Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Stability of a weighted L2 projection in a Sobolev space

M. Averseng

Research Report No. 2022-33
July 2022

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule
CH-8092 Zürich
Switzerland

Stability of a weighted L^{2} projection in a Sobolev space

Martin Averseng

July 18, 2022

Abstract

In this paper, we prove the stability of a weighted L^{2} projection operator onto finitedimensional subspaces of a weighted Sobolev space. This stability property is needed for the analysis of the preconditioners introduced by Alouges and the author in "Quasi-local and frequency robust preconditioners for the Helmholtz first-kind integral equations on the disk". Namely, we consider the orthogonal projections $\pi_{N, \omega}: L^{2}(\mathbb{D}, 1 / \omega(x) d x) \rightarrow \mathcal{X}_{N}$, where $\mathbb{D} \subset \mathbb{R}^{2}$ is the unit disk and $\omega(x)=\sqrt{1-|x|^{2}}$. The spaces \mathcal{X}_{N} are finite-dimensional subspaces of a weighted Sobolev-type space T^{1}, and consist of piecewise linear functions on a family of shaperegular and quasi-uniform triangulations of \mathbb{D}. We show that $\pi_{N, \omega}$ is continuous from T^{1} to T^{1} and prove an upper bound on the continuity constant that does not depend on N.

1 Introduction

Let \mathbb{D} be the unit disk of \mathbb{R}^{2}, that is

$$
\mathbb{D}=\left\{\left.x \in \mathbb{R}^{2}| | x\right|^{2}<1\right\}
$$

where $|x|=\sqrt{x_{1}^{2}+x_{2}^{2}}$ stands for the Euclidean norm of x. In [1], we consider the Laplace equation in the domain $\mathbb{R}^{3} \backslash(\overline{\mathbb{D}} \times\{0\})$, i.e. the exterior of a flat circular surface in \mathbb{R}^{3}. Some preconditioners are introduced for a boundary element discretization of this problem. When it comes to the analysis of the condition number of the preconditioned system, we are faced with the task of proving a uniform bound on the continuity constant of a weighted L^{2} projection into a family of subspaces of a weighted Sobolev space. The purpose of this paper is to give a self-contained proof of this key stability property. Let us first state it precisely.

On \mathbb{D}, define the function

$$
\begin{equation*}
\omega(x)=\sqrt{1-|x|^{2}} \tag{1}
\end{equation*}
$$

We introduce two Hilbert spaces. The first one is simply the weighted L^{2} space

$$
\begin{equation*}
L_{1 / \omega}^{2}:=\left\{u \in L_{\mathrm{loc}}^{1}(\mathbb{D}) \mid\|u\|_{1 / \omega}^{2}:=\int_{\mathbb{D}} \frac{|u(x)|^{2}}{\omega(x)} d x<+\infty\right\} . \tag{2}
\end{equation*}
$$

Its inner product is denoted by $(\cdot, \cdot)_{1 / \omega}$. The second space is the "weighted Sobolev space"

$$
\begin{equation*}
T^{1}:=\left\{\left.u \in L_{1 / \omega}^{2}\left|\|u\|_{T^{1}}^{2}:=\|u\|_{1 / \omega}^{2}+\int_{\mathbb{D}} \omega(x)\right| \nabla u(x)\right|^{2} d x<+\infty\right\} \tag{3}
\end{equation*}
$$

For a region $U \subset \mathbb{D}$ and a function $f \in L_{\mathrm{loc}}^{1}(U)$, we will also use the notation

$$
\begin{equation*}
\|f\|_{U, 1 / \omega}^{2}:=\int_{U} \frac{|f(x)|^{2}}{\omega(x)} d x, \quad\|f\|_{U, T^{1}}^{2}:=\|f\|_{U, 1 / \omega}^{2}+\int_{U} \omega(x)|\nabla f(x)|^{2} d x \tag{4}
\end{equation*}
$$

Our aim is to establish the uniform stability of the $L_{1 / \omega^{2}}^{2}$-orthogonal projection onto a sequence $\left(\mathcal{X}_{N}\right)_{N \in \mathbb{N}}$ of subspaces of T^{1}, that we define now. Let $\left(P_{N}\right)_{N \in \mathbb{N}}$ be a sequence of polygonal approximations of the disk. That is, $P_{N} \subset \overline{\mathbb{D}}$ and the vertices of P_{N} all lie in $\partial \mathbb{D}$. Furthermore, the maximal distance between two consecutive vertices of P_{N} is denoted by h_{N}, and we assume that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} h_{N}=0 . \tag{5}
\end{equation*}
$$

For each N, we consider a regular triangulation \mathcal{T}_{N} of P_{N}, i.e. a set of pairwise disjoint open triangles, with the usual conformity assumptions (two triangles of \mathcal{T}_{N} can only intersect along a common vertex or edge, or not at all) an such that

$$
\begin{equation*}
\bigcup_{\tau \in \mathcal{T}_{N}} \bar{\tau}=\overline{P_{N}} \tag{6}
\end{equation*}
$$

For each $\tau \in \mathcal{T}_{N}$, let h_{τ} be the diameter of τ and Δ_{τ} its area. We assume that there exist constants c_{1}, C_{1} and c_{2}, independent of N and τ, such that

$$
\begin{gather*}
c_{1} h_{N} \leq h_{\tau} \leq C_{1} h_{N}, \quad \text { (global quasi-uniformity) } \tag{7}\\
\frac{\Delta_{\tau}}{h_{\tau}^{2}} \geq c_{2}, \quad \text { (uniform shape-regularity) } \tag{8}
\end{gather*}
$$

To construct piecewise linear functions in T^{1} from \mathcal{T}_{N}, special attention must be paid to the triangles on the boundary of the triangulation. If τ has two vertices A and B in $\partial \mathbb{D}$, let U_{τ} be the open region of \mathbb{D} enclosed, on the one hand, by the smallest arc of $\partial \mathbb{D}$ linking A to B, and on the other hand, by the straight line segment $[A, B]$. Let K_{τ} be the open convex region resulting from the union of τ and U_{τ}, i.e.

$$
\begin{equation*}
\overline{K_{\tau}}:=\bar{\tau} \cup \overline{U_{\tau}} . \tag{9}
\end{equation*}
$$

When τ has one or zero vertex in $\partial \mathbb{D}$, we simply put $K_{\tau}=\tau$. Then, the set $\left\{K_{\tau}\right\}_{\tau \in \mathcal{T}_{N}}$ partitions \mathbb{D} in the sense that

$$
\begin{equation*}
\bigcup_{\tau \in \mathcal{T}_{N}} \overline{K_{\tau}}=\overline{\mathbb{D}} . \tag{10}
\end{equation*}
$$

With these definitions, let

$$
\begin{equation*}
\mathcal{X}_{N}:=\left\{u \in C^{0}(\overline{\mathbb{D}}) \mid u_{\mid K_{\tau}} \text { is affine for all } \tau \in \mathcal{T}_{N}\right\} . \tag{11}
\end{equation*}
$$

It is clear that \mathcal{X}_{N} is a finite-dimensional subspace of T^{1}. We can now define

$$
\begin{equation*}
\pi_{N, \omega}: L_{1 / \omega}^{2} \rightarrow \mathcal{X}_{N} \tag{12}
\end{equation*}
$$

the $L_{1 / \omega}^{2}$-orthogonal projection onto \mathcal{X}_{N}. We shall prove
Theorem 1. There exists a constant $C_{\pi}>0$ independent of N such that,

$$
\begin{equation*}
\forall u \in T^{1}, \quad\left\|\pi_{N, \omega} u\right\|_{T^{1}} \leq C_{\pi}\|u\|_{T^{1}} \tag{13}
\end{equation*}
$$

theorem 1 is analogous to the uniform H^{1}-stability of the L^{2} projection onto a family of finitedimensional supbspaces of H^{1}. In the case of piecewise linear functions on quasi-uniform meshes, such a stability property is derived easily from global inverse inequalities. Several works have been devoted to establishing this stability in more general cases [4, 5, 7], e.g. when the triangulation is not quasi-uniform. Here we restrict ourselves to the case of a quasi-uniform triangulation of \mathbb{D}, but the difficulty arises from the presence of the weight ω in the definitions of $L_{1 / \omega}^{2}$ and T^{1}. In particular, notice that ω vanishes on $\partial \mathbb{D}$.

The H^{1}-stability of the L^{2} projection is important in many aspects of Finite Elements and Boundary Elements analysis. For instance, it is useful in the study of multigrid and domain decomposition methods [10], or the quasi-optimality of Galerkin methods for parabolic problems [3]. In our case, theorem 1 is used in [1] to estimate the condition number of a preconditioned linear system arising from the Galerkin boundary element discretization of the Laplace weakly-singular integral equation on \mathbb{D}.

To prove theorem 1, the main difficulty, compared to more standard Sobolev spaces, is that $L_{1 / \omega}^{2}$ and T^{1} do not have scaling properties like L^{2} and H^{1} have. Hence, many classical and convenient arguments (such as reasoning by pulling back to a reference triangle) are not directly available here. Instead, we adapt and combine two classical lines of proof. The first one is an argument, found e.g. in the proof of [2, Lemma 1], showing that inverse inequalities in combination with suitable approximation properties yield the stability of the (weighted) L^{2} projection.

The second line of proof is aimed towards showing an approximation property of \mathcal{X}_{N} in T^{1}. For this, we follow Clément [6] by adapting the definition of his well-known quasi-interpolant. The main new ingredient is a non-standard weighted Poincaré inequality, with careful control of the domain-dependent constant.

The remainder of this paper is organized as follows. In section 2, we state a first lemma to reduce the proof of theorem 1 to the proof of three key properties (A1)-(A3). In Sections 3 and 4, we derive weighted Poincaré and local inverse inequalities, respectively. Finally, in section 5, we define a quasi-interpolant I_{N} and show that it meets the requirements.

In the proofs, we use the letter C to denote a generic positive constant that is independent of the discretization (i.e. of the index $N \in \mathbb{N}$ of the triangulation \mathcal{T}_{N}). The value of C is allowed to change from line to line. Nevertheless, we refrain from doing so in the result statements, to ensure the clarity of our discussion.

2 Three key properties

Our analysis of $\pi_{N, \omega}$ relies on three main ingredients.
(A1) A quasi-interpolant $I_{N}: L_{1 / \omega}^{2} \rightarrow \mathcal{X}_{N}$ that is uniformly T^{1}-continuous, i.e. there exists a constant $C_{I}>0$ such that

$$
\begin{equation*}
\forall N \in \mathbb{N}, \forall u \in T^{1}, \quad\left\|I_{N} u\right\|_{T^{1}} \leq C_{I}\|u\|_{T^{1}} \tag{14}
\end{equation*}
$$

and such that, for each $N \in \mathbb{N}$ and $\tau \in \mathcal{T}_{N}$, there exists a constant $C_{P}\left(K_{\tau}\right)>0$ such that

$$
\begin{equation*}
\forall u \in T^{1}, \quad\left\|u-I_{N} u\right\|_{K_{\tau}, 1 / \omega}^{2} \leq C_{P}\left(K_{\tau}\right)^{2}\|u\|_{\omega_{\tau}, T^{1}}^{2} \tag{15}
\end{equation*}
$$

where ω_{τ} is the union of the domains $K_{\tau^{\prime}}$ such that τ^{\prime} and τ are neighbors, i.e. share at least one vertex τ.
(A2) Some local inverse inequalities in \mathcal{X}_{N} : for all $\theta \in \mathcal{X}_{N}$ and for all $\tau \in \mathcal{T}_{N}$, there exists a constant $C_{\mathrm{inv}}\left(K_{\tau}\right)>0$ such that

$$
\begin{equation*}
\|\theta\|_{K_{\tau}, T^{1}}^{2} \leq C_{\mathrm{inv}}\left(K_{\tau}\right)^{-2}\|\theta\|_{K_{\tau}, 1 / \omega}^{2} \tag{16}
\end{equation*}
$$

(A3) A uniform estimate of the ratios $C_{P}\left(K_{\tau}\right) / C_{\text {inv }}\left(K_{\tau}\right)$, i.e. there exists a constant $C_{\text {rat }}>0$ such that

$$
\begin{equation*}
\forall N \in \mathbb{N}, \forall \tau \in \mathcal{T}_{N}, \quad C_{P}\left(K_{\tau}\right) / C_{\mathrm{inv}}\left(K_{\tau}\right) \leq C_{\mathrm{rat}} \tag{17}
\end{equation*}
$$

Lemma 1. If (A1)-(A3) hold, then the orthogonal projection $\pi_{N, \omega}$ satisfies theorem 1 with

$$
\begin{equation*}
C_{\pi}=\sqrt{2\left(K_{\sharp} C_{\mathrm{rat}}^{2}+C_{I}^{2}\right)}, \tag{18}
\end{equation*}
$$

K_{\sharp} being an upper bound for all N on the maximal number of neighbors of $\tau \in \mathcal{T}_{N}$.
Proof. We adapt a well-known argument appearing for example in the proof of [2, Lemma 1]. Given $N \in \mathbb{N}$ and $u \in T^{1}$, we write

$$
\begin{aligned}
\left\|\pi_{N, \omega} u\right\|_{T^{1}}^{2} & \leq 2\left(\left\|\pi_{N, \omega}\left(u-I_{N} u\right)\right\|_{T^{1}}^{2}+\left\|I_{N} u\right\|_{T^{1}}^{2}\right) \\
& \leq 2\left(\sum_{\tau \in \mathcal{T}_{N}}\left\|\pi_{N, \omega}\left(u-I_{N} u\right)\right\|_{K_{\tau}, T^{1}}^{2}\right)+2 C_{I}^{2}\|u\|_{T^{1}}^{2} \\
& \leq 2\left(\sum_{\tau \in \mathcal{T}_{N}} C_{\mathrm{inv}}\left(K_{\tau}\right)^{-2}\left\|\pi_{N, \omega}\left(u-I_{N} u\right)\right\|_{K_{\tau}, 1 / \omega}^{2}\right)+2 C_{I}^{2}\|u\|_{T^{1}}^{2} \\
& \leq 2\left(\sum_{\tau \in \mathcal{T}_{N}} C_{\mathrm{inv}}\left(K_{\tau}\right)^{-2}\left\|u-I_{N} u\right\|_{K_{\tau}, 1 / \omega}^{2}\right)+2 C_{I}^{2}\|u\|_{T^{1}}^{2} \\
& \leq 2\left(\sum_{\tau \in \mathcal{T}_{N}} C_{\mathrm{inv}}\left(K_{\tau}\right)^{-2} C_{P}\left(K_{\tau}\right)^{2}\|u\|_{U_{K}, T^{1}}^{2}\right)+2 C_{I}^{2}\|u\|_{T^{1}}^{2} \\
& \leq 2\left(K_{\sharp} C_{\mathrm{rat}}^{2}+C_{I}^{2}\right)\|u\|_{T^{1}}^{2} .
\end{aligned}
$$

We have applied, successively: the triangle inequality, the property that $\pi_{N, \omega} \theta=\theta$ for all $\theta \in \mathcal{X}_{N}$, the uniform continuity (i), the inverse inequalities (ii), the minimization properties of $\pi_{N, \omega}$ in $L_{1 / \omega}^{2}$, the weighted Poincaré inequalities (i) eq.(15), the estimate of the ratio $C_{P}\left(K_{\tau}\right) / C_{\mathrm{inv}}\left(K_{\tau}\right)$ (iii), and the definition of K_{\sharp}.

In the next sections, we show that (A1) - (A3) hold, see lemma 7, lemma 5 and lemma 8, respectively.

3 Weighted Poincaré inequalities

In what follows, for any open region $U \subset \mathbb{D}$, we write

$$
\begin{equation*}
\langle u\rangle_{U}:=\left(\int_{U} 1 / \omega(x)\right)^{-1} \int_{U} \frac{u(x)}{\omega(x)} d x \tag{19}
\end{equation*}
$$

It is proved in [1, Theorem 1] that

$$
\begin{equation*}
\forall u \in T^{1}, \quad\left\|u-\langle u\rangle_{\mathbb{D}}\right\|_{1 / \omega}^{2} \leq \int_{\mathbb{D}} \omega(x)|\nabla u(x)|^{2} d x \tag{20}
\end{equation*}
$$

The goal of this section is to prove similar inequalities when the domain of integration is replaced by a subset of \mathbb{D}. We start with two technical lemmas.

Lemma 2. Let $N \in \mathbb{N}, Q$ a vertex of the triangulation \mathcal{T}_{N} and $\varphi_{N, Q}$ the element of \mathcal{X}_{N} such that

$$
\varphi_{N, Q}\left(Q^{\prime}\right)= \begin{cases}1 & \text { if } Q=Q^{\prime} \tag{21}\\ 0 & \text { otherwise }\end{cases}
$$

for all vertices Q^{\prime} of \mathcal{T}_{N}. Let $S_{N, Q}=\operatorname{supp} \varphi_{N, Q}$. Then, there exists a bilipschitz application $\kappa_{N, Q}$, mapping \mathbb{D} to $S_{N, Q}$ such that

$$
\begin{equation*}
\forall x, y \in \mathbb{D}, \quad c_{3} h_{N}|x-y| \leq\left|\kappa_{N, Q}(x)-\kappa_{N, Q}(y)\right| \leq C_{3} h_{N}|x-y| \tag{22}
\end{equation*}
$$

where the constants c_{3} and C_{3} do not depend on N nor on Q.
The proof can be done by introducing polar coordinates in $S_{N, Q}$, centered at the vertex Q, and using the shape-regularity of $\left(\mathcal{T}_{N}\right)_{N \in \mathbb{N}}$.

Lemma 3. Let A and B be two bounded open sets and $\kappa: A \rightarrow B$ such that

$$
\begin{equation*}
\forall x, y \in A, \quad l\|x-y\| \leq\|\kappa(x)-\kappa(y)\| \leq L\|x-y\| \tag{23}
\end{equation*}
$$

Then there holds

$$
\begin{equation*}
\forall x \in A, \quad l \leq \frac{d(\kappa(x), \partial B)}{d(x, \partial A)} \leq L \tag{24}
\end{equation*}
$$

Proof. Let $x \in A$. For any $y \in \partial A, \kappa(y) \in \partial B$, so

$$
d(\kappa(x), \partial B) \leq\|\kappa(x)-\kappa(y)\| \leq L\|x-y\|
$$

Taking the infimum over $y \in \partial A$, we deduce

$$
d(\kappa(x), \partial B) \leq L d(x, \partial A)
$$

The left inequality is obtained by a similar reasoning.
Let us point out that for all $x \in \mathbb{D}$,

$$
\begin{equation*}
1 \leq \frac{\omega(x)}{\sqrt{d(x, \partial \mathbb{D})}} \leq 2 \tag{25}
\end{equation*}
$$

These remarks being made, we can prove the following result:
Theorem 2. Let $N \in \mathbb{N}$ and Q be a vertex of \mathcal{T}_{N}. Let $S=S_{N, Q}$ be defined as in lemma 2. Then

$$
\begin{equation*}
\forall u \in T^{1}, \quad\left\|u-\langle u\rangle_{S}\right\|_{S, 1 / \omega}^{2} \leq C_{4} \gamma(S) h_{N}\|u\|_{S, T^{1}}^{2} \tag{26}
\end{equation*}
$$

where $C_{4}>0$ does not depend on N nor on Q and where

$$
\begin{equation*}
\gamma(S):=\sup _{x \in S} \frac{d(x, \partial S)}{d(x, \partial \mathbb{D})} \tag{27}
\end{equation*}
$$

Proof. To begin with, we observe that for any $\alpha \in \mathbb{C}$,

$$
\left\|u-\langle u\rangle_{S}\right\|_{S, 1 / \omega}^{2} \leq\|u-\alpha\|_{S, 1 / \omega}^{2}
$$

Let $\alpha \in \mathbb{C}$ and $v=u-\alpha$. The main idea is the following estimate:

$$
\int_{S} \frac{|v(x)|^{2}}{\omega(x)} d x \leq \int_{S} \frac{|v(x)|^{2} d x}{\sqrt{d(x, \partial \mathbb{D})}} \leq \sqrt{\gamma(S)} \int_{S} \frac{|v(x)|^{2} d x}{\sqrt{d(x, \partial S)}}
$$

Now, the singularity of the integrand is on ∂S, and by mapping S to the disk, we will be able to use the Poincaré inequality (20). To see this, let us introduce the change of variables $x=\kappa(y)$, where $\kappa: \mathbb{D} \rightarrow S$ is a bilipschitz map as in lemma 2. This leads to

$$
\int_{S} \frac{|v(x)|^{2}}{\omega(x)} d x \leq C \sqrt{\gamma(S)} h_{N}^{2} \int_{\mathbb{D}} \frac{|v \circ \kappa(y)|^{2} d y}{\sqrt{d(\kappa(y), \partial S)}} d y
$$

By Lemmas 2 and 3, there holds

$$
d(\kappa(y), \partial S) \geq C h_{N} d(y, \partial \mathbb{D}) \geq C h_{N} \omega^{2}
$$

We deduce that

$$
\begin{align*}
\int_{S} \frac{|v(x)|^{2}}{\omega(x)} d x & \leq C \sqrt{\gamma(S)} \frac{h_{N}^{2}}{\sqrt{h_{N}}} \int_{\mathbb{D}} \frac{|f(y)-\alpha|^{2}}{\omega(y)} d y \tag{28}\\
& \leq C \sqrt{\gamma(S)} h_{N}^{3 / 2} \int_{\mathbb{D}} \frac{|f(y)-\alpha|^{2}}{\omega(y)} d y \tag{29}
\end{align*}
$$

where $f(y):=u(\kappa(y))$. Taking $\alpha=\langle f\rangle_{\mathbb{D}}$, we can now apply the inequality (20) to f :

$$
\int_{\mathbb{D}} \frac{|f(y)-\alpha|^{2}}{\omega(y)} d y \leq \int_{\mathbb{D}} \omega(y)|\nabla f(y)|^{2} d y
$$

Injecting this inequality in what precedes, we obtain

$$
\left\|u-\langle u\rangle_{S}\right\|_{S, 1 / \omega}^{2} \leq C \sqrt{\gamma(S)} h_{N}^{3 / 2} \int_{\mathbb{D}} \omega(y)|\nabla f(y)|^{2} d y
$$

It remains to return to the domain S by applying the inverse change of variables, while keeping track of the powers of h_{N}. We have, again by lemma $2,|\nabla f(y)| \leq C h_{N}|[\nabla u](\kappa(y))|$, hence

$$
\left\|u-\langle u\rangle_{S}\right\|_{S, 1 / \omega}^{2} \leq C \sqrt{\gamma(S)} h_{N}^{7 / 2} \int_{\mathbb{D}} \sqrt{d(y, \partial \mathbb{D})}|[\nabla u](\kappa(y))|^{2} d y
$$

We now reuse lemma 3 :

$$
\begin{equation*}
\left\|u-\langle u\rangle_{S}\right\|_{S, 1 / \omega}^{2} \leq C \sqrt{\gamma(S)} h_{N}^{3} \int_{\mathbb{D}} \sqrt{d(\kappa(y), \partial S)}|[\nabla u](\kappa(y))|^{2} d y \tag{30}
\end{equation*}
$$

Finally, with the change of variables $x=\kappa(y)$ and using lemma 2, this leads to

$$
\begin{align*}
\left\|u-\langle u\rangle_{S}\right\|_{S, 1 / \omega}^{2} & \leq C \sqrt{\gamma(S)} \frac{h_{N}^{3}}{h_{N}^{2}} \int_{S} \sqrt{d(x, \partial S)}|\nabla u(x)|^{2} d x \tag{31}\\
& \leq C \sqrt{\gamma(S)} h_{N} \int_{S} \sqrt{d(x, \partial S)}|\nabla u(x)|^{2} d x \tag{32}
\end{align*}
$$

With the simple estimate

$$
\sqrt{d(x, \partial S)} \leq \sqrt{\gamma(S)} \sqrt{d(x, \partial \mathbb{D})} \leq \sqrt{\gamma(S)} \omega
$$

we easily obtain the claimed inequality.
Remark 1. There is a large corpus of works devoted to weighted Poincaré-type inequalities, but to the best of our knowledge, the kind of inequalities treated in other references (see e.g. [8, 9]) do not quite have the form of the one we deal with here.

4 Inverse inequalities

First, we have inverse inequalities without weights:
Lemma 4. There exists a constant $C_{5}>0$ such that, for all $N \in \mathbb{N}, \theta \in \mathcal{X}_{N}$ and $\tau \in \mathcal{T}_{N}$, there holds

$$
\begin{equation*}
\int_{K_{\tau}}|\nabla \theta(x)|^{2} d x \leq C_{5} h_{N}^{-2} \int_{K_{\tau}}|\theta(x)|^{2} d x \tag{33}
\end{equation*}
$$

This is well-known when $K_{\tau}=\tau$ (i.e. when K_{τ} is a triangle). The only "difficulty" is to extend this to the case where τ has two vertices in the boundary. But in that case, we may enclose K_{τ} between two triangles of uniformly comparable areas, and the proof merely becomes a technical formality. We spare the readers with the details.

Corresponding weighted inverse inequalities can be deduced in the following manner:
Lemma 5. Condition (A2) is satisfied with the constant

$$
C_{\mathrm{inv}}\left(K_{\tau}\right)^{-2}=1+C_{5} h_{N}^{-2} \rho_{\omega}\left(K_{\tau}\right) M_{\omega}\left(K_{\tau}\right)
$$

where $\rho_{\omega}\left(K_{\tau}\right)$ and $M_{\omega}\left(K_{\tau}\right)$ are the average and the maximum of ω on K_{τ}, respectively.
Proof. Let $N \in \mathbb{N}, \tau \in \mathcal{T}_{N}$ and $\theta \in \mathcal{X}_{N}$. Since $\nabla \theta$ is constant on K_{τ}, one has

$$
\int_{K_{\tau}} \omega(x)|\nabla \theta(x)|^{2} d x=\rho_{\omega}(K) \int_{K_{\tau}}|\nabla \theta|^{2}
$$

Applying the previous lemma, we get

$$
\begin{align*}
\int_{K_{\tau}} \omega|\nabla \theta(x)|^{2} d x & \leq C_{5} h_{N}^{-2} \rho_{\omega}\left(K_{\tau}\right) \int_{K_{\tau}}|\theta(x)|^{2} d x \tag{34}\\
& \leq C_{5} h_{N}^{-2} \rho_{\omega}\left(K_{\tau}\right) M_{\omega}\left(K_{\tau}\right) \int_{K_{\tau}} \frac{|\theta(x)|^{2}}{\omega(x)} d x \tag{35}
\end{align*}
$$

The result follows immediately.
Lemma 6. There exists a constant $C_{6}>0$ independent on N such that for all $\tau \in \mathcal{T}_{N}$ and for any vertex Q of τ,

$$
h_{N} \gamma\left(S_{N, Q}\right) C_{\mathrm{inv}}\left(K_{\tau}\right)^{-2} \leq C_{6}
$$

where $S_{N, Q}$ is the support of the basis function of \mathcal{X}_{N} attached to Q, as defined in lemma 2.

Proof. Let us rewrite $S=S_{N, Q}$. We have

$$
h_{N} \gamma(S) C_{i}\left(K_{\tau}\right)^{-2}=h_{N} \gamma(S)+C_{5} h_{N}^{-1} \gamma(S) \rho_{\omega}\left(K_{\tau}\right) M_{\omega}\left(K_{\tau}\right)=: T_{1}+T_{2}
$$

We can write $T_{1} \leq C$, since this term tends to 0 when $N \rightarrow \infty$. The main task is thus to estimate T_{2}.

On the one hand, assume that $d(S, \partial \mathbb{D}) \leq h_{N}$. Then we use the simple estimate $\gamma(S) \leq 1$. Moreover, for all $x \in K_{\tau}$, there holds $d(x, \partial \mathbb{D}) \leq d(x, \partial S)+d(S, \partial \mathbb{D}) \leq C h_{N}$. Using (25), we deduce $\rho_{\omega}(K) \leq C \sqrt{h_{j}}$ and $M_{\omega}(K) \leq C \sqrt{h_{N}}$ and thus $T_{2} \leq C$.

On the other hand, if $d(S, \partial \mathbb{D}) \geq h_{N}$, we estimate $\gamma(S)$ as follows. First, we have $d(x, \partial \mathbb{D}) \geq$ $\omega(x)^{2}$ hence

$$
\begin{equation*}
\gamma(S) \leq \frac{d(x, \partial S)}{m_{\omega}(S)^{2}} \tag{36}
\end{equation*}
$$

where $m_{\omega}(S)$ is the minimum of ω on S. Note that $d(S, \partial \mathbb{D}) \geq h_{N}$ implies that

$$
\begin{equation*}
h_{N} \leq C m_{\omega}(S)^{2} \tag{37}
\end{equation*}
$$

By the quasi-uniformity assumption (7) the diameter d_{S} of S satisfies

$$
\begin{equation*}
d_{S} \leq C h_{N} \tag{38}
\end{equation*}
$$

Therefore, there holds $d(x, \partial S) \leq d_{S} \leq C h_{N}$. This shows that $\gamma(S) \leq C \frac{h_{N}}{m_{\omega}(S)^{2}}$, which, injected in the expression of T_{2}, leads to

$$
T_{2} \leq C \frac{\rho_{\omega}\left(K_{\tau}\right)}{m_{\omega}(S)} \frac{M_{\omega}\left(K_{\tau}\right)}{m_{\omega}(S)} .
$$

Observing that $\nabla \omega=x / \omega$, a Taylor-Langrange inequality combined with the estimates (37) and (38) gives

$$
\left|\rho_{\omega}\left(K_{\tau}\right)-m_{\omega}(S)\right| \leq \frac{d_{S}}{m_{\omega}(S)} \leq C \sqrt{h_{N}}
$$

Hence,

$$
\frac{\rho_{\omega}\left(K_{\tau}\right)}{m_{\omega}(S)} \leq 1+\frac{\left|\rho_{\omega}\left(K_{\tau}\right)-m_{\omega}\left(K_{\tau}\right)\right|}{m_{\omega}(S)} \leq C
$$

using again (37). For similar reasons, there holds $\frac{M_{\omega}\left(K_{\tau}\right)}{m_{\omega}(S)} \leq C$ and so $T_{2} \leq C$ also in this case. This concludes the proof of the lemma.

5 Clément type quasi-interpolant

Fix $N \in \mathbb{N}$ and denote by $\left\{Q_{1}, \ldots, Q_{n}\right\}$ the vertices of \mathcal{T}_{N}. Let us rewrite $\varphi_{N, Q_{i}}$, defined in (21), as φ_{i}. Similarly, we write S_{i} instead of $S_{N, Q_{i}}$. For the quasi-interpolant I_{N}, we put

$$
\begin{equation*}
\forall u \in L_{1 / \omega}^{2}, \quad I_{N} u:=\sum_{i=1}^{n}\langle u\rangle_{S_{i}} \varphi_{i} \tag{39}
\end{equation*}
$$

Lemma 7. The quasi-interpolant (39) satisfies (A1) with

$$
\begin{equation*}
C_{P}\left(K_{\tau}\right)^{2}=C_{7} h_{N} \sum_{i \in I(\tau)} \gamma\left(S_{i}\right) \tag{40}
\end{equation*}
$$

where $C_{7}>0$ is a constant independent on N and τ and $I(\tau)$ is the set of indices i such that Q_{i} is a vertex of τ.

Proof. We adapt the proof of $\left[6\right.$, Theorem 1]. Let $\tau \in \mathcal{T}_{N}$ and fix some $j \in I(\tau)$. On K_{τ}, we have

$$
\begin{equation*}
I_{N} u=\sum_{i \in I(\tau)} c_{i} \varphi_{i}=c_{j} \sum_{i \in I(\tau)} \varphi_{i}+\sum_{i \in I(\tau) \backslash\{j\}}\left(c_{i}-c_{j}\right) \varphi_{i} \tag{41}
\end{equation*}
$$

where $c_{i}=\langle u\rangle_{S_{i}}$. Since $\sum_{i \in I(\tau)} \varphi_{i}=1$, we deduce

$$
\begin{align*}
\left\|u-I_{N} u\right\|_{K_{\tau}, 1 / \omega} & \leq\left\|u-c_{j}\right\|_{K_{\tau}, 1 / \omega}+\sum_{i \in I(\tau) \backslash\{j\}}^{3}\left|c_{i}-c_{j}\right|\left\|\varphi_{i}\right\|_{K_{\tau}, 1 / \omega} \tag{42}\\
& \leq\left\|u-c_{j}\right\|_{S_{j}, 1 / \omega}+\sum_{i \in I(\tau) \backslash\{j\}}\left|c_{i}-c_{j}\right|\left\|\varphi_{i}\right\|_{K_{\tau}, 1 / \omega} \tag{43}
\end{align*}
$$

By theorem 2, the first term can be estimated by

$$
\left\|u-c_{j}\right\|_{S_{j}, 1 / \omega} \leq \sqrt{C_{P} \gamma\left(S_{j}\right) h_{N}}\|u\|_{S_{j}, T^{1}}
$$

On the other hand for $i \in I(\tau) \backslash\{j\}$, we may write

$$
\begin{align*}
\left|c_{i}-c_{j}\right|^{2}\left\|\varphi_{i}\right\|_{K_{\tau}, 1 / \omega}^{2} & =\left(\int_{K_{\tau}} 1 / \omega\right)^{-1}\left\|c_{i}-c_{j}\right\|_{K_{\tau}, 1 / \omega}^{2}\left\|\varphi_{i}\right\|_{K_{\tau}, 1 / \omega}^{2} \tag{44}\\
& \leq\left\|c_{i}-c_{j}\right\|_{K_{\tau}, 1 / \omega}^{2} \tag{45}\\
& \leq 2\left(\left\|u-c_{i}\right\|_{S_{i}, 1 / \omega}^{2}+\left\|u-c_{j}\right\|_{S_{j}, 1 / \omega}^{2}\right) \tag{46}
\end{align*}
$$

since $\varphi_{p} \leq 1$ on K. Applying again theorem 2 leads to

$$
\left\|u-I_{N} u\right\|_{K_{\tau}, 1 / \omega}^{2} \leq C h_{N}\left(\sum_{i \in I(\tau)}^{3} \gamma\left(S_{i}\right)\right)\|u\|_{\omega_{\tau}, T^{1}}^{2}
$$

where ω_{τ} is defined below Eq. (15), and we used that $S_{i} \subset \omega_{\tau}$ whenever $i \in I(\tau)$.
To show that the T^{1}-continuity (14) holds, we can write, using again (41),

$$
\left\|u-I_{N} u\right\|_{K_{\tau}, T^{1}} \leq\|u\|_{K_{\tau}, T^{1}}+\sum_{i \in I(\tau) \backslash\{j\}}\left|c_{i}-c_{j}\right|\left\|\varphi_{i}\right\|_{K_{\tau}, T^{1}}
$$

Using the inverse inequality shown in lemma 5 and using similar arguments as above, we find

$$
\begin{aligned}
\left\|u-I_{N} u\right\|_{K_{\tau}, T^{1}}^{2} & \leq\left(1+C \sum_{i \in I(\tau) \backslash\{j\}} \frac{h_{N}\left(\gamma\left(S_{i}\right)+\gamma\left(S_{j}\right)\right)}{C_{\mathrm{inv}}\left(K_{\tau}\right)^{2} \int_{K_{\tau}} \frac{1}{\omega(x)} d x}\left\|\varphi_{i}\right\|_{1 / \omega, K_{\tau}}^{2}\right)\|u\|_{\omega_{\tau}, T^{1}}^{2} \\
& \leq\left(1+C \sum_{i \in I(\tau)} h_{N} \gamma\left(S_{i}\right) C_{\mathrm{inv}}\left(K_{\tau}\right)^{-2}\right)\|u\|_{\omega_{\tau}, T^{1}}^{2}
\end{aligned}
$$

Thanks to lemma 6, we conclude that

$$
\left\|u-I_{N} u\right\|_{K_{\tau}, T^{1}} \leq C\|u\|_{\omega_{\tau}, T^{1}}^{2}
$$

The continuity (14) follows easily.
Combining lemma 6 and lemma 7 , we deduce that
Lemma 8. Condition (A3) is satisfied.
This concludes the proof of theorem 1.

6 Conclusions

We have shown theorem 1 by combining some inverse inequalities with a weighted Poincaré inequality. Our proof relies essentially on the fact that the constants appearing in both inequalities have a uniformly bounded ratio. Identical arguments can be used to treat quasi-uniform and shape-regular family of triangulations of more general domains, but we have restricted our attention to the disk \mathbb{D} for conciseness. We do not know whether the result extends to locally refined triangulations.

References

[1] F. Alouges and M. Averseng. Quasi-local preconditioners for the weakly singular and hypersingular operators on a disk. To appear, 2022.
[2] R. E Bank and T. Dupont. An optimal order process for solving finite element equations. Mathematics of Computation, 36(153):35-51, 1981.
[3] C. Bernardi and G. Raugel. Approximation numérique de certaines équations paraboliques non linéaires. RAIRO Anal. Numér., 18(3):237-285, 1984.
[4] J. H. Bramble, J. E. Pasciak, and O. Steinbach. On the stability of the L^{2} projection in $H^{1}(\Omega)$. Math. Comp., 71(237):147-156, 2002.
[5] J. H. Bramble and J. Xu. Some estimates for a weighted L^{2} projection. Math. Comp., 56(194):463-476, 1991.
[6] P. Clement. Approximation by finite element functions using local regularization. Revue francaise d'automatique, informatique, recherche operationnelle. Analyse numerique, 9(R2):7784, 1975.
[7] M. Crouzeix and V. Thomée. The stability in L_{p} and W_{p}^{1} of the L_{2}-projection onto finite element function spaces. Math. Comp., 48(178):521-532, 1987.
[8] R. Hurri. The weighted poincaré inequalities. Mathematica Scandinavica, pages 145-160, 1990.
[9] C. Pechstein and R. Scheichl. Weighted poincaré inequalities. IMA Journal of Numerical Analysis, 33(2):652-686, 2013.
[10] O. Steinbach. Stability estimates for hybrid coupled domain decomposition methods, volume 1809. Springer Science \& Business Media, 2003.

