käppeli, 2019;
Grosheintz-Laval and Käppeli, 2020; Kanbar et al., 2020; Käppeli and Mishra,
2014; Käppeli and Mishra, 2016; Käppeli, 2017; Klingenberg et al., 2019; Krause,
2019; LeVeque, 2010; Li and Xing, 2016a,b, 2018a,b; Li and Gao, 2021; Luo et al.,
2011; Padioleau et al., 2019; Parés and Parés-Pulido, 2021; Popov et al., 2019;
Qian et al., 2018; Thomann et al., 2019, 2020; Touma et al., 2016; Varma and
Chandrashekar, 2019; Veiga et al., 2019; Vides et al., 2014; Wu and Xing, 2021;
Xing and Shu, 2013; Xu et al., 2010). Magneto-hydrostatic steady-state preserving
well-balanced schemes were devised by Fuchs et al. (2010a); Fuchs et al. (2011);
Fuchs et al. (2010b). Well-balanced schemes for relativistic hydrodynamics on
curved spacetime were considered by Gaburro et al. (2021); Gosse (2015); Kas-
taun (2006); LeFloch and Makhlof (2014); LeFloch et al. (2020).

A popular framework for the construction of well-balanced numerical methods
is rooted in the piecewise steady or subgrid equilibrium representation. The frame-
work combines a piecewise steady reconstruction, consisting of an equilibrium sub-
grid model and a piecewise polynomial equilibrium-preserving reconstruction, and
a well-balanced source term discretization. Many of the aforementioned schemes
above have been constructed along these ingredients. In this text, we focus on this
framework as it combines conceptual simplicity and versatility in that it applies to



4 Roger Käppeli

a wide range of numerical methods for balance laws ranging from finite volume to
discontinuous Galerkin over finite difference methods. For the clarity and concise-
ness of the presentation, we concentrate on particular flavors of these numerical
methods. In particular, we focus the presentation on higher-order Godunov-type
finite volume methods and finite difference methods with flux splitting. Moreover,
the emphasis of this review is on algorithmic ideas, not necessarily on the under-
lying theory.

Another versatile framework to construct well-balanced methods is based on
the reformulation of Eq. (1) as a homogeneous quasi-linear PDE system of the
form

∂u

∂t
+ A(u) · ∇u = 0. (3)

{eq:intro_0030}{eq:intro_0030}

This framework is applied in the context of hyperbolic systems with non-conservative
products using the path-conservative finite volume methods (see, e.g., Cargo and
LeRoux (1994); Castro et al. (2008, 2007); Gosse (2000, 2001); Greenberg and
LeRoux (1996); Greenberg et al. (1997); LeVeque (2010); Parés (2006); Parés and
Castro (2004)). In this form, a special family of paths in phase space can be con-
structed such that a well-balanced method results. These paths can be obtained
from the explicit knowledge of the solutions of the Riemann problems of Eq. (3),
which may be difficult and expensive in general, or through a so-called generalized
hydrostatic reconstruction technique by Castro et al. (2008, 2007). The latter is
closely related to the piecewie steady reconstruction technique (Castro and Parés,
2020). Furthermore, the framework is able to deal with singular source terms.
However, we shall not pursue further the presentation of this theoretically pleas-
ing and elegant framework in this text and redirect the interested reader to the
given references. See also the recent comprehensive review by Castro et al. (2017)
on this framework.

Before we proceed to the outline, we also mention that well-balanced methods
may be considered as part of the family of so-called structure-preserving methods.
These methods are designed such that certain properties of the physical model
(i.e., the balance law, the partial differential equation, etc.) are fulfilled in some
form at the discrete level. Such properties may be in the form of so-called com-

panion balance or conservation laws that are automatically satisfied at the ana-
lytical level. For example, the second law of thermodynamics puts admissibility
criteria in the form of entropy conditions on flow discontinuities such as shock
waves. The preservation of physical states, e.g., positive mass density, pressure
or subluminal velocities. The rotational invariance of the equations of (magneto-
)hydrodynamics implies the conservation of angular momentum. Faraday’s law,
together with the fact that magnetic monopoles have never been observed in na-
ture, imply the solenoidal character of the magnetic field in Maxwell’s equations
and magnetohydrodynamics. Self-gravitating flows conserve total momentum and
energy. Although consistent numerical methods may fulfill such structures in the
infinite resolution limit, this is often unsatisfactory in practice as the needed reso-
lution may result in unaffordable large computational costs. Also, note that near
discontinuities, which solutions of balance laws prominently feature, these errors
are inevitably of order one. Hence, structure-preserving methods are often not a
luxury choice but a necessity. The design of structure-preserving methods that
maintain a discrete form of such structures is a rich and challenging line of re-
search on numerical methods for balance/conservation laws. We refer the inter-
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ested reader to, e.g., Balsara and Kim (2016); Balsara and Spicer (1999); Després
and Labourasse (2015); Evans and Hawley (1988); Jiang et al. (2013); Katz et al.
(2016); Mishra and Tadmor (2011); Morton and Roe (2001); Mullen et al. (2021);
Schaal et al. (2015); Tadmor (2003); Tóth (2000); Wu and Tang (2017); Wu and
Tang (2018); Zanotti and Dumbser (2016) and references therein.

The text is organized as follows:

– Section 2 presents a brief introduction to finite volume methods and motivates
the well-balanced methods on the basis of an extremely simple model equation,
namely the linear advection-reaction equation. This is followed by a general
framework for the construction of well-balanced finite volume methods. The
procedure is examplified on the Euler equations in spherical symmetry featur-
ing a geometric source term. The section rounds up with a general discussion
of well-balanced methods within finite difference frameworks.

– Section 3 focuses on well-balanced methods for the Euler equations. Several
flavors of well-balanced methods are presented with differing local steady-state
determination strategies. The section completes by a battery of numerical test
problems on which the performance of well-balanced methods is commonly
assessed.

Before we proceed, let us state that any inadvertent omission or understatement
of credit to authors to whom more was due, we humbly offer a sincere apology in
advance.
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2 Well-balanced discretization

sec:motivation

2.1 One-dimensional methods
sec:motivation_1d

We begin by considering a one-dimensional system of balance laws in the form

∂u

∂t
+

∂f

∂x
= s. (4)

{eq:fvm_0000}{eq:fvm_0000}

Here u, f and s are vectors of m components: u = u(x, t) is the vector of conserved
variables, f = f(u) the vector of flux functions, and s = s(u) the vector of source
terms2. In the following, we will tacitly assume that

(i) the system is of hyperbolic nature: the Jacobian of the flux function vector
A(u) = ∂f

∂u has real eigenvalues and an associated set of linearly independent
eigenvectors for all u of interest,

(ii) the source term s(u) is not singular: bounded source terms do not change
the Rankine-Hugoniot jump conditions of the system.

Next, we outline a standard finite volume discretization of the balance law
Eq. (4) in order to introduce our notation and set the stage for the following
developments. For further details and precise derivation, we refer to the many
excellent textbooks available in the literature, see, e.g., Godlewski and Raviart
(1996); Hirsch (2007); Laney (1998); LeVeque (1992, 2002); Toro (2009).

2.2 Finite volume discretization
subsec:fvm

A standard finite volume method discretizes the spatial domain of interest Ω =
[0, L] into a finite number N of control volumes or cells Ωi = [xi−1/2, xi+1/2]
(i = 1, . . . , N). For the i-th cell, xi±1/2 denote the left/right cell interfaces and
xi = (xi−1/2+xi+1/2)/2 the cell centers. For ease of presentation, we shall assume
a uniform discretization with constant cell size ∆x = xi+1/2 − xi−1/2. However,
this assumption can easily be relaxed within a finite volume discretization.

Integrating the balance law Eq. (4) over cell Ωi and dividing by the cell size
∆x yields

dui

dt
+

1

∆x

(
f(u(xi+1/2, t))− f(u(xi−1/2, t))

)
= si(t), (5)

{eq:fvm_0010}{eq:fvm_0010}

where we introduced

ui(t) =
1

∆x

∫

Ωi

u(x, t) dx,

si(t) =
1

∆x

∫

Ωi

s(u(x, t)) dx,

(6)
{eq:fvm_0020}{eq:fvm_0020}

the cell averages of conserved variables and source terms. We also introduce the
convention that a quantity with an overbar denotes a cell average, while one with-
out a point value.

2 In general, the fluxes and source terms may also depend explicitly on space, i.e. f = f(u, x)
and s = s(u, x). For sake of notation, we suppress this dependence here.
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Equation (5) represents an exact evolution equation for the cell-averaged con-
served variables. The numerical approximation is introduced by replacing the exact
fluxes and source terms by so-called numerical fluxes and source terms:

dU i

dt
= L(U)i = − 1

∆x

(
F i+1/2 − F i−1/2

)
+ Si. (7)

{eq:fvm_0030}{eq:fvm_0030}

Here, the U i, F i±1/2 and Si denote approximations of the cell-averaged conserved
variables, the fluxes through the cell interfaces and the cell-averaged source terms
at time t:

U i(t) ≈ ui(t), F i±1/2(t) ≈ f(u(xi±1/2, t)) and Si(t) ≈ si(t). (8)
{eq:fvm_0040}{eq:fvm_0040}

In the following, we use the convention that exact solutions are denoted by lower
case letters and approximations by upper case letters.

Equation (7) is a generic semi-discrete3 finite volume discretization in one space
dimension. Furthermore, in Eq. (7) we denote the so-called spatial discretization
operator by L(U)i. Next, we briefly describe the individual components of a finite
volume method. For ease of notation, we suppress the temporal dependency.

2.2.1 Reconstruction R
subsubsec:motivation_1d_fvm_rec

The primary unknowns in a finite volume method are the cell averages. To evaluate
the numerical fluxes through cell interfaces and compute cell averages of the source
terms, within each cell a subcell profile of the conserved variables U i(x) has to be
reconstructed from the cell averages {Uk}. Because discontinuities may be present
in the solution, special care is needed to reconstruct non-oscillatory subcell profiles
that avoid spurious Gibbs phenomena.

We denote such a reconstruction procedure R, which recovers an r-th order
accurate profile Qi(x) of a quantity q(x) within cell Ωi from the cell averages {qk},
by

Qi(x) = R(x; {qk}k∈Si
) = q(x) +O(∆xr) (9)

{eq:fvm_0050}{eq:fvm_0050}

with

qk =
1

∆x

∫

Ωk

Qi(x)dx for k ∈ Si. (10)
{eq:fvm_0051}{eq:fvm_0051}

Here Si = {. . . , i − 1, i, i + 1, . . .} is the so-called stencil of the reconstruction for
cell Ωi, which consists of cell Ωi and a certain number of neighboring cells. For
systems, the reconstruction procedure can be applied component-wise to the cell
averages of the conserved variables vector

U i(x) = R(x; {Uk}k∈Si
). (11)

{eq:fvm_0052}{eq:fvm_0052}

Numerous such reconstruction procedures have been developed in the litera-
ture, and a non-exhaustive list includes the Total Variation Diminishing (TVD)
and the Monotonic Upwind Scheme for Conservation Laws (MUSCL) methods
(see, e.g., Harten et al. (1983); Laney (1998); LeVeque (2002); Sweby (1984); Toro
(2009); van Leer (1979)), the Piecewise Parabolic Method (PPM) by Colella and

3 Semi-discrete because only the spatial domain has been discretized. The time domain is
still continuous and will be discretized in a second step.



8 Roger Käppeli

Woodward (1984), the Essentially Non-Oscillatory (ENO) (see, e.g., Harten et al.
(1987)), Weighted ENO (WENO) (see, e.g., Shu (2009) and references therein)
and Central WENO (CWENO) methods (see, e.g., Cravero et al. (2018); Levy
et al. (1999, 2000)).

For example, a spatially first-order accurate reconstruction consists of a piece-
wise constant profile

U i(x) = R(x; {U i}) = U i. (12)
{eq:fvm_0060}{eq:fvm_0060}

A spatially second-order accurate piecewise linear reconstruction à la TVD/MUSCL
is given by

U i(x) = R(x; {U i−1,U i,U i+1}) = U i +DU i (x− xi), (13)
{eq:fvm_0070}{eq:fvm_0070}

where DU i are some appropriately limited slopes (to avoid monotonicity violation
and ensuing spurious oscillations). A popular example is the so-called generalized
minmod slope limiter family

DU i = minmod

(
θ
U i −U i−1

∆x
,
U i+1 −U i−1

2∆x
, θ

U i+1 −U i

∆x

)
, (14)

{eq:fvm_0080}{eq:fvm_0080}

where θ ∈ [1, 2] is a parameter and the minmod function is defined by

minmod(a1, a2, ...) =





minj {aj} if aj > 0 ∀ j,

maxj {aj} if aj < 0 ∀ j,

0 otherwise.

(15)
{eq:fvm_0090}{eq:fvm_0090}

Equation (14) has to be understood component-wise. For θ = 1 (θ = 2), Eq. (14)
reproduces the traditional minmod (monotonized centered) limiter (see, e.g., Toro
(2009) and references therein for further information). See Fig. 1 for an illustration
of a piecewise constant/linear reconstruction.

Straightforward component-wise reconstruction for systems of balance laws
may sometimes lead to some undesirable oscillations in the results, especially when
strong flow discontinuities interact. In that case, it may prove beneficial to perform
the reconstruction in local characteristic variables (see, e.g., Harten et al. (1987);
Qiu and Shu (2002); Toro (2009))

U i(x) = Ri R(x; {LiUk}k∈Si
), (16)

{eq:fvm_0091}{eq:fvm_0091}

where Li = L(U i) and Ri = R(U i) are the matrices of left and right eigenvectors,
respectively. The eigenvectors are typically evaluated at the cell average of the i-th
cell Ωi whose reconstruction is performed, hence the name local.

2.2.2 Numerical fluxes F
subsubsec:motivation_1d_fvm_numflux

The numerical fluxes are obtained by resolving the discontinuities at cell interfaces
naturally arising from the per cell reconstruction (see Fig. 1). This is commonly
done à la Godunov by solving (approximately) the Riemann problem at cell inter-
faces

F i+1/2 = F(U i+1/2−,U i+1/2+) = F(UL,UR), (17)
{eq:fvm_0100}{eq:fvm_0100}
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Fig. 1: Illustration of the reconstruction procedure for the sine function u(x) =
sin(x) (solid black line). Within each control volume or cell is shown the cell
average U i (solid blue) and a piecewise linear TVD/MUSCL reconstruction Ui(x)
(solid red). Notice the limiter’s action near the two extrema, where the slopes are
clipped to ensure the monotonicity of the reconstruction. The piecewise constant
cell averages correspond to a piecewise constant reconstruction. fig:fvm_0010

where the point values U i+1/2± are the cell interface reconstructed conserved
variables

U i+1/2− = UL = U i(xi+1/2) and U i+1/2+ = UR = U i+1(xi+1/2). (18)
{eq:fvm_0101}{eq:fvm_0101}

Notice that the value on the left (L)/right (R) of the interface xi+1/2 is obtained
from the reconstruction in cell Ωi/Ωi+1. The numerical flux is required to be
consistent with the physical flux function f , i.e., F(U ,U) = f(U), and Lipschitz

continuous. The latter is required for accuracy reasons (see, e.g., Harten et al.
(1987)). Moreover, certain numerical fluxes have the ability to exactly recognize
isolated discontinuities such as contacts or shocks in (magneto-) hydrodynamics
(see, e.g., Toro (2009) for details).

A simple and popular choice for the numerical flux is the so-called Rusanov
flux (Rusanov, 1962; Toro, 2009)

F(UL,UR) =
1

2
(FL + FR)−

Smax

2
(UR −UL), (19)

{eq:fvm_0110}{eq:fvm_0110}

where FL/R = f(UL/R) and Smax is an estimate of the largest characteristic
speed in the solution of the Riemann problem Smax = maxm |λm| (λm are the
eigenvalues of the flux Jacobian). This numerical flux is sometimes also called a
local Lax-Friedrichs (LLF) flux.



10 Roger Käppeli

2.2.3 Numerical source terms S
subsubsec:motivation_1d_fvm_src

For the integration of the source terms, there are essentially two standard methods.
The first one is the so-called unsplit method. In this method, the source terms are
typically incorporated directly into the spatial discretization operator as tacitly
already done in Eq. (7). An accurate approximation of the cell average of the
source terms are obtained by numerical integration. Let Qi denote a q-th order
accurate quadrature rule over the i-th cell Ωi. The cell average of the source terms
are then computed by

Si(t) =
1

∆x
Qi (s(U i)) =

1

∆x

Nq∑

α=1

ωα s (U i(xi,α)) , (20)
{eq:fvm_0111}{eq:fvm_0111}

where the xi,α ∈ Ωi and ωα denote the Nq quadrature nodes and weights of Qi,
respectively. Assuming that the point values of the source terms can be evalu-
ated with spatial order of accuracy s, then the resulting discretization is spatially
min(q, s)-th order accurate (provided enough smoothness, of course)4. A popular
example is the second-order accurate midpoint rule

Si(t) =
1

∆x
Qi(s(U i)) = s (U i(xi)) . (21)

{eq:fvm_0112}{eq:fvm_0112}

Higher-order rules are provided, for example, by the Gauss-Legendre or Gauss-
Lobatto quadrature rules (see, e.g., Press et al. (1993)).

The second family of methods are the so-called splitting or fractional-step meth-

ods. In these methods, the original problem Eq. (4) is first split (or fractured) into
two subproblems of the form:

eq:fvm_0120

Problem A:
∂u

∂t
+

∂f

∂x
= 0, (22a)

{eq:fvm_0121}{eq:fvm_0121}

Problem B:
du

dt
= s. (22b)

{eq:fvm_0122}{eq:fvm_0122}

In this approach, one alternates adroitly between solving the two subproblems A
and B. This is indeed a very practical approach: Problem A is a standard (homoge-
neous) conservation law and Problem B is a simple Ordinary Differential Equation
(ODE). For both subproblems, there exist many excellent numerical methods and
software libraries which implement them. By extension, this approach allows for
straightforward modularization. Next, we catalogue two popular splitting meth-
ods.

Let S∆t
A and S∆t

B denote the discrete solution operators that advance a discrete
solution U

n
by a time step ∆t for problems A and B

eq:fvm_0130

U
n+1∗

= S∆t
A U

n
, (23a)

{eq:fvm_0131}{eq:fvm_0131}

U
n+1∗

= S∆t
B U

n
, (23b)

{eq:fvm_0132}{eq:fvm_0132}

4 In principle, the source terms depend on point values of the conserved variables, which
are obtained from the reconstruction procedure, making it r-th order accurate. However, it
could be that the source terms also involve further dependencies requiring approximations,
e.g., derivatives of spatial functions, which we assume to be s-th order accurate.
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where the superscript labels the time step and the “star” shall stress the fact that
these are only partially evolved states.

An obvious splitting method is then given by

U
n+1

= S∆t
B S∆t

A U
n
, (24)

{eq:fvm_0140}{eq:fvm_0140}

which is first-order accurate in time (provided that S∆t
A and S∆t

B are at least of that
same temporal order). This splitting is sometimes termed as Godunov splitting. A
second-order accurate in time method is given by the so-called Strang splitting

U
n+1

= S
∆t/2
B S∆t

A S
∆t/2
B U

n
, (25)

{eq:fvm_0150}{eq:fvm_0150}

where one sandwiches a full step ∆t with solution operator A between two half
steps ∆t/2 with solution operator B. Of course, full second-order accuracy in time
requires that the individual solution operators S∆t

A and S∆t
B possess an equivalent

or higher order of accuracy.

2.2.4 Time discretization T
subsubsec:motivation_1d_fvm_time

The semi-discrete evolution equations Eq. (7) for the cell averages U i represent a
system of ordinary differential equations that has to be approximately integrated
in time. For that purpose, the temporal domain of interest T = [ti, tf ] is discretized
into time steps ∆tn = tn+1 − tn, where the superscripts label the respective time
step.

The simplest time integration method is of course the temporally first-order
accurate explicit Euler method

U
n+1

= U
n
+∆tnL(Un

). (26)
{eq:fvm_0160}{eq:fvm_0160}

For higher-order time integration, there are essentially two large families of
methods: Runge-Kutta and predictor-corrector methods. A popular representative
of the Runge-Kutta family is the temporally second-order accurate explicit Heun
method

U
(1)

= U
n
+∆tnL(Un

),

U
n+1

=
1

2
U

n
+

1

2

(
U

(1)
+∆tnL(U (1)

)
)
.

(27)
{eq:fvm_0170}{eq:fvm_0170}

It is a so-called Strong Stability-Preserving Runge-Kutta (SSP-RK) method, and
it is often labeled by SSP-RK2 in the literature (because it is a two-stage SSP-RK
method). These methods have certain desirable stability properties when inte-
grating non-linear conservation/balance laws (see, e.g., Gottlieb et al. (2001) and
references therein). Another very popular method is the third-order accurate SSP-
RK3 method, which is shown below in Eq. (126).

A popular representative of the predictor-corrector methods is the temporally
second-order accurate MUSCL-Hancock method (van Leer, 1984). Possible high-
order extensions of this methodology can be achieved by evolution of the solution
in the small with help of the Cauchy-Kowalevski procedure Harten et al. (1987).
Another possibility is provided by the so-called Arbitrary DERivative (ADER)
methods (see, e.g., Castro and Toro (2008); Toro (2009) and references therein). A
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distinctive feature of predictor-corrector methods is that they are one-step meth-
ods, which makes them extremely attractive in an adaptive mesh refinement con-
text (see, e.g., Balsara (2017)).

For time explicit approaches as above, Eqs. (26) and (27), the time step ∆tn is
in general required to fulfill a so-called CFL condition of the form (Courant et al.,
1928)

∆tn = CCFL ×min
i

(
∆x

|Sn
i |

)
, (28)

{eq:fvm_0180}{eq:fvm_0180}

where Sn
i is the speed of the fastest wave in cell Ωi at time tn and CCFL is the

CFL number. The latter needs to fall within a certain range for linear stability.
Time implicit approaches are also possible and especially adapted for so-called

stiff problems involving vastly different timescales (see, e.g., Kifonidis and Müller
(2012); Kwatra et al. (2009); Miczek et al. (2015); Viallet et al. (2011, 2013)
and references therein). Stiffness may originate in the different wave propagation
characteristics (such as advective versus acoustic waves), strong chemical reactions
and many more.

2.2.5 Assembling a finite volume scheme

subsubsec:motivation_1d_fvm_ass

A generic finite volume scheme Eq. (7) for the one-dimensional balance law Eq. (4)
is now easily assembled with the previously described components:

(1) A spatially r-th order accurate reconstruction R (Eq. (11)).
(2) A consistent and Lipschitz continuous numerical flux function F (Eq. (17)).
(3) An unsplit source terms discretization S (Eq. (20)) based on s-th order accu-

rate point value evaluations and a q-th order accurate quadrature rule Q.
(4) A τ -th order accurate time integrator T .

This results in a min(q, r, s, τ)-th order accurate finite volume scheme (for smooth
enough solutions, of course). A similar assemblage can be realized with an appro-
priate splitting method for the source terms.

However, the approximation of near steady states characterized by the near
balance of flux divergence and source term

∂u

∂t
= −∂f

∂x
+ s ≈ 0

is quite challenging for such a generic finite volume scheme

dU i

dt
= − 1

∆x

(
F i+1/2 − F i−1/2

)
+ Si ≈ 0

It turns out that the steady states of interest are not exactly representable by
polynomials used in the reconstruction procedure in general. Therefore the piece-
wise polynomial reconstruction will introduce truncation errors at every time step.
Another issue is that the flux divergence and source term discretizations are com-
monly computed independently. This further makes the above discrete near bal-
ance unlikely.

In the next section, we present a simple illustrating example followed by a gen-
eral technique to well-balance such steady states within a finite volume framework.
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2.3 Example: Linear advection-reaction equation

subsec:motivation_advreact

We now illustrate the issues that can arise when numerically approximating bal-
ance laws near steady states. Consider the simple linear advection-reaction equa-
tion

∂u

∂t
+ a

∂u

∂x
= −λu (29)

{eq:motivation_advreact_0010}{eq:motivation_advreact_0010}

modeling the transport of some radioactive material of concentration u(x, t) with
constant advection velocity a > 0 and decay rate λ > 0.

An exact solution is easily derived with the method of characteristics

u(x, t) = e−λtu0(x− at), (30)
{eq:motivation_advreact_0020}{eq:motivation_advreact_0020}

where u0(x) is the initial concentration u(x, 0) = u0(x). The exact solution reflects
the anticipated behavior that the initial concentration is advected to the right with
velocity a and decays along the way with rate λ.

An interesting feature of the above simple model Eq. (29) is that it possesses
non-trivial steady-state solutions

a
∂u

∂x
= −λu, (31)

{eq:motivation_advreact_0030}{eq:motivation_advreact_0030}

which are of the form
u(x, t) = Ce−λ/a x (32)

{eq:motivation_advreact_0040}{eq:motivation_advreact_0040}

for some constant C. The steady states are characterized by a subtle balance
between the advection and decay processes. Their spatial variation is ruled by
the ratio between the decay and the advection timescale, commonly known as the
Damköhler number Da = λ

a .
Let us solve approximately Eq. (29) over the computational domain Ω = [0, 2]

discretized by N uniform cells Ωi (i = 1, . . . , N). For illustration, we choose two
first-order accurate finite volume schemes. The first scheme consists of piecewise
constant reconstruction Eq. (12), the Rusanov numerical flux Eq. (19), the unsplit
source term discretization based on the midpoint rule Eq. (21), and the explicit
Euler time integration Eq. (26). Explicitly, this gives the following fully discrete
evolution equation for the cell-averaged concentration U

n
i within cell Ωi:

U
n+1
i = U

n
i − ∆t

∆x
a
(
U

n
i − U

n
i−1

)
−∆tλU

n
i . (33)

{eq:motivation_advreact_0050}{eq:motivation_advreact_0050}

The second scheme employs Godunov splitting Eq. (24) for the source term dis-
cretization and reads:

eq:motivation_advreact_0060

U
∗

i = U
n
i − ∆t

∆x
a
(
U

n
i − U

n
i−1

)
(34a)

{eq:motivation_advreact_0061}{eq:motivation_advreact_0061}

U
n+1
i = U

∗

i −∆tλU
∗

i . (34b)
{eq:motivation_advreact_0062}{eq:motivation_advreact_0062}

Note that explicit Euler time integration is used in both subproblems. In principle,

the exact solution could be used in Eq. (34b), i.e., U
n+1
i = e−λ∆tU

∗

i . However, this
does not affect the following discussion. Without any surprise, an astute reader
will recognize here the classical first-order upwind method for the linear advection
equation. Both schemes are first-order accurate in space and time and are linearly
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stable provided that the time step ∆t is chosen such that 0 < ∆t
∆xa ≤ 1 and

0 < ∆tλ < 2.

We fix a = λ = 1 and evolve a slightly perturbed steady state Eq. (32) as shown
in Fig. 2a for one time unit. The small perturbation centered around x = 0.5 is
advected by one unit to the right and its amplitude decays by a factor e−1. In
the same panel are also shown the approximate results obtained with the unsplit
Eq. (33) and split Eq. (34) first-order schemes. Both schemes show qualitatively
correct results. More quantitatively, Fig. 2b displays the equilibrium perturbation,
that is, the difference between the solution and the background steady state. We
observe that the perturbation is indeed advected by the correct distance by both
schemes. However, we also observe that both schemes show significant discrepan-
cies with the expected solution away from the perturbation.

To further highlight the issue, we evolve the unperturbed steady state Eq. (32)
for one time unit with both schemes. The results are shown in Fig. 3a. By compar-
ison with Fig. 2b, we see clear evidence that the spurious deviations are due to the
inability of both schemes to maintain the steady state discretely. To illustrate the
origin of the problem, Fig. 3b shows the exact steady state together with the cell

averages U
0
i at the initial time for a few cells. The cell averages also correspond to

the piecewise constant solution representation within each cell resulting from the
first-order reconstruction. It is clear that these piecewise constant subcell profiles
are inadequate to represent the steady state within the cells faithfully. More pre-
cisely, the piecewise constant approximation of the exponentially varying steady
state Eq. (32) inevitably introduces truncation errors of order O(∆x).

Likewise, higher-order polynomial reconstruction procedures of order r intro-
duce truncation errors of orderO(∆xr). Therefore, the schemes will introduce local
truncation errors of order O(∆xr) near non-polynomial steady states. If the goal is
to simulate small perturbations on top of a steady state, the numerical resolution
needs to be increased to the point that these local truncation errors do not obscure
the phenomena of interest. Similarly, if the goal is to simulate phenomena near a
steady state for an extended time (compared to a characteristic timescale on which
the steady state would react to equilibrium perturbations), the resolution needs
to be increased such that the pile-up of these local truncation errors in each time
step does not corrupt the phenomena of interest. This increase in resolution may
cause prohibitively high computational costs, especially in multiple dimensions.

This inadequacy of standard piecewise reconstruction procedures was realized
early on in the development of numerical methods for balance laws. This motivated
for example Liu (1979), Glaz and Liu (1984), and van Leer (1984) to replace the
piecewise constant reconstruction within each cell

Un
i (x) = U

n
i , x ∈ Ωi, (35)

{eq:motivation_advreact_0070}{eq:motivation_advreact_0070}

by a piecewise steady reconstruction

Un
i (x) = Un

eq,i(x), x ∈ Ωi, (36)
{eq:motivation_advreact_0080}{eq:motivation_advreact_0080}

which fulfills the steady state Eq. (31)

a
∂

∂x
Un
eq,i(x) = −λUn

eq,i(x) (37)
{eq:motivation_advreact_0090}{eq:motivation_advreact_0090}
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and matches with the i-th cell’s average

1

∆x

∫

Ωi

Un
eq,i(x) dx = U

n
i . (38)
{eq:motivation_advreact_0100}{eq:motivation_advreact_0100}

Note that this equilibrium subcell profile Un
eq,i(x) depends on the cell under consid-

eration and may be adapted in each time step. Hence the subscripts “eq” and “i”,
and the superscript “n”. Since the steady states of the considered linear advection-
reaction equation are known explicitly Eq. (32), the desired piecewise steady re-
construction is of the form

Un
eq,i(x) = Ci e

−λ/a(x−xi), x ∈ Ωi, (39)
{eq:motivation_advreact_0110}{eq:motivation_advreact_0110}

and the constant Ci is simply fixed by matching with the i-th cell’s average Eq. (38)

Ci =
∆x

2

λ

a

U
n
i

sinh
(
λ
a

∆x
2

) . (40)
{eq:motivation_advreact_0120}{eq:motivation_advreact_0120}

Plugging this reconstruction into the unsplit first-order scheme gives

U
n+1
i = U

n
i − ∆t

∆x
a
(
Un
eq,i(xi+1/2)− Un

eq,i−1(xi−1/2)
)
−∆tλU

n
i . (41)

{eq:motivation_advreact_0130}{eq:motivation_advreact_0130}

Analogously for the split first-order scheme, one obtains
eq:motivation_advreact_0140

U
∗

i = U
n
i − ∆t

∆x
a
(
Un
eq,i(xi+1/2)− Un

eq,i−1(xi−1/2)
)

(42a)
{eq:motivation_advreact_0141}{eq:motivation_advreact_0141}

U
n+1
i = U

∗

i −∆tλU
∗

i . (42b)
{eq:motivation_advreact_0142}{eq:motivation_advreact_0142}

Let’s evolve the unperturbed steady state with the split and unsplit schemes
using the above piecewise steady reconstruction Eq. (36). The resulting equilib-
rium perturbation at final time tf = 1 is shown in Fig. 4a. By comparison with
Fig. 3a, we observe that the piecewise steady reconstruction does not improve the
situation for the split scheme. Actually, the spurious equilibrium deviations are
even slightly worse in this example. In contrast, the unsplit scheme with piece-
wise steady reconstruction preserves the steady state down to machine precision
(≈ 10−16 for the double precision floating-point representation used in the compu-
tations). Figure 4b displays the results for the slightly perturbed steady state. The
split scheme evolves the perturbation faithfully, but is afflicted by the scheme’s
local truncation errors at the steady state. On the other hand, the unsplit scheme
not only advect the bump very well; it additionally relaxes back to the steady
state once the perturbation passed through.

A straightforward computation shows that the unsplit first-order scheme with
piecewise steady reconstruction is exact for the advection-reaction equation’s steady
states Eq. (32). Cargo and LeRoux subsequently coined the term well-balanced for
numerical schemes with the property of preserving a discrete form of certain steady
states exactly. In the above derivation, we implicitly fixed some choices within the
scheme. When fixing the equilibrium subcell profile Ueq,i(x), we chose exact in-
tegration in Eq. (38) to match with the i-th cell average. Instead, a quadrature
rule, e.g., the midpoint rule, could be used. Similarly, we chose the exact solution
Eq. (39) as the equilibrium subcell profile. As suggested by Roe (1987), Mellema
et al. (1991) and Eulderink and Mellema (1995), one could chose an approximate
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Fig. 2: The left panel shows the slightly perturbed steady state initial concentration
Eq. (32) (solid black line) and the exact solution at the time final tf = 1 (dashed
black line). The same panel also shows the results obtained with the unsplit/split
first-order schemes with a resolution of N = 64 cells. The right panel shows the
equilibrium perturbation (solution minus the steady-state background) at the final
time. fig:motivation_advreact_0010

solution Eq. (37) as the equilibrium subcell profile. In the next section, we present
a general framework for the construction of well-balanced high-order finite volume
schemes. At the root, it is based on a high-order generalization of the piecewise
steady reconstruction idea.

We remark that fractional step or splitting methods could also be adapted to
improve their performance near steady states. This can be achieved by carefully
matching the boundary conditions used in the conservation law evolution Eq. (22a)
and the source term integration Eq. (22b). However, we shall not pursue this idea
in the sequel, and we refer to LeVeque (1986, 2002) and references therein for a
general procedure.

2.4 Well-balanced finite volume schemes
subsec:motivation_wb

From the linear advection-reaction example, we see that the idea of a piecewise
steady solution representation can lead to a finite volume scheme capable of pre-
serving a steady state exactly, i.e., a well-balanced finite volume scheme. In the
following, we present a simple recipe for constructing arbitrarily high-order well-
balanced finite volume schemes in a systematic manner. The recipe relies on a
high-order generalization of the piecewise steady reconstruction and a special dis-
cretization of the source terms guaranteeing the discrete preservation of steady
states. We stress that the recipe is a humbly distilled version of the methodologies
found in the vast literature about well-balanced finite volume schemes given in
Section 1.

The principle of well-balanced finite volume methods based on piecewise steady
reconstruction is to decompose the solution into an equilibrium part and a (not
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Fig. 3: The left panel shows the equilibrium perturbation for the numerically
evolved steady state with a resolution of N = 64 cells at final time tf = 1.
The blue and red pluses are obtained with the unsplit/split first-order schemes.
The right panel shows the steady-state profile (solid black line) together with the

cell averages U
0
i (blue solid lines) at initial time for a few cells. The latter also

corresponds to the piecewise constant reconstruction on which the unsplit/split
first-order schemes are based. fig:motivation_advreact_0020
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Fig. 4: The left panel shows the equilibrium perturbation for the numerically
evolved steady state with a resolution of N = 64 cells at final time tf = 1. The
blue and red pluses are obtained with the unsplit/split first-order schemes using
the piecewise steady reconstruction. The zoom in shows that the unsplit scheme is
able to preserve the steady state down to machine precision. The right panel shows
the equilibrium perturbation for the slightly perturbed steady-state concentration
simulated with the unsplit/split first-order schemes using the piecewise steady
reconstruction. The unsplit scheme clearly relaxes back to the steady state away
from the concentration perturbation. fig:motivation_advreact_0030
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necessarily small5) perturbation part

u(x) = ueq(x) + δu(x), (43)
{eq:motivation_wb_0010}{eq:motivation_wb_0010}

where the equilibrium part ueq(x) fulfills the steady-state balance

∂

∂x
f (ueq(x)) = s (ueq(x)) . (44)

{eq:motivation_wb_0011}{eq:motivation_wb_0011}

One obvious requirement for the piecewise steady reconstruction is thus the ability
to compute such steady states. It turns out that this is difficult in general. However,
we will tacitly assume that the differential equation Eq. (44) can be solved (exactly
or approximately) for certain steady states

Ueq(x) = ueq(x) +O(∆xϵ). (45)
{eq:motivation_wb_0013}{eq:motivation_wb_0013}

Here ϵ denotes the spatial order of accuracy of the computed equilibrium solution.
If Eq. (44) can be solved analytically for certain steady states, we may slightly
abuse the notation and set ϵ = ∞.

Solving for equilibrium is usually the main challenge when designing a well-
balanced scheme. The difficulty depends strongly on the considered balance law
and the associated steady states. For the linear advection-reaction equation, there
is only one steady state Eq. (39) and it is known analytically. The Euler equations
of fluid dynamics feature a myriad of steady states. We will look at one particular
class that arises when considering the Euler equations in spherical symmetry in
Section 2.5. Section 3 will look at the steady states that occur when the considered
fluid is subject to gravitational forces. Luckily, one is generally not interested in all
possible steady states within one practical simulation. Hence, it is often sufficient
to design well-balanced schemes for certain stationary states of practical interest.
The solvability of Eq. (44) is then restricted to these cases to which we will refer
loosely as the steady states of interest in the following.

Next, we describe the modifications to the standard reconstruction and source
term integration procedures of Godunov-type finite volume schemes for the ho-
mogeneous equations to build a well-balanced scheme for the steady states of
interest. This involves the subtle correction of the reconstruction and source term
integration that somehow incorporates the steady states of interest. We repeat the
obvious that the following developments evidently hinge on the computability of
the steady states of interest.

2.4.1 Piecewise steady reconstruction WR
subsubsec:motivation_wb_eqrec

As in a standard finite volume scheme, within each cell a subcell profile U i(x) has
to be reconstructed from the cell averages {Uk}. A piecewise steady reconstruction
WR is then given by the decomposition

U i(x) = WR
(
x;
{
Uk

}
k∈Si

)
= Ueq,i(x) + δU i(x), (46)

{eq:motivation_wb_0020}{eq:motivation_wb_0020}

where Ueq,i(x) and δU i(x) denote the local equilibrium and perturbation recon-
struction parts in cell Ωi, respectively. The stencil of the piecewise steady recon-
struction is denoted as previously by Si. We now describe each part in detail.

5 Indeed, the solution may be far away from a steady state.
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Within each cellΩi, the local equilibrium reconstructionUeq,i(x) is determined
by fitting an equilibrium solution Ueq(x) among the steady states of interest to the
cell average U i. Since the cell average U i may be arbitrarily far from a steady state
of interest, this is done in two substeps. The first substep consists of projecting
U i onto a cell average Ueq,i consistent with the steady states of interest. The
second substep determines the local equilibrium reconstruction Ueq,i(x) in cell
Ωi by matching an equilibrium profile Eq. (45) to the equilibrium projected cell
average Ueq,i

1

∆x
Qi (Ueq,i) = Ueq,i, (47)

{eq:motivation_wb_0030}{eq:motivation_wb_0030}

where Qi denotes a q-th order accurate quadrature rule over cell Ωi. We allow
that the matching Eq. (47) is done exactly (using exact integration) and again
slightly abuse the notation by setting q = ∞. For instance, the matching was done
exactly with Eq. (38) in the linear advection-reaction example of Section 2.3. This
results in a min(ϵ, q)-th order accurate local equilibrium reconstruction within each
cell. However, the difficulty of this equilibrium projection and matching depends
strongly on the balance law and steady states of interest. Some concrete examples
are provided in Sections 2.5 and 3. In addition, it is important to realize that
not every given cell average must correspond to an equilibrium among the steady
states of interest. Indeed, the solution may be far from a steady state. Therefore,
the possibility that the local equilibrium reconstruction does not succeed must be
taken into account. In that case, the local equilibrium reconstruction is simply set
to zero Ueq,i(x) ≡ 0.

The local equilibrium perturbation δU i(x) within each cell Ωi is obtained
by extrapolating the cell’s local equilibrium profile Ueq,i(x) to neighboring cells,
where it is compared with their cell averages. This senses how much the neighbor-
ing cells are perturbed with respect to the equilibrium in cell Ωi. Cell-averages of
these equilibrium perturbations can then be fed to any standard r-th order accu-
rate piecewise polynomial reconstruction procedure to recover a local equilibrium
perturbation profile as

δU i(x) = R
(
x;

{
Uk − 1

∆x
Qk(Ueq,i)

}

k∈Si

)
. (48)

{eq:motivation_wb_0050}{eq:motivation_wb_0050}

Like for the standard reconstruction procedure Eq. (16), the equilibrium pertur-
bation reconstruction can also be performed in local characteristic variables.

The piecewise steady reconstruction WR (Eq. (46)) is illustrated in Fig. 5
for a scalar quantity. The reconstruction is min(ϵ, q, r)-th order accurate close or
far from the steady states of interest (for smooth enough solutions, of course). It
is intuitively clear that the local equilibrium perturbation δU i(x) vanishes if cell
averages of a steady state of interest are fed to the piecewise steady reconstruction.
Hence, a min(ϵ, q)-th order accurate discrete form of the steady states of interest is
exactly reconstructed by the piecewise steady reconstruction. A proof is sketched
in Section 2.4.3. Also note that if we set Ueq,i(x) ≡ 0, then WR automatically
reduces to the standard piecewise polynomial reconstruction procedure R. This
is important in practice when there exists no solution of Eq. (47), i.e., no local
equilibrium solution matching with the given cell’s average is found.
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A possible variation of the piecewise steady reconstruction found in the liter-
ature is given by

U i(x) = W̃R
(
x;
{
Uk

}
k∈Si

)
= Ueq,i(x)

(
1 + δ̃U i(x)

)
, (49)

{eq:motivation_wb_0060}{eq:motivation_wb_0060}

which separates the solution into local equilibrium and relative perturbation parts
(e.g., Berberich et al. (2019); Chandrashekar and Klingenberg (2015)). The local
equilibrium reconstruction Ueq,i(x) is obtained with the same two substeps as
above. The local relative equilibrium perturbation is computed by

δ̃U i(x) = R
(
x;

{
Uk −Qk(Ueq,i)/∆x

Qk(Ueq,i)/∆x

}

k∈Si

)
, (50)

{eq:motivation_wb_0070}{eq:motivation_wb_0070}

where the expression is to be understood component-wise. One drawback of this
form is that it does not automatically reduce to a standard reconstruction if (some
components of) the local equilibrium Ueq,i(x) vanishes. In that case, one simply
switches to a standard reconstruction (of these components) with some additional
implementation logic. If the reconstruction is not sensitive to the shift with a
constant,

R
(
x;
{
Qk + C

}
k∈Si

)
= R

(
x;
{
Qk

}
k∈Si

)
(51)

{eq:motivation_wb_0080}{eq:motivation_wb_0080}

for any constant C and cell averages {Qk}, then Eq. (49) can be rewritten as

U i(x) = W̃R
(
x;
{
Uk

}
k∈Si

)
= Ueq,i(x) δ̃U i(x) (52)

{eq:motivation_wb_0090}{eq:motivation_wb_0090}

and the relative equilibrium perturbation Eq. (50) as

δ̃U i(x) = R
(
x;

{
Uk

Qk(Ueq,i)/∆x

}

k∈Si

)
. (53)

{eq:motivation_wb_0100}{eq:motivation_wb_0100}

Most reconstruction methods possess property Eq. (51) because non-oscillating
behavior is usually enforced by limiting first and higher derivatives of the recon-
struction polynomial and these are not affected by the addition of a constant. Both
forms of the relative piecewise steady reconstruction share similar properties to
the “absolute” one Eq. (46). An example is given in Section 3.3.1.

2.4.2 Well-balanced source term discretization WS
subsubsec:motivation_wb_src

A direct numerical integration of the source term as in Eq. (20) will in general
not lead to a well-balanced scheme. Instead, one uses the previously introduced
piecewise steady reconstruction that decomposes the solution into an equilibrium
and a perturbation part to perform the following seemingly frivolous manipulation

s(U i) = s(Ueq,i) + s(U i)− s(Ueq,i), (54)
{eq:motivation_wb_src_0010}{eq:motivation_wb_src_0010}

which simply adds and subtracts the source term evaluated with the local equi-
librium reconstruction Ueq,i within cell Ωi. As suggested, e.g., by Huang and Liu
(1986), Audusse et al. (2004), and Botta et al. (2004), the equilibrium part fulfills
the steady-state balance by construction,

∂

∂x
f (Ueq,i(x)) = s (Ueq,i(x)) , (55)

{eq:motivation_wb_src_0020}{eq:motivation_wb_src_0020}
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1
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Fig. 5: Sketch of the piecewise steady reconstruction of some scalar quantity from
the cell averages {Uk}. For the illustration, we assume that the steady-state projec-
tion of the cell averages is trivial Ueq,i = U i as for the steady states of the linear
advection-reaction equation. Left panel: At the beginning of the reconstruction
process, we are given the cell averages of the i-th cell and its immediate neighbors
(solid black piecewise constant lines). The equilibrium reconstruction Ueq,i(x) is
built such that it matches the cell average U i by Eq. (47) and extrapolated to
the neighboring cells k = i ± 1 (solid blue line). The cell averages of Ueq,i(x) are
then computed in the neighboring cells k = i ± 1 (solid blue piecewise constant
lines) and the cell-averaged equilibrium perturbations as seen from the i-th cell
are computed. Right panel: The equilibrium perturbation δUi(x) is reconstructed
by a standard reconstruction procedure Eq. (48). Finally, by combining the equi-
librium Ueq,i(x) and perturbation δUi(x) reconstruction as Eq. (46) one obtains
the equilibrium-preserving piecewise steady reconstruction Ui(x) in the left panel
(solid black line). fig:motivation_wb_0010

and can be trivially integrated by applying the fundamental theorem of calculus.
The cell average of the source term Eq. (54) can therefore be approximated by
applying exact integration to the equilibrium part and numerical integration to
the perturbation part as follows

Si =
1

∆x
f(Ueq,i(x))

∣∣∣∣
xi+1/2

xi−1/2

+
1

∆x
Qi (s(U i(x))− s(Ueq,i(x))) . (56)

{eq:motivation_wb_src_0030}{eq:motivation_wb_src_0030}

Here Qi denotes a q-th order accurate quadrature rule over cell Ωi. Note that Qi

may be different from the quadrature rule used in the piecewise steady reconstruc-
tion. We will refer to it with the same symbol since the same quadrature rule is
typically used.

Equation (56) results in a min(ϵ, q, r, s)-th order accurate discretization of the
source term. At a steady state of interest (i.e., U i ≡ Ueq,i), Eq. (56) reduces to

Si =
1

∆x

(
f(Ueq,i(xi+1/2))− f(Ueq,i(xi−1/2))

)
. (57)

{eq:motivation_wb_src_0040}{eq:motivation_wb_src_0040}

As we will see below, this is crucial for the well-balanced property of the scheme.
Moreover, note that if the local equilibrium reconstruction part Ueq,i(x) vanishes,
the above source term discretization automatically reduces to the standard one in
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Eq. (20). This is again important in practice when no local equilibrium matching
with the given cell average is found (i.e., no solution to Eq. (47) is found).

An alternative form of the well-balanced source discretization is based on
Richardson extrapolation. The idea is to write the source term as

s(U i) =
s(U i)

s(Ueq,i)
s(Ueq,i) =

s(U i)

s(Ueq,i)

∂

∂x
f (Ueq,i) , (58)

{eq:motivation_wb_src_0050}{eq:motivation_wb_src_0050}

which has to be understood component-wise. The fact that the equilibrium part
Ueq,i fulfills the steady-state balance by construction is used in the second equality.
However, note that rewriting the source term in this way may not be possible
for all the components of a particular system of balance laws, because they are
trivially fulfilled at the steady states of interest. Hence, they are not relevant for
the construction of a well-balanced scheme and can be discretized in a standard
way. For the sake of presentation, we ignore this subtlety in the derivation of
the well-balanced source term discretization based on this form. An illustrative
example of this alternative well-balanced source term discretization is provided in
Section 3.3.1.

Consider the following second-order approximation of the cell-averaged source
term based on the form above

Si =
1

∆x
Ti

(
s(U i)

s(Ueq,i)

∂

∂x
f (Ueq,i)

)

=
1

2

(
s(U i(xi−1/2))

s(Ueq,i(xi−1/2))
+

s(U i(xi+1/2))

s(Ueq,i(xi+1/2))

)
1

∆x
f(Ueq,i(x))

∣∣∣∣
xi+1/2

xi−1/2

,

(59)
{eq:motivation_wb_src_0060}{eq:motivation_wb_src_0060}

where we introduce the symbol Ti for this particular quadrature rule (due to
its resemblance with the trapezoidal rule). At a steady state of interest U i ≡
Ueq,i, this clearly reduces to Eq. (57) which is again crucial for well-balancing
as we shall see below. Unfortunately, it is still only a second-order source term
discretization. To overcome this limitation, Noelle et al. (2006) ingeniously suggest
to use Richardson extrapolation. Let us introduce a composite quadrature rule
based on Eq. (59). The cell Ωi is subdivided in Nc uniform subintervals Ωj

i =
[xi,j−1/2, xi,j+1/2] of size h = ∆x/Nc with xi,j−1/2 = xi−1/2+ jh (j = 0, . . . , Nc).
By applying the quadrature rule Ti to each subinterval and summing up, we obtain
the following composite quadrature rule

Si =
1

∆x
TNc
i

(
s(U i)

s(Ueq,i)

∂

∂x
f (Ueq,i)

)

=
1

∆x

Nc∑

j=1

h

2

(
s(U i(xi,j−1/2))

s(Ueq,i(xi,j−1/2))
+

s(U i(xi,j+1/2))

s(Ueq,i(xi,j+1/2))

)
1

h
f(Ueq,i(x))

∣∣∣∣
xi,j+1/2

xi,j−1/2

.

(60)
{eq:motivation_wb_src_0070}{eq:motivation_wb_src_0070}

This again reduces to Eq. (57) at a steady state of interest by telescoping of the
sum, but it is still only second-order accurate. However, Noelle et al. (2006) note
that the quadrature rule Ti is also symmetric and therefore possesses an asymptotic
error expansion of the form

TNc
i (f) =

∫

Ωi

f(x)dx+ c1

(
∆x

Nc

)2

+ c2

(
∆x

Nc

)4

+ c3

(
∆x

Nc

)6

+ . . . (61)
{eq:motivation_wb_src_0080}{eq:motivation_wb_src_0080}
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for any (smooth enough) function f . Richardson extrapolation then combines the
TNc
i to cancel out increasingly higher error terms in the expansion. For example,

fourth- and a sixth-order accurate quadrature rules are readily obtained:

T 2
i (f)− T 1

i (f)

3
=

∫

Ωi

f(x)dx+O(∆x)4,

64T 4
i (f)− 20T 2

i (f) + T 1
i (f)

45
=

∫

Ωi

f(x)dx+O(∆x)6.

(62)
{eq:motivation_wb_src_0090}{eq:motivation_wb_src_0090}

Thus, arbitrary high-order well-balanced source term discretizations can be ob-
tained from the alternative form Eq. (59). Although it possesses similar properties
as the well-balanced source term discretization Eq. (56), one drawback of the al-
ternative form is that it does not automatically reduce to a standard source term
discretization in case the local equilibrium part vanishes in the piecewise steady
reconstruction (i.e., no solution to Eq. (47) is found). However, this can easily be
handled with some additional implementation logic.

2.4.3 Assembling a well-balanced finite volume scheme

subsubsec:motivation_wb_ass

A well-balanced finite volume scheme Eq. (7) for the one-dimensional balance law
Eq. (4) is now easily assembled with the formerly described components:

(1) A min(ϵ, q, r)-th order accurate piecewise steady reconstructionWR (Eq. (46),
Eq. (49) or Eq. (52)).

(2) A consistent and Lipschitz continuous numerical flux function F (Eq. (17)).
(3) An unsplit min(ϵ, q, r, s)-th order accurate well-balanced source term discretiza-

tion WS (Eq. (56) or Eqs. (60) and (62)).
(4) A τ -th order accurate time integrator T .

This results in a min(ϵ, q, r, s, τ)-th order accurate well-balanced finite volume
scheme (for smooth enough solutions). The scheme preserves exactly a min(ϵ, q)-
th order accurate discrete form of the steady states of interest (up to machine
precision). Furthermore, such a well-balanced scheme automatically falls back to
a standard high-order finite volume scheme if the local equilibrium reconstruction
part vanishes6. This guarantee is important in practice since one is assured that
if the piecewise steady reconstruction fails to determine a local equilibrium profile
(because it may not exist), the scheme reduces decently to a standard scheme
without any loss of accuracy and robustness.

To round off this section, we demonstrate the well-balanced property of such a
scheme, that is, its ability to preserve exactly (up to machine precision) a discrete
form Ueq(x) of the steady states of interest ueq(x) it was designed for 7. For sim-
plicity, we assume that both ueq(x) and its approximation Ueq(x) are continuous.
As we shall see below, this requirement can easily be waived. Let the scheme be
given cell averages {U i} of such a steady state of interest. These cell averages are

6 This is of course also true for the alternative piecewise steady reconstructions and source
term discretizations with some additional implementation logic handling the fall back to a
standard high-order finite volume scheme.

7 We stress the subtle distinction between the steady state of interest ueq(x) and its discrete
approximation Ueq(x) is necessary because we do not require the steady states of interest to be
known analytically (see Eq. (45)). If they are, then we of course simply have Ueq(x) ≡ ueq(x).
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computed from a given steady state ueq(x) approximated discretely by Ueq(x)
with

U i =
1

∆x
Qi(Ueq(x)), (63)

{eq:motivation_wb_ass_0020}{eq:motivation_wb_ass_0020}

where Qi denotes the same q-th order quadrature rule as used when matching the
local equilibrium profile with the cell averages in the piecewise steady reconstruc-
tion Eq. (47). We shall term such initial data as well-prepared initial data. Given
such well-prepared initial data, we reciprocally assume that the local equilibrium
reconstruction Eq. (47) recovers within every cell Ωi the restriction of Ueq(x) in
respective cell,

Ueq,i(x) = Ueq(x)|x∈Ωi
, (64)
{eq:motivation_wb_ass_0030}{eq:motivation_wb_ass_0030}

and that its extrapolation over the computational domain Ω recovers Ueq(x) ev-
erywhere, i.e.,

Ueq,i(x) = Ueq(x) for x ∈ Ω. (65)
{eq:motivation_wb_ass_0040}{eq:motivation_wb_ass_0040}

Of course, this assumption needs to be verified for the particular balance law and
steady states of interest, and represents the core challenge in the construction of
a well-balanced scheme. Taking this assumption for granted, it is obvious that the
piecewise steady reconstruction WR (Eq. (46)) recovers the given steady state
Ueq(x) in every cell as the local equilibrium perturbation vanishes everywhere,
i.e., δU i(x) ≡ 0, and we have

U i(x) = Ueq(x)|x∈Ωi
. (66)

{eq:motivation_wb_ass_0050}{eq:motivation_wb_ass_0050}

The same holds true for the alternative piecewise steady reconstructions Eq. (49)
or Eq. (52)) with slightly adapted arguments. For the numerical flux, we therefore
have

F i+1/2 = F(U i+1/2−,U i+1/2+) = f(Ueq(xi+1/2)) (67)
{eq:motivation_wb_ass_0060}{eq:motivation_wb_ass_0060}

due to the fitting of the piecewise steady reconstruction WR at every cell interface

U i+1/2− = U i(xi+1/2) = Ueq(xi+1/2) = U i+1(xi+1/2) = U i+1/2+. (68)
{eq:motivation_wb_ass_0070}{eq:motivation_wb_ass_0070}

Similarly for the source term discretization WS Eq. (56), we have

Si =
1

∆x
f(Ueq,i(x))

∣∣∣∣
xi+1/2

xi−1/2

+
1

∆x
Qi (s(U i(x))− s(Ueq,i(x)))

=
1

∆x

(
f(Ueq(xi+1/2))− f(Ueq(xi−1/2))

)
.

(69)
{eq:motivation_wb_ass_0080}{eq:motivation_wb_ass_0080}

The alternative source term discretization Eqs. (60) and (62) likewise reduces to
the above expression. Plugging Eqs. (67) and (69) into Eq. (7), one obtains

dU i

dt
= − 1

∆x

(
F i+1/2 − F i−1/2

)
+ Si = 0,

and therefore the scheme is well-balanced as claimed, i.e., it preserves a min(ϵ, q)-th
order accurate discrete form of the steady states of interest exactly (up to machine
precision).

We assumed that the steady states of interest and their discrete approximation
are continuous in Eq. (68). However, it is straightforward to generalize the well-
balanced scheme (and the above demonstration) to steady states with stationary
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discontinuities located at cell interfaces. For this purpose, some mild additional
requirements for the numerical flux function F and the standard piecewise polyno-
mial reconstruction procedure R are necessary: (i) the numerical flux F has to be
able to resolve exactly the (stationary) discontinuities allowed by the steady states
of interest, and (ii) the reconstruction procedure R has to reduce to a piecewise
constant reconstruction near isolated discontinuities at cell interfaces. Both re-
quirements ensure that at the stationary discontinuities the numerical flux agrees
with the exact flux like in Eq. (66).

2.5 Example: The Euler equations in spherical symmetry

subsec:motivation_euler_sphsym

As a simple and practical example of the construction of a well-balanced finite
volume scheme, we consider the Euler equations in spherical symmetry

eq:motivation_euler_sphsym_0010

∂ρ

∂t
+

1

r2
∂

∂r

(
r2ρv

)
= 0, (70a)

{eq:motivation_euler_sphsym_0011}{eq:motivation_euler_sphsym_0011}

∂ρv

∂t
+

1

r2
∂

∂r

(
r2ρv2

)
+

∂p

∂r
= 0, (70b)

{eq:motivation_euler_sphsym_0012}{eq:motivation_euler_sphsym_0012}

∂E

∂t
+

1

r2
∂

∂r

[
r2 (E + p) v

]
= 0, (70c)

{eq:motivation_euler_sphsym_0013}{eq:motivation_euler_sphsym_0013}

expressing the conservation of mass, momentum and energy. Here r is the radial
coordinate, ρ the mass density, v the radial velocity, E = ρe+ 1

2ρv
2 the total fluid

energy composed of internal and kinetic energy densities, and p the pressure. The
latter is related to the density ρ and specific internal energy e through an equation
of state p = p(ρ, e).

A computationally convenient form of Eq. (70) is given by

∂u

∂t
+

∂(Af)

∂V
= s, (71)

{eq:motivation_euler_sphsym_0020}{eq:motivation_euler_sphsym_0020}

where the vector of conserved variables, fluxes and source terms are

u =



ρ
ρv
E


 , f(u) =




ρv
ρv2 + p
(E + p)v


 , s(u) =



0
p
0


 ∂A

∂V
=



0
2p
r
0


 , (72)

{eq:motivation_euler_sphsym_0030}{eq:motivation_euler_sphsym_0030}

and the area and volume functions are

A(r) = 4πr2 and V (r) =
4π

3
r3. (73)

{eq:motivation_euler_sphsym_0040}{eq:motivation_euler_sphsym_0040}

This form is particularly convenient because the fluxes take exactly the same
form as in the one-dimensional planar geometry case. Hence, the same numerical
fluxes can directly be used. The drawback of this form is the introduction of a
geometric source term that becomes singular near the origin. Furthermore, note
that the source term may depend non-linearly on the conserved variables through
the equation of state.

A particular steady state of Eqs. (70) and (71) is a resting fluid with uniform
density and pressure profile. It is of course highly desirable that a numerical scheme
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faithfully reproduces this seemingly trivial equilibrium. The steady state of interest
ueq is therefore simply

ueq =



ρeq
0

ρeeq


 , (74)

{eq:motivation_euler_sphsym_0050}{eq:motivation_euler_sphsym_0050}

where ρeq = const is the constant density and ρeeq = const the constant internal
energy density, respectively. It clearly fulfills

∂

∂V
Af(ueq) =

1

r2
∂

∂r




0
r2peq
0


 =




0
2peq

r
0


 = s(ueq), (75)

{eq:motivation_euler_sphsym_0060}{eq:motivation_euler_sphsym_0060}

where peq = p(ρeq, ρeeq) = const is the constant equilibrium pressure.
A straightforward discretization of Eq. (71) on a spherical domainD = [R0, R1],

0 ≤ R0 < R1, with a semi-discrete finite volume method gives for the i-th cell

dU i

dt
= − 1

∆Vi

(
Ai+1/2F i+1/2 −Ai−1/2F i−1/2

)
+ Si. (76)

{eq:motivation_euler_sphsym_0070}{eq:motivation_euler_sphsym_0070}

Here U i denotes the approximate cell average of the conserved variables over a
(spherical shell) cell Ωi = [ri−1/2, ri+1/2] with inner/outer radius ri±1/2 of volume
∆Vi = V (ri+1/2)− V (ri−1/2)

U i(t) ≈ ui(t) =
1

∆Vi

∫

Ωi

u(r, t)dV. (77)
{eq:motivation_euler_sphsym_0080}{eq:motivation_euler_sphsym_0080}

The fluxes through the inner/outer (spherical shell) cell boundary of area Ai±1/2 =
A(ri±1/2) are approximated by a numerical flux function

Fi±1/2 = F(U i±1/2−,U i±1/2+), (78)
{eq:motivation_euler_sphsym_0090}{eq:motivation_euler_sphsym_0090}

e.g., the Rusanov flux Eq. (19), and the cell interface extrapolated point values
of the conserved variables U i±1/2−/U i±1/2+ are obtained from a reconstruction
procedure. For simplicity of the example, let’s fix spatial accuracy to second order
by choosing a piecewise linear reconstruction centered at the (spherical shell) cell
center8 ri = (ri−1/2 + ri+1/2)/2,

U i(r) = R
(
r;
{
Uk

}
k∈Si

)
= U i +DU i (r − ri), (79)

{eq:motivation_euler_sphsym_0100}{eq:motivation_euler_sphsym_0100}

where Si = {i−1, i, i+1} is the stencil and the limited slopes can be computed with
the generalized minmod slope Eq. (14). Accordingly, we also choose the second-
order accurate midpoint quadrature rule9 for approximating integrals of a function
f over a (spherical shell) cell Ωi:

Qi(f) = ∆Vi f(ri). (80)
{eq:motivation_euler_sphsym_0110}{eq:motivation_euler_sphsym_0110}

8 Instead of the cell center, the reconstruction could be centered at the centroid of the cell.
9 Alternatively, the midpoint rule could be replaced by the centroid rule that evaluates the

integrand at the centroid of the cell.
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This immediately gives the following (naive) discretization of the geometric source
term

Si =
1

∆Vi
Qi(s(U i)) =




0
2pi

ri

0


 , (81)

{eq:motivation_euler_sphsym_0120}{eq:motivation_euler_sphsym_0120}

where pi is the pressure at the cell center. The latter is simply obtained by eval-
uating the piecewise linearly reconstructed conserved variables Eq. (79) at cell
center

pi = p (ρi(ri), ρei(ri)) = p(ρi, ρei) (82)
{eq:motivation_euler_sphsym_0130}{eq:motivation_euler_sphsym_0130}

with

ρei = ρei(ri) = Ei(ri)−
ρvi(ri)

2

2ρi(ri)
= Ei −

ρv2i
2ρi

, (83)
{eq:motivation_euler_sphsym_0140}{eq:motivation_euler_sphsym_0140}

where the peculiarity that cell averages correspond to point values at cell center up
to second-order accuracy is especially apparent. This concludes the description of
a plain-vanilla finite volume scheme for the Euler equations in spherical symmetry.

We now construct a well-balanced finite volume scheme capable of preserving
a resting fluid Eq. (74) exactly following the recipe in Section 2.4 based on the just
described scheme. First, we need to devise a piecewise steady reconstruction pro-
cedure for the resting fluid equilibrium, i.e., our steady state of interest we wish
to preserve. We begin with the local equilibrium reconstruction part. The first
substep in the local equilibrium reconstruction is the projection of the cell aver-
ages onto equilibrium cell averages consistent with the resting fluid equilibrium.
This substep is necessary because the averages could be arbitrarily far from the
steady state of interest (i.e., non-vanishing radial momentum and kinetic energy
densities), and it is simply accomplished by

Ueq,i =



ρi
0
ρei


 . (84)

{eq:motivation_euler_sphsym_0141}{eq:motivation_euler_sphsym_0141}

The equilibrium cell average of the density is simply set to the cell-averaged density
and the equilibrium cell average of the momentum density is set to zero as is
consistent with the steady state of interest. An expression for the cell average of
the internal energy density is provided by Eq. (83). Although this is only spatially
second-order accurate in general, it becomes exact when the fluid is at rest, thereby
establishing consistency with the steady state of interest Eq. (74). The second
substep is then to match a local equilibrium reconstruction Ueq,i(r) to the cell’s
Ωi average equilibrium projected conserved variables Ueq,i as in Eq. (47). This is
indeed trivial given the constant nature of the considered steady state of interest

Ueq,i(r) = Ueq,i =



ρi
0
ρei


 . (85)

{eq:motivation_euler_sphsym_0150}{eq:motivation_euler_sphsym_0150}

The local equilibrium perturbation reconstruction Eq. (48) is then

δU i(r) = R
(
r;
{
Uk −Ueq,i

}
k∈Si

)
=
(
U i −Ueq,i

)
+DδU i (r − ri), (86)

{eq:motivation_euler_sphsym_0160}{eq:motivation_euler_sphsym_0160}
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where we used that Ueq,i(r) is a simple constant, i.e.,

Ueq,i =
1

∆Vk

∫

Ωk

Ueq,i(r)dV =
1

∆Vk
Qk(Ueq,i) for k ∈ Si. (87)
{eq:motivation_euler_sphsym_0170}{eq:motivation_euler_sphsym_0170}

As result, we obtain the following piecewise steady reconstruction

U i(r) = W
(
r;
{
Uk

}
k∈Si

)
= Ueq,i(r) + δU i(r) = Ueq,i + δU i(r). (88)

{eq:motivation_euler_sphsym_0180}{eq:motivation_euler_sphsym_0180}

In the last equality, we used again that Ueq,i(r) is simply a constant.
However, the above piecewise steady reconstruction can be much simplified.

The limited slopes DδU i can be reduced with the following observation

U i+1 −U i

∆r
=

(U i+1 −Ueq,i)− (U i −Ueq,i)

∆r
, (89)

{eq:motivation_euler_sphsym_0190}{eq:motivation_euler_sphsym_0190}

which means that the equilibrium Ueq,i drops out in the computation of the slopes
Eq. (14). Hence, we have that the limited slopes of the local equilibrium perturba-
tion reconstruction in Eq. (86) reduce to the slopes used in the standard piecewise
linear reconstruction Eq. (79): DδU i = DU i. Now by combining this result with
Eq. (86) and plugging it into Eq. (88), we obtain that the piecewise steady recon-
struction simplifies to the standard piecewise linear reconstruction:

U i(r) = W
(
r;
{
Uk

}
k∈Si

)
= R

(
r;
{
Uk

}
k∈Si

)
= U i +DU i (r − ri). (90)

{eq:motivation_euler_sphsym_0200}{eq:motivation_euler_sphsym_0200}

Of course, this is not surprising as we simply subtract a constant from the data to
be (piecewise linearly) reconstructed. It is nevertheless a welcome simplification
when implementing the present scheme.

Finally, we construct the appropriate well-balanced source term discretization
with Eq. (56):

Si =
1

∆Vi
A(r) f(Ueq,i(r))

∣∣∣∣
ri+1/2

ri−1/2

+
1

∆Vi
Qi (s(U i(r))− s(Ueq,i(r)))

=
Ai+1/2 −Ai−1/2

∆Vi




0
p(ρi, ρei)

0


+ s(U i(ri))− s(Ueq,i(ri))

=
Ai+1/2 −Ai−1/2

∆Vi



0
pi
0


 . (91)

{eq:motivation_euler_sphsym_0210}{eq:motivation_euler_sphsym_0210}

We substituted the midpoint rule Eq. (80) in the second equality, and we used
the fact that the pressure computed from the piecewise steady U i(r) and the
local equilibrium reconstruction Ueq,i(r) coincide at the cell center ri in the third
equality (see Eqs. (82) and (83)).

It is now straightforward to show that the just derived source term discretiza-
tion Eq. (91) is indeed able to preserve a resting fluid with uniform density and
pressure exactly. Hence, we have designed a well-balanced scheme for this partic-
ular steady state. This is confirmed by the numerical results displayed in Fig. 6.

We remark that the above spatially second-order accurate source term dis-
cretization Eq. (91) is well-known among the practitioners in the field (see, e.g.,
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Fig. 6: The figure shows the radial velocity after one time unit of a constant state
with unit density and pressure (ρ = p = 1). The blue/red line corresponds to the
results obtained by the standard naive/well-balanced second-order schemes from
Section 2.5 with a resolution of N = 64. In both simulations, solid wall boundary
conditions were enforced at the upper boundary. From the plot it is obvious that
the standard treatment of the geometric source term results in spurious velocity
fluctuations near the origin. In contrast, the well-balanced scheme shows a still
standing radial profile, as is expected. fig:motivation_euler_sphsym_0010

Li (2003); Mönchmeyer and Müller (1989); Skinner and Ostriker (2010); Wang
and Johnsen (2013)). The above expression for the geometric source term can also
be motivated from the derivation of the momentum equation Eq. (72) which ex-
presses the pressure gradient in Eq. (70b) with the following simple application of
the product rule

∂p

∂r
=

∂

∂V
(Ap)− ∂A

∂V
p. (92)

Expressing ∂A
∂V in a discrete finite volume sense then immediately gives Eq. (91).

However, the here described discretization is in principle extensible to arbitrary
spatial orders of accuracy. It would be interesting to combine the above with
high-order reconstruction procedures for orthogonal curvilinear coordinates de-
vised by Mignone (2014) and Shadab et al. (2019) together with specifically de-
signed weighted10 Gauss quadrature rules.

2.6 Extension to several space dimensions

subsec:wb_md

We now extend the one-dimensional recipe in Section 2.4 to build arbitrarily high-
order well-balanced finite volume schemes for multidimensional systems of balance
laws

∂u

∂t
+∇ · f = s, (93)

{eq:wb_md_0010}{eq:wb_md_0010}

where u = u(x, t) is the vector of conserved variables, f = f(u) the flux tensor
and s = s(u) the vector of source terms. As in the one-dimensional case, we

10 The weight function would correspond to the volume element of the considered curvilinear
coordinates.
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tacitly assume that (i) the system is of hyperbolic nature (the Jacobian of the
flux tensor n · ∂f

∂u is diagonalizable with real eigenvalues for any direction n) and
that (ii) the source term is not singular. For ease of presentation, we focus on the
two-dimensional case in Cartesian coordinates

∂u

∂t
+

∂f

∂x
+

∂g

∂y
= s, (94)

{eq:wb_md_0020}{eq:wb_md_0020}

where f = f(u) and g = g(u) are the vectors of fluxes in x- and y-direction, i.e.,
the components of the flux tensor f = [f , g]T in Cartesian coordinates. However,
the extension to three dimensions and other coordinate systems is straightforward.

In the following subsection, we begin by concisely describing a standard fi-
nite volume discretization of the balance law Eq. (93) to introduce our notation.
More comprehensive descriptions can be found in the excellent textbooks listed
at the end of Section 2.1. The extension of the one-dimensional recipe to design
well-balanced schemes in several space dimensions is presented in the subsequent
subsections.

2.6.1 Finite volume discretization

subsubsec:wb_md_fv

We consider a rectangular spatial domain Ω = [xmin, xmax] × [ymin, ymax] dis-
cretized uniformly (for ease of presentation) by Nx and Ny cells or finite volumes
in x- and y-direction, respectively. The cells are labeled by Ωi,j = Ωi × Ωj =
[xi−1/2, xi+1/2]× [yj−1/2, yj+1/2], the constant cell sizes by ∆x = xi+1/2−xi−1/2

and ∆y = yj+1/2 − yj−1/2, and the cell volumes by |Ωi,j | = ∆x∆y. We also in-
troduce a non-directional cell size h = max(∆x,∆y) for convenience. The xi =
(xi−1/2 + xi+1/2)/2 and yj = (yj−1/2 + yj+1/2)/2 denote the cell centers.

A semi-discrete finite volume scheme for the numerical approximation of Eq. (94)
then takes the following form

d

dt
U i,j = L(U)i,j

= − 1

∆x

(
F i+1/2,j − F i−1/2,j

)
− 1

∆y

(
Gi,j+1/2 −Gi,j−1/2

)
+ Si,j ,

(95)
{eq:wb_md_fv_0010}{eq:wb_md_fv_0010}

where the U i,j denote the approximate cell averages of the conserved variables,

U i,j(t) ≈ ui,j(t) =
1

|Ωi,j |

∫

Ωi,j

u(x, y, t) dx dy, (96)
{eq:wb_md_fv_0020}{eq:wb_md_fv_0020}

the F i±1/2,j and Gi,j±1/2 are approximate facial averages of the fluxes through
the cell boundary in respective direction,

F i±1/2,j(t) ≈
1

∆y

∫ yj+1/2

yj−1/2

f(u(xi±1/2, y, t)) dy

Gi,j±1/2(t) ≈
1

∆x

∫ xi+1/2

xi−1/2

g(u(x, yj±1/2, t)) dx,

(97)
{eq:wb_md_fv_0030}{eq:wb_md_fv_0030}

and the Si,j are approximate cell averages of the source term

Si,j(t) ≈ si,j(t) =
1

|Ωi,j |

∫

Ωi,j

s(u(x, y, t)) dx dy. (98)
{eq:wb_md_fv_0040}{eq:wb_md_fv_0040}
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The next paragraphs compactly describe the components of a generic finite vol-
ume scheme in several space dimensions. For the sake of presentation, we suppress
the temporal dependence of the quantities.

Reconstruction The first task is to reconstruct an accurate subcell profile from the
cell-averaged conserved variables. We denote such an r-th order accurate piecewise
polynomial reconstruction procedure by

U i,j(x, y) = R
(
x, y;

{
Uk,l

}
(k,l)∈Si,j

)
, (99)

{eq:wb_md_fv_0080}{eq:wb_md_fv_0080}

where Si,j denotes the stencil of the reconstruction for cell Ωi,j . Many such recon-
struction procedures have been developed in the literature and we refer to the refer-
ences previously mentioned in Section 2.2.1. For example, the stencil for a spatially
first-order accurate piecewise constant consists only of the cell itself Si,j =

{
U i,j

}
.

For a spatially second-order accurate piecewise linear reconstruction, the stencil
includes the four adjacent cells Si,j =

{
U i,j ,U i−1,j ,U i+1,j ,U i,j−1,U i,j+1

}
.

Numerical fluxes The numerical fluxes through the cell faces are obtained by nu-
merical integration of one-dimensional numerical fluxes. The facially averaged nu-
merical fluxes in x-direction are given by

F i+1/2,j =
1

∆y
Qi+1/2,j

(
F
(
U i+1/2−,j ,U i+1/2+,j

))

=
1

∆y

Nq∑

β=1

ωβ F
(
U i,j

(
xi+1/2, yj,β

)
,U i+1,j

(
xi+1/2, yj,β

))
,

(100)

where Qi+1/2,j denotes a q-th order accurate quadrature rule with Nq nodes yj,β ∈
Ωj and weights ωβ , and F is a one-dimensional numerical flux formula in x-
direction (see Section 2.2.2). Likewise, the facially averaged numerical fluxes in
y-direction are given by

Gi,j+1/2 =
1

∆x
Qi,j+1/2

(
G
(
U i,j+1/2−,U i,j+1/2+

))

=
1

∆x

Nq∑

α=1

ωα G
(
U i,j

(
xi,α, yj+1/2

)
,U i,j+1

(
xi,α, yj+1/2

))
,

(101)

where Qi,j+1/2 denotes a q-th order accurate quadrature rule with Nq nodes
xi,α ∈ Ωi and weights ωα, and G is a one-dimensional numerical flux formula
in y-direction. In general, the numerical flux formulas in respective direction are
often obtained by appropriate rotation of a one-dimensional flux formula in x-
direction (see, e.g., Toro (2009) for details).

Numerical source terms We shall consider only unsplit methods for the numerical
integration of the source terms. The cell-averaged numerical source terms are then
given by

Si,j =
1

|Ωi,j |
Qi,j (s(U i,j))

=
1

|Ωi,j |

Nq∑

α=1

Nq∑

β=1

s(U i,j(xi,α, yj,β)),

(102)
{eq:wb_md_fv_0081}{eq:wb_md_fv_0081}
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where Qi,j denotes a q-th order accurate quadrature rule with Nq × Nq nodes
xi,α ∈ Ωi, yj,β ∈ Ωj and weights ωα, ωβ in x- and y-direction, respectively. If
we assume that the point values of the source term can be evaluated with spatial
order of accuracy s, then this gives a spatially min(q, s)-th order discretization of
the source term (provided enough smoothness).

In practice, the same quadrature rules are often used in the numerical flux
integration along the x- and y-direction. A tensor product quadrature rule is typ-
ically used for the numerical source term integration. For first- and second-order
accuracy, the midpoint rule is the quadrature rule of choice. Beyond second-order
accuracy, Nq-point Gauss-Legendre or Gauss-Lobatto quadrature rules are usually
used (Nq > 1).

Time discretization The semi-discrete evolution Eq. (95) can be integrated with
τ -th order in time as in the one-dimensional case (see Section 2.2.4).

This concludes the brief description of a standard min(q, r, s, τ)-order accurate
finite volume scheme in several space dimensions (for smooth enough solutions).
We refer again to the excellent textbooks in the literature for precise derivations
and generalizations (curvilinear coordinates, unstructured meshes, etc.).

2.6.2 Steady states

subsubsec:wb_md_fv_eq

Balance laws in several space dimensions too admit non-trivial steady states. As in
the one-dimensional case, the numerical approximation of solutions near a steady
state characterized by a delicate balance is generally challenging for standard finite
volume schemes. The underlying reason is again twofold. First, standard recon-
struction procedures are not well suited to represent steady-state solutions and,
second, the source term discretization is performed independently from the dis-
crete flux divergence. Both conspire that steady states are only preserved up to
truncation errors. Hence, the numerical resolution needs to be high enough over
the entire simulation duration such that the physical phenomena of interest are not
affected by these truncation errors. The required resolution in several dimensions
may then quickly lead to prohibitively high computational costs.

Although truncation errors are at the very essence of numerical approximation,
it is again highly desirable to design schemes that preserve exactly a discrete form
of the steady states; even more so than in one dimension. The one-dimensional
recipe based on piecewise steady reconstruction naturally extends to designing
well-balanced schemes in multiple dimensions. The principle is again to decompose
the solution into equilibrium and (not necessarily small) perturbation parts

u(x, y) = ueq(x, y) + δu(x, y), (103)
{eq:wb_md_fv_eq_0010}{eq:wb_md_fv_eq_0010}

where the equilibrium part ueq(x, y) fulfills the steady state balance

∇ · f(ueq) =
∂

∂x
f(ueq) +

∂

∂y
g(ueq) = s(ueq). (104)

{eq:wb_md_fv_eq_0020}{eq:wb_md_fv_eq_0020}

As before, the piecewise steady reconstruction requires the computability of such
multi-dimensional steady states. In general, this is an even more difficult undertak-
ing than in one dimension. However, we again tacitly assume that the differential
equation Eq. (104) can be solved for certain steady states of interest,

Ueq(x, y) = ueq(x, y) +O(hϵ), (105)
{eq:wb_md_fv_0100}{eq:wb_md_fv_0100}
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either exactly (ϵ = ∞) or approximately (ϵ < ∞). We reiterate that this is the main
challenge when designing a well-balanced finite volume method for a particular
system of balance laws. Some concrete examples are given in Section 3 for the
Euler equations. Taking the above assumption for granted, the construction of a
well-balanced finite volume scheme follows the same recipe as in one dimension.
The following subsections describe the ingredients in detail.

Before we proceed, let us stress once more that the following developments
crucially hinge on the (exact or approximate) solvability for the multi-dimensional
steady states of interest. We will see some examples for the Euler equations, where
this can be achieved for barotropic fluids. In general, however, this is far from
obvious. Let us mention here the truly two-dimensional well-balanced schemes
developed by Bianchini and Gosse (2018); Gosse (2021); Gosse and Vauchelet
(2020) for several balance laws. The latter construct fully two-dimensional steady
states profiles by solving elliptic boundary-value problems and may serve as a
guidance for the type of equations of interest in computational astrophysics.

2.6.3 Piecewise steady reconstruction WR
subsubsec:wb_md_fv_eqrec

The piecewise steady reconstruction WR of a subcell profile U i,j(x) within each
cell Ωi,j from the associated cell averages U i,j is given by the decomposition

U i,j(x, y) = WR
(
x, y;

{
Uk,l

}
(k,l)∈Si,j

)
= Ueq,i,j(x, y) + δU i,j(x, y), (106)

{eq:wb_md_fv_00110}{eq:wb_md_fv_00110}

where Ueq,i,j(x, y) and δU i,j(x, y) denote the local equilibrium and perturbation
part in cell Ωi,j , respectively. Next, we present the construction of each part.

Within each cell Ωi,j , the local equilibrium reconstruction Ueq,i,j(x, y) is found
by fitting an equilibrium solution Ueq(x, y) among the steady states of interest to
the cell average U i,j . Because the given cell average U i,j may be arbitrarily far
from an equilibrium, we first need to project U i,j onto a cell average Ueq,i,j that is
consistent with the steady states of interest. The local equilibrium reconstruction
Ueq,i,j(x, y) in cell Ωi,j is then determined by matching an equilibrium profile
Eq. (105) with the cell average of the equilibrium projected conserved variables
Ueq,i,j

1

|Ωi,j |
Qi,j (Ueq,i,j) = Ueq,i,j , (107)

{eq:wb_md_fv_0120}{eq:wb_md_fv_0120}

where Qi,j denotes a q-th order accurate quadrature rule over cell Ωi,j . Within
every cell, we now have a min(ϵ, q)-th order accurate local equilibrium profile
(if exact integration is chosen, then q = ∞). As in the one-dimensional case,
the difficulty of this step depends strongly on the considered balance law and
associated steady states of interest. Moreover, the possibility that no equilibrium
profile is found needs to be considered too. In that case, it is again simply set to
zero Ueq,i,j = 0.

The local equilibrium perturbation δU i,j(x, y) is obtained by extrapolating the
local equilibrium profile Ueq,i,j from cell Ωi,j to the neighboring cells, computing
the cell average of this extrapolated equilibrium profile, and applying a standard
piecewise polynomial reconstruction to the cell-averaged equilibrium perturba-
tions:

δU i,j(x, y) = R
(
x, y;

{
Uk,l −

1

|Ωk,l|
Qk,l(Ueq,i,j)

}

(k,l)∈Si,j

)
. (108)

{eq:wb_md_fv_0130}{eq:wb_md_fv_0130}
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Intuitively, this senses how far away the states in the neighboring cells are from
the equilibrium Ueq,i,j in cell Ωi,j . It is clear that the piecewise steady reconstruc-
tion preserves the equilibrium by construction, since the equilibrium perturbation
vanishes δU i,j ≡ 0, and it is min(ϵ, q, r)-th order accurate at and away from equi-
librium (for sufficiently smooth solutions). Likewise, it is obvious that the piecewise
steady reconstruction reduces to a standard reconstruction Eq. (99) if Ueq,i,j ≡ 0
(e.g., if no local equilibrium is found in Eq. (107)).

The alternative formulations of the piecewise steady reconstruction Eqs. (49)
and (51) can also be extended to several space dimensions in a straightforward
manner. However, we shall leave this to the interested reader.

2.6.4 Well-balanced source term discretization WS

As in the one-dimensional setting, a direct discretization of the source terms as in
Eq. (102) will in general not lead to a well-balanced scheme. In lieu thereof, we
rewrite the source terms as

s(U i,j) = s(Ueq,i,j) + s(U i,j)− s(Ueq,i,j)

= − ∂

∂x
f(Ueq,i,j)−

∂

∂y
g(Ueq,i,j) + s(U i,j)− s(Ueq,i,j)

(109)
{eq:wb_md_fv_0140}{eq:wb_md_fv_0140}

by trivially adding and subtracting the local equilibrium component and replac-
ing the latter by the equilibrium flux divergence. The well-balanced source term
discretization is then obtained by numerical quadrature as follows

Si,j =− 1

∆x

(
Qi+1/2,j(f(Ueq,i,j))−Qi−1/2,j(f(Ueq,i,j))

)

− 1

∆y

(
Qi,j+1/2(g(Ueq,i,j))−Qi,j−1/2(g(Ueq,i,j))

)

+Qi,j(s(U i,j)− s(Ueq,i,j)),

(110)
{eq:wb_md_fv_0150}{eq:wb_md_fv_0150}

where the divergence theorem is applied to the equilibrium fluxes by numerical
integration over the cell boundary. This is clearly a min(ϵ, q, r, s)-th order accurate
discretization of the source term. Moreover, note that the above well-balanced
source term discretization seamlessly reduces to a standard discretization if no
local equilibrium is found in the piecewise steady reconstruction (i.e., Ueq,i,j ≡ 0).

The alternative well-balanced source term discretization Eq. (60) and its high-
order extension via Richardson extrapolation Eq. (62) can also be generalized to
multiple space dimensions. We again leave this to the interested reader.

2.6.5 Assembling a well-balanced finite volume scheme

subsubsec:

A well-balanced finite volume scheme Eq. (95) for the two-dimensional conserva-
tion law Eq. (94) is now readily assembled with the previously described ingredi-
ents:

(1) A min(ϵ, q, r)-th order accurate piecewise steady reconstructionWR (Eq. (106)).
(2) Consistent and Lipschitz continuous numerical flux functions F and G in x-

and y-direction, respectively.
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(3) An unsplit min(ϵ, q, r, s)-th order accurate well-balanced source term discretiza-
tion WS (Eq. (110)).

(4) A τ -th order accurate time integrator T .

The resulting scheme is a min (ϵ, q, r, s, τ)-th order accurate well-balanced finite
volume scheme for balance laws in two dimensions (for smooth enough solutions).
The scheme preserves exactly a min (ϵ, q)-th order accurate discrete form of the
steady states of interest (up to machine precision). The proof follows the same
steps as in the one-dimensional case and is not repeated here.

Although we have focussed on the structured two-dimensional Cartesian case,
well-balanced schemes can be designed for three-dimensional Cartesian and curvi-
linear meshes following the same recipe. The same applies to unstructured meshes
(see, e.g., Grosheintz-Laval (2021)).

2.7 Well-balanced finite difference schemes
subsec:wb_fd

In this subsection, we focus on the construction of well-balanced finite difference
schemes. Before we begin, we concisely summarize a generic finite difference scheme
for one-dimensional balance laws. We refer to the excellent available textbooks
and review articles for more comprehensive presentations, e.g., Laney (1998); Shu
(1998, 2009). Equipped with the basic principles and accompanying notation, we
then present a (non-exhaustive) selection of frameworks for well-balancing finite
difference schemes. Further frameworks are developed, for instance, by Bermudez
and Vazquez (1994); Caselles et al. (2009); Črnjarić-Žic et al. (2006); Gascón and
Corberán (2001); Li and Gao (2021); Li et al. (2020); Vukovic and Sopta (2002)
and we refer the interested reader to these references.

2.7.1 Conservative finite difference schemes

subsubsec:wb_fd_std

A semi-discrete conservative finite difference method approximates the differential
form of the balance law Eq. (4) directly by

dU i

dt
= L(U)i = − 1

∆x

(
F i+1/2 − F i−1/2

)
+ Si, (111)

{eq:wb_fd_0010}{eq:wb_fd_0010}

where the primal unknowns are the point values U i of the conserved variables at
cell centers xi. They approximate the point value of the exact solution u(x, t) at
cell centers:

U i(t) ≈ u(xi, t). (112)
{eq:wb_fd_0020}{eq:wb_fd_0020}

The F i±1/2 and Si denote the numerical fluxes through the cell interfaces and
the numerical source term at cell centers, respectively. We briefly describe these
components in the following paragraphs. Since we consider semi-discrete schemes,
we will drop the time dependence for ease of presentation.
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Flux reconstruction The numerical fluxes at cell interfaces F i±1/2 are assumed to
be consistent with the physical flux function f and Lipschitz continuous. The flux
difference in Eq. (111) is constructed to be an (r-th order) accurate approximation
of the flux divergence in Eq. (4) at cell centers:

1

∆x

(
F i+1/2 − F i−1/2

)
=

∂f

∂x

∣∣∣∣
x=xi

+O(∆xr). (113)
{eq:wb_fd_0030}{eq:wb_fd_0030}

The numerical fluxes F i±1/2 approximate the cell interface values h(xi±1/2) of a
certain function h(x) implicitly defined by

f(u(x)) =
1

∆x

∫ x+∆x
2

x−∆x
2

h(ξ)dξ. (114)
{eq:wb_fd_0040}{eq:wb_fd_0040}

The above definition implies that the cell averages of this function h(x) are given
by

hi =
1

∆x

∫ xi+
∆x
2

xi−
∆x
2

h(ξ)dξ = f(u(xi)). (115)
{eq:wb_fd_0050}{eq:wb_fd_0050}

So the approximation of h(x) boils down to a reconstruction problem. The same
reconstruction procedures R as in finite volume methods can be used. Hence, an
r-th order accurate approximation of h(xi±1/2) is readily computed:

F i±1/2 = R
(
xi±1/2; {f(Uk)}k∈Si

)
= h(xi±1/2) +O(∆xr). (116)

{eq:wb_fd_0060}{eq:wb_fd_0060}

One can show that the discrete flux divergence Eq. (113) is then an r-th order
accurate approximation of the flux divergence at cell centers. Note that this may
seem surprising as Eq. (113) looks like a simple second-order centered finite dif-
ference approximation (ensuring the crucial conservative character of the scheme).
Unfortunately, beyond second-order accuracy (r > 2), this accuracy claim is only
valid for uniform or smooth grids (see, e.g., Merriman (2003); Shu (2009)).

For the subsequent developments, we have to slightly refine the so far intro-
duced notation for the reconstruction procedures in Section 2.2.1. The reconstruc-
tion of some quantity Q within cell Ωi from cell averages {Qk} over the cell’s
stencil Si can be written as

R
(
x; {Qk}k∈Si

)
=
∑

l∈Si

ci,l
(
x; {Qk}k∈Si

)
Ql, (117)

{eq:wb_fd_0070}{eq:wb_fd_0070}

where the ci,l denote the reconstruction coefficients. In general, these depend on
the evaluation location x ∈ Ωi and on certain so-called smoothness measures of the
reconstruction data {Qk}k∈Si

to guarantee non-oscillatory behavior. For smooth
data, these coefficients tend towards optimal constants that maximize the accuracy
of the reconstruction. Instead of using the data of the quantity to reconstruct, the
smoothness measures can be based on the cell averages of some other quantity11

{W k}
R
(
x; {(Qk,W k)}k∈Si

)
=
∑

l∈Si

ci,l
(
x; {W k}k∈Si

)
Ql, (118)

{eq:wb_fd_0080}{eq:wb_fd_0080}

11 To guarantee accurate and non-oscillatory reconstruction properties, the smoothness of
quantity Q should imply smoothness of the other quantity W and reciprocally.
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where the second argument of the reconstruction procedure is now a set of couples
{(Qk,W k)}k∈Si

. The first element is the cell average of the quantity to reconstruct
and the second element is the cell average of the quantity on which the smoothness
measures are based.

For finite difference schemes, a straightforward component-wise flux recon-
struction for (systems of) balance laws may also lead to spurious oscillations,
especially at high orders of accuracy and when strong flow discontinuities interact.
Then a reconstruction in local characteristic variables as described at the end of
Section 2.2.1 can be advantageous (see, e.g., Balsara and Shu (2000); Jiang and
Shu (1996); Qiu and Shu (2002)).

Flux splitting For numerical stability, upwinding is introduced by splitting the flux
into right(+) and left(−) propagating contributions

f(u) = f
+(u) + f

−(u). (119)
{eq:wb_fd_0090}{eq:wb_fd_0090}

The characteristic values of ∂f+

∂u are all non-negative and the characteristic values

of ∂f−

∂u are all non-positive, i.e.,

∂f+

∂u
≥ 0 and

∂f−

∂u
≤ 0. (120)

{eq:wb_fd_0100}{eq:wb_fd_0100}

A popular flux splitting is the (local) Lax-Friedrichs flux splitting

f
±(u) =

1

2
(f(u)± αu) (121)

{eq:wb_fd_0110}{eq:wb_fd_0110}

with

α = max
u

∣∣∣∣
∂f

∂u

∣∣∣∣ . (122)
{eq:wb_fd_0120}{eq:wb_fd_0120}

The fluxes can then be discretized according to the wave direction as
eq:wb_fd_0130

F
+
i+1/2− = R

(
xi+1/2; {f+(Uk)}k∈Si

)
, (123a)

{eq:wb_fd_0131}{eq:wb_fd_0131}

F
−

i+1/2+ = R
(
xi+1/2; {f−(Uk)}k∈Si+1

)
. (123b)

{eq:wb_fd_0132}{eq:wb_fd_0132}

The right going flux contribution F+
i+1/2− is biased one cell to the left from the

cell interface xi+1/2 by using the reconstruction stencil Si. Accordingly, the left

going flux contribution F−

i+1/2+ is biased one cell to the right from the cell interface
xi+1/2 by using the reconstruction stencil Si+1. The complete upwinded numerical
flux is then simply the sum of both contributions

F i+1/2 = F
+
i+1/2− + F

−

i+1/2+. (124)
{eq:wb_fd_0140}{eq:wb_fd_0140}

The maximum in Eq. (122) can either be taken globally over the whole grid {U i}
or locally, for example, over the flux reconstruction stencils Si∪Si+1. Note that α
can be interpreted as a parameter introducing artificial viscosity into the scheme,
ensuring its numerical stability (see, e.g., Laney (1998)).

Numerical source term The numerical source term Si is a point-value evaluated
at cell centers such that it is an (s-th order) accurate approximation:

Si = s(U i) = s(u(xi)) +O(∆xs). (125)
{eq:wb_fd_0150}{eq:wb_fd_0150}
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Time integration The semi-discrete evolution equations Eq. (111) for the point
values U i can be approximately integrated in time by τ -th order accurate ODE
solvers. Also for high-order finite difference schemes, the SSP Runge-Kutta meth-
ods are often used in practice. One popular example is the temporally third-order
accurate SSP Runge-Kutta (SSP-RK3) method

U
(1) = U

n +∆tL(Un),

U
(2) =

3

4
U

n +
1

4

(
U

(1) +∆tL(U (1))
)
,

U
n+1 =

1

3
U

n +
2

3

(
U

(2) +∆tL(U (2))
)
,

(126)
{eq:wb_fd_0160}{eq:wb_fd_0160}

where L denotes the spatial discretization operator in Eq. (111).
This completes the short description of a standard min(r, s, τ)-th order accu-

rate finite difference scheme. The extension to several space dimensions is achieved
by discretizing the flux divergence direction by direction. A significant computa-
tional advantage of finite difference schemes over finite volume schemes is that
the multi-dimensional reconstruction procedures and quadrature rules are avoided
entirely. The price of this advantage is the restriction to uniform or smooth curvi-
linear grids. We refer to the references given earlier for further details and devel-
opments. Next, we have a closer look at what happens near steady states.

2.7.2 Steady states

subsubsec:wb_fd_eq

Standard finite difference schemes alike have troubles in preserving steady-state
solutions in general. The fundamental cause of these troubles is analogous to finite
volume methods: the source term discretization is independent of the discrete flux
divergence. The consequence, in turn, is that steady states are generally preserved
only up to truncation errors, requiring the numerical resolution to be high enough
that they do not obscure the phenomena of interest.

The objective of well-balanced finite difference schemes is to preserve a discrete
form of certain steady-state solutions. To do this, it is tacitly assumed, as for finite
volume schemes, that the differential equation Eq. (44) can be solved (exactly or
approximately) for the steady states of interest Eq. (45). The following subsections
introduce a selection of frameworks for building well-balanced finite difference
schemes for one-dimensional balance laws. Multi-dimensional balance laws can be
treated by straightforwardly extending the one-dimensional building blocks.

2.7.3 Well-balanced finite difference schemes based on source term decomposition

subsubsec:wb_fd_src_dec

A framework for the construction of high-order well-balanced finite difference
schemes for a class of balance laws was developed by Li and Xing (2018a); Xing
and Shu (2005, 2006c, 2013). The framework can also be applied to finite volume
and discontinuous Galerkin methods (see, e.g., Noelle et al. (2010); Xing and Shu
(2006b)).

The framework assumes that each source term component can be (analytically)
decomposed as follows

sm(u, x) = am (ν(u, x), x)
∂

∂x
bm(x), (127)

{eq:wb_fd_src_dec_0020}{eq:wb_fd_src_dec_0020}
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where sm denotes the m-th component of the source term s(u, x)12. The functions
bm = bm(x) are supposed to depend only on space and the am = am (ν, x) depend
additionally on so-called equilibrium variables denoted by ν. The latter are func-
tion of the conserved variables and space, i.e., ν = ν(u, x), and they are required
to become constant at the steady states of interest Ueq

ν(Ueq, x) = const., (128)
{eq:wb_fd_src_dec_0030}{eq:wb_fd_src_dec_0030}

explaining the name equilibrium variables. Similarly, the functions am are assumed
to become spatially constant for Ueq:

am(ν(Ueq, x), x) = const. (129)
{eq:wb_fd_src_dec_0040}{eq:wb_fd_src_dec_0040}

As a result, such a source term decomposition clearly has the following property
at a steady state of interest Ueq:

∂

∂x
fm(Ueq) = sm(Ueq, x)

Eq. (127)
= am (ν(Ueq, x), x)

∂

∂x
bm(x)

Eq. (129)
=

∂

∂x
(am (ν(Ueq, x), x) bm(x)) ,

which obviously implies that

fm(Ueq)− am (ν(Ueq, x), x) bm(x) = const. (130)
{eq:wb_fd_src_dec_0060}{eq:wb_fd_src_dec_0060}

Although these assumptions may seem rather restrictive, a broad class of balance
laws and associated steady states possess such a source term decomposition. We
will provide some illustrating examples below together with a general recipe.

The key idea is now to mimic the above property at the discrete level to ensure
the exact balance at steady states. We begin by discussing the case without flux
splitting. Then, this is achieved by approximating the derivative of the function
bm with the same finite difference operator as used for the approximation of the
flux divergence Eq. (113)

∂

∂x
bm(x)

∣∣∣∣
x=xi

=
1

∆x

(
bm,i+1/2 − bm,i−1/2

)
+O(∆xr), (131)
{eq:wb_fd_src_dec_0070}{eq:wb_fd_src_dec_0070}

with
bm,i±1/2 = R

(
xi±1/2; {(bm(xk), fm(Uk))}k∈Si

)
. (132)

{eq:wb_fd_src_dec_0080}{eq:wb_fd_src_dec_0080}

Note that the above reconstruction uses the m-th component of the flux fm as
smoothness measures. This ensures the consistency of the difference operators
applied to the flux and source term by construction13. An r-th order accurate
discretization of the m-th source term component is thus given by

Sm,i = am(ν(U i, xi), xi)
bm,i+1/2 − bm,i−1/2

∆x
(133)

{eq:wb_fd_src_dec_0090}{eq:wb_fd_src_dec_0090}

12 In this subsection, we are explicit about the dependency of the source term on the spatial
variable.
13 If the reconstruction is performed with a local characteristic variables projection, the m-th
component of the projected flux is simply used as a smoothness measures.
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and the complete source term vector is simply Si = [· · · , Sm,i, · · · ]T .
Before we discuss the case with flux splitting, we verify that the scheme

Eq. (111) and the above source term discretization Eq. (133) is well-balanced.
Suppose that the conserved variables point values U i are initialized with an equi-
librium Ueq(x) fulfilling all the necessary assumptions, that is, U i = Ueq(xi).
Then Eq. (129) gives immediately at all cell centers xi

am(ν(U i, xi), xi) = am = const.

and one verifies that Eq. (130) holds discretely as follows

Fm,i±1/2 − am bm,i±1/2

= R
(
xi±1/2; {fm(Uk)}k∈Si

)
− amR

(
xi±1/2; {(bm(xk), fm(Uk))}k∈Si

)

=
∑

l∈Si

ci,l
(
xi±1/2; {fm(Uk)}k∈Si

)
(fm(U l)− am bm(xl))︸ ︷︷ ︸

=C=const.

= C.

In the last equality, the consistency of the reconstruction was used (constant func-
tions are reconstructed exactly). Now the semi-discrete update equation Eq. (111)
gives for the m-th solution component Um,i

dUm,i

dt
= − 1

∆x

(
Fm,i+1/2 − Fm,i−1/2

)
+ Sm,i

= − 1

∆x

(
Fm,i+1/2 − Fm,i−1/2

)
+ am

bm,i+1/2 − bm,i−1/2

∆x

= − 1

∆x

(
Fm,i+1/2 − ambm,i+1/2 − Fm,i−1/2 + ambm,i−1/2

)

= − 1

∆x
(C − C) = 0.

Since this is valid for all the solution components, we conclude that the scheme is
well-balanced as claimed.

Next, we discuss the case with flux splitting Eqs. (119) and (123). Then, the
source term is split into a right (+) and a left (−) contribution as follows

bm,i+1/2 =
1

2

(
b+m,i+1/2− + b−m,i+1/2+

)
(134)

{eq:wb_fd_src_dec_0100}{eq:wb_fd_src_dec_0100}

with

b+m,i+1/2− = R
(
xi+1/2; {(bm(xk), f

+
m(Uk))}k∈Si

)
,

b−m,i+1/2+ = R
(
xi+1/2; {(bm(xk), f

−
m(Uk))}k∈Si+1

)
.

(135)
{eq:wb_fd_src_dec_0110}{eq:wb_fd_src_dec_0110}

Note that the above reconstruction uses them-th component of the left(+)/right(−)
propagating flux contributions f±

m as smoothness measures. This ensures the con-
sistency of the difference operators applied to the flux and source term by con-
struction.

To guarantee an exact balance, the flux splitting Eq. (121) also needs to be
slightly modified. One possibility suggested by Xing and Shu (2006c) is the fol-
lowing:

f±
m(u) =

1

2
(fm(u)± α̃mam(ν(u, x), x)) . (136)

{eq:wb_fd_src_dec_0120}{eq:wb_fd_src_dec_0120}
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Due to Eq. (129), this ensures that at steady state the artificial viscosity tends to-
wards zero. Importantly, this does not interfere with the scheme’s design accuracy
(see Xing and Shu (2006c)). However, the constant α̃m should be suitably ad-
justed to maintain enough artificial viscosity for numerical stability. This depends
on the concrete application and may require some fine-tuning. The well-balancing
property with flux splitting can now be shown easily as before.

This ends the description of the well-balanced finite difference schemes based
on source term decomposition. To conclude on this family of schemes, let us give
two illustrating examples of balance laws with their corresponding equilibrium
variables and source term decomposition.

Example: Linear advection-reaction equation Consider (again) the linear advection-
reaction equation

∂u

∂t
+ a

∂u

∂x
= −λu (137)

{eq:wb_fd_src_dec_0130}{eq:wb_fd_src_dec_0130}

which still has the steady-state solutions

Ueq(x) = Ce−λ/ax. (138)
{eq:wb_fd_src_dec_0140}{eq:wb_fd_src_dec_0140}

A particular choice for the equilibrium variable of Eq. (137) is

ν(u, x) = log(u) +
λ

a
x, (139)

{eq:wb_fd_src_dec_0150}{eq:wb_fd_src_dec_0150}

which becomes clearly a constant for the steady states Ueq(x). A source term
decomposition of the form Eq. (127) is then given by

s1(u, x) = a1(ν, x)
∂

∂x
b1(x) (140)

{eq:wb_fd_src_dec_0160}{eq:wb_fd_src_dec_0160}

with
a1(ν, x) = eν and b1(x) = ae−

λ
a
x. (141)
{eq:wb_fd_src_dec_0170}{eq:wb_fd_src_dec_0170}

Example: Euler equations As a slightly more complex example, consider the one-
dimensional Euler equations describing the motion of fluids subject to a gravita-
tional field with potential ϕ. They are given by the conservation of mass, momen-
tum and fluid energy

∂u

∂t
+

∂f

∂x
= s, (142)

{eq:wb_fd_src_dec_0180}{eq:wb_fd_src_dec_0180}

where the vector of conserved variables, fluxes and source terms are

u =




ρ
ρvx
E


 , f(u) =




ρvx
ρv2x + p

(E + p)vx


 , s(u) = −




0
ρ

ρvx


 ∂ϕ

∂x
. (143)

{eq:wb_fd_src_dec_0190}{eq:wb_fd_src_dec_0190}

Here, ρ is the mass density, vx the velocity and E = ρe+ 1
2ρv

2
x the total fluid energy

density. The pressure p is related to the density ρ and specific internal energy e
by an equation of state p = p(ρ, e). For steady adiabatic flow, the equilibrium
variables are given by (see, e.g., Landau and Lifshitz (1987))

ν(u, x) =




s
ρvx

v2

x

2 + h+ ϕ


 , (144)

{eq:wb_fd_src_dec_0200}{eq:wb_fd_src_dec_0200}
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where h and s denote the fluid’s specific enthalpy and entropy, respectively. Let
Ueq(x) denote the conserved variables corresponding to some given equilibrium
variables νeq, i.e., Ueq(x) = u(νeq, x) is the inverse transformation of the equi-
librium variables to conserved variables (see Grosheintz-Laval and Käppeli (2020)
for a way to compute it). Also, let peq(x) denote the corresponding equilibrium
pressure. A source term decomposition of the form Eq. (127) is then given by the
following. The first component is trivial

s1(u, x) = a1(ν(u, x), x)
∂

∂x
b1(x) (145)

{eq:wb_fd_src_dec_0210}{eq:wb_fd_src_dec_0210}

with

a1(ν, x) = 0 and b1(x) = 0. (146)
{eq:wb_fd_src_dec_0220}{eq:wb_fd_src_dec_0220}

Li and Xing (2018a) suggest for the second component

s2(u, x) = a2(ν(u, x), x)
∂

∂x
b2(x) (147)

{eq:wb_fd_src_dec_0230}{eq:wb_fd_src_dec_0230}

with

a2(ν, x) =
ρ(x)

ρeq(x)
and b2(x) = peq(x). (148)

{eq:wb_fd_src_dec_0240}{eq:wb_fd_src_dec_0240}

The third component is already in the desired form

s3(u, x) = a3(ν(u, x), x)
∂

∂x
b3(x) (149)

{eq:wb_fd_src_dec_0250}{eq:wb_fd_src_dec_0250}

with

a3(ν, x) = ρvx(x) and b3(x) = ϕ(x). (150)
{eq:wb_fd_src_dec_0260}{eq:wb_fd_src_dec_0260}

The previous two examples suggest the following general recipe for the func-
tions am and bm

am(ν(u, x), x) =
sm(u, x)

sm(u(νeq, x), x)
and bm(x) = fm(u(νeq, x)), (151)

{eq:wb_fd_src_dec_0270}{eq:wb_fd_src_dec_0270}

where νeq are some fixed equilibrium variables. However, we shall not further
discuss the above generic decomposition and refer the interested reader to the
original research articles cited at the beginning of this section for the details.

2.7.4 Well-balanced finite difference schemes based on piecewise steady flux

reconstruction

subsubsec:wb_fd_flx_rec

Parés and Parés-Pulido (2021) recently proposed a framework for designing high-
order well-balanced finite difference schemes for balance laws. It is elegantly based
on a piecewise steady flux reconstruction and, as such, is closely related to the finite
volume recipe based on piecewise steady reconstruction presented in Section 2.4.
Unfortunately, the formulation is generally not fully conservative in that if a system
of balance laws possesses a conservative subsystem14, the method may not reduce
to a conservative finite difference method for that subsystem of conservation laws.

14 Consider the Euler Eq. (143): the continuity equation is a conservation law, and the mo-
mentum and energy equations are balance laws due to gravitational forces.
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However, the conservation errors are of the order of the truncation errors and
vanish in the infinite resolution limit.

Since high-order finite difference schemes are based on flux reconstructions,
the key idea is to decompose the flux into equilibrium and (not necessarily small)
perturbation parts

f(u(x, t)) = f(ueq(x)) + (f(u(x, t))− f(ueq(x)))

= f(ueq(x)) + δf(x, t),
(152)

{eq:wb_fd_flx_rec_0010}{eq:wb_fd_flx_rec_0010}

where the equilibrium part f(ueq(x)) fulfills by definition the steady-state balance
Eq. (44). Like in the piecewise steady reconstruction used in finite volume schemes,
this requires the ability to compute such steady states of interest Eq. (45). Parés
and Parés-Pulido (2021) then subtract the steady state Eq. (44) from the balance
law Eq. (4),

∂u

∂t
= − ∂

∂x
(f(u(x, t))− f(ueq(x))) + s(u(x, t))− s(ueq(x))

= − ∂

∂x
δf(x, t) + δs(x, t), (153)

{eq:wb_fd_flx_rec_pares_0010}{eq:wb_fd_flx_rec_pares_0010}

and suggest the following semi-discrete finite difference approximation

dU i

dt
= − 1

∆x

(
δF i,i+1/2 − δF i,i−1/2

)
+ δSi. (154)

{eq:wb_fd_flx_rec_pares_0020}{eq:wb_fd_flx_rec_pares_0020}

Next, we describe the Parés and Parés-Pulido (2021) well-balanced finite difference
scheme in detail. This will especially clarify the double index notation for the
numerical equilibrium perturbation fluxes δF i,i±1/2.

One begins with the determination of a local equilibrium profile Ueq,i(x) in
each cell Ωi by fitting an equilibrium solution Ueq(x) among the steady states of
interest to the point value U i. Because U i may be far from a steady state, it is
first projected onto a point value Ueq,i that is consistent with the steady states of
interest. Therewith, the local equilibrium profile Ueq,i(x) in cell Ωi is determined
by matching an equilibrium profile Ueq(x) to the equilibrium projected point value
Ueq,i

∂

∂x
f(Ueq,i(x)) = s(Ueq,i(x)) (155)

{eq:wb_fd_flx_rec_0030}{eq:wb_fd_flx_rec_0030}

such that the profile is anchored at the cell center point value Ueq,i

Ueq,i(xi) = Ueq,i. (156)
{eq:wb_fd_flx_rec_0040}{eq:wb_fd_flx_rec_0040}

Note that this is the main difference with the piecewise steady reconstruction,
where the local equilibrium profile is matched with the cell average.

The equilibrium perturbation flux divergence δf is discretized to r-th order as

1

∆x

(
δF i,i+1/2 − δF i,i−1/2

)
=

∂

∂x
δf i(x)

∣∣∣∣
x=xi

+O(∆xr), (157)
{eq:wb_fd_flx_rec_pares_0030}{eq:wb_fd_flx_rec_pares_0030}

where the numerical equilibrium perturbation fluxes δF i,i±1/2 approximate the
cell interface values δhi(xi±1/2) of a certain function δhi(x) implicitly defined by

δf i(x) =
1

∆x

∫ x+∆x
2

x−∆x
2

δhi(ξ)dξ. (158)
{eq:wb_fd_flx_rec_pares_0031}{eq:wb_fd_flx_rec_pares_0031}
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Following the same principles as in a standard finite difference scheme, the above
definition implies that the cell averages of this function δhi(x) are given by

δhi,k =
1

∆x

∫ xk+
∆x
2

xk−
∆x
2

δhi(ξ)dξ = f(u(xk))− f(Ueq,i(xk)) +O(∆xϵ). (159)
{eq:wb_fd_flx_rec_pares_0040}{eq:wb_fd_flx_rec_pares_0040}

Now the double index notation becomes clear. The first index “i” indicates the
cell where the equilibrium reconstruction Ueq,i(x) is anchored. The second index
“k” indicates the cell center xk where the equilibrium perturbation flux is evalu-
ated. Also notice that the equilibrium reconstruction Ueq,i(x) might only be an
ϵ-th order approximation of a true equilibrium ueq(x), which means that also the
cell averages δhi,k are only accurate to this precision. An r-th order reconstruc-
tion procedure is then applied to the cell averages δhi,k to obtain the numerical
equilibrium perturbation fluxes at cell interfaces

δF i,i±1/2 = R
(
xi±1/2; {f(Uk)− f(Ueq,i(xk))}k∈Si

)
(160)

{eq:wb_fd_flx_rec_pares_0050}{eq:wb_fd_flx_rec_pares_0050}

= δhi(xi±1/2) +O(∆xmin(r,ϵ)),

For numerical stability, these numerical fluxes need to be upwinded and this will
be explained below. Notice that two reconstructions, δF i,i+1/2 and δF i+1,i+1/2,
have to be computed at every cell interface. In contrast, only one is needed in a
standard finite difference scheme.

The numerical perturbation source term δSi is discretized as

δSi = s(U i)− s(Ueq,i(xi)). (161)
{eq:wb_fd_flx_rec_pares_0060}{eq:wb_fd_flx_rec_pares_0060}

Note that δSi does not vanish in general because the solution could be far away
from a steady state.

Before we discuss the upwinding of the numerical equilibrium perturbation
fluxes, let us verify that the scheme Eq. (154) is indeed well-balanced. Suppose
that we initialize the conserved variables point values U i with a steady state of
interest Ueq(x)

U i = Ueq(xi), (162)
{eq:wb_fd_flx_rec_pares_0070}{eq:wb_fd_flx_rec_pares_0070}

that is, we initialize with well-prepared initial data. The equilibrium projection
Ueq,i = U i is trivial. Assuming that for all cells Ωi the local equilibrium recon-
struction Ueq,i(x) matches with Ueq(x) at cell centers (i.e., Ueq,i(xi) = Ueq(xi)),
then the equilibrium perturbation flux vanishes at all cell centers (i.e., f(Uk) −
f(Ueq,i(xk)) = 0). Any consistent reconstruction procedure will then produce van-
ishing numerical equilibrium perturbation fluxes at cell interfaces δF i,i±1/2 for all
cells Ωi. Along the same lines, the numerical source term perturbation Eq. (161)
vanishes identically. Therefore, the semi-discrete finite difference scheme Eq. (154)
gives

dU i

dt
= 0 (163)

{eq:wb_fd_flx_rec_pares_0080}{eq:wb_fd_flx_rec_pares_0080}

and the scheme is well-balanced as advertised.

For numerical stability, the numerical equilibrium perturbation fluxes have to
be properly upwinded. As in a standard finite difference scheme, this is achieved
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by flux splitting:
eq:wb_fd_flx_rec_pares_0090

δF
+
i,i+1/2− = R

(
xi+1/2; {f+(Uk)− f

+(Ueq,i(xk))}k∈Si

)
, (164a)

{eq:wb_fd_flx_rec_pares_0091}{eq:wb_fd_flx_rec_pares_0091}

δF
−

i,i+1/2+ = R
(
xi+1/2; {f−(Uk)− f

−(Ueq,i(xk))}k∈Si+1

)
. (164b)

{eq:wb_fd_flx_rec_pares_0092}{eq:wb_fd_flx_rec_pares_0092}

The complete upwind numerical equilibrium perturbation fluxes are then

δF i,i+1/2 = δF
+
i,i+1/2− + δF

−

i,i+1/2+. (165)
{eq:wb_fd_flx_rec_pares_0100}{eq:wb_fd_flx_rec_pares_0100}

For example, the (local) Lax-Friedrichs flux splitting Eq. (121) could be used.
It is straightforward to show that flux splitting does not interfere with the well-
balancedness of the scheme.

This concludes the presentation of the high-order well-balanced finite difference
schemes of Parés and Parés-Pulido (2021). We want to stress the fact that the
numerical equilibrium perturbation fluxes at the cell interfaces are not equal in
general:

δF i,i+1/2 ̸= δF i+1,i+1/2

Of course, this is not unexpected for balance laws and their non-conservative
character due to their source terms. However, the latter may also be the case for
the conservative equations in a system of balance laws. Fortunately, one can show
that the conservation errors made by the schemes are of the order of the truncation
error and, therefore, tend to vanish with increasing resolution. Moreover, this non-
conservation can be avoided for certain balance laws using some fine-tuning of the
artificial viscosity terms in the numerical fluxes. We refer to Parés and Parés-Pulido
(2021) for the intricate details.
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3 Well-balanced methods for the Euler equations

sec:wb_euler

In this section, we showcase the frameworks introduced in Section 2. We consider
the Euler equations of compressible hydrodynamics as a prototypical example for
a system of balance laws. The section starts by introducing the equations and
their steady states. This is followed by a classification of well-balanced schemes
for the Euler equations and the presentation of some representative example for
each class. The section concludes by presentating several numerical test problems
highlithing the performance of the well-balanced schemes.

3.1 The Euler equations

subsec:wb_euler_eqs

The Euler equations describe the motion of ideal fluids subject to (gravitational)
forces in which thermal conductivity and viscosity are unimportant. They express
the conservation of fluid mass, momentum and energy:

eq:wb_euler_0010

∂ρ

∂t
+∇ · (ρv) = 0, (166a)

{eq:wb_euler_0011}{eq:wb_euler_0011}

∂ρv

∂t
+∇ · (vρv) +∇p = −ρ∇ϕ, (166b)

{eq:wb_euler_0012}{eq:wb_euler_0012}

∂E

∂t
+∇ · [(E + p) v] = −ρv · ∇ϕ. (166c)

{eq:wb_euler_0013}{eq:wb_euler_0013}

Here ρ is the fluid mass density, v the velocity and p the pressure. The total fluid
energy E = ρe + ρ

2v
2 is composed of internal and kinetic energy densities. The

pressure p is related to the density ρ and the specific internal energy e through
an equation of state (EoS) p = p(ρ, e). The latter determines all thermodynamic
quantities by specifying any two values describing the state15.

The source terms on the right-hand side of Eqs. (166) model the effect of grav-
itational forces on the fluid. They are characterized by a gravitational potential,
which may either be a given function of the coordinates, ϕ = ϕ(x), or prescribed
by the fluid’s self-gravity depending on the concrete application. In the latter case,
the potential is determined by the Poisson equation,

∇2ϕ = 4πGρ, (167)
{eq:wb_euler_0020}{eq:wb_euler_0020}

where G is the gravitational constant.
By including the gravitational interaction explicitly into the conservation bal-

ance, as opposed to a generic external force, the Euler equations can be written
in alternative forms that emphasize their total conservative character. In the case
of self-gravitating flows, the momentum source term can be reformulated as the
divergence of the gravitational stress tensor, allowing its inclusion into the momen-
tum flux tensor (see, e.g., Shu (1992)). Unfortunately, when gravity is described by
an external static gravitational potential, the source term in the momentum equa-
tions cannot be eliminated. However, the energy Eq. (166c) can be reformulated
as

∂ET

∂t
+∇ · [(E + p) v + FG] = 0 (168)

{eq:wb_euler_0021}{eq:wb_euler_0021}

15 If the chemical composition is important, values characterizing it need also to be given.
We neglect this possibility for the sake of presentation.
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in both cases. Here ET = E + EG is the total (fluid and gravitational) energy
density and FG represents a “gravitational energy flux”. For a static gravitational
field, the gravitational energy density is EG = ρϕ. If the gravitational potential is
prescribed by the fluid’s self-gravity, the gravitational energy density is EG = ρϕ/2,
where the factor 1/2 avoids the double-counting of pairs of fluid elements. For
time-independent gravitational fields, as is the case at steady states which are our
primal concern, this energy flux component becomes FG = ρvϕ. Hence, the energy
equation can be written in conservation form

∂ET

∂t
+∇ · [(ET + p) v] = 0. (169)

{eq:wb_euler_0022}{eq:wb_euler_0022}

Below, we will also use a slightly different form that evolves directly the fluid
energy E with the gravity source term expressed as follows

∂E

∂t
+∇ · [(E + p) v] = −∇ · (ρvϕ) + ϕ ∇ · ρv. (170)

{eq:wb_euler_0023}{eq:wb_euler_0023}

For static gravitational fields, the source term can then be discretized such that the
total energy ET is preserved in a straightforward manner. We refer to the develop-
ments in Hanawa (2019); Katz et al. (2016); Mullen et al. (2021); Springel (2010)
for an in-depth discussion and, in particular, the extension to self-gravitating flows.

Before we proceed with a discussion of some interesting steady states of the
Euler equations, let us rewrite them in canonical balance law form. For simplicity,
we restrict the presentation to a one-dimensional setting. The Euler Eqs. (166)
then compactly read

∂u

∂t
+

∂f

∂x
= s, (171)

where the conserved variables, fluxes, and gravitational source term are given by

u =




ρ
ρvx
E


 , f(u) =




ρvx
ρv2x + p

(E + p)vx


 , s(u) = −




0
ρ

ρvx


 ∂ϕ

∂x
. (172)

Moreover, the primitive variables are denoted by w = [ρ, vx, p]
T .

3.2 Steady states of the Euler equations

subsec:wb_euler_steady

The Euler Eqs. (166) allow for a myriad of non-trivial steady states. Many inter-
esting astrophysical applications occur near or involve such equilibrium flows. A
particular example is hydrostatic equilibrium,

∇p = −ρ∇ϕ, (173)
{eq:wb_euler_0030}{eq:wb_euler_0030}

which describes the mechanical balance between pressure and gravity forces. In
the case of self-gravity, the hydrostatic equation can be combined with the Poisson
Eq. (167) to yield (Landau and Lifshitz, 1987)

∇ ·
(
∇p

ρ

)
= −∇2ϕ = −4πGρ. (174)

{eq:wb_euler_0031}{eq:wb_euler_0031}
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It must be emphasized that the hydrostatic equilibrium equation only describes a
mechanical equilibrium. A certain thermal stratification has to be supplemented
to integrate the equations.

Another steady-state example of the Euler Eqs. (166) is provided by steady
adiabatic flow. Such steady flows are governed by Bernoulli’s equation (Landau
and Lifshitz, 1987)

v2

2
+ h+ ϕ = const., (175)

{eq:wb_euler_0040}{eq:wb_euler_0040}

where h is the specific enthalpy. The above relation holds along each streamline,
i.e., lines tangent to the velocity of the flow. In general, the constant may take dif-
ferent values for different streamlines. Flows near such steady states are ubiquitous
in nature as in accretion and wind phenomena.

However, hydrostatic equilibrium and steady adiabatic flow are just two partic-
ular examples. In many astrophysical applications, the flow of interest takes place
near more complex equilibrium configurations. One example is rotational hydro-
static equilibrium which describes the balance between pressure, gravitational and
centrifugal forces. Under certain conditions, such equilibrium configurations fulfill
Eq. (173) with the gravitational potential ϕ replaced by an effective potential Φ
including effects of rotation

Φ(ϖ, z) = ϕ(ϖ, z)− 1

2
Ω2ϖ2, (176)

{eq:wb_euler_0050}{eq:wb_euler_0050}

where ϖ is the cylindrical radius and Ω (the constant) angular velocity (see, e.g.,
Tassoul (1978)).

The Euler equations are an idealized model for the description of flows. They
lack any dissipative processes such as thermal conduction and viscous stresses.
Including these effects leads to the Navier-Stokes equations (see, e.g., Landau and
Lifshitz (1987)). In astrophysical flows, a substantial amount of the energy density,
momentum density and stress is in the form of radiation (e.g., photons, neutrinos).
Such radiating flows are described by the equation of radiation hydrodynamics
(see, e.g., Castor (2004); Mihalas and Weibel-Mihalas (1984)). Similarly, magnetic
fields play a prominent role and a fluid model is provided by the equations of
magnetohydrodynamics (MHD). These more sophisticated physical models and
resulting equations possess even richer classes of non-trivial steady states. For ex-
ample, radiative hydrostatic equilibrium or two-dimensional plasma steady states
as described by the Grad-Shafranov equation would be of interest, to name a cou-
ple. A (general) relativistic flow description would also be of interest. We hope that
the following presentation for the Euler equations can serve as a useful guideline to
develop well-balanced schemes for these extended physical models and their more
intricate steady states.

3.3 Well-balanced methods for the Euler equations

subsec:wb_euler

Many well-balanced schemes for the Euler equations have been developed in the
literature. Although the schemes follow different design philosophies, they may be
broadly classified based on the steady states of interest they preserve:

1. A priori known steady states

The steady state of interest is assumed to be globally known.
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2. Barotropic steady states

The steady states of interest assume a certain barotropic relation, effectively
imposing a thermal stratification of the equilibrium state.

3. Discrete steady states

The steady states of interest are built from a consistent discretization of the
defining PDE.

The order reflects the successive weakening of the made assumptions about the
steady states of interest. Below we classify many of the well-balanced schemes for
the Euler equations that are available in the literature into one of these categories.
A representative is also presented for each category. This classification and rep-
resentative selection is a more or less arbitrary choice of the author and as such
is not perfect. For instance, some schemes may be classified in several categories,
e.g., any barotropic or discrete steady states type scheme can be reduced to an a

priori type scheme by simply freezing the piecewise steady reconstruction. Indeed,
a taxonomy that fits it all may not even exist. Nevertheless, we consider it useful
for a first, albeit rough, classification.

3.3.1 A priori known steady states

subsubsec:wb_fvm_ake

The first category of well-balanced schemes for the Euler equations that we will
discuss assumes that the steady state of interest is globally known. This allows
the construction of well-balanced finite volume, finite difference and discontinuous
Galerkin schemes that can preserve any known steady state, making these methods
extremely versatile. The only caveat is, of course, that the steady state has to be
known a priori. However, this is not such a severe restriction as it may seem as
long as the phenomena of interest don’t deviate too much from the fixed steady
state.

Several well-balanced schemes of this category have been developed in the
literature:

– Ghosh and Constantinescu (2015, 2016) developed high-order well-balanced
finite difference schemes. The schemes are based on the source term decompo-
sition method of Xing and Shu (2013) which is extended to types of equilibria
encountered in atmospheric flow simulations. This includes isentropic atmo-
spheres and stratified atmospheres with specified Brunt-Väisälä frequency.

– Li and Xing (2016a) developed high-order well-balanced finite volume schemes
for isothermal and polytropic hydrostatic equilibrium on the basis of the source
term decomposition method for finite volume schemes of Xing and Shu (2006b,
2013). Li and Xing (2018a) simplify the original procedure of Xing and Shu
(2013) by saving some costly WENO reconstructions in the discrete source term
evaluation. This is possible because the discrete source term can be evaluated
once at the beginning of the simulation since the equilibrium state is known
initially. Furthermore, they extend the formalism to more general steady states
including isothermal and polytropic hydrostatic equilibrium. Robust high-order
discontinuous Galerkin schemes are developed byWu and Xing (2021) following
the techniques introduced by Li and Xing (2016b). These schemes are capable
of balancing any known hydrostatic equilibrium, have a guaranteed positivity-
preserving property for general equation of states, and can handle unstructured
meshes.
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– Touma et al. (2016) elaborated a well-balanced second-order unstaggered cen-
tral finite volume scheme that is able to preserve isothermal equilibrium. The
necessary back-and-forth projections between the unstaggered and staggered
cells are made equilibrium-preserving by using a variant of the surface gradi-
ent method of Zhou et al. (2001). The method provides discrete solutions on a
single grid by using a “ghost” staggered grid that is only used in the discrete
evolution steps (i.e., it is effectively an unstaggered central scheme).

– Bispen et al. (2017) developed well-balanced second-order finite volume schemes
for low Mach-number applications in atmospheric flow. The schemes are based
on an implicit-explicit (IMEX) time discretization coupled with a specialized
finite volume discretization of the Euler equations in the low Mach number
limit. The well-balanced property of the schemes is obtained by subtracting
the hydrostatic background stratification from the dynamics.

– Gaburro et al. (2018) developed Arbitrary-Lagrangian-Eulerian (ALE) finite
volume schemes on moving nonconforming meshes able to preserve rotational
hydrostatic equilibrium. This is accomplished within the well-balanced path-
conservative framework of Castro et al. (2008) where the source terms are
treated as non-conservative products combined with a well-balanced recon-
struction operator.

– Veiga et al. (2019) developed discontinuous Galerkin schemes that can exactly
balance any known equilibrium. Furthermore, they systematically compare the
well-balanced schemes with unbalanced standard schemes regarding the com-
putational cost for increasingly higher-order schemes. They observe that well-
balanced schemes pay off, especially in multi-dimensional settings.

– Berberich et al. (2019) developed second-order well-balanced finite volume
schemes for arbitrary known hydrostatic equilibrium. The schemes can han-
dle curvilinear grids and general equations of state (see also Berberich et al.
(2018)). They are based on known non-dimensionalized density α and pressure
β functions on which a piecewise steady reconstruction is built and combined
with a well-balanced source term discretization. Hence, they term their for-
malism the α-β well-balanced method. Klingenberg et al. (2019) generalize
the α-β method to arbitrary orders of accuracy with CWENO reconstruction
procedures and Richardson extrapolation for the source term discretization.
The latter reconstruction procedures are particularly well suited for the source
term discretization as they avoid any negative stencil weights within the cell
by construction. Thomann et al. (2019, 2020) combined the α-β method with
relaxation Riemann solvers and implicit-explicit (IMEX) time integration tai-
lored for the efficient treatment of low Mach-number flows.

– Li and Gao (2021) devised a strategy to build high-order well-balanced finite
difference schemes by introducing specialized nonlinear WENO differential op-
erators which fulfill a certain homogenization condition that guarantees the
exact balance between the flux and source terms. The latter are discretized
with the source term decomposition method.

– Berberich et al. (2021a) designed a general framework to construct high-order
well-balanced finite volume schemes for any known solution of a given hyper-
bolic system. Their framework also preserves known time-dependent solutions,
which may be interesting for certain applications such as uncertainty quan-
tification. Kanbar et al. (2020) applied the formalism to unstaggered, second-
order, central finite volume schemes.
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– Edelmann et al. (2021) propose an interesting comparison of several well-
balanced finite volume solvers for low Mach-number flows that are relevant
for multi-dimensional stellar structure and evolution simulations. Moreover,
they developed a multi-dimensional extension of the Cargo and LeRoux (1994)
scheme. They emphasize that when combining well-balanced schemes with low
Mach number solvers, care must be taken not to introduce spurious numerical
artifacts. Low Mach-number solvers rely on special numerical flux functions
that reduce the unphysical numerical diffusion in low Mach-number regimes.
This can interfere negatively with the vanishing diffusion of well-balanced
schemes at steady states.

We next sketch two representative of this category of well-balanced methods.
We opted for the α-β well-balanced finite volume method for hydrostatic equi-
librium of Berberich et al. (2018, 2019) and collaborators. Subsequently, we also
briefly describe another method that relies on a slightly different principle than
most of the methods of the present category.

α-β well-balanced method

For simplicity, we consider a one-dimensional setting and limit the spatial accuracy
to second-order. The α-β well-balanced method assumes that the hydrostatic equi-
librium Eq. (173) to be preserved is explicitly known in terms of two dimensionless
scalar functions α(x) and β(x),

ρeq(x) = ρ0α(x) and peq(x) = p0β(x), (177)
{eq:wb_fvm_ake_0010}{eq:wb_fvm_ake_0010}

fulfilling
1

ρeq

dpeq
dx

= −dϕ

dx
. (178)

{eq:wb_fvm_ake_0020}{eq:wb_fvm_ake_0020}

The constants ρ0 and p0 anchor the equilibrium density and pressure at some
reference coordinate x0. The steady state of interest Ueq(x) in Eq. (45) is therefore
explicitly known

Ueq(x) =



ρeq(x)

0
ρeeq(x)


 =




ρeq(x)
0

ρe(ρeq(x), peq(x))


 =




ρ0α(x)
0

ρe (ρ0α(x), p0β(x))


 . (179)

{eq:wb_fvm_ake_0030}{eq:wb_fvm_ake_0030}

Here the equilibrium internal energy density is computed from the equilibrium
density and pressure through the EoS. A well-balanced finite volume scheme based
on the α-β could now be derived in a straightforward manner along the recipe in
Section 2.4. However, we now switch to primitive instead of the conserved variables
to follow Berberich et al. (2018, 2019)’s original presentation. The steady state of
interest is then simply

W eq(x) =



ρeq(x)

0
peq(x)


 =



ρ0α(x)

0
p0β(x)


 , (180)

{eq:wb_fvm_ake_0040}{eq:wb_fvm_ake_0040}

which also highlights the importance of the functions α(x) and β(x).
We begin by the piecewise steady reconstruction in primitive variables. Berberich

et al. (2018, 2019) use the relative form Eq. (52). Since the steady state of interest
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is explicitly known, the local equilibrium reconstruction within each cell Ωi is triv-
ial. Indeed, the equilibrium projection and matching steps simplify to a formality

W eq,i =



ρeq,i
0

peq,i


 =



ρ0αi

0

p0βi


 and W eq,i(x) = W eq(x). (181)

{eq:wb_fvm_ake_0050}{eq:wb_fvm_ake_0050}

The cell-averaged equilibrium density ρeq,i and pressure peq,i or, equivalently, the

αi and βi can be computed over the whole computational domain once at the
beginning of the simulation and stored. The local relative equilibrium perturbation
reconstruction Eq. (53) gives

δ̃W i(x) =




R
(
x;
{

ρk

ρeq,k

}
k∈Si

)

R
(
x; {vx,k}k∈Si

)

R
(
x;
{

pk

peq,k

}
k∈Si

)



, (182)

{eq:wb_fvm_ake_0060}{eq:wb_fvm_ake_0060}

where the velocity and pressure are computed from the cell-averaged conserved
variables

vx,k =
ρvx,k
ρk

and pk = p

(
ρk, Ek − ρk

2
v2x,k

)
. (183)

{eq:wb_fvm_ake_0070}{eq:wb_fvm_ake_0070}

The latter choice limits the spatial accuracy to formally second-order, regardless of
whether a higher-order reconstruction procedure R is used. Note that the velocity
component uses a standard reconstruction since it does not participate in the
steady state of interest. If we further assume that the reconstruction procedure
fulfills a certain scale invariance property16

R
(
x;
{
CQk

}
k∈Si

)
= CR

(
x;
{
Qk

}
k∈Si

)
(184)

{eq:wb_fvm_ake_0080}{eq:wb_fvm_ake_0080}

for any cell-averaged quantity Qk and constant C, we obtain the following final
expression of the piecewise steady reconstruction

W i(x) =




α(x)R
(
x;
{

ρk

αk

}
k∈Si

)

R
(
x; {vx,k}k∈Si

)

β(x)R
(
x;
{

pk

βk

}
k∈Si

)



. (185)

{eq:wb_fvm_ake_0090}{eq:wb_fvm_ake_0090}

It is obvious that if equilibrium cell-averagesW eq,i are given to the above piecewise
steady reconstruction, it reduces to the exact steady state Eq. (180) by construc-
tion.

It remains to discuss the well-balanced source term discretization. Berberich
et al. (2018, 2019) use the alternative form Eq. (59). Since only the momentum
source term is relevant at the steady state of interest, we directly obtain

Sρvx,i =
1

2

(
ρi(xi−1/2)

α(xi−1/2)
+

ρi(xi+1/2)

α(xi+1/2)

)
p0
ρ0

β(xi+1/2)− β(xi−1/2)

∆x
. (186)

{eq:wb_fvm_ake_0100}{eq:wb_fvm_ake_0100}

16 For commonly used piecewise linear reconstructions this is obvious. For high-order
(C)WENO reconstruction, see Don et al. (2022); Li and Gao (2021).
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Moreover, Berberich et al. (2018, 2019) use the conservative formulation of the
total (fluid and gravitational) energy Eq. (169). The complete source term dis-
cretization thus reads

Si =




0
Sρvx,i

0


 . (187)

{eq:wb_fvm_ake_0120}{eq:wb_fvm_ake_0120}

It is straightforward to verify that the α-β method is able to preserve any
known hydrostatic equilibrium Eq. (179) or Eq. (180). The extension to several
space dimension is also uncomplicated (e.g., following the recipe in Section 2.6).
Extending the method beyond second-order accuracy is slightly more tricky. The
issue stems from the pressure reconstruction Eqs. (182) and (185), which estimates
the pressure based on the cell-averaged conserved variables Eq. (183). We refer to
Klingenberg et al. (2019) for the details.

Equilibrium truncation error annihilation method

Let us mention another approach that exists as “folklore” among practitioners. An
exact balance of an a priori known steady state is simply obtained by subtracting
the discretization error at steady state in each time step. At the analytical level
and in the infinite resolution limit, this is tantamount to subtracting a zero from
the equation (because the steady state fulfills the balance by definition, of course).
In semi-discrete evolution form, this simply reads

dU i

dt
= L(U)i − L(Ueq)i, (188)

{eq:wb_fvm_ake_0130}{eq:wb_fvm_ake_0130}

where L is the spatial discretization operator (see Eqs. (7) and (95) for finite
volume) and Ueq the explicitly computable cell averages of the known steady
state Ueq. Similarly, the same can be ported to other spatial discretizations such
as finite difference and discontinuous Galerkin methods. For example, this method
was used by Dedner et al. (2001) for the simulation of waves in stratified stellar
atmospheres. The latter approach is probably easier and computationally cheaper
to implement in an existing solver since the equilibrium discretization error L(Ueq)
can be calculated once and for all at the beginning of a simulation. However, this
approach may interact in less predictable ways within the reconstruction steps
than the previously discussed methods such as the α-β method.

3.3.2 Barotropic steady states

subsubsec:wb_fvm_lce

The second category of well-balanced schemes for the Euler equations is designed
to preserve barotropic steady states. In barotropic fluids, the density is a function
of pressure only. This establishes a thermal equilibrium stratification and that
information is directly exploited by the well-balanced schemes in this category.

A prominent example is provided by isentropic conditions in which the specific
entropy is constant. Consider the fundamental thermodynamic relation

dh = Tds+
dp

ρ
, (189)

{eq:wb_fvm_lce_0010}{eq:wb_fvm_lce_0010}
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where h is the specific enthalpy, T the temperature and s the specific entropy.
Hydrostatic equilibrium Eq. (173) under isentropic conditions (ds = 0) then gives

∇p

ρ
= ∇h = −∇ϕ, (190)

{eq:wb_fvm_lce_0020}{eq:wb_fvm_lce_0020}

which can be trivially integrated to

h+ ϕ = const. (191)
{eq:wb_fvm_lce_0030}{eq:wb_fvm_lce_0030}

Note that this is an explicit expression for hydrostatic equilibrium under isentropic
conditions (assuming the gravitational potential is known). Once the constant fixed
at some reference coordinate, the hydrostatic stratification is fully determined.
Bernoulli’s Eq. (175) is the generalization to steady adiabatic flow.

Along the same lines, isothermal hydrostatic equilibrium is derived from the
fundamental thermodynamic relation

dg =
dp

ρ
− sdT, (192)

{eq:wb_fvm_lce_0040}{eq:wb_fvm_lce_0040}

where g is the specific Gibbs free energy, yielding

g + ϕ = const. (193)
{eq:wb_fvm_lce_0050}{eq:wb_fvm_lce_0050}

More generally, the expression

Θ =

∫
dp

ρ
(194)

{eq:wb_fvm_lce_0060}{eq:wb_fvm_lce_0060}

is integrable for barotropic fluids and hydrostatic equilibrium takes the form

Θ + ϕ = const. (195)
{eq:wb_fvm_lce_0070}{eq:wb_fvm_lce_0070}

Here Θ = Θ(ϑ, p) is a thermodynamic potential depending on the natural variables
ϑ and p. For example, the general expression encompasses the isentropic (Θ = h,

ϑ = s), the isothermal (Θ = g, ϑ = T ) and the polytropic17 (Θ = γ′

γ′−1
p
ρ , ϑ = K)

cases.
The above explicit expressions for barotropic hydrostatic equilibrium can then

be used for the design of well-balanced schemes. Many schemes of this category
have been developed in the literature:

– Botta et al. (2004) designed a well-balanced second-order finite volume scheme
for isentropic hydrostatic equilibrium as frequently encountered in numerical
weather prediction and climate modeling. The scheme is based on a local piece-
wise steady reconstruction of isentropic hydrostatic states within each grid cell
that are adapted to the local thermodynamic conditions at each time step.

– Fuchs et al. (2010b) constructed second-order finite volume schemes that pre-
serve isothermal hydrostatic equilibrium. The schemes use a piecewise linear
steady reconstruction of isothermal hydrostatic states explicitly exploiting the
exponential stratification of density and pressure. Remarkably, the schemes
are also well-balanced for certain magnetostatic equilibria such as used in the
simulation of waves in stellar atmospheres (Rosenthal et al., 2002).

17 A polytropic relation is given by p = Kργ
′

, where K is the polytropic constant and γ′ the
polytropic exponent (see, e.g., Chandrasekhar (1967)).
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– LeVeque (2010) developed a well-balanced second-order method for polytropic
gas dynamics using the f -wave approach of Bale et al. (2002). The particular
source term average at cell interfaces to guarantee the exact preservation of
steady states is constructed using the theory of path conservative methods.
Gundlach and LeVeque (2011) used the approach to study the universality in
the run-up of shock waves to stellar surfaces. Ahmad and Lindeman (2007) have
applied the f -wave approach to atmospheric flow problems and they report
promising results.

– Luo et al. (2011); Xu et al. (2010) constructed symplecticity-preserving gas-
kinetic schemes for compressible Euler and Navier-Stokes equations with grav-
ity. The second-order schemes represent the gravitational potential as a piece-
wise constant with a potential jump at every cell interface. The schemes are
designed such that an isothermal hydrostatic state is preserved during the pro-
cess of particle transport and collision, which necessitates the use of an exact
Maxwellian velocity distribution. See also the recent approach by Chen et al.
(2020).

– Xing and Shu (2013) designed high-order well-balanced finite difference schemes
for isothermal hydrostatic equilibrium. The approach uses the source term de-
composition method of Xing and Shu (2006c) (see Section 2.7.3) using the
special form of isothermal hydrostatic states. Li and Xing (2016b) extend the
formalism to discontinuous Galerkin schemes using the source term decompo-
sition of Xing and Shu (2006b).

– Käppeli and Mishra (2014); Käppeli (2017) developed second-order finite vol-
ume schemes that retain barotropic hydrostatic states exactly (up to machine
precision). The schemes are based on the piecewise steady reconstruction of
barotropic hydrostatic states using thermodynamic potentials and are capable
of dealing with general EoS. Grosheintz-Laval and Käppeli (2019); Grosheintz-
Laval (2021) extended the schemes to (spatially) arbitrary order of accuracy
and unstructured meshes. Grosheintz-Laval and Käppeli (2020) generalized the
second-order schemes to adiabatic steady flows.

– Chandrashekar and Klingenberg (2015) constructed well-balanced second-order
finite volume schemes for isothermal and polytropic hydrostatic equilibrium.
The schemes rewrite the gravitational source terms in a specific form by ex-
ploiting the structure of the equilibrium state (similar to Xing and Shu (2013))
and a piecewise steady reconstruction that uses equilibrium scaled variables.

– Chandrashekar and Zenk (2017) designed high-order nodal discontinuous Galerkin
methods for isothermal and polytropic hydrostatic equilibrium. The schemes
use a form of the source term decomposition method as Xing and Shu (2013)
combined with Gauss-Lobatto-Legendre quadrature rules. The latter choice
ensures that at an equilibrium the solution is continuous between the cells and
the flux and source discretizations exactly match.

– Li and Xing (2018b) developed high-order (modal) discontinuous Galerkin
schemes capable of preserving isothermal and polytropic hydrostatic states.
The schemes are based on a generalized hydrostatic reconstruction with an
equilibrium state recovery technique and a special projection operator guaran-
teeing the necessary continuity conditions of the numerical fluxes at the cell
interfaces and a well-balanced source term discretization following Xing and
Shu (2006a).
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– Gómez-Bueno et al. (2021a,b) developed a general framework for construct-
ing high-order well-balanced finite volume schemes for one-dimensional bal-
ance laws. The schemes are based on a piecewise steady reconstruction that
constructs local equilibrium by solving the steady-state defining ODEs numer-
ically. (In general, the schemes could therefore also be classified in the discrete
steady state category.) In the context of the Euler equations, high-order well-
balanced schemes for adiabatic sub- and supersonic steady flows are designed
within the framework. By assuming adiabatic flow, they derive a system of
ODEs for the steady states that is then solved numerically to derive the piece-
wise steady reconstruction.

In the following, we briefly outline a representative out of this category of
well-balanced schemes for barotropic hydrostatic equilibrium. We opt for the well-
balanced finite volume schemes of Käppeli and Mishra (2014); Käppeli (2017)
and their higher-order extension by Grosheintz-Laval and Käppeli (2019). This
(admittedly not entirely impartial) choice is motivated by the versatility of the
approach as it seamlessly adapts to any barotropic relation and relies only on
fundamental thermodynamic relations (i.e., it works for any EoS). We now fol-
low the recipe from Section 2.4 and prepare the necessary ingredients to design
a one-dimensional well-balanced finite volume scheme for barotropic hydrostatic
equilibrium. The multi-dimensional case is briefly addressed at the end of the
description.

The starting point is to ensure the computability of the steady states of interest.
The barotropic hydrostatic equilibrium Eq. (195) immediately gives the following
equilibrium profiles

ϑeq(x) = ϑ0 and Θeq(x) = Θ0 + ϕ0 − ϕ(x). (196)
{eq:wb_fvm_lce_0080}{eq:wb_fvm_lce_0080}

Here ϑ0, Θ0 and ϕ0 are the equilibrium’s thermodynamic natural variable and
potential, and the gravitational potential evaluated at some reference coordinate
x0, respectively. The equilibrium conserved variables are then

Ueq(x) =



ρeq(x)

0
ρeeq(x)


 =



ρ(ϑ0, Θeq(x))

0
ρe(ϑ0, Θeq(x))


 , (197)

{eq:wb_fvm_lce_0090}{eq:wb_fvm_lce_0090}

where the equilibrium density ρeq(x) and internal energy density ρeeq(x) are com-
puted through the EoS given the natural variable and thermodynamic potential.
Note that we distinguish between the exact ueq(x) and approximate Ueq(x) steady
states of interest (see Eq. (45)). Although this may seem overly pedantic, it takes
into account that the gravitational potential ϕ(x) may only be known approxi-
mately (say up to order O(∆xϵ)).

The next ingredient is the piecewise steady reconstruction from the cell-averaged
conserved variables {U i}. It consists of reconstructing within each cell Ωi local
equilibrium Ueq,i(x) and perturbation δU i(x) parts. The local equilibrium is fixed
in two substeps. First, the cell average U i is projected onto a cell average that is
consistent with the steady states of interest. This is of course trivial for the density
and the momentum components. For the energy component, an estimate of the
cell-averaged internal density is needed. A natural choice is provided by

Eeq,i = ρeeq,i ≈ Ei −
1

2

ρv2x,i
ρi

. (198)
{eq:wb_fvm_lce_0100}{eq:wb_fvm_lce_0100}



Well-balanced methods for Computational Astrophysics 57

Note that this choice is consistent with the steady states of interest (i.e., it is exact
at equilibrium when ρvx,i ≡ 0). With this we then have the local equilibrium
projected cell-averaged conserved variables

Ueq,i =




ρi
0

ρeeq,i


 . (199)

{eq:wb_fvm_lce_0110}{eq:wb_fvm_lce_0110}

The second substep matches a steady state of interest profile Eq. (197) to the equi-
librium projected cell averages Ueq,i by Eq. (47). To this end, the local equilibrium
profiles are anchored at the cell center xi

18

ϑeq,i(x) = ϑ0,i and Θeq,i(x) = Θ0,i + ϕi − ϕ(x), (200)
{eq:wb_fvm_lce_0120}{eq:wb_fvm_lce_0120}

where the ϑ0,i, Θ0,i and ϕi = ϕ(xi) are point values of the equilibrium’s natural
variable, thermodynamic potential and gravitational potential at cell center. It is
assumed that the gravitational potential ϕ(x) can be evaluated anywhere needed,
either exactly or approximately (up to some order O(∆xϵ)). The anchor values
ϑ0,i and Θ0,i are then set by requiring that

ρi =
1

∆x
Qi (ρeq,i) =

1

∆x

Nq∑

α=1

ωα ρeq,i (ϑ0,i, Θeq,i(xi,α)) ,

ρei =
1

∆x
Qi (ρeeq,i) =

1

∆x

Nq∑

α=1

ωα ρeeq,i (ϑ0,i, Θeq,i(xi,α)) .

(201)
{eq:wb_fvm_lce_0130}{eq:wb_fvm_lce_0130}

In general, Eq. (201) represents a system of two (non-linear) equations for the
anchor values ϑ0,i and Θ0,i of the local equilibrium reconstruction profile in cell Ωi.
The system can efficiently be solved by a (hybrid) Newton method (see, e.g., Dennis
and Schnabel (1996); Press et al. (1993)). We remark that the derivatives needed
for the Jacobian matrix computation in Newton’s method are of thermodynamic
nature and provided by any EoS. Moreover, the initial guesses for ϑ0,i and Θ0,i

can directly be computed from the local equilibrium projected cell averages Ueq,i

through the EoS, i.e.,

ϑ0,i = ϑ(ρi, ρeeq,i) and Θ0,i = Θ(ρi, ρeeq,i). (202)
{eq:wb_fvm_lce_0140}{eq:wb_fvm_lce_0140}

Note that the latter values are second-order approximation of the values at cell
center and are therefore already pretty close to the solution. Furthermore, these
initial guesses are already the solution of the system Eq. (201) for a second-order
scheme that uses the midpoint rule. Equipped with the local equilibrium recon-
struction,

Ueq,i(x) =



ρeq,i(x)

0
ρeeq,i(x)


 , (203)

{eq:wb_fvm_lce_0150}{eq:wb_fvm_lce_0150}

the local equilibrium perturbation δU i(x) can be computed following the recipe
in Section 2.4.1. As a result, we obtain a piecewise steady reconstruction WR
for barotropic hydrostatic equilibrium. Likewise, the well-balanced source term

18 Basically, any anchor location is fine, but, as we will see below, the cell center is a convenient
choice.
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discretization is obtained as described in Section 2.4.2. The latter can also be con-
structed such that the scheme is total (fluid and gravitational) energy-conserving.
This can be achieved either by evolving the total energy Eq. (169) directly or by
discretizing the source term in Eq. (170) appropriately19.

This concludes the description of the required ingredients to assemble a one-
dimensional finite volume scheme that preserves a discrete form of barotropic
hydrostatic equilibrium. A particularity of that steady state Eq. (195) is its valid-
ity in several space dimensions. Therefore, a well-balanced finite volume scheme
for multi-dimensional barotropic hydrostatic equilibrium can readily be developed
according the recipe in Section 2.6.

3.3.3 Discrete steady states

subsubsec:wb_fvm_lde

The third category of well-balanced schemes for the Euler equations avoid any
assumption on the thermal stratification of the steady states. In effect, they aim
at preserving a consistent discretization of the PDE underlying the steady states
of interest. For hydrostatic equilibrium, this is

∇p = −ρ∇ϕ,

which the methods in this category solve numerically (given the density and grav-
itational acceleration) for the hydrostatic pressure. Therefore, the methods in this
category are, in some sense, truly in the spirit of the piecewise steady reconstruc-
tion as early advocated by Eulderink and Mellema (1995); Mellema et al. (1991);
van Leer (1984). However, this endeavor is difficult in general, especially in several
space dimensions. We will come back briefly to this issue at the end of the section.

Many schemes of this type have been developed in the literature:

– LeVeque and Bale (1999) developed second-order finite volume schemes that
preserve hydrostatic equilibrium and steady adiabatic flow (see also LeVeque
et al. (1998)). The schemes are based on the quasi-steady wave-propagation
algorithm of LeVeque (1998). The method replaces the piecewise constant so-
lution representation within a cell with two constant states separated by a
single discontinuity at the middle of the cell. The jump within the cell is cho-
sen such that it exactly cancels out the source term. This leads to modified
Riemann problems at cell interfaces that only encode perturbations from the
steady state. The steady states are preserved with second-order accuracy by
construction, and perturbations are propagated with the same accuracy within
the wave-propagation algorithm.

– Fuchs et al. (2011) presented well-balanced second-order finite volume schemes
for stratified non-isothermal magnetic atmospheres (see also Fuchs et al. (2010a)).
The schemes are based on an extension beyond the isothermal case developed
by Fuchs et al. (2010b) and are capable of preserving certain non-isothermal
magnetostatic equilibria. The schemes are applied to the simulation of waves
in the outer solar (chromosphere and corona) and other stellar atmospheres.
A similar approach is used by Krause (2019).

19 To maintain higher-order accuracy (i.e., beyond second), the Richardson extrapolation
technique can be applied to the second term on the right-hand side of Eq. (170).
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– Vides et al. (2014) developed a second-order finite volume schemes for self-
gravitating astrophysical flows. Although the schemes are not strictly well-
balanced20 (according to the authors), they nevertheless display a substantial
improvement over a standard scheme. The schemes are based on a relaxation-
type Riemann solver that incorporates the gravity source terms, which effec-
tively couples more strongly the fluid to the gravitational forces. Padioleau
et al. (2019) extend the method to low Mach number flow regimes and apply
it to compressible convection.

– Desveaux et al. (2015) constructed a well-balanced finite volume scheme to
capture non-explicit hydrostatic equilibria (see also Desveaux (2013); Desveaux
et al. (2014)). It is based on a relaxation-type Riemann solver able to resolve
hydrostatic equilibrium by directly including the gravity source terms. The
resulting scheme preserves a spatially second-order accurate discrete form of
hydrostatic equilibrium, but perturbations are only evolved with first order
accuracy.

– Käppeli and Mishra (2016) designed well-balanced second-order finite volume
schemes for hydrostatic sates. They are based on a local discrete hydrostatic
reconstruction that directly integrates the equilibrium pressure given the den-
sity and gravity forces (see also Käppeli and Mishra (2015)). Popov et al.
(2019) present some first applications of the schemes to multi-dimensional stel-
lar structure calculations. Moreover, they present an improved discretization
of the gravity source term in the energy equation that avoids unphysical en-
ergy changes when simulating quasi-stationary convection for extended time
periods. Grosheintz-Laval (2021) adapted the schemes to semi-structured icosa-
hedral grids. Berberich et al. (2021b) generalize the second-order schemes to
arbitrary orders of accuracy.

– Franck and Mendoza (2016) constructed well-balanced asymptotic-preserving
finite volume schemes for the Euler equations with gravity and friction source
terms. The schemes are based on a Lagrange+remap approach in combination
with a relaxation procedure specifically designed to capture the asymptotic
limit induced by the friction source term (i.e., the scheme produces consistent
and stable approximations for arbitrarily high friction coefficients). Moreover,
the schemes are capable of preserving an arbitrary high-order discretization
of hydrostatic equilibrium, but perturbations are only evolved with first or-
der accuracy. An extension to two-dimensional unstructured meshes is also
presented.

– Chertock et al. (2018) developed second-order central-upwind finite volume
schemes capable of preserving hydrostatic equilibrium. The schemes are based
on a purely conservative reformulation of the equations that avoids the source
terms by introducing global fluxes, which essentially corresponds to an inte-
gration of the hydrostatic pressure over the whole computational domain. The
inherent viscosity of the central-upwind scheme is tweaked by a smooth cut-off
function that tends towards zero when the computed solution is locally close
to a steady state. See also Caselles et al. (2009); Gascón and Corberán (2001)
for a closely related approach.

20 In the sense that they don’t preserve certain steady states exactly (up to machine preci-
sion).
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– Varma and Chandrashekar (2019) extended the approach of Chandrashekar
and Klingenberg (2015) to arbitrary thermal stratification. To construct the
hydrostatic reconstruction and well-balanced source term discretization, they
first rewrite the hydrostatic equilibrium in a particular form and discretize
the resulting expressions. Effectively, this allows the parametrization of the
assumed subcell thermal equilibrium in the piecewise steady reconstruction.

In the following, we briefly sketch in a one-dimensional setting the well-balanced
schemes of Käppeli and Mishra (2016) in their arbitrary high-order formulation
by Berberich et al. (2021b). Again, this (to be sure not fully impartial) choice is
motivated by the flexibility of the approach as it easily adapts to any EoS. The
plan is to prepare all the necessary ingredients to apply the recipe outlined in
Section 2.4. As mentioned earlier, it is currently a challenge to extend the well-
balanced schemes of this category to the multidimensional case. Some discussion
of this issue is provided at the end of the one-dimensional description.

First of all, we need to be able to compute the steady states of interest. For
one-dimensional hydrostatic equilibrium,

dpeq
dx

= −ρeq
dϕ

dx
, (204)

{eq:wb_fvm_lde_0010}{eq:wb_fvm_lde_0010}

we obtain by direct integration

peq(x) = p0 −
∫ x

x0

ρeq
dϕ

dx
dx. (205)

{eq:wb_fvm_lde_0020}{eq:wb_fvm_lde_0020}

Here, ρeq and peq(x) denote the hydrostatic density and pressure, and p0 is the
pressure at some reference coordinate x0. The equilibrium conserved and primitive
variables are then

Ueq(x) =



ρeq(x)

0
ρeeq(x)


 =




ρeq(x)
0

ρe(ρeq(x), peq(x))


 , W eq(x) =



ρeq(x)

0
peq(x)


 , (206)

{eq:wb_fvm_lde_0030}{eq:wb_fvm_lde_0030}

where the equilibrium energy density ρeeq(x) is computed through the EoS. Note
that we are again distinguishing the exact ueq(x) and the approximate Ueq(x)
hydrostatic equilibrium state (see Eq. (45)). Both, the equilibrium density and
the gravitational potential will be approximated by (polynomial) reconstruction
and interpolation (up to some desired accuracy O(∆xϵ)).

The second ingredient is the piecewise steady reconstruction, whose goal is
to build accurate equilibrium subcell profiles from the cell-averaged conserved
variables {U i} that are consistent with the steady states of interest. This local
equilibrium profile is found by fitting an equilibrium Eq. (206) to the cell’s average
U i. The first substep is to perform an equilibrium projection of U i onto a cell
average Ueq,i consistent with hydrostatic equilibrium. A convenient option is as
in the barotropic equilibrium case provided by

Ueq,i =




ρi
0

ρeeq,i


 , (207)

{eq:wb_fvm_lde_0040}{eq:wb_fvm_lde_0040}
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where the cell-averaged equilibrium internal energy density is estimated directly
from the cell average U i as

Eeq,i = ρeeq,i ≈ Ei −
1

2

ρv2x,i
ρi

. (208)
{eq:wb_fvm_lde_0050}{eq:wb_fvm_lde_0050}

This choice is exact at hydrostatic equilibrium ρvx,i ≡ 0 (i.e., it is consistent with
the steady states of interest). The second substep matches a hydrostatic equilib-
rium profile Eq. (205) to the equilibrium projected cell average Ueq,i by Eq. (47).
For that purpose, the local equilibrium pressure profile peq,i(x) is anchored at the
cell center xi

21

peq,i(x) = p0,i −
∫ x

xi

ρeq,i(x)

(
dϕ

dx

)

i

(x) dx, (209)
{eq:wb_fvm_lde_0060}{eq:wb_fvm_lde_0060}

where p0,i is a point value of the equilibrium pressure at cell center, ρeq,i(x) is the
local equilibrium density reconstruction and (dϕ/dx)i (x) the gravitational accel-
eration in cell Ωi. Before we can evaluate Eq. (209), we have to choose a subcell
representation for these quantities. The gravitational acceleration is computed by
(polynomially) interpolating the gravitational potential {ϕi} and differentiating
(even if the potential is analytically known and the derivative could be evalu-
ated exactly). An obvious choice for the local equilibrium density reconstruction
ρeq,i(x) is the one provided by the standard reconstruction procedure for the den-
sity (Berberich et al., 2021a):

ρeq,i(x) = ρi(x) = R (x; {ρk}k∈Si
) . (210)

{eq:wb_fvm_lde_0070}{eq:wb_fvm_lde_0070}

However, other choices are possible. See Fig. 7 for a few possibilities. This influ-
ences (unsurprisingly) the accuracy O(∆xϵ) to which the equilibrium profiles are
computed and the overall stencil size (Berberich et al., 2021a). Note that since the
integrand in Eq. (209) is a simple polynomial, the integral can be easily evaluated
analytically. The anchor value p0,i is then fixed by requiring that the pressure pro-
file Eq. (209) matches with the cell-averaged equilibrium internal energy density

ρeeq,i =
1

∆x
Qi (ρe(ρeq,i, peq,i))

=
1

∆x

Nq∑

α=1

ωα ρe

(
ρeq,i(xi,α), p0,i −

∫ xi,α

xi

ρeq,i(x)

(
dϕ

dx

)

i

(x) dx

)
.

(211)
{eq:wb_fvm_lde_0080}{eq:wb_fvm_lde_0080}

This is a scalar equation for the pressure p0,i at the cell center and it can be
efficiently solved iteratively by, e.g., a (hybrid) Newton method (see, e.g., Dennis
and Schnabel (1996); Press et al. (1993)). The iteration starts with the pressure
estimated from the cell-average mass and internal energy density Eq. (208) through
the EoS. The initial guess is a second-order approximation of the pressure point
value at the cell center and is, therefore, already quite close to the sought solution.
Moreover, it can be solved analytically for second-order accurate schemes or simple

21 Any other anchor point is possible. However, the cell center is again a convenient choice.



62 Roger Käppeli

EoS like the ideal gas law (arbitrary order). The local equilibrium reconstruction
in cell Ωi is then

Ueq,i(x) =




ρeq,i(x)
0

ρe(ρeq,i(x), peq,i(x))


 , W eq,i(x) =



ρeq,i(x)

0
peq,i(x)


 . (212)

{eq:wb_fvm_lde_0090}{eq:wb_fvm_lde_0090}

The local equilibrium perturbation δU i(x) can now be computed as described by
the recipe in 2.4.1. This gives us the complete piecewise steady reconstruction
WR for arbitrarily stratified hydrostatic equilibrium. Along the same lines, the
well-balanced source term discretization follows from Section 2.4.2:

Si = − 1

∆x

∫

Ωi




0
ρi(x)

ρvx,i(x)



(
dϕ

dx

)

i

(x) dx. (213)
{eq:wb_fvm_lde_0100}{eq:wb_fvm_lde_0100}

Remarkably, this is the same discretization as provided by a standard (high-order)
finite volume scheme. This is a welcome simplification when implemented into an
existing solver. As for the barotropic well-balanced schemes, the source term in
the energy equation can be avoided by either evolving the total (fluid and gravita-
tional) energy or by discretizing appropriately the source terms in Eq. (170). Such
total energy-conserving schemes are advantageous for the long-term simulation of
near-equilibrium configurations.

Unfortunately, the just described one-dimensional well-balanced scheme does
not generalize to the multi-dimensional case in a straightforward manner (e.g., by
following the recipe in Section 2.6). The culprit is that the discrete (re)construction
of the hydrostatic equilibrium profile via approximation of Eq. (205),

peq(x) = p0 −
∫

Γ

ρeq∇ϕ · dx, (214)
{eq:wb_fvm_lde_0110}{eq:wb_fvm_lde_0110}

is typically dependent on the path Γ (from the reference coordinate x0 to x).
Only under special circumstances, such as constant density or alignment of gravity
forces with one coordinate axis, a unique construction of the hydrostatic profile
in such a direct way is feasible. As a matter of fact, the numerical integration of
the hydrostatic profile via Eq. (214) gives sensible results (i.e., path independent)
only if a discrete curl operator applied to the reconstructed integrand (ρeq∇ϕ)
vanishes everywhere (i.e., the integrability condition for hydrostatic equilibrium
is fulfilled in a discrete sense). Therefore, the direct (line) integration approach
seems hopeless. A more promising approach may rely on trying to solve a certain
boundary value problem locally:

∇2p = −∇ · (ρ∇ϕ) . (215)
{eq:wb_fvm_lde_0120}{eq:wb_fvm_lde_0120}

For example, a relaxation method could solve the elliptical PDE within a cell to
construct its local hydrostatic pressure distribution (assuming the pressure in the
neighboring cells is given). At an equilibrium state, the hope is that the relaxation
approach realizes that the cell’s pressure is in equilibrium with its surrounding cells
and local gravity forces. Away from an equilibrium state, certain criteria have to
be devised to select a plausible local equilibrium state. However, this is beyond
the scope of the present review.
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Fig. 7: Equilibrium pressure profile for a polytrope of index n = 1 (γ = 2) over
the radial interval [0, 1.2] discretized by 6 cells: Examples for the equilibrium den-
sity reconstruction ρeq,i(x) (based on the symmetric stencil {ρ−k, . . . , ρ+k} of size
2k + 1) and gravitational potential interpolation ϕi(x) (based on the symmetric
stencil {ϕ−k−1, . . . , ϕ+k+1} of the size 2k + 3) for the construction of the hydro-
static pressure profile peq,i(x) from Eq. (209). The left panel displays the equilib-
rium density as reconstructed with piecewise constants (k = 0), the gravitational
potential as interpolated with piecewise parabolic (k = 1) and the resulting piece-
wise linear equilibrium pressure profile. The right panel shows the accuracy of
the equilibrium pressure profile for several stencil size choices (k = 0, 1, 2, 3) to-
gether with the estimated order of convergence (EOC). We empirically observe
that the equilibrium pressure profile has accuracy ϵ = 2(k+1), which is increased
by one than one would have expected from the order of the equilibrium density
reconstruction. We (presumably) attribute this increase in accuracy to a similar
phenomena appearing in numerical integration, where even-degree (i.e., symmet-
ric) Newton-Cotes quadrature rules have a by one higher order of accuracy than
expected. fig:wb_fvm_lde_0010

However, let us end the present section on an optimistic note. Although not
well-balanced in a multi-dimensional sense, it turns out that the above well-
balanced scheme considerably improves the simulation of nearly hydrostatic con-
figurations even in this suboptimal case.

3.4 Numerical examples

subsec:ne

In this section, we showcase some typical numerical test problems used to assess
the performance of well-balanced schemes in the context of the Euler equations.
We here deliberately focus on standard test problems that are easily replicable
by an interested reader wishing to test his or her implementation/scheme. Using
well-balanced schemes in concrete astrophysical applications usually brings in a
plethora of complications (initial conditions, appropriate boundary conditions, mi-
crophysics, etc.) and goes beyond the scope of this review. Before we proceed, we
give general comments on how the problems below are initialized, boundary con-
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ditions are handled, the timescale the simulations are run, and how the accuracy
is measured.

Given a point-wise defined initial condition in conserved variables u0 = u0(x),
the initialization of the simulation depends on the nature of the chosen scheme.
For finite volume schemes, the cell-averaged conserved variables at the initial time

U
0
i are computed by (sufficiently accurate) numerical integration

U
0
i = Qi(u

0). (216)
{eq:ne_0010}{eq:ne_0010}

An appropriate multi-dimensional quadrature rule is used for multi-dimensional
problems. Often, it is convenient to formulate the initial conditions in a different
set of variables, such as the primitive variables w = [ρ, v, p]T , and apply a point-
wise transformation u0(x) = u(w0(x)) in the above initializations.

Boundary conditions are usually a delicate and strongly application-dependent
matter, even more so when the dynamics of interest occurs close to a steady state.
Typically, the local equilibrium profile found in the piecewise steady reconstruction
in the last physical cells is extrapolated into an appropriate number of ghost cells.
For finite volume schemes, the cell averages in the ghost cells are computed by

U
0
k = Qk(Ueq,1) for k < 1,

U
0
k = Qk(Ueq,N ) for N < k.

(217)
{eq:ne_0030}{eq:ne_0030}

Another option is to freeze the data in the ghost cells to the initial equilibrium con-
ditions. In multiple dimensions, the boundary conditions are applied in a direction-
by-direction manner.

To characterize a timescale on which a model reacts to perturbations of its
equilibrium, we define the sound crossing time

τsound = 2

∫

Γeq

dx

cs
, (218)

{eq:tausound}{eq:tausound}

where cs denotes the speed of sound and the integral has to be taken over the
extent of the steady state of interest Γeq. The sound crossing time corresponds
to the time it takes for a sound wave to propagate back and forth through the
equilibrium configuration. It gives a measure of how quickly a steady configuration
reacts to any perturbations of its equilibrium.

The accuracy of the schemes is quantified by computing the errors

Err = ∥q − qref∥, (219)
{eq:ne_0050}{eq:ne_0050}

where ∥.∥ denotes some norm, usually the L1-norm. Here q is a selected quantity
of interest (e.g., density, pressure, velocity, ...) and qref is a reference solution.
The reference solution is the stationary state to be maintained discretely or a
numerically obtained solution on a very fine grid. Although the comparison with
a numerically obtained reference solution does not provide rigorous evidence of
convergence, it nevertheless indicates a meaningful measure of the errors.
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3.4.1 Hydrostatic atmospheres

subsubsec:atm1d

The simplest setup one can image is that of a one-dimensional hydrostatic atmo-
sphere subject to a constant gravitational acceleration g:

dp

dx
= −ρg. (220)

{eq:atm1d_0010}{eq:atm1d_0010}

Despite its apparent simplicity, it has applications in situations where gravitational
forces change slowly with respect to other quantities of interest, such as numerical
weather prediction, climate modeling of (exo-) planets, and simulation of waves in
stellar atmospheres.

As a matter of fact, Eq. (220) describes only a mechanical equilibrium of the
atmosphere. To uniquely integrate Eq. (220), one needs in addition to a density
ρ0 and pressure p0 at the base of the atmosphere x0 also a thermal stratification.
This is simply because the pressure depends on one22 additional thermodynamic
quantity besides density such as the temperature T (p = p(ρ, T )) or the specific
entropy s (p = p(ρ, s)). We assume a monoatomic ideal gas law EoS

p = RρT = es/cvργ = (γ − 1)ρe, (221)
{eq:atm1d_0020}{eq:atm1d_0020}

where R is the gas constant, cv the specific heat at constant volume and γ the
ratio of specific heats.

For an isothermal atmosphere T = T0 = const, one can then immediately
integrate Eq. (220) to yield

peq(x) = p0e
−

x−x0

H0 and ρeq(x) = ρ0e
−

x−x0

H0 . (222)
{eq:atm1d_0030}{eq:atm1d_0030}

Here H0 = RT0/g is the so-called scale height. Similarly, under isentropic condi-
tions s = s0 = const, Eq. (220) can be analytically integrated to

peq(x) = es0/cvρ(x)γ and ρeq(x) =

(
ργ−1
0 − g

es0/cv

γ − 1

γ
(x− x0)

) 1

γ−1

(223)
{eq:atm1d_0040}{eq:atm1d_0040}

with s0 = cv ln(p0/ρ
γ
0 ). Note that the isentropic atmosphere has a surface at a

finite height while the isothermal one extends to infinity.
Following Käppeli and Mishra (2016), we set the computational domain to

Ω = [0, 2], and the EoS parameters to R = 1, cv = 3R/2 and γ = 5/3. For the
isentropic atmosphere, we set the density and pressure to ρ0 = 1 and p0 = 1 at the
base x0 = 0. The resulting isentropic atmosphere has a scale heightH(x) = − dx

d lnP
decreasing linearly from H(0) = 1 at the bottom to H(2) = 0.2 at the top and a
sound crossing time of τsound ≈ 4.3. Similarly for the isothermal atmosphere, we
set the density and pressure to ρ0 = 1 and p0 = 1 at the base x0 = 0. The resulting
isothermal atmosphere has a constant scale height of H0 = 1 and a sound crossing
time of τsound ≈ 3.1. The density and pressure profiles of both atmospheres are
shown in Fig. 8. Similar setups have been used in most (if not all) publications for
designing well-balanced methods for the Euler equations with gravity.

Next, we present several test cases based on the simple setting of isothermal
and isentropic hydrostatic atmospheres. The results are obtained with the well-
balanced second-order finite volume scheme of Käppeli and Mishra (2016), also

22 We neglect any further dependencies such as composition.
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Fig. 8: Density and pressure profiles for the isentropic (left panel) and isothermal
(right panel) atmospheres. fig:nt_1datmos0010

outlined in Section 3.3.3. Below it will be termed as the “well-balanced (WB)
discrete scheme” as it belongs to the category of well-balanced schemes with an
underlying discrete piecewise steady reconstruction. For the sake of comparison, we
also show the results obtained with a standard second-order finite volume scheme
obtained by switching off the piecewise steady reconstruction. Below it will be
termed the “standard (STD) scheme.”

Well-balanced property

subsubsec:atm1d_wb

The first thing to verify is, of course, the well-balanced property of the scheme: Is
it able to preserve the steady state it was designed for up to machine precision?
Indeed, due to the finite precision of the computer’s approximation of real numbers,
exact balance can, in general, not be expected.

To this end, one initializes the computation with so-called well-prepared initial
data, i.e., the discrete steady state that the well-balanced method is designed to
balance. These well-prepared initial conditions are then evolved with the well-
balanced scheme for a certain time characteristic for the considered steady state,
e.g., a multiple of the sound crossing time Eq. (218). At the end of the computation,
one computes the difference between the initial and final states in some norm (e.g.,
the L1 norm).

The results of such one-dimensional computations with the well-balanced and
the standard scheme are shown in Fig. 9. From the left panel of the figure, it is clear
that the well-balanced scheme maintains the discrete hydrostatic equilibrium down
to machine precision. On the other hand, the standard scheme cannot preserve the
discrete equilibrium. However, note that the error for the standard scheme gets
smaller with increasing resolution23. Indeed, in the limit of an extremely high
resolution, the unbalanced scheme can also preserve the equilibrium. This is a
matter of consistency of the numerical method with the PDE.

23 Interestingly, the standard second-order base scheme shows a third-order convergence to-
wards the steady state. Such a superconvergence has been observed before and attributed to
the fact that the base scheme may be asymptotically high order, i.e., it has a higher order of
accuracy at a steady state than its design order of accuracy (see Fjordholm et al. (2011))
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Fig. 9: Left panel: L1-norm of the difference between the initial and final pressure
for the isentropic (solid and dashed blue lines) and isothermal (solid and dashed red
lines) atmospheres after two sound crossing times for several resolutions. The solid
and dashed lines represent the simulation performed with the standard and the
well-balanced (WB) schemes, respectively. Right panel: The maximum absolute
velocity as a function of time for N = 512. fig:nt_1datmos_wb0010

The right panel of Fig. 9 shows the evolution of the maximum absolute veloc-
ity for a given resolution (N = 512 cells) and up to one hundred sound crossing
times. The advantage of well-balanced methods for long-term integration of near-
equilibrium flows becomes quite clear: the local truncation errors of the standard
scheme piles up in each step and create spurious flow. Conversely, only the (un-
avoidable) round-off errors accumulate for the well-balanced scheme. This makes
such well-balanced schemes well suited to study numerically natural phenomena
that occur on a hydrostatic background.

Wave propagation: shake the base

subsubsec:atm1d_wave_base

The next test assesses the ability of a scheme to propagate waves on top of a
hydrostatic atmosphere. For brevity, only the results for the isentropic atmosphere
are shown. Fuchs et al. (2010b) suggest to excite waves at the bottom of the
atmosphere by imposing a periodic velocity perturbation in the lower boundary

vx,m(t) = A sin

(
6
2πt

tf

)
,

where m < 1 is the boundary cell index (i.e., ghost cell index) and A is the am-
plitude of the perturbation. The simulation is stopped shortly before the excited
waves hit the upper boundary at tf = 1.8. Practically, this test is a simplified ver-
sion of similar setups used in the study of wave propagation in stellar atmospheres
(see, e.g., Bogdan et al. (2003); Fuchs et al. (2010c); Rosenthal et al. (2002) and
references therein).

The setup is run for three amplitudes A = 10−8, 10−6, 10−1 for several resolu-
tions with the well-balanced/standard scheme. The obtained results are compared
with a numerical reference solution computed with the well-balanced scheme and
an N = 8192 resolution. The left panel of Fig. 10 displays the errors in velocity.
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Fig. 10: L1-norm error between the numerical and reference (N = 8192) velocity
for the isentropic (left panel) and isothermal (right panel) atmospheres. The blue,
red and green line correspond to the wave amplitudes A = 10−8, 10−6, 10−1, re-
spectively. The solid and dashed lines represent the simulation performed with the
standard (STD) and the well-balanced (WB) schemes, respectively.fig:nt_1datmos_waves0010

For the small amplitude A = 10−8 case, we observe the superiority of the
well-balanced versus the standard scheme, i.e., the committed velocity errors are
orders of magnitude smaller. The well-balanced scheme shows a rough second-order
convergence. Although way off, the standard scheme seems to show third-order
(super)convergence already observed in the well-balanced property test. The left
panel of Fig. 11 shows the velocity profile for the standard and the well-balanced
schemes for N = 512, together with the reference solution. The well-balanced
scheme can resolve the wave pattern very accurately. On the other hand, the
standard scheme shows spurious deviations because of its inability to resolve the
hydrostatic background properly.

The standard and well-balanced schemes do equally well for the large amplitude
A = 10−1 case. Both show an order of convergence close to one, which is expected
because the large amplitude waves quickly steepen into saw-tooth waves, propa-
gating up the atmosphere. The velocity profile for both schemes and the reference
solution are shown in the right panel of Fig. 11. This case shows that the well-
balanced piecewise steady reconstruction does not destroy the shock-capturing
properties of the base scheme.

The intermediate amplitude A = 10−6 case is interesting. The well-balanced
scheme is clearly superior at low resolutions (≤ 128). The standard scheme shows
superconvergence in this regime with roughly order three. This is the regime where
the hydrostatic atmosphere dominates the committed error, while the wave pattern
is totally unresolved. At higher resolutions (> 128), the wave pattern dominates
the committed error, and the expected second-order accuracy is recovered. The
well-balanced scheme shows an order of convergence of roughly two over the entire
resolution range.
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Fig. 11: Plot of the velocity profile for the small (left) and large (right) amplitude
waves propagating up the isentropic atmosphere. The solid/dashed red lines are
the solutions obtained with the standard/well-balanced scheme with N = 512,
respectively. In solid blue is also shown a reference solution obtained with the
well-balanced scheme and N = 8192. fig:nt_1datmos_waves0020

Wave propagation: pressure bump

subsubsec:atm1d_bump

The next test was introduced by LeVeque and Bale (1999). A pressure perturbation
is added at the center of the atmosphere,

p(x) = peq(x)
(
1 +Ae−200(x−1)2

)
,

which excites two acoustic pulses propagating downwards/upwards. The simu-
lations are stopped shortly before the pulses reach the domain boundaries. An
advantage of this setup is that boundary conditions do not play a role, which
can be delicate, especially for high-order schemes. For this test, we only show re-
sults for the isothermal atmosphere. Similar results are obtained for the isentropic
atmosphere.

The setup is also run until tf = 0.4 for three different amplitudes A =
10−8, 10−6, 10−1 and several resolution with the well-balanced/standard scheme.
The results are compared to a numerically obtained reference solution computed
with the well-balanced scheme at an N = 8192 resolution. The right panel of
Fig. 10 shows the errors in velocity and Fig. 12 shows the velocity profiles for the
small and large amplitudes cases. The figures show clearly that similar conclusions
to the preceding test can be drawn. Hence, we do not repeat them here for brevity.

3.4.2 Polytrope

subsubsec:polytrope

The next series of test problems model considers very simple stellar models known
as polytropes. A polytrope is a static configuration of an adiabatic gaseous sphere
held together by self-gravitation (see, e.g., Chandrasekhar (1967); Kippenhahn
et al. (2012)). These model stars are constructed from hydrostatic equilibrium

dp

dr
= −ρ

dϕ

dr
(224)

{eq:polytrop_0010}{eq:polytrop_0010}
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Fig. 12: Plot of the velocity profile for the small (left) and large (right) amplitude
pressure perturbations on the isothermal atmosphere. The solid/dashed red lines
are the solutions obtained with the standard/well-balanced scheme with N = 512,
respectively. In solid blue is also shown a reference solution obtained with the
well-balanced scheme and N = 8192. fig:nt_1datmos_bump0010

and Poisson’s equation
1

r2
d

dr

(
r2

dϕ

dr

)
= 4πGρ (225)

{eq:polytrope_0020}{eq:polytrope_0020}

in spherical symmetry. Here r is the radial coordinate and G is the gravitational
constant.

The purely mechanical equilibrium constraints are supplemented by a thermal
equilibrium in the form of a barotropic relation as

p = p(ρ) = Kργ . (226)
{eq:polytrope_0030}{eq:polytrope_0030}

A relation of this form is called a polytropic relation with polytropic constant
K and polytropic exponent γ. Hence the name polytrope. Although a polytropic
relation is often only an approximate model, it is an exact relation when the
pressure is dominated by a (non- or relativistic) completely degenerate electron
gas. For instance, the latter is the case in white dwarfs and iron cores of evolved
massive stars. With the polytropic relation Eq. (226), Eqs. (224) and (225) can be
combined into a single equation

1

r2
d

dr

(
r2γK

dρ

dr

)
= −4πGρ, (227)

{eq:polytrope_0031}{eq:polytrope_0031}

which is known as the Lane-Emden equation. For three values γ = 6/5, 2,∞, the
Lane-Emden equation can be solved analytically. Specifically for γ = 2, the density
and pressure are given by

ρeq(r) = ρC
sin(αr)

αr
and peq(r) = Kρ(r)2. (228)

{eq:polytrope_0040}{eq:polytrope_0040}

Here ρC is the central density of the polytrope and

α =

√
4πG

2K
. (229)

{eq:polytrope_0050}{eq:polytrope_0050}
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The gravitational potential is given by

ϕ(r) = −2Kρ(r). (230)
{eq:polytrope_0060}{eq:polytrope_0060}

Note that a γ = 2 polytrope has a finite surface radius rsurface = π/α. Moreover,
it fulfills the isentropic equilibrium h(r) + ϕ(r) = const = 0 for any r ≥ 0.

Following the setup of Käppeli and Mishra (2014), we set the computational
domain to a three-dimensional cube Ω = [−1/2,+1/2]3 uniformly discretized by
N3 cells. The model constants are set to ρC = G = K = 1 and we assume an ideal
gas law EoS with γ = 2. The resulting radial density, pressure and gravitational
potential profiles are shown in the left panel of Fig. 13. The polytrope has a sound
crossing time from its center r = 0 to r = 1/2 of τsound ≈ 0.74. Although the
static configuration is built from an inherently three-dimensional physical problem,
a star, it can also be applied in a Cartesian one- and two-dimensional setting
as a test with non-constant gravitational acceleration (see, e.g., Berberich et al.
(2021b); Grosheintz-Laval and Käppeli (2019); Li and Xing (2016a, 2018a,b); Qian
et al. (2018)). The simulation of a polytrope in a general relativistic context with
well-balanced schemes was also considered by Gosse (2015).

We present several test cases based on the polytrope. We compare the results
of a standard, unbalanced scheme with two well-balanced schemes. The first well-
balanced scheme is the second-order finite volume scheme of Käppeli and Mishra
(2014), also outlined in Section 3.3.2, based on a barotropic piecewise hydrostatic
reconstruction — termed the barotropic well-balanced scheme below. The second
well-balanced scheme is the second-order finite volume scheme of Käppeli and
Mishra (2016), also outlined in Section 3.3.3, based on a discrete piecewise hy-
drostatic reconstruction — termed the discrete well-balanced scheme below. The
standard scheme is obtained by switching off the piecewise steady reconstruction
in the discrete well-balanced scheme, resulting in a second-order finite volume
scheme based on piecewise linear reconstruction in primitive variables24.

Well-balanced property

subsubsec:polytrope_wb

The first verification is again the well-balanced property of the scheme. The three-
dimensional simulation is initialized with the hydrostatic polytrope,

ρ(x, y, z) = ρeq(r), v(x, y, z) = 0, p(x, y, z) = peq(r), ϕ(x, y, z) = ϕ(r),

with r =
√

x2 + y2 + z2 using the midpoint rule to compute the cell-averaged
conserved variables and is evolved for twenty sound crossing times tf = 20 τsound ≈
14.8 with the three schemes.

We remark that the initial conditions fulfill the isentropic equilibrium h+ ϕ =
const. exactly in a point-wise fashion. Therefore, the initial cell-averages corre-
spond exactly to the discrete hydrostatic equilibrium preserved by the barotropic
well-balanced scheme.

24 Similarly, the standard scheme could be obtained by switching off the piecewise steady
reconstruction in the barotropic well-balanced scheme, resulting in a second-order finite volume
scheme based on piecewise linear reconstruction in conserved variables. However, both standard
schemes give similar results and, therefore, only the results obtained with piecewise linear
reconstruction in the primitive variables are shown below.
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N Density Pressure
32 4.06E-02 / 1.47E-15 / 3.33E-15 4.99E-02 / 6.04E-16 / 2.82E-16
64 1.14E-02 / 2.70E-15 / 6.36E-15 1.45E-02 / 1.80E-16 / 2.50E-16
128 3.28E-03 / 4.83E-15 / 1.15E-14 4.30E-03 / 2.06E-16 / 3.05E-16
256 8.60E-04 / 8.52E-15 / 2.05E-14 1.14E-03 / 3.33E-16 / 1.18E-15

Table 1: L1-error in density and pressure after twenty sound crossing times for
the three-dimensional hydrostatic polytrope computed with the standard unbal-
anced/barotropic/discrete well-balanced second-order finite volume schemes.tab:polytrope_wb_0010
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Fig. 13: Left panel: Radial density, pressure and gravitational potential profile of
the polytrope up to the corners of the three-dimensional domain (r =

√
3/2 ≈

0.87). Right panel: Maximum absolute radial velocity as a function of time in
the simulations of the three-dimensional hydrostatic polytrope for the standard
unbalanced/barotropic/discrete well-balanced second-order finite volume schemes.fig:polytrope_wb_0010

The errors in density and pressure at final time tf for the standard unbal-
anced/barotropic/discrete well-balanced schemes are summarized in Table 1. We
first observe that the barotropic well-balanced scheme produces errors on the order
of the machine precision (for double-precision) as is expected. On the other hand,
the standard unbalanced scheme suffers from large spurious deviations. This cor-
responds to the pile-up of the truncation errors at each time step. The errors also
show the expected behavior with increasing resolution for a second-order scheme.
Interestingly, also the discrete well-balanced schemes shows errors on the order
of the machine precision. It turns out that for the special ideal EoS with a ra-
tio of specific heats γ = 2, the discrete well-balanced scheme preserves isentropic
hydrostatic equilibrium (h + ϕ = const.) exactly, even in multiple dimensions,
without any requirement of alignment of grid axes and gravity force. As a result,
the truncation error vanishes by design for the well-balanced schemes and only
the (unavoidable) round-off errors sum up. This is further highlighted in Fig. 13,
where the maximum absolute radial velocity is shown as a function of time. It is
clear that the standard scheme produces spurious deviations from the hydrostatic
state.
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Fig. 14: Small perturbation on a three-dimensional polytrope. Left panel: L1-
error of the radial velocity as a function resolution for the standard unbalanced,
barotropic and discrete well-balanced second-order finite volume schemes. Right
panel: Radial velocity scatter plot as a function of radius.fig:polytrope_waves_0010

Wave propagation: pressure bump

subsubsec:polytrope_waves

To test the capability of the schemes to evolve small perturbations of the multidi-
mensional hydrostatic equilibrium, we add a small Gaussian hump in pressure at
the center of the model star

p(x, y, z) = peq(r)
(
1 +Ae−r2/w2

)
,

with amplitude A = 10−3 and width w = 0.1. The problem is stopped at tf = 0.2
just before the excited waves reach the boundary. A reference solution was com-
puted in one-dimensional spherical symmetry using the well-balanced barotropic
scheme with resolution N = 8192.

The errors in radial velocity are displayed in the left panel of Fig. 14. We
note that all the schemes show the expected second-order accuracy. However, we
also observe that both well-balanced schemes show roughly three orders of magni-
tude smaller errors than the standard unbalanced scheme. Furthermore, we note
that the errors for the well-balanced scheme on the coarsest resolution are smaller
than the respective errors of the unbalanced scheme on the finest resolution. This
fact is further highlighted in the right panel of Fig. 14 showing scatter plots of
radial velocity for the standard scheme at the highest resolution (N3 = 2563),
both well-balanced schemes at the coarsest resolution (N3 = 323) and the ref-
erence solution. This underlines the superiority and computational efficiency of
well-balanced schemes for simulating small disturbances on top of a stationary
state, especially in a multi-dimensional setting. The errors in density and pressure
show the same trends.
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Fig. 15: Large perturbation on a three-dimensional polytrope. Left panel: L1-
error of the radial velocity as a function resolution for the standard unbalanced,
barotropic and discrete well-balanced second-order finite volume schemes. Right
panel: Radial velocity scatter plot as a function of radius.fig:polytrope_waves_0020

Wave propagation: explosion

subsubsec:polytrope_explosion

To check the schemes’ robustness and shock-capturing properties, we add a local-
ized overpressure region at the center of the model star

p(x, y, z) = α(r) peq(r) with α(r) =

{
10, r ≤ 0.1,

1, r > 0.1.

The triggered outward propagating explosion is evolved until tf = 0.15. A reference
solution was computed in one-dimensional spherical symmetry using the well-
balanced barotropic scheme with resolution N = 8192.

The left panel of Fig. 15 displays the errors in radial velocity as a function
of resolution. We observe that all schemes show comparable errors and order of
convergence close to unity, as expected for discontinuous solutions. Therefore, we
conclude that the piecewise steady reconstruction in both well-balanced schemes
does not diminish the robustness of the standard, base shock-capturing scheme.
The errors in density and pressure show similar tendencies. The right panel of
Fig. 15 shows scatter plots of radial velocity as a function of radius for all the
schemes, including the one-dimensional reference solution for comparison. The
over-pressurized central region quickly expands driving a first strong shock wave
outward. As the shock wave moves out, gravity starts to pull back some matter
behind it, driving a collapse which then eventually leads to a rebound in the center.
This rebound then drives another outward running shock wave. At the final time
tf = 0.15, this cycle has been repeated twice (hence the two strong shock waves)
and is about to happen again as the matter is pulled back (the negative velocities
below r < 0.1).
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tions, pages 609–618. Birkhäuser Basel, 1999. doi: 10.1007/978-3-0348-8724-3
12.

Doron Levy, Gabriella Puppo, and Giovanni Russo. Central WENO schemes for
hyperbolic systems of conservation laws. ESAIM: Mathematical Modelling and

Numerical Analysis, 33(3):547–571, May 1999. doi: 10.1051/m2an:1999152.
Doron Levy, Gabriella Puppo, and Giovanni Russo. Compact central WENO

schemes for multidimensional conservation laws. SIAM Journal on Scientific

Computing, 22(2):656–672, January 2000. doi: 10.1137/s1064827599359461.
Gang Li and Yulong Xing. High order finite volume WENO schemes for the euler

equations under gravitational fields. Journal of Computational Physics, 316:
145–163, July 2016a. doi: 10.1016/j.jcp.2016.04.015.

Gang Li and Yulong Xing. Well-balanced discontinuous galerkin methods for the
euler equations under gravitational fields. Journal of Scientific Computing, 67
(2):493–513, September 2016b. doi: 10.1007/s10915-015-0093-5.

Gang Li and Yulong Xing. Well-balanced finite difference weighted essentially
non-oscillatory schemes for the Euler equations with static gravitational fields.
Computers & Mathematics with Applications, 75(6):2071–2085, March 2018a.
doi: 10.1016/j.camwa.2017.10.015.

Gang Li and Yulong Xing. Well-balanced discontinuous Galerkin methods with
hydrostatic reconstruction for the Euler equations with gravitation. Journal of

Computational Physics, 352:445–462, January 2018b. doi: 10.1016/j.jcp.2017.
09.063.



Well-balanced methods for Computational Astrophysics 83

Peng Li and Zhen Gao. Simple high order well-balanced finite difference WENO
schemes for the euler equations under gravitational fields. Journal of Computa-

tional Physics, 437:110341, jul 2021. doi: 10.1016/j.jcp.2021.110341.
Peng Li, Wai Sun Don, and Zhen Gao. High order well-balanced finite difference

WENO interpolation-based schemes for shallow water equations. Computers &

Fluids, 201:104476, apr 2020. doi: 10.1016/j.compfluid.2020.104476.
Shengtai Li. WENO schemes for cylindrical and spherical geome-

try. Technical report, Los Alamos National Laboratory, 2003. URL
http://lanl-primo.hosted.exlibrisgroup.com/LANL:default_scope:

01LANL_ALMA51106390580003761.
Tai-Ping Liu. Quasilinear hyperbolic systems. Communications in Mathematical

Physics, 68(2):141–172, June 1979. doi: 10.1007/bf01418125.
Jun Luo, Kun Xu, and Na Liu. A well-balanced symplecticity-preserving gas-

kinetic scheme for hydrodynamic equations under gravitational field. SIAM

Journal on Scientific Computing, 33(5):2356–2381, January 2011. doi: 10.1137/
100803699.

G. Mellema, F. Eulderink, and V. Icke. Hydrodynamical models of aspherical
planetary nebulae. A&A, 252:718–732, December 1991.

Barry Merriman. Understanding the Shu–Osher conservative finite difference
form. Journal of Scientific Computing, 19(1/3):309–322, 2003. doi: 10.1023/a:
1025312210724.
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