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Abstract

We demonstrate that a fourfold redundancy in the measurements
is sufficient for uniqueness in sampled Gabor phase retrieval with
bandlimited signals and thereby draw a parallel between the sam-
pled Gabor phase retrieval problem and finite-dimensional phase
retrieval problems. Precisely, we show that sampling at twice
the Nyquist rate in two frequency bins guarantees uniqueness
in Gabor phase retrieval for signals in the Paley–Wiener space.
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1 Introduction

1.1 Foreword: an overview of uniqueness in

finite-dimensional phase retrieval

In finite dimensional phase retrieval, it is known that a fourfold redundancy
in the measurements is necessary and sufficient for uniqueness. In particular,
if one wants to recover x ∈ CL (up to a constant global phase factor) from the
measurements

|(x,φm)| , m = 1, . . . ,M, (1)

with measurement vectors (φm)Mm=1 ∈ CL, then one needs that M ≥ (4 +
o(1))L [1]. Here, we show that a fourfold redundancy in the measurements is
sufficient for uniqueness in sampled Gabor phase retrieval.

Let us give a short overview over certain uniqueness results for finite-dimen-
sional phase retrieval problems loosely centered around the following question
posed in [2].

Question 1 (Cf. Problem 8 in [2]) For any dimension L, what is the smallest num-
ber M∗(L) of measurement vectors for which the phase retrieval problem with
measurements (1) enjoys uniqueness and how can we design such measurement
vectors?

The above question is fully answered in sign retrieval (i.e. when both the
signal x as well as the measurements vectors (φm)Mm=1 are assumed to be in R

L)
by [3]: indeed, there it is shown that a collection of M = 2L− 2 measurement
vectors can never yield uniqueness in sign retrieval (cf. Proposition 2.5) while
a generic set of M = 2L− 1 measurement vectors will always yield uniqueness
(cf. Theorem 2.2).1 This leads to M∗(L) = 2L − 1 and the intuition that a

twofold redundancy is necessary and sufficient for uniqueness in sign retrieval

problems.
Phase retrieval is a bit more complicated than sign retrieval: in [4], it is

shown that a generic set of M = 4L−4 measurement vectors yields uniqueness
in phase retrieval (cf. Theorem 3.3) while in [1] it is shown thatM ≥ (4+o(1))L
is necessary for uniqueness in phase retrieval (cf. Theorem 6). Combining these
two insights leads to M∗(L) = (4 + o(1))L and the intuition that a four-

fold redundancy is necessary and sufficient for uniqueness in phase retrieval

problems.2

1Here, generic refers to an open dense subset of the set of all M-element frames of RL.
2Interestingly, the exact expression for M∗(L) does not seem to be known in the complex case.

A proof of the famous 4L−4 Conjecture in [2] would have implied that M∗(L) = 4L−4. However,
as was shown in [5] through the explicit construction of a set of M = 11 measurement vectors in
C

4 which yield uniqueness in phase retrieval, the 4L− 4 Conjecture is false for general L.
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1.2 Gabor phase retrieval: prior arts and our contribution

We are interested in a phase retrieval problem which differs from the setup
discussed so far. Let us introduce the Gabor transform of a signal f ∈ L2(R) by

Gf(x, ω) := 21/4
∫

R

f(t)e−π(t−x)
2

e−2πitω dt, (x, ω) ∈ R
2,

and consider sampled Gabor phase retrieval which refers to the problem of
recovering f ∈ L2(R) from

|Gf(x, ω)| , (x, ω) ∈ S,

where S ⊂ R2 is a discrete subset of the time-frequency plane. The first known
uniqueness result for sampled Gabor phase retrieval was the following.

Theorem 1 (Cf. Theorem 2.5 in [6]) f ∈ PW2
B real-valued on the real line is uniquely

determined (up to a constant global phase factor) by

|Gf(x, ω)| , (x, ω) ∈
Z

4B
× {0}.

Notably, the above result can be interpreted as a statement about unique-
ness in sign retrieval: indeed, f is assumed to be real-valued on the real line
and

Gf(x, 0) = 21/4
∫

R

f(t)e−π(t−x)
2

dt ∈ R,

for x ∈ R. Additionally, we remind the reader that any signal f in the Paley–
Wiener space PW2

B is uniquely determined by its samples (f(k/(2B)))k∈Z at
the Nyquist sampling rate according to the famous Nyquist–Shannon sampling
theorem (Theorem 6). We do therefore suggest that Theorem 1 should be
interpreted as an instance of the insight that a twofold redundancy is sufficient
for uniqueness in sign retrieval as it guarantees uniqueness from samples at
twice the Nyquist sampling rate.

As for finite-dimensional problems, sampled Gabor phase retrieval is a bit
more complicated than sampled Gabor sign retrieval. Recently, the following
result has been proven in [7] based on ideas in [8].

Theorem 2 (Cf. Proposition 27 in [7]) f ∈ PW2
B is uniquely determined (up to a

constant global phase factor) by

|Gf(x, ω)| , (x, ω) ∈ bZ× N,

if b ∈ (0, 1
4B ).

We note that in the above result samples at twice the Nyquist sampling
rate are required in time while information on infinitely many frequency bins
is utilised. When compared to the intuition that a fourfold redundancy is
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sufficient for uniqueness in phase retrieval, the latter seems excessive and the
following question comes up naturally.

Question 2 Can f ∈ PW2
B be uniquely recovered (up to a constant global phase

factor) from measurements of |Gf | in two frequency bins sampled at twice the Nyquist
sampling rate?

Here, we will use a mix of ideas from [7–9] to answer this question and
prove the following result.

Theorem 3 (Main result; cf. Theorem 8) f ∈ PW2
B is uniquely determined (up to

a constant global phase factor) by

|Gf(x, ω)| , (x, ω) ∈
Z

4B
× {ω0, ω1},

if ω0, ω1 ∈ R are such that ω0 6= ω1.

Hence, sampling at twice the Nyquist rate in two frequency bins guarantees
uniqueness in Gabor phase retrieval. We suggest that this should be inter-
preted as an instance of the insight that a fourfold redundancy is sufficient for
uniqueness in phase retrieval.

2 Preliminaries

2.1 The relation between the Gabor transform and the

Fock space of entire functions

As mentioned in the introduction, we are interested in phase retrieval problems
involving the Gabor transform

Gf(x, ω) = 21/4
∫

R

f(t)e−π(t−x)
2

e−2πitω dt, (x, ω) ∈ R
2,

where f ∈ L2(R). Clearly,

∣

∣G
(

eiαf
)∣

∣ = |Gf | , α ∈ R,

such that we cannot distinguish between signals in L2(R) which are equivalent
under the relation

f ∼ g : ⇐⇒ ∃α ∈ R : f = eiαg.

As is common in the literature, we call signals f, g ∈ L2(R) which satisfy f ∼ g
equal up to global phase.

The definition of the Gabor transform indicates that we follow the
convention

Ff(ξ) =

∫

R

f(t)e−2πitξ dt, ξ ∈ R,
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for the Fourier transform of f ∈ L1(R)∩L2(R), which can be extended to L2(R)
by a classical argument. We remind the reader that the Fourier transform
induces a rotation of the time-frequency plane:

Gf(x, ω) = e−2πixωGFf(ω,−x), (x, ω) ∈ R
2.

The above is often called the fundamental identity of time-frequency analysis.
One of the most notable features of the Gabor transform is that it is con-

nected to the Fock space of entire functions. We want to explain this classical
relation shortly in the following. To do so, we consider the Bargmann transform

of a signal f ∈ L2(R) given by

Bf(z) := 21/4
∫

R

f(t)e2πtz−πt
2−π

2
z2 dt, z ∈ C.

Additionally, we introduce the Fock space F2(C) as the Hilbert space of all
entire functions F for which the norm

‖F‖F :=

(
∫

C

|F (z)|
2
e−π|z|

2

dz

)1/2

is finite. It then holds that (cf. Proposition 3.4.1 in [10])

Gf(x,−ω) = eπixωBf(z)e−π|z|
2/2, z = x+ iω ∈ C,

and that B is an isometry from L2(R) into F2(C). Moreover, one may show
that the Fock space is a reproducing kernel Hilbert space (cf. Theorem 3.4.2
in [10]) and that all F ∈ F2(C) satisfy

|F (z)| ≤ ‖F‖F eπ|z|
2/2, z ∈ C.

Therefore, any element of the Fock space must be a finite order entire function.3

2.2 A characterisation of entire functions whose

magnitudes agree on parallel lines

We are interested in the order of elements in the Fock space since we have
recently been able to give a full characterisation of finite order entire functions
whose magnitudes agree on parallel lines in the complex plane [9]. We shortly
explain the relevant ideas of that work here. For this purpose, we denote the
set of roots (without repetitions) of an entire function F by R(F ). Moreover,
we let R∗(F ) := R(F ) \ {0} and denote the multiplicity of a root a ∈ R(F )

3The order of an entire function F is defined to be

ρ := lim sup
r→∞

log log supz∈C, |z|<r |F (z)|

log r
.
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by mF (a). In this way, we can interpret mF : R(F ) → N as a function which
after trivial extension to all of C — let us denote this trivial extension by
MF : C → N0 — fully characterises the roots of F .

If we consider two entire functions F and G, then we may group the roots
of F into two sets,

X := R∗(F ) ∩R(G), Y := {a ∈ R∗(F ) |mF (a) > MG(a)} ,

with multiplicities mX : X → N,

mX (a) := min {mF (a),mG(a)} , a ∈ X ,

and mY : Y → N,

mY(a) := mF (a)−MG(a), a ∈ Y :

indeed, it holds that MF = MX + MY , where MX ,MY denote the trivial
extensions of mX ,mY to C.4

If we now assume that F and G agree on the two parallel lines R and R+iτ
in the complex plane, where τ > 0, then we can show that MG = MX +(MY)

∗,
where (MY)

∗(z) := MY(z), for z ∈ C, and that there is a translation symmetry
in Y: for all k ∈ Z,

MY(z + 2ikτ) = MY(z), z ∈ C.

Hence, Y can be fully described by knowledge of

Yu := {a ∈ Y | Im a ∈ [−τ, τ)} .

More precisely, we have that Y = Yu+2iτZ. It follows that once we know that
there is a single root in Y, we know that there must be infinitely many evenly
spaced roots in Y. This is especially interesting in light of the following simple
lemma which follows directly from one of the main results (Theorem 25) in [9]:

Lemma 4 Let τ > 0 and let F and G be two finite order entire functions such that

|F (x)| = |G(x)| , |F (x+ iτ)| = |G(x+ iτ)| , x ∈ R.

Then, F and G agree (up to a constant global phase factor) if Yu = ∅.

Proof If F is zero, then the equality |F | = |G| on R along with the identity theorem
of complex analysis implies that G is zero and thus F and G agree. The same is
true if G is zero and thus we can assume for the rest of this proof that F and G are
non-zero. If Yu = ∅, then it follows from the considerations before the statement of

4It is instructive to have the intuition that MX contains all information on the roots of F that
are also roots of G while MY contains all information on the roots of F that are no roots of G.
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the lemma that Y = ∅. Therefore, Theorem 25 in [9] implies that there exist r > 0,
φ, ψ ∈ R, q ∈ N0, aℓ, bℓ, b

′
ℓ ∈ R, for ℓ ∈ {1, . . . , q}, m ∈ N0 and p ∈ N0 such that

q
∑

ℓ=1

(

bℓ − b′ℓ
)

Im
[

(x+ iτ)ℓ
]

= 0 (2)

and

F (z) = reiφ exp

(

q
∑

ℓ=1

(aℓ + ibℓ)z
ℓ

)

zm
∏

a∈X

E
( z

a
; p
)mX (a)

,

G(z) = reiψ exp

(

q
∑

ℓ=1

(aℓ + ib′ℓ)z
ℓ

)

zm
∏

a∈X

E
( z

a
; p
)mX (a)

,

for z ∈ C, where E(z; p) := (1 − z) exp(
∑p
ℓ=1 z

ℓ/ℓ) denote the so-called primary
factors.

It remains to show that bℓ = b′ℓ, for ℓ ∈ {1, . . . , q}: let us note that

Im
[

(x+ iτ)ℓ
]

=

ℓ
∑

k=0

(

ℓ

k

)

xk Im
[

iℓ−k
]

τ ℓ−k

and that therefore
q
∑

ℓ=1

(

bℓ − b′ℓ
)

Im
[

(x+ iτ)ℓ
]

=

q
∑

k=0

xk ·

q
∑

ℓ=min{1,k}

(

ℓ

k

)

Im
[

iℓ−k
]

τ ℓ−k(bℓ − b′ℓ).

Comparing coefficients in equation (2) reveals that
q
∑

ℓ=min{1,k}

(

ℓ

k

)

Im
[

iℓ−k
]

τ ℓ−k(bℓ − b′ℓ) = 0, k ∈ {0, . . . , q}.

The above equation implies bq = b′q (for k = q) and bq−1 = b′q−1 (for k = q− 1) and
thus (for k = q − 2)

0 = (bq−2 − b′q−2)− q(q − 1)τ2(bq − b′q) = (bq−2 − b′q−2).

Continuing these considerations for decreasing k shows that bℓ = b′ℓ, for ℓ ∈
{1, . . . , q}, and thus that F and G agree up to a constant global phase factor. �

2.3 Uniqueness in sampled Gabor phase retrieval

Another central idea for the proof of our main result is taken from the existing
uniqueness results in sampled Gabor phase retrieval [7, 8]: let us consider the
Paley–Wiener space of bandlimited functions

PW2
B :=

{

f : C → C

∣

∣

∣

∣

∣

∃F ∈ L2([−B,B])∀z ∈ C :

f(z) =

∫ B

−B

F (ξ)e2πiξz dξ

}

,

where B > 0. We can give meaning to Gf , for f ∈ PW2
B : indeed, the well-

known Paley–Wiener theorem implies that the restriction of f to R—which we
denote by f |R — is in L2(R). Hence Gf = G(f |R) is well-defined. Interestingly,
Gf is also bandlimited in some sense:
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Lemma 5 Let B > 0 and f ∈ PW2
B. Then, for all ω ∈ R, it holds that x 7→ |G(x, ω)|2

is the restriction of a function in PW2
2B to R.

Proof The proof of this result is very similar to that of Lemma 15 in [7]. Indeed, we
only need to note that the normalised Gaussian

φ(t) = 21/4e−πt
2

, t ∈ R,

is in L4(R) and satisfies Fφ = φ to see that

ξ 7→ F(f |R)(ξ)Fφ(ξ − ω) ∈ L4/3(R),

for all ω ∈ R, according to Hölder’s inequality. Hence, the proof Lemma 15 implies
that x 7→ |G(x, ω)|2 is the restriction of a function in PW2

2B to R. �

Therefore, according to the famous Nyquist–Shannon sampling theorem,
x 7→ |G(x, ω)|2 can be recovered from samples.

Theorem 6 (Nyquist–Shannon sampling theorem) Let B > 0 and f ∈ PW2
B. Then,

it holds that

f(t) =
∑

k∈Z

f

(

k

2B

)

sinc (2Bt− k) , t ∈ R,

where the series converges uniformly on every compact subset of R and where the
convention

sinc(t) =
sin(πt)

πt
, t 6= 0,

is used for the sinc function.

To prove a complete sampling result for Gabor phase retrieval, it remains
to understand how to sample in the frequency coordinate. In [8, 9], this under-
standing comes from Zalik’s theorem which we state in a slightly modified
form.

Theorem 7 (Zalik’s theorem; cf. Theorem 4 in [11]) Let p ∈ [1,∞), let a, b ∈ R be
such that a < b, let r > 0 and let (cn)n∈N ∈ C be a sequence of distinct numbers
such that there exists a δ > 0 and an N0 ∈ N with

∣

∣Re
[

cn − 1
2

]
∣

∣ ≥ δ
∣

∣cn − 1
2

∣

∣ , n ≥ N0.

Then,
{

t 7→ e−r
2(t−cn)

2

; n ∈ N

}

is complete in Lp([a, b]) if and only if
∑

n∈N, cn 6=0

|cn|
−1

diverges.
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Proof The theorem follows from the original proof in [11] with some small modifica-
tions. In case of confusion, the reader is also encouraged to read the proof of Theorem
20 in [7]. �

Remark 1 A combination of the Nyquist–Shannon sampling theorem and Zalik’s
theorem was first used in [8] to prove uniqueness in sampled Gabor phase retrieval
with signals in f ∈ L4([−B,B]). We have recently been able to generalise this result
to PW2

B (cf. Theorem 2) [7]. In the following, we will further generalise Theorem 2
and show that it remains true if we replace the countably infinite set of frequency
bins N by the set {ω0, ω1}. We see this result as being in line with the intuition that
a fourfold redundancy is sufficient for uniqueness in phase retrieval.

3 The main result

We now have all the tools at our disposal which are needed to prove our main
result.

Theorem 8 (Main result; cf. Theorem 3) Let B > 0, let ω0, ω1 ∈ R be such that ω0 <
ω1 and let f, g ∈ PW2

B. Then, f ∼ g if (and only if) |Gf | = |Gg| on 1
4BZ×{ω0, ω1}.

Proof Let us suppose that |Gf | = |Gg| on 1
4BZ×{ω0, ω1} and fix j ∈ {0, 1}. Accord-

ing to Lemma 5, it holds that x 7→ |Gf(x, ωj)|
2 and x 7→ |Gg(x, ωj)|

2 are restrictions

of functions in PW2
2B to R. It therefore follows from the Nyquist–Shannon sampling

theorem (cf. Theorem 6) that
∣

∣Gf(x, ωj)
∣

∣

2
=
∣

∣Gg(x, ωj)
∣

∣

2
, x ∈ R. (3)

In words, the Gabor transforms of f and g agree in magnitude on two parallel lines
in the time-frequency plane.

Let us now suppose, by contradiction, that f and g do not agree up to global
phase and define the finite order entire functions F (z) := Bf(z + iω0) and G(z) :=
Bg(z+ iω0), for z ∈ C. By the linearity of the Bargmann transform, F and G do not
agree up to global phase. Additionally, we can see that

|F (x)| = |G(x)| , |F (x+ iτ)| = |G(x+ iτ)| , x ∈ R,

for τ := ω1 − ω0 > 0, according to equation (3). It therefore follows from Lemma 4
that Yu 6= ∅ and thus there exists an element a0 = t0 + iξ0 ∈ Yu. As it holds that
Yu+2iτZ = Y ⊂ R(F ), we conclude that F (a0−2ikτ) = 0 such that Bf(a0+i(ω0−
2kτ)) = 0 which implies

Gf(x0, 2kτ − ω0) = 0, k ∈ Z, (4)

through the relation of the Gabor and the Bargmann transform.
We note that

Gf(x, ω) = e−2πixωGFf(ω,−x) = e−2πixω ·

∫ B

−B
Ff(ξ)e−π(ξ−ω)

2

e2πiξx dξ,
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for (x, ω) ∈ R
2, according to the fundamental identity of time-frequency analysis and

suppFf ⊂ [−B,B]. By completing the square in the exponent, we find that

−π(ξ − ω)2 − 2πiξx = −π(ξ − ω + ix)2 − 2πiωx− πx2

and thus

Gf(x, ω) = e−πx
2

·

∫ B

−B
Ff(ξ) · e−π(ξ−ω+ix)2 dξ.

It therefore follows from equation (4) that
∫ B

−B
Ff(ξ) · e−π(ξ−2kτ+ω0+ix0)2 dξ = 0, k ∈ Z,

which implies that Ff is orthogonal to t 7→ e−π(t−2kτ+ω0+ix0)
2

in L2([−B,B]), for
all k ∈ Z. A slight modification of Zalik’s theorem (cf. Theorem 7) does therefore
imply that Ff = 0 and thus f = 0. Hence, it holds that F = 0 and, as |F | = |G|, the
identity theorem of complex analysis can be used to show that G = 0 such that g = 0.
Therefore, f and g do agree up to global phase which is the desired contradiction.

�
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