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BOUNDARY INTEGRAL EXTERIOR CALCULUS∗

ERICK SCHULZ† , RALF HIPTMAIR† , AND STEFAN KURZ‡

Abstract. We report a surprising and deep structural property of first-kind boundary integral
operators for Hodge–Dirac and Hodge–Laplace operators associated with de Rham Hilbert complexes
on a bounded domain Ω in a Riemannian manifold. We show that from a variational perspective,
those first-kind boundary integral operators are Hodge–Dirac and Hodge–Laplace operators as well,
this time set in a trace de Rham Hilbert complex on the boundary ∂Ω whose underlying spaces of
differential forms are equipped with non-local inner products defined through layer potentials. On
the way to this main result we conduct a thorough analysis of layer potentials in operator-induced
trace spaces and derive representation formulas.
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1. Introduction.

1.1. Setting and notations. We start from a smooth orientable N -dimensional
Riemannian manifold M without boundary and with uniformly bounded curvature.
We let Ω = Ω− ⊂ M denote an open connected compact sub-manifold of the same
dimension with a compatibly oriented Lipschitz boundary Γ := ∂Ω [18, Appendix A]
and write Ω+ = M\ cl Ω for the open complement of Ω.

Following the notations of [2, Section 2], for some open N -dimensional sub-
manifold ω of M, we denote by L2Λℓ(ω) the Hilbert space of square-integrable differ-
ential forms of degree ℓ ∈ {0, . . . , N} (“ℓ-forms”) on ω. In general, we write XΛℓ(ω),
for instance C∞Λℓ(ω), L∞Λℓ(ω), etc., for a space of ℓ-forms on ω with coefficients
in the function space X(ω) and the inherited topology. In particular, C∞

0 Λℓ(ω) is
the space of “test ℓ-forms” and (C∞

0 Λℓ(ω))′ the corresponding dual space of distribu-
tions. If ℓ < 0 or ℓ > N we adopt the convention that XΛℓ(ω) = {0} to simplify the
treatment of special cases.

Recall the local and isometric Hodge star operators ⋆ℓ : L
2Λℓ(ω) → L2ΛN−ℓ(ω),

0 ≤ ℓ ≤ N , induced by the Riemannian metric on M [16, Section 2.1]. The symmetric
pairing

〈Uℓ, Vℓ〉ω =

∫

ω

Uℓ ∧ ⋆ℓVℓ , Uℓ, Vℓ ∈ L2Λℓ(ω) ,(1.1)

is bilinear and is to be distinguished from the sesqui-linear inner product written
(Uℓ, Vℓ)L2Λℓ(ω) := 〈Uℓ, Vℓ〉Ω, where the overline indicates complex conjugation. We
will regularly rely on duality pairings that extend symmetric L2-type pairings of the
form (1.1). We use double angle brackets for those duality pairings, e.g. ⟪·, ·⟫ω.
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2 E. SCHULZ, R. HIPTMAIR, AND S. KURZ

We will also need Sobolev spaces of ℓ-forms [23, Section 1.3], in particular

H1Λℓ(ω) :=
{

v ∈ L2Λℓ(ω)| ∇ℓv ∈ L2(Λ1(ω)⊗ Λℓ(ω))
}

,(1.2)

where ∇ℓ stands for the Levi-Civita connection [16, Section 9.2]. An equivalent def-
nition can be given based on coordinate representations, see [2, Section 2.2]. Primes
generally tag dual spaces or adjoint linear operators, but we also use the customary
notation H−1Λℓ(M) :=

(

H1Λℓ(M)
)′
.

We recall the exterior derivative dℓ acting on ℓ–forms and its formal L2-adjoint,
the exterior co-derivative δℓ+1 = (−1)ℓ+1 ⋆−1

ℓ dN−ℓ−1 ⋆ℓ+1, 0 ≤ ℓ ≤ N [23, Def-
inition 1.2.2]. Note the special cases dk = 0, k 6∈ {0, . . . , N − 1}, and δm = 0,
m 6∈ {1, . . . , N}. Both dℓ and δℓ+1 are viewed as closed densely defined unbounded
operators dℓ : L

2Λℓ(ω) → L2Λℓ+1(ω) and δℓ+1 : L2Λℓ+1(ω) → L2Λℓ(ω). As such they
give rise to the (primal and dual) de Rham domain Hilbert complexes [3]

HΛ0(d, ω) HΛ1(d, ω) . . .

. . . HΛℓ(d, ω) HΛℓ+1(d, ω) . . .

. . . HΛN−1(d, ω) L2ΛN (ω) ,

d0 d1

dℓ−1 dℓ
dℓ+1

dN−2 dN−1

(1.3a)

L2Λ0(ω) HΛ1(δ, ω) . . .

. . . HΛℓ(δ, ω) HΛℓ+1(δ, ω) . . .

. . . HΛN−1(δ, ω) HΛN (δ, ω) ,

δ1 δ2

δℓ δℓ+1 δℓ+2

δN−1 δN

(1.3b)

which enjoy the Fredholm property, cf. [1, Chapters 4 and 6]. Here, we have used the
notations

HΛℓ(Op, ω) := {v ∈ L2Λℓ(ω)|Op v ∈ L2Λℓ±1(ω)} , Op ∈ {dℓ, δℓ} ,(1.4)

for the domain spaces of the exterior (co-)derivatives. Those are Hilbert spaces when
equipped with the natural graph norms.

We drop the degree superscript for product spaces related to the full Grass-
mann algebra, for example, L2Λ(ω) =

⊗N
ℓ=0 L2Λℓ(ω). We write in a bold font,

e.g. U = (Uℓ)
N
ℓ=0, elements of those spaces. The exterior (co-)derivatives induce

diffuse Fredholm–nilpotent operators d : L2Λ(ω) → L2Λ(ω) and δ : L2Λ(ω) →
L2Λ(ω). They are formally adjoint with respect to the Hermitian inner product
(U ,V )L2Λ(ω) := 〈U ,V 〉ω defined through the degree-wise bi-linear pairing 〈U ,V 〉ω =
∑N

ℓ=0〈Uℓ, Vℓ〉ω, U ,V ∈ L2Λ(ω), cf. (1.1). As (N+1)× (N+1) operator matrices act-
ing on vectors of differential forms of the form U = [U0, . . . , UN ]⊤, the “full” exterior
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BOUNDARY INTEGRAL EXTERIOR CALCULUS 3

derivative and co-derivative read

d =

















0 0 0 . . . 0
d0 0 0 . . . 0
0 d1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 0 dN−1 0

















and δ =





















0 δ1 0 . . . 0

0 0 δ2
. . . 0

0 0 0
. . . 0

...
...

...
. . . δN

0 0 0 0 0





















.(1.5)

Similarly, the full Hodge star on L2Λ(ω) can be represented as

⋆ :=



















⋆N

0 ⋆N−1

. .
.

⋆1 0
⋆0



















: L2Λ(ω) → L2Λ(ω) .(1.6)

We also adapt the spaces defined in (1.4) to the Grassmann algebra setting and then
write HΛ(d, ω) and HΛ(δ, ω), with evident meanings.

1.2. Overview and Outline. Our goal is to understand the structural proper-
ties of first-kind boundary integral operators (BIOs) associated with boundary value
problems (BVPs) for the

Hodge-Dirac operator D = d+ δ ,(1.7)

and the

Hodge-Laplace operators −∆ℓ = dℓ−1δℓ + δℓ+1dℓ , 0 ≤ ℓ ≤ N ,(1.8)

which are unbounded first and second-order differential operators on L2Λ(Ω) and
L2Λℓ(Ω), respectively. This article is inspired by the “modern approach” to layer
potentials and BIOs, analyzing them in “operator-induced trace spaces”; we refer to
[8] and the monographs [14, 20] for a comprehensive presentation. It comprises the
following steps, also outlined in Figure 1:

(I) Applying integration by parts (Green’s formulas) to the operators ∆ℓ, D

and related ones, we can identify appropriate boundary conditions and trace
operators. Those are reviewed in Section 3.

(II) Solution operators on M (Newton potentials) in conjunction with Green’s
formulas yield representation formulas, which we derive in Section 4. Layer
potentials form their main building blocks.

(III) BIOs emerge from applying traces to representation formulas, see Section 5.
We focus on first-kind BIOs, which map between trace spaces that are in
duality with respect to an L2 pivot space.

Our key new finding, stated in Theorem 5.2, Theorem 5.3 and Theorem 5.4, is that

the obtained first-kind BIOs are Hodge–Dirac and Hodge–Laplace operators
themselves, but associated with trace de Rham complexes on Γ, which are
based on non-local inner products defined through layer potentials.
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4 E. SCHULZ, R. HIPTMAIR, AND S. KURZ

This discovery also reveals the importance of the trace de Rham complex when
studying boundary integral equations for Hodge-Dirac and Hodge-Laplace operators.
We recall this key concept in Section 2.

First-kind BIOs as Dκ, Lλ
ℓ s in trace de Rham complex

(Theorems 5.2, 5.3, 5.4)

Trace spaces
(boundary de Rham complex, Sect. 2)

Boundary integral operators
(in variational form, Section 5)

Trace operators
(boundary conditions, Section 3)

Representation formulas
(Layer potentials, Sects. 4.4, 4.5)

Integration by parts
(Green’s formulas, Section 2)

Newton potentials
(fundamental solutions, Sect. 4.1)

Operators Dκ, Lλ
ℓ on Ω ∪ Ω+

Fig. 1. The road towards first-kind boundary integral operators induced by the Hodge-Laplacian

and the Hodge-Dirac operator. Arrows indicate a “built-from” relationship.

A difficulty arises at the outset of our program: D and ∆ℓ may not be injective
even on C∞Λ(M) or C∞Λℓ(M), respectively, with nullspaces comprising smooth
harmonic forms [16, Section 3.1]. Thus, to keep the presentation simple, we regularize
the Hodge–Dirac and Hodge–Laplace operators by adding zero-order terms and work
with injective modified operators of the form

D
κ := D+ ıκId , κ ∈ R\{0} , and L

λ
ℓ := −∆ℓ + λId, λ > 0,(1.9)

which are related by the identity (∆ := (∆ℓ)
N
ℓ=0)

(D− ıκ) (D+ ıκ) = −∆+ λ , if λ = κ2 .(1.10)

For the remainder of this article we fix λ > 0 and set κ := λ1/2.

Remark 1.1. In the case that M is the Euclidean space RN , with some modifica-
tions the developments of this article carry over to the case λ = κ = 0 and even λ < 0,
κ ∈ ıR, provided that suitable decay or radiation conditions “at ∞” are imposed [6,
Section 3.3], [14, Chapter 9], [10, Section 6]. We decided not to treat this technically
more challenging setting in this article.
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BOUNDARY INTEGRAL EXTERIOR CALCULUS 5

1.3. Related work. There is a plethora of literature on layer potentials and
boundary integral equations concerned with Hodge-Laplace and Hodge-Dirac oper-
ators in the setting of this article, see [19], the monographs [18] and [16] and the
numerous references therein. To the authors’ astonishment, in these works all atten-
tion is directed at second-kind BIOs on Γ and those are mainly considered as operators
in Lp(Γ)-type spaces. We could not find a single article devoted to the first-kind BIOs
we are going to study in this work.

Of course, in Euclidean space M = R
N , N = 2, 3, first-kind BIOs play a promi-

nent role as foundation for the boundary element discretization of BVPs for various
strongly elliptic partial differential equations [20, Chapter 3], [14, Chapters 7-10], and
even the time-harmonic Maxwell’s equations [5]. The analysis of first-kind BIOs for
the Hodge-Laplacian for Euclidean space M = R

3 was pursued by some of the authors
in [6] and [7], at the time, entirely in the framework of classical vector calculus.

What can be seen as precursors of and sources of inspirations for the present
paper are the works [12] and [22]. In the latter article we caught a first glimpse of
the above-mentioned discovery for the Hodge-Dirac operator D in the special case
M = R

3. The investigations were solely based on classical vector calculus. A crucial
observation was that, although the Hodge–Dirac operator is only first-order, it is still
amenable to arguments borrowed from the well-known theory of first-kind boundary
integral equations for second-order elliptic operators in Euclidean space.

This article was motivated by the desire
(i) to generalize the results of [22] to arbitrary dimensions by translating them

into the language of differential forms, and
(ii) to extend them to analogous results for the Hodge-Laplacian.

We fully succeeded in this endeavor and, thus, gleaned completely new deep insights
into structural properties of BIOs.

Of course, also this research heavily draws on previously established theory, in
particular as regards traces and energy trace spaces for differential forms. The im-
portant results of [17] and [26] on the existence and properties of surjective trace
operators for spaces of differential forms in R

N proved instrumental in the develop-
ment of boundary integral exterior calculus on boundaries of mere Lipschitz regularity.
Abstract trace complexes are also studied in [11], where an alternative proof to that
given in [17] is provided for the compactness property of the so-called trace de Rham
complex.

List of notations. In this article we prefer “verbose” notations conveying max-
imum information about entities. We admit that this leads to lavishly adorned sym-
bols, but enhanced precision is worth this price.

M . . . . . . . . . . . . . “ambient” Riemannian manifold, Page 1
Ω = Ω− . . . . . . . . open, bounded domain ⊂ M, Page 1
Ω+ := M\ cl Ω open complement of Ω, Page 1
Γ := ∂Ω . . . . . . . . boundary of Ω, Page 1
L2Λℓ(ω) . . . . . . . Hilbert space of square-integrable ℓ-forms on ω ⊂ M, Page 1
XΛℓ(ω) . . . . . . . . space of ℓ-forms with coefficients in X(ω), Page 1
〈·, ·〉ω . . . . . . . . . . bilinear symmetric L2-pairing, (1.1)⟪·, ·⟫ω . . . . . . . . . duality pairing extending an L2-pairing
D

κ . . . . . . . . . . . . . regularized Hodge-Dirac operator, (1.9)
L
λ
ℓ . . . . . . . . . . . . . regularized Hodge-Laplace operator acting on ℓ-forms, (1.9)

⋆Γℓ . . . . . . . . . . . . . Hodge operator on Γ, Page 6
ı∓Γ . . . . . . . . . . . . . inclusion map Γ ⊂ Ω, Page 6
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6 E. SCHULZ, R. HIPTMAIR, AND S. KURZ

t∓ℓ . . . . . . . . . . . . . tangential trace of an ℓ-form from Ω∓, (2.1)
n∓ℓ . . . . . . . . . . . . . normal trace of an ℓ-form on Ω∓, (2.1)

H
1
2

‖ Λ
ℓ(Γ),

H
1
2

⊥Λ
ℓ(Γ)







. . . regular trace spaces, (2.3)

dΓℓ , δ
Γ
ℓ . . . . . . . . . exterior (co-)derivative on Γ, Page 7

H
− 1

2

⊥ Λℓ(dΓ,Γ) . . domain space of dΓℓ on H
− 1

2

⊥ Λℓ(Γ)

H
− 1

2

‖ Λℓ(δΓ,Γ) . . domain space of δΓℓ on H
− 1

2

‖ Λℓ(Γ)

⟪·, ·⟫ . . . . . . . . . . . L2 duality pairing on Γ
t∓, n∓ . . . . . . . . . traces on graded Grassmann algebra of differential forms, (2.10)
Aδ(·, ·), Ad(·, ·) bilinear forms associated with the Hodge-Dirac operator, (3.2)
HΛℓ(∆,M\ Γ) domain space of Hodge-Laplacian acting on ℓ-forms, (3.5)

T
t,−
∆.ℓ, T

n,−
∆,ℓ . . . . . trace operators associated with the Hodge-Laplacian (3.6)

H t,ℓ
∆ (Γ), Hn,ℓ

∆ (Γ) product trace spaces, (3.8)
M

λ
ℓ , R

λ
ℓ . . . . . . . . mixed-order Hodge-Laplacians, (3.9), (3.14)

T
t,−
M

, Tn,−
M

. . . . . complementary trace operators for Mλ
ℓ , (3.12)

T
t,−
R

, Tn,−
R

. . . . . complementary trace operators for Rλ
ℓ , (3.17)

Bλ
δ , B

λ
d . . . . . . . . . mixed-order bilinear forms for Lλ

ℓ , (3.16), (3.11)

Nλ
ℓ , N

λ . . . . . . . . Newton potentials, (4.4), (4.5)
Sλℓ , D

λ
ℓ . . . . . . . . . basic layer potentials, (4.8a), (4.8b)

S
λ, Dλ . . . . . . . . . compound basic layer potentials, (4.17)

(uℓ, vℓ)− 1
2
,λ,t ,

(wℓ, zℓ)− 1
2
,λ,n

}

non-local innner products for H
− 1

2

‖ Λℓ(Γ) and H
− 1

2

⊥ Λℓ(Γ), (4.21)

SL
κ[D], DL

κ[D] layer potentials for the Hodge-Dirac operator, (4.33)

SLλℓ [∆], DLλℓ [∆] layer potentials for Hodge-Laplacian L
λ
ℓ , (4.38)

SLλℓ [M], DLλℓ [M] layer potentials induced by mixed-order Hodge-Laplacian, (4.44)

2. Traces of Differential Forms and Trace De Rham Complexes. The
boundary Γ := ∂Ω is an oriented Lipschitz sub-manifold of M of dimension N −1, cf.
[14, Chapter 3], [15, Section 2], [18, Appendix A], [24, Section 1] and [26, Section 1].
As such it is also a Riemannian manifold, which inherits its metric as the restriction
of the metric of M to the tangent bundle of Γ. Spaces of differential forms L2Λℓ(Γ)
and Hodge operators ⋆Γℓ : L2Λℓ(Γ) → L2ΛN−1−ℓ(Γ) can be defined as usual. They
are non-trivial only for 0 ≤ ℓ ≤ N − 1.

Suitable trace operators for HΛℓ(d,Ω∓) and HΛℓ(δ,Ω∓) are obtained by extend-
ing the pullback and “rotated” pullback of differential forms, also called tangential
and normal traces. Writing ı∓Γ : Γ → Ω∓ for the inclusion map, and ı∗∓ for the in-
duced pullback, those trace operators are defined for all smooth (up to the boundary)
ℓ-forms U∓

ℓ ∈ C∞Λℓ(Ω
∓
), 0 ≤ ℓ ≤ N , by

t∓ℓ U
∓
ℓ := ı∗∓U

∓
ℓ ∈ L2Λℓ(Γ) and n∓ℓ U

∓
ℓ :=

(

⋆Γℓ−1

)−1
ı∗∓ ⋆ℓ U

∓
ℓ ∈ L2Λℓ−1(Γ) .

(2.1)

We drop the superscript “−” or “+” when we let trace operators act on functions
defined everywhere on M, for instance, tℓ : C

∞Λℓ(M) → L2Λℓ(Γ).
Generalizing the notation of [12], we define the dual spaces

H
− 1

2

‖ Λℓ(Γ) := (H
1
2

‖ Λ
ℓ(Γ))′ and H

− 1
2

⊥ Λℓ(Γ) := (H
1
2

⊥Λ
ℓ(Γ))′ ,(2.2)
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where the so-called regular trace spaces are given as the ranges

H
1
2

‖ Λ
ℓ(Γ) := t∓ℓ

(

H1Λℓ(Ω∓)
)

and H
1
2

⊥Λ
ℓ(Γ) := n∓ℓ

(

H1Λℓ+1(Ω∓)
)

,(2.3)

and endowed with the corresponding trace norms, cf. [26, Section 2]. They generalize

the well-known fractional Sobolev space of Dirichlet traces H
1
2Λ0(Γ) = H

1
2 (Γ) [14,

Chapter 3], which has inspired the notation. The spaces introduced in (2.2) and (2.3)
form Gelfand triples with pivot space L2Λℓ(Γ).

In the spirit of [11, Section 7], we view the exterior derivative and the co-derivative
on the boundary Γ as the closed densely defined unbounded linear operators dΓℓ :

H
− 1

2

⊥ Λℓ(Γ) → H
− 1

2

⊥ Λℓ+1(Γ) and δΓℓ : H
− 1

2

‖ Λℓ(Γ) → H
− 1

2

‖ Λℓ−1(Γ), where δΓℓ is the

L2Λℓ−1(Γ)- or L2Λℓ(Γ)-adjoint, respectively, of dℓ−1.

Definition 2.1 (Trace de Rham complexes, [11, Theorem 7.1]). The Hilbert

complexes spawned by the closed unbounded operators dΓℓ : H
− 1

2

⊥ Λℓ(Γ) → H
− 1

2

⊥ Λℓ+1(Γ)

and δΓℓ : H
− 1

2

‖ Λℓ(Γ) → H
− 1

2

‖ Λℓ−1(Γ) are called trace de Rham complexes.

From [11, Theorem 7.3] we learn that the trace de Rham complexes possess the
Fredholm property. The associated domain complexes can be written as

HΛ0(dΓ,Γ) HΛ1(dΓ,Γ) . . .

. . . HΛℓ(dΓ,Γ) HΛℓ+1(dΓ,Γ) . . .

. . . HΛN−2(dΓ,Γ) L2ΛN−1(Γ) ,

dΓ
0 dΓ

1

dΓ
ℓ−1 dΓ

ℓ
dΓ
ℓ+1

dΓ
N−3 dΓ

N−2

(2.4a)

and

L2Λ0(Γ) HΛ1(δΓ,Γ) . . .

. . . HΛℓ(δΓ,Γ) HΛℓ+1(δΓ,Γ) . . .

. . . HΛN−2(δΓ,Γ) HΛN−1(δΓ,Γ) .

δΓ1 δΓ2

δΓ
ℓ

δΓ
ℓ+1 δΓ

ℓ+2

δΓ
N−2 δΓ

N−1

(2.4b)

Here, H
− 1

2

⊥ Λℓ(dΓ,Γ) and H
− 1

2

‖ Λℓ(δΓ,Γ) designate the domain spaces of dΓℓ and δΓℓ ,

respectively, equipped with the graph norms. Note that in general H
− 1

2

⊥ Λℓ(dΓ,Γ) 6⊂

L2Λℓ(Γ) and H
− 1

2

‖ Λℓ(δΓ,Γ) 6⊂ L2Λℓ(Γ).

Further, the results of [11, Section 3] ensure that the operators

t∓ℓ : H1Λℓ(M) −→ H
1
2

‖ Λ
ℓ(Γ) and n∓ℓ : H1Λℓ(M) −→ H

1
2

⊥Λ
ℓ−1(Γ)(2.5)

can be extended to continuous and surjective mappings

t∓ℓ : HΛℓ(d,Ω∓) −→ H
− 1

2

⊥ Λℓ(dΓ,Γ) ,

n∓ℓ : HΛℓ(δ,Ω∓) −→ H
− 1

2

‖ Λℓ−1(δΓ,Γ) ,
(2.6)
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8 E. SCHULZ, R. HIPTMAIR, AND S. KURZ

such that the integration by parts formula (“Green’s formula”)

〈dℓ Uℓ, Vℓ+1〉Ω∓ = 〈Uℓ, δℓ+1 Vℓ+1〉Ω∓ ± ⟪t∓ℓ Uℓ, n
∓
ℓ+1Vℓ+1⟫Γ(2.7)

holds for all Uℓ ∈ HΛℓ(d,Ω∓) and Vℓ+1 ∈ HΛℓ+1(δ,Ω∓). On the right-hand side of
(2.7), the duality pairing on the boundary

⟪·, ·⟫Γ : H
− 1

2

⊥ Λℓ(dΓ,Γ)×H
− 1

2

‖ Λℓ(δΓ,Γ) → C(2.8)

extends the L2Λℓ(Γ)-pairing. That is, it puts H
− 1

2

⊥ Λℓ(dΓ,Γ) in duality with the trace

space H
− 1

2

‖ Λℓ−1(δΓ,Γ) using L2Λℓ(Γ) as a pivot space, see [11, Section 4].

Despite Γ being merely Lipschitz regular, the usual commutative relations

t∓ℓ ◦ dℓ = dΓℓ ◦ t∓ℓ and n∓ℓ−1 ◦ δℓ = −δΓℓ−1 ◦ n
∓
ℓ ,(2.9)

still hold for the trace operators. The first reflects the fact that pullback and exterior
derivative commute, and the second identity can be obtained from the first:

n∓ℓ−1δℓ =
(

⋆Γℓ−2

)−1
ı∗± ⋆ℓ−1

(

(−1)ℓ(⋆ℓ−1)
−1dN−ℓ⋆ℓ

)

= −(−1)ℓ−1(⋆Γℓ−2)
−1dΓN−ℓ ı

∗
∓⋆ℓ

= −
(

(−1)ℓ−1(⋆Γℓ−2)
−1dΓN−ℓ⋆

Γ
ℓ−1

)

(

⋆Γℓ−1

)−1
ı∗∓⋆ℓ = −δΓℓ−1 ◦ n

∓
ℓ .

We use a bold font to denote traces acting on the full Grassmann algebra of forms in
a component-wise manner, i.e.

t
∓U := ı∗∓U and n

∓V :=
(

⋆Γ
)−1

t∓ ⋆ V .(2.10)

Then, applying the integration by parts formula (2.7) to the components of U and V

separately yields

〈dU ,V 〉Ω∓ = 〈U , δ V 〉Ω∓ ± ⟪t∓U ,n∓V ⟫Γ(2.11)

for all U ∈ HΛ(d,Ω∓) and V ∈ HΛ(δ,Ω∓).

3. Variational Boundary Value Problems (BVPs). We briefly review well-
posed boundary value problems for the (regularized) Hodge-Dirac operator D

κ and
Hodge-Laplace operator Lλ

ℓ , λ > 0, λ = κ2, l ∈ {0, . . . , N}, see (1.9). Our focus is on
variational formulations with natural boundary conditions.

3.1. BVPs for regularized Hodge-Dirac operators. Writing HΛ(D,Ω) =
HΛ(d,Ω) ∩HΛ(δ,Ω) for the maximal domain space of D, the following two bound-
ary value problems on Ω are associated with self-adjoint specializations of Dκ with
compact resolvent [16, Section 1.3]:

U ∈ HΛ(D,Ω) :

{

D
κU = 0 in Ω

t− U = g on ∂Ω
, g ∈ H

− 1
2

⊥ Λ(dΓ,Γ) ,(3.1a)

and

U ∈ HΛ(D,Ω) :

{

D
κU = 0 in Ω

n− U = h on ∂Ω
, h ∈ H

− 1
2

‖ Λ(δΓ,Γ) .(3.1b)
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As discussed in [22, Section 3], the Hodge–Dirac operator induces two distinct funda-
mental symmetric bilinear forms

Aδ(U ,V ) := 〈δU ,V 〉Ω + 〈U , δV 〉Ω ∀U ,V ∈ HΛ(δ,Ω) ,(3.2a)

Ad(U ,V ) := 〈dU ,V 〉Ω + 〈U ,dV 〉Ω ∀U ,V ∈ HΛ(d,Ω) .(3.2b)

They play a key role in the following “Dirac counterparts” of Green’s first identity:

〈DU ,V 〉Ω = Aδ(U ,V ) + ⟪t−U ,n−V ⟫Γ ,(3.3a)

〈DU ,V 〉Ω = Ad(U ,V )− ⟪n−U , t−V ⟫Γ ,(3.3b)

which hold for all U ,V ∈ HΛ(D,Ω). They yield two variational problems represent-
ing a weak form of (3.1a) and (3.1b), respectively [13, Section 2.2]:

U ∈ HΛ(δ,Ω) : Aδ(U ,V ) + iκ〈U ,V 〉Ω = −⟪g,n−V ⟫Γ ∀V ∈ HΛ(δ,Ω) ,

(3.4a)

U ∈ HΛ(d,Ω) : Ad(U ,V ) + iκ〈U ,V 〉Ω = ⟪h, t−V ⟫Γ ∀V ∈ HΛ(d,Ω) .

(3.4b)

It is an easy exercise in integration by parts to verify by using suitable test functions
that the variational problems (3.4a) and (3.4b) generalize the strong formulations
(3.1a) and (3.1b), respectively. Moreover, for both (3.4a) and (3.4b), inf-sup con-
ditions can be verified confirming existence and uniqueness of (weak) solutions [21,
Section 5.2.1.2].

3.2. BVPs for regularized Hodge-Laplace operators. We fix 0 ≤ ℓ ≤ N
and, in the spirit of (1.4), write

HΛℓ(∆,M\ Γ) := {v ∈ H1Λℓ(ω)|∆ℓv ∈ L2Λℓ(ω)} .(3.5)

To state suitable boundary conditions for the (regularized) Hodge-Laplacian in second-
order (strong) form L

λ
ℓ := −∆ℓ + λ : HΛℓ(∆,Ω) → L2Λℓ(Ω) we rely on the trace

operators

T
t,−
∆,ℓ Uℓ :=

[

t−ℓ−1δℓUℓ

t−ℓ Uℓ

]

and T
n,−
∆,ℓ Uℓ :=

[

n−ℓ Uℓ

n−ℓ+1dℓUℓ

]

.(3.6)

They are related to self-adjoint specializations of Lλ
ℓ with compact resolvents and give

rise to the well-posed boundary value problems [16, Section 1.1]

Uℓ ∈ HΛℓ(∆,Ω) :











L
λ
ℓUℓ = 0 in Ω

T
t,−
∆,ℓ Uℓ =

[

gℓ−1

gℓ

]

on ∂Ω
,

[

gℓ−1

gℓ

]

∈ H t,ℓ
∆ (Γ) ,(3.7a)

and

Uℓ ∈ HΛℓ(∆,Ω) :











L
λ
ℓUℓ = 0 in Ω

T
n,−
∆,ℓ Uℓ =

[

hℓ−1

hℓ

]

on ∂Ω
,

[

hℓ−1

hℓ

]

∈ Hn,ℓ
∆ (Γ) ,(3.7b)
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where the boundary values belong to the product trace spaces

H t,ℓ
∆ (Γ) := H

− 1
2

⊥ Λℓ−1(dΓ,Γ)×H
− 1

2

⊥ Λℓ(dΓ,Γ) ,

Hn,ℓ
∆ (Γ) := H

− 1
2

‖ Λℓ−1(δΓ,Γ)×H
− 1

2

‖ Λℓ(δΓ,Γ) .
(3.8)

Those are in duality with respect to the pairing ⟪·, ·⟫Γ.
We notice that the boundary data for both BVPs lie in product trace spaces.

Anticipating the considerations of Section 5 this means that the BIOs linked to the
Hodge-Laplacian will have to be analyzed in the framework of those product trace
spaces. In light of our main result outlined in Subsection 1.2, Page 3, this suggests
that we also examine mixed-order formulations of (3.7a) and (3.7b), which are posed
on product spaces. For instance, by introducing an auxiliary variable Uℓ−1 = δℓUℓ ∈
HΛℓ−1(d,Ω) we obtain one possible mixed-order form [2, Section 7.1]

L
λ
ℓUℓ = 0 ⇔ M

λ
ℓ

[

Uℓ−1

Uℓ

]

= 0 with M
λ
ℓ :=

[

−Id δℓ
dℓ−1 δℓ+1dℓ + λId

]

.(3.9)

Resorting to the integration-by-parts formula (2.7), we find that for all Uℓ, Vℓ ∈
C∞Λℓ(Ω) and Uℓ−1, Vℓ−1 ∈ C∞Λℓ−1(Ω)

(3.10)

〈

M
λ
ℓ

[

Uℓ−1

Uℓ

]

,

[

Vℓ−1

Vℓ

]

〉

Ω

= Bλ
d

(

[

Uℓ−1

Uℓ

]

,

[

Vℓ−1

Vℓ

]

)

− ⟪Tn,−
M,ℓ

[

Uℓ−1

Uℓ

]

,Tt,−
M,ℓ

[

Vℓ−1

Vℓ

]

⟫
Γ

=

〈

[

Uℓ−1

Uℓ

]

,Mλ
ℓ

[

Vℓ−1

Vℓ

]

〉

Ω

−

⟪Tn,−
M,ℓ

[

Uℓ−1

Uℓ

]

,Tt,−
M,ℓ

[

Vℓ−1

Vℓ

]

⟫
Γ

+ ⟪Tt,−
M,ℓ

[

Uℓ−1

Uℓ

]

,Tn,−
M,ℓ

[

Vℓ−1

Vℓ

]

⟫
Γ

,

with the bilinear form

Bλ
d

(

[

Uℓ−1

Uℓ

]

,

[

Vℓ−1

Vℓ

]

)

= (dℓUℓ, dℓVℓ)Ω + λ (Uℓ, Vℓ)Ω + (dℓ−1Uℓ−1, Vℓ)Ω

+ (Uℓ, dℓVℓ−1)Ω − (Uℓ−1, Vℓ−1)Ω ,

(3.11)

and complementary trace operators

T
t,−
M,ℓ

[

Uℓ−1

Uℓ

]

:=

[

t−ℓ−1Uℓ−1

t−ℓ Uℓ

]

and T
n,−
M,ℓ

[

Uℓ−1

Uℓ

]

:= T
n,−
∆,ℓUℓ =

[

n−ℓ Uℓ

n−ℓ+1 dℓ Uℓ

]

.(3.12)

Those supply bounded linear operators

T
t,∓
M,ℓ :HΛℓ−1(d,Ω∓)×HΛℓ(d,Ω∓) → H t,ℓ

∆ (Γ) ,(3.13a)

T
n,∓
M,ℓ :L

2Λℓ−1(Ω∓)×HΛℓ(δ d,Ω∓) → Hn,ℓ
∆ (Γ) .(3.13b)

Alternatively we can choose as auxiliary variable Uℓ+1 = dℓUℓ ∈ HΛℓ(δ,Ω), which
gives us another mixed-order formulation

L
λ
ℓUℓ = 0 ⇔ R

λ
ℓ

[

Uℓ

Uℓ+1

]

= 0 with R
λ
ℓ :=

[

dℓ−1δℓ + λId δℓ+1

dℓ −Id

]

.(3.14)
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The operator Rλ
ℓ can also be cast in weak form by means of integration by parts:

(3.15)

〈

R
λ
ℓ

[

Uℓ

Uℓ+1

]

,

[

Vℓ

Vℓ+1

]

〉

Ω

= Bλ
δ

(

[

Uℓ

Uℓ+1

]

,

[

Vℓ

Vℓ+1

]

)

+ ⟪Tt,−
R,ℓ

[

Uℓ

Uℓ+1

]

,Tn,−
R,ℓ

[

Vℓ

Vℓ+1

]

⟫

=

〈

[

Uℓ

Uℓ+1

]

,Rλ
ℓ

[

Vℓ

Vℓ+1

]

〉

Ω

+ ⟪Tt,−
R,ℓ

[

Uℓ

Uℓ+1

]

,Tn,−
R,ℓ

[

Vℓ

Vℓ+1

]

⟫− ⟪Tn,−
R,ℓ

[

Uℓ

Uℓ+1

]

,Tt,−
R,ℓ

[

Vℓ

Vℓ+1

]

⟫ ,

which involves the bilinear form

Bλ
δ

(

[

Uℓ

Uℓ+1

]

,

[

Vℓ

Vℓ+1

]

)

:= 〈δℓUℓ, δℓVℓ〉Ω + λ 〈Uℓ, Vℓ〉Ω + 〈δℓ+1Uℓ+1, Vℓ〉Ω +

〈Uℓ, δℓ+1Vℓ+1〉Ω − 〈Uℓ+1, Vℓ+1〉Ω

(3.16)

and the complementary trace operators

T
t,−
R,ℓ

[

Uℓ

Uℓ+1

]

:=

[

t−ℓ−1δℓUℓ

t−ℓ Uℓ

]

= T
t,−
∆,ℓUℓ and T

n,−
R,ℓ

[

Uℓ

Uℓ+1

]

=

[

n−ℓ Uℓ

n−ℓ+1Uℓ+1

]

.(3.17)

They map continuously

T
t,∓
R,ℓ :HΛℓ(d δ,Ω∓)× L2Λℓ+1(Ω∓) → H t,ℓ

∆ (Γ) ,(3.18a)

T
n,∓
R,ℓ :HΛℓ(δ,Ω∓)×HΛℓ+1(δ,Ω∓) → Hn,ℓ

∆ (Γ) ,(3.18b)

and their co-domain spaces are in duality with respect to the pairing ⟪·, ·⟫Γ.
Both bilinear forms Bλ

d and Bλ
δ and are continuous on the relevant spaces of dif-

ferential forms HΛℓ−1(d,Ω)×HΛℓ(d,Ω) and HΛℓ(δ,Ω)×HΛℓ+1(δ,Ω), respectively.
They occur in two different mixed-order variational formulations of the boundary
value problems (3.7a) and (3.7b) for L

λ
ℓ [21, Section 5.2.3]. Existence and unique-

ness of solutions of the resulting variational problems can be shown by establishing
corresponding inf-sup conditions for the bilinear forms Bλ

d and Bλ
δ [2, Section 7.1].

4. Layer Potentials. Our main tool to derive first-kind BIOs for Hodge–Dirac
and Hodge–Laplace operators is a calculus of layer potentials. The two layer potentials
defined in this section are the elementary building blocks from which all the other layer
potentials appearing in this work are obtained via differentiation. They are also the
crucial components entering (i) the definitions of the non-local inner products with
which we equip the trace de Rham complexes and (ii) representation formulas.

4.1. Newton potential. As λ > 0 the results of [16, Section 3.1] confirm that
the regularized Hodge–Laplace operator L

λ
ℓ := −∆ℓ + λ is invertible as an operator

H1Λℓ(M) → H−1Λℓ(M). We owe this to the uniformly bounded curvature of M,
which ensures the equivalence of the norms ofH1Λℓ(M) andHΛℓ(d,M)∩HΛℓ(δ,M),
also known as Gaffney inequality. As a consequence, the function spaces can be iden-
tified: HΛℓ(d,M) ∩HΛℓ(δ,M) = H1Λℓ(M). Thus (Lλ

ℓ )
−1Fℓ, Fℓ ∈ H−1Λℓ(M), can
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be defined as the unique solution of the linear variational problem: seek (Lλ
ℓ )

−1F ∈
H1Λℓ(M) such that

(4.1)
〈

dℓ(L
λ
ℓ )

−1Fℓ, dℓVℓ

〉

M
+
〈

δℓ(L
λ
ℓ )

−1Fℓ, δℓVℓ

〉

M
+ λ

〈

(Lλ
ℓ )

−1Fℓ, Vℓ

〉

M

= ⟪Fℓ, Vℓ⟫M
for all Vℓ ∈ HΛℓ(d,M) ∩ HΛℓ(δ,M) = H1Λℓ(M). As M is smooth and ∂M = ∅,
pseudo-differential calculus [18, Chapter 3] also shows that (Lλ

ℓ )
−1 : Hs−1Λℓ(M) →

Hs+1Λℓ(M) continuously for all s ≥ 0, and, as elaborated in [20, Section 3.1.1]
and [14, Chapter 6], by duality we can also extend (Lλ

ℓ )
−1 to a continuous operator

between spaces of distribution (Lλ
ℓ )

−1 : (C∞
0 Λℓ(M))′ → (C∞Λℓ(M))′.

The Schwartz kernel of the continuous inverse (Lλ
ℓ )

−1 : H−1Λℓ(M) → H1Λℓ(M)
is a double form Gλ

ℓ (x, y) of bi-degree (ℓ, ℓ) with an integrable singularity at x = y
and smooth everywhere else [18, Chapter 6]. It satisfies

dℓ,x G
λ
ℓ (x, y) = δℓ+1,y G

λ
ℓ+1(x, y) and δℓ,x G

λ
ℓ (x, y) = dℓ−1,y G

λ
ℓ−1(x, y)(4.2)

for x 6= y, cf. [12, Lemma 3] and [16, (3.1.44)], and

⋆ℓ,y ⋆ℓ,x Gλ
ℓ = ⋆ℓ,x ⋆ℓ,y G

λ
ℓ = Gλ

N−ℓ ,(4.3)

cf. [16, (3.1.23)] and [12, Lemma 1]. The associated integral transformation

(Nλ
ℓ Uℓ)(x) := 〈 Gλ

ℓ (x, ·), Uℓ(·) 〉M, Uℓ ∈ C∞
0 Λℓ(M) ,(4.4)

can be extended to the Sobolev scale and then provides an alternative representation
of the inverse (Lλ

ℓ )
−1 : H−1Λℓ(M) → H1Λℓ(M), in this form known as Newton

potential operator Nλ
ℓ , cf. [9, Chapters 12 and 16], [12, Sections 2.2 and 2.3], [14,

Chapter 6], [16, Chapter 3], [18, Chapter 2], [20, Chapter 3] and [25, Section 3].
At the level of the full algebra of differential forms, the Newton potentials can be

combined into the block-diagonal (N + 1)× (N + 1) operator matrix

N
λ :=



















Nλ
0

Nλ
1 0

. . .

0 Nλ
N−1

Nλ
N



















,(4.5)

and the above identities (4.2) and (4.3) satisfied by the kernel Gλ = (Gλ
ℓ )

N
ℓ=1 of Nλ

translate to

dx G
λ = δy G

λ , δx G
λ = dy G

λ ,(4.6)

and

⋆y ⋆x G
λ = ⋆x ⋆y G

λ = G
λ .(4.7)

4.2. Basic layer potentials. We define the basic layer potentials

Sλℓ := Nλ
ℓ t

′
ℓ : H

− 1
2

‖ Λℓ(Γ) −→ H1Λℓ(M) ,(4.8a)

Dλ
ℓ := Nλ

ℓ n
′
ℓ−1 : H

− 1
2

⊥ Λℓ−1(Γ) −→ H1Λℓ(M) ,(4.8b)
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where the bounded operators

t′ℓ : H
− 1

2

‖ Λℓ(Γ) → H−1Λℓ(M) and n′ℓ : H
− 1

2

⊥ Λℓ−1(Γ) → H−1Λℓ(M)(4.9)

are the adjoints of the trace mappings from (2.5), cf. [6], [8] and [22]. Notice that, if

vℓ ∈ H
− 1

2

‖ Λℓ(Γ), then from (4.1) we conclude that the global ℓ-form Sλℓ vℓ ∈ H1Λℓ(M)

is the unique solution to the variational equation

〈

dℓS
λ
ℓ vℓ, dℓVℓ

〉

M
+
〈

δℓS
λ
ℓ vℓ, δℓVℓ

〉

M
+ λ

〈

Sλℓ vℓ, Vℓ

〉

M
= ⟪vℓ, tℓVℓ⟫Γ(4.10)

for all Vℓ ∈ H1Λℓ(M). A similar variational characterization holds for Dλ
ℓ : Given

uℓ−1 ∈ H
− 1

2

⊥ Λℓ−1(Γ), we find that Dλ
ℓ uℓ−1 ∈ H1Λℓ(M) satisfies

(4.11)
〈

dℓD
λ
ℓ uℓ−1, dℓVℓ

〉

M
+
〈

δℓD
λ
ℓ uℓ−1, δℓVℓ

〉

M
+ λ

〈

Dλ
ℓ uℓ−1, Vℓ

〉

M

= ⟪uℓ−1, nℓVℓ⟫Γ
for all Vℓ ∈ H1Λℓ(M). From the variational characterization of the basic layer po-
tentials we draw two immediate and important conclusions.

Lemma 4.1. For ℓ ∈ {0, . . . , N − 1} the basic layer potentials give rise to contin-

uous mappings

Sλℓ : H
− 1

2

‖ Λℓ(δΓ,Γ) −→ H1Λℓ(M) ∩HΛℓ(∆,M\ Γ) ,(4.12a)

Dλ
ℓ+1 : H

− 1
2

⊥ Λℓ(dΓ,Γ) −→ H1Λℓ+1(M) ∩HΛℓ+1(∆,M\ Γ) ,(4.12b)

satisfying for all uℓ ∈ H
− 1

2

‖ Λℓ−1(δΓ,Γ) and wℓ ∈ H
− 1

2

⊥ Λℓ(dΓ,Γ)

L
λ
ℓ S

λ
ℓ (uℓ) = 0 in H−1Λℓ+1(M\ Γ)

and L
λ
ℓ+1D

λ
ℓ+1(wℓ) = 0 in H−1Λℓ(M\ Γ) .

(4.13)

Proof. The property (4.13) is immediate from (4.10) and (4.11) when testing with
smooth forms compactly supported in Ω− ∪ Ω+. For the first identity in (4.13), we
also refer to [16, Eq. 3.2.5] and [12, Lem. 3 (ii)]. The second can also be obtained
from (4.16), because the Hodge star commutes with the Hodge–Laplacian [16, Lem.
2.8].

Next, denote the jump of a trace across Γ by J•K = •+ − •−, where • = t or n.

Theorem 4.2 (Jump relations for basic potentials). The basic layer po-

tentials in the interpretation of (4.12) fulfill

JtℓKS
λ
ℓ = 0 , Jtℓ+1dℓK S

λ
ℓ = 0 , Jtℓ−1δℓKS

λ
ℓ = 0 ,(4.14a)

JnℓKS
λ
ℓ = 0 , Jnℓ+1dℓK S

λ
ℓ = −Id , Jnℓ−1δℓKS

λ
ℓ = 0 ,(4.14b)

JtℓKD
λ
ℓ = 0 , Jtℓ+1dℓKD

λ
ℓ = 0 , Jtℓ−1δℓKD

λ
ℓ = Id ,(4.14c)

JnℓKD
λ
ℓ = 0 , Jnℓ+1dℓKD

λ
ℓ = 0 , Jnℓ−1δℓKD

λ
ℓ = 0 .(4.14d)

7 Dec 2022 07:31:59 PST
221207-Hiptmair Version 1 - Submitted to J. Amer. Math. Soc.



14 E. SCHULZ, R. HIPTMAIR, AND S. KURZ

Proof. We test (4.10) and (4.11) with Vℓ ∈ C∞Λℓ(M) and perform integration by
parts locally on Ω− and Ω+. This yields jump terms, because of the opposite relative
orientation of Γ with respect to Ω− and Ω+. Combining these jump terms with the
right-hand-side functionals in (4.10) and (4.11) yields the jump relations asserted by
the lemma.

If uℓ ∈ L1Λℓ(Γ), ℓ ∈ {0, . . . , N − 1}, it follows by symmetry of the fundamental
solution that for x /∈ Γ they admit the integral representations

(Sλℓ uℓ)(x) = 〈uℓ, tℓ G
λ
ℓ (x, ·)〉Γ and (Dλ

ℓ+1uℓ)(x) = 〈uℓ, nℓ+1G
λ
ℓ+1(x, ·)〉Γ ,(4.15)

which generalizes [14, Theorem 6.10] and [20, Theorem 3.1.6].
Since Hodge star operators are L2-isometric, we observe, using (4.3), that away

from Γ (x 6∈ Γ)

⋆−1
ℓ+1,x 〈 ⋆Γℓ uℓ, tN−ℓ−1 G

λ
N−ℓ−1(x, ·)〉Γ

= 〈uℓ, (⋆
Γ
ℓ )

−1tN−ℓ−1 ⋆ℓ+1 G
λ
ℓ+1(x, ·)〉Γ = 〈uℓ, nℓ+1G

λ
ℓ+1(x, ·)〉Γ .

Therefore, a density argument eventually shows that for 1 ≤ ℓ ≤ N ,

⋆−1
ℓ SλN−ℓ ⋆

Γ
ℓ−1 = Dλ

ℓ and ⋆−1
S
λ ⋆Γ = D

λ,(4.16)

where we have introduced the rectangular (N + 1) × N block operator matrices of
boundary potentials

S
λ :=

















Sλ0 0
Sλ1

. . .

SλN−1

0 . . . 0

















and D
λ :=



















0 . . . 0
Dλ

1

. . .

. . .

0 Dλ
N



















,(4.17)

acting on the spaces H
− 1

2

‖ Λ(Γ), H
− 1

2

⊥ Λ(Γ) related to the Grassmann algebra of differ-

ential forms on Γ.
The basic layer potentials have a special relationship with exterior differentiation,

expressed in the next lemma.

Lemma 4.3. For all vℓ ∈ H
− 1

2

‖ Λℓ(δΓ,Γ), uℓ ∈ H
− 1

2

⊥ Λℓ(dΓ,Γ), ℓ ∈ {0, . . . , N − 1},

hold

δℓ S
λ
ℓ (vℓ) = Sλℓ−1(δ

Γ
ℓ vℓ) and dℓ+1 D

λ
ℓ+1(uℓ) = −Dλ

ℓ+2(d
Γ
ℓ uℓ) .(4.18)

Proof. The proof relies on techniques used to show [12, Lemma 3] and [16,
(3.2.41)]. We elaborate this for the second identity asserted by the lemma. The
first can then be concluded as a consequence of (4.16).

Let uℓ ∈ L∞Λℓ(Γ)∩H
− 1

2

⊥ Λℓ(dΓ,Γ) be the tangential trace of a smooth ℓ-form on
M. Then, for x /∈ Γ, we can evaluate directly, using (4.2) and the integral represen-
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tation (4.15) of the boundary potential, that

(dℓ+1D
λ
ℓ+1uℓ)(x) =

∫

Γ

uℓ ∧ ı∗ ⋆ℓ+1 (dℓ+1,x G
λ
ℓ+1,ℓ+1)(x, ·)

=

∫

Γ

uℓ ∧ ı∗ ⋆ℓ+1 δℓ+2 (G
λ
ℓ+2,ℓ+2(x, ·))(4.19a)

= (−1)ℓ+2

∫

Γ

uℓ ∧ dΓN−ℓ−2 ı
∗ ⋆ℓ+2 (G

λ
ℓ+2,ℓ+2(x, ·))(4.19b)

= −(−1)ℓ(−1)ℓ+2

∫

Γ

dΓℓ uℓ ∧ ı∗ ⋆ℓ+2 (G
λ
ℓ+2,ℓ+2(x, ·))(4.19c)

= −〈dΓℓ uℓ, nℓ+2G
λ
ℓ+2,ℓ+2(x, ·)〉Γ ,

where (4.19a) is obtained by using (4.2), (4.19b) holds because the exterior derivative
commutes with pullbacks, and (4.19c) follows by integration by parts.

Corollary 4.4. For all v ∈ H
− 1

2

‖ Λ(δΓ,Γ) and u ∈ H
− 1

2

⊥ Λ(dΓ,Γ) holds true

δSλ(v) = S
λ(δΓv) and dDλ(u) = −D

λ(dΓu) .(4.20)

4.3. Non-local inner products on trace spaces. We generalize to manifold
the theory presented in [22, Section 8]. Similar results can be found in [11] and [17].

The key observation is that the continuous sesquilinear forms

(uℓ, vℓ)− 1
2
,λ,t := ⟪uℓ, tℓS

λ
ℓ (vℓ)⟫Γ , uℓ, vℓ ∈ H

− 1
2

‖ Λℓ(Γ) ,(4.21a)

(wℓ, zℓ)− 1
2
,λ,n := ⟪wℓ, nℓ+1D

λ
ℓ+1(zℓ)⟫Γ , wℓ, zℓ ∈ H

− 1
2

⊥ Λℓ(Γ) ,(4.21b)

define non-local inner products on the spaces H
− 1

2

‖ Λℓ(Γ) and H
− 1

2

⊥ Λℓ(Γ). For the sake

of brevity we introduce the notation

‖Uℓ‖
2
λ,ω := λ ‖Uℓ‖

2
L2Λℓ(ω) +‖dℓUℓ‖

2
L2Λℓ+1(ω) +‖δℓUℓ‖

2
L2Λℓ−1(ω) ,(4.22)

Uℓ ∈ HΛℓ(d, ω) ∩ HΛℓ(δ, ω), ℓ ∈ {0, . . . , N}, where ω is an open N -dimensional
sub-manifold of M. We also write (·, ·)λ,ω for the inner product inducing that norm
and draw attention to the connection between (·, ·)λ,M and the left-hand sides of the
variational definitions (4.10) and (4.11).

Lemma 4.5. For ℓ ∈ {0, . . . , N − 1} and all hℓ ∈ H
− 1

2

‖ Λℓ(Γ) and gℓ ∈ H
− 1

2

⊥ Λℓ(Γ),

we have

‖hℓ‖
2
− 1

2
,λ,t = ⟪hℓ, tℓS

λ
ℓ (hℓ)⟫Γ =

∥

∥

∥S
λ
ℓ hℓ

∥

∥

∥

2

λ,M
,(4.23a)

‖gℓ‖
2
− 1

2
,λ,n = ⟪gℓ, nℓ+1D

λ
ℓ+1(gℓ)⟫Γ =

∥

∥

∥D
λ
ℓ+1gℓ

∥

∥

∥

2

λ,M
.(4.23b)

Proof. Fixing hℓ ∈ H
− 1

2

‖ Λℓ(Γ), let us abbreviate Ψ := Sλℓ hℓ. Integrating by parts

the first term on the right-hand side of ‖Ψ‖2λ,M =‖Ψ‖2λ,Ω− +‖Ψ‖2λ,Ω+ , we obtain

‖Ψ‖2λ,Ω− = (dℓΨ, dℓΨ)Ω− + (δℓΨ, δℓΨ)Ω− + λ‖Ψ‖2L2Λℓ(Ω−)

= (−∆ℓΨ,Ψ)Ω− + ⟪n−ℓ+1dℓΨ, t−ℓ Ψ⟫Γ − ⟪t−ℓ−1δℓΨ, n−ℓ Ψ⟫Γ + λ‖Ψ‖2L2Λℓ(Ω−)

= ⟪n−ℓ+1dℓΨ, t−ℓ Ψ⟫Γ − ⟪t−ℓ−1δℓΨ, n−ℓ Ψ⟫Γ ,
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16 E. SCHULZ, R. HIPTMAIR, AND S. KURZ

where we have used the fact that Ψ satisfies the equation −∆ℓΨ = −λΨ in Ω−, i.e.
(−∆ℓΨ,Ψ)Ω− = −λ(Ψ,Ψ)Ω− = −λ‖Ψ‖2L2Λℓ(Ω−). Similarly, we find in Ω+ that

‖Ψ‖2λ,Ω+ = −⟪n+ℓ+1dℓΨ, t+ℓ Ψ⟫Γ + ⟪t+ℓ−1δℓΨ, n+ℓ Ψ⟫Γ.(4.24)

Summing these equalities and using the jump relations from Theorem 4.2 yields

‖Ψ‖2λ,M = ⟪−J nℓ+1dℓKΨ, tℓΨ⟫Γ = ⟪hℓ, tℓS
λ
ℓ hℓ⟫Γ =‖hℓ‖

2
− 1

2
,λ,t .

The proof of (4.23b) employs the same arguments and we skip it here.

The next result generalizes [4, Thm. 4] to arbitrary dimensions. Inequalities that
hold up to a positive constant only depending on Ω, λ and ℓ are denoted by ..

Theorem 4.6. For ℓ ∈ {0, . . . , N − 1} we have

‖hℓ‖
2

H
− 1

2
‖

Λℓ(Γ)
. ‖hℓ‖

2
− 1

2
,λ,t ∀hℓ ∈ H

− 1
2

‖ Λℓ(Γ) ,(4.25a)

‖gℓ‖
2

H
− 1

2
⊥ Λℓ(Γ)

. ‖gℓ‖
2
− 1

2
,λ,n ∀wℓ ∈ H

− 1
2

⊥ Λℓ(Γ) .(4.25b)

Proof. We focus on the first inequality. The second can be obtained using anal-

ogous arguments. Let t
†
ℓ : H

1
2

‖ Λ
ℓ(Γ) → H1Λℓ(Ω) be a bounded right-inverse for the

tangential (pullback) trace t−ℓ and Eℓ : H
1Λℓ(Ω) → H1Λℓ(M) be a continuous exten-

sion operator such that (Eℓ Uℓ)
∣

∣

Ω
= Uℓ for all Uℓ ∈ H1Λ(Ω) [17, Proposition 3.1].

Given hℓ ∈ H
− 1

2

‖ Λℓ(Γ), we start from the definition of H
− 1

2

‖ Λℓ(Γ) to estimate

‖hℓ‖
H

− 1
2

‖
Λℓ(Γ)

= sup

gℓ∈H
1
2
‖
Λℓ(Γ)

∣

∣⟪hℓ, gℓ⟫Γ∣∣
‖gℓ‖

H
1
2
‖
Λℓ(Γ)

. sup

gℓ∈H
1
2
‖
Λℓ(Γ)

∣

∣

∣⟪hℓ, tℓt
†
ℓgℓ⟫Γ

∣

∣

∣

∥

∥

∥
t
†
ℓgℓ

∥

∥

∥

H1Λℓ(Ω)

≤ sup
Wℓ∈H1Λℓ(Ω)

∣

∣⟪hℓ, tℓWℓ⟫Γ∣∣
‖Wℓ‖H1Λℓ(Ω)

. sup
Wℓ∈H1Λℓ(Ω)

∣

∣⟪hℓ, tℓEℓWℓ⟫Γ∣∣
‖EℓWℓ‖H1Λℓ(M)

. sup
Vℓ∈H1Λℓ(M)

∣

∣⟪hℓ, tℓVℓ⟫Γ∣∣
‖Vℓ‖H1Λℓ(M)

.(4.26)

Recalling (4.10), we introduce |⟪hℓ, tℓVℓ⟫Γ| = |
(

Sλℓ hℓ, Vℓ

)

λ,M
| in (4.26) to obtain

‖hℓ‖
H− 1

2 Λℓ(Γ)
. sup

Vℓ∈H1Λℓ(M)

|
(

Sℓℓhℓ, Vℓ

)

λ,M
|

‖Vℓ‖H1Λℓ(M)

.(4.27)

Then, since, obviously, ‖Vℓ‖λ,M .‖Vℓ‖H1Λℓ(M) for all Vℓ ∈ H1Λℓ(Ω), we find

‖hℓ‖
H− 1

2 Λℓ(Γ)
. sup

Vℓ∈H1Λℓ(M)

|
(

Sℓℓhℓ, Vℓ

)

λ,M
|

‖Vℓ‖λ,M
=
∥

∥

∥S
λ
ℓ hℓ

∥

∥

∥

λ,M
,

by applying the Cauchy-Schwarz inequality. Lemma 4.5 concludes the proof.
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4.4. Representation formula for the regularized Hodge-Dirac operator.
We generalize [22, Section 4.4]. To begin with, integrating by parts after using the
commutative relations (4.6) eventually verifies that

N
λ
D = DN

λ(4.28)

in the sense of distributions. Recalling (1.10) with λ = κ2, we find that

(4.29) (D− iκ)Nλ (D+ iκ) = (−∆+ κ2)Nλ = Id ,

which shows that (D− iκ)Nλ is a Newton-potential-type operator for the regularized
Dirac operator Dκ = (D+iκ), and that its Schwartz kernel (D− iκ)Gλ can be viewed
as the corresponding fundamental solution for Dκ.

Proposition 4.7 (Representation formula for Dκ). If U ∈ L2Λ(M) and

there exists F ∈ L2Λ(M) such that F |Ω− = D
κU |Ω− and F |Ω+ = D

κU |Ω+ ,

then

U = (D− iκ)
(

N
λF − S

λJnUK +D
λJtUK

)

.(4.30)

Proof. Integrating by parts, we have

⟪(D+ iκ)U ,V ⟫M = 〈U , (D+ iκ)V 〉Ω− + 〈U , (D+ iκ)V 〉Ω+

= 〈F ,V 〉Ω− + ⟪t−V ,n− U⟫Γ − ⟪t− U ,n−V ⟫Γ+
〈F ,V 〉Ω+ − ⟪t+V ,n+ U⟫Γ + ⟪t+ U ,n+V ⟫Γ

= 〈F ,V 〉M − ⟪tV , JnKU⟫Γ + ⟪JtKU ,nV ⟫Γ
for all V ∈ C∞

0 Λ(M). The regularity assumption on U guarantees that the traces
are well-defined. We have also used the fact that V is smooth across the boundary Γ
to obtain the last equality, because that global smoothness implies that t+V = t−V

and n+V = n−V , i.e. the jumps vanish on Γ. Hence,

(4.31) (D+ iκ)U = F − t
′ JnUK + n

′ JtUK in H−1Λ(M) .

Applying the Newton potential operator Nλ on both sides of this equation and in-
serting in the definitions of the basic layer potentials from (4.8) yields

N
λ(D+ iκ)U = N

λF −N
λ
t
′ JnUK +N

λ
n
′ JtUK

= N
λF − S

λ JnUK +D
λ JtUK .

(4.32)

Since D
κ U is square-integrable, the mapping properties of the Newton potential

N
λ : L2Λ(M) → H1Λ(M) ensure that the left-hand side in this identity belongs in

the domain of the Hodge–Dirac operator. Moreover, from Lemma 4.1 we know that
the images of the basic layer potentials belong to H1Λ(M). Therefore, we can apply
D− iκ on both sides of (4.32) and use the commutation relation (4.28) plus (4.29) to
arrive at (4.30).

We can identify two separate layer potentials contributing to the representation
formula (4.30). They can be distinguished by the type of traces they act upon:

SL
κ[D] := (D− iκ)Sλ : H

− 1
2

‖ Λ(δΓ,Γ) −→ HΛ(D,M\ Γ) ,(4.33a)

DL
κ[D] := (D− iκ)Dλ : H

− 1
2

⊥ Λ(dΓ,Γ) −→ HΛ(D,M\ Γ) .(4.33b)
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18 E. SCHULZ, R. HIPTMAIR, AND S. KURZ

It follows immediately from Theorem 4.2 that these layer potentials satisfy jump
relations. For example,

(4.34) JnKSLκ[D] = JnK (D− iκ)Sλ = JndKSλ + JnδKSλ − iκJnKSλ = −Id .

Similar manipulations prove four jump relations and we collect them in the next
proposition.

Proposition 4.8 (Jump relations for layer potentials induced by D
κ).

The layer potentials introduced in (4.33) satisfy in H
− 1

2

‖ Λ(δΓ,Γ) and

H
− 1

2

⊥ Λ(dΓ,Γ), respectively,

JtKSLκ[D] = 0 , JtKDL
κ[D] = Id ,(4.35a)

JnKSLκ[D] = −Id , JnKDL
κ[D] = 0 .(4.35b)

4.5. Representation formulas for the regularized Hodge-Laplace oper-
ators. Generalizing [6, Section 4], we apply the approach pursued in Subsection 4.4
to the regularized Hodge–Laplace operator L

λ
ℓ , ℓ ∈ {0, . . . , N} fixed throughout the

remainder of this section.

4.5.1. Second-order form of the Hodge-Laplacian. In Subsection 4.1 we
have seen that a Newton potential is readily available for the Hodge–Laplacian in
strong second-order formulation. From it we obtain a representation formula:

Proposition 4.9 (Representation formula for L
λ
ℓ ). If ℓ ∈ {0, . . . , N},

Uℓ ∈ L2Λℓ(M), and there exists Fℓ ∈ L2Λℓ(M) such that Fℓ|Ω− = L
λ
ℓUℓ|Ω−

and Fℓ|Ω+ = L
λ
ℓUℓ|Ω+ , then

Uℓ = Nλ
ℓFℓ −

[

dℓ−1 Id
]

[

Sλℓ−1JnℓUℓK
Sλℓ Jnℓ+1dℓUℓK

]

+
[

Id δℓ+1

]

[

Dλ
ℓ Jtℓ−1δℓUℓK
Dλ

ℓ+1JtℓUℓK

]

.

Proof. The arguments are similar to those in the proof of Proposition 4.7. From
Green’s second formula

(4.36)
〈

L
λ
ℓUℓ, Vℓ

〉

Ω∓
−
〈

Uℓ,L
λ
ℓ Vℓ

〉

Ω∓

= ±⟪Tt,∓
∆,ℓUℓ,T

n,∓
∆,ℓVℓ⟫Γ ∓ ⟪Tn,∓

∆,ℓUℓ,T
t,∓
∆,ℓVℓ⟫Γ , Uℓ, Vℓ ∈ HΛℓ(∆,Ω±) ,

and the distributional interpretation of Lλ
ℓ we infer

⟪Lλ
ℓUℓ, Vℓ⟫M = 〈Uℓ,L

λ
ℓ Vℓ〉Ω− + 〈Uℓ,L

λ
ℓ Vℓ〉Ω+

= 〈Fℓ, Vℓ〉Ω− − ⟪Tt,−
∆,ℓUℓ,T

n,−
∆,ℓVℓ⟫Γ + ⟪Tn,−

∆,ℓUℓ,T
t,−
∆,ℓVℓ⟫Γ+

〈Fℓ, Vℓ〉Ω+ + ⟪Tt,+
∆,ℓUℓ,T

n,+
∆ℓ

Vℓ⟫Γ − ⟪Tn,+
∆,ℓUℓ,T

t,+
∆,ℓVℓ⟫Γ

= 〈Fℓ, Vℓ〉M + ⟪JTt

∆,ℓUℓK,T
n

∆,ℓVℓ⟫Γ − ⟪JTn

∆,ℓUℓK,T
t

∆,ℓVℓ⟫Γ
for all test functions Vℓ ∈ C∞

0 Λℓ(M). Hence, in the sense of distributions, we have

L
λ
ℓUℓ = Fℓ +

(

Tn

∆,ℓ

)′

JTt

∆,ℓUℓK −
(

Tt

∆,ℓ

)′

JTn

∆,ℓUℓK .
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Applying the Newton potential operator Nλ
ℓ converts this into

Uℓ = Nλ
ℓ (−∆ℓ + λId)Uℓ = Nλ

ℓFℓ + Nλ
ℓ

(

Tn

∆,ℓ

)′

JTt

∆,ℓUℓK − Nλ
ℓ

(

Tt

∆,ℓ

)′

JTn

∆,ℓUℓK .

Explicitly, we appeal to the integral representations provided in (4.15) to evaluate for
x 6∈ Γ

Nλ
ℓ

(

Tt

∆,ℓ

)′
[

hℓ−1

hℓ

]

(x) = ⟪hℓ−1, tℓ−1δℓ G
λ
ℓ (x, ·)⟫Γ + ⟪hℓ, tℓG

λ
ℓ (x, ·)⟫Γ

= dℓ−1,x⟪hℓ−1, tℓ−1G
λ
ℓ−1(x, ·)⟫Γ + ⟪hℓ, tℓG

λ
ℓ (x, ·)⟫Γ

=
(

dℓ−1S
λ
ℓ−1(hℓ−1)

)

(x) + Sλℓ (hℓ)(x) ,

(4.37a)

Nλ
ℓ

(

Tn

∆,ℓ

)′
[

gℓ−1

gℓ

]

(x) = ⟪gℓ−1, nℓG
λ
ℓ (x, ·)⟫Γ + ⟪gℓ, nℓ+1dℓG

λ
ℓ (x, ·)⟫Γ

= ⟪gℓ−1, nℓG
λ
ℓ (x, ·)⟫Γ + δℓ+1,x⟪gℓ, nℓ+1G

λ
ℓ+1(x, ·)⟫Γ

= Dλ
ℓ (gℓ−1)(x) +

(

δℓ+1D
λ
ℓ+1(gℓ)

)

(x) ,

(4.37b)

where we have used the identities stated in (4.2). Thus, we have arrived at the
representation formula

Uℓ = Nλ
ℓFℓ − dℓ−1S

λ
ℓ−1JnℓUℓK − Sλℓ Jnℓ+1dℓUℓK + Dλ

ℓ Jtℓ−1δℓUℓK + δℓ+1D
λ
ℓ+1JtℓUℓK .

In the representation formula of Proposition 4.9, we can identify two layer poten-
tials

SLλℓ [∆]

[

hℓ−1

hℓ

]

:= dℓ−1S
λ
ℓ−1(hℓ−1) + Sλℓ (hℓ) ,

[

hℓ−1

hℓ

]

∈ Hn,ℓ
∆ (Γ) ,

DLλℓ [∆]

[

gℓ−1

gℓ

]

:= Dλ
ℓ (gℓ−1) + δℓ+1D

λ
ℓ+1(gℓ) ,

[

gℓ−1

gℓ

]

∈ H t,ℓ
∆ (Γ) ,

(4.38)

one taking as arguments traces of the form JTn

∆,ℓ UℓK and the other JTt

∆,ℓ UℓK. Appeal-
ing to the mapping properties of the basic layer potentials, they provide continuous
operators

SLλℓ [∆] : Hn,ℓ
∆ (Γ) → HΛℓ(∆,M\ Γ) ,(4.39a)

DLλℓ [∆] : H t,ℓ
∆ (Γ) → HΛℓ(∆,M\ Γ) .(4.39b)

Once again, jump relations for these potentials are obtained from Theorem 4.2. How-
ever, unlike for the Hodge–Dirac operator, for which the calculations were direct, we
now also need to appeal to Lemma 4.1. For example, while

JTn

∆,ℓKSL
λ
ℓ [∆]

[

hℓ−1

hℓ

]

=

[

JnℓKdℓ−1S
λ
ℓ−1(hℓ−1) + JnℓKS

λ
ℓ (hℓ)

Jnℓ+1dℓKdℓ−1S
λ
ℓ−1(hℓ−1) + Jnℓ+1dℓKS

λ
ℓ (hℓ)

]

= −

[

hℓ−1

hℓ

]

simply follows from Theorem 4.2 because dℓ dℓ−1 = 0, we must evaluate in

JTt

∆,ℓKSL
λ
ℓ [∆]

[

hℓ−1

hℓ

]

=

[

Jtℓ−1δℓKdℓ−1S
λ
ℓ−1(hℓ−1) + Jtℓ−1δℓKS

λ
ℓ (hℓ)

JtℓKdℓ−1S
λ
ℓ−1(hℓ−1) + JtℓKS

λ
ℓ (hℓ)

]
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the jump Jtℓ−1δℓKdℓ−1S
λ
ℓ−1, which we have not encountered before. To show that it

vanishes, we use the assertion of Lemma 4.1 that the basic layer potential satisfies the
regularized Hodge–Laplace equation in the interior and exterior domains to compute

(4.40) Jtℓ−1δℓKdℓ−1S
λ
ℓ−1 = −dℓ−2Jtℓ−1δℓ−1KS

λ
ℓ−1 − λJtℓ−1KS

λ
ℓ−1 = 0.

The other jump relations are obtained similarly and the following proposition sum-
marizes them:

Proposition 4.10 (Jump relations for layer potentials induced by L
λ
ℓ ).

The following identities hold in the product trace spaces Hn,ℓ
∆ (Γ) and H t,ℓ

∆ (Γ),
respectively,

JTt

∆,ℓKSL
λ
ℓ [∆] = 0 , JTt

∆,ℓKDL
λ
ℓ [∆] = Id ,(4.41a)

JTn

∆,ℓKSL
λ
ℓ [∆] = −Id , JTn

∆,ℓKDL
λ
ℓ [∆] = 0 .(4.41b)

4.5.2. Mixed-order form of L
λ
ℓ . Similarly as for the Hodge–Dirac operator,

we can build a Newton-potential type solution operator for the mixed-order Hodge–
Laplacian M

λ
ℓ using the one available for the Hodge–Laplacian in strong formulation.

Notice that

[

−dℓ−2δℓ−1 − λId δℓ
dℓ−1 Id

]

M
λ
ℓ =

[

−dℓ−2δℓ−1 − λId δℓ
dℓ−1 Id

] [

−Id δℓ
dℓ−1 δℓ+1dℓ + λ Id

]

=

[

L
λ
ℓ−1 0
0 L

λ
ℓ

]

,

when acting on C∞
0 Λℓ−1(M) × C∞

0 Λℓ(M) and, consequently, also in the sense of
distributions. Moreover, integrating by parts after using the commutative relations
(4.2) verifies the commutation property

[

−dℓ−2δℓ−1 − λId δℓ
dℓ−1 Id

]

[

Nλ
ℓ−1 0
0 Nλ

ℓ

]

=

[

Nλ
ℓ−1 0
0 Nλ

ℓ

]

[

−dℓ−2δℓ−1 − λId δℓ
dℓ−1 Id

]

,

which also holds in the sense of distributions. We conclude that

(4.42)

[

−dℓ−2δℓ−1 − λId δℓ
dℓ−1 Id

]

[

Nλ
ℓ−1 0
0 Nλ

ℓ

]

: C∞
0 Λℓ−1(M)× C∞

0 Λℓ(M)

→ C∞Λℓ−1(M)× C∞Λℓ(M)

yields an inverse on M for the Hodge–Laplacian M
λ
ℓ in mixed-order formulation. By

duality, it also provides an inverse in the sense of distributions.
A similar inverse can be built for R

λ
ℓ , but since the following development is

mirrored for the mixed formulation involving R
λ
ℓ , we will focus our attention on M

λ
ℓ .
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Proposition 4.11 (Representation formula for mixed-order Hodge-
Laplacian). If [Uℓ−1, Uℓ]

⊤ ∈ L2Λℓ−1(M) × L2Λℓ(M) and there ex-

ists [Fℓ−1, Fℓ]
⊤ ∈ L2Λℓ−1(M) × L2Λℓ(M) such that [Fℓ−1, Fℓ]

⊤|Ω− =
M

λ
ℓ [Uℓ−1, Uℓ]

⊤|Ω− and [Fℓ−1, Fℓ]
⊤|Ω+ = M

λ
ℓ [Uℓ−1, Uℓ]

⊤|Ω+ , then

[

Uℓ−1

Uℓ

]

=

[

−dℓ−2δℓ−1 − λId δℓ
dℓ−1 Id

]

([

Nλ
ℓ−1Fℓ−1

Nλ
ℓFℓ

]

−

[

Sλℓ−1 JnℓUℓK
Sλℓ Jnℓ+1dℓUℓK

]

+

[

0
Dλ

ℓ Jtℓ−1Uℓ−1K + δℓ+1D
λ
ℓ+1 JtℓUℓK

])

.

Proof. Using the same strategy as in Proposition 4.7 and Proposition 4.9, we
obtain from Green’s second formula (3.10) for the mixed-order Hodge–Laplacian that

⟪Mλ
ℓ

[

Uℓ−1

Uℓ

]

,

[

Vℓ−1

Vℓ

]

⟫
M

=

〈

[

Uℓ−1

Uℓ

]

,Mλ
ℓ

[

Vℓ−1

Vℓ

]

〉

Ω−

+

〈

[

Uℓ−1

Uℓ

]

,Mλ
ℓ

[

Vℓ−1

Vℓ

]

〉

Ω+

=

〈

[

Fℓ−1

Fℓ

]

,

[

Vℓ−1

Vℓ

]

〉

Ω−

+

〈

[

Fℓ−1

Fℓ

]

,

[

Vℓ−1

Vℓ

]

〉

Ω+

+

⟪Tn,−
M,ℓ

[

Uℓ−1

Uℓ

]

,Tt,−
M,ℓ

[

Vℓ−1

Vℓ

]

⟫
Γ

− ⟪Tt,−
M,ℓ

[

Uℓ−1

Uℓ

]

,Tn,−
M,ℓ

[

Vℓ−1

Vℓ

]

⟫
Γ

−

⟪Tn,+
M,ℓ

[

Uℓ−1

Uℓ

]

,Tt,+
M,ℓ

[

Vℓ−1

Vℓ

]

⟫
Γ

+ ⟪Tt,+
M,ℓ

[

Uℓ−1

Uℓ

]

,Tn,+
M,ℓ

[

Vℓ−1

Vℓ

]

⟫
Γ

=

〈

[

Fℓ−1

Fℓ

]

,

[

Vℓ−1

Vℓ

]

〉

M

−

⟪JTn

M,ℓK

[

Uℓ−1

Uℓ

]

,Tt

M,ℓ

[

Vℓ−1

Vℓ

]

⟫
Γ

+ ⟪JTt

M,ℓK

[

Uℓ−1

Uℓ

]

,Tn

M,ℓ

[

Vℓ−1

Vℓ

]

⟫
Γ

for all [Vℓ−1, Vℓ]
⊤ ∈ C∞

0 Λℓ−1(M)× C∞
0 Λℓ(M) and conclude that

(4.43) M
λ
ℓ

[

Uℓ−1

Uℓ

]

=

[

Fℓ−1

Fℓ

]

− (Tt

M,ℓ)
′JTn

M,ℓK

[

Uℓ−1

Uℓ

]

+ (Tn

M,ℓ)
′JTt

M,ℓK

[

Uℓ−1

Uℓ

]

in the sense of distributions. Applying the inverse provided in (4.42) yields

[

Uℓ−1

Uℓ

]

=

[

−dℓ−2δℓ−1 − λId δℓ
dℓ−1 Id

]

([

Nλ
ℓ−1Fℓ−1

Nλ
ℓFℓ

]

+

[

Nλ
ℓ−1 0
0 Nλ

ℓ

]

(

Tn

M,ℓ

)′

JTt

M,ℓK

[

Uℓ−1

Uℓ

]

−

[

Nλ
ℓ−1 0
0 Nλ

ℓ

]

(

Tt

M,ℓ

)′

JTn

M,ℓK

[

Uℓ−1

Uℓ

]

)

.
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Explicitly, we evaluate for x ∈ M \ Γ





[

Nλ
ℓ−1 0
0 Nλ

ℓ

]

(

Tn

M,ℓ

)′
[

gℓ−1

gℓ

]



 (x) =

[

0⟪gℓ−1, nℓG
λ
ℓ (x, ·)⟫Γ + ⟪gℓ, nℓ+1dℓG

λ
ℓ (x, ·)⟫Γ

]

=

[

0
(

Dλ
ℓ gℓ−1

)

(x) +
(

δℓ+1D
λ
ℓ+1gℓ

)

(x)

]

and




[

Nλ
ℓ−1 0
0 Nλ

ℓ

]

(

Tt

M,ℓ

)′
[

hℓ−1

hℓ

]



 (x) =

[⟪hℓ−1, tℓ−1G
λ
ℓ−1(x, ·)⟫Γ⟪hℓ, tℓG

λ
ℓ (x, ·)⟫Γ

]

=





(

Sλℓ−1hℓ−1

)

(x)
(

Sλℓ hℓ

)

(x)



 .

In the representation formula of Proposition 4.11, we recognize two layer poten-
tials

SLλℓ [M] : Hn,ℓ
∆ (Γ) → dom(Mλ

ℓ ) and DLλℓ [M] : H t,ℓ
∆ (Γ) → dom(Mλ

ℓ ) ,(4.44)

defined by

SLλℓ [M]

[

hℓ−1

hℓ

]

:=

[

−dℓ−2δℓ−1 − λId δℓ
dℓ−1 Id

]

[

Sλℓ−1hℓ−1

Sλℓ hℓ

]

=

[

−dℓ−2δℓ−1S
λ
ℓ−1hℓ−1 − λSλℓ−1hℓ−1 + δℓS

λ
ℓ hℓ

dℓ−1S
λ
ℓ−1hℓ−1 + Sλℓ hℓ

]

,

DLλℓ [M]

[

gℓ−1

gℓ

]

:=

[

−dℓ−2δℓ−1 − λId δℓ
dℓ−1 Id

]

[

0
Dλ

ℓ gℓ−1 + δℓ+1D
λ
ℓ+1gℓ

]

=

[

δℓD
λ
ℓ gℓ−1

Dλ
ℓ gℓ−1 + δℓ+1D

λ
ℓ+1gℓ

]

.

Jump relations for these boundary potentials are obtained using the same tech-
niques as in the previous sections:

Proposition 4.12 (Jump relations for layer potentials related to M
λ
ℓ ). In

the product trace spaces Hn,ℓ
∆ (Γ) and H t,ℓ

∆ (Γ), respectively, holds

JTt

M,ℓKSL
λ
ℓ [M] = 0 , JTt

M,ℓKDL
λ
ℓ [M] = Id ,(4.45a)

JTn

M,ℓKSL
λ
ℓ [M] = −Id , JTn

M,ℓKDL
λ
ℓ [M] = 0 .(4.45b)

Proof. Using the third jump relation provided in (4.14c), we can evaluate directly

(4.46) JTt

M,ℓKDL
λ
ℓ [M]

[

gℓ−1

gℓ

]

=

[

Jtℓ−1KδℓD
λ
ℓ gℓ−1

JtℓKD
λ
ℓ gℓ−1 + JtℓKδℓ+1D

λ
ℓ+1gℓ

]

=

[

gℓ−1

gℓ

]

.
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Using the second jump relation in (4.14b) and the complex property dℓ dℓ=1 ≡ 0, we
obtain

(4.47) JTn

M,ℓKSL
λ
ℓ [M] =

[

JnℓKdℓ−1S
λ
ℓ−1hℓ−1 + JnℓKS

λ
ℓ hℓ

Jnℓ+1dℓKdℓ−1S
λ
ℓ−1hℓ−1 + Jnℓ+1dℓKS

λ
ℓ hℓ

]

= −

[

hℓ−1

hℓ

]

.

The other jump relations are similarly obtained by applying the jump relations from
Theorem 4.2, after combining the commutativity properties of Lemma 4.3 with (4.13)
(see (4.40)).

5. First-kind Boundary Integral Operators (BIOs). Boundary integral op-
erators (BIOs) provide linear mappings between trace spaces. Generically, we obtain
them by letting trace operators act on representation formulas, remember Figure 1.
We now pursue this policy for the representation formulas found in Subsection 4.4
and Subsection 4.5, and the relevant traces from Subsection 3.1 and Subsection 3.2,
respectively. We confine ourselves to so-called first-kind BIOs characterized as those
BIOs that are bounded linear operators between trace spaces that can be put in
duality with L2(Γ) pivot spaces.

Throughout this section the closed, densely defined unbounded operators

(δΓℓ )
∗ : H

− 1
2

‖ Λℓ−1(Γ) −→ H
− 1

2

‖ Λℓ(Γ) ,(5.1a)

(dΓℓ )
∗ : H

− 1
2

⊥ Λℓ+1(Γ) −→ H
− 1

2

⊥ Λℓ(Γ) ,(5.1b)

designate the Hilbert space adjoints in H
− 1

2

‖ Λℓ−1(Γ) or H
− 1

2

⊥ Λℓ+1(Γ), respectively, of

the closed and densely defined unbounded operators

δΓℓ : H
− 1

2

‖ Λℓ(δΓ,Γ) ⊂ H
− 1

2

‖ Λℓ(Γ) −→ H
− 1

2

‖ Λℓ−1(Γ) ,(5.2a)

dΓℓ : H
− 1

2

⊥ Λℓ(dΓ,Γ) ⊂ H
− 1

2

⊥ Λℓ(Γ) −→ H
− 1

2

⊥ Λℓ+1(Γ) ,(5.2b)

introduced in Section 2, which underlie the trace de Rham Hilbert complexes (2.4a)

and (2.4b). We suppose that spaces H
− 1

2

‖ Λ(Γ) and H
− 1

2

⊥ Λ(Γ) are equipped with the

non-local inner products (·, ·)− 1
2
,λ,t and (·, ·)− 1

2
,λ,n defined in Subsection 4.3, (4.21a)

and (4.21b).

Remark 5.1. Since the trace de Rham complexes (2.4a) and (2.4b) are equipped
with the non-local inner products (4.21a) and (4.21b), it goes without saying that
neither the pair (δΓℓ , (δ

Γ
ℓ )

∗) nor (dΓℓ , (d
Γ
ℓ )

∗) are adjoints with respect to an L2(Γ)-
pairing.

5.1. First-kind BIOs for the regularized Hodge-Dirac operator. The
two trace operators belonging to Hodge-Dirac operator are t and n and the crucial
representation formula is (4.30). Applying t and n (from either side of Γ, irrelevant due
to the jump relations of Proposition 4.8) to the layer potentials SL

κ[D] and DL
κ[D]

from (4.33) we extract two first-kind BIOs for the regularized Hodge–Dirac operator:

Vκ[D] := t SL
κ[D] = t (D− ıκ)Sλ : H

− 1
2

‖ Λ(δΓ,Γ) −→ H
− 1

2

⊥ Λ(dΓ,Γ) ,(5.3a)

Wκ[D] := nDL
κ[D] = n (D− ıκ)Dλ : H

− 1
2

⊥ Λ(dΓ,Γ) −→ H
− 1

2

‖ Λ(δΓ,Γ) .(5.3b)
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In light of the fact that the trace spaces H
− 1

2

⊥ Λ(dΓ,Γ) and H
− 1

2

‖ Λ(δΓ,Γ) are in du-

ality with respect to the L2Λ(Γ) pairing both Vκ[D] and Wκ[D] qualify as first-kind
boundary integral operators.

Using Corollary 4.4 and (2.9), integration by parts yields

⟪Vκ[D]h,w ⟫Γ = ⟪ tδSλh,w ⟫Γ + ⟪ tdSλh,w ⟫Γ − ıκ⟪tSλh,w⟫Γ
= ⟪ tSλ(δΓh),w ⟫Γ + ⟪ tSλh, δΓw ⟫Γ − ıκ⟪tSλh,w⟫Γ
= (δΓh,w)− 1

2
,λ,t + (h, δΓw)− 1

2
,λ,t − ıκ(h,w)− 1

2
,λ,t

(5.4)

for all h,w ∈ H
− 1

2

‖ Λ(δΓ,Γ). Similarly, we can also compute

⟪Wκ[D]g,v ⟫Γ = ⟪ndDλg,v ⟫Γ + ⟪nδDλg,v ⟫Γ − ıκ⟪nDλg,v⟫Γ
= −⟪nDλ(dΓg),v ⟫Γ − ⟪nDλg,dΓv ⟫Γ − ıκ⟪nDλg,v⟫Γ
= −(dΓg,v)− 1

2
,λ,n − (g,dΓv)− 1

2
,λ,n − ıκ(g,v)− 1

2
,λ,n

(5.5)

for all g,v ∈ H
− 1

2

⊥ Λ(dΓ,Γ).
We encourage the reader to compare the bilinear forms in (5.4) and (5.5) with

the bilinear forms Aδ and Ad appearing in the variational problems (3.4a) and (3.4b)
for the regularized Hodge–Dirac operator. Thus, the identities (5.4) and (5.5) can be
rephrased as the following main result:

Theorem 5.2 (Vκ[D] and Wκ[D] are Hodge-Dirac operators for the trace
De Rham complex). From a variational point of view, the first-kind BIOs

defined in (5.3a) and (5.3b) for the regularized Hodge–Dirac operator D
κ are

themselves regularized Hodge–Dirac operators

Vκ[D] = δΓ + (δΓ)∗ − ıκId ,(5.6a)

Wκ[D] = −(dΓ + (dΓ)∗)− ıκId ,(5.6b)

in the trace de Rham complexes (2.4a) and (2.4b), whose spaces are equipped

with the non-local inner products (4.21a) and (4.21b).

5.2. First-kind BIOs for the regularized Hodge-Laplace operators. In
Subsection 4.5 we studied the Hodge-Laplacian both in second-order (standard) form
and as mixed-order system. Since different trace operators and layer potentials matter
for both cases, also the derivation of BIOs will be carried out separately.

5.2.1. First-kind BIOs for second-order form of Lλ
ℓ . Subsection 3.2 intro-

duced the crucial trace operators

T
t,∓
∆,ℓ Uℓ :=

[

t∓ℓ−1δℓUℓ

t∓ℓ Uℓ

]

: HΛℓ(∆,Ω∓) → H t,ℓ
∆ (Γ) = H

− 1
2

⊥ Λℓ−1(dΓ,Γ)×H
− 1

2

⊥ Λℓ(dΓ,Γ) ,

T
n,∓
∆,ℓ Uℓ :=

[

n∓ℓ Uℓ

n∓ℓ+1dℓUℓ

]

: HΛℓ(∆,Ω∓) → Hn,ℓ
∆ (Γ) = H

− 1
2

‖ Λℓ−1(δΓ,Γ)×H
− 1

2

‖ Λℓ(δΓ,Γ),
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and Proposition 4.9 provided the relevant representation formula, from which we
extracted the layer potentials SLλℓ [∆] : Hn,ℓ

∆ (Γ) → HΛℓ(∆,M \ Γ) and DLλℓ [∆] :

H t,ℓ
∆ (Γ) → HΛℓ(∆,M\Γ) defined in (4.38). Remember that the trace spaces H t,ℓ

∆ (Γ)

and Hn,ℓ
∆ (Γ) are in duality with respect to the L2Λℓ−1(Γ) × L2Λℓ(Γ) inner product,

which ensures that the BIOs

Vλ
ℓ [∆] := Tt

∆,ℓSL
λ
ℓ [∆] : Hn,ℓ

∆ (Γ) −→ H t,ℓ
∆ (Γ) ,(5.7a)

Wλ
ℓ [∆] := Tn

∆,ℓDL
λ
ℓ [∆] : H t,ℓ

∆ (Γ) −→ Hn,ℓ
∆ (Γ)(5.7b)

are first-kind. Again, thanks to the jump relations (4.41) it does not matter from
which side of Γ we apply the trace operator and, therefore, we omit the superscripts
± here and in the sequel.

Starting with Vλ
ℓ [∆], we evaluate using Lemma 4.3 (terms in green and blue),

Lemma 4.1 (terms in blue) and (2.9) (terms in red), that

Tt

∆,ℓSL
λ
ℓ [∆]

[

hℓ−1

hℓ

]

=

[

tℓ−1δℓdℓ−1S
λ
ℓ−1hℓ−1 + tℓ−1δℓS

λ
ℓ hℓ

tℓdℓ−1S
λ
ℓ−1hℓ−1 + tℓS

λ
ℓ hℓ

]

=

[

−dΓℓ−2tℓ−2S
λ
ℓ−2(δ

Γ
ℓ−1hℓ−1)− λtℓ−1S

λ
ℓ−1hℓ−1+tℓ−1S

λ
ℓ−1(δ

Γ
ℓ hℓ)

dΓℓ tℓ−1S
λ
ℓ−1hℓ−1 + tℓS

λ
ℓ hℓ

]

,

from which we obtain, using integration by parts on Γ,

(5.8) ⟪Tt

∆,ℓSL
λ
ℓ [∆]

[

hℓ−1

hℓ

]

,

[

wℓ−1

wℓ

]

⟫
Γ

= −⟪tℓ−2S
λ
ℓ−2(δ

Γ
ℓ−1hℓ−1), δ

Γ
ℓ−1wℓ−1⟫Γ − λ⟪tℓ−1S

λ
ℓ−1hℓ−1, wℓ−1⟫Γ

+⟪tℓ−1S
λ
ℓ−1(δ

Γ
ℓ hℓ), wℓ−1⟫Γ + ⟪tℓ−1S

λ
ℓ−1hℓ−1, δ

Γ
ℓ wℓ⟫Γ

+⟪tℓSλℓ hℓ, wℓ⟫Γ
= −

(

δΓℓ−1hℓ−1, δ
Γ
ℓ−1wℓ−1

)

− 1
2
,λ,t

− λ (hℓ−1, wℓ−1)− 1
2
,λ,t +

(

δΓℓ hℓ, wℓ−1

)

− 1
2
,λ,t

+
(

hℓ−1, δ
Γ
ℓ wℓ

)

− 1
2
,λ,t

+

(hℓ, wℓ)− 1
2
,λ,t .

Similarly for Wλ
ℓ [∆], evaluating

Tn

∆,ℓDL
λ
ℓ [∆]

[

gℓ−1

gℓ

]

=

[

nℓD
λ
ℓ gℓ−1 + nℓδℓ+1D

λ
ℓ+1gℓ

nℓ+1dℓD
λ
ℓ gℓ−1 + nℓ+1dℓδℓ+1D

λ
ℓ+1gℓ

]

=

[

nℓD
λ
ℓ gℓ−1−δΓℓ nℓ+1D

λ
ℓ+1gℓ

−nℓ+1D
λ
ℓ+1(d

Γ
ℓ−1gℓ−1)−nℓ+1δℓ+2dℓ+1D

λ
ℓ+1gℓ − λnℓ+1D

λ
ℓ+1gℓ

]

=

[

nℓD
λ
ℓ gℓ−1−δΓℓ nℓ+1D

λ
ℓ+1gℓ

−nℓ+1D
λ
ℓ+1(d

Γ
ℓ−1gℓ−1)−δΓℓ+1nℓ+2D

λ
ℓ+2(d

Γ
ℓ gℓ)− λnℓ+1D

λ
ℓ+1gℓ

]
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eventually leads to

(5.9) ⟪Tn

∆,ℓDL
λ
ℓ [∆]

[

gℓ−1

gℓ

]

,

[

vℓ−1

vℓ

]

⟫
Γ

= (gℓ−1, vℓ−1)− 1
2
,λ,n −

(

gℓ, d
Γ
ℓ−1vℓ−1

)

− 1
2
,λ,n

−

(

dΓℓ−1gℓ−1, vℓ

)

− 1
2
,λ,n

−
(

dΓℓ gℓ, d
Γ
ℓ vℓ

)

− 1
2
,λ,n

−

λ (gℓ, vℓ)− 1
2
,λ,n .

Again, we ask the reader to compare the sesqui-linear forms (5.8) and (5.9) with
the bilinear forms (3.11) and (3.16). They match apart from the underlying inner
products and this observation amounts to our second main result.

Theorem 5.3 (Vλ
ℓ [∆] and Wλ

ℓ [∆] are mixed-order regularized Hodge
Laplace operators the trace De Rham complex). From a variational point

of view, the first-kind BIOs defined in (5.7a) and (5.7b) for the regularized

Hodge–Laplace operator L
λ
ℓ are mixed-order regularized Hodge–Dirac operators

Vλ
ℓ [∆] =

[

−(δΓℓ−1)
∗δΓℓ−1 − λId δΓℓ
(δΓℓ )

∗ Id

]

,(5.10a)

Wλ
ℓ [∆] =

[

Id −(dΓℓ−1)
∗

−dΓℓ−1 −(dΓℓ )
∗dΓℓ − λId

]

(5.10b)

in the trace de Rham complexes (2.4a) and (2.4b), which are based on the

non-local inner products (4.21a) and (4.21b).

5.2.2. BIOs for mixed-order form of L
λ
ℓ . We focus on the mixed-order

regularized Hodge-Laplace operator M
λ
ℓ defined in (3.9) and recall from Subsec-

tion 3.1, (3.12) the associated complementary trace operators Tt,∓
M,ℓ and T

n,∓
M,ℓ, whose

co-domains are in duality, cf. (3.13). We apply those trace operators to the layer
potentials SLλℓ [M] and DLλℓ [M] that we extracted from the representation formula of
Proposition 4.11. Thus we obtain the first-kind BIOs

Vλ
ℓ [M] := Tt

M,ℓSL
λ
ℓ [M] : Hn,ℓ

∆ (Γ) −→ H t,ℓ
∆ (Γ) ,(5.11a)

Wλ
ℓ [M] := Tn

M,ℓDL
λ
ℓ [M] : H t,ℓ

∆ (Γ) −→ Hn,ℓ
∆ (Γ) ,(5.11b)

where thanks to Proposition 4.10 the side of Γ from which we take the traces does
not matter. After evaluating

Tt

M,ℓSL
λ
ℓ [M]

[

hℓ−1

hℓ

]

=

[

−dΓℓ−2tℓ−2S
λ
ℓ−2(δ

Γ
ℓ−1hℓ−1)− λtℓ−1S

λ
ℓ−1hℓ−1 + tℓ−1S

λ
ℓ−1(δ

Γ
ℓ hℓ)

dΓℓ−1tℓ−1S
λ
ℓ−1hℓ−1 + tℓS

λ
ℓ hℓ

]

,
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we find that

(5.12) ⟪Vλ
ℓ [M]

[

hℓ−1

hℓ

]

,

[

wℓ−1

wℓ

]

⟫
Γ

=−
(

δΓℓ−1hℓ−1, δ
Γ
ℓ−1wℓ−1

)

− 1
2
,λ,t

− λ (hℓ−1, wℓ−1)− 1
2
,λ,t +

(

δΓℓ hℓ, wℓ−1

)

− 1
2
,λ,t

+
(

hℓ−1, δ
Γ
ℓ wℓ

)

− 1
2
,λ,t

+

(hℓ, wℓ)− 1
2
,λ,t .

Similarly, by using the definitions

Tn

M,ℓDL
λ
ℓ [M]

[

gℓ−1

gℓ

]

= Tn

M,ℓ

[

δℓD
λ
ℓ gℓ−1

Dλ
ℓ gℓ−1 + δℓ+1D

λ
ℓ+1gℓ

]

=

[

nℓD
λ
ℓ gℓ−1 + nℓδℓ+1D

λ
ℓ+1gℓ

nℓ+1dℓD
λ
ℓ gℓ−1 + nℓ+1dℓδℓ+1D

λ
ℓ+1gℓ

]

=

[

nℓD
λ
ℓ gℓ−1 − δΓℓ nℓ+1D

λ
ℓ+1gℓ

−nℓ+1D
λ
ℓ+1(d

Γ
ℓ−1gℓ−1) + nℓ+1δℓ+2D

λ
ℓ+2(d

Γ
ℓ gℓ)− λnℓ+1D

λ
ℓ+1gℓ

]

=

[

nℓD
λ
ℓ gℓ−1 − δΓℓ nℓ+1D

λ
ℓ+1gℓ

−nℓ+1D
λ
ℓ+1(d

Γ
ℓ−1gℓ−1)−δΓℓ+1nℓ+2D

λ
ℓ+2(d

Γ
ℓ gℓ)− λnℓ+1D

λ
ℓ+1gℓ

]

leads to

⟪Wλ
ℓ [M]

[

gℓ−1

gℓ

]

,

[

vℓ−1

vℓ

]

⟫
Γ

=(gℓ−1, vℓ−1)− 1
2
,λ,n −

(

gℓ, d
Γ
ℓ−1vℓ−1

)

− 1
2
,λ,n

−

(

dΓℓ−1gℓ−1, vℓ

)

− 1
2
,λ,n

−
(

dΓℓ gℓ, d
Γ
ℓ vℓ

)

− 1
2
,λ,n

−

λ (gℓ, vℓ)− 1
2
,λ,n .

(5.13)

Again, there is a striking correspondence between the sesqui-linear forms induced
by Vλ

ℓ [M] and Wλ
ℓ [M] and the bilinear forms (3.16) and (3.11) providing a weak

incarnation of the mixed-order Hodge Laplacians for the de Rham complex. As before,
our observations can be summarized as follows.
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Theorem 5.4 (Vλ
ℓ [M] and Wλ

ℓ [M] are weak mixed-order regularized Hodge-
Laplace operators in the trace De Rham complex). From a variational point

of view, the first-kind BIOs defined in (5.11a) and (5.11b) for the regularized

mixed-order Hodge–Laplace operator M
λ
ℓ are mixed-order regularized Hodge–

Laplace operators

Vλ
ℓ [M] =

[

−(δΓℓ−1)
∗δΓℓ−1 − λId δΓℓ
(δΓℓ )

∗ Id

]

,(5.14a)

Wλ
ℓ [M] =

[

Id −(dΓℓ−1)
∗

−dΓℓ−1 −(dΓℓ )
∗dΓℓ − λId

]

.(5.14b)

in the trace de Rham complexes (2.4a) and (2.4b) whose spaces are equipped

with the non-local inner products (4.21a) and (4.21b).

By combining Theorem 5.3 and Theorem 5.4 we find that in terms of first-kind
BIOs it does not matter whether we consider the second-order or mixed-order form
of the Hodge-Laplacians.

Corollary 5.5. The first-kind BIOs spawned by the Hodge-Laplacians in

second-order form and those in mixed-order form agree

Vλ
ℓ [∆] = Vλ

ℓ [W] and Wλ
ℓ [∆] = Wλ

ℓ [W] .

6. Conclusion. The message of Theorem 5.2, Theorem 5.3 and Theorem 5.4 is
that from a variational perspective the reduction to the boundary of boundary value
problems for (regularized) Hodge-Dirac and Hodge-Laplace operators in the De Rham
complex yields “boundary value problems” of the same type now set in the trace De
Rham complex. In fact, these results unify several “integration by parts” formulas for
first kind BIOs in variational form scattered across literature, e.g., [20, Thm. 3.3.22],
[6, Equs. (64) and (71)], [12, Lemma 11, (83d)].

Variational problems linked to boundary value problems for (regularized) Hodge-
Dirac and Hodge-Laplace operators in the De Rham complex lend themselves to
analysis solely drawing on the fact that the de Rham complex is a Hilbert complex
enjoying the Fredholm property, see [2, Section 2] and [13, Section 2.2]. This Fredholm
property also holds true for the trace de Rahm Hilbert complex. Therefore, from the
results of this article we can immediately conclude existence, uniqueness, and stability
of solution of first-kind boundary integral equations induced by the (regularized)
Hodge-Dirac and Hodge-Laplace operators.

Moreover, also the techniques used in the numerical analysis of the Galerkin finite-
element discretization of (regularized) Hodge-Dirac and Hodge-Laplace operators by
means of discrete differential forms [2, Section 7], [13, Section 3] remain relevant for
understanding boundary element Galerkin methods for the corresponding first-kind
boundary integral equations. Thus, the results of [7] just demonstrate a special case
and the techniques can be generalized.
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