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Abstract

As interest in deep neural networks (DNNs) for image reconstruction tasks grows,
their reliability has been called into question (Antun et al., 2020; Gottschling et al.,
2020). However, recent work has shown that compared to total variation (TV) mini-
mization, they show similar robustness to adversarial noise in terms of ℓ2-reconstruction
error (Genzel et al., 2022). We consider a different notion of robustness, using the
ℓ
∞-norm, and argue that localized reconstruction artifacts are a more relevant defect
than the ℓ

2-error. We create adversarial perturbations to undersampled MRI mea-
surements which induce severe localized artifacts in the TV-regularized reconstruction.
The same attack method is not as effective against DNN based reconstruction. Finally,
we show that this phenomenon is inherent to reconstruction methods for which exact
recovery can be guaranteed, as with compressed sensing reconstructions with ℓ

1- or
TV-minimization.

1 Introduction

Following the success of deep learning in computer vision, deep neural networks (DNNs)
have now found their way to a wide range of imaging inverse problems [3, 18, 19]. In some
applications, learning the distribution of images from data is the only option. In others,
existing methods based on hand-crafted priors are well established. Magnetic resonance
image (MRI) reconstruction, for which sparsity based methods have been highly successful,
is an example of the latter [16]. However, recent work suggests that image quality can
be improved and computation times shortened significantly by the use of DNNs in MRI
reconstruction [9].

At the same time, it is well known that DNNs trained for image classification admit
so called adversarial examples – images that have been altered in minor but very specific
ways to change the label predicted by the network [4, 21]. In [2], it was discovered that
DNNs used in inverse problems (MRI and CT) exhibit similar behaviour. Namely, the
authors show that perturbing the measurements slightly can lead to undesirable artifacts
in the image reconstructed by the network, and that the same perturbations do not cause
problems for state-of-the-art compressed sensing methods. On the other hand, [12] shows
quantitatively that DNNs can be made robust, to a comparable level with total variation
(TV) minimization, by injecting statistical noise to the measurement data during train-
ing. Here, robustness is measured by the mean relative reconstruction error as a function
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Figure 1: The same image corrupted by two different perturbations of equal ℓ2-norm
(10% of the norm of the original image): Gaussian noise (left) and a potentially meaningful
feature (right). The goal of this work is to find small adversarial perturbations to MRI
measurements, such that artifacts in the spirit of the latter appear in the reconstruction
process.

of relative (adversarial or statistical) noise level, where both are defined by the ℓ2-norm.
Although DNNs and TV-regularized reconstruction behave similarly to adversarial pertur-
bations from this quantitative perspective, the reconstruction artifacts are qualitatively very
different. TV minimization suffers from global degradation of image quality (due to stair-
casing effects), while DNNs tend to introduce new meaningful features to the image. The
latter type of artifacts is arguably worse, but it is only severe at relatively high noise levels
and the introduced features can already be seen embedded in the adversarial noise and are
therefore not created by the network.

In the current work, we focus on the two-dimensional compressed sensing MRI problem
[16] and aim to create adversarial perturbations for TV-regularization that result in more
localized reconstruction artifacts as displayed in Figure 1. To this end, we simply modify
the attack method used in [12] by replacing the loss function with a weighted seminorm,
with a weight vector supported on a targeted location. Several locations are targeted, and
the one on which the largest artifact appears is selected. Our experimental results show
that such localized adversarial perturbations for TV-regularization do exist, and that the
effects on DNNs are milder. The resulting artifacts are often manifested as isolated spikes
in the image, and in the penultimate section we provide a mathematical justification for
the appearance of these artifacts, based on the theory of compressed sensing. Curiously
enough, the same positive compressed sensing results on undersampled MRI guaranteeing
exact recovery of sparse signals have a negative counterpart regarding the appearance of
sparse artifacts. While the analysis we provide is in the context of MRI, the motivations
behind this phenomenon are more general and are mainly due to the fact that the forward
operator in undersampled MRI has a nontrivial kernel (see also [14]), which happens in
many inverse imaging problems.

We note that in regularized reconstruction for imaging applications, the standard bench-
mark for stability is, and always has been, a quantitative one described by a norm estimate
in some chosen (appropriate) norm. At the same time, it is interesting to see the influence
of the adversarial attacks research on DNN based image reconstruction. It seems a valid
argument to point out that suitable attacks can lead to artifacts that are qualitatively rel-
evant: after all, the objects of interest are images. So to us, this also opens the discussion
about benchmarks for classical regularization algorithms. One might argue that also in that
case, qualitative benchmarks (which are of course harder to define) should play a relevant
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role as well.
The paper is structured as follows: In Section 2 we introduce the compressed sensing

MRI model, in Section 3 we formulate our adversarial attack method, in Section 4 we present
the results of our numerical experiments, in Section 5 we give a mathematical explanation
for our observations, and in Section 6 we make concluding remarks.

The code for the experimental part of the paper builds on the code from [12], and is
available on https://gitlab.math.ethz.ch/tandrig/localadvmri.

2 Compressed sensing MRI

The goal of magnetic resonance imaging (MRI) is to recover an object’s density from its
Fourier coefficients. In the fully sampled case, this problem is readily solved by applying
the inverse Fourier transform. However, acquisition times can be reduced significantly by
undersampling along non-Cartesian trajectories in the frequency domain. This leads to an
underdetermined linear system, and it is clear that some additional assumptions need to be
made on the object density in order to get a good reconstruction [16].

Let us model the cross section of an object by an image of resolution n × n for some
n ∈ N. Let F : Cn×n → C

n×n be the two-dimensional discrete Fourier transform, and let
PΩ : Cn×n → C

m be a projection onto a set of m ≥ 1 indices, Ω ⊆ {(i, j) : i, j = 1, . . . , n}.
The forward operator of the subsampled MRI problem is A = PΩ ◦ F , and the measured
values corresponding to an image x ∈ C

n×n are

y = Ax+ ϵ, (1)

where ϵ is zero-mean random noise which we assume is bounded in ℓ2-norm by some constant
η > 0. In order to recover x from the measurement vector, we must search for an image z
with

∥Az − y∥2 ≤ η.

Since m < n2, the equation y = Az does not have a unique solution. The pseudoinverse
A† = F−1 ◦P†

Ω certainly provides a solution, but the resulting image may be of low quality
or exhibit severe aliasing artifacts (depending on Ω), and not at all represent the desired
object’s density (see Figure 2). Instead, we must impose some conditions on z based on our
a priori knowledge of x.

Compressed sensing (CS) refers to the approach of favoring solutions that are sparse
under some given transform Ψ. Under certain conditions, the sparsest solution is also
the one with the smallest ℓ1-norm [11], and hence we are left with the following convex
optimization problem:

min
z∈Cn×n

∥Ψz∥1 subject to ∥Az − y∥2 ≤ η. (2)

Several choices of the transform Ψ can be found in the CS-MRI literature, including the
identity, the wavelet transform, and the image gradient [16]. In this work, we focus on the
last one of these choices. More precisely, we choose Ψ = ∇, where ∇ : Cn×n → C

n×n×C
n×n

is the two-dimensional finite difference operator on C
n×n with periodic boundary conditions.

The quantity ∥∇z∥1 is known as the total variation (TV) of the image z. Minimization of
the total variation promotes sparse gradients, and hence piecewise constant solutions. For
computational efficiency, we solve the unconstrained formulation of (2):

recTV(y; η) = argmin
z∈Cn×n

∥Az − y∥22 + λη ∥∇z∥1 , (3)
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Figure 2: Left: The sampling mask Ω used in the experiments, comprising 40 lines through
the origin. The retained frequencies are shown in black. Middle: An example image x.
Right: A low quality linear reconstruction, using the pseudoinverse of the measurement
matrix A†Ax.

where λη > 0 is a regularization parameter. An appropriate choice of λη ensures that
recTV(y; η) is a solution to (2) [11].

2.1 Deep neural networks as an alternative to CS

Another approach to the MRI problem is to learn the inverse mapping C
m → C

n×n from
fully sampled data, i.e. to replace recTV by a neural network. Several different strategies
appear in the literature. Fully learned networks learn the entire inversion without any
knowledge of the forward model at all [24], while others use the linear operator A† : Cm →
C

n×n as a first layer so that only the post-processing step C
n×n → C

n×n is learned [22].
The forward model can also be incorporated at several stages in the network, as in networks
that are based on unrolled iterative optimization algorithms [23].

For our experiments, we use the networks Tira and TiraFL from [12], which are based on
the fully convolutional Tiramisu architecture [15]. The difference between the two networks
lies in that TiraFL is a fully learned network C

m → C
n×n, while Tira applies the pseudoin-

verse A† to the measurements first. Both networks are trained using the mean squared error
as a loss function, and Gaussian noise is added to the input as a means of regularization.

3 Adversarial perturbations

The study of adversarial examples originates in image classification. In that context, given
an image and a classifier, an adversarial perturbation is one that is imperceptible when
added to the image but changes the output of the classifier. The perturbed image is called
an adversarial example. The imperceptibility of the perturbation is difficult to define, so
this requirement is commonly replaced by a bound on the norm of the perturbation. A
popular choice is the ℓ∞-norm [13, 17], since if each pixel in the image is changed only
by a small value, then one can be sure that the semantic meaning of the image stays the
same. In contrast, the meaning of an image may be changed (say a handwritten 1 to a 7)
by introducing a localized perturbation with a small ℓ2-norm. It should be noted that there
exist other adversarial image transformations that are not small in the ℓ∞-norm, such as
rotations, translations, or smooth deformations [1].

Two difficulties arise when adapting the notion of adversarial examples to MRI. Firstly,
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since measurements are in the frequency domain, the imperceptibility of perturbations is not
very meaningful. Secondly, since the output of the reconstruction method is a continuous
variable (as opposed to discrete labels in classification), a notion of severity is needed to
quantify the effect of an adversarial perturbation.

It is natural to tackle the first problem by referring to the noise model, i.e. a perturbation
is “imperceptible” if it is small in ℓ2-norm, as is done in both [2] and [12]. For the second
problem, [2] inspects the visual quality of the reconstructed images, while [12] uses the ℓ2-
error for quantitative analysis of stability to perturbations. Thus, for given measurements
y and noise level η, [12] defines an adversarial perturbation e by

e = argmax
e∈Cm

∥recTV(y + e; η)− recTV(y; η)∥2 such that ∥e∥2 ≤ η (4)

(and in fact, [2] solves a similar unconstrained optimization problem). We refer to

ρ = recTV(y + e; η)− recTV(y; η) (5)

as the reconstruction artifact induced by the perturbation e.
In this work, we argue that the reconstruction ℓ2-error does not sufficiently capture the

most harmful reconstruction artifacts. In the medical setting, a misdiagnosis might be based
on a localized anomaly in the image rather than an overall poor quality of reconstruction
(see Figure 1). Thus we aim to create perturbations that cause localized reconstruction
artifacts. We replace the Euclidean norm in the objective with a weighted seminorm:

e = argmax
e∈Cm

∥ϕ⊙ (recTV(y + e; η)− recTV(y; η))∥2 such that ∥e∥2 ≤ η, (6)

where ⊙ denotes entrywise product and ϕ ∈ C
n×n is a weight vector. To promote localized

artifacts, we select a weight vector that is the (discrete) indicator function of a disk of radius
σ > 0, centered at µ = (µ1, µ2) ∈ [1, n]2. In other words, we let ϕ = ϕµ,σ ∈ C

n×n with

ϕµ,σ
ij =

{

1 if (i− µ1)
2 + (j − µ2)

2 ≤ σ2,

0 otherwise,

for i, j = 1, . . . , n.
Although we target a specific location µ in the image, we are interested in any large

artifacts that may appear in reconstruction. Therefore, we judge the severity of the recon-
struction artifact ρ by its ℓ∞-norm. We solve (6) for all locations µ on a regular grid in
[1, n]2, and select the perturbation eµ that maximizes

∥recTV(y + eµ; η)− recTV(y; η)∥∞
as our adversarial perturbation. The radius, σ, is fixed at a small value relative to n. Note
that for a large enough radius, (6) is equivalent to (4).

3.1 Visualizing perturbations

While we search for reconstruction artifacts by perturbing the measurement vector y = Ax,
it is important to consider whether the artifact is in some sense already encoded in the per-
turbed measurements y + e, rather than “invented” by the reconstruction method. Indeed,
in some cases shown in [12] (see for example Fig. 7 therein) the same perturbation induces
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Figure 3: Left: The original image. Middle: The perturbed image. A close up of the
selected location, µ, shows that the image perturbation, r = A†e, introduces a spike. Right:
The TV-reconstruction of the perturbed measurements. The spike is greatly amplified. Note
that pixel values from 0 to 1 are shown in grayscale, while values beyond 1 are shown in red
(the colorbar on the right is not linear).

similar artifacts for both TV-regularized reconstruction and DNN-based reconstruction, in-
dicating that these artifacts are present in the perturbation itself and are not created in the
process of reconstruction.

To see if the perturbation e ∈ C
m encodes an artifact in this way, we visualize it by an

image perturbation r ∈ C
n×n such that Ar = e. We select r = A†e, as this perturbation is

orthogonal to kerA, which means that ∥r∥2 = ∥e∥2. Then we can compare the perturbed
image x+ r with the reconstruction recTV(y + e; η) = recTV(A(x+ r); η), both visually and
in terms of the ℓ∞-norm.

4 Results

We demonstrate the strategy described above by creating adversarial perturbations for syn-
thetically generated 256 × 256 images of phantom ellipses (as in [12]) with pixel values
ranging from 0 to 1. To generate the measurement vectors, we apply the MRI forward
operator A = PΩ ◦ F with a sampling mask Ω defined by 25, 40, or 80 lines through the
origin (see Figure 2), which corresponds to 11%, 17%, or 32% of the coefficients. We train
the neural networks, Tira and TiraFL, only on the data sampled on 40 lines. Moreover, all
the figures in this paper are based on measurements using that same mask.

The reconstruction map in (3), recTV, is realized by the alternating direction method of
multipliers (ADMM) [5], and the implementation is taken from [12]. For each noise level η,
the parameter λη is selected by grid search (along with the one free parameter of ADMM),
averaged over 50 samples of the ellipse data.

We create adversarial perturbations for 50 ellipse images according to (6) at relative
noise levels (η/ ∥y∥2) ranging from 0.5% to 10%. For each noise level, and each image, we
search for the best position of localization weight vector, µ, on an 8× 8 grid. The radius of
the localization disk is fixed at σ = 5. Experimentation showed that similar reconstruction
artifacts appear for other values of σ, as long as it is small. For larger σ, the artifacts are
not well localized and resemble those of [12].

Figure 3 shows an example image x, a perturbed image x+ r (where r = A†e is a visual
representation of the perturbation), and the reconstruction from perturbed measurements
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Figure 4: Adversarial attacks at 0.5%, 1%, 4%, and 8% relative noise. Upper row: the orig-
inal image with the image perturbation added. Lower row: TV-regularized reconstruction
of the perturbed measurements. The reconstruction artifact ρ is consistently much larger
than the perturbation r in the ℓ∞-norm.

recTV(y + e; η). The output of the reconstruction method is a vector in C
256×256, which we

visualize by taking the entrywise modulus. We now list some observations based on this
quantitative experiment and visual inspection of examples.

TV-regularized reconstruction amplifies artifacts already present in the per-

turbation: We observe that the adversarial perturbations indeed induce localized recon-
struction artifacts in the form of a spike. A spike is also noticeably present in the image
perturbation, r, itself. The image perturbation is therefore not imperceptible in the ℓ∞-
sense, except at very low noise levels. However, in ℓ∞-norm, the reconstruction artifact ρ
from (5) is much larger than the perturbation. We consider the amplification factor

α = ∥ρ∥∞ / ∥r∥∞
to quantify this effect. In Figure 4, we observe a large α at different noise levels, but visually,
this phenomenon is especially conspicuous at higher noise levels.

The amplification factor is roughly equal to the subsampling factor: Table 1
shows the average amplification factor of the 50 ellipse samples for each noise level. Although
the amplification factor varies more at low noise levels, for TV-regularization its average does
not seem to depend on the noise level. There is however a clear dependence on the number
of coefficients in the measurements. In fact, for reasons that will become clear in the next
section, the average amplification factor is approximately the subsampling factor n2/m,
which for the 25, 40, and 80 line sampling masks is approximately 9.4, 6.0, and 3.1.

The amplification factor is smaller for DNNs: Applying the attack strategy (6)
to the neural networks Tira and TiraFL does produce reconstruction artifacts. However, at
> 1% noise, the attack is far less effective than for recTV. Figure 5 shows a typical artifact
created by Tira, which has a much lower ℓ∞-norm than those created by recTV.

Perturbations made for DNNs transfer to recTV, but not vice versa: In Fig-
ure 6, we see that a perturbation created for a DNN can transfer to all three reconstruction
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η/ ∥y∥2 recTV (25 lines) recTV (40 lines) recTV (80 lines) Tira TiraFL
0.5% 8.12± 2.83 6.23± 2.16 3.15± 0.15 7.29± 5.00 7.36± 3.83
1.0% 9.05± 2.56 5.64± 2.24 3.55± 0.26 5.91± 4.76 5.67± 4.40
2.0% 9.05± 2.40 5.88± 0.40 3.22± 0.19 3.20± 1.53 3.59± 2.61
4.0% 9.06± 0.43 6.88± 0.56 3.19± 0.10 2.38± 0.81 2.34± 0.69
8.0% 9.75± 0.52 5.91± 0.28 3.07± 0.07 1.89± 0.44 1.96± 0.58
10.0% 8.80± 0.71 5.65± 0.42 2.99± 0.11 1.80± 0.48 1.77± 0.60

Table 1: The amplification factor α = ∥ρ∥∞ / ∥r∥∞ across different relative noise levels,
averaged over 50 samples from the ellipse data set. For recTV, we reconstruct from mea-
surements based on 25, 40, and 80 sampling lines in the frequency domain. The DNNs are
tested on the 40 lines sampling mask only.

Figure 5: Analogous to Figure 3, with the reconstruction method recTV replaced by the
DNN Tira. Here, the amplification factor is α = 2.13.

methods, with recTV showing the most severe artifact. On the other hand, using the DNNs
to reconstruct from y + e, where e is a perturbation created for TV-regularized reconstruc-
tion, produces images of good quality and no visible artifacts (Figure 7). In fact, the peak
of the image perturbation r is dampened by the DNN reconstruction.

5 Explaining localized artifacts

Many results exist that guarantee exact recovery of sparse vectors from partial Fourier
measurements (1), depending on properties of the underlying signal, the sampling mask Ω,
and the reconstruction method. The reconstruction artifacts seen in Figures 3 and 4 consist
mainly of a single pixel spike. We now show how such exactness guarantees can imply the
existence of low ℓ∞-norm perturbations which give rise to precisely that type of artifacts.

For simplicity, we consider the noiseless one-dimensional setting. Let n ≥ 2 be an even
integer and let Fn : C

n → C
n denote the one-dimensional discrete Fourier transform,

Fn(z) =





1√
n

n−1
∑

j=0

zje
−2πikj/n





n/2

k=−n/2+1

.

Let Ωn ⊆ {−n/2 + 1, . . . , n/2} be a set of indices, and define the operator An = PΩn
◦ Fn,

where PΩn
is the projection onto the index set Ωn. Consider a signal xn ∈ C

n. We
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Figure 6: An adversarial perturbation is created with respect to Tira, and then recTV,
Tira, and TiraFL are used to reconstruct from the perturbed measurements. All methods
show similar reconstruction artifacts.

Figure 7: Analogous to Figure 6, with the perturbation constructed with respect to recTV.
The reconstruction artifact in the second image does not appear in the second and third
images, and hence the perturbation is not transferable.

wish to perturb the measurement vector yn = An(xn) such that a spike appears in the
reconstruction. Without loss of generality, let δn = (1, 0, . . . , 0) ∈ C

n be our desired single
spike artifact, and simply define the perturbation

en = An(δn) =
(

1/
√
n
)

k∈Ωn

(which, incidentally, is an ℓ∞-minimal perturbation given an ℓ2-budget). The corresponding
“image perturbation” is

rn = A†
n(en) =

(

1

n

∑

k∈Ωn

e2πikj/n

)n−1

j=0

.

If we can guarantee the exact recovery of xn from Anxn and of xn+δn from its measurements
(see Theorems 5.1 and 5.2 below),

An(xn + δn) = yn + en = An(xn + rn),

then a reconstruction artifact is created with an amplification factor αn = ∥δn∥∞ / ∥rn∥∞ =
1/ ∥rn∥∞. The ℓ∞-norm of rn can easily be bounded from above:

∥rn∥∞ = max
j=0,...,n−1

∣

∣

∣

∣

∣

1

n

∑

k∈Ωn

e2πikj/n

∣

∣

∣

∣

∣

≤ max
j=0,...,n−1

1

n

∑

k∈Ωn

∣

∣

∣e2πikj/n
∣

∣

∣ =
mn

n
,

9



where mn = |Ωn|, so that

αn ≥ n

mn
.

In other words, the amplification factor is at least as big as the subsampling factor, which
is in accordance with Table 1. If the size of the sampling mask Ωn grows slowly with
the dimension n, then the amplification factor αn can be made arbitrarily large simply by
increasing the resolution. In fact, since

∥rn∥2 = ∥en∥2 =
√

mn/n, ∥δn∥2 = 1,

the same is true for amplification in the ℓ2-norm, although the growth is at a slower rate.
For demonstration purposes, we now cite a known recovery guarantee for ℓ1-minimization,

which can then be translated to results on TV-minimization by a simple argument. The
number of measurements required depends on the sparsity of the signal, which we shall
assume does not vary with the dimension. This is true if xn is a finite spike train, and
thus suitable for ℓ1-minimization. We employ TV-minimization if xn is a piecewise constant
function, in which case the sparsity of ∇xn is constant with respect to n. Moreover, if xn

is s-sparse, then xn + δn is (s + 1)-sparse. Similarly, if ∇xn is s-sparse, then ∇(xn + δn)
is (s+ 2)-sparse (where ∇ is understood as the periodic finite difference operator). Hence,
exactness results hold for xn + δn as well as xn.

Theorem 5.1 ([7, Theorem 1.1] as stated in [11, Theorem 12.20]). Let x ∈ C
n be s-

sparse, ε > 0, and suppose that the indices of Ωn are chosen uniformly at random from
{−n/2 + 1, . . . , n/2}. Then, there exists a constant C > 0 such that if

mn ≥ Cs log(n) log(ε−1),

then x is the unique solution to

min
z∈Cn

∥z∥1 subject to Anz = Anx,

with probability at least 1− ε.

Keeping ε at a small but constant value, and using the minimal number of measurements
means that mn ≲ log n. Applying Theorem 5.1 to x = xn+ δn, we see that ℓ

1-minimization
combined with this uniformly random sampling scheme leads to amplification of

αn ≳
n

log n
−−−−→
n→∞

∞,

with high probability. In the same way, the corresponding TV-minimization result implies
that TV-minimization for gradient sparse signals also leads to amplification of αn ≳ n/ log n.

Theorem 5.2. Let x ∈ C
n be such that ∇x is s-sparse, ε > 0, and suppose that Ωn =

{0}∪Ω′ where Ω′ contains mn indices chosen uniformly at random from {−n/2+1, . . . , n/2}.
Then, there exists a constant C > 0 such that if

mn ≥ Cs log(n) log(ε−1),

then x is the unique solution to

min
z∈Cn

∥∇z∥1 subject to Anz = Anx,

with probability at least 1− ε.
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Proof. (The following argument can be used to translate results on recovery from Fourier
measurements by ℓ1-minimization to TV-minimization, and appears, for example, in [8].)
First, note that for any z ∈ C

n, and k = −n/2 + 1, . . . , n/2, we have

(Fn (∇z))k =
1√
n

n−1
∑

j=0

(

zj − z(j−1) mod n

)

e−2πikj/n

=
1√
n

n−1
∑

j=0

(zj) e
−2πikj/n − 1√

n

n−1
∑

j=0

(zj) e
−2πik(j+1)/n

=
(

1− e−2πik/n
)

(Fnz)k ,

and therefore

Anz = Anx ⇐⇒ An (∇z) = An (∇x) and 1 · z = 1 · x

(where 1 = (1, . . . , 1) and the condition 1 ·z = 1 ·x comes from the assumption that 0 ∈ Ωn).
By successively loosening the constraints, we see that

min
z∈Cn

∥∇z∥1 subject to Anz = Anx

= min
z∈Cn

∥∇z∥1 subject to An (∇z) = An (∇x) and 1 · z = 1 · x

≥ min
z∈Cn

∥∇z∥1 subject to An (∇z) = An (∇x)

≥ min
z∈Cn

∥z∥1 subject to Anz = An (∇x) .

By Theorem 5.1, ∇x is the unique solution to the last of these minimization problems, and
therefore x also solves the first one. Uniqueness follows from the fact that the only z which
satisfies both ∇z = ∇x and 1 · z = 1 · x is z = x.

Of course, other sampling schemes exist, and if additional information on the signal is
utilized, this result can be improved upon. For example, if the minimal distance between
two non-zero entries of xn + δn is greater than 2n/c for some positive integer c, then ℓ1-
minimization recovers xn+δn exactly as long as the frequencies {−c, c+1, . . . , c} are included
in the sampling mask Ωn [6]. Likewise, if xn+δn is non-negative and s-sparse, then it suffices
that {−s, s + 1, . . . , s} ⊆ Ωn [10]. In these cases mn is constant, and therefore αn ≳ n.
However, we cannot apply these specialized results to our example with TV-minimization,
since ∇(xn+δn) is neither non-negative nor well separated. It is worth mentioning the main
result of [20] on TV-minimization, which uses a random sampling mask that concentrates
on the lower frequencies with mn ≳ log(n).

The single pixel reconstruction artifact may not be considered a meaningful feature,
and can be disregarded by a practitioner. However, the artifacts seen in the experiments
are more diverse and act as a proof of concept for localized adversarial artifacts for TV-
regularization. Other criteria for artifact severity may lead to different results. The spike
δn is only an idealization of the observed artifacts which maximizes the ℓ∞-norm within a
fixed ℓ2-budget for the perturbation. A similar argument can be made for the existence of
different types of sparse artifacts, but with a lower ℓ∞-amplification factor. For any artifact
ρn ∈ C

n, the corresponding image perturbation can be bounded by the triangle inequality:

∥rn∥∞ =
∥

∥A†
nAn(ρn)

∥

∥

∞
≤ ∥ρn∥1

mn

n
,
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so that an amplification of

αn ≥ ∥ρn∥∞
∥ρn∥1

n

mn

can be attained. Depending on the sparsity properties of ρn, exact recovery of xn + ρn can
be guaranteed by the theorems above. For example if ρn = (1, . . . , 1, 0, . . . , 0) is a discrete
rectangular function, then ∇ρn is 2-sparse and Theorem 5.2 can be applied.

6 Conclusion

In this work, we have studied localized adversarial perturbations in the context of MRI, both
with TV-based and DNN-based reconstruction methods. In the case of TV-regularization,
we have been successful in creating such localized reconstruction artifacts according to our
criterion of large amplification of ℓ∞-norms. Only at low noise levels does the same hold
for the DNNs considered. We analysed the artifacts arising with TV, and showed that
they are inherent to the compressed sensing MRI problem. While exact recovery of sparse
signals from incomplete Fourier data is generally considered a positive result, we offer the
perspective that it also guarantees the existence of adversarial perturbations. Keeping the
ℓ∞-norm of the image perturbation constant, the ℓ∞-norm of the resulting reconstruction
artifact is proportional to the subsampling factor. Thus the effect becomes more pronounced
in high dimensions where proportionally fewer measurements may be used.

The results presented in this paper suggest that the ℓ2-norm of the reconstruction error
may not be a significant measure of the perturbation created, since localized artifacts have
a very small ℓ2 norm but a large ℓ∞ norm, thereby yielding perceptible perturbations. It is
natural to wonder whether it is possible to design a measure of the perturbations that could
be both quantitatively computable and qualitatively meaningful. Furthermore, it would be
interesting to generalize the experimental results of Section 4 and the mathematical insights
of Section 5 to different kinds of artifacts and to more general inverse problems.
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