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Abstract

In this paper, we prove the stability of a weighted L2 projection operator onto finite-
dimensional subspaces of a weighted Sobolev space. This stability property is needed for the
analysis of the preconditioners introduced by Alouges and the author in “Quasi-local and
frequency robust preconditioners for the Helmholtz first-kind integral equations on the disk”.
Namely, we consider the orthogonal projections πN,ω : L2(D, 1/ω(x)dx) → XN , where D ⊂ R

2

is the unit disk and ω(x) =
√

1− |x|2. The spaces XN are finite-dimensional subspaces of a
weighted Sobolev-type space T 1, and consist of piecewise linear functions on a family of shape-
regular and quasi-uniform triangulations of D. We show that πN,ω is continuous from T 1 to
T 1 and prove an upper bound on the continuity constant that does not depend on N .

1 Introduction

Let D be the unit disk of R2, that is

D =
{

x ∈ R
2
∣

∣

∣
|x|2 < 1

}

,

where |x| =
√

x2
1 + x2

2 stands for the Euclidean norm of x. In [1], we consider the Laplace equation in
the domain R

3\(D× {0}), i.e. the exterior of a flat circular surface in R
3. Some preconditioners are

introduced for a boundary element discretization of this problem. When it comes to the analysis
of the condition number of the preconditioned system, we are faced with the task of proving a
uniform bound on the continuity constant of a weighted L2 projection into a family of subspaces
of a weighted Sobolev space. The purpose of this paper is to give a self-contained proof of this key
stability property. Let us first state it precisely.

On D, define the function

ω(x) =

√

1− |x|2 . (1)

We introduce two Hilbert spaces. The first one is simply the weighted L2 space

L2
1/ω :=

{

u ∈ L1
loc(D)

∣

∣

∣

∣

∣

‖u‖21/ω :=

∫

D

|u(x)|2
ω(x)

dx < +∞
}

. (2)

Its inner product is denoted by (·, ·)1/ω. The second space is the “weighted Sobolev space”

T 1 :=

{

u ∈ L2
1/ω

∣

∣

∣

∣

‖u‖2T 1 := ‖u‖21/ω +

∫

D

ω(x) |∇u(x)|2 dx < +∞
}

. (3)
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For a region U ⊂ D and a function f ∈ L1
loc(U), we will also use the notation

‖f‖2U,1/ω :=

∫

U

|f(x)|2
ω(x)

dx , ‖f‖2U,T 1 := ‖f‖2U,1/ω +

∫

U

ω(x) |∇f(x)|2 dx . (4)

Our aim is to establish the uniform stability of the L2
1/ω-orthogonal projection onto a sequence

(XN )N∈N of subspaces of T 1, that we define now. Let (PN )N∈N be a sequence of polygonal ap-
proximations of the disk. That is, PN ⊂ D and the vertices of PN all lie in ∂D. Furthermore, the
maximal distance between two consecutive vertices of PN is denoted by hN , and we assume that

lim
N→∞

hN = 0 . (5)

For each N , we consider a regular triangulation TN of PN , i.e. a set of pairwise disjoint open
triangles, with the usual conformity assumptions (two triangles of TN can only intersect along a
common vertex or edge, or not at all) an such that

⋃

τ∈TN

τ = PN . (6)

For each τ ∈ TN , let hτ be the diameter of τ and ∆τ its area. We assume that there exist constants
c1, C1 and c2, independent of N and τ , such that

c1hN ≤ hτ ≤ C1hN , (global quasi-uniformity), (7)

∆τ

h2
τ

≥ c2 , (uniform shape-regularity). (8)

To construct piecewise linear functions in T 1 from TN , special attention must be paid to the
triangles on the boundary of the triangulation. If τ has two vertices A and B in ∂D, let Uτ be the
open region of D enclosed, on the one hand, by the smallest arc of ∂D linking A to B, and on the
other hand, by the straight line segment [A,B]. Let Kτ be the open convex region resulting from
the union of τ and Uτ , i.e.

Kτ := τ ∪ Uτ . (9)

When τ has one or zero vertex in ∂D, we simply put Kτ = τ . Then, the set {Kτ}τ∈TN
partitions

D in the sense that
⋃

τ∈TN

Kτ = D . (10)

With these definitions, let

XN :=
{

u ∈ C0(D)
∣

∣ u|Kτ
is affine for all τ ∈ TN

}

. (11)

It is clear that XN is a finite-dimensional subspace of T 1. We can now define

πN,ω : L2
1/ω → XN , (12)

the L2
1/ω-orthogonal projection onto XN . We shall prove

Theorem 1. There exists a constant Cπ > 0 independent of N such that,

∀u ∈ T 1 , ‖πN,ωu‖T 1 ≤ Cπ ‖u‖T 1 . (13)
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theorem 1 is analogous to the uniform H1-stability of the L2 projection onto a family of finite-
dimensional supbspaces of H1. In the case of piecewise linear functions on quasi-uniform meshes,
such a stability property is derived easily from global inverse inequalities. Several works have been
devoted to establishing this stability in more general cases [4, 5, 7], e.g. when the triangulation
is not quasi-uniform. Here we restrict ourselves to the case of a quasi-uniform triangulation of D,
but the difficulty arises from the presence of the weight ω in the definitions of L2

1/ω and T 1. In
particular, notice that ω vanishes on ∂D.

The H1-stability of the L2 projection is important in many aspects of Finite Elements and
Boundary Elements analysis. For instance, it is useful in the study of multigrid and domain de-
composition methods [10], or the quasi-optimality of Galerkin methods for parabolic problems [3].
In our case, theorem 1 is used in [1] to estimate the condition number of a preconditioned linear
system arising from the Galerkin boundary element discretization of the Laplace weakly-singular
integral equation on D.

To prove theorem 1, the main difficulty, compared to more standard Sobolev spaces, is that L2
1/ω

and T 1 do not have scaling properties like L2 and H1 have. Hence, many classical and convenient
arguments (such as reasoning by pulling back to a reference triangle) are not directly available here.
Instead, we adapt and combine two classical lines of proof. The first one is an argument, found
e.g. in the proof of [2, Lemma 1], showing that inverse inequalities in combination with suitable
approximation properties yield the stability of the (weighted) L2 projection.

The second line of proof is aimed towards showing an approximation property of XN in T 1.
For this, we follow Clément [6] by adapting the definition of his well-known quasi-interpolant. The
main new ingredient is a non-standard weighted Poincaré inequality, with careful control of the
domain-dependent constant.

The remainder of this paper is organized as follows. In section 2, we state a first lemma to
reduce the proof of theorem 1 to the proof of three key properties (A1)-(A3). In Sections 3 and
4, we derive weighted Poincaré and local inverse inequalities, respectively. Finally, in section 5, we
define a quasi-interpolant IN and show that it meets the requirements.

In the proofs, we use the letter C to denote a generic positive constant that is independent of
the discretization (i.e. of the index N ∈ N of the triangulation TN ). The value of C is allowed to
change from line to line. Nevertheless, we refrain from doing so in the result statements, to ensure
the clarity of our discussion.

2 Three key properties

Our analysis of πN,ω relies on three main ingredients.

(A1) A quasi-interpolant IN : L2
1/ω → XN that is uniformly T 1-continuous, i.e. there exists a

constant CI > 0 such that

∀N ∈ N , ∀u ∈ T 1 , ‖INu‖T 1 ≤ CI ‖u‖T 1 , (14)

and such that, for each N ∈ N and τ ∈ TN , there exists a constant CP (Kτ ) > 0 such that

∀u ∈ T 1 , ‖u− INu‖2Kτ ,1/ω
≤ CP (Kτ )

2 ‖u‖2ωτ ,T 1 , (15)

where ωτ is the union of the domains Kτ ′ such that τ ′ and τ are neighbors, i.e. share at least
one vertex τ .
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(A2) Some local inverse inequalities in XN : for all θ ∈ XN and for all τ ∈ TN , there exists a
constant Cinv(Kτ ) > 0 such that

‖θ‖2Kτ ,T 1 ≤ Cinv(Kτ )
−2 ‖θ‖2Kτ ,1/ω

. (16)

(A3) A uniform estimate of the ratios CP (Kτ )/Cinv(Kτ ), i.e. there exists a constant Crat > 0 such
that

∀N ∈ N , ∀τ ∈ TN , CP (Kτ )/Cinv(Kτ ) ≤ Crat . (17)

Lemma 1. If (A1)-(A3) hold, then the orthogonal projection πN,ω satisfies theorem 1 with

Cπ =
√

2(K♯C2
rat + C2

I ) , (18)

K♯ being an upper bound for all N on the maximal number of neighbors of τ ∈ TN .

Proof. We adapt a well-known argument appearing for example in the proof of [2, Lemma 1]. Given
N ∈ N and u ∈ T 1, we write

‖πN,ωu‖2T 1 ≤ 2(‖πN,ω(u− INu)‖2T 1 + ‖INu‖2T 1)

≤ 2

(

∑

τ∈TN

‖πN,ω(u− INu)‖2Kτ ,T 1

)

+ 2C2
I ‖u‖2T 1

≤ 2

(

∑

τ∈TN

Cinv(Kτ )
−2 ‖πN,ω(u− INu)‖2Kτ ,1/ω

)

+ 2C2
I ‖u‖

2
T 1

≤ 2

(

∑

τ∈TN

Cinv(Kτ )
−2 ‖u− INu‖2Kτ ,1/ω

)

+ 2C2
I ‖u‖2T 1

≤ 2

(

∑

τ∈TN

Cinv(Kτ )
−2CP (Kτ )

2 ‖u‖2UK ,T 1

)

+ 2C2
I ‖u‖2T 1

≤ 2(K♯C
2
rat + C2

I ) ‖u‖2T 1 .

We have applied, successively: the triangle inequality, the property that πN,ωθ = θ for all θ ∈ XN ,
the uniform continuity (i), the inverse inequalities (ii), the minimization properties of πN,ω in L2

1/ω,

the weighted Poincaré inequalities (i) eq.(15), the estimate of the ratio CP (Kτ )/Cinv(Kτ ) (iii), and
the definition of K♯.

In the next sections, we show that (A1) - (A3) hold, see lemma 7, lemma 5 and lemma 8,
respectively.

3 Weighted Poincaré inequalities

In what follows, for any open region U ⊂ D, we write

〈u〉U :=

(∫

U

1/ω(x)

)−1 ∫

U

u(x)

ω(x)
dx . (19)
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It is proved in [1, Theorem 1] that

∀u ∈ T 1 , ‖u− 〈u〉D‖21/ω ≤
∫

D

ω(x) |∇u(x)|2 dx . (20)

The goal of this section is to prove similar inequalities when the domain of integration is replaced
by a subset of D. We start with two technical lemmas.

Lemma 2. Let N ∈ N, Q a vertex of the triangulation TN and ϕN,Q the element of XN such that

ϕN,Q(Q
′) =

{

1 if Q = Q′,

0 otherwise,
(21)

for all vertices Q′ of TN . Let SN,Q = suppϕN,Q. Then, there exists a bilipschitz application κN,Q,
mapping D to SN,Q such that

∀x, y ∈ D , c3hN |x− y| ≤ |κN,Q(x)− κN,Q(y)| ≤ C3hN |x− y| , (22)

where the constants c3 and C3 do not depend on N nor on Q.

The proof can be done by introducing polar coordinates in SN,Q, centered at the vertex Q, and
using the shape-regularity of (TN )N∈N.

Lemma 3. Let A and B be two bounded open sets and κ : A → B such that

∀x, y ∈ A , l ‖x− y‖ ≤ ‖κ(x)− κ(y)‖ ≤ L ‖x− y‖ . (23)

Then there holds

∀x ∈ A , l ≤ d(κ(x), ∂B)

d(x, ∂A)
≤ L . (24)

Proof. Let x ∈ A. For any y ∈ ∂A, κ(y) ∈ ∂B, so

d(κ(x), ∂B) ≤ ‖κ(x)− κ(y)‖ ≤ L ‖x− y‖ .

Taking the infimum over y ∈ ∂A, we deduce

d(κ(x), ∂B) ≤ Ld(x, ∂A) .

The left inequality is obtained by a similar reasoning.

Let us point out that for all x ∈ D,

1 ≤ ω(x)
√

d(x, ∂D)
≤ 2 . (25)

These remarks being made, we can prove the following result:

Theorem 2. Let N ∈ N and Q be a vertex of TN . Let S = SN,Q be defined as in lemma 2. Then

∀u ∈ T 1 , ‖u− 〈u〉S‖2S,1/ω ≤ C4γ(S)hN ‖u‖2S,T 1 (26)

where C4 > 0 does not depend on N nor on Q and where

γ(S) := sup
x∈S

d(x, ∂S)

d(x, ∂D)
. (27)
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Proof. To begin with, we observe that for any α ∈ C,

‖u− 〈u〉S‖2S,1/ω ≤ ‖u− α‖2S,1/ω .

Let α ∈ C and v = u− α. The main idea is the following estimate:
∫

S

|v(x)|2
ω(x)

dx ≤
∫

S

|v(x)|2 dx
√

d(x, ∂D)
≤
√

γ(S)

∫

S

|v(x)|2 dx
√

d(x, ∂S)
.

Now, the singularity of the integrand is on ∂S, and by mapping S to the disk, we will be able to
use the Poincaré inequality (20). To see this, let us introduce the change of variables x = κ(y),
where κ : D → S is a bilipschitz map as in lemma 2. This leads to

∫

S

|v(x)|2
ω(x)

dx ≤ C
√

γ(S)h2
N

∫

D

|v ◦ κ(y)|2 dy
√

d(κ(y), ∂S)
dy .

By Lemmas 2 and 3, there holds

d(κ(y), ∂S) ≥ ChNd(y, ∂D) ≥ ChNω2 .

We deduce that
∫

S

|v(x)|2
ω(x)

dx ≤ C
√

γ(S)
h2
N√
hN

∫

D

|f(y)− α|2
ω(y)

dy (28)

≤ C
√

γ(S)h
3/2
N

∫

D

|f(y)− α|2
ω(y)

dy (29)

where f(y) := u(κ(y)). Taking α = 〈f〉D, we can now apply the inequality (20) to f :

∫

D

|f(y)− α|2
ω(y)

dy ≤
∫

D

ω(y) |∇f(y)|2 dy .

Injecting this inequality in what precedes, we obtain

‖u− 〈u〉S‖2S,1/ω ≤ C
√

γ(S)h
3/2
N

∫

D

ω(y) |∇f(y)|2 dy .

It remains to return to the domain S by applying the inverse change of variables, while keeping
track of the powers of hN . We have, again by lemma 2, |∇f(y)| ≤ ChN |[∇u](κ(y))|, hence

‖u− 〈u〉S‖2S,1/ω ≤ C
√

γ(S)h
7/2
N

∫

D

√

d(y, ∂D) |[∇u](κ(y))|2 dy

We now reuse lemma 3:

‖u− 〈u〉S‖2S,1/ω ≤ C
√

γ(S)h3
N

∫

D

√

d(κ(y), ∂S) |[∇u](κ(y))|2 dy . (30)

Finally, with the change of variables x = κ(y) and using lemma 2, this leads to

‖u− 〈u〉S‖2S,1/ω ≤ C
√

γ(S)
h3
N

h2
N

∫

S

√

d(x, ∂S) |∇u(x)|2 dx (31)

≤ C
√

γ(S)hN

∫

S

√

d(x, ∂S) |∇u(x)|2 dx . (32)
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With the simple estimate

√

d(x, ∂S) ≤
√

γ(S)
√

d(x, ∂D) ≤
√

γ(S)ω ,

we easily obtain the claimed inequality.

Remark 1. There is a large corpus of works devoted to weighted Poincaré-type inequalities, but to
the best of our knowledge, the kind of inequalities treated in other references (see e.g. [8, 9]) do
not quite have the form of the one we deal with here.

4 Inverse inequalities

First, we have inverse inequalities without weights:

Lemma 4. There exists a constant C5 > 0 such that, for all N ∈ N, θ ∈ XN and τ ∈ TN , there
holds

∫

Kτ

|∇θ(x)|2 dx ≤ C5h
−2
N

∫

Kτ

|θ(x)|2 dx . (33)

This is well-known when Kτ = τ (i.e. when Kτ is a triangle). The only “difficulty” is to extend
this to the case where τ has two vertices in the boundary. But in that case, we may enclose Kτ

between two triangles of uniformly comparable areas, and the proof merely becomes a technical
formality. We spare the readers with the details.

Corresponding weighted inverse inequalities can be deduced in the following manner:

Lemma 5. Condition (A2) is satisfied with the constant

Cinv(Kτ )
−2 = 1 + C5h

−2
N ρω(Kτ )Mω(Kτ )

where ρω(Kτ ) and Mω(Kτ ) are the average and the maximum of ω on Kτ , respectively.

Proof. Let N ∈ N, τ ∈ TN and θ ∈ XN . Since ∇θ is constant on Kτ , one has

∫

Kτ

ω(x) |∇θ(x)|2 dx = ρω(K)

∫

Kτ

|∇θ|2 .

Applying the previous lemma, we get

∫

Kτ

ω |∇θ(x)|2 dx ≤ C5h
−2
N ρω(Kτ )

∫

Kτ

|θ(x)|2 dx (34)

≤ C5h
−2
N ρω(Kτ )Mω(Kτ )

∫

Kτ

|θ(x)|2
ω(x)

dx . (35)

The result follows immediately.

Lemma 6. There exists a constant C6 > 0 independent on N such that for all τ ∈ TN and for any
vertex Q of τ ,

hNγ(SN,Q)Cinv(Kτ )
−2 ≤ C6 ,

where SN,Q is the support of the basis function of XN attached to Q, as defined in lemma 2.
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Proof. Let us rewrite S = SN,Q. We have

hNγ(S)Ci(Kτ )
−2 = hNγ(S) + C5h

−1
N γ(S)ρω(Kτ )Mω(Kτ ) =: T1 + T2 .

We can write T1 ≤ C, since this term tends to 0 when N → ∞. The main task is thus to estimate
T2.

On the one hand, assume that d(S, ∂D) ≤ hN . Then we use the simple estimate γ(S) ≤ 1.
Moreover, for all x ∈ Kτ , there holds d(x, ∂D) ≤ d(x, ∂S) + d(S, ∂D) ≤ ChN . Using (25), we
deduce ρω(K) ≤ C

√

hj and Mω(K) ≤ C
√
hN and thus T2 ≤ C.

On the other hand, if d(S, ∂D) ≥ hN , we estimate γ(S) as follows. First, we have d(x, ∂D) ≥
ω(x)2 hence

γ(S) ≤ d(x, ∂S)

mω(S)2
, (36)

where mω(S) is the minimum of ω on S. Note that d(S, ∂D) ≥ hN implies that

hN ≤ Cmω(S)
2 . (37)

By the quasi-uniformity assumption (7) the diameter dS of S satisfies

dS ≤ ChN (38)

Therefore, there holds d(x, ∂S) ≤ dS ≤ ChN . This shows that γ(S) ≤ C
hN

mω(S)2
, which, injected

in the expression of T2, leads to

T2 ≤ C
ρω(Kτ )

mω(S)

Mω(Kτ )

mω(S)
.

Observing that ∇ω = x/ω, a Taylor-Langrange inequality combined with the estimates (37) and
(38) gives

|ρω(Kτ )−mω(S)| ≤
dS

mω(S)
≤ C

√

hN .

Hence,
ρω(Kτ )

mω(S)
≤ 1 +

|ρω(Kτ )−mω(Kτ )|
mω(S)

≤ C ,

using again (37). For similar reasons, there holds
Mω(Kτ )

mω(S)
≤ C and so T2 ≤ C also in this case.

This concludes the proof of the lemma.

5 Clément type quasi-interpolant

Fix N ∈ N and denote by {Q1, . . . , Qn} the vertices of TN . Let us rewrite ϕN,Qi
, defined in (21),

as ϕi. Similarly, we write Si instead of SN,Qi
. For the quasi-interpolant IN , we put

∀u ∈ L2
1/ω , INu :=

n
∑

i=1

〈u〉Si
ϕi . (39)
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Lemma 7. The quasi-interpolant (39) satisfies (A1) with

CP (Kτ )
2 = C7hN

∑

i∈I(τ)

γ(Si) (40)

where C7 > 0 is a constant independent on N and τ and I(τ) is the set of indices i such that Qi is
a vertex of τ .

Proof. We adapt the proof of [6, Theorem 1]. Let τ ∈ TN and fix some j ∈ I(τ). On Kτ , we have

INu =
∑

i∈I(τ)

ciϕi = cj
∑

i∈I(τ)

ϕi +
∑

i∈I(τ)\{j}

(ci − cj)ϕi . (41)

where ci = 〈u〉Si
. Since

∑

i∈I(τ) ϕi = 1, we deduce

‖u− INu‖Kτ ,1/ω
≤ ‖u− cj‖Kτ ,1/ω

+

3
∑

i∈I(τ)\{j}

|ci − cj | ‖ϕi‖Kτ ,1/ω
(42)

≤ ‖u− cj‖Sj ,1/ω
+

∑

i∈I(τ)\{j}

|ci − cj | ‖ϕi‖Kτ ,1/ω
. (43)

By theorem 2, the first term can be estimated by

‖u− cj‖Sj ,1/ω
≤
√

CP γ(Sj)hN ‖u‖Sj ,T 1 .

On the other hand for i ∈ I(τ) \ {j}, we may write

|ci − cj |2 ‖ϕi‖2Kτ ,1/ω
=

(∫

Kτ

1/ω

)−1

‖ci − cj‖2Kτ ,1/ω
‖ϕi‖2Kτ ,1/ω

(44)

≤ ‖ci − cj‖2Kτ ,1/ω
(45)

≤ 2(‖u− ci‖2Si,1/ω
+ ‖u− cj‖2Sj ,1/ω

) , (46)

since ϕp ≤ 1 on K. Applying again theorem 2 leads to

‖u− INu‖2Kτ ,1/ω
≤ ChN





3
∑

i∈I(τ)

γ(Si)



 ‖u‖2ωτ ,T 1 ,

where ωτ is defined below Eq. (15), and we used that Si ⊂ ωτ whenever i ∈ I(τ).
To show that the T 1-continuity (14) holds, we can write, using again (41),

‖u− INu‖Kτ ,T 1 ≤ ‖u‖Kτ ,T 1 +
∑

i∈I(τ)\{j}

|ci − cj | ‖ϕi‖Kτ ,T 1 .
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Using the inverse inequality shown in lemma 5 and using similar arguments as above, we find

‖u− INu‖2Kτ ,T 1 ≤









1 + C
∑

i∈I(τ)\{j}

hN (γ(Si) + γ(Sj))

Cinv(Kτ )2
∫

Kτ

1

ω(x)
dx

‖ϕi‖21/ω,Kτ









‖u‖2ωτ ,T 1

≤



1 + C
∑

i∈I(τ)

hNγ(Si)Cinv(Kτ )
−2



 ‖u‖2ωτ ,T 1 .

Thanks to lemma 6, we conclude that

‖u− INu‖Kτ ,T 1 ≤ C ‖u‖2ωτ ,T 1 .

The continuity (14) follows easily.

Combining lemma 6 and lemma 7, we deduce that

Lemma 8. Condition (A3) is satisfied.

This concludes the proof of theorem 1.

6 Conclusions

We have shown theorem 1 by combining some inverse inequalities with a weighted Poincaré inequal-
ity. Our proof relies essentially on the fact that the constants appearing in both inequalities have a
uniformly bounded ratio. Identical arguments can be used to treat quasi-uniform and shape-regular
family of triangulations of more general domains, but we have restricted our attention to the disk
D for conciseness. We do not know whether the result extends to locally refined triangulations.
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