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MINIMAL ℓ2 NORM DISCRETE MULTIPLIER METHOD

ERICK SCHULZ1 AND ANDY T. S. WAN2

Abstract. We introduce an extension to the Discrete Multiplier Method
(DMM) [1], called Minimal ℓ2 Norm Discrete Multiplier Method (MN-DMM),

where conservative finite difference schemes for dynamical systems with mul-
tiple conserved quantities are constructed procedurally, instead of analytically

as in the original DMM. For large dynamical systems with multiple conserved
quantities, MN-DMM alleviates difficulties that can arise with the original
DMM at constructing conservative schemes which satisfies the discrete mul-
tiplier conditions. In particular, MN-DMM utilizes the right Moore-Penrose
pseudoinverse of the discrete multiplier matrix to solve an underdetermined
least-square problem associated with the discrete multiplier conditions. We
prove consistency and conservative properties of the MN-DMM schemes. We
also introduce two variants – Mixed MN-DMM and MN-DMM using Singular
Value Decomposition – and discuss their usage in practice. Moreover, numer-

ical examples on various problems arising from the mathematical sciences are
shown to demonstrate the wide applicability of MN-DMM and its relative ease

of implementation compared to the original DMM.

1. Introduction

In recent decades, numerical methods which preserve intrinsic geometric struc-
tures of dynamical systems have gained considerable interest. Geometric numerical
integrators are numerical methods which preserve underlying geometric features of
solutions between successive time steps. An extensive summary of relevant liter-
ature is presented in [2]. In addition to striving for the traditional goals of high
order accuracy, stability and ease of implementation, geometric numerical integra-
tors seek to respect inherent geometric structures of dynamical systems to pro-
vide more accurate and stable solutions over long-term integration. Examples of
geometric numerical integrators include symplectic integrators which preserve the
symplectic two-forms associated with Hamiltonian flows [2], variational integrators
which mimic the action principles of Lagrangian systems at the discrete level [3]
and Lie group integrators which compose discrete Lie group actions to approximate
underlying continuous Lie group flows [4].

Another important class of geometric numerical integrators is conservative in-
tegrators, which preserve conserved quantities or invariants associated with the
underlying dynamics. In general, similar to symplectic methods [5], conservative
numerical methods can have favorable long-term stability properties [6] over tradi-
tional numerical methods. Typically, such quantities include energy and momen-
tum, but nontrivial time-dependent conserved quantities can also exist in dissipative
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systems [1]. Unfortunately, traditional numerical methods do not in general pre-
serve all forms of conserved quantities. For instance, the barrier theorem by [7]
states that no consistent Runge-Kutta method can preserve all polynomial invari-
ants. Thus, non-traditional numerical methods are needed to preserve general forms
of conserved quantities. Within the literature of geometric numerical integration,
there are a few general classes of conservative integrators, such as projection meth-
ods [2], discrete gradient methods [8] and more recently Discrete Multiplier Methods
(DMM) [1], which we briefly review next.

With projection methods, it is customary to first employ a traditional explicit
integrator to advance one step in time, then to subsequently project the resulting
numerical approximation onto the level set of the conserved quantities by solving a
constrained optimization problem [2]. As discussed in [6], while projection methods
are general conservative integrators, the projection step can become problematic if
the level set of the conserved quantities contain connected components which are
nearby each other. Indeed, if the time step size is not sufficiently small to account
for small distances between neighboring connected components, the projection step
may bring the numerical solution to the wrong connected component, leading to
incorrect long-term trajectories.

The discrete gradient method exploits the fact that dynamical systems with
conserved quantities can be expressed in a skew-symmetric gradient form [8]. This
can then be used to derive conservative schemes using discrete gradient approxi-
mations. While the discrete gradient method is best suited for dynamical systems
which naturally comes in such a skew-symmetric gradient representation, such as
Hamiltonian systems, transforming a general dynamical system and utilizing the
resulting skew-symmetric gradient form is not always straightforward in practice.
Specifically, one drawback of the discrete gradient method is that the rank of the
skew-symmetric tensor increases with the number of conserved quantities, making
its applicability impractical for large dynamical systems with multiple invariants.

The Discrete Multiplier Method (DMM) was introduced in [1] as a new class of
general conservative integrators that can preserve multiple conserved quantities of
arbitrary forms up to machine precision. The main idea behind DMM is to discretize
the so-called conservation law multiplier associated with the conserved quantities in
such a way that discrete chain rules and other compatibility conditions are satisfied.
In contrast to the discrete gradient method, DMM can work directly with the
desired dynamical system, without having to reformulate the differential equations.
Moreover, DMM requires only working with the so-called discrete multiplier matrix,
whose number of rows increases with the number of conserved quantities while
retaining a constant tensor rank of two. Such conservative integrators have recently
been applied to a wide range of problems from the mathematical sciences, including
many-body systems [9], vortex-blob models [10], and piecewise smooth systems
[11]. In addition, for some applications such as Hamiltonian Monte Carlo [12],
the gradient-free nature of DMM is advantageous over other conservative methods
which require computation of the gradients of the conserved quantities.

Despite the wide applicability of DMM, there remains practical challenges when
applying DMM on large dynamical systems with multiple conserved quantities.
Specifically for each dynamical system, DMM proceeds in two main stages: First,
derive an analytic conservative scheme using DMM; Second, solve the associated
implicit conservative scheme. In this work, we extend the DMM framework by
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implicitly defining conservative schemes via a Moore-Penrose pseudoinverse of the
associated discrete multiplier matrix. In doing so, DMM conservative schemes are
constructed procedurally and solved simultaneously, without the need to first derive
analytic conservative schemes. This extension of DMM widens its applicability
to more complex dynamical systems and semi-discretizations of partial differential
equations with conserved quantities.

This paper is organized as follows. In Section 2, we give a brief overview of the
background material of DMM and introduce the relevant notations used through-
out the paper. We then introduce the Minimal ℓ2 Norm Discrete Multiplier Method

(MN-DMM) in Section 3. Consistency and conservative properties of the implicitly
defined schemes are established. In Section 4, we discuss practical issues that can
arise in solving the MN-DMM schemes using the Direct MN-DMM algorithm via
fixed point iterations. We prove convergence under appropriate conditions. Fur-
thermore, we introduce in Section 4 two variants of the Direct MN-DMM algorithm,
called Mixed MN-DMM algorithm and Mixed MN-DMM algorithm using Singular

Value Decomposition. These two variants alleviate potential drawbacks with the Di-
rect MN-DMM algorithm. In Section 5, numerical comparisons between the various
MN-DMM approaches and traditional methods are presented for five examples cho-
sen from a wide range of applications in the mathematical sciences. These includes
Lotka–Volterra systems, the planar restricted three-body problem, the Lorenz sys-
tem, the spherical point vortex problem and the evolution of geodesic curves in
Schwarzschild geometry.

2. Background material

We retain most of the notations of the Discrete Multiplier Method from [1]. For
details on the theoretical developments of DMM, see [1] and [6]. In this section,
we summarize the content of these articles by stating some basic definitions along
with a few necessary results.

2.1. Notation. Throughout this paper, the integers m,n, p, r ∈ N are strictly pos-
itive. We denote open subsets of Rn by U , U (1), U (2), etc. We write Ur for the
Cartesian product of r copies of U .

By f ∈ Cp(U → R
m), we mean that the function f from U to R

m is at least p
times continuously differentiable. We use a bold font to distinguish vector quanti-
ties from scalars. The Jacobian matrix of a differentiable vector-valued function f
is denoted by ∂xf :=

[

∂fi/∂xj
]

.
Let I ⊂ R be an open time interval. We adopt Newton’s notation ẋ for the time

derivative of a curve x ∈ C1(I → U). If x ∈ Cp(I → U), then x(p) stands for
its p-th time derivative. We use Dtψ to distinguish the total time derivative of a
vector-valued function ψ ∈ C1(I × U → R

m) from its partial time derivative ∂tψ.
The vector space of m× n real matrices is written as Mm×n(R). It is equipped

with the operator norm, which we denote by ∥·∥m×n. A superscript ‘⊤’ indicates

the transpose of a matrix quantity, e.g. Λ⊤. We indicate the dependence of strictly
positive constants in parentheses, e.g. C (Λ). These constants are generic and
should generally not be considered equal between different results.

2.2. Review on conservation law multipliers. Next, we briefly review the the-
ory of conservation law multipliers for first-order quasi-linear systems of ordinary
differential equations—recall all quasi-linear systems can be made first-order by
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adding more variables. More precisely, for p = 1, 2, . . . and a source function
f ∈ Cp−1(I × U → R

n) with Lipschitz continuity in U , consider the continuous
dynamical system F : I × U × U (1) → R

n given by the initial value problem

F (t,x(t), ẋ(t)) := ẋ(t)− f(t,x(t)) = 0,
x(t0) = x0.

(2.1)

It is a classical result that there exists a unique solution x(t) = (x1(t), ..., xn(t)) of
class Cp in a neighborhood of any initial condition (t0,x0) ∈ I ×U . For simplicity,
we will always assume from now on that I is a maximal interval of existence.

A function ψ ∈ C1(I × U → R
m) is called a conserved quantity of F if

(2.2) Dtψ(t,x(t)) = 0

for all x ∈ Cp(I → U) such that F (t,x(t), ẋ(t)) = 0. In other words, a conserved
quantity remains constant along solutions of (2.1). In principle, a conserved quan-
tity can depend on higher-order time derivatives of x also, but these can always be
reformulated as ψ (t,x) by substituting the relation ẋ = f(t,x(t)) and its differ-
ential consequences, as shown in [1, Sec. 3.1]. Thus, without loss of generality, we
can focus on conserved quantities of such form.

We say that a matrix-valued function Λ ∈ C(I × U × U (1) → Mm×n(R)) is a
conservation law multiplier of F if there exists ψ ∈ C1(I × U → R

m) satisfying

(2.3) Λ(t,x(t), ẋ(t))F (t,x(t), ẋ(t)) = Dtψ(t,x(t))

for all x ∈ C1(I → U). We insist that (2.3) must hold for all arbitrary differentiable
functions—not only for solutions of F as previously required for (2.2).

In general, there can be many different conservation law multipliers satisfying
(2.3) for the same ψ. However, the following theorem guarantees that there is a
one-to-one correspondence between conservation law multipliers of the form Λ(t,x)
and zero-order conserved quantities of F , cf. [1, Thm. 4].

Theorem 2.1. Let ψ ∈ C1(I ×U → R
m). There exists a unique conservation law

multiplier Λ ∈ C(I × U → Mm×n(R)) of F associated with the function ψ if and

only if ψ is a conserved quantity of F . If so, the correspondence identities

Λ(t,x) = ∂xψ(t,x),(2.4a)

Λ(t,x)f(t,x) = −∂tψ(t,x),(2.4b)

are satisfied for any arbitrary function x ∈ C1(I → U).

We will commonly refer to (2.4a) and (2.4b) as multiplier conditions. Impor-
tantly, (2.4a) explicitly characterizes the conservation law multiplier.

For the purpose of deriving conservative schemes, there is some freedom in choos-
ing the dimension of ψ. For a given dynamical system, the components of the
vector-valued function ψ consist of known conserved quantities of interest. How
many are to be preserved using DMM is up to the one’s discretion. In practice,
there are typically much fewer conserved quantities than the dimension of F . We
thus take for granted the following assumption.

Assumption 2.2. We suppose that m < n and assume that Λ(t,x) has full row
rank within I × U .

Remark 2.3. Notice that Λ(t,x) having full row rank in Assumption 2.2 is equivalent
to the conserved quantities being linearly independent on I × U .
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2.3. Review of DMM. The idea behind DMM is to provide a discrete framework
which preserves the structure of the continuous theory of conservation law multipli-
ers from Section 2.2. Specifically, it establishes discrete analogues of the multiplier
conditions (2.4a) and (2.4b).

Let t0 < t1 < ... < tk < ... be a sequence in I having a largest time step of size
τ = supk(t

k+1 − tk) < ∞. Let W be a finite dimensional normed vector space. A
r-step function gτ ∈ Cp+q(I × Ur+1 → W ) is said to be consistent of order q to a
function g ∈ Cp+q(I × U × U (1) × ... × U (q) → W ) if for any x ∈ Cp+q (I → U),
there exists a constant C(g,x) > 0 independent of τ such that

(2.5)
∥

∥

∥g(tk,x(tk), ...,x(p)(tk))− gτ (tk,x(tk+1), ...,x(tk−r+1))
∥

∥

∥

W
≤ C(g,x) τ q.

If so, we simply write gτ = g+O(τ q). This definition is general enough to provide
a notion of consistency for both vector-valued and matrix-valued quantities. In the
following sections, we will encounter W = R

m and Mm×n(R).
Denote the approximation at time tk of the exact solution x(tk) by xk. Let F τ

be a consistent r-step function to F and suppose that ψτ is a consistent (r − 1)-step
function to ψ. We say that the r-step method F τ is conservative in ψτ if

(2.6) ψτ (tk,xk, ...,xk−r+1) = ψτ (tk+1,xk+1, ...,xk−r+2)

whenever xk+1 satisfies F τ
(

tk,xk+1, ...,xk−r+1
)

= 0.
When Dτ

tψ is an r-step function consistent to Dtψ, we say that it is constant
compatible with ψτ if Dτ

tψ
(

tk, ...,xk+1, ...,xk−r+1
)

= 0 implies that (2.6) holds.

Assumption 2.4. Henceforth, we will always suppose that fτ , Dτ
t x, D

τ
tψ, ∂

τ
t ψ

and Λτ are r-step functions consistent of order q respectively to f , ẋ, Dtψ, ∂tψ
and Λ, where Λ is a conservation law multiplier of F associated with the conserved
quantity ψ. We assume thatDτ

tψ is constant compatible with a discrete (r−1)-step
function ψτ .

The following theorem is the heart of DMM, cf. [1, Thm. 4.5].

Theorem 2.5. Let fτ
DMM

be a r-step function consistent of order q to f . Under

assumptions 2.2 and 2.4, if the discrete compatibility conditions

ΛτDτ
t x = Dτ

tψ − ∂
τ
t ψ,(2.7a)

Λτf τ
DMM

= −∂τt ψ,(2.7b)

hold for all (tk,xk+1, ...,xk−r+1) ∈ I × Ur+1 satisfying

F τ
DMM

(tk,xk+1, ...,xk−r+1) = 0,

where

F τ
DMM

:= Dτ
t x− f

τ
DMM

,

then the r-step method defined by (2.5) is conservative in ψτ . Moreover, it is

consistent of at least order q to F , and for any sufficiently differentiable arbitrary

function x, the discrete quantities satisfy

ΛτDτ
t x−D

τ
tψ − ∂

τ
t ψ = O(τ q),

Λτfτ
DMM

+ ∂τt ψ = O(τ q).

Remark 2.6. The discrete compatibility condition (2.7a) corresponds implicitly to
(2.4a) by the chain rule:

Λ(t,x)ẋ = (∂xψ)Dtx = (∂xψ)Dtx+ ∂tψ − ∂tψ = Dtψ − ∂tψ.
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3. Minimal ℓ2 Norm DMM

So far, the construction of conservative schemes using DMM reduces to satisfying
the discrete multiplier conditions (2.7a) and (2.7b). While (2.7a) can be resolved
through the use of discrete chain rules as described in [1, Thm. 22], resolving (2.7b)
relies on the local solvability of Λτ . As discussed in [1, Thm. 20], (2.7b) can be

satisfied by locally inverting an m ×m submatrix Λ̃τ of Λτ for a given dynamical
system with m conserved quantities. However, this traditional approach of DMM
has two main drawbacks.

(1) First, analytical matrix inversion of a submatrix of Λτ becomes difficult,
if not impractical, as m increases. As it will be highlighted in examples
later in Section 5, even a small number of conserved quantities can pose a
significant challenge to construct conservative schemes using the traditional
DMM approach.

(2) Second, due to the local nature of the rank of the submatrix Λ̃τ , its invert-
ibility may vary depending on the phase space region where the conservative
scheme is to be evaluated, making the traditional DMM approach cumber-
some to implement for dynamical systems with complex phase spaces.

Indeed, there are alternate techniques, such as the method of undetermined coeffi-

cients used in [1] and [9], that could alleviate some of these difficulties, but it still
relies on the need to construct analytic conservative scheme, which can be difficult
to apply for large dynamical systems with multiple conserved quantities.

In this section, we tackle the problem of solving (2.7b) systematically for large
dynamical systems with multiple conserved quantities, without the need to con-
struct analytic conservative schemes. The proposed new approach paves the way for
the procedural construction of globally defined conservative schemes using DMM.
Thus, this leads to a promising starting point for conservative discretizations of
large dynamical systems which can only be evaluated procedurally and also in
semi-discretization of partial differential equations.

3.1. Minimal ℓ2 Norm Discrete Multiplier Method. We define the Minimal

ℓ2 Norm Discrete Multiplier Method, or Minimal Norm DMM (MN-DMM), as the
conservative scheme

(3.1) fτ
MN

:= f τ − (Λτ )+(Λτfτ + ∂τt ψ),

where f τ is any consistent scheme to f and (Λτ )+ = (Λτ )⊤(Λτ (Λτ )⊤)−1 is the
unique right Moore-Penrose pseudoinverse of Λτ . By construction, it can be readily
check that fτ

MN
satisfies (2.7b). We will discuss the theoretical analysis of the

implicit scheme fτ
MN

shortly in Section 3.2, where we will show that it is indeed
conservative and well-defined for sufficiently small τ . Different algorithmic choices
for the practical evaluation of the second term on the right-hand side of (3.1) will
be discussed in Section 4.

Let us motivate the expression of (3.1) in two ways and the reasons for its name1:

(I) First, one can view (3.1) as “projecting” an r-step scheme f τ consistent to
f onto a scheme satisfying (2.7b), hence resulting in a conservative scheme
implicitly. To better see this, suppose that the vector of conserved quantities

1For a general introduction to both underdetermined and overdetermined ℓ2 minimization
problems, see the first chapters of the monograph [13, Chap. 1 & 2], where orthogonal projections,
normal equations and the Moore-Penrose inverse are studied in detail.
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ψ is independent of time explicitly, i.e. ∂τt ψ = 0. Then, satisfying condition
(2.7b) is equivalent to asking for the numerical scheme fτ

MN
to be in ker(Λτ ) =

Ran((Λτ )⊤)⊥. In other words, we seek to find a numerical scheme that is
orthogonal to the row space of the discrete multiplier matrix Λτ . Since the
projection operator onto the row space of Λτ can be expressed as [13, Eq.
1.2.29]

PRan((Λτ )⊤) = (Λτ )+Λτ ,

the projection operator onto its orthogonal complement is then given by

Pker(Λτ ) = PRan((Λτ )⊤))⊥ = In×n − P(Λτ )⊤ = In×n − (Λτ )+Λτ ,

where In×n denotes the n × n identity matrix. So in the case of time-
independent conserved quantities, the MN-DMM scheme is equivalent to
fτ

MN
= Pker(Λτ )f

τ , which automatically satisfies the discrete multiplier con-
dition (2.7b). Indeed, this follows by definition, since

ΛτPker(Λτ ) = Λτ (In×n − (Λτ )+Λτ ) = Λτ − Λτ = 0m×n.

(II) Alternatively, we can also take the point of view that any scheme satisfying
(2.7b) solves an undetermined linear system. Specifically, the general solution
to (2.7b) is given by fτ0 + f τP , where f

τ
0 ∈ ker(Λτ ) and fτP is any particular

solution of (2.7b). Note that by direct substitution, one particular choice is
provided by

fτP := (Λτ )
+
(−∂τt ψ).

Since ker(Λτ ) = Ran(Pker(Λτ )), then for any consistent fτ , fτ0 = Pker(Λτ )f
τ

and we arrive at the MN-DMM scheme:

f τ0 + f τP = fτ − (Λτ )+(Λτfτ + ∂τt ψ) = f
τ
MN
.

Moreover, such a particular choice for f τP has the minimal ℓ2 norm in the
sense that for any consistent scheme fτ , the MN-DMM scheme fτ

MN
is the

closest scheme to fτ in the ℓ2 norm satisfying (2.7b):

(3.2) f τMN = argmin
Λτ f̃τ=−∂τ

t
ψ

∥

∥

∥f
τ − f̃ τ

∥

∥

∥

2
.

Indeed, this follows from the observation that for any f̃τ satisfying (2.7b),

∥fτ − f̃τ∥22 = ∥(f τ − fτ
MN
) + (fτ

MN
− f̃τ )∥22

= ∥fτ − fτ
MN
∥22 + ∥f

τ
MN
− f̃τ∥22 ≥ ∥f

τ − f τ
MN
∥22.

Orthogonality in the second equality follows from (fτMN − f̃
τ ) ∈ ker(Λτ ) by

(2.7b). Moreover, (fτ − fτMN) ⊥ ker(Λτ ), since for any f τ0 ∈ ker(Λτ ),

(f τ − f τ
MN
) · f τ0 = (Λτ )+(Λτfτ + ∂τt ψ) · f

τ
0

= (Λτ (Λτ )⊤)−1(Λτf τ + ∂τt ψ) · (Λ
τfτ0 ) = 0.

3.2. Theory. Before we prove that (3.1) defines a consistent conservative scheme,
we will need show that the pseudoinverses (Λτ )+ is well-defined and are uniformly
bounded for small enough τ .

Recall the hypotheses of assumptions 2.2 and 2.4 introduced in Section 2.3:

• Λ(t,x) has full row rank in I × U ,
• Λτ = Λ+O(τ q).
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These hypotheses imply that for any x ∈ Cp+q(I → R
n), the rows of Λτ are linearly

independent for τ small enough.

Lemma 3.1. Under assumptions 2.2 and 2.4, for any x ∈ Cp+q(I → R
n), there

exists τ0 > 0 such that Λτ has for full row rank whenever τ < τ0.

Proof. We argue by contradiction. Suppose that for some x ∈ Cp+q (I → U), there
exists a sequence of unit vectors (uk)k∈N ∈ R

n and a sequence of parameters
(τk)k∈N ∈ R with τk −→ 0 as k → ∞, such that (Λτk)⊤uk = 0 for all k ∈ N.
Then, since the unit sphere Sn−1 = {x ∈ R

n|∥x∥ = 1} is compact in R
m, it follows

from the hypothesis that Λ has full row rank and the extreme value theorem that a
positive lower bound α := min∥v∥=1 ∥Λ

⊤v∥ is achieved. Since Λτ is consistent with
Λ, we therefore obtain the contradiction that

0 < α ≤ ∥Λ⊤uk∥ ≤ ∥(Λ
⊤ − (Λτk)⊤)uk∥ ≤ ∥Λ− Λτk∥m×n −→ 0, as k →∞.

□

As a consequence, the Moore-Penrose right inverse of Λτ is well-defined and
given by [13, Eq. 1.2.27]

(3.3) (Λτ )+ = (Λτ )⊤(Λτ (Λτ )⊤)−1, τ < τ0.

Moreover, we see that fτ
MN

is a well-defined r-step function in the sense of Section 2.3.
Indeed, it is clear from (Λτ (Λτ )⊤)−1 = (det(Λτ (Λτ )⊤))−1adj(Λτ (Λτ )⊤) that the
matrix (Λτ )+ is of class Cl whenever Λτ ∈ Cl, l ∈ N.

Thanks to the next lemma, the expression (3.3) is also useful in proving that for
any x ∈ Cp+q (I → U), the parametrized family {(Λτ )+}τ is eventually uniformly
bounded in τ as τ → 0.

Lemma 3.2. Under assumptions 2.2 and 2.4, for any x ∈ Cp+q(I → U), there
exists a parameter τ0 > 0 and a constant C(Λ,x) > 0 independent of τ such that

whenever 0 < τ < τ0, the inverse (Λτ (Λτ )⊤)−1 exists and satisfies

(3.4) ∥(Λτ (Λτ )⊤)−1∥m×m ≤ C(Λ,x).

Proof. We see from combining the estimates

∥Λτ (Λτ )⊤ − ΛΛ⊤∥m×m ≤ ∥Λ
τ (Λτ )⊤ − ΛτΛ⊤∥m×m + ∥ΛτΛ⊤ − ΛΛ⊤∥m×m

≤ ( ∥Λτ∥m×n + ∥Λ⊤∥n×m) ∥Λτ − Λ∥m×n

and

∥Λτ∥m×n ≤ ∥Λ
τ − Λ∥m×n + ∥Λ∥m×n,(3.5)

that Λτ (Λτ )⊤ = ΛΛ⊤ + O(τ q). Therefore, the desired conclusion follows from a
well-known result concerning perturbation of regular matrices [14, Thm. 1.5], which
in the current setting states that if there exists τ0 > 0 such that

∥Λτ (Λτ )⊤ − ΛΛ⊤∥m×m < ∥(ΛΛ⊤)−1∥−1
m×m,

then the matrices Λτ (Λτ )
⊤

are invertible on the interval (0, τ0) and bounded by a
constant independent of τ . □

Corollary 3.3. Under assumptions 2.2 and 2.4, for any x ∈ Cp+q(I → U), there
exists a parameter τ0 > 0 and a constant C(Λ,x) > 0 independent of τ such that

∥(Λτ )+∥n×m ≤ C(Λ,x), τ < τ0.
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Proof. Based on (3.3), we find that for any x ∈ Cp+q(I → U), we have

∥(Λτ )+∥n×m = ∥(Λτ )⊤(Λτ (Λτ )⊤)−1∥n×m ≤ ∥(Λ
τ )⊤∥m×m∥(Λ

τ (Λτ )⊤)−1∥m×m

for τ small enough. In particular, τ0 can be chosen as in the proof of Lemma 3.2. □

The next theorem shows that upon satisfying the discrete multiplier condition
(2.7a), which as previously mentioned can be resolved by discrete chain rules [1],
the MN-DMM indeed leads to a conservative scheme.

Theorem 3.4. Under assumptions 2.2 and 2.4, suppose that the discrete quantities

of Section 2.3 satisfy the compatibility condition (2.7a) for all (tk,xk+1, ...,xk−r+1) ∈
I × Ur+1 such that

(3.6) F τ
MN
(tk,xk+1, ...,xk−r+1) = 0,

where

F τ
MN

:= Dτ
t x− f

τ
MN
.

Then, the r-step method defined by (3.6) is conservative in ψτ . Moreover, it is

consistent of at least order q to the function F defined in (2.1), and for any x ∈
Cp+q (I → R

n) the discrete quantities satisfy

ΛτDτ
t x−D

τ
tψ − ∂

τ
t ψ = O(τ q),(3.7a)

Λτfτ
MN

+ ∂τt ψ = O(τ q).(3.7b)

Proof. Our goal is to resort to Theorem 2.5. Two ingredients are required.
First, we need to confirm that the discrete function fτ

MN
verifies the second dis-

crete multiplier condition (2.7b). This holds by construction. Since by definition

Λτ (Λτ )
+
= Im×m, multiplying both sides of (3.1) by Λτ immediately yields

Λτfτ
MN

= Λτf τ − Λτ (Λτ )+(Λτfτ + ∂τt ψ) = −∂
τ
t ψ.

Second, we need to show that f τ
MN

= f + O(τ q). Since the triangle inequality
yields

(3.8) ∥f − fτ
MN
∥ ≤ ∥f − fτ∥+ ∥ (Λτ )

+
∥n×m∥Λ

τfτ + ∂τt ψ∥,

it follows from Corollary 3.3 that we only need to verify that Λτfτ +∂τt ψ = O (τ q).
Consider the estimate

∥Λτfτ + ∂τt ψ∥ ≤ ∥Λ
τfτ − Λτf∥+ ∥Λτf − Λf∥+ ∥Λf + ∂τt ψ∥

≤ ∥Λτ∥m×n∥f
τ − f∥+ ∥Λτ − Λ∥m×n∥f∥+ ∥Λf + ∂τt ψ∥.(3.9)

The key observation is that since Λ is a conservation law multiplier of F associated
to ψ by hypothesis, it satisfies the correspondence identity (2.4b), i.e. Λf = −∂tψ.
Introducing ∂tψ in the last term of (3.9) yields

(3.10) ∥Λf + ∂τt ψ∥ = ∥∂tψ − ∂
τ
t ψ∥.

Upon inserting (3.10) in (3.9), then (3.9) in (3.8), the proof follows by consistency
of f τ , Λτ and ∂τt ψ to f , Λ and ∂tψ, respectively. □
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4. Practical Implementations

As the MN-DMM scheme (3.6) is implicitly defined, we turn to an iterative
fixed point algorithm in order to converge to the desired conservative scheme and
simultaneously solve the associated nonlinear equations. Following [1], we will focus
on one-step conservative methods constructed by using divided differences for

ψτ (tk,xk) := ψ(tk,xk),(4.1a)

Dτ
t x(t

k,xk+1,xk) :=
xk+1 − xk

tk+1 − tk
,(4.1b)

Dτ
tψ(t

k,xk+1,xk) :=
ψ(tk,xk+1)−ψ(tk,xk)

tk+1 − tk
,(4.1c)

which are used throughout in the numerical results presented in Section 5.
It is clear that these discrete quantities are consistent single-step functions of

at least first-order to their continuous counterpart. Conveniently, constant com-
patibility of Dτ

tψ with ψτ is immediate. We refer to [1] for the derivation of a
single-step function Λτ using discrete chain rules that satisfy condition (2.7a).

Some higher-order multi-step DMM schemes were constructed in [6]. Also note
that first-order symmetric schemes can turn out to be high-order as well [2, Chap-
ter II.3, Theorem 3.2], which was studied in the conservative DMM schemes for
many-body problems [9], vortex blob methods [10], and Hamiltonian Monte Carlo
methods [12].

4.1. Analytic expressions of MN-DMM for small number of conserved

quantities. For a small number of conserved quantities, it is in fact analytically
tractable to write out the expressions of MN-DMM given by (3.1). For ease of
future reference, we write out the explicit MN-DMM schemes for preserving one
and two conserved quantities, i.e. m = 1 and 2. Specifically, the case m = 1
leads to a simple way to enable conservation for an arbitrary consistent scheme and
in a gradient-free manner. For instance, this could be highly relevant to physical
systems where energy conservation is important, such as for Hamiltonian systems.

4.1.1. Analytic expression for m=1. For a single scalar conserved quantity, the
discrete multiplier matrix Λτ ∈M1×n(R) is the row vector

Λτ (tk,xk+1,xk) :=
∆ψ

∆x

⊤

(tk,xk+1,xk),

where
∆ψ

∆x
denotes the column vector of partial divided differences of ψ with respect

to x for a specific permutation of Sn+1 satisfying the discrete chain rule (2.7a)2.

Since Λτ (Λτ )
⊤
=

∥

∥

∥

∥

∆ψ

∆x

∥

∥

∥

∥

2

2

is a scalar quantity in this case, we see that the MN-DMM

scheme of (3.1) for m = 1 is given by

(4.2) fτ
MN

:= f τ −
1

∥

∥

∥

∆ψ
∆x

∥

∥

∥

2

2

(

∆ψ

∆x

⊤

fτ + ∂τt ψ

)

∆ψ

∆x
,

2Details on divided difference calculus and explicit formulas for ∆ψ

∆x
are in Appendix B of [1].
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where we have suppressed the arguments (tk,xk+1,xk) for clarity. As seen in Sec-
tion 3.1, for time-independent ψ, (4.2) can be viewed as subtracting off the projec-
tion of the scheme fτ onto the orthogonal complement of the discrete multiplier’s
kernel. Since the kernel is in this case the multi-dimensional plane perpendicular
to the vector ∆ψ

∆x , its orthogonal complement is simply the span of the latter, and
the resulting scheme reads

(4.3) fτ
MN

:= f τ − α
∆ψ

∆x
, where α :=

1
∥

∥

∥

∆ψ
∆x

∥

∥

∥

2

2

∆ψ

∆x

⊤

fτ .

In other words, α∆ψ
∆x is the scalar projection of fτ onto ∆ψ

∆x and fτ
MN

is the vec-

tor projection of fτ onto the kernel of Λτ = ∆ψ
∆x

⊤
, as discussed in Section 3.1.

The expression in (4.3) conveys how MN-DMM schemes arise as ℓ2-projections. It
also demonstrates the ease with which a consistent scheme can be amended to a
consistent conservative one.

4.1.2. Analytic expression for m=2. For two conserved quantities, the discrete mul-
tiplier matrix Λτ ∈M2×n(R) is given by

Λτ (tk,xk+1,xk) :=









∆ψ1

∆x

⊤

(tk,xk+1,xk)

∆ψ2

∆x

⊤

(tk,xk+1,xk)









,

where
∆ψi
∆x

again denotes the column vector of partial divided differences of ψi with

respect to x, similar to the m = 1 case. With Λτ (Λτ )
⊤

now being a 2× 2 matrix,
the MN-DMM scheme of (3.1) for m = 2 takes the explicit form

f τ
MN

:= fτ −

(

∆ψ1

∆x
∆ψ2

∆x

)

det(Λτ (Λτ )
⊤
)







∥

∥

∥

∆ψ2

∆x

∥

∥

∥

2

2
−∆ψ1

∆x

⊤∆ψ2

∆x

−∆ψ2

∆x

⊤∆ψ1

∆x

∥

∥

∥

∆ψ1

∆x

∥

∥

∥

2

2











∆ψ1

∆x

⊤
f τ + ∂τt ψ1

∆ψ2

∆x

⊤
f τ + ∂τt ψ2



 ,

(4.4)

where det(Λτ (Λτ )
⊤
) =
∥

∥

∥

∆ψ1

∆x

∥

∥

∥

2

2

∥

∥

∥

∆ψ2

∆x

∥

∥

∥

2

2
−

(

∆ψ2

∆x

⊤∆ψ1

∆x

)2

.

In principle, MN-DMM schemes for other small m values can also be written out
analytically. However, for practical implementations involving m > 2, we instead
refer to Section 4.2 to 4.4 for more general algorithms that implicitly construct
conservative schemes without resorting to analytic computations.

4.2. Direct MN-DMM Algorithm. For an arbitrary number m of conserved
quantities, we now present a fixed-point iteration algorithm associated with the
scheme (3.6) introduced in Theorem 3.4, where consistency and conservative prop-
erties were shown. Before we compare different ways of computing the pseudoin-
verse expression involved in (3.6), let us describe how to solve the implicit scheme

0 = F τ
MN
(tk,xk+1,xk) = Dτ

t x− f
τ
MN
(tk,xk+1,xk).

More explicitly, this is equivalent to the equations

(4.5) xk+1 = xk + (tk+1 − tk)f τ
MN
(tk,xk+1,xk).
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We will employed a fixed-point iteration to solve for xk+1 in (4.5), which can also
be viewed as a predictor-corrector method. For brevity and clarity, we shall consider
an uniform time step3 τ = tk+1 − tk for all k, and denote the unknown vector as
x := xk+1 and the fixed vector as y := xk. To bootstrap the fixed point iteration,
we first compute an initial guess x(0) = ϕ(tk,y) using any sufficiently accurate
explicit time-stepping scheme ϕ : I × U → U depending on f , tk and y, such
as explicit Runge-Kutta schemes. From this initial guess or predictor, subsequent
iterates x(i) are then improved or corrected using the implicit MN-DMM scheme
by iterating the fixed point iteration of (4.5) given by

x(i) := y + τf τ
MN
(tk,x(i−1),y)

until a desired tolerance δ is reached. More explicitly, short-handing the notations

A(x) := Λτ (tk,x,y), (Discrete multiplier matrix)

s(x) := fτ (tk,x,y), (Discrete source term)

r(x) := A(x)s(x) + ∂τt ψ(t
k,x,y), (Residual of (2.7b))

and using the absolute error of the conserved quantities as the tolerance criteria,
we arrive at the Direct MN-DMM Algorithm, or MN-DMM Algorithm:

Algorithm 1 Direct MN-DMM

1: x(0) ← ϕ(tk,y)
2: repeat i = 1, 2, . . .

3: x(i) ← y + τ
(

s(x(i−1))−A+(x(i−1)) r(x(i−1))
)

4: until

∣

∣

∣ψ(x(i))−ψ(x0)
∣

∣

∣ < δ

5: return x(i)

A Banach fixed point argument shows that Algorithm 1 converges.

Theorem 4.1. If for sufficiently small τ , the collection of functions {s, A+, r}τ
are locally Lipschitz continuous with Lipschitz constants independent of τ , then

under the hypotheses of assumptions 2.2 and 2.4, there exists τ∗ > 0 such that

Algorithm 1 converges whenever τ < τ∗.

Proof. Denote Gτ (z) := y + τ F τ (z) and F τ (z) := s(z) − A+(z) r(z). Then the
above algorithm is equivalent to the fixed point iteration

x(i+1) = Gτ (x(i)), x(0) := ϕ(tk,y).

By continuity, it follows by Lemma 3.2 and consistency of s and r to their
continuous counterpart that there exists τ0 > 0 and an open ball B ⊂ R

n of radius
ϵ > 0 centered at y over which the restrictions of the discrete functions are Lipschitz
continuous and M := supτ<τ0 supz∈B ∥F

τ (z)∥ <∞. In particular, Gτ (B) ⊂ B for
τ < min{τ0, ϵ/M}. In fact, the Lipschitz continuity hypothesis guarantees that

(4.6) ∥Gτ (z1)−G
τ (z2)∥ = τ∥F τ (z1)− F

τ (z2)∥ ≤ τ L∥z1 − z1∥

where L > 0 is the Lipschitz constant of F τ over B. We conclude that Gτ : B → B
is a contraction for τ < τ∗ := min{τ0, ϵ/M, 1/L}, and thus Algorithm 1 converges
by the Banach fixed point theorem. □

3Similar results can be derived with variable time steps by replacing τ with τk := tk+1
− tk

and ensuring τ := supk(t
k+1

− tk) satisfies the contraction criteria in the fixed point iteration.
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The main drawback of the Direct MN-DMM Algorithm is the need to compute
analytically an inverse matrix within the pseudoinverse of A(x). This can be alle-
viated by introducing auxiliary variables, as we discuss next.

4.3. Mixed MN-DMM. In order to solve (4.5) without having to invert Λτ (Λτ )
⊤

explicitly for the computation of fτ
MN
, one option is to consider the mixed formula-

tion of 4.5,

Dτ
t x+ Λτ⊤g = f τ ,(4.7a)

ΛτΛτ⊤g = Λτf τ + ∂τt ψ,(4.7b)

where the matrix inversion is replaced with solving the linear system (4.7b). De-
noting B(x) := A(x)A(x)⊤, equations (4.7a) and (4.7b) are equivalent to

x = y + τ(s(x)−A(x)⊤g),(4.8a)

B(x)g = r(x).(4.8b)

To solve (4.8a) and (4.8b), we again propose a fixed point iteration type algo-
rithm, which we referred to as the Mixed MN-DMM Algorithm:

Algorithm 2 Mixed MN-DMM

1: x(0) ← ϕ(tk,y)
2: repeat i = 1, 2, . . .

3: g ← Solve
(

B(x(i−1))g = r(x(i−1))
)

4: x(i) ← y + τ(s(x(i−1))−A(x(i−1))⊤g)

5: until

∣

∣

∣ψ(x(i))−ψ(x0)
∣

∣

∣ < δ

6: return x(i)

Notice that for any accurate enough initial guess x(0), standard arguments for
perturbation of matrices that we have previously used in Lemma 3.2 guarantees
that B will be invertible for sufficiently small τ . In other words, Algorithm 2 is
iteratively solving normal equations of the second kind

B(x)g = r, A⊤g = fτ − fτ
MN
,

associated with the underdetermined minimization problem (3.2), see for example
[13, Eq. 1.1.20]. Moreover, in line 4 of Algorithm 2, we have the freedom to choose
any state of the art linear solver for this type of equation. However, it is well-known
that forming B(x) = A(x)A(x)⊤ explicitly may lead to loss of accuracy and large
condition numbers. Taking this possibility into account, we propose next using
matrix decomposition techniques that are better suited to tackle such instances.

4.4. Mixed MN-DMM using Singular Value Decomposition. As discussed,
the matrix B can be ill-conditioned in practice, and we will see this in some nu-
merical examples of Section 5. Appealing to the Singular Value Decomposition
(SVD) [15],

A = UΣV ⊤

can alleviated this issue4, though at additional costs of computing such decom-
position. Recall here that U ∈ Mm×m(R) and V ∈ Mn×n(R) are orthogonal

4Indeed, QR decomposition is another possibility as well.
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matrices and the non-zero block of Σ =
(

Σm 0m×(n−m)

)

is the diagonal matrix
Σm := diag(σ1, ..., σm), where σ1 ≥ ... ≥ σm are the real eigenvalues of B. Thus,
the multiplication of the right Moore-Penrose inverse on fτ

MN
can be computed using

A+ = V Σ+U⊤, Σ+ :=

(

Σ−1
m

0(n−m)×m

)

,

which can be done in a sequential manner involving only matrix–vector products.
We refer this approach as the Mixed MN-DMM Algorithm using SVD :

Algorithm 3 Mixed MN-DMM using SVD

1: x(0) ← ϕ(tk,y)
2: repeat i = 1, 2, . . .
3: [U,Σ, V ]← SVD(A(x(i−1)))
4: a← U⊤r(x(i−1))
5: b← Σ+a

6: x(i) ← y + τ
(

s(x(i−1))− V b
)

7: until

∣

∣

∣ψ(x(i))−ψ(x0)
∣

∣

∣ < δ

8: return x(i)

The main advantage of this approach is that the product B(x) = A(x)A(x)⊤

does not need to be assembled at each iteration, thus potentially improving the
accuracy of the solution for poorly conditioned problems. However, the main draw-
back is that computing the SVD decomposition of A(x) ∈ Mm×n(R) at each iter-
ation requires additional costs. Nevertheless, Algorithm 3 can yield more accurate
numerical solutions when A is poorly conditioned, which opens the possibility to
future improvements along this direction.

5. Numerical results

With the theoretical results now established and practical implementation dis-
cussed, we now present several numerical examples to illustrate the MN-DMM
approach and its two variants. The examples were chosen from a wide variety of
physical problems, such as biological systems, chaotic systems, classical mechanics,
fluid dynamics and geodesic flows. Moreover, they are roughly ordered at increas-
ing difficulty in deriving analytic conservative schemes using the original DMM
approach. In contrast, the MN-DMM approach only requires knowledge of the di-
vided difference expressions within the discrete multiplier matrix to construct the
conservative schemes, which can readily be systematized using modern computer
algebra packages.

For the following examples, we have chosen to compare the MN-DMM method
with two traditional methods, namely the standard 4th-order Runge-Kutta method
and the 2nd-order symplectic Implicit Midpoint method. While these choices do not
form an exhaustive comparison, they do highlight the large difference at preserving
multiple conserved quantities across a wide variety of examples.

For the implicit schemes, such as Implicit Midpoint method and MN-DMM
schemes, we have used the improved Euler’s method to obtain an initial guess
for the fixed point iteration employed to solve the nonlinear or implicitly defined
equations. For the choice of fτ for the MN-DMM in these tests, the improved Eu-
ler method was also chosen. For the sake of reproducibility, we have listed within
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each example their relevant problem parameters, time step size τ , final time T ,
error tolerance for conserved quantities δ, error tolerance for residual of the non-
linear equations ϵ, and maximum number of fixed point iterations used per time
step K. In all subsequent tables, we compare their maximum error in conserved
quantities, as well as the mean fixed point iterations (FPIs) used for the implicit
methods. Moreover, we compare the largest condition number of κ(B) or κ(A)
encountered during simulation, for the Mixed MN-DMM and Mixed MN-DMM
using SVD respectively. Note that for systems with a single conserved quantity,

κ(B) = 1 = κ(A), since Λτ (Λτ )
⊤

is a scalar quantity as discussed in Section 4.1.1.

5.1. Lotka-Volterra systems. As a first simple example, we illustrate MN-DMM
for the two and three species Lotka-Volterra system, with one and two conserved
quantities respectively. We first recall their definitions and conserved quantities.

In [1, Example 5.2.1], analytic DMM schemes were derived for the two-species
Lotka-Volterra system given by

F (x, ẋ) :=

(

ẋ− x(a− by)
ẏ − y(dx− c)

)

,(5.1)

for positive constants a, b, c, d. It is well-known that this system has a conserved
quantity of the form

ψ(x) := a log y − by + c log x− dx.(5.2)

Using τ = 0.1, T = 10000, δ = 1× 10−15, ϵ = 1× 10−15,K = 20 and initial con-
ditions x0 = (0.3, 0.7)⊤ with (a, b, c, d) = (1, 2, 3, 4), we obtain the results showed
in Table 1, which confirms the machine precision accuracy of the MN-DMM at
preserving the conserved quantity ψ of the two species Lotka-Volterra system. We
also note that both the Implicit Midpoint method and MN-DMM methods utilized
a similar number of fixed point iterations, with about 11 ∼ 12 mean FPIs.

Numerical Method ∥ψ−ψ0∥
∞

Mean FPIs ∥κ(·)∥
∞

RK4 1.279× 10−1 – –
Implicit Midpoint 1.825× 10−1 12.069 –

MN-DMM 3.553× 10−15 11.649 –
Mixed MN-DMM 4.441× 10−15 11.678 1.000

Mixed MN-DMM (SVD) 3.553× 10−15 11.666 1.000

Table 1. Two-species Lotka-Volterra system with
ψ(x, y) = x− log x+ y − 2 log y.

Moreover, Figure 1 shows the trajectories of the Implicit Midpoint method and
RK4 method drifting away from the level set of ψ. In contrast, the MN-DMM
results show machine precision accuracy at remaining on the level set of ψ.

Extending to three-species, the Lotka-Volterra system takes the general form

F (x, ẋ) :=





ẋ− x(a11(x− ξ1) + a12(y − ξ2) + a13(z − ξ3))
ẏ − x(a21(x− ξ1) + a22(y − ξ2) + a23(z − ξ3))
ż − x(a31(x− ξ1) + a32(y − ξ2) + a33(z − ξ3))



 ,(5.3)
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Figure 1. Comparison of error in ψ(x) and trajectories for the
two-species Lotka-Volterra problem.

where A = [aij ] is a real-valued interaction matrix and ξ = (ξ1, ξ2, ξ3)
⊤ is a fixed

point of the system. [16] showed that there are two conserved quantities

ψ(x) :=

(

d1(x− ξ1 log x) + d2(y − ξ2 log y) + d3(z − ξ3 log z)
xη1yη2zη3

)

,(5.4)

if the diagonal matrix D := diag(d1, d2, d3) and vector η := (η1, η2, η3)
⊤ satisfies

DA+A⊤D = 0, η⊤A = 0.(5.5a)

In [1, Example 5.2.2], analytic DMM schemes were derived for a special three-
species system with a specific A,D, ξ,η. Here we compare results using MN-DMM
for the following example satisfying (5.5a),

A =





0 3 −2
−3 0 1
2 −1 0



 , ξ =





1
1
1



 , D = diag(1, 1, 1), η =





1
2
3



 .

Using τ = 0.05, T = 30000, δ = 1 × 10−15, ϵ = 1 × 10−15,K = 20 and initial
conditions x0 = (0.2, 0.5, 0.3)⊤, we obtain the result listed in Table 2.

Similar to the two-species case, Table 2 shows machine precision accuracy at
preserving the two conserved quantities ψ(x) for the MN-DMM results. While
MN-DMM did required a mean FPI of ∼ 12 over the Implicit Midpoint method
’s mean FPI of ∼ 9, the MN-DMM results are the only methods not exhibiting
large deviation of the level sets of ψ(x) as shown in Figure 2, in contrast to the
Implicit Midpoint and RK4 method. Moreover, as this example involves more than
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Numerical Method ∥ψ1−ψ
0

1∥∞ ∥ψ2−ψ
0

2∥∞ Mean FPIs ∥κ(·)∥
∞

RK4 3.893× 10−2 1.478× 10−4 – –
Implicit Midpoint 3.701× 100 1.350× 10−3 8.957 –

MN-DMM 3.553× 10−15 1.003× 10−15 12.205 –
Mixed MN-DMM 3.553× 10−15 1.003× 10−15 12.249 2.243× 106

Mixed MN-DMM (SVD) 2.665× 10−15 1.003× 10−15 12.216 1.309× 103

Table 2. Three-species Lotka-Volterra system with

ψ(x) =

(

x− log x+ y − 2 log y + z − 3 log z
xy2z3

)

.

Figure 2. Comparison of error in ψ(x) and trajectories for the
three-species Lotka-Volterra problem.

one conserved quantity, Table 2 now shows a smaller condition number for the
associated linear system when SVD is used in the Mixed MN-DMM approach.

5.2. Planar restricted three-body problem.

In [1, Example 5.3], the planar restricted 3-body problem involving the Arenstorf
orbit parameters was considered and an analytic DMM scheme was derived, albeit
with much effort using divided difference calculus. Here we consider the same
example but with much less effort to derive the conservative scheme using the MN-
DMM approach.

For completeness, we first briefly recall the planar restricted three-body problem,
which describes the gravitational motion of three bodies in a plane with a negligible
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mass, such as the Earth–Moon–Satellite system. The equations of motions are
(5.6)

F (x, ẋ) :=





















ẋ1 − y1
ẋ2 − y2

ẏ1 −

(

x1 + 2y2 −
α(x1 − β)

((x1 − β)2 + x22)
3

2

−
β(x1 + α)

((x1 + α)2 + x22)
3

2

)

ẏ2 −

(

x2 − 2y1 −
αx2

((x1 − β)2 + x22)
3

2

−
βx2

((x1 + α)2 + x22)
3

2

)





















,

where x = (x1, x2, y1, y2) are the relative positions and momenta of the satellite to
the center of mass between the Earth and Moon, with α, β being relative masses
of the two bodies satisfying α+ β = 1. It is well-known that (5.6) has a conserved
quantity called the Jacobi integral J given by,

J(x) =
x21 + x22 − y

2
1 − y

2
2

2
+

α

((x1 − β)2 + x22)
1

2

+
β

((x1 + α)2 + x22)
1

2

.

We consider the Arenstorf orbit period P = 17.0652165601579625588917206249
and parameter α = 0.012277471 were used with initial conditions,

x0 = (0.994, 0, 0,−2.00158510637908252240537862224)⊤.

Using the solver parameters T = P × 1.015, τ = T × 10−6, δ = 1 × 10−15, ϵ =
1× 10−15,K = 20, we obtained the error in the Jacobi integral in Table 3.

Numerical Method ∥J−J0∥
∞

Mean FPIs ∥κ(·)∥
∞

RK4 5.793× 10−8 – –
Implicit Midpoint 1.921× 102 2.468 –

MN-DMM 6.639× 10−14 17.310 –
Mixed MN-DMM 6.639× 10−14 17.310 1.000

Mixed MN-DMM (SVD) 6.639× 10−14 17.310 1.000

Table 3. Planar restricted three-body problem with
conserved quantity J(x)

As Figure 3 illustrates, all methods were able to reproduce the Arenstorf orbit
qualitatively over one period P . However, shortly after one period, the Implicit
Midpoint method results in a nonphysical trajectory, with several orders of magni-
tude jump in the error of the Jacobi integral due to the nonconvergence of its fixed
point iterations. While the results from the MN-DMM approach do not show an
exact periodic orbit, their trajectories beyond one period are close to that of the
RK4 method, which is expected due to its higher order accuracy than the presented
MN-DMM methods.

5.3. Lorenz system. In [1], analytic DMM scheme was also derived for time-
dependent conserved quantities for dissipative systems, such as the damped har-
monic oscillator. As another interesting example with time-dependent conserved
quantities, we consider the Lorenz system for x = (x, y, z),

F (x, ẋ) :=





ẋ− σ(y − x)
ẏ − x(ρ− z)− y
ż − xy − βz




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Figure 3. Comparison of error in Jacobi integral and
trajectories for the Arenstorf orbit.

which has six conserved quantities over different sets of positive parameters σ, ρ, β
in nonchaotic regime [17,18]. Specifically, for the parameters σ = 1/3, ρ = 400 and
β = 0, [18] showed that there exists a conserved quantity of the form,

ψ(t,x) =

(

x4 −
4

3
x2z −

4

9
y2 −

8

9
xy +

1600

3
x2
)

e4t/3.

Using τ = 0.001, T = 5, δ = 1 × 10−15, ϵ = 1 × 10−15,K = 20 and initial
conditions x0 = (0.1, 0, 0)⊤, we obtain the error in ψ(t,x).

Numerical Method ∥ψ−ψ0∥
∞

Mean FPIs ∥κ(·)∥
∞

RK4 2.916× 10−3 – –
Implicit Midpoint 7.971× 101 18.601 –

MN-DMM 4.425× 10−8 19.990 –
Mixed MN-DMM 4.425× 10−8 19.990 1.000

Mixed MN-DMM (SVD) 4.425× 10−8 19.990 1.000

Table 4. Lorenz system with time-dependent conserved quantity
ψ(t,x) =

(

x4 − 4
3x

2z − 4
9y

2 − 8
9xy +

1600
3 x2

)

e4t/3.

Table 4 indicates that machine precision accuracy for the time-dependent con-
served quantity was not obtained using the MN-DMM approach. This is due to the
stiffness of the problem as indicated by the high average number of FPIs for both
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Figure 4. Comparison of error in ψ(t,x) and trajectories for the
Lorenz system.

the Implicit Midpoint method and the MN-DMM approach. Moreover, it can be ob-
served in Figure 4 that fast transient dynamics occurs when the solution loops back
toward the origin on the xy–plane, corresponding to the three apparent “jumps”
in the error of ψ. Nevertheless, the Implicit Midpoint method has the largest error
of ∼ 101 in the conserved quantity, leading to an incorrect transient part of its tra-
jectory located in the x < 0 region, as depicted in Figure 4. In contrast, the RK4
method and the MN-DMM approach have respective errors of ∼ 10−3 and ∼ 10−8

in the time-dependent conserved quantity ψ, with their trajectories remaining in
the x > 0 region.

5.4. N-point vortex problem on the unit sphere. In [9, Example 4.5], an-
alytic DMM scheme was derived for the classical N -point vortex problem on the
unit sphere, which is an idealized model of approximating the solution to the in-
compressible Euler’s equation on the unit sphere, given by

F (x, ẋ) := ẋi −
1

4π

N
∑

j=1,j ̸=i

Γj
xj × xi

1− xi · xj
= 0,(5.7)

where x = (x1, . . . ,xn)
⊤ with xi ∈ S

2 being the position of the i-th point vortex
on the unit sphere and Γi being the vortex strength of the i-th vortex. The point
vortex equations on the unit sphere (5.7) possess four conserved quantities, given



MINIMAL ℓ2 NORM DISCRETE MULTIPLIER METHOD 21

by the momentum vector P ∈ R
3 and the Hamiltonian H, which are

P (x) :=

N
∑

i=1

Γixi, H(x) := −
1

4π

∑

1≤i<j≤N

ΓiΓj log(1− xi · xj).(5.8)

An analytic DMM scheme was derived in [9] with significant computation effort
to verify the discrete multiplier conditions, in contrast to the MN-DMM approach.
Using N = 100 randomly generated vortices and the solver parameters τ = 0.1, T =
200, δ = 1×10−15, ϵ = 1×10−15 and K = 20, we obtain the error in four conserved
quantities given in Table 5.

Numerical Method ∥P−P 0∥
∞

∥H−H0∥
∞

Mean FPIs ∥κ(·)∥
∞

RK4 3.022× 10−16 1.360× 10−6 – –
Implicit Midpoint 3.193× 10−16 1.240× 10−7 20.000 –

MN-DMM 2.705× 10−16 1.025× 10−15 4.670 –
Mixed MN-DMM 3.243× 10−16 1.022× 10−15 4.652 11.58

Mixed MN-DMM (SVD) 3.243× 10−16 1.022× 10−15 4.652 3.403

Table 5. Point vortices on the unit sphere with conserved
quantities P (x) and H(x).

Figure 5. Comparison of error in conserved quantities and
trajectories for the point vortex problem.



22 ERICK SCHULZ AND ANDY T. S. WAN

Table 5 indicates that this problem is relatively well-conditioned, with the MN-
DMM approach converging faster than the Implicit Midpoint method. Moreover,
as Figure 5 illustrates, all methods can preserves the momentum vector P up to
machine precision. This is expected since the conserved quantities P are linear
invariants, see [2]. On the other hand, only the MN-DMM approach is able to
preserve the Hamiltonian H. While both the RK4 and Implicit Midpoint methods
have error in Hamiltonian of 10−7 ∼ 10−6, the observed trajectories are in stark
contrast to the MN-DMM ones on a relatively short integration time of T = 200.
This is consistent with the observations made in [9, Example 4.5] using the analytic
DMM scheme for this problem. Thus, for larger number of vortices and longer
term integration, large deviation in trajectories are likely to occur when the error
in Hamiltonian is not close to machine precision.

5.5. Geodesic curve on Schwarzschild Geometry. For the final example, we
apply the MN-DMM approach to solve for geodesic curves on an n-dimensional
pseudo-Riemannian manifold. Specifically, we study geodesics for the Schwarzschild
metric via the evolution of test particles in a spherically symmetric gravitational
field. We refer to [19–21] for details on the following system. Recall that geodesic
curves locally satisfy the first order system of ordinary differential equations

(5.9) F (x,y, ẋ, ẏ) :=









[

ẋl − yl
]

1≤l≤n
[

ẏl +
n
∑

j,k=1

Γlj,k(x)y
jyk

]

1≤l≤n









= 0,

where Γij,k are Christoffel symbols of the second kind, cf. [19, Chap.3] or [21, Chap.

3]. A well-known conserved quantity is the speed [19, Chap. 5.4] given by

S(x,y) =

n
∑

i,j=1

gij(x)y
iyj(5.10)

where gij(x) denotes the Riemannian metric tensor [19, Sec. 3.8 and Appendix B].
As a concrete example, we consider the Schwarzschild metric, which is a radially
symmetric solution to Einstein’s equation in vacuum. In Schwarzschild coordinates
x = (t, r, θ, ϕ) and y = (t′, r′, θ′, ϕ′), it is represented by the diagonal matrix

(5.11) g(x) = diag

(

1−
rs
r
,−

(

1−
rs
r

)−1

,−r2,−r2 sin2 θ

)

,

where rs =
2GM
c2 is the Schwarzschild radius. In this setting, there are five conserved

quantities. Indeed, using the spherical symmetries of this metric, it can be shown
that the energy E and angular momentum L are conserved:

E(x,y) =

(

1−
rs
r

)

t′,

L(x,y) =





r2 sin(θ)ϕ′

r2(cos(ϕ)θ′ − cos(θ) sin(ϕ)ϕ′)
r2(sin(ϕ)θ′ − cos(θ) cos(ϕ)ϕ′)



 .

Moreover, the expression in (5.10) reduces to

S(x,y) =

(

1−
rs
r

)

t′2 −

(

1−
rs
r

)−1

r′2 − r2θ′2 − r2 sin2 θϕ′2.
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Due to the complexity of these expressions, significant computation effort would
be required to derive an analytic DMM scheme for (5.9) to preserve these five con-
served quantities. In contrast, the MN-DMM approach requires relatively minimal
effort to implement. We compare their numerical results using the solver parame-
ters τ = 1/3, T = 200, δ = 1 × 10−15, ϵ = 1 × 10−15,K = 20. We have set G,M, c
to unity for simplicity, and used the initial conditions

x0 =
(

0, 37.338379348829989, π/2, 3.006861595479139
)⊤
,

y0 =
(

1,−0.990937492340824, 0, 0.003597472991852
)⊤
.

As Table 6 shows, the MN-DMM schemes are the only ones able to preserve all
five conserved quantities up to machine precision. In contrast, the RK4 method was
unstable at τ = 1/3 and the Implicit Midpoint method had errors in the conserved
quantities between 10−4 ∼ 10−3. Due to the intricate short time dynamics of
passing near the Schwarzschild radius, both the Implicit Midpoint method and
MN-DMM required a similar number of fixed point iterations of 18 ∼ 19, with the
maximum of 20. Also, the condition number for the Mixed MN-DMM using SVD
approach is nearly seven orders of magnitude smaller than the Mixed MN-DMM.

Numerical Method ∥S−S0∥
∞

∥E−E0∥
∞

∥L−L0∥
∞

Mean FPIs ∥κ(·)∥
∞

RK4 NaN NaN NaN – –
Implicit Midpoint 2.590× 10−4 3.624× 10−4 4.590× 10−3 18.863 –

MN-DMM 7.896× 10−15 1.221× 10−15 1.579× 10−14 19.142 –
Mixed MN-DMM 4.816× 10−15 9.992× 10−16 8.464× 10−15 19.273 1.023× 1013

Mixed MN-DMM (SVD) 9.867× 10−15 1.332× 10−15 1.921× 10−14 19.347 5.062× 105

Table 6. Geodesic curves on Schwarzschild Geometry with
conserved quantities S,E,L (τ = 1/3)

From Figure 6, we see that the Implicit Midpoint method and the different
MN-DMM methods show out-going trajectories even at a relatively large time step
of τ = 1/3. The unstable RK4 results indicate that preserving the conserved
quantities near the Schwarzschild radius is critical at predicting the correct long-
term trajectories. Moreover, Figure 6 illustrates the geodesic curves of the Implicit
Midpoint method predicts entirely wrong long term trajectory, while RK4 predicts
a nonphysical outcome of ending inside the black hole.

To further study the differences between these methods at predicting the cor-
rect geodesic curves, we decrease their time step size and compare their long term
trajectories and error in conserved quantities.

In Figure 7 and Figure 8 with τ = 1/3 × 2−3, we see that both the Implicit
Midpoint method and RK4 method does not preserve conserved quantities up to
machine precision, with RK4 still predicting nonphysical results. At τ = 1/3 ×
2−5, both the Implicit Midpoint method and RK4 method now predict outgoing
trajectories, albeit incorrect long term trajectories. Finally at τ = 1/3 × 2−7, the
Implicit Midpoint method still predicts incorrect long term trajectory. Meanwhile,
the RK4 method is now able to mimic machine precision accuracy for the conserved
quantities due to its higher order accuracy and much small τ . Thus, the long
term trajectories of the RK4 method now agrees with the MN-DMM ones obtained
using much larger τ . This final example highlights that conservative integration
techniques, such as the MN-DMM, can be useful in intricate short-term dynamics,
where machine precision level accuracy in conserved quantities can lead to more
accurate long term predictions.
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Figure 6. Comparison of error in conserved quantities and
geodesics using τ = 1/3.
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