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Abstract

We propose preconditioners for the Helmholtz scattering problems by a planar, disk-shaped
screen in R

3. Those preconditioners are approximations of the square-roots of some partial
differential operators acting on the screen. Their matrix-vector products involve only a few
sparse system resolutions and can thus be evaluated cheaply in the context of iterative methods.
For the Laplace equation (i.e. for the wavenumber k = 0) with Dirichlet condition on the disk
and on regular meshes, we prove that the preconditioned linear system has a bounded condition
number uniformly in the mesh size. We further provide numerical evidence indicating that the
preconditioners also perform well for large values of k and on locally refined meshes.

1 Introduction

We consider the problem of acoustic scattering by a disk-shaped screen

D :=
{
x = (x1, x2, 0) ∈ R

3 such that |x|2 := x21 + x22 < 1
}

in R
3, and its numerical simulation using the boundary element method (BEM). Calling k ≥ 0 the

wavenumber, with the convention that k = 0 for the Laplace equation, the problem can usually be
rephrased as

Vkλ = f or Wkµ = g (1)

depending whether one considers a Dirichlet or Neumann boundary condition on the disk D. Here
λ and µ respectively stand for the jumps of the Neumann and Dirichlet traces of the scattered
field across D, while the weakly singular operator Vk : H̃−1/2(D) → H1/2(D) and the hypersingular

operator Wk : H̃1/2(D) → H−1/2(D) are defined by

Vkϕ :=

∫

D

Gk(x− y)ϕ(y) dσ(y) , Wkϕ :=

∮

D

∂2

∂nx∂ny
Gk(x− y)ϕ(y) dσ(y) , (2)

with Gk(x) :=
eik|x|

4π|x| (the precise definitions are given in Section 3). Having computed λ or µ, the

scattered field is finally explicitly obtained on R
3 \D through a classical representation formula (see

e.g. [?, ?]).
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Solving the problem with the BEM involves the resolution of linear systems with the matrices
Vk or Wk defined by

(Vk)i,j := 〈Vkϕj , ϕi〉 and (Wk)i,j := 〈Wkψj , ψi〉 , 1 ≤ i, j ≤ Ndof ,

where the boundary element basis {ϕi}1≤i≤Ndof
⊂ H̃−1/2(D) and {ψi}1≤i≤Ndof

⊂ H̃1/2(D) are sets
of functions defined on a mesh of the screen D, and the brackets stand for the duality products in
H̃−1/2(D)×H1/2(D) and H−1/2(D)× H̃1/2(D) respectively. In the boundary element method, due
to the non-local structure of the Green kernel Gk, the matrices Vk and Wk are fully populated,
preventing a priori the use of fine meshes on the scatterer. However, in the past thirty years,
several acceleration methods (e.g. the Fast Multipole Method [?, ?], and H-Matrices [?]) have
been developed that enable to compute the matrix-vector products x 7→ Vkx,Wkx in quasi-linear
complexity. This allows to use iterative solvers for solving the underlying linear systems.

Nevertheless, when the problem of scattering by a bidimensional screen is considered, several
difficulties still appear:

- The solutions of the integral equations have a well-known singularity at the edge of the screen
(see e.g. [?]). In order to capture this singularity, the mesh needs to be refined locally near
this edge [?].

- The condition number of the matrices Vk and Wk increases when the mesh is getting finer
and this effect is aggravated by local mesh refinements, see e.g. [?].

Although preconditioning techniques for integral equations is a well established subject (see for
instance [?, ?, ?, ?] and references therein), the extension of those ideas to singular domains has
only be considered recently, e.g. by the authors in [?] (see also [?, ?, ?, ?]). The first goal of this
work is to generalize the approach of [?] for 3D scattering problems on the disk D by introducing
preconditioners that are robust both with respect to the mesh parameters and the wavenumber k.

By now, there is a well established strategy to ensure robustness with respect to the mesh
parameters. For example, in the case of the operator Vk, it is sufficient to find an isomorphism
P : H1/2(D) → H̃−1/2(D), together with a “stable discretisation” (see Section 4), to define a

preconditioning matrix P̂ associated to P . Then, it can be shown that the condition number of
P̂Vk is bounded by a constant that depends on k and P , but is otherwise independent of the mesh
width. This property is often referred to as optimal preconditioning.

Nevertheless, being an optimal preconditioner only means that the condition number stays stable
with respect to mesh refinements while k is held fixed. There is no expected behavior when one
considers different – and more specifically high – wave numbers. Classical optimal preconditioners
constructed for the Laplace equation (k = 0) behave poorly at high frequency in practice.

To counteract this negative behavior, our second objective is thus to propose a family of oper-
ators (Pk)k>0, that depend on the wavenumber k, such that the iterative resolution of the linear

system associated to the matrix P̂kVk involves a small number of iterations for a large range of
values of k. Unfortunately, we are not aware of a general theory to estimate the number of iter-
ations uniformly with respect to k (not even in the more favourable case of the scattering by a
smooth surface without boundary), so for the time being, we must rely on numerical experiments
to demonstrate the efficiency of the strategy.

Let us now briefly outline the contents of this paper. Introducing the weight

ω(x) :=
√

1− x21 − x22 , for x ∈ D , (3)
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the main result of the paper is that

P0 :=
1

ω

(
−ω divω∇+

1

4
Id

) 1
2

, Q0 := ω (− divω∇ω)−
1
2

are spectrally equivalent to V −1
0 , and W−1

0 , respectively. Above and in what follows, Id stands for
the identity operator, and ω divω∇ and divω∇ω are understood as

(ω divω∇)u(x) = ω(x) div(ω(x)∇u(x)) , (divω∇ω)u(x) = div
(
ω(x)∇(ω(x)u(x))

)
. (4)

In other words, ω represents the multiplicative operator (ωu)(x) := ω(x)u(x). The operators P0

and Q0 provide us with isomorphisms H−1/2(D) → H̃−1/2(D) and H−1/2(D) → H̃1/2(D) that,
as we shall see, are cheaply evaluated when it comes to Galerkin discretization, and can be used
efficiently as preconditioners for V0 and W0 respectively.

In order to proceed we introduce in Section 2 a scale of Hilbert spaces that conveniently replaces
the classical Sobolev scale. This generalizes to the case of the disk in 3D, the scale introduced in
[?] for open curves in 2D. Section 3 is then devoted to show the claimed result, i.e. the spectral
equivalence of V −1

0 and P0 on the one hand and W−1
0 and Q0 on the other hand. For k > 0, our

previous work [?] in dimension 2 suggests to generalize the preceding operators as :

Pk :=
1

ω

(
−ω divω∇− k2ω2

) 1
2 , Qk := ω

(
− divω∇ω − k2ω2

)− 1
2 .

The details on the Galerkin discretization, the efficient computation of the square roots, and the
proofs of the uniform estimates of the condition number with respect to the mesh parameters are
provided in Section 4. Eventually, the performance of the proposed preconditioners are reported in
Section 5, and the implementation is openly available [?].

2 Weighted functional analysis on the disk

We now introduce some Hilbert scales T s and Us of functions on D that are weighted versions of
Sobolev spaces especially well suited for the analysis of the considered problem. In those scales, the
operators −ω divω∇ and − divω∇ω are positive self-adjoint, allowing to define their square roots,
which are the main ingredient in our preconditiong strategy.

We start by introducing L2
1
ω

and L2
ω the weighted L2 spaces defined by

L2
1
ω
:=

{
u ∈ L1

loc(D,C)

∣∣∣∣∣ ‖u‖
2
1
ω
:=

∫

D

|u(x)|2
ω(x)

dx < +∞
}
,

L2
ω :=

{
u ∈ L1

loc(D,C)

∣∣∣∣ ‖u‖
2
ω :=

∫

D

ω(x)|u(x)|2 dx < +∞
}
,

with ω given by Eq. (3).
Those spaces, when equipped with the respective scalar products

∀(u, v) ∈ (L2
1
ω
)2 , (u, v) 1

ω
:=

∫

D

u(x) v(x)

ω(x)
dx ,
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∀(u, v) ∈ (L2
ω)

2 , (u, v)ω :=

∫

D

ω(x)u(x) v(x) dx ,

are Hilbert spaces.
Complete orthogonal families of these spaces are given by the following Proposition (see [?, ?]).

Proposition 1. Let Λ = {(l,m) ∈ N× Z | −l ≤ m ≤ l and l −m is even}, and let Tm
l and Um

l be
the functions defined for (l,m) ∈ Λ and x = (ρ, ϕ) by

Tm
l (x) = Y m

l (arcsin(ρ), ϕ) and Um
l (x) =

Y m
l+1(arcsin(ρ), ϕ)

ω(x)

where the function Y m
l (θ, ϕ), (θ, ϕ) ∈ [0, π]× [0, 2π) are the classical spherical harmonics. The set

{Tm
l }(l,m)∈Λ (resp. {Um

l }(l,m)∈Λ) is a complete orthogonal family of L2
1
ω

(resp. L2
ω). The functions

Tm
l and Um

l satisfy in particular for all (l1,m1) and (l2,m2) in Λ,

∫

D

Tm1

l1
(x)Tm2

l2
(x)

ω(x)
dx =

1

2
δl1=l2δm1=m2

,

∫

D

ω(x)Um1

l1
(x)Um2

l2
(x) dx =

1

2
δl1=l2δm1=m2

. (5)

The functions Tm
l and Um

l enjoy further properties. We provide the reader with a few of them
that will turn out to prove useful in the following. Spherical harmonics are the restriction to the
sphere of harmonic homogeneous polynomials in (x1, x2, x3). Using this convention, one can write
Y m
l as

Y m
l (x1, x2, x3) = ηml e

imφPm
l (x3)

= ηml (x1 + ix2)
m dl+m

dtl+m

[
(t2 − 1)l

]
|t=x3

,

where ηml = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
is a normalization coefficient that ensures

∫
S2
|Y m

l |2 dσ = 1,

(x1, x2) = (ρ cos(φ), ρ sin(φ)) and Pm
l stand for the associated Legendre polynomials.

Using that, on the sphere, we have x23 = 1 − x21 − x22 = ω(x)2, we can rewrite the spherical
harmonics as polynomials for which the degree in the x3 variables does not exceed 1. The Tm

l

are obtained from the spherical harmonics that have a degree 0 in x3, while the Um
l are the ones

obtained from the spherical harmonics of degree exactly 1 in x3. Consequently, we deduce that
the functions Tm

l and Um
l are polynomial functions in (x1, x2), and a closer analysis shows that

their degree is precisely l. We therefore deduce the following lemma, denoting by C∞(D) the set of
restrictions to D of functions in C∞(R2).

Lemma 1. For all (l,m) ∈ Λ, the functions Tm
l and Um

l are in C∞(D).

A uniform bound can also be obtained by noticing that the spherical harmonics Y m
l satisfy the

addition formula
l∑

m=−l

Y m
l (θ, ϕ)Y m

l (θ′, ϕ′) =
2l + 1

4π
Pl(a · a′)

where Pl = P 0
l is the Legendre polynomial of degree l and a and a′ are the points of the sphere

with spherical coordinates (θ, ϕ) and (θ′, ϕ′) respectively. Applying this identity for a = a′ =
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(ρ cos(ϕ), ρ sin(ϕ),
√

1− ρ2), and since Pl(1) = 1, we conclude that for any x = (ρ cos(ϕ), ρ sin(ϕ), 0) ∈
D, and for any l ∈ N,

l∑

m=−l
m−l even

|Tm
l (x)|2 ≤

l∑

m=−l

|Y m
l (arcsin ρ, ϕ)|2 =

2l + 1

4π
.

In particular, this implies the bound, ∀x ∈ D, ∀(l,m) ∈ Λ,

|Tm
l (x)| ≤

√
2l + 1

4π
. (6)

As a consequence of Proposition 1, any function u ∈ L2
1
ω

and v ∈ L2
ω may be expanded in a

Fourier-like series as

u(x) =
∑

(l,m)∈Λ

ûml T
m
l (x) , v(x) =

∑

(l,m)∈Λ

v̌ml U
m
l (x) ,

where the series are converging in L2
1
ω

and L2
ω, respectively, and

∀(l,m) ∈ Λ , ûml = 2

∫

D

u(x)Tm
l (x)

ω(x)
dx , v̌ml = 2

∫

D

ω(x)v(x)Um
l (x) dx .

The following Parseval equalities also hold:

∫

D

|u(x)|2
ω(x)

dx =
1

2

∑

(l,m)∈Λ

|ûml |2 ,
∫

D

ω(x)|v(x)|2 dx =
1

2

∑

(l,m)∈Λ

|v̌ml |2 . (7)

We now use the following key lemma that enables us to define a scales of Hilbert spaces, com-
parable to the Sobolev spaces.

Lemma 2. For all (l,m) ∈ N× Z such that −l ≤ m ≤ l, there holds

−(ω divω∇)Tm
l =

[
l(l + 1)−m2

]
Tm
l , (8)

−(divω∇ω)Um
l =

[
(l + 1)(l + 2)−m2

]
Um
l . (9)

We stress that the operators appearing on the left hand sides are understood as in Eq. (4).

Proof. One possible way to prove this lemma, is to introduce the projected moments L+ and L−,
defined for a regular enough function u defined on D by

L±u(ρ, ϕ) := e±iϕ

(
±∂u
∂ρ

+ i
1

ρ

∂u

∂ϕ

)
.

Furthermore, we denote by ωL±ω : C∞(D) → C∞(D) the operator defined by

(ωL±ω)ϕ(x) := ω(x)L± (ω(x)ϕ(x)) = ω2(x)L±ϕ(x)∓ ρe±iϕu(x) .
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Those operators are studied in [?], and their properties can be rephrased in our notation as follows:
for all (l,m) ∈ Λ,

L±T
m
l =

√
l(l + 1)−m2 ∓m Um±1

l−1 , (10)

ωL±ωU
m
l =

√
(l + 1)(l + 2)−m2 ∓m Tm±1

l+1 . (11)

One easily checks that

∇ =
1

2

(
L+ − L−

−iL+ − iL−

)
, ω∇ω =

1

2

(
ωL+ω − ωL−ω

−iωL+ω − iωL−ω

)
, (12)

which leads to the identities

ω divω∇ = − (ωL+ω)L− + (ωL−ω)L+

2
,

divω∇ω = −L+(ωL−ω) + L+(ωL−ω)

2
,

and the result follows from Eqs. (10) and (11).

Definition 1 (Function spaces T s and Us). Let T and U be the complex vector spaces of formal
series

T =





∑

(l,m)∈Λ

ûml T
m
l

∣∣∣∣∣∣
(ûml )(l,m)∈Λ ∈ C

Λ



 , U =





∑

(l,m)∈Λ

v̌ml U
m
l

∣∣∣∣∣∣
(v̌ml )(l,m)∈Λ ∈ C

Λ



 .

For all s ∈ R, we define the following Hilbert spaces:

T s := {u ∈ T | ‖u‖T s <∞} , Us := {v ∈ U | ‖v‖Us <∞} ,

where

‖u‖2T s :=
1

2

∑

(l,m)∈Λ

|ûml |2
(
1

4
+ l(l + 1)−m2

)s

, ‖v‖2Us :=
1

2

∑

(l,m)∈Λ

|v̌ml |2
(
(l + 1)(l + 2)−m2

)s
.

Note that, when s ≥ t, T s ⊂ T t and Us ⊂ U t. We adopt the notation

T −∞ := ∪s∈RT s , T ∞ := ∩s∈RT s , U−∞ := ∪s∈RUs , U∞ := ∩s∈RUs .

For s ≥ 0, the convergent series in T s and Us are identified to their limits in L2
1
ω

(D) and L2
ω(D)

respectively, and in this case, one has

ûml =

∫

D

u(x)Tm
l (x)

ω(x)
dx , v̌ml =

∫

D

ω(x)v(x)Um
l (x) dx . (13)

In this sense, L2
1
ω

⊂ T s and L2
ω ⊂ Us for all s ≤ 0. Note that for (u, v) ∈ L2

1
ω

× L2
ω

(̂u)
m

l = (−1)mûml , |(u)
m

l = (−1)mǔml ,

and this is taken as the definition of the complex conjugation on T s and Us.
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Notice the factor 1
4 in the definition of the T s norm and space that is conveniently taken for a

reason that will appear clearer later (see Lemma 10). The following lemma shows that C∞(D) is a
subset of T s and Us for all s ∈ R:

Lemma 3. Let u ∈ C∞(D) and s ∈ R. Then u ∈ Us and there exists Cs > 0 and Ns ∈ N such that

‖u‖Us ≤ Cs max
|α|≤Ns

‖∂αu‖L∞(D)

where α = (α1, α2) ∈ N
2 is a multi-index, |α| := α1 + α2 and ∂αu = ∂α1

x1
∂α2
x2

. The same statement
holds replacing Us by T s.

Proof. Let u ∈ C∞(D). We remark that u ∈ L2
ω and therefore

ǔml = 2

∫

D

ω(x)u(x)Um
l (x)dx

is well-defined. Now, noticing that

Um
l (x) =

−1

((l + 1)(l + 2)−m2)
[(divω∇ω)Um

l ](x)

and using the previous equality, an integration by parts gives

ǔml =
−2

((l + 1)(l + 2)−m2)

∫

D

ω(x) [(divω∇ω)u] (x)Um
l (x) dx ,

where we have used that ω vanishes on ∂D to suppress the boundary terms.
This argument can be repeated to obtain, for any p ∈ N,

ǔml = (−1)p
2

((l + 1)(l + 2)−m2)p

∫

D

ω(x)[(divω∇ω)p u](x)Um
l (x) dx .

We now remark that ∇ω = x
ω , which entails that, for u regular enough,

(divω∇ω)u(x) = 2u(x)− x · ∇u(x) + ω2(x)∆u(x) .

A simple reasoning by induction shows that (divω∇ω)p is a partial differential operator of the form

(divω∇ω)p =
∑

|α|≤2p

cα(x)∂
α ,

where, for all multi-index α such that |α| ≤ 2p, cα ∈ C∞(D). (In fact, the coefficients cα are
polynomials in x.) Thus for all p, there exists a constant Kp > 0 such that

|ǔml | ≤
Kp max|α|≤2p ‖∂αu‖L∞(D)

((l + 1)(l + 2)−m2)p
.

For any s ∈ R, we may take p sufficiently large to ensure that

Ks :=
∑

(l,m)∈Λ

((l + 1)(l + 2)−m2)s−2p < +∞ .
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We thus deduce that u ∈ Us and

‖u‖Us ≤ Cs max
|α|≤2p

‖∂αu‖L∞(D)

where Cs =
√
KsKp. With the same method of proof, one can show the analogous result for T s.

It is easy to check that the sequence of truncated series of an element of T s or Us converges to
this element in the same space. Hence the set of finite linear combinations of {Tm

l }(l,m)∈Λ (resp.
{Um

l }(l,m)∈Λ) is dense in T s (resp. Us) for all s ∈ R. It follows from this, Lemma 3 and Lemma 1

that C∞(D) is also dense in T s and Us for all real s.

Lemma 4. For all s′ < s, the inclusions T s ⊂ T s′ and Us ⊂ Us′ are compact and dense.

Proof. The fact that the inclusions are dense follows from the previous remark. Let us show the
claim concerning the compact inclusion T s ⊂ T s′ . The proof of the result for the spaces Us goes
along similar lines. Let s ∈ R and s′ = s− δ for some δ > 0. We have to show that T s is compactly
embedded in T s−δ, or equivalently, that if (un)n is a sequence that weakly converges to 0 in T s,
then (un)n strongly converges to 0 in T s−δ. Writing

un =
∑

(l,m)∈Λ

(ûml )
n
Tm
l ,

the weak T s convergence entails that both the following statements hold:

∃C > 0, ∀n ∈ N, ‖un‖2T s =
∑

(l,m)∈Λ

(
1

4
+ l(l + 1)−m2

)s

|(ûml )
n|2 < C , (14)

∀(l,m) ∈ Λ , lim
n→+∞

(ûml )
n
= 0 . (15)

Now, let ε > 0 and L(ε) ∈ N be such that

(
1

4
+ L(ε)

)−δ

≤ ε, (16)

we infer, noticing that, for all (l,m) ∈ Λ, 1
4 + l(l + 1)−m2 ≥ 1

4 + l,

‖un‖2T s−δ =
∑

(l,m)∈Λ

(
1

4
+ l(l + 1)−m2

)s−δ

|(ûml )
n|2

=
∑

(l,m)∈Λ,l≤L(ε)

(
1

4
+ l(l + 1)−m2

)s−δ

|(ûml )
n|2

+
∑

(l,m)∈Λ,l≥L(ε)+1

(
1

4
+ l(l + 1)−m2

)s−δ

|(ûml )
n|2

≤
∑

(l,m)∈Λ,l≤L(ε)

(
1

4
+ l(l + 1)−m2

)s−δ

|(ûml )
n|2 + Cε

using (14) and (16). By Eq. (15), we can now take n sufficiently large so that the first sum is
smaller than ε, concluding the proof.
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Lemma 5. For each s ∈ R, the inner products (·, ·)ω and (·, ·) 1
ω
extend continuously to sesquilinear

forms Us × U−s and T s × T −s respectively, and those extensions satisfy

∀(u, v) ∈ Us × U−s , (u, v)ω =
1

2

∑

(l,m)∈Λ

ǔml v̌
m
l , (17)

∀(u, v) ∈ T s × T −s , (u, v) 1
ω
=

1

2

∑

(l,m)∈Λ

ûml v̂
m
l . (18)

Proof. First, if u and v are finite linear combinations of the functions (Um
l )(l,m)∈Λ, then it follows

immediately from Eqs. (5) and (13) that

(u, v)ω =
1

2

∑

(l,m)∈Λ

ǔml v̌
m
l .

By density of such finite linear combinations in Us, it only remains to prove that the sesquilinear
map

(u, v) ∈ Us × U−s 7→ 1

2

∑

(l,m)∈Λ

ǔml v̌
m
l

is continuous. This is indeed the case by the Cauchy-Schwarz inequality:

∣∣∣∣∣∣
∑

(l,m)∈Λ

ǔml v̌
m
l

∣∣∣∣∣∣

2

≤
∑

(l,m)∈Λ

((l + 1)(l + 2)−m2)s |ǔml |2
∑

(l,m)∈Λ

((l + 1)(l + 2)−m2)−s |v̌ml |2

= ‖u‖2Us ‖v‖2U−s .

The proof concerning the second inner product is similar.

Lemma 6. For every s ∈ R, the maps 1
ω : T −s → (T s)′ and ω : U−s → (Us)′, defined by

∀(u, v) ∈ T −s × T s

(
1

ω
u

)
(v) := (u, v) 1

ω
, ∀(u, v) ∈ U−s × Us , (ωu)(v) := (u, v)ω ,

are bijective isometries. With a slight abuse of notation, we also denote ω =
(
1
ω

)−1
: (T s)′ → T −s.

The proof, mainly relying on the Riesz theorem, presents no difficulty, so we omit it.

Lemma 7. For every s ∈ R, the operators

∇ : C∞(D) → (C∞(D))2 , div : (C∞(D))2 → C∞(D) ,

have unique extensions as linear continuous maps

∇ : T s → (Us−1)2 , div : (T s)2 → Us−1 .
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Proof. We perform the proof for the operator ∇, the other being similar. First, if such a linear
continuous extension exists, it is unique by density of C∞(D) in T s for all s ∈ R. For u ∈ C∞(D)
and j ∈ {1, 2}, let v = ∂xj

u ∈ L2
ω. Using integration by parts and the identities (11)-(12), we find

v̌ml =
(
∂xj

u, Um
l

)
ω

= −
(
u, (ω∂xj

ω)Um
l

)
1
ω

=
1

2





−
√
(l + 1)(l + 2)−m2 −m

(
u, Tm+1

l+1

)
1
ω

+
√
(l + 1)(l + 2)−m2 +m

(
u, Tm−1

l+1

)
1
ω

if j = 1 ,

i
√

(l + 1)(l + 2)−m2 −m
(
u, Tm+1

l+1

)
1
ω

+ i
√
(l + 1)(l + 2)−m2 +m

(
u, Tm−1

l+1

)
1
ω

if j = 2 ,

=
1

4





−
√
(l + 1)(l + 2)−m2 −mûm+1

l+1 +
√
(l + 1)(l + 2)−m2 +mûm−1

l+1 if j = 1 ,

i
√

(l + 1)(l + 2)−m2 −mûm+1
l+1 + i

√
(l + 1)(l + 2)−m2 +mûm−1

l+1 if j = 2 ,

Naturally, we use this expression as a definition for ∂xj
u when u ∈ T −∞. Using simple estimates,

such as m ≤ (l+1)(l+2)− (m+1)2 when (l,m) ∈ Λ, we deduce that there exists a constant C > 0
such that

∀(l,m) ∈ Λ ,
(
(l + 1)(l + 2)−m2

) s
2

∣∣∣(∂xj
u)

m

l

∣∣∣ ≤C
(
1

4
+ (l + 1)(l + 2)− (m+ 1)2

) s+1
2 ∣∣ûm+1

l+1

∣∣

+C

(
1

4
+ (l + 1)(l + 2)− (m− 1)2

) s+1
2 ∣∣ûm−1

l+1

∣∣ .

This implies the desired continuity.

Lemma 8. For every u ∈ T 1, there holds

∫

D

ω(x) |∇u(x)|2 dx =
1

2

∑

(l,m)∈Λ

(l(l + 1)−m2) |ûml |2 . (19)

Proof. The two quadratic functionals

u 7→
∫

D

ω(x) |∇u(x)|2 dx , u 7→
∑

(l,m)∈Λ

(l(l + 1)−m2) |ûml |2

are continuous on T 1. The continuity of the first functional is a special case of Lemma 7 with s = 0
(noting that U0 = L2

ω), while the second one stems from the definition of the T 1 norm. Therefore,
it suffices to show that those functionals coincide on the dense subset of T 1 consisting of the finite
linear combinations of {Tm

l }(l,m)∈Λ. If u is such a function, it is in particular twice differentiable,
so we have by integration by parts

∫

D

ω(x) |∇u(x)|2 dx =

∫

D

u(x)[−(ω divω∇)u](x)

ω(x)
dx = (u, v) 1

ω
.

10



where v = −(ω divω∇)u. Using now Lemma 2, we have

v =
∑

(l,m)∈Λ

(l(l + 1)−m2)Tm
l

and the result follows from the Parseva equality (18).

The following weighted Poincaré inequality holds. To the best of our knowledge, this result is
not of the kind that one may encounter in standard literature about weighted Poincaré inequalities,
such as [?, ?].

Theorem 1. For all functions u ∈ T 1, there holds

∫

D

|u(x)− uω|2
ω(x)

dx ≤
∫

D

ω(x) |∇u(x)|2 dx , (20)

where

uω =

(∫

D

1

ω(x)
dx

)−1 ∫

D

u(x)

ω(x)
dx .

Proof. It is easy to check that uω = û00T
0
0 since T 0

0 is constant on D. We deduce the expression

∫

D

|u(x)− uω|2
ω(x)

dx =
1

2

∑

(l,m)∈Λ,l 6=0

|ûml |2 .

For (l,m) ∈ Λ with l 6= 0, we have 1 ≤ l(l + 1)−m2 so

∫

D

|u(x)− uω|2
ω(x)

dx ≤ 1

2

∑

(l,m)∈Λ

(l(l + 1)−m2) |ûml |2 .

The right hand side is equal to
∫
D
ω(x) |u(x)|2 dx by Lemma 8, which proves the claim.

Lemma 9. Let

X := −ω divω∇+
1

4
Id , Y := − divω∇ω . (21)

Then X is a positive self-adjoint, unbounded operator on L2
1
ω

, with domain T 2. Similarly, Y is a

positive self-adjoint, unbounded operator on L2
ω with domain U2. They satisfy

X


 ∑

(l,m)∈Λ

ûml T
m
l


 =

∑

(l,m)∈Λ

(
1

4
+ l(l + 1)−m2

)
ûml T

m
l ,

Y


 ∑

(l,m)∈Λ

ǔml U
m
l


 =

∑

(l,m)∈Λ

((l + 1)(l + 2)−m2)ǔml U
m
l .

For all α, s ∈ R, the operators Xα : T s → T s−2α and Y α : Us → Us−2α are continuous and

‖u‖2T s =
1

2

(
Xs/2u, u

)
1
ω

, ‖u‖2Us =
1

2

(
Y s/2u, u

)
ω
.

11



Proof. For finite linear combinations of Tm
l or Um

l , the formulas forX and Y are direct consequences
of Lemma 2. The formulas in the general case follow by density. The proofs of the self-adjointness
of X and Y follow standard arguments and we omit them for conciseness. The formulas for the T s

and Us norms follow directly from the definitions.

To conclude this section, we point out a characterization of the spaces T ∞ and U∞. This plays
no role in the remainder of the article, but the result is worth mentioning.

Theorem 2. There holds T ∞ = U∞ = C∞(D).

The proof is given Appendix ??.

3 Parametrices for the integral operators

In this section, we define operators Pk and Qk which will play the role of approximate inverses, or
(weak) parametrices for the boundary integral operators Vk andWk. They stand for the continuous
versions of our proposed preconditioners, to be discretized in our numerical scheme. We start our
discussion with the Laplace equation, i.e. k = 0.

3.1 Laplace layer potentials

We consider the following two sesquilinear forms D(D)×D(D):

bV (u, v) :=

∫

D

∫

D

u(x) v(y) dx dy

4π ‖x− y‖ ,

bW (u, v) :=

∫

D

∫

D

curlu(x) · curl v(y) dx dy
4π ‖x− y‖ ,

where curlu(x) :=

(
∂x2u
−∂x1

u

)
. They are well defined for smooth and compactly supported functions

u and v on D, and it is well-known that they extend uniquely to symmetric positive definite
sesquilinear forms [?]

bV : H̃−1/2(D)× H̃−1/2(D) → C , bW : H̃1/2(D)× H̃1/2(D) → C .

The spaces Hs(D) and H̃s(D) are the Sobolev spaces of complex distributions defined e.g. in [?,

chap. 3]. The associated operators V : H̃−1/2(D) → H1/2(D) and W : H̃1/2(D) → H−1/2(D) such
that

bV (u, v) = 〈V u, v〉 , bW (u, v) = 〈Wu, v〉 ,
are known as the weakly singular and hypersingular integral operators. Here again, the notation
〈·, ·〉 stand for both the duality pairings between H−1/2(D) and H̃1/2(D) on the one hand, and

between H̃−1/2(D) and H1/2(D) on the other hand.
The fact that bV and bW are positive definite allows us to consider them as the inner products

of H̃−1/2(D) and H̃1/2(D), respectively. Furthermore, we endow H1/2(D) and H−1/2(D) with the
dual norms:

‖u‖H1/2(D) := sup
v∈H̃−1/2(D)

|〈u, v〉|
‖v‖ H̃−1/2(D)

and ‖u‖H−1/2(D) := sup
v∈H̃1/2(D)

|〈u, v〉|
‖v‖ H̃1/2(D)

.
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For s = 1/2, this is is equivalent to the norm defined via the Sobolev-Slobodeckij semi-norm, see
[?, Thm 3.30].

The spaces T s and Us provide a good framework to analyze V and W . The main reason is the
following result:

Proposition 2 (See [?, ?]). For any (l,m) ∈ Λ, one has

V

(
Tm
l

ω

)
=

Tm
l

2λml
and W (ωUm

l ) =
λml+1

2
Um
l

where

λml = 2
Γ
(
l+m+2

2

)
Γ
(
l−m+2

2

)

Γ
(
l+m+1

2

)
Γ
(
l−m+1

2

)

and Γ(t) =

∫ +∞

0

st−1e−s ds is the Gamma function.

The following estimate shows that (λml )2 and the symbols of the weighted Laplacians (see Lemma
2), are equivalent:

Lemma 10. One has the inequalities

1 ≤ (λml )
2

1
4 + l(l + 1)−m2

≤
√
3 , l ∈ N , −l ≤ m ≤ l , (22)

1 ≤ (λml )
2

l(l + 1)−m2
≤

√
3 , l ∈ N

∗ , −l ≤ m ≤ l . (23)

Proof. We start with the following improved version of Gautschi’s inequality [?]:

∀(x, s) ∈ R
∗
+ × (0, 1),

(
x+

s

2

)1−s

≤ Γ(x+ 1)

Γ(x+ s)
≤
(
x− 1

2
+

√
s+

1

4

)1−s

.

We apply this inequality for s = 1
2 , and notice that it remains true when x = 0. We may therefore

take x =
l ±m

2
to obtain

(
l +m+

1

2

)(
l −m+

1

2

)
≤ (λml )2 ≤

(
l −m+

√
3− 1

)(
l +m+

√
3− 1

)
.

Remarking that (
l +m+

1

2

)(
l −m+

1

2

)
= l(l + 1)−m2 +

1

4

yields the left-hand side of the inequalities (22) and a fortiori (23).
For the right-hand side inequalities, we observe that for l ≥ 2 and −l ≤ m ≤ l, one has

(l +
√
3− 1)2 −m2 = l(l + 1)−m2 + (2

√
3− 3)l + 4− 2

√
3

≤ l(l + 1)−m2 + (2
√
3− 3)l + (4− 2

√
3)
l

2

≤
√
3(l(l + 1)−m2)

13



using that l(l + 1) −m2 ≥ l. This establishes the right hand side inequality of (23) for l ≥ 2, and
one can check that the same inequality also holds for l = 1. This also implies a fortiori the right
hand side inequality of (22) for l 6= 0, and again, one can check that it remains valid for l = 0.

Lemma 11. There holds

H̃−1/2(D) = (T 1/2)′ , H̃1/2(D) = (U−1/2)′ (24)

with the following norm equivalences:

∀u ∈ (T 1/2)′ , 3−1/4 ‖u‖(T 1/2)′ ≤
√
2 ‖u‖H̃−1/2(D) ≤ ‖u‖(T 1/2)′ , (25)

∀u ∈ U1/2 , 3−1/4 ‖u‖U1/2 ≤
√
2 ‖ωu‖H̃1/2(D) ≤ ‖u‖U1/2 . (26)

Proof. Consider L ∈ N and a function u of the form

u =
∑

(l,m)∈Λ

ûml T
m
l , (27)

where ûml = 0 for l ≥ L. Putting v = u
ω , we have, from Proposition 2:

V v =
∑

(l,m)∈Λ

ûml
2λml

Tm
l

hence V v ∈ C∞(D). It follows that v ∈ H̃−1/2(D) and

‖v‖2H̃−1/2 =

∫

D

(V v)(x)
u(x)

ω(x)
dx =

∑

(l,m)∈Λ

|ûml |2
2λml

,

by the orthogonality properties of the Tm
l seen in the previous section. In view of the estimate (22),

this implies

1

2
√
3
‖u‖2T −1/2 ≤

∥∥∥∥
1

ω
u

∥∥∥∥
2

H̃−1/2(D)

≤ 1

2
‖u‖2T −1/2 . (28)

Finally, by the density of finite linear combinations of the form (27) in T −1/2, it follows that
1
ωT −1/2 = H̃−1/2(D) with the norm equivalence (28) holding for all u ∈ T −1/2, where 1

ω is under-

stood as in Lemma 6. Since 1
ωT −1/2 = (T 1/2)′, this proves the first norm equivalence (25). The

proof of the second one is similar.

Corollary 1. There holds

H1/2(D) = T 1/2 , H−1/2(D) = U1/2

with the following norm equivalences:

∀u ∈ T 1/2 , ‖u‖T 1/2 ≤ 1√
2
‖u‖H1/2 ≤ 3

1
4 ‖u‖T 1/2 , (29)

∀u ∈ U−1/2 , ‖u‖U−1/2 ≤ 1√
2
‖u‖H−1/2 ≤ 3

1
4 ‖u‖U−1/2 , (30)
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We can now state the main result of this article. Recall the definitions of the operators X and
Y in Eq. (21).

Theorem 3. The operator P = 1
ωX

1
2 maps H1/2(D) to H̃−1/2(D) bijectively and for all u ∈

H̃−1/2(D), there holds

1

2
‖u‖2H1/2(D) ≤ 〈Pu, u〉 ≤

√
3

2
‖u‖2H1/2(D) .

The operator Q = ωY −1/2 maps H−1/2(D) to H̃1/2(D) bijectively and for all u ∈ H−1/2(D), there
holds

1

2
‖u‖2H−1/2(D) ≤ 〈Qu, u〉 ≤

√
3

2
‖u‖2H−1/2(D) .

Proof. By Lemma 9, we have, for all u ∈ T 1/2, ‖u‖2T 1/2 =
(√

Xu, u
)

1
ω

= 〈Pu, u〉. The result

follows by applying the second norm equivalence of Lemma 11. The proof for the second claim is
similar.

The previous result paves the way for a preconditioning strategy to solve the integral equations
(1), that we present in Section 4.

3.2 Helmholtz layer potentials

We now seek corrections of the weighted Laplacians−(ω divω∇) and−(divω∇ω) in order to capture
the behavior associated to non-zero wavenumbers. Let us first state a surprising commutation:

Theorem 4. For any function u ∈ C∞(D), there holds

(−ω divω∇− k2ω2)Vk,ωu = Vk,ω(−ω divω∇− k2ω2)u ,

where Vk,ω = Vk
1
ω is the composition of the Helmholtz weakly-singular operator with the multiplica-

tion by 1/ω.

The proof is given in Appendix ??. To generalize our method for k 6= 0, we propose to propose
the operators

Pk =
1

ω

(
−ω divω∇− k2ω2

) 1
2 , Qk = ω

(
− divω∇ω − k2ω2

)− 1
2 , (31)

to play the role of parametrices for Vk and Wk, respectively. The insights that motivate this choice
are the following:

❼ Taking ω ≡ 1 and ignoring the singularity of the screen D, the formula for Pk leads back
to pseudo-differential approximations of the Dirichlet-to-Neumann (DtN) map which was
successfully used for preconditioning purposes, see [?, ?]. In the case of a flat screen, the DtN
is simply a constant times the inverse of Vk, so the definition of Pk can be thought of as a
generalization of this DtN approximation in the presence of an edge singularity.

❼ Using compact perturbation arguments, one can show that Pk and Qk have the right mapping
properties, i.e. Pk : H1/2(D) → H̃−1/2(D), and Qk : H−1/2 → H̃1/2(D), are continuous, and
continuously invertible for all but a countable set of values k ∈ R

+.

15



❼ The above commutation implies that ωPk and Vk,ω can be diagonalized in a common basis of
eigenfunctions (one can check that the eigenfunctions of Pk turn out to be oblate spheroidal
wave functions [?]). Hence, the product VkPk = Vk,ω(ωPk) is diagonal in this basis, while a
priori VkP0 is not. This hints at the fact that −k2ω2 is the “correct” k-dependent perturbation
to add under the square-root. Perhaps, some fine eigenvalue estimates could show that VkPk

is close to a multiple of identity, although the required asymptotic results do not seem at
reach for now.

❼ There is a striking analogy with the two-dimensional case [?], where a pseudo-differential
analysis shows that, for the 2D analogs of Pk and Qk, −k2ω2 is the order zero perturbation
of that leads to the most smoothing remainders R and R′ in the formulas VkPk = Id/2 + R,
WkQk = Id/2 +R′, as measured in a suitable pseudo-differential scale [?].

❼ Eventually, the numerical evidence presented in Section 5 is very convincing.

Yet, a more rigorous justification of those choices remains to be proposed.

4 Galerkin discretization and preconditioners

4.1 Variational problems

Given some data f ∈ H−1/2(D) and g ∈ H1/2(D) and a wavenumber k ≥ 0, we consider the
following two variational formulations of the integral equations (1):

Find λ ∈ H̃−1/2(D) such that ∀λ′ ∈ H̃−1/2(D) , 〈Vkλ, λ′〉 = 〈f, λ′〉 , (32)

Find µ ∈ H̃1/2(D) such that ∀µ′ ∈ H̃1/2(D) , 〈Wkµ, µ
′〉 = 〈g, µ′〉 . (33)

We introduce two sequences of subspaces VN ⊂ H̃−1/2(D) and WN ⊂ H̃1/2(D) for N ∈ N, and
define the approximate solutions (λN )N∈N and (µN )N∈N to the variational problems (32) and (33)
by the Galerkin method as

λN ∈ VN , ∀λ′ ∈ VN , 〈VkλN , λ′〉 = 〈f, λ′〉 , (34)

µN ∈ WN , ∀µ′ ∈ WM , 〈WkµM , µ
′〉 = 〈g, µ′〉 . (35)

We introduce two basis {ϕN
i }1≤i≤dimVN

and {ψN
i }1≤i≤dimWN

of VN and WN . The vectors ΛN and
UN of coefficients of λN and µN in those respective basis are obtained by solving the systems

VkΛN = FN , (36)

WkUN = GN , (37)

where Vk and Wk are the Galerkin matrices defined by

(Vk)ij =
〈
Vkϕ

N
i , ϕj

N
〉
, 1 ≤ i, j ≤ dimVN , (38)

(Wk)ij =
〈
Wkψ

N
i , ψj

N
〉
, 1 ≤ i, j ≤ dimWN , (39)

with the column vectors

(FN )i =
〈
f, ϕN

i

〉
, 1 ≤ i ≤ dimVN , (GN )i =

〈
g, ψN

i

〉
, 1 ≤ i ≤ dimWN . (40)
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The purpose of this section is to specify the choices of spaces VN and WN and their basis, and to
define preconditioners P̂k and Q̂k for the dense linear systems (36) and (37) respectively. Further-

more, we estimate the condition number of the preconditioned linear system P̂kVk in the special
case of quasi-uniform meshes and k = 0.

In the remainder of this paper, the subscript k is omitted when k = 0, i.e. we write V , W , P̂,
Q̂ instead of V0, W0, P̂0, Q̂0 and so on.

4.2 Abstract condition number estimate

In this paragraph, we fix N ∈ N and consider a subspace XN ⊂ H1/2(D) with dimXN = dimVN .
Let p : XN × XN → C be a sesquilinear form that is continuous and coercive in the T 1/2 norm on
XN , i.e. such that

∃cp(N), Cp(N) > 0 , ∀θ ∈ XN , cp(N) ‖θ‖2T 1/2 ≤ p(θ, θ) ≤ Cp(N) ‖θ‖2T 1/2 . (41)

We introduce a basis {θNi }1≤i≤dimXN
of XN and define the square N ×N matrices

P :=
(
p(θNi , θ

N
j )
)
1≤i,j≤N

, D :=
(〈
ϕN
i , θ

N
j

〉)
1≤i,j≤N

. (42)

With those definitions, let
P̂ := D−1PD−T . (43)

To analyze the preconditioning matrix P̂, the key quantity, besides the constants cp(N) and Cp(N)
appearing in (41) is the following inf-sup stability constant:

σ(VN ,XN ) := inf
ϕ∈VN

sup
θ∈XN

∣∣〈ϕ, θ
〉∣∣

‖ϕ‖H̃−1/2 ‖θ‖H1/2

. (44)

Indeed, we have the following result:

Theorem 5. There holds

κ(P̂V) ≤
√
3

σ(VN ,XN )2
Cp(N)

cp(N)

where κ(M) is the condition number of the matrix M, defined as the ratio of the largest to the
smallest singular value of M.

Proof. By Theorem 2.1 from [?], we have

κ(P̂V) ≤ ‖a‖ ‖p‖ ‖d‖2
cAcP c2D

(45)

where a : VN × VN → C and d : VN ×WN → C are the sesquilinear forms defined by

∀ϕ ∈ VN , a(ϕ,ϕ) = ‖ϕ‖2H̃−1/2 , d(ϕ, θ) :=
〈
ϕ, θ

〉
,

and the constants appearing in the estimate are chosen so that

cA ‖u‖2H̃−1/2 ≤ a(u, u) ≤ ‖a‖ ‖u‖2H̃−1/2
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|d(u, v)| ≤ ‖d‖ ‖u‖H̃−1/2 ‖v‖T 1/2

cP ‖u‖2T 1/2 ≤ p(u, u) ≤ ‖p‖ ‖u‖2T 1/2 .

Since a(u, u) = ‖u‖2H̃−1/2 , we can take cA = ‖a‖ = 1. Similarly, in view of (41), we can use
cP = cp(N) and we have ‖p‖ ≤ Cp(N). By the norm equivalence stated in Corollary 1,

|d(ϕ, θ)| ≤ ‖ϕ‖H̃−1/2 ‖θ‖H1/2 ≤ 31/4
√
2 ‖ϕ‖H̃−1/2 ‖θ‖T 1/2 ,

hence ‖d‖ ≤ 31/4
√
2. Furthermore, combining the same norm equivalence with Eq. (44), we get

∀ϕN ∈ VN , sup
θ∈XN

|d(ϕN , θ)|
‖θ‖ T 1/2

≥
√
2

31/4
σ(VN ,XN ) ‖ϕN‖H̃−1/2 .

Hence we may take cD =
√
2

31/4
σ(VN ,WN ). It remains to inject those values in the estimate (45) to

conclude the proof.

To apply this result concretely, we are going to

(i) specify spaces VN , XN and estimate the constant σ(VN ,XN ) of Eq. (44),

(ii) propose an explicit sesquilinear form p which satisfies (41), and estimate the ratio Cp(N)/cp(N).

4.3 Stable discretization with uniform meshes

We describe a stable discretization involving spaces of continuous piecewise linear functions, both
for the operator and the preconditioner, over a sequence of globally quasi-uniform and shape-regular
triangular meshes. We prove that this family of subspaces provides a uniformly stable discretization,
see Lemma 15. The extension of the theory to more general discretizations is left for future work.

Let us consider a sequence of polygons (PN )N∈N, with all of their vertices in ∂D. We denote by
hN the maximal distance between two consecutive vertices of DN and assume that

lim
N→∞

hN = 0 .

This way, the polygons PN asymptotically cover D. Let TN be a triangulation of PN , with the
property that every vertex in the boundary of TN is a vertex of PN . For a triangle τ ∈ TN , we
denote by hτ its diameter and by ∆τ its area. We make the following assumptions:

∀N ∈ N , ∀τ ∈ TN , c ≤ hτ
hN

≤ C (global quasi-uniformity) , (46)

∀N ∈ N , ∀τ ∈ TN ,
∆τ

h2τ
≥ c (uniform shape-regularity) . (47)

Here and in what follows, c > 0 and C > 0 denote generic constants that are independent of N and
of the choice of a specific triangle τ ∈ TN . For each N ∈ N, we choose VN as the finite-dimensional
subspace of H̃−1/2(D) consisting of all functions ϕ : D → C such that

❼ ϕ|τ is an affine function for each τ ∈ TN

❼ ϕ is continuous on PN .

18



❼ ϕ vanishes in D \ PN .

To define XN ⊂ T 1/2, we proceed as follows. If a triangle τ ∈ TN has two vertices A and B in
∂D, we define Uτ as the region of D enclosed on the one hand by the (smallest) arc of ∂D linking A
to B, and on the other hand by the straight line segment [A,B]. For each τ ∈ TN , we then define
a corresponding open set Kτ ⊂ D by

Kτ =

{
τ if τ has at most one vertex in ∂D,

τ ∪ Uτ otherwise.

Hence, the domains Kτ are either triangles, or triangles with one side replaced by an arc of ∂D.
The set {Kτ}τ∈TN

is a partition of D, in the sense that
⋃

τ∈TN

Kτ = D .

With these definitions, let

XN :=
{
θ ∈ C0(D)

∣∣ θ|Kτ
is affine for each τ ∈ TN

}
.

We have XN ⊂ T 1/2 = H1/2(D) (while this is not true of VN ).
For every element ϕ ∈ VN , we denote by ENϕ the unique element of XN which coincides with

ϕ on PN .

Lemma 12. One has the estimate

∀N ∈ N , ∀ϕ ∈ VN , ‖ϕ− ENϕ‖2L2(D) ≤ ChN ‖ϕ‖2L2(D)

Proof. We start by writing

‖ϕ− ENϕ‖2L2(D) =
∑

e∈∂TN

∫

Ue

∣∣ϕ|τ(e)(x)
∣∣2 dx .

Fix an edge e ∈ ∂TN , and let τ(e) be the triangle of TN incident to e. Then ϕ|τ(e) can be written
in the form

ϕ|τ(e)(x) = 〈A, x− C〉+ ϕ(C)

where C is the vertex of τ not in e and the vector A satisfies

‖A‖2 ≤ Chτ

∥∥ϕ|τ(e)
∥∥
∞

∆τ(e)
≤ C

∥∥ϕ|τ(e)
∥∥
∞

hτ(e)
,

where we used the shape-regularity assumption (47). Furthermore, one has the crude estimate
‖x− C‖2 ≤ 2hτ(e) for x ∈ Ue := Kτ(e) \ τ(e). Hence, we conclude

‖ϕ− ENϕ‖2L2(D) ≤ C
∑

e∈∂TN

∥∥ϕ|τ(e)
∥∥2
∞ |Ue| . (48)

We have |Ue| ≤ Ch3τ(e), and, using a local inverse inequality,

∥∥ϕ|τ(e)
∥∥2
∞ ≤ Ch−2

τ(e)

∫

τ(e)

|ϕ(x)|2 dx .

Injecting those estimates in Eq. (48) and using the global quasi-uniformity assumption (47) gives
the result.
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We have the following approximation property in XN .

Lemma 13. For each u ∈ H1/2(D) and for each N ∈ N, there exists θ ∈ XN satisfying

‖u− θ‖L2(D) +
√
hN ‖u− θ‖H1/2(D) ≤ C

√
hN ‖u‖H1/2(D) .

This result is standard for polygonal meshes, and the extension to our context, where the mesh
includes some rounded triangles at the edge, presents no difficulty, so we omit the proof. The same
goes for the next lemma:

Lemma 14. For all ϕ ∈ VN , one has

√
hN ‖ϕ‖L2(D) ≤ C ‖ϕ‖H̃−1/2(D) ,

and for all θ ∈ XN , one has √
hN ‖θ‖H1/2(D) ≤ C ‖θ‖L2(D) .

By a classical argument, a global inverse inequality in combination with an approximation
property ensures stability of the L2 projection operator in the energy norm (see e.g. the proof of
[?, Lemma 1]). Hence

Corollary 2. Let πN : L2(D) → XN be the L2 projection onto XN . Then there exists a constant
Cπ > 0 such that

∀u ∈ H1/2(D) , ‖πNu‖H1/2(D) ≤ Cπ ‖u‖H1/2(D) .

Lemma 15. There exists a constant σ0 > 0 and an index N0 ∈ N such that for all N ≥ N0,

σ(VN ,XN ) ≥ σ0 ,

where σ(VN ,XN ) is the inf-sup constant defined in Eq. (44).

Proof. Let ϕ ∈ VN and let θ = πNV ϕ. One has ‖θ‖H1/2 ≤ Cπ ‖ϕ‖H̃−1/2(D) by Corollary 2.
Moreover, one can write

〈
ϕ, θ

〉
=
〈
vj , V ϕ

〉
+
〈
vj , (Id − πN )V ϕ

〉

= ‖ϕ‖2H̃−1/2 +
〈
(Id − EN )ϕ, (Id − πN )V ϕ

〉
,

using the orthogonality properties of πN . Hence, using Lemmas 12, 13 and 14, we find

∣∣〈ϕ, θ
〉∣∣ ≥ ‖ϕ‖2H̃−1/2 −

√
hN ‖ϕ‖H̃−1/2 ‖V ϕ‖H1/2 = (1−

√
hN ) ‖ϕ‖2H̃−1/2 .

Therefore, we have established

∣∣〈ϕ, θ
〉∣∣

‖ϕ‖H̃−1/2 ‖θ‖H1/2

≥ 1−
√
hN

Cπ

which proves the lemma since hN → 0 when N → ∞.
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4.4 Sesquilinear form p

We define a discrete weighted Laplacian XN : XN → XN in the following way: for θ ∈ XN , XNθ is
the element of XN satisfying

∀θ′ ∈ XN , (XNθ, θ
′) 1

ω
= (Xθ, θ′) 1

ω
=

1

4

∫

D

θ(x)θ′(x)

ω(x)
dx+

∫

D

ω(x)∇θ(x) · ∇θ′(x) dx .

This operator is self-adjoint and positive definite with respect to the scalar product (·, ·) 1
ω
. For

s ∈ [0, 1], let

‖θ‖2N,s := (Xs
Nθ, θ) 1

ω

which plays the role of a discrete T s norm on XN . Let X s
N denote the finite dimensional Hilbert

space defined by (XN , ‖·‖N,s). Reasoning with eigenfunctions of XN in XN , it is easy to check that
(X s

N )0≤s≤1 is an interpolation scale. The identity operator is continuous (with norm 1) from X s
N

to T s for s = 0 and s = 1. By interpolation, we deduce the following estimate:

Lemma 16. For all s ∈ [0, 1], there holds

∀θ ∈ XN , ‖θ‖T s ≤ ‖θ‖N,s .

On the other hand, the fact that the T s norm controls the ‖·‖N,s norm can be shown by
exhibiting a stable projection operator, as we show below. Here again, the argument is inspired by
the proof of [?, Lemma 1]:

Lemma 17. For each N ∈ N, let ΠN : L2
1
ω

→ XN be a linear operator satisfying the following

assumptions:

(i) ∃C0 > 0 : ∀N ∈ N , ∀u ∈ T 0 , ‖ΠNu‖T 0 ≤ C0 ‖u‖T 0 ,

(ii) ∃C1 > 0 : ∀N ∈ N , ∀u ∈ T 1 , ‖ΠNu‖T 1 ≤ C1 ‖u‖T 1 ,

(iii) ∀θ ∈ XN , ΠNθ = θ.

Then, for all s ∈ [0, 1], there holds

∀θ ∈ XN , ‖θ‖N,s ≤ C1−s
0 Cs

1 ‖θ‖T s .

Proof. By (i) and (ii), it follow by interpolation that for all s ∈ [0, 1]:

∀u ∈ T s , ‖ΠNu‖N,s ≤ C1−s
0 Cs

1 ‖u‖T s

The conclusion is immediate by restriction to XN , using (iii).

It turns out that such an operator ΠN is provided by the L2
1
ω

-orthogonal projection πN,ω onto

XN . Obviously, πN,ω satisfies the properties (i) and (iii), while the T 1-stability (ii) is shown in [?,
Theorem 1]. Hence, we have the following result:

Theorem 6. Define the sesquilinear form p by

p(θ, θ′) :=
(
X

1/2
N θ, θ′

)
1
ω

. (49)

Then p satisfies
∀θ ∈ XN ‖θ‖2T 1/2 ≤ p(θ, θ) ≤ Cπ ‖θ‖2T 1/2 .
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Gathering the previous results, we have thus established the existence of a uniform bound on
the condition number of the preconditioned system P̂V, with P̂ defined in Eq. (43) and p defined
by Eq. (49).

Corollary 3. There exist an index N0 > 0 and a constant κ0 > 0 such that for all N ≥ N0,

κ(P̂V) ≤ κ0 .

4.5 Computation of the preconditioner

For the basis {ϕN
i }1≤i≤dimVN

of VN , we choose the classical nodal basis associated with the vertices
of the triangulation TN . Moreover, we put

θNi := ENϕ
N
i , 1 ≤ i ≤ dimXN .

and this in turn provides a basis for XN . Notice that both basis consist of real-valued functions,
hence the complex conjugation is irrelevant in what follows. With those definitions, the matrix D

is sparse and well-conditioned, so the evaluation of D−1 is cheap (in fact, D is nothing else than
the standard mass matrix on the triangulation TN of the polygonal domain PN ). To evaluate the

preconditioner P̂ = D−1PD−T , the main task is therefore to compute P.
To this aim, we first remark that the matrix MX of the linear operator XN : XN → XN in the

basis {θNi }1≤i≤dimXN
is given by

MX = I−1
1
ω

X 1
ω

where I 1
ω
and X 1

ω
are the (dimXN )× (dimXN ) weighted “mass” and “stiffness” matrices defined

by

(I 1
ω
)ij =

∫

D

θNi (x)θNj (x)

ω(x)
dx , (X 1

ω
)ij :=

1

4

∫

D

θNi (x)θNj (x)

ω(x)
dx+

∫

D

ω(x)∇θNi (x) · ∇θNj (x) dx ,

for i, j in {1, . . . , dim(XN )}. Those matrices can be computed using accurate quadrature rules for
integrals of the form ∫

Kτ

f(x)

ω(x)
dx , τ ∈ TN .

We spare the reader with the technical details about the construction of such quadratures, and
instead refer to our openly available implementation [?].

The matrix P is equal to

P = I 1
ω

√
MX = I 1

ω

√
I−1

1
ω

X 1
ω

(50)

To evaluate the matrix square root, we use the approach of [?]. This involves a formula of the form

√
MX ≈

Q∑

q=1

aq(Id + bqMX)−1MX =

Q∑

q=1

aq(I 1
ω
+ bqX 1

ω
)−1X 1

ω

for some carefully chosen coefficients aq and bq, with bq > 0. It is shown in [?] that, under suitable
hypotheses on MX , the error in Froebenius norm of this approximation converges exponentially
fast to 0 with respect to Q. In the end, the approximation of P is thus given by

P ≈ I 1
ω

Q∑

q=1

aq(I 1
ω
+ bqX 1

ω
)−1X 1

ω
. (51)
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In all of our tests, we take Q = 5. The matrix I 1
ω
+ bqX 1

ω
is sparse and symmetric positive definite.

Hence, the systems
(I 1

ω
+ bqX 1

ω
)U = L

can be solved efficiently. Furthermore, the evaluation of the sum can be done in parallel. This
allows for a cheap computation of the matrix-vector product X 7→ PX.

The previous subsections provide a complete description of our approach for preconditioning the
Galerkin problem associated to the Laplace weakly-singular integral equation on uniform meshes. In
the next sections, we indicate briefly how we tackle hypersingular equations and non-zero wavenum-
bers.

4.6 Extension to the hypersingular equation

Let us define
WN := {ϕ ∈ VN | ϕ = 0 on ∂DN} ⊂ H̃1/2(D) ,

and let YN := ENWN . Let {ψN
i }1≤i≤dimWN

be the nodal basis of WN and let {νNi }1≤i≤dimYN
be

the basis of YN defined by
νNi = ENψ

N
i , 1 ≤ i ≤ dimYN .

Let D̃ be the matrix of the duality pairing on WN × YN , that is

D̃ij :=
〈
ψN
i , ν

N
j

〉
, 1 ≤ i, j ≤ dimWN . (52)

Consider a well-chosen sesquilinear form q : YN ×YN , with the concrete definition given below. We
then define

Qij := q(νNi , ν
N
j ) , 1 ≤ i, j ≤ dimYN .

We propose to use the matrix
Q̂ := D̃−1QD̃−T (53)

as a preconditioner for the Galerkin matrix W of the hypersingular operator on WN .
For the sesquilinear form q, we consider again another discrete weighted Laplacian YN : YN →

YN such that for each ν ∈ YN , YNν is the element of YN satisfying

∀ν′ ∈ YN , (YNν, ν)ω = (Y ν, ν′)ω =

∫

D

(ω∇ω ν(x)) · (ω∇ω ν′(x))
ω(x)

dx .

Since YN is positive definite in the scalar product (·, ·)ω, we may define

q(ν, ν′) :=
(
Y

−1/2
N ν, ν′

)
ω
, ν, ν′ ∈ YN .

Notice again that the matrix MY of the linear operator YN : YN → YN is given by

MY = I−1
ω Yω ,

where Iω and Yω are the (dimYN )× (dimYN ) weighted mass and stiffness matrices defined by

(Iω)ij =

∫

D

ω(x) νNi (x) νNj (x) dx , (Yω)ij :=

∫

D

(ω∇ω νNi (x)) · (ω∇ω νNj )(x)

ω(x)
dx ,
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for i, j in {1 , . . . , dim(YN )}. Hence, there holds

Q = Iω
(
I−1
ω Yω

)−1/2
= Iω(I

−1
ω Yω)

1/2(I−1
ω Yω)

−1 = Iω

√
I−1
ω YωY

−1
ω Iω . (54)

For the efficient computation of the square root, the approach of the previous section also applies
here, and leads to an approximation of the form

Q ≈ Iω

Q∑

q=1

aq(Iω + bqYω)
−1Iω . (55)

4.7 Positive wavenumber

When k > 0, we proposed in subsection 3.2 to use the operators

Pk =
1

ω

(
−ω divω∇− k2ω2

) 1
2 , Qk = ω

(
−ω divω∇− k2ω2

)− 1
2 ,

as parametrices for Vk andWk, respectively. For the Galerkin discretization, we proceed by analogy
with the two previous sections. Namely, we introduce discrete weighted Laplacians Xk,N : XN →
XN and Yk,N : YN → YN defined by the variational problems

∀θ, θ′ ∈ XN , (Xk,Nθ, θ
′) 1

ω
= (Xkθ, θ

′) 1
ω
,

∀ν, ν′ ∈ YN , (Yk,Nν, ν
′)ω = (Ykν, ν

′)ω ,

where
Xk = −ω divω∇− k2ω2 − iε(k)Id

Yk = − divω∇ω − k2ω2 − iη(k)Id ,

for some functions ε(k) > 0 and η(k) > 0 to be specified later, where i is the imaginary unit and Id
the identity operator. In practice, this addition of a purely imaginary part to the spectrum turns
out to be important for the performance of the method. The idea is borrowed from [?], where a
similar approach is used to capture the behavior of a Dirichlet-to-Neumann operator on so-called
“grazing modes”.

Clearly, Xk,N and Yk,N are diagonalizable since they are the sum of a Hermitian operator (in
the scalar products (·, ·) 1

ω
and (·, ·)ω, respectively) and a multiple of the identity. Hence, using

functional calculus, we can define f(Xk,N ) and g(Yk,N ) for any well-defined functions f and g over
the spectrum of Xk,N and Yk,N . In this sense, let

pk(θ, θ
′) := ((Xk,N )

1/2
θ, θ′) 1

ω
, ∀(θ, θ′) ∈ XN ×XN

qk(ν, ν
′) := ((Yk,N )−1/2ν, ν′)ω , ∀(ν, ν′) ∈ YN × YN .

The symbol
√· here stands for the principal square root, with branch cut along the negative real

axis, while for any complex number z ∈ C, z−1/2 is understood as
√
z/z.

Let Pk and Qk be the matrices of size (dimXN )× (dimXN ) and (dimYN )× (dimYN ) respec-
tively, defined by

(Pk)ij := pk(θ
N
i , θ

N
j ) , 1 ≤ i, j ≤ dimXN , (56)

24



(Qk)ij := qk(ν
N
i , ν

N
j ) , 1 ≤ i, j ≤ dimYN . (57)

Then, we define the preconditioners

P̂k := D−1PkD
−T , (58)

Q̂k := D̃−TQkD
−1 . (59)

The matrices MX,k and MY,k of Xk,j and Yk,j in the basis {θi}1≤i≤dimXN
and {νi}1≤i≤YN

are
respectively given by

MX,k = I−1
1
ω

(
X 1

ω
− k2W 1

ω
− iε(k)I 1

ω

)
, MY,k = I−1

ω

(
Yω − k2Wω − iη(k)Iω

)
,

where X 1
ω
, I 1

ω
, Xω and Iω are defined in the two previous subsections, and where W 1

ω
and Wω

are respectively the (dimXN )× (dimXN ) and (dimYN )× (dimYN ) square matrices defined by

(W 1
ω
)ij =

∫

D

ωθNi (x)θNj (x) dx , (Wω)ij =

∫

D

ω(x)3νNi (x)νNj (x) dx .

We deduce that

Pk = I 1
ω

√
I−1

1
ω

(
X 1

ω
− k2W 1

ω
− iε(k)I 1

ω

)
= ikI 1

ω

√
Id − I−1

1
ω

A(k)/k2 ,

where
A(k) =

(
X 1

ω
+ k2(I 1

ω
−W 1

ω
)− iε(k)I 1

ω

)
.

To evaluate the square-root, we can no longer resort to the method of [?] since the spectrum of
the matrix under the square root now occupies a region of the complex plane that is not confined
to the positive real axis. We instead follow [?] and use the rational approximation of the function
X 7→ ik

√
1−X/k2 root developed in [?]. This again takes the form

ik
√
1−X/k2 ≈ a0(k) +

Q∑

q=1

aq(k)X

1 + bq(k)X

for some explicit (complex) coefficients aq(k) and bq(k) (we use the value θ = π
3 , as advocated

in [?], for the branch-cut rotation angle). The domain of convergence and the accuracy of this
approximation is discussed in many places, for instance [?]. Choosing ε(k) > 0 ensures that the
spectrum of A(k) is within the zone of convergence of this approximation. In practice, Q = 15
terms is more than enough in all of our tests. This leads to

Pk ≈ a0(k)A(k) + I 1
ω

Q∑

q=1

aq(k)(I 1
ω
+ bq(k)A(k))−1A(k) . (60)

For Qk, we write

Qk = ikIω(MY,k)
−1
√
Id − I−1

ω B(k)/k2

where
B(k) = Yω + k2(Iω −Wω)− iη(k)Iω .
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This leads to the approximation

Qk ≈ Iω
(
B(k)− k2Id

)−1

{
a0(k)B(k) + I 1

ω

Q∑

q=1

aq(k)(I 1
ω
+ bq(k)B(k))−1B(k)

}
. (61)

Those approximations of Pk and Qk have exactly the same form as Eqs. (51) and (55), so, for the
same reason, the matrix vector products X 7→ PkX and X 7→ QkX can be evaluated cheaply. By
trial and error, we have found that the functions

ε(k) = 0.45k , η(k) = 0.55k

give good result, although, once again, we are unable to provide any theoretical foundation for
those choices so far. The fact that the formulas (60) and (61) are well defined, i.e. that the required
matrix inverses exist is also left open. This can probably be established by elementary arguments as
in [?, Lemma 8]. In our experiments, the matrices to be inverted are always fairly well-conditioned.

5 Numerical Experiments

5.1 Overview

We now present some numerical evidence to support the use of the preconditioners P̂k and Q̂k,
defined in Eqs. (43), (58), (53) and (59), for the linear systems (36)-(37).

We present results on quasi-uniform meshes as well as on graded meshes, with a grading param-
eter of β = 2. For both types of meshes, we use a sequence of 9 refinement levels leading to meshes
with over a million vertices. The main characteristics of those meshes are summarized in Tables 1
and 2. For the graded mesh, we report the measure in degree of the smallest angle between two
edges of a triangle in the mesh. This is an indicator of the shape-regularity of this sequence of
meshes. The uniform and graded meshes of levels 4 and 5 are represented in Figures ?? and ??,
respectively. We remind the reader that, due to the singularity of the jumps λ and µ associated to
the edge of D, graded meshes are in theory preferable to uniform meshes in our context to speed-up
the convergence of the Galerkin method [?].

Refinement level hmax hmin Number of vertices Number of triangles
1 0.47 0.29 40 59
2 0.23 0.14 136 232
3 0.13 0.079 421 770
4 0.067 0.041 1,462 2,790
5 0.034 0.021 5,431 10,602
6 0.017 0.011 20,907 41,303
7 8.7e-3 5.4e-3 83,038 165,056
8 4.4e-3 2.7e-3 328,935 655,838
9 2.2e-3 1.3e-3 1,313,387 2,622,713

Table 1: Characteristics of the uniform meshes used in the experiments. The parameter hmin (resp.
hmax) is the length of the shortest (resp. longest) edge in the mesh.
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Refinement level hmax hmin θmin Number of vertices Number of triangles
1 0.75 0.25 9.0 32 37
2 0.47 0.0625 8.4 153 204
3 0.34 0.020 8.2 541 773
4 0.21 6.9e-3 8.2 1,815 2,724
5 0.11 2.1e-3 8.2 69,83 10,923
6 0.068 6.25e-4 8.2 26,000 41,945
7 0.037 1.8e-4 8.2 99,418 164,428
8 0.020 5.3e-5 8.2 376,760 635,589
9 0.011 1.5e-05 8.2 1,455,784 2,496,568

Table 2: Characteristics of the graded meshes used in the experiments. The parameter hmin (resp.
hmax) is the length of the shortest (resp. longest) edge in the mesh, while θmin is the measure in
degrees of the smallest angle between two edges of a triangle of the mesh.

To calculate the Galerkin matrices of the layer potentials, we use the Matlab toolbox GypsiLab
[?]. The singular integrals are evaluated via semi-analytic methods. On fine meshes, the Galerkin
matricesVk andWk do not fit in memory. In those cases, we use compression by the Fast Multipole
Method (both for k = 0 and k > 0) [?, ?], with the open-source Matlab wrappers of FMMLIB3D
[?].

In all cases, the linear systems as well as their preconditioned versions are solved using GMRES
[?], restarted every 20 iterations, with a tolerance εGMRES = 10−6. We interrupt GMRES if it did
not converge after 200 iterations (i.e. 10 outer iterations each consisting of 20 inner iterations).
This rather low threshold allows for all the numerical tests presented below to be reproducible in
around 3 days of computation.

For k = 0, and when the full matrices fit in memory (levels 1-4), we report the condition number
κ of both the linear systems matrices and their preconditioned versions. In this case, the Galerkin
matrices and their preconditioners are symmetric, so κ governs the speed of convergence of the
GMRES iteration.

For large matrices (levels 5-9), computing the condition number is no longer feasible. Besides,
for k > 0, the Galerkin matrices and their preconditioners are not normal, hence the condition
number cannot be used to predict the behavior of GMRES (see e.g. [?]). Hence, in this case, we
directly report the number of iterations needed in GMRES. The time it takes to solve iteratively
the linear systems highly depends on the machine used for the calculations. Nevertheless, we still
report timings for our machine in order to give a rough idea of the speedups that can be expected
when using our method. When GMRES does not reach the tolerance after 200 iterations, we report
the time taken to perform those 200 iterations, although the system should not be considered as
being solved. All floating point numbers are rounded to 2 significant digits.

When the full matrices fit in memory, the computation of the matrix square roots are done
using the Matlab function sqrtm. For larger matrices and when k = 0, we use the approximations
(51) and (55) based on [?]. For k > 0, we use instead the approximations (60) and (61) based on
the rational approximation of X 7→ ik

√
1−X/k2 from [?].

For the matrix Wk, we compare the performance of our square-root preconditioner with the
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Calderón preconditioner [?]✯

Ĉk := D̃−T ṼkD̃
−1 , (62)

where Ṽk is the Galerkin matrix of the weakly singular operator over the space WN , that is, the
space of piecewise linear elements on the triangulation TN with Dirichlet conditions on ∂TN . The
Calderón preconditioner turns out to be particularly efficient in our tests, probably due to the fact
that the screen D is flat. Indeed, because of this, the double layer potential vanishes on D, so that,
sloppily speaking, i.e. pretending that D were a smooth closed surface in R

3, the Calderón formula
[?, Thm 3.1.3] would read

VkWk =WkVk =
1

4
Id .

5.2 Results

We now report and discuss our numerical results. They are obtained on a computer running on 8
cores with multi-threading, with a clock rate of 3.8GHz, and with 32GB of RAM.

Laplace equation on uniform meshes

In Tables ??-?? below, we report the performance of P̂ as a preconditioner for V on a sequence of
uniform meshes.

Figure 1: Uniform meshes of levels n = 4 (left) and n = 5 (right).

Refinement level κ(V) κ(D−1V) κ(P̂V)
1 82.9215 13.1953 1.3956
2 184.2518 26.3687 1.411
3 355.0135 48.6967 1.4514
4 686.7896 93.3797 1.4814

Table 3: Condition numbers of the matrices V, D−1V (mass matrix preconditioner) and P̂V

(square-root preconditioner) assembled on uniform meshes.

✯We could also consider a Calderón preconditioner for Vk, but this is slightly less straightforward, since W has a

non-trivial kernel on the finite-element space of piecewise linear functions with no Dirichlet conditions on ∂D.
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No prec. Square-root prec.
Refinement level n t n t

5 128 9.0 6 2.0
6 >200 45 6 6.0
7 >200 180 6 26
8 >200 730 6 130
9 >200 2.9e3 7 785

Table 4: Number of iterations n and time t in seconds needed for the iterative resolution of the
hypersingular equation (36) for k = 0, on uniform meshes, with the right-hand side FN correspond-
ing to the function f(x) = 1/ω(x) in Eq. (40). Columns 2-3 and 4-5 correspond to the resolution

without preconditioner, and with our square-root preconditioner P̂, respectively.

Results for the Laplace hypersingular equation on uniform meshes are reported in Tables ??-??
below.

Refinement level κ(W) κ(D̃−1W) κ(ĈW) κ(Q̂W)
1 2.4226 6.5229 1.8971 1.3051
2 4.5353 13.8201 2.4223 1.4149
3 8.3698 25.5514 3.1051 1.488
4 16.0808 49.177 4.2366 1.5601

Table 5: Condition numbers of the matrices W, ĈW (Calderón preconditioner) and Q̂W (square-
root preconditioner), assembled on uniform meshes.

No prec. Calderón prec. Square-root prec.
Refinement level n t n t n t

5 22 3.4 7 2.2 5 2.2
6 30 15 6 6.8 5 6.8
7 57 110 6 29 5 29
8 107 850 7 140 5 140
9 183 6.0e3 7 650 5 740

Table 6: Number of iterations n and time t in seconds needed for the iterative resolution of the
hypersingular equation (37) for k = 0, on uniform meshes, with the right-hand side GN corre-
sponding to the function g(x) = ω(x) in Eq. (40). Columns 2-3, 4-5 and 6-7 correspond to the

resolution without preconditioner, with the Calderón preconditioner Ĉ, and with our square-root
preconditioner Q̂, respectively.

Those results confirm the expectations that P̂ and Q̂ are excellent preconditioners for V and
W on uniform meshes. For levels 1-4, they lead to condition numbers below 2, and for levels 5− 9,
the number of GMRES iterations required to reach the tolerance never exceeds 7. ?? highlights the
difference with the Calderon preconditioner Ĉ, which is known to suffer form the so-called “duality
mismatch” (the fact that H1/2(D) and H−1/2(D) are not dual to each other). This property
translates into a slow increase in the condition number, see e.g. [?, Proposition 3]. Despite this,
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the resolution time with the Calderón preconditioner is roughly similar to that of our square-root
preconditioners in our setting, with a slight advantage for the former.

Laplace equation on graded meshes

Figure 2: Non-uniform meshes of levels n = 5 (left) and n = 6 (right).

We report in Tables ??-?? the preconditioning performance for the weakly singular operator on
graded meshes.

Refinement level κ(V) κ(D−1V) κ(P̂V)
1 700 20 2.4
2 1.6e4 99 3.2
3 1.7e5 330 4.8
4 1.5e6 1.0e3 9.6

Table 7: Condition numbers or the matrices V, D−1V (mass-matrix preconditioner), and P̂V

(square-root preconditioner) assembled on graded meshes.

From those results, it seems that a result such as Theorem 5 is not verified on our sequence of
graded meshes, as the condition number of P̂V now seems to increase with mesh refinement. The
condition number improvement nevertheless remains drastic, and the number of GMRES iterations
required to solve the system on finer levels remains small, as shown in ?? below.
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No prec. Square-root prec.
Refinement level n t n t

5 > 200 14 7 2.3
6 > 200 50 8 7.1
7 > 200 200 8 28
8 > 200 750 8 120
9 > 200 3.1e3 8 530

Table 8: Number of iterations n and resolution time t in seconds for the iterative resolution of the
weakly singular equation (36) for k = 0 on graded meshes, with the right-hand side FN correspond-
ing to the function f(x) = 1/ω(x) in Eq. (40). Columns 2-3 and 4-5 correspond to the resolution

without preconditioner, and with our square-root preconditioner P̂, respectively.

Notice that without preconditioner, the desired tolerance is never reached with 200 iterations.
The weakly singular operator is so ill-conditioned on the graded meshes that the GMRES residuals
almost stagnate. On the finest levels, the required number of iterations is probably much larger
than 200, so the speedup allowed by our preconditioners is underestimated by the figures of ??.

In Tables ??-??, we report the results concerning the hypersingular operator.

Refinement level κ(W) κ(Q̂W) κ(ĈW)
1 1.4 1.2 1.7
2 3.3 1.3 2.5
3 7.45 1.4 3.3
4 15 1.4 4.1

Table 9: Condition numbers or the matrices W, ĈW (Calderón preconditioner), and Q̂W (square-
root preconditioner) assembled on graded meshes.

No prec. Calderón prec. Square-root prec.
Refinement level n t n t n t

5 38 5.6 9 2.5 5 2.0
6 58 31.7 10 10 5 6.0
7 86 180 10 41 5 24
8 131 1.1e3 11 180 5 100
9 > 200 6.5e3 12 820 5 430

Table 10: Number of iterations n and time t in seconds needed for the iterative resolution of the
hypersingular equation (37) for k = 0, on graded meshes, with the rhs GN corresponding to the
function g(x) = ω(x) in Eq. (40). Columns 2-3, 4-5 and 6-7 correspond to the resolution without
preconditioner, with the Calderón preconditioner Ĉ, and with our square-root preconditioner Q̂,
respectively.

In contrast to the case of the weakly-singular equation, the preconditioner Q̂ seems to lead to a
uniformly bounded condition number even on graded meshes. The difference with the Calderón is
again noticeable, and this time, it is also reflected in the resolution time. On the finest graded mesh,
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the square-root preconditioner speeds up the resolution by a factor 2 compared to the Calderón
preconditioner, and allows to solve a problem on a mesh with 2.5 millions of elements in less
than 10 minutes (while almost 2 hours without preconditioner weren’t enough to reach the desired
tolerance).

Helmholtz equation on uniform meshes

We now turn our attention to the case of a non-zero wavenumber k > 0. In what follows, we have
chosen k = 1/(2hmax) for the uniform meshes, and k = 1/hmax for the graded meshes, where hmax

is the length of the longest edge in the mesh. With those choices, the mesh accurately represents
the wavelengths as small as 2π/k. In ?? below, we report the preconditioning performance for
the weakly singular operator. We consider the scattering by D of a plane wave of wavenumber
k illuminating the disk with an angle π/4 with respect to the vertical axis. In other words, the
right-hand sides of Eqs. (36) and (37) are chosen as Dirichlet and Neumann traces, respectively, of
the plane wave

∀x ∈ R
3, uinc(x) := e

ik
x1+x3√

2 . (63)

We report the results on uniform meshes in Table ?? (weakly-singular operator) and Table ??

(hypersingular operator) below.

Refinement level k n1 t1 n2 t2
1 2.1 23 0.1 7 0.5
2 4.25 49 0.6 7 0.8
3 7.8 92 2.8 7 1.0
4 15 110 8.9 8 1.8
5 29 133 45 8 5.2
6 57 157 210 9 23
7 115 191 1.1e3 12 145
8 228 222 5.8e3 18 960
9 457 263 2.9e4 - -

Table 11: Number of iterations n and resolution time t in seconds for the iterative resolution of
the weakly singular equation (36) on uniform meshes, with the right-hand side FN corresponding
to the Dirichlet trace of the plane wave (??). Columns 2-3 and 4-5 correspond to the resolution

without preconditioner, and with our square-root preconditioner P̂k, respectively.
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Refinement level k n1 t1 n2 t2 n3 t3
1 1.45 6 0.1 4 0.5 5 0.1
2 2.1 9 0.1 6 0.5 7 0.1
3 4.25 15 0.6 7 0.8 8 0.51
4 7.8 30 3.0 8 1.8 9 1.3
5 15 38 9.4 8 3.8 9 3.6
6 29 45 46 10 14.5 8 14
7 57 52 220 12 69 8 54
8 115 60 1.0e3 17 420 7 210
9 228 70 5.15e3 25 2.9e3 7 900
10 -

Table 12: Number of iterations n and resolution time t in seconds for the iterative resolution of the
hypersingular equation (37) on uniform meshes, with the right-hand side GN corresponding to the
Neumann trace of the plane wave (??). Columns 2-3, 4-5 and 6-7 correspond to the resolution with-

out preconditioner, with the Calderón preconditioner Ĉk and with our square-root preconditioner
Q̂k, respectively.

The results of this section demonstrate the robustness of our preconditioners with respect to
the wavenumber on uniform meshes. However, in ??, we see that the Calderón preconditioner still
performs better than our square-root preconditioner, both from the point of view of resolution time
and number of iterations.

Helmholtz equation on non-uniform meshes

We now report results for the Helmholtz equation on graded meshes.

No prec. Square-root prec.
Refinement level k n t n t

1 1.3 17 0.1 8 0.8
2 2.1 > 200 1.3 8 0.9
3 2.9 > 200 4.0 8 1.5
4 4.7 > 200 9.4 8 2.2
5 8.5 > 200 41 8 4.6
6 15 > 200 160 8 16
7 27 > 200 630 8 64
8 50 > 200 2.4e3 8 280
9 91 > 200 9.5e3 9 1.3e3

Table 13: Number of iterations n and resolution time t in seconds for the iterative resolution of the
weakly singular equation (36) on graded meshes, with the right-hand side FN corresponding to the
Dirichlet trace of the plane wave (??). Columns 2-3 and 4-5 correspond to the resolution without

preconditioner, and with our square-root preconditioner P̂k, respectively.
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No prec. Calderón prec. Square-root prec.
Refinement level k n t n t n t

1 1.3 5 0.1 4 0.1 5 0.6
2 2.1 12 0.1 8 0.3 6 0.9
3 2.9 20 1.0 9 0.9 6 1.6
4 4.7 36 5.0 11 2.4 6 2.4
5 8.5 84 51 11 10 7 7.4
6 15 137 320 12 43 7 26
7 27 > 200 1.9e3 12 170 7 110
8 50 > 200 7.2e3 12 670 8 480
9 91 > 200 2.9e4 12 2.7e3 9 2.3e3

Table 14: Number of iterations n and resolution time t in seconds for the iterative resolution of
the hypersingular equation (37) on graded meshes, with the rhs GN corresponding to the Neumann
trace of the plane wave (??). Columns 2-3, 4-5 and 6-7 correspond to the resolution without

preconditioner, with the Calderón preconditioner Ĉk and with our square-root preconditioner Q̂k,
respectively.

The performance of our preconditioners on graded meshes seems to be even better than on uni-
form meshes. In this case, our square-root preconditioner outperforms the Calderón preconditioner.

Different corrections

Finally, we would like to illustrate the practical importance of the corrective term −k2ω2 in the
definitions Pk and Qk. For this, we compare our preconditioner Pk with three alternatives. The
first one is P̂ (the preconditioner used for k = 0). The second and third ones are based on the
operators

Tk :=
1

ω

(
−ω divω∇− k2Id

) 1
2 , Λk :=

(
−∆− k2Id

) 1
2 (64)

The operators Tk and Λk are converted into preconditioners T̂k and Λ̂k for Vk in the same way as
P̂k is derived from Pk, see Section 4. Using P̂ in place of P̂k amounts to ignoring the k-dependency
of Vk. The preconditioner T̂k is a naive attempt to include a k-dependency in the preconditioner.
Finally, the preconditioner Λ̂k corresponds to the approximation of the DtN map from [?] for a
smooth surface. Using this preconditioner amounts to ignoring the edge singularity of the screen
by formally putting ω ≡ 1.

We report the performance of those preconditioners on uniform and graded meshes in ?? below.
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Uniform meshes

P̂k P̂ T̂k Λ̂k

Level k n n n n
1 1.1 8 7 10 10
2 2.1 8 8 15 11
3 3.9 7 11 26 12
4 7.4 8 21 44 13
5 14.5 8 51 68 15
6 29 7 87 95 17
7 57 7 157 128 20
8 115 8 > 200 152 25

Graded meshes

P̂k P̂ T̂k Λ̂k

Level k n n n n
1 1.3 8 8 10 10
2 2.1 8 10 16 15
3 2.9 8 11 20 19
4 4.7 8 14 30 28
5 8.5 8 35 51 38
6 15 8 53 78 56
7 27 8 99 116 89
8 50 8 163 > 200 143

Table 15: Number of iterations n for the iterative resolution of the weakly-singular equation (37)
on uniform meshes (left) and graded meshes (right), with the right-hand side FN corresponding to
the Dirichlet trace of the plane wave (??). In each table, columns 3, 4, 5 and 6 correspond to the

resolution with the preconditioners, P̂k, P̂, T̂k and Λ̂k, respectively.

The results clearly show that, among other attempts, our square-root preconditioner is the most
robust both to the increase of the condition number and to mesh grading.
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A Proof of Theorem 2

We remark that the identity on associated Legendre polynomials Pm
l (see [?, Eq. (8.5.3)])

∀t ∈ R , tPm
l (t) =

1

(2l + 1)

(
(l + 1−m)Pm

l+1(t) + (l +m)Pm
l−1(t)

)
,

permits us to deduce a simple algebraic property that connects the functions (Tm
l ) and (Um

l ).

Lemma 18. For all (l,m) ∈ Λ there holds

Tm
l = jml+1U

m
l + jml U

m
l−2 (65)

Um
l =

jml+2T
m
l+2 + jml+1T

m
l

ω2
(66)

where

jml =





0 if l = 0 ,
√
l2 −m2

4l2 − 1
otherwise,

(67)

and taking the convention Um
−2 = Um

−1 = 0 in Eq. (??).

We omit the proof of this lemma which is a simple calculation. We deduce

Lemma 19. For all s ≥ 0, T s is continuously embedded in Us.

Proof. We define a map I : T → U by

I


 ∑

(l,m)∈Λ

ûml T
m
l


 =

∑

(l,m)∈Λ

(
jml+1û

m
l + jml+2û

m
l+2

)
Um
l ,

with the coefficients jml given in Eq. (??). The map I is continuous from T s to Us for all s ∈ R

since for all (l,m) ∈ Λ, one has |jml | ≤ 1. Moreover, by Eq. (??), I coincides with the identity
operator Id : L2

1
ω

→ L2
ω on the dense subset of L2

1
ω

consisting of finite linear combinations of the

functions {Tm
l }(l,m)∈Λ. Hence, Iu = u for all u ∈ L2

1
ω

⊃ T s, and the result follows.

Next, we establish continuous inclusions Us ⊂ T s−1 for s ≥ 1. This turns out to be more
delicate: roughly speaking, we need to proceed to the inversion of the formula (??) expressing Tm

l

in terms of Um
l and Um

l−2, with careful estimation of the underlying coefficients. We start with the
following technical lemma:

Lemma 20.

1. Let (l,m) ∈ Λ. Then

Um
l =

l∑

k=|m|
l−k even

(−1)
l−k
2 κl,m,kT

m
k (68)

where the coefficients κl,m,k are defined whenever |m| ≤ k ≤ l and l, k and m all share the
same parity, as follows.
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- For all (l,m) ∈ Λ,

κl,m,l =
1

jml+1

(69)

- For all |m| ≤ k ≤ l such that k, l and m have the same parity,

κl+2,m,k =
jml+2

jml+3

κl,m,k . (70)

Thus,

κl,m,k =




l∏

ν=k+2
l−ν even

jmν







l∏

ν=k
l−ν even

jmν+1




−1

. (71)

2. For all |m| ≤ k ≤ l − 2 with k, l,m of the same parity, there holds

κl,m,k =
jmk+2

jmk+1

κl,m,k+2 . (72)

3. These coefficients satisfy

κl,m,k ≤





1

jmk+1

if m 6= 0 ,

2 if m = 0 .

Proof. The formula (??) is readily obtained by induction by combining Eq. (??) with Eqs. (??)
and (??). The formula (??) can be easily proven by induction from Eqs. (??) and (??). From (??),
(??) follows immediately. Then, writing

(jml+1)
2 =

(l + 1)2 −m2

(2l + 1)(2l + 3)

=
1

4
+

(
1

4
−m2

)
1

(2l + 1)(2l + 3)

defined when (l + 1) ≥ |m|, we notice that for m 6= 0 (resp. m = 0), the sequence (jml+1)l increases
(resp. decreases) with respect to l. We deduce, since

κl+2,m,k

κl,m,k
=
jml+2

jml+3

,

that for m 6= 0, the sequence (κl,m,k)l decreases with respect to l, and thus

κl,m,k ≤ κk,m,k =
1

jmk+1

.

For m = 0, we can write

κl,0,k =
1

j0l+1

(
j0l
j0l−1

)
· · ·
(
j0k+2

j0k+1

)
≤ 1

j0l+1

≤ lim
l→∞

1

j0l+1

= 2 .
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We further need two intermediate results. The first is a more explicit estimate of κl,m,k presented
in the following lemma.

Lemma 21. For all integers such that κl,m,k is defined, there holds

κl,m,k ≤ 2

√
(l + 1)(l + 2)−m2

l + 1− |m| . (73)

Proof. Only the case m 6= 0 deserves attention. By ?? above, κl,m,k ≤ 1
jmk+1

≤ 1
jml+1

since jml is

increasing with respect to l. We then write

1

jml+1

=

√
(2l + 1)(2l + 3)

(l + 1)2 −m2
≤ 2(l + 1)

√
(l + 1)2 −m2

(l + 1)2 −m2
≤ 2

√
(l + 1)2 −m2

l + 1− |m|

from which (??) follows.

Second, we need an adjoint Cesarò estimate. It is well-known that the Cesarò operator K defined
for v ∈ l2(N∗) by

(Kv)n =
1

n

n∑

k=1

vk ,

is continuous in l2(N∗). Therefore, its adjoint K∗, defined by

(K∗v)n =

+∞∑

k=n

vk
k
,

is also continuous. Hence, there exists a constant CK > 0 such that for all v ∈ l2(N), there holds

+∞∑

n=1

∣∣∣∣∣
+∞∑

k=n

vk
k

∣∣∣∣∣

2

≤ CK ‖v‖2l2 .

Here we rewrite this inequality for sequences v of the form (vl)l≥|m|. In this case, one can check by
manipulations on the indices that the previous implies

+∞∑

l=|m|

∣∣∣∣∣
+∞∑

k=l

vk
k + 1− |m|

∣∣∣∣∣

2

≤ C ′
K

+∞∑

l=|m|
|vl|2 (74)

for some constant C ′
K > 0 independent of m. We are now in a position to prove the inclusion of Us

into T s−1 for s ≥ 1:

Lemma 22. For all s ≥ 1, Us is continuously embedded in T s−1.

Proof. Let s > 1
2 . To u ∈ Us given by

u =
∑

(l,m)∈Λ

βm
l U

m
l ,
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we associate the element Ĩu of T defined by

Ĩu :=
∑

(l,m)∈Λ

αm
l T

m
l ,

where

αm
k =

+∞∑

l=k
l−k even

(−1)
l−k
2 κl,m,kβ

m
l . (75)

We claim that for all s > 1
2 , Ĩ maps Us to T s−1 continuously and satisfies

∀u ∈ Us , IĨu = u , (76)

where I is the operator defined in ??.
Firstly, the sum on the rhs of Eq. (??) converges absolutely for s > 1

2 . Indeed, applying Lemma
?? and the Cauchy-Schwarz inequality, we have

+∞∑

l=k
l−k even

∣∣∣(−1)
l−k
2 κl,m,kβ

m
l

∣∣∣ ≤ 1

jmk+1

√√√√√
+∞∑

l=|m|
l−m even

[(l + 1)(l + 2)−m2]s |βm
l |2
√√√√√

+∞∑

l=|m|
l−m even

[(l + 1)(l + 2)−m2]−s .

The first sum is ‖u‖Us , and the second one is finite for s > 1
2 . This shows that Ĩu is well-defined.

Secondly, one has for all (k,m) ∈ Λ,

jmk+1α
m
k + jmk+2α

m
k+2 = jmk+1




+∞∑

l=k
l−k even

(−1)
l−k
2 κl,m,kβ

m
l


+ jmk+2




+∞∑

l=k+2
l−k even

(−1)
l−k−2

2 κl,m,k+2β
m
l




= jmk+1κk,m,kβ
m
k +

+∞∑

l=k+2
k−l even

(−1)
(l−k)

2 [jmk+1κl,m,k − jmk+2κl,m,k+2]β
m
l

= βm
k

using Eq. (??) and the definition of κk,m,k. This proves the identity (??).
Finally, we write

∥∥∥Ĩu
∥∥∥
2

T s−1
=

+∞∑

m=0

+∞∑

l=|m|
l−m even

(1
4
+ l(l + 1)−m2

)s−1

|αm
l |2

=

+∞∑

m=0

+∞∑

l=|m|
l−m even

(
1

4
+ l(l + 1)−m2

)s−1

∣∣∣∣∣∣∣

+∞∑

k=l
k−l even

(−1)
k−l
2 κk,m,lβ

m
k

∣∣∣∣∣∣∣

2

≤ 4

+∞∑

m=0

+∞∑

l=|m|
l−m even




+∞∑

k=l
k−l even

((k + 1)(k + 2)−m2)
s−1
2

√
(k + 1)(k + 2)−m2

k + 1− |m| |βm
k |




2
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using the inequality (??) and the simple estimate

1

4
+ l(l + 1)−m2 ≤ (l + 1)(l + 2)−m2 ≤ (k + 1)(k + 2)−m2

valid for l ≤ k. We deduce

∥∥∥Ĩu
∥∥∥
2

T s−1
≤ 4

+∞∑

m=0

+∞∑

l=|m|
l−m even

∣∣∣∣∣∣∣

+∞∑

k=l
k−l even

((k + 1)(k + 2)−m2)
s
2

|βm
k |

k + 1− |m|

∣∣∣∣∣∣∣

2

≤ 4C ′
K

+∞∑

m=0

+∞∑

l=|m|
l−m even

[(l + 1)(l + 2)−m2]s |βm
l |2

= 4C ′
K ‖u‖2Us

where we applied the adjoint Cesarò estimate (??) with vk = ((k + 1)(k + 2) −m2)
s
2 |βm

l |. This
proves the claimed continuity.

For s ≥ 1, we have shown in ?? that I coincides with Id on T s−1. Thus, Eq. (??) states nothing
else than

Ĩu = u ,

and the lemma is proved.

Remark 1. At this point, it is looks very natural to identify an element u ∈ T s to the element
v ∈ Us defined by v = Iu. This would make T −∞ a subspace of U−∞ and we would have the
continuous inclusions T s ⊂ Us for all s ∈ R, and Us ⊂ T s−1 for all s > 1

2 . However, there is a
fatal flaw in this reasoning, which is that I : T s → Us is not injective for all s ∈ R. A good way to
see this is by looking at the element u = 1

ω ∈ U0, and letting

v := (ω∂x1
ω)u .

By Lemma 7, v ∈ T −1, and by definition of ω∇ω, one has

v̂ml = 2

(
(ω∂x1

ω)
1

ω
, Tm

l

)

1
ω

= −2

(
1

ω
, ∂x1

Tm
l

)

ω

= −2

∫

D

∂x1T
m
l (x)dx

= −2

∫

∂D

ξ1Tm
l (ξ)dξ .

One can check that v̂ml is not 0 for example for l = m = 1 (notice how v is “supported on ∂D”, in
the sense that (v, f) 1

ω
= 0 whenever f vanishes on ∂D). Now, let w = Iv. For all (l,m) ∈ Λ, we
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have by definition

w̌m
l = jml+1v̂

m
l + jml+2v̂

m
l+2

= −2

∫

∂D

ξ1(j
m
l+1T

m
l + jml+2T

m

l+2)dξ

= −2

∫

∂D

ξ1ω
2(ξ)U

m

l (ξ)dξ

= 0

,

where we used the identity (??) and the fact that the weight ω vanishes on ∂D. Hence w = 0
so I is not injective on T −1. In fact, one should not view I as an identity operator, but rather
as a restriction operator from D to D. Its kernel contains elements of T s supported in ∂D. For
s ≥ 0, this kernel is simply {0}, but it can be larger for general s (just like for s ≤ −1/2, the set of
distributions of Hs(Ω) supported in ∂Ω is strictly larger than {0}).

Proof of Theorem 2. The inclusions shown above imply at once that T ∞ = U∞. By Lemma 3,
C∞(D) ⊂ T ∞. To show the converse inclusion, we first remark that if u ∈ T ∞, then the de-
composition of u on the functions Tm

l converges uniformly, as can be seen using the estimate (6).
This implies that T ∞ ⊂ C0. Furthermore, by Lemma 7, if u ∈ T ∞, each component of ∇u is in
U∞ = T ∞ and is therefore continuous. The proof is then concluded by a bootstrap argument.

B Proof of Theorem 4

Proof. We observe that ω divω∇ is a self adjoint operator with respect to the scalar product (·, ·) 1
ω
.

Therefore, for any u ∈ C∞(D), one has

Vk,ω (ω divω∇u) =

∫

D

Gk(x− y) (ω(y)∇y · (ω(y)∇y))u(y)

ω(y)
dσy

=

∫

D

(ωy divy ωy∇yGk) (x− y)u(y)

ω(y)
dσy .

Let us denote
[Vk,ω,∆ω] = Vk,ω (ω divω∇)u− (ω divω∇)Vk,ωu .

The previous computations then lead to

[Vk,ω,∆ω]u =

∫

D

∆(x, y)u(y)

ω(y)
dσy

with
∆(x, y) =

[
ωy divy ωy∇y − ωx divx ωx∇x

]
Gk(x− y) .

Using now the expression

ω divω∇φ(x) = ω2(x)∆φ(x)− x · ∇φ(x)

we obtain
∆(x, y) = ∆xGk(x− y)(ω(y)2 − ω(x)2) + (x+ y) · ∇xGk(x− y) . (77)
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We stress the fact that the Laplacian ∆x used until now is the bidimensional Laplacian, which
should not be mistaken with the three dimensional Laplacian of the Helmholtz equation, that we
shall denote by ∆3D. The Green function Gk(x) satisfies the Helmholtz equation

∆3D
x Gk + k2Gk = δ0

where δ0 is the Dirac mass at 0. Since Gk is a radial function, we may rewrite this latter equation,
with a slight abuse of notation, as

G′′
k(r) +

2

r
G′

k(r) + k2Gk(r) = δ0 .

We deduce that

∇xGk(x) = G′
k(r)

x

r

= −x(G′′
k(r) +

1

r
G′

k(r) + k2Gk(r)− δ0)

= −x(∆xGk(x) + k2Gk(x))

with r = ‖x‖, using that xδ0 = 0. Plugging this expression in (??), we are led to

∆(x, y) = (ω2(y)− ω2(x) + ‖y‖2 − ‖x‖2)∆xGk(x− y) + k2(‖y‖2 − ‖x‖2)Gk(x− y) .

Since ω(x) =

√
1− ‖x‖2, the first term vanishes, and, remarking that ‖y‖2 − ‖x‖2 = ω2(x) −

ω2(y), we may write

[Vk,ω,∆ω]u = k2
∫

D

(ω2(x)− ω2(y))Gk(x− y)u(y)

ω(y)
dσy

= k2(ω2Vk,ω − Vk,ωω
2)u

which proves the claim.
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