
Agnostic Physics-Driven Deep Learning

B. Scellier and S. Mishra and Y. Bengio and Y. Ollivier

Research Report No. 2022-26

June 2022

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

__

Funding ERC: 770880 COMANFLO

Agnostic Physics-Driven Deep Learning

Benjamin Scellier
SAM, D-MATH, ETH Zurich

Siddhartha Mishra
SAM, D-MATH and AI Center, ETH Zurich

Yoshua Bengio
Mila, University of Montreal

Yann Ollivier
Facebook A.I. Research, Paris

Abstract

This work establishes that a physical system can perform statistical learning with-
out gradient computations, via an Agnostic Equilibrium Propagation (Æqprop)
procedure that combines energy minimization, homeostatic control, and nudging
towards the correct response. In Æqprop, the specifics of the system do not have to
be known: the procedure is based only on external manipulations, and produces
a stochastic gradient descent without explicit gradient computations. Thanks to
nudging, the system performs a true, order-one gradient step for each training
sample, in contrast with order-zero methods like reinforcement or evolutionary
strategies, which rely on trial and error. This procedure considerably widens the
range of potential hardware for statistical learning to any system with enough con-
trollable parameters, even if the details of the system are poorly known. Æqprop
also establishes that in natural (bio)physical systems, genuine gradient-based sta-
tistical learning may result from generic, relatively simple mechanisms, without
backpropagation and its requirement for analytic knowledge of partial derivatives.

1 Introduction

In the last decade, deep learning has emerged as the leading approach to machine learning [LeCun
et al., 2015]. Deep neural networks have significantly improved the state of the art in pretty much
all domains of artificial intelligence. However, as neural networks get scaled up further, training
and running them on Graphics Processing Units (GPUs) becomes slow and energy intensive. These
inefficiencies can be attributed to the so-called von Neumann bottleneck i.e., the separation of
processing and memory creating a bottleneck for the flow of information. Considerable efficiency
gains would be possible by rethinking hardware for machine learning, taking inspiration from the
brain and other biological/physical systems where processing and memory are two sides of the same
physical unit.

One of the central tools of deep learning is optimization by gradient descent, usually performed by
the backpropagation algorithm. Works such as Wright et al. [2022] establish that various physical
systems can perform machine learning computations efficiently for inference; still, gradient training
is done in silico on a digital model of the system. We believe that building truly efficient hardware for
large-scale gradient-descent-based machine learning also requires rethinking the learning algorithms
to be better integrated within the underlying system’s physical laws.

Equilibrium propagation (Eqprop) is an alternative mathematical framework for gradient-descent-
based machine learning, in which inference and gradient computations are both performed using the
same physical laws [Scellier and Bengio, 2017]. In principle, this offers the possibility to optimize
arbitrary physical systems and loss functions by gradient descent [Scellier, 2021]. Eqprop applies, in
particular, to physical systems whose equilibrium state minimizes an energy function, e.g. nonlinear
resistive networks [Kendall et al., 2020]. Such physical networks may be called ‘energy-based
models’ in the machine learning terminology, but energy minimization in these networks is directly

performed by the laws of physics (not with numerical methods in a computer simulation). In Eqprop,
the gradient of the loss function is computed with two measurements. In a first phase, the system
settles to equilibrium after presenting an input. In a second phase, the energy of the system is slightly
modified so as to nudge the output towards a desired response, and the system settles to a new
equilibrium. The gradient is estimated from these two equilibrium states— see Appendix D for more
details on Eqprop. This approach has already been physically realized, e.g., in Dillavou et al. [2021]
using a small variable resistor electrical network.

However, three challenges remain for training physical systems with Eqprop. First, part of the
analytical form of the energy function of the system must be known explicitly (all partial derivatives
of the energy function with respect to the parameters). Second—and most importantly—once
gradients have been computed, the trainable parameters still need to be physically updated by some
(nontrivial) physical procedure. Many articles propose to store parameters as conductance values of
non-volatile memory (NVM) elements (e.g. memristors [Chua, 1971]), but these NVM elements are
far from ideal and updating them continues to be extremely challenging [Chang et al., 2017]. Third,
the equilibrium state of the first phase of Eqprop needs to be stored somehow, for later use in the
gradient computation.

We introduce Agnostic Eqprop (Æqprop), a novel alternative to Eqprop that overcomes these three
challenges in one stroke. Æqprop exploits the underlying physics of the system not just to perform
the computations at inference, but also to physically adjust the system’s parameters in proportion to
their gradients. To achieve this, in Æqprop, the parameter variables are seen as floating variables that
also minimize the energy of the system, just like the state variables do. We also require that each
parameter variable is coupled to a control knob that can be used to maintain the parameter around its
current value while the system settles.

In Æqprop as in Eqprop, training consists of iterating over two phases for each training sample, with
a modified energy in the second phase:

1. In the first phase (inference), the input variables are set to some value; the output and state
variables are allowed to evolve freely, whereas the control knob variables are set so that the
trainable parameters remain fixed.

2. In the second phase, the inputs and controls are fixed at the values of the first phase, and the
output is slightly pushed (or ‘nudged’) towards the desired value for the input by acting on
the underlying output energy function; the state and parameters are allowed to evolve freely,
and this slightly moves the parameters towards a new value.

After iterating over many examples, the parameters evolve so that the output spontaneously produces
an approximation of the desired value. Indeed, we prove that the parameter change in the second
phase corresponds to one step of gradient descent with respect to the loss function (Theorem 1). We
also show that Æqprop has some better performance guarantees than gradient descent, especially
in the so-called Pessimistic variant of Æqprop: contrary to gradient descent, even with large step
sizes, each step of Æqprop is guaranteed to reduce a tight bound on the loss function, evaluated on
the example used at that step (Theorem 2).

In this process, Æqprop is agnostic to the analytical form of the energy function, and there is no
need to store the first equilibrium state. Although no gradients are computed explicitly, Æqprop is a
first-order method, not a zero-order method like evolutionary strategies: at each step, the parameters
do follow the gradient of the error on the given sample.

2 Æqprop: an Agnostic Physical Procedure for Gradient Descent

We consider a prototypical machine learning problem: minimize an objective function

J(θ) = E(x,y) [C(s(θ, x), y)] (1)

over some parameter θ, where the variable x represents some inputs1, the variable y represents desired
outputs, C is a cost function, and s is some quantity computed by the system from θ and x, that
encodes a prediction with respect to y. The expectation represents the distribution of values we want
to predict.

1All quantities in this text are vectors, not scalars, unless otherwise specified.

2

In machine learning, the workhorse for this problem is stochastic gradient descent (SGD) [Bottou,
2010],

θt = θt−1 − ηt ∂θC(s(θt−1, xt), yt) (2)

with step size (learning rate) ηt, where at each step, an example (xt, yt) is chosen at random from a
training set of examples. (With batching, each xt and yt may represent a set of several inputs and
desired outputs.)

Here, following Scellier and Bengio [2017], we assume that the function s(θ, x) is obtained by a
physical process that minimizes some energy function E,

s(θ, x) = argmin
s

E(θ, x, s). (3)

Namely, we use physical equilibration of the system as the computing process. Many physical
systems evolve by minimizing some quantity [Millar, 1951, Cherry, 1951, Wyatt and Standley, 1989,
Kendall et al., 2020, Stern et al., 2021] , so we take this equilibration as the basic computational step.
2 Below, we will also assume that the parameter θ itself is a part of this system and follows the energy
minimization to change during equilibration.

Æqprop is a physical procedure that allows an operator (running the computing system) to simulate
stochastic gradient descent (2) by pure physical manipulations, without explicitly knowing the energy
function E or other details of the system.

We assume that this operator has the following abilities:

• The ability to clamp (set) part of the state, the “input knobs”, to any desired value x, then let
the system reach equilibrium, and read the system’s response on some part of the state s, the
“output unit”.

• The ability to nudge the system towards any desired output y, by adding βC(s, y) to the
energy of the system, where β > 0 is a small constant. This requires knowledge of the cost
function: for instance, adding a small quadratic coupling between the output unit and the
desired output y to minimize the squared prediction error.

• The ability to control the parameters θ via control knobs u, thanks to a strong (but not

infinite) coupling energy, e.g. ∥u− θ∥2 /2ε with small ε. Requiring one control knob per
parameter, the operator needs to adjust u in real time while the system evolves so that θ
remains at a constant value (homeostatic control of θ by u). The operator also requires the
ability to clamp u to its current value.

So at each instant, we set input knobs x, control knobs u, and possibly (if β > 0) a desired output
y, and assume that the system reaches an equilibrium (θ⋆, s⋆) = argmin(θ,s) E(u, θ, s, x, y, ε, β),
where

E(u, θ, s, x, y, ε, β) := ∥u− θ∥2 /2ε+ E(θ, x, s) + β C(s, y) (4)

is the global energy function of the system. In the default formulation of Æqprop (the so-called
Optimistic variant), we will set β to two values only: 0 and a small positive value.

The energy function E(θ, x, s) need not be known explicitly, but must be complex enough that we
can make the system reach any desired behavior by adjusting the parameter θ.

The Æqprop procedure. Under these assumptions, the following procedure simulates gradient
descent in the physical system.

1. Observe the current value θt−1 of the parameter.

2. Present the next input example xt to the system, without nudging (β = 0). Let the system
reach equilibrium, while at the same time, adjusting the control knobs u so that the parameter
θ remains at θt−1.

3. Clamp the control knobs to their current value ut. Turn on the nudging to the desired output
yt by adding βC(s, yt) to the energy function of the system, where β > 0.

2The function E does not have to be the physical energy of the system: it may be any function effectively
minimized by the system’s spontaneous evolution. For instance, in a thermodynamical system, E may be the
free energy.

3

4. Let the system reach a new equilibrium for s and θ given ut, xt, yt and β. Read the new
value θt of the parameter.

In formulae, this means that we first set a control value ut such that the equilibrium value θt−1 does
not change when we introduce the new input xt:

set ut such that θt−1 = argmin
θ

min
s
E(ut, θ, s, xt, yt, ε, 0) (5)

and then obtain the next parameter by adding some nudging β and letting the system reach equilibrium,

θt = argmin
θ

min
s
E(ut, θ, s, xt, yt, ε, β). (6)

The above loop is repeated over all pairs (xt, yt) in the training set. After training, the system can be
used for inference, without nudging. Hence, only step 2 is used: set the input knobs to some input x
while adjusting the controls u so θ does not change, let the system relax to equilibrium, then read the
output variable. Alternatively, after training, the parameters θ can just be clamped to their final value,
which avoids the need for further homeostatic control via u.

Next, we show the following outcome of the Æqprop procedure.

Theorem 1. Under technical assumptions, for small ε and β we have

θt = θt−1 − εβ ∂θC(s(θt−1, xt), yt) +O(ε2β + εβ2). (7)

Namely, the Æqprop procedure performs a step of stochastic gradient descent for the input-output pair
(xt, yt), with step size εβ. Note that neither the energy function, nor its gradients, nor the gradients
of the cost function have been used.

A proof of Theorem 1 is provided in Appendix B. Appendix A also describes extensions to situations
where only one of ε or β is small, to situations where the coupling between u and θ is not of the

form ∥u− θ∥2 /2 (resulting in a Riemannian SGD ; for instance, using a per-component coupling∑
k(uk − θk)

2/2εk results in per-component step sizes εk β), and gives more details on the O(ε2β +
εβ2) term.

Remark. It is well-known that gradient descent can be approximately written as minimizing a cost
function penalized by the distance to the previous value,

argmin
θ
{C(s(θ, x), y) + ∥θ − θt−1∥2 /2ε} ≈ θt−1 − ε ∂θC(s(θt−1, x), y). (8)

So it might seem that we just have to set u = θt−1 and add the energy function C(s, y). However, as
soon as we add C(s, y) to the energy, we change the equilibrium value for s, so that s ̸= s(θt−1, x)
anymore. Likewise, presenting the input xt with a fixed u will change θ. This is why we have to use
a more complicated procedure in Æqprop.

We now turn to an important aspect of Æqprop’s behavior when ε and β are not infinitesimal: the
existence of a Lyapunov function.

3 Monotonous Improvement: A Lyapunov Function for Æqprop

Let us rewrite the objective function (1) in the form:

J(θ) = E(x,y) [L(θ, x, y)] , where L(θ, x, y) := C(s(θ, x), y). (9)

We call L the “loss function”, to distinguish it from the objective function (J) and the cost function
(C).

Theorem 1 holds in the regime of infinitesimal step sizes β and ϵ, but what if β and/or ε are non-
infinitesimal? It is in this context of non-infinitesimal β, ε that Æqprop has some better theoretical
properties than stochastic gradient descent (SGD). In SGD with predefined step size, there is no
guarantee that the gradient step will improve the output, unless some a priori information is available
such as bounds on the Hessian of the loss function.

On the other hand, in Æqprop, there exists a Lyapunov function for each step of the procedure, even
when ε and β are nonzero. More precisely, there exists a function Lβ(θ, x, y) such that

4

• Lβ(θ, x, y)→ L(θ, x, y) when β → 0, namely, Lβ is close to the true loss when β is small;

• Lβ(θt, xt, yt) ≤ Lβ(θt−1, xt, yt) for any choice of ε and β.

The above property is essential for numerical stability: even though Lβ is not exactly L for β ̸= 0, it
means that the process is still minimizing a function close to L, therefore it cannot diverge severely.
We point out that the Lyapunov function depends on the current example (xt, yt). Hence, performance
improves on the current example only. For comparison, standard SGD does not satisfy even this
property.

The Lyapunov property may be most interesting in the regime of large batch sizes, where each xt

actually encodes a large number of training samples. In this regime, if each batch is sufficiently
representative of the whole training set, then the Lyapunov function depends much less on the batch,
and it serves as a proxy for the objective function J(θ). Denoting Jβ(θ) := E(x,y) [Lβ(θ, x, y)], this

leads to monotonous improvement along the learning procedure: Jβ(θ0) ≥ Jβ(θ1) ≥ . . . ≥ Jβ(θt).

We now define the Lyapunov function Lβ , which is closely related to the loss function L.

Theorem 2. For each β > 0, let sβ(θ, x, y) be the state of the system with nudging β, i.e.

sβ(θ, x, y) = argmin
s
{E(θ, x, s) + βC(s, y)} . (10)

Define the Lyapunov function

Lβ(θ, x, y) :=
1

β

∫ β

β′=0

C(sβ′(θ, x, y), y) dβ′ (11)

and note that Lβ(θ, x, y)→ L(θ, x, y) when β → 0.

Then for any β > 0, along the Æqprop trajectory (θt) given by (5)–(6), we have

Lβ(θt, xt, yt) ≤ Lβ(θt−1, xt, yt). (12)

We prove Theorem 2 in Appendix B. We emphasize that Theorem 2 holds for any value of β > 0,
even far from the regime β → 0, and regardless of ε.

4 Optimistic Æqprop, Pessimistic Æqprop, and Centered Æqprop

The Lyapunov function expression (11) shows that Æqprop is slightly too optimistic at first order in
β as Æqprop minimizes the underlying error assuming that there will be some nudging β′ > 0 at test
time. This Lyapunov function also appears as the gradient actually computed by Æqprop when β is
fixed instead of β → 0: Æqprop really has Lβ as its loss function (Appendix A, Theorem 3).

It is possible to partially compensate or even reverse this effect. This leads to centered Æqprop and
pessimistic Æqprop:

• In unmodified (optimistic) Æqprop, we use β = 0 in the first step (5) and positive β in the
second step (6).

• Pessimistic Æqprop uses −β instead of 0 in the step (5), and 0 instead of β in the step (6).
This amounts to assuming that there will be some nudging against the correct answer at test
time.

• Centered Æqprop uses −β/2 in step (5) and β/2 in step (6). With this, the resulting
Lyapunov function is O(β2)-close to the loss function L, instead of O(β).

These variants enjoy similar theorems (Appendix A), and are tested below (Section 5). In particular,
the Lyapunov function L−β for Pessimistic Æqprop involves an integral of β′ from −β to 0 instead
of 0 to β in (11): namely, it optimizes under an assumption of negative (adversarial) nudging at test
time. Likewise, Centered Æqprop assumes a mixture of positive and negative nudging at test time.
Speculatively, this might improve robustness.

The Lyapunov functions for optimistic and pessimistic Æqprop bound the loss function for each
sample (Appendix, Theorem 3):

Lβ(θ, x, y) ≤ L(θ, x, y) ≤ L−β(θ, x, y). (13)

5

In particular, Pessimistic Æqprop actually optimizes an upper bound of the true loss function L for
each sample.

Numerically, negative values of the nudging parameter β require more care because a negative term
− |β|C(s, y) will be introduced to the energy: if C is unbounded (such as a quadratic cost), the
equilibrium might be when s → ∞ with the energy tending to −∞. This can be corrected by
ensuring the main energy E(θ, x, s) is sufficiently large for large s, for instance, for a quadratic cost,

by ensuring the energy E has an ∥s∥2-like term. 3

5 A Numerical Illustration

Computationally, there is little interest in a numerical simulation of Æqprop: this amounts to using a
computer to simulate a physical system that is supposed to emulate a computer, which is inefficient.
This is all the more true as the fundamental step of Æqprop is energy minimization, which we will
simulate by gradient descent on the energy, while stochastic gradient descent was the operation we
wanted to simulate in the first place.

Still, such a simulation is a sanity check of Æqprop. We can compare Æqprop with direct stochastic
gradient descent, and observe the influence of the second-order terms (testing the influence of finite
β > 0 instead of β → 0). This also demonstrates that the energy minimization and the homeostatic
control of θ can be realized in a simple way, and that imperfect energy minimization does not
necessarily lead to unstable behavior.

We present two series of experiments: a simple linear regression example (Section 5.2, and dense and
convolutional Hopfield-like networks on the real datasets MNIST and FashionMNIST (Section 5.3).

We start with a discussion of one possible, generic way to simulate the energy minimization and
homeostatic control numerically (Section 5.1): an energy relaxation by gradient descent, and a
proportional controller on u. This is the implementation used for the linear regression example.

However, with Hopfield networks on real datasets, such an explicit physical simulation of energy
minimization and homeostatis was slow. We had to use algebraic knowledge to speed up the
simulations: for energy minimization, we iteratively minimized each layer given the others (a
1D quadratic minimization problem for each variable), and the control u was directly set to the
algebraically computed correct value.

5.1 Simulating Convergence to Equilibrium and Homeostatic Control

In the free (non-nudged, β = 0) phase of Æqprop, we have to fix the inputs to xt and let the system
(s, θ) relax to equilibrium, while at the same time adjusting u to ensure that the equilibrium value of
θ is equal to the previous value θt−1. Numerically, we realize this by iterating a gradient descent step
on the energy (4) of (s, θ). In parallel, we implement a simple proportional controller on u, which
increases u when θ is too small:

s← s− ηs∇sE(u, θ, s, x, y, 0) = s− ηs∇sE(θ, x, s) (14)

θ ← θ − ηθ∇θE(u, θ, s, x, y, 0) = θ + ηθ
u− θ

ε
− ηθ∇θE(θ, x, s) (15)

u← u+ ηu(θt−1 − θ) (16)

with respective step sizes ηs, ηθ and ηu. We always use

ηu = ηθ/(4ε) (17)

which corresponds to the critically damped regime 4 for the pair (θ, u) and the coupling energy

U(u, θ) = ∥θ − u∥2 /2ε.

In practice, the step sizes ηs and ηu are adjusted adaptively to guarantee that E decreases: first, a step
(14) is applied, and if E decreases the step is accepted and ηs is increased by 5%; if E increases the

3This is slightly different from parameter regularization in machine learning: regularizing E regularizes
the model and the state s(θ, x), but Æqprop computes the unregularized gradient of the same, unchanged loss
function applied to the regularized model, instead of a regularized gradient of the original model.

4Namely, the linearized system on (θ, u) (without s) around its equilibrium value θ = u = θt−1 has all
eigenvalues equal to −1/2ε, which provides quickest convergence without oscillations.

6

Figure 1: A ground truth function f sampled from the model (19).

step is cancelled and ηs is decreased by 50%; if E is unchanged we either multiply or divied ηs by
1.05 with probability 1/2. Then, the same is applied for the step (15) on θ. Finally, if the step on
θ was accepted then we perform a step (16) on u, with step size ηu = ηθ/(4ε). Then we loop over
(14)–(15)–(16) again. The step sizes were initialized to ηs = 1 and ηθ = ε.

For the nudged step of Æqprop (β ̸= 0), we apply the same principles, but with u fixed (ηu = 0),
and with E evaluated at β instead of 0: this results in an additional term −ηsβ∇sC(s, y) in (14) for
the update of s.

In our experiments, convergence to equilibrium was simulated by iterating 50 steps of these updates.

For the controller, we could also directly set u to the optimal value u∗ = θt−1 +
ε∇θE(θt−1, x, s(θt−1, xt)), which guarantees an equilibrium at θ = θt−1. However, we do not
consider this a realistic scenario for Æqprop: contrary to s and θ which evolve spontaneously, u must
be set by an external operator, and this operator may not have access to the energy function E or its
gradient. The controller (16) just uses θt−1 and the observed θ.

5.2 A Simple Linear Regression Example

For this experiment we consider linear regression on [−1; 1]. Let f : [−1; 1]→ R be a target function.
Let ϕ1, . . . , ϕk : [−1; 1]→ R be k feature functions. The model to be learned is f(x) ≈∑i θiϕi(x).
In this section the features ϕi are fixed, corresponding to a linear model.

We are going to apply Æqprop with parameter θ = (θi), input x ∈ [−1; 1] and output y = f(x) for
random samples x ∈ [−1; 1]. The state is a single number s ∈ R, and the energy and cost are

E(θ, x, s) =
1

2

(
s−

∑

i

θiϕi(x)

)2

, C(s, y) =
1

2
(s− y)2. (18)

In the free phase (β = 0), the system relaxes to s =
∑

i θiϕi(x).

The features ϕi were taken to be the Fourier features ϕ1(z) = 1, ϕ2i(z) = sin(iπz), ϕ2i+1(z) =
cos(iπz), up to frequency i = 10. The ground truth function f is a random polynomial of degree
d = 10, defined as

f(z) :=

d∑

i=0

wiLi(z) (19)

where Li(z) is the Legendre polynomial of degree i, and where the wi are independent Gaussian
random variables N(0, 1). Thanks to the Legendre polynomials being orthogonal, this model
produces random polynomials f with a nice range; see an example in Fig. 5.2. Since we use Fourier
features while f is a polynomial (and non-periodic), there is no exact solution.

Equilibration was run for 50 steps, as described in Section 5.1. We presented a random sequence of
1, 000 samples (z, f(z)) with uniform random z ∈ [−1; 1].
We tested values ε, β ∈ {0.5, 0.1, 0.01}, thus including relatively large and small values. We tested
Æqprop, Pessimistic Æqprop, and Centered Æqprop. For reference we also compare to ordinary
SGD with learning rate εβ, according to Theorem 1. The results are reported in Fig. 2.

For β = 0.01, the curves are virtually indistinguishable. For β = 0.1 there are some slight
differences: Centered Æqprop is virtually indistinguishable from SGD, in accordance with theory,
while Pessimistic Æqprop seems to have a slightly lower error, and Æqprop a slightly larger one.

7

Figure 2: SGD, Æqprop, Pessimistic Æqprop, and Centered Æqprop on the linear regression problem
for various values of β and ε. Top row: β = 0.5. Middle row: β = 0.1. Bottom row: β = 0.01. Left
column: ε = 0.5. Middle column: ε = 0.1. Right column: ε = 0.01.

Results are more interesting with the more aggressive setting β = .5. Here, once more, Centered
Æqprop stays very close to SGD, but the differences get more pronounced for the other variants. For
small ε, Pessimistic Æqprop has the best performance while Æqprop is worse. However, when ε gets
larger, Pessimistic Æqprop becomes less numerically stable.

The most surprising result is with the most aggressive setting β = .5, ε = .5, corresponding to the
largest learning rate εβ. With this setting, SGD gets unstable (the learning rate is too large), and so do
Pessimistic Æqprop and Centered Æqprop. However, Æqprop optimizes well. So, in this experiment,
Æqprop seems to be more stable than SGD and supports larger learning rates, with settings for β and
ε that clearly do not have to be very small.

The numerical instability of Pessimistic and Centered Æqprop for large β is due to the energy
−βC(s, y): since C can tend to∞, this energy is minimized when C is infinite, with s→∞. This

can be corrected simply by adding ∥s∥2 to the energy function E of the system: then as long as
β < 2 the energy is bounded below and cannot diverge. This changes the prediction model, however,
inducing a preference for smaller values of s.

This is tested in Fig. 3: with β = 1.5, Pessimistic and Centered Æqprop are stable again, and all
variants of Æqprop seem to work even in a regime where SGD itself is unstable (Fig. 3, left and
middle). However, convergence seems to be slower (we used 5, 000 samples instead of 1, 000 in the
figure). Once stabilized, it seems again that Pessimistic Æqprop tends to have smaller error than the
other two variants.

5.3 Hopfield-Like Networks and Real Datasets

Following the simulations of Scellier and Bengio [2017], Ernoult et al. [2019], Laborieux et al. [2021]
with Eqprop, we test Æqprop on dense and convolutional Hopfield-like networks. We train the
networks on MNIST and FashionMNIST.

Dense Hopfield-like network. We consider the setting of classification. In a layered Hopfield
network, the state variable is of the form s = (s1, s2, . . . , sN) where s1, s2, . . . , sN−1 are the ‘hidden

8

Figure 3: SGD, Æqprop, Pessimistic Æqprop, and Centered Æqprop on the linear regression problem

for β = 1.5 and for ε = 0.5 (left) ε = 0.1 (middle), and ε = 0.01 (right), with an added term ∥s∥2 to
the energy function.

layers’ and sN is the ‘output layer’. Denoting s0 = x the inputs, the Hopfield energy function is

E(θ, x, s) =

N∑

k=1

1

2
∥sk∥2 +

N∑

k=1

Edense
k (wk, sk−1, sk)−

N∑

k=1

b⊤k sk, (20)

where
Edense

k (wk, sk−1, sk) := −s⊤k wksk−1 (21)

is the energy of a dense interaction between layers k − 1 and k, parameterized by the dim(sk−1)×
dim(sk) matrix wk. The set of parameters of the model is θ = {wk, bk | 1 ≤ k ≤ N}, where wk

are the weights and bk the biases. We recall that the state of the model at equilibrium given an input
x is s(θ, x) = min

s∈S
E(θ, x, s), where S is the state space, i.e. the space of the state variables s. We

choose S of the form S =
∏N

k=1[pk, qk]
dim(sk), where [pk, qk] is a closed interval of R and dim(sk)

is the number of units in layer k. This choice of S ensures that s(θ, x) is well defined (there exists a
minimum for E in S) and also introduces nonlinearities: for fixed θ, s(θ, x) is a nonlinear response
of x.

Convolutional Hopfield-like interactions. Convolutional layers can be incorporated to the net-
work by replacing some of the dense interactions Edense

k in the energy function by convolutional
interactions:

Econv
k (wk, sk−1, sk) := −sk • P (wk ⋆ sk−1) . (22)

In this expression, wk is the kernel (the weights), ⋆ is the convolution operation, P is the average
pooling operation, and • is the scalar product for pairs of tensors with same dimension.

Cost function. We use the squared error cost function C(s, y) = ∥sN − y∥2, where sN is the
output layer and y is the one-hot code of the label (in the classification tasks studied here).

Energy minimization. For our simulations, we require a numerical method to minimize the global
energy with respect to the ‘floating variables’ (sk, wk and bk). For each variable z ∈ {sk, wk, bk |
1 ≤ k ≤ N}, we note that the global energy E is a quadratic function of z given the state of other
variables fixed. That is, the global energy as a function of z is of the form E(z) = az2 + bz + c,
for some real-valued coefficients a, b and c. The minimum of E(z) in R is obtained at z = −b/2a,
and therefore, the minimum in the interval [pk, qk] is obtained at z = min(max(pk,−b/2a), qk). We
use this property to optimize E with the following strategy: at each step, we pick a variable z and
compute the state of z that minimizes E given the state of other variables fixed. Then we pick another
variable and we repeat. We repeat this procedure until convergence.

Homeostatic control. To accelerate simulations, we use the following method to save computations
in the first phase of training (homeostatic phase): first, we keep θ fixed to its current value and we
calculate the state of the layers (s1, s2, . . . , sN) that minimizes the energy E + βC for fixed θ; then
we calculate the value of the control knob u for which the parameter θ is at equilibrium. Recalling
that E = ||u− θ||2/2ϵ+ E + βC, this value of u can be computed in one step as it is characterized

by ∂E
∂θ = 0, i.e. u = θ + ϵ∂E∂θ , where ∂E

∂θ is the partial derivative of E wrt θ (not the total derivative).

9

For instance, we have ∂E
∂bk

= −sk for the bias bk, and ∂E
∂wk

=
∂Edense

k

∂wk

= −sk−1s
⊤
k for dense weight

wk.

MNIST and FashionMNIST. We train a dense Hopfield-like network and a convolutional Hopfield-
like network on MNIST and FashionMNIST. Both networks have an input layer of size 1× 28× 28
and an output layer with 10 units. In addition, the dense network has one hidden layer of 2048 units,
whereas the convolutional network has two hidden layers of size a 32× 12× 12 and 64× 4× 4 : the
first two interactions (x− s1 and s1 − s2) are convolutional with kernel size 5× 5, zero padding, and
average pooling; the last interaction (s2 − s3) is dense.

Baseline. Since Hopfield networks are defined by energy minimization, it is not possible to apply
backpropagation directly as a baseline. Still, it is possible to compute gradients via the whole
procedure used to find the approximate energy minimizer: unfold the whole graph of computations
during the free phase minimization (with β = 0), and compute the gradient of the final loss with
respect to the parameters. Then, take one step of gradient descent for each parameter θk, with step
size βεk. This is the baseline denoted as autodiff in the table.

However, the autodiff procedure seems to be numerically unstable, for reasons we have not identified.

The results are reported in Table 1, and show that Æqprop successfully manages to learn on these
datasets, even with the relatively large β used (0.5 for dense networks and 0.2 for convolution-like
networks). Centered Æqprop seems to offer the best precision.

Table 1: Simulation results on MNIST and FashionMNIST. We train dense networks and convolutional
Hopfield-like networks. For each experiment, we perform five runs of 200 epochs. For each run we
compute the mean test error rate and the mean train error rate over the last 50 epochs. We then report
the mean and standard deviation over the 5 runs. Implementation details are provided in Appendix C.

Error (%)

Task Network Training Method Test (Train)

MNIST

Dense Hopfield-like

Optimistic Æqprop 2.36± 0.07 (0.10)
Pessimistic Æqprop 1.38± 0.03 (0.09)
Centered Æqprop 1.29± 0.04 (0.00)

Autodiff 72.37± 35.35 (71.96)

Convolutional Hopfield-like

Optimistic Æqprop 1.12± 0.07 (3.62)
Pessimistic Æqprop 1.11± 0.08 (1.73)
Centered Æqprop 0.76± 0.05 (0.24)

Autodiff 89.63± 0.96 (89.61)

FashionMNIST

Dense Hopfield-like

Optimistic Æqprop 10.53± 0.12 (2.30)
Pessimistic Æqprop 10.73± 0.07 (7.46)
Centered Æqprop 9.28± 0.10 (3.69)

Autodiff 10.18± 0.32 (4.25)

Convolutional Hopfield-like

Optimistic Æqprop 10.69± 0.17 (15.11)
Pessimistic Æqprop 11.16± 0.20 (9.89)
Centered Æqprop 9.17± 0.19 (7.00)

Autodiff 29.55± 30.47 (28.27)

6 Related Work

There is a considerable amount of literature on the design of fast and energy-efficient learning systems.
While some aim to improve the digital hardware for running and training existing deep learning
algorithms, others focus on designing novel algorithms for neural network training and inference on
new energy-efficient hardware. We can differentiate this literature according to the presence or not of
an explicit model of the physical computation performed.

10

Explicit approaches. A first approach is to improve the hardware for running neural networks
and training them via backpropagation. For instance, Courbariaux et al. [2015] explore the use
of specialized digital processors for low-precision tensor multiplications, whereas Ambrogio et al.
[2018], Xia and Yang [2019] investigate the use of crossbar arrays to perform matrix-vector multi-
plications in analog. However, given the mismatches in analog devices, the latter approach requires
mixed digital/analog hardware. These approaches can be classified as explicit, as the state of the
underlying system can be expressed as s = f(θ, x) where f = fN ◦ . . . ◦ f2 ◦ f1 is the composition
of (elementary) functions defined by analytical formulae.

Physics-aware training [Wright et al., 2022] is a hybrid physical-digital approach in which inference
is carried out on an energy-efficient physical device, but parameter training is done using gradients
computed from an explicit digital model of the physical device. This is demonstrated on machine
learning tasks using various examples of physical realizations (optical, mechanical, electronic).

Spiking neural networks (SNNs) are networks of individual units that communicate through low-
energy electrical pulses, mimicking the spikes of biological neurons [Zenke et al., 2021]. Most SNN
models are explicit, and are confronted to the problem of ‘differentiation through spikes’, which
arises when using the chain rule of differentiation to compute the gradients of the loss. However, the
implicit Eqprop framework has also been used to train SNNs [Mesnard et al., 2016, O’Connor et al.,
2019, Martin et al., 2021].

Implicit approaches. In contrast, implicit approaches aim to harness the underlying physical laws
of the device for training and inference. These laws are seldom in the form of explicit analytical
formulae; rather, they are often characterized by the minimization of an energy function. For instance,
the equilibrium state of an electrical circuit composed of nonlinear resistors (such as diodes) is given
by the minimization of the so-called co-content [Millar, 1951], a nonlinear analogue of electrical
power.

Equilibrium propagation (Eqprop) was designed to train neural networks in this setting [Scellier
and Bengio, 2017]. First formulated in the context of Hopfield networks, Eqprop has then been
deployed in the context of nonlinear resistive networks and other physical systems [Kendall et al.,
2020, Scellier, 2021]. The feasibility of Eqprop training has been further demonstrated empirically
on a small resistive circuit [Dillavou et al., 2021]. A ‘centered’ version of Eqprop was also proposed
and tested numerically [Laborieux et al., 2021].

Stern et al. [2021] propose a variant of Eqprop called coupled learning. In the second phase, rather
than nudging the output unit by adding an energy term βC to the system, the output unit is clamped to
βy+ (1− β)y0, where y0 is the output unit’s equilibrium state without nudging (i.e. the ‘prediction’)
and y is the desired output.

Yet, as mentioned in Section 1 (see also Appendix D for more details), Eqprop as well as the variant
of Stern et al. [2021] require explicit knowledge of the underlying energy function, storage of the
equilibrium state of the first phase, and additional mechanisms for updating the parameters. Æqprop
overcomes all these three limiting factors.

The second of these three issues is considered in another variant of Eqprop, Continual Eqprop (CEP)
[Ernoult et al., 2020]: the parameters are updated continually in the second phase of training to avoid
storing the first equilibrium state. However, the dynamics of the parameters in CEP is chosen ad
hoc: no physical mechanism is proposed to account for the specific dynamics of the parameters.
Anisetti et al. [2022] propose a different solution to the problem of storing the first equilibrium state
in Eqprop: in the second phase, another physical quantity (e.g. the concentration of a chemical) is
used to play the role of error signals.

7 Discussion, Limitations, and Conclusion

In this paper, we have proposed Agnostic equilibrium propagation (Æqprop), a novel algorithm
by which physical systems can perform stochastic gradient descent without explicitly computing
gradients. Æqprop leverages energy minimization, homeostatic control and nudging towards the
desired output to obtain an accurate estimate of the result of a gradient descent step (Theorem 1).
Although it builds upon equilibrium propagation (Eqprop) [Scellier and Bengio, 2017], Æqprop
distinguishes itself from Eqprop in the following ways; i) it does not require any explicit knowlegde

11

of the analytical form of the underlying energy function, ii) the equilibrium state at the end of the
first phase is not needed to be stored and iii) the parameter update at the end of a gradient step is
performed automatically in Æqprop and no additional mechanism needs to be introduced to perform
this update. Thus, Æqprop mitigates major limitations of Eqprop (and its variants) and, in principle,
significantly increases the range of hardware on which statistical learning can be performed.

In addition to showing that Æqprop estimates gradient descent steps accurately, we have also derived a
Lyapunov function for Æqprop and proved that this Lyapunov function improves monotonically along
the Æqprop trajectory, suggesting enhanced robustness of this algorithm with non-infinitesimal step
sizes, compared to standard SGD. Moreover, we consider different variants of Æqprop (optimistic,
pessimistic and centered), each with desirable properties. In particular, the pessimistic version of
Æqprop optimizes an upper bound of the true loss function whereas the centered version provides
a better (second-order) approximation of the loss. We also illustrated Æqprop (and its variants)
numerically with a simple linear regression example as well as with Hopfield-like networks on the
MNIST and FashionMNIST datasets, showing that Æqprop successfully implements gradient descent
learning in practice.

At this stage, it is germane to examine the main assumptions on which Æqprop rests. Clearly, a large
number of physical systems are based on energy minimization and can be used in the context of
Æqprop, as they have already been for Eqprop. Nudging towards a desired output is a key design
principle of Æqprop as well as Eqprop. Such nudging has been realized on model physical systems
such as in Dillavou et al. [2021] and references therein, and such devices can, in principle, be used in
the context of Æqprop as well. Next, our technical assumptions require the existence and smoothness
of local minimizers of the energy function. Uniqueness of the minimizer is not required, but then, the
system should remain around one of its possible modes for the duration of training; training will be
perturbed if the system jumps to another minimizer.

Homeostatic control of the parameters is a limiting assumption for Æqprop. In this context, we would
like to point that there is quite a bit of flexibility in terms of the form of the coupling energy U . It
need not be quadratic: an arbitrary form of U leads to a Riemannian instead of Eucliean gradient
descent step, still decreasing the Lyapunov error function. Similarly, the coupling parameter ε need
not be infinitesimal: relatively large values of ε (weak coupling) are allowed. In the end, it is hard
to imagine a way to train parameters without some means of monitoring and controlling them. In
Æqprop this control only takes the form of being able to maintain stasis of the current parameters by
adjusting some control knobs. Æqprop offers one way to build gradient descent from such a generic
control mechanism.

Finally, the existence of Æqprop has a more general interest, in showing that generic, physically
plausible ingredients such as homeostatic control and output nudging are enough, in principle, for
natural (bio)physical systems to exhibit genuine gradient descent learning.

Acknowledgments and Disclosure of Funding

The authors would like to thank Léon Bottou for insightful comments on the method and assumptions.
The research of BS and SM was partly performed under a project that has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 770880). YB was funded by Samsung for this work.

References

S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Di Nolfo, S. Sidler, M. Giordano,
M. Bodini, N. C. Farinha, et al. Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature, 558(7708):60–67, 2018.

V. R. Anisetti, B. Scellier, and J. Schwarz. Learning by non-interfering feedback chemical signaling
in physical networks. arXiv preprint arXiv:2203.12098, 2022.

L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

C.-C. Chang, P.-C. Chen, T. Chou, I.-T. Wang, B. Hudec, C.-C. Chang, C.-M. Tsai, T.-S. Chang, and
T.-H. Hou. Mitigating asymmetric nonlinear weight update effects in hardware neural network

12

based on analog resistive synapse. IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 8(1):116–124, 2017.

C. Cherry. Cxvii. some general theorems for non-linear systems possessing reactance. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(333):1161–1177, 1951.

L. Chua. Memristor-the missing circuit element. IEEE Transactions on circuit theory, 18(5):507–519,
1971.

M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in neural information processing systems, pages
3123–3131, 2015.

S. Dillavou, M. Stern, A. J. Liu, and D. J. Durian. Demonstration of decentralized, physics-driven
learning. arXiv preprint arXiv:2108.00275, 2021.

M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier. Updates of equilibrium prop match
gradients of backprop through time in an rnn with static input. Advances in neural information
processing systems, 32, 2019.

M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier. Equilibrium propagation with
continual weight updates. arXiv preprint arXiv:2005.04168, 2020.

J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio, and B. Scellier. Training end-to-end analog
neural networks with equilibrium propagation. arXiv preprint arXiv:2006.01981, 2020.

A. Laborieux, M. Ernoult, B. Scellier, Y. Bengio, J. Grollier, and D. Querlioz. Scaling equilibrium
propagation to deep convnets by drastically reducing its gradient estimator bias. Frontiers in
neuroscience, 15:129, 2021.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

E. Martin, M. Ernoult, J. Laydevant, S. Li, D. Querlioz, T. Petrisor, and J. Grollier. Eqspike:
spike-driven equilibrium propagation for neuromorphic implementations. Iscience, 24(3):102222,
2021.

T. Mesnard, W. Gerstner, and J. Brea. Towards deep learning with spiking neurons in energy based
models with contrastive hebbian plasticity. arXiv preprint arXiv:1612.03214, 2016.

W. Millar. Cxvi. some general theorems for non-linear systems possessing resistance. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42(333):1150–1160, 1951.

P. O’Connor, E. Gavves, and M. Welling. Training a spiking neural network with equilibrium
propagation. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
1516–1523. PMLR, 2019.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in pytorch. 2017.

B. Scellier. A deep learning theory for neural networks grounded in physics. PhD thesis, Université
de Montréal, 2021.

B. Scellier and Y. Bengio. Equilibrium propagation: Bridging the gap between energy-based models
and backpropagation. Frontiers in computational neuroscience, 11:24, 2017.

M. Stern, D. Hexner, J. W. Rocks, and A. J. Liu. Supervised learning in physical networks: From
machine learning to learning machines. Physical Review X, 11(2):021045, 2021.

L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T. Schachter, Z. Hu, and P. L. McMahon. Deep
physical neural networks trained with backpropagation. Nature, 601(7894):549–555, 2022.

13

J. L. Wyatt and D. L. Standley. Criteria for robust stability in a class of lateral inhibition networks
coupled through resistive grids. Neural Computation, 1(1):58–67, 1989.

Q. Xia and J. J. Yang. Memristive crossbar arrays for brain-inspired computing. Nature materials, 18
(4):309–323, 2019.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

F. Zenke, S. M. Bohté, C. Clopath, I. M. Comşa, J. Göltz, W. Maass, T. Masquelier, R. Naud,
E. O. Neftci, M. A. Petrovici, et al. Visualizing a joint future of neuroscience and neuromorphic
engineering. Neuron, 109(4):571–575, 2021.

N. Zucchet and J. Sacramento. Beyond backpropagation: implicit gradients for bilevel optimization.
arXiv preprint arXiv:2205.03076, 2022.

N. Zucchet, S. Schug, J. von Oswald, D. Zhao, and J. Sacramento. A contrastive rule for meta-learning.
arXiv preprint arXiv:2104.01677, 2021.

14

A A Generalization of Theorem 1: Æqprop with Large ε or β, Centered and

Pessimistic Æqprop

We now extend Theorems 1 and 2 in the following directions:

• Variants such as Pessimistic Æqprop and Centered Æqprop (Section 4) are covered.

• Only one of ε or β needs to tend to 0.

• The control energy U(u, θ) is not necessarily the quadratic ∥u− θ∥2 /2.

So at each instant, we set input knobs x, control knobs u, and possibly (if β > 0) a desired output
y, and assume that the system reaches an equilibrium (θ⋆, s⋆) = argmin(θ,s) E(u, θ, s, x, y, ε, β),
where

E(u, θ, s, x, y, ε, β) := U(u, θ)/ε+ E(θ, x, s) + βC(s, y) (23)

is the global energy function of the system. (Assumption 6 in Appendix B ensures the argmin is
well-defined.)

Then we follow the Æqprop procedure from Section 2. To cover variants like Pessimistic and Centered
Æqprop, here we use two values β1 < β2 in the two phases of the algorithm. Namely, we first set a
control value ut such that the equilibrium value θt−1 does not change when we introduce the new
input xt, the desired output yt and nudging β1. Then we obtain the next parameter by changing the
nudging to β2 and letting the system reach equilibrium.

This time, we define the Lyapunov function

Lβ1;β2
(θ, x, y) :=

1

β2 − β1

∫ β2

β′=β1

C(sβ′(θ, x, y), y) dβ′ (24)

where as before,

sβ(θ, x, y) := argmin
s
{E(θ, x, s) + βC(s, y)}. (25)

This Lyapunov function tends to the loss

L(θ, x, y) := C(s(θ, x), y) (26)

when β1 and β2 tend to 0, where s(θ, x) := argmins E(θ, x, s) = s0(θ, x, y) by definition.

The next theorem states that Æqprop performs a step of Riemannian stochastic gradient descent for
the input-output pair (xt, yt), with step size (learning rate) ε(β2 − β1), loss function Lβ1;β2

, and
preconditioning matrix (Riemannian metric) M . When β1 and β2 both tend to 0, the Lyapunov
function Lβ1;β2

(θt−1, xt, yt) tends to the loss L(θt−1, xt, yt), thus recovering (Riemannian) stochas-
tic gradient descent with the ordinary loss function. This theorem gives a better description of the
behavior of Æqprop when β1 and β2 are not 0: it still follows the (Riemannian) gradient descent of
the closely related function Lβ1;β2

.

Theorem 3. Let θt−1 be some parameter value. Let β1 < β2. Let xt and yt be some input and output
value. Let ut be a control value such that

θt−1 = argmin
θ

min
s
E(ut, θ, s, xt, yt, ε, β1) (27)

and let

θt = argmin
θ

min
s
E(ut, θ, s, xt, yt, ε, β2) (28)

working under the technical assumptions of Section B.2.

Then, for any ε > 0 and β2 > β1 (not necessarily tending to 0) we have the Lyapunov property

Lβ1;β2
(θt, xt, yt) ≤ Lβ1;β2

(θt−1, xt, yt). (29)

Moreover, when either ε, or β2 − β1, or both, tend to 0, we have

θt = θt−1 − ε(β2 − β1)M
−1∂θLβ1;β2

(θt−1, xt, yt) +O(ε2(β2 − β1)
2) (30)

15

where Lβ1;β2
is the Lyapunov function (24), and where M is the positive definite matrix

M = Mε
β1
(θt−1, xt, yt) := ε ∂2

θ

[
min
s
E(ut, θt−1, s, xt, yt, ε, β1)

]
(31)

= ∂2
θ

[
U(ut, θt−1) + ε min

s
{E(θt−1, xt, s) + β1C(s, yt)}

]
(32)

When ε→ 0 we have M = ∂2
θU(u0

t , θt−1) +O(ε) where u0
t is such that θt−1 = argminθ U(u0

t , θ).

In particular, if U(u, θ) = ∥u− θ∥2 /2 then M = Id+O(ε).

Finally, the Lyapunov function enjoys the following properties. For any β1 < 0 < β2, we have

L0;β2
(θ, x, y) ≤ C(s(θ, x), y) ≤ Lβ1;0(θ, x, y). (33)

In particular, Pessimistic Æqprop optimizes an upper bound of the loss function. Moreover, when β1

and β2 tend to 0 we have

Lβ1;β2
(θ, x, y) = C(s(θ, x), y) +O(|β1|+ |β2|), (34)

and if β2 = −β1 = β/2 (Centered Æqprop),

L−β/2;β/2(θ, x, y) = C(s(θ, x), y) +O(β2). (35)

When ε→ 0, the Riemannian metric M tends to ∂2
θU(ut, θt−1), thus recovering ordinary gradient

descent for quadratic U . Note that the Hessian M is always nonnegative definite, because θt−1

minimizes the function θ 7→ mins E(ut, θ, s, xt, yt, ε, β1) by definition (27). Under the technical
assumptions below, it is actually positive definite, so that M−1 is well-defined.

For fixed, nonzero ε, the metric M depends on θt−1, on the input xt, and also on yt if β1 ̸= 0. Indeed,
E depends on xt in the definition of G, and ut itself depends on xt via (27). This dependency is at
first order in ε.

Thus, for large ε, Æqprop produces a gradient descent with a sample-dependent preconditioning
matrix. Since this preconditioning may be correlated with the gradient of the loss for sample xt, this
breaks the property of expected gradients in stochastic gradient descent, and may introduce bias. This
bias disappears when ε→ 0: it is only a term O(ε2β) in (30).

16

B Proofs

In this section, we prove Theorem 1, Theorem 2 and Theorem 3. We proceed as follows:

• In Section B.1, we introduce the notation.

• In Section B.2, we state Definition 5 and Assumption 6, which gather the precise technical
assumptions for the theorems, such as existence of the minima involved. Proposition 7 gives
a simple sufficient condition for these assumptions to hold.

• In Section B.3, we establish important formulae relating the loss and Lyapunov function
to the energy with a free-floating state (Theorem 8). We also prove the properties of the
Lyapunov function stated in Theorem 3 (Proposition 9 and Corollary 11).

• In Section B.4, we prove the Lyapunov property of Theorem 2 using Theorem 8.

• In Section B.5, we prove a technical lemma (Lemma 12), under the assumptions of Assump-
tion 6.

• In Section B.6, using Lemma 12 and Theorem 8, we prove the Riemannian SGD property
of Theorem 3.

• In Section B.7, we prove Theorem 1 (the SGD property) as a corollary of Theorem 3, using
Theorem 8 again.

B.1 Notation

Theorems 1 and 2 are particular cases of Theorem 3.

Since Theorem 3 deals with a fixed input-output pair (xt, yt), in all proofs we assume that xt and yt
are fixed, and omit them from the notation all along.

We denote
sβ(θ) := argmin

s
{E(θ, s) + β C(s)} (36)

the equilibrium state with nudging β and

F (β, θ) := min
s
{E(θ, s) + β C(s)} (37)

= E(θ, sβ(θ)) + βC(sβ(θ)) (38)

the minimal energy when s is floating. The loss to optimize is

L(θ) := C(s0(θ)), (39)

where s0(θ) is the equilibrium state without nudging. For every β1 < β2, the Lyapunov function is

Lβ1;β2
(θ) :=

1

β2 − β1

∫ β2

β1

C(sβ(θ)) dβ. (40)

We then introduce a control variable u and we further augment the energy of the system by adding a
coupling energy U(u, θ)/ε between u and θ, scaled by a positive scalar ε. We denote Gε

β(u, θ) the

global energy (23) minimized by the system (when s is floating), rescaled by ε:

Gε
β(u, θ) := U(u, θ) + ε F (β, θ) (41)

= U(u, θ) + εE(θ, sβ(θ)) + εβ C(sβ(θ)). (42)

since the state that realizes the minimum of F is sβ(θ).

Let θεβ(u) be the equilibrium parameter, i.e. the minimizer of the global energy:

θεβ(u) := argmin
θ

Gε
β(u, θ). (43)

Given a parameter value θ, we denote u = uε
β(θ) the value of the control knobs such that θ is at

equilibrium given β and ε, i.e.

u = uε
β(θ) ⇐⇒ θ = θεβ(u). (44)

17

Finally we introduce the symmetric non-negative definite matrix

Mε
β(θ) := ∂2

θG
ε
β(u

ε
β(θ), θ). (45)

(Here ∂θG and ∂2
θG denote partial derivatives of G with respect to its second variable, and do not

include differentiation of u(θ) with respect to θ.) In particular

M0
0 (θ) = ∂2

θU(u0
0(θ), θ). (46)

With this notation, the quantities of Theorem 3 rewrite as

ut = uε
β1
(θt−1), θt−1 = θεβ1

(ut), θt = θεβ2
(ut). (47)

Remark 4. Without loss of generality, we can assume that β1 = 0, just by replacing the energy E
with

E′(θ, s) := E(θ, s) + β1C(s) (48)

and applying the results to E′. This shifts all values of β by β1.

This will be used in some proofs below to use 0 and β instead of β1 and β2.

B.2 Technical Assumption: Smooth, Strict Energy Minimizers

Here we state the technical assumptions for our formal computations to be valid: namely, smoothness
of all functions involved, and existence, local uniqueness, and smoothness of the various minimizers.

We also provide a simple sufficient condition (Proposition 7) for this to hold in some neighborhood
of the current parameter.

Definition 5 (Strict minimum). We say that a value x achieves a strict minimum of a smooth function
f if x = argminx f(x) and moreover ∂2f(x)/∂x2 > 0 at this minimum (in the sense of positive
definite matrices for vector-valued x). We say that this holds locally if the argmin is restricted to
some neighborhood of x.

Assumption 6 (Smooth, strict minimizers). We assume that E, C and U are smooth functions. We
assume that C is bounded below.

Let θ0 be a parameter value. We assume that there exists domains Θ ⊂ R
dim(θ) in parameter space,

S ⊂ R
dim(s) in state space, U ⊂ R

dim(u) in control knob space, and open intervals I1 ⊂ R and
I2 ⊂ R containing 0, such that:

• For any θ ∈ Θ and β ∈ I1, there exists sβ(θ) ∈ S which achieves the strict minimum

sβ(θ) = argmin
s∈S

{E(θ, s) + β C(s)} (49)

and moreover the map (β, θ) 7→ sβ(θ) is smooth.

• For any u ∈ U , ε ∈ I2, and β ∈ I1, there exists θεβ(u) which is the strict minimum

θεβ(u) = argmin
θ∈Θ

min
s∈S
{U(u, θ) + ε(E(θ, s) + βC(s))} (50)

and the map (u, ε, β) 7→ θεβ(u) is smooth.

• For any ε ∈ I2, there exists uε ∈ U such that θε0(u
ε) = θ0, namely, when β = 0 we can use

u to fix θ to θ0. Moreover, we assume that the map ε 7→ uε is smooth.

All subsequent values of ε and β will be restricted to I2 and I1. All subsequent minimizations over
(θ, s) will be taken in Θ× S . Thus, the case where Θ× S is not the full space allows us, if needed,
to consider only the equilibrium points “in the same basin” as θ0. Presumably, this is relevant for
Æqprop, as a physical system will only jump to another distant local minimum if it has to.

These assumptions justify the various derivatives and Taylor expansions in the proofs.

Proposition 7 (A sufficient condition for Assumption 6). Assume that E, C, and U are smooth, with
C bounded below. Let θ0 be a parameter value.

Assume that there exists a state s0 that locally achieves a strict minimum of E(θ0, s0).

18

Also assume that there exists u0 such that θ0 locally achieves a strict minimum of U(u0, θ0). Assume
moreover that dim(u) = dim(θ) and that the matrix ∂u∂θU(u0, θ0) is invertible (local controllability
of θ by u).

Then Assumption 6 holds in a domain that contains a neighborhood of (θ0, s0, u0, ε = 0, β = 0).

The controllability condition is obviously satisfied for U(u, θ) = ∥u− θ∥2.

Proof of Proposition 7. Let us first check the existence of the smooth minimizer sβ(θ). Since E and
C are smooth, the function (θ, β, s) 7→ E(θ, s) + β C(s) is smooth, and therefore, so is the function

(θ, β, s) 7→ f(θ, β, s) := ∇s(E(θ, s) + βC(s)). (51)

Moreover, for θ = θ0 and β = 0, since s0 is a strict minimizer of E(θ0, s0), we have that
∇sf(θ0, 0, s0) = ∇2

sE(θ0, s0) is positive definite.

Therefore, by the implicit function theorem, there exists a smooth map (θ, β) 7→ sβ(θ) such that
f(θ, β, sβ(θ)) = 0 in some neighborhood of θ = θ0 and β = 0. By definition of f , such an
sβ(θ) is a critical point of E(θ, s) + β C(s). This critical point is a strict minimum: indeed, at
(θ0, s0, β = 0) the second derivative with respect to s is positive definite, and by continuity this
extends to a neighborhood of θ0, s0, and β = 0.

For the argmin

θεβ(u) = argmin
θ∈Θ

min
s∈S
{U(u, θ) + ε(E(θ, s) + βC(s))} , (52)

following the previous proof, we can set the value s = sβ(θ). Therefore this is equivalent to the
argmin

θεβ(u) = argmin
θ∈Θ

{U(u, θ) + ε(E(θ, sβ(θ)) + βC(sβ(θ)))} (53)

and since sβ(θ) is smooth, this quantity is smooth as a function of u, θ, and β. So once more we can
apply the implicit function theorem in a neighborhood of u = u0, ε = 0, β = 0, using that θ0 is a
strict minimum of U(u0, θ0).

Last, with β = 0, we want to find uε such that

θ0 = argmin
θ

min
s
{U(uε, θ) + εE(θ, s)}. (54)

Once more, we can substitute s = s0(θ) so we want

θ0 = argmin
θ
{U(uε, θ) + εE(θ, s0(θ))}. (55)

Set

f(ε, u) := ∇θ (U(u, θ0) + εE(θ0, s0(θ0))) . (56)

This is a smooth function. We have f(0, u0) = 0 because θ0 is a minimizer of U(u0, θ0). Moreover,
we have∇uf(0, u0) = ∇u∇θU(u0, θ0) which is invertible by assumption. Therefore, by the implicit
function theorem, we can find a smooth map ε 7→ uε such that f(ε, uε) = 0, namely, such that
θ0 is a critical point of U(uε, θ) + εE(θ, s0(θ)). This critical point is a strict minimum: indeed,
by assumption this holds for ε = 0, and by continuity the second derivative will stay positive in a
neighborhood of 0.

B.3 Relationships Between the Loss, Lyapunov Function, and Energy

Theorem 8 (Formulae for the loss and Lyapunov functions). We have the following expression for
the derivative of F with respect to β:

∂βF (β, θ) = C(sβ(θ)). (57)

Furthermore, the loss function L and the Lyapunov function Lβ1;β2
can be expressed in terms of F

as

L(θ) = ∂βF (0, θ), Lβ1;β2
(θ) =

F (β2, θ)− F (β1, θ)

β2 − β1
. (58)

19

Proof of Theorem 8. First, we note that

F (β, θ) = F (β, θ, sβ(θ)), (59)

where
F (β, θ, s) := E(θ, s) + β C(s), (60)

and by construction

sβ(θ) = argmin
s

F (β, θ, s). (61)

Then we differentiate both sides of (59) with respect to β. By the chain rule of differentiation, we
have

∂F

∂β
(β, θ) =

∂F

∂β
(β, θ, sβ(θ)) +

∂F

∂s
(β, θ, sβ(θ)) ·

∂sβ
∂β

(θ). (62)

The first term on the right-hand side of (62) is equal to C(sβ(θ)) by definition of F . The second term

vanishes since ∂F
∂s (β, θ, sβ(θ)) = 0 at equilibrium. Therefore

∂F

∂β
(β, θ) = C(sβ(θ)). (63)

Evaluating (63) at the point β = 0, and using the definition of L, we get

∂F

∂β
(0, θ) = C(s0(θ)) = L(θ). (64)

Furthermore, integrating both hands of (63) from β′ = β1 to β′ = β2, we get

F (β2, θ)− F (β1, θ) =

∫ β2

β1

C(sβ′(θ)) dβ′. (65)

Dividing both sides by β2 − β1 and using the definition of Lβ1;β2
, we conclude that

F (β2, θ)− F (β1, θ)

β2 − β1
= Lβ1;β2

(θ) . (66)

Now we turn to the properties of the Lyapunov function stated in Theorem 3.

Proposition 9. As β1, β2 → 0, we have the Taylor expansion

Lβ1;β2
(θ) = L(θ) +O(|β1|+ |β2|), (67)

and for β2 = −β1 = β, we have

L−β/2;β/2(θ) = L(θ) +O(β2). (68)

These Taylor expansions are direct consequences of the definition of Lβ1;β2
(θ). Alternatively, they

can be derived from Theorem 8, as follows.

Proof of Proposition 9. We write

F (β2, θ) = F (0, θ) + β2∂βF (0, θ) + β2
2∂

2
βF (0, θ) +O(β3

2), (69)

F (β1, θ) = F (0, θ) + β1∂βF (0, θ) + β2
1∂

2
βF (0, θ) +O(β3

1), (70)

so that
F (β2, θ)− F (β1, θ)

β2 − β1
= ∂βF (0, θ) + (β1 + β2)∂

2
βF (0, θ) +O(β2

1 + β2
2). (71)

Using Theorem 8, we get

Lβ1;β2
(θ) = L(θ) + (β1 + β2)∂

2
βF (0, θ) +O(β2

1 + β2
2). (72)

20

Next we prove that L0;β2
(θ) and L−β1;0(θ) are lower and upper bounds of L(θ). First, we need a

further lemma.

Lemma 10. Let θ be any value. For each β ∈ R, let sβ ∈ argmins{E(θ, s) + βC(s)}. Then
β 7→ C(sβ) is non-increasing.

We note that this also implies that the function β → F (β, θ) is concave, thanks to the first formula of
Theorem 8.

Proof of Lemma 10. Let β ≥ β′. By definition of sβ ,

E(θ, sβ) + βC(sβ) ≤ E(θ, sβ′) + βC(sβ′). (73)

Similarly, by definition of sβ′ ,

E(θ, sβ′) + β′C(sβ′) ≤ E(θ, sβ) + β′C(sβ). (74)

Summing these two inequalities, subtracting (E(θ, sβ) + E(θ, sβ′)) on each side, and rearranging
the terms, we get

(β − β′)C(sβ) ≤ (β − β′)C(sβ′), (75)

which proves the claim.

Since Lβ1;β2
(θ) is the average of C(sβ(θ)) for β ∈ [β1;β2], this immediately implies the following.

Corollary 11. For any β1 < 0 < β2, we have

L0;β2
(θ) ≤ L(θ) ≤ L−β1;0(θ). (76)

B.4 Proof of the Lyapunov Property (Theorem 2)

We now prove monotonous improvement of the Lyapunov function, as stated in Theorems 2 and 3.
Let β2 > β1. Let ut and ε > 0 be fixed. We denote U(θ) and θβ in place of U(ut, θ) and θεβ(ut), for

simplicity. Then θβ1
is the value of θ before the update, and θβ2

its value after the update. We claim
that

Lβ1;β2
(θβ2

) ≤ Lβ1;β2
(θβ1

). (77)

Indeed, since θβ2
minimizes Gβ2

(·) = U(·)/ε+ F (β2, ·) by definition, we have

U(θβ2
)/ε+ F (β2, θβ2

) ≤ U(θβ1
)/ε+ F (β2, θβ1

). (78)

Similarly, since θβ1
minimizes Gβ1

(·) = U(·)/ε+ F (β1, ·) by definition, we have

U(θβ1
)/ε+ F (β1, θβ1

) ≤ U(θβ2
)/ε+ F (β1, θβ2

). (79)

Summing these two inequalities, subtracting (U(θβ1
) + U(θβ2

))/ε on each side, rearranging the
terms, and dividing by β2 − β1 (which is positive), we get

F (β2, θβ2
)− F (β1, θβ2

)

β2 − β1
≤ F (β2, θβ1

)− F (β1, θβ1
)

β2 − β1
. (80)

We conclude using Theorem 8.

B.5 A Technical Lemma

We now prove a technical lemma that we will use to prove the Riemannian SGD property (Theorem
3).

By Remark 4, we can assume that β1 = 0, and we just denote β2 by β.

Lemma 12 (Technical Lemma). For any u ∈ U , we have θεβ(u) − θε0(u) = O(εβ) when either

ε→ 0 or β → 0 (or both).

21

Proof of Lemma 12. Under Assumption 6, (ε, β) 7→ θεβ(u) is smooth. Therefore, when β → 0 we

have θεβ(u)− θε0(u) = O(β), and when ε→ 0 we have θεβ(u)− θε0(u) = O(ε).

Thus, the only remaining case is when both ε and β tend to 0: we have to establish that θεβ(u) −
θε0(u) = O(εβ). Since we know that this difference is both O(β) and O(ε), we already know that
this difference tends to 0.

Since u is fixed, we further simplify notation by omitting u.

Under Assumption 6, θ00 achieves a strict minimum of G0
0. Therefore, by Definition 5, the Hessian

of G0
0 at θ00 is positive definite, and there exists η > 0 such that ∂2

θG
0
0(θ

0
0) ≥ η Id in the sense of

positive definite matrices. Since G is smooth, by continuity we can assume that

∂2
θG

ε
β(θ) ≥ η Id /2 (81)

when ε and β are close to 0 and θ is in a neighborhood of θ00 .

Now, θε0 minimizes Gε
0. Therefore, for any θ in a neighborhood of θ00 we have

Gε
0(θ) ≥ Gε

0(θ
ε
0) + η ∥θ − θε0∥2 /4 (82)

using that the Hessian of Gε
0 is at least η Id /2. In particular, taking θ = θεβ ,

Gε
0(θ

ε
0) + η

∥∥θεβ − θε0
∥∥2 /4 ≤ Gε

0(θ
ε
β). (83)

In turn,

Gε
0(θ

ε
β) = U(θεβ) + ε inf

s
E(θεβ , s) (84)

≤ U(θεβ) + ε inf
s
{E(θεβ , s) + β(C(s)− inf C)} (85)

= U(θεβ) + ε inf
s
{E(θεβ , s) + βC(s)} − εβ inf C (86)

= Gε
β(θ

ε
β)− εβ inf C. (87)

Since θεβ minimizes Gε
β(θ), we have

Gε
β(θ

ε
β) ≤ Gε

β(θ
ε
0) (88)

= U(θε0) + ε inf
s
{E(θε0, s) + βC(s)} (89)

≤ U(θε0) + εE(θε0, s
ε
0) + εβC(sε0) (90)

= Gε
0(θ

ε
0) + εβC(sε0) (91)

where sε0 is the value that realizes the infimum E(θε0, s). Combining the three inequalities, we find

η
∥∥θεβ − θε0

∥∥2 /4 ≤ εβ(C(sε0)− inf C). (92)

When εβ → 0, sε0 tends to s00 so that C(sε0) is bounded. This implies that θεβ − θε0 = O(
√
εβ).

Now, since θεβ minimizes Gε
β , we have ∂θG

ε
β(θ

ε
β) = 0. Likewise for θε0, we have ∂θG

ε
0(θ

ε
0) = 0.

Subtracting,

0 = ∂θG
ε
β(θ

ε
β)− ∂θG

ε
0(θ

ε
0) (93)

=
[
∂θG

ε
β(θ

ε
β)− ∂θG

ε
0(θ

ε
β)
]
+
[
∂θG

ε
0(θ

ε
β)− ∂θG

ε
0(θ

ε
0)
]

(94)

= ε
[
∂θF (β, θεβ)− ∂θF (0, θεβ)

]
+ ∂2

θG
ε
0(θ

ε
0) · (θεβ − θε0) +O(

∥∥θεβ − θε0
∥∥2). (95)

Since θεβ − θε0 = O(
√
εβ), the last O term is O(εβ). Since F is smooth, we have ∂θF (β, θεβ) −

∂θF (0, θεβ) = O(β) so the first term is O(εβ) as well. Therefore,

∂2
θG

ε
0(θ

ε
0) · (θεβ − θε0) = O(εβ). (96)

Now the smallest eigenvalue of ∂2
θG

ε
0 is at least η/2. Therefore, θεβ − θε0 = O(εβ) as needed.

For Theorem 3 we are going to use this lemma with u = uε. When ε is fixed this is a fixed value of u.
When ε→ 0 this is not a fixed value of u; however, uε tends to u0 when ε→ 0, and by continuity
of all functions involved, the constant in O(εβ) in the lemma is uniform in a neighborhood of u0.
Therefore, we will be able to apply the lemma to uε when ε→ 0.

22

B.6 Proof of the Riemannian SGD Property (Theorem 3)

We now prove the remaining part of Theorem 3, i.e., the expression for θt−θt−1. Let us first rephrase
it using the notation introduced so far.

By Remark 4, assume again that β1 = 0 and β2 = β > 0.

Let uε := uε
0(θt−1). We denote for simplicity θεβ := θεβ(u

ε). As mentioned in (47) (Section B.1), we

have θt−1 = θε0 and θt = θεβ .

Under the assumptions of Section B.2, we claim that when either ε or β (or both) tend to 0,

θεβ = θε0 − εβMε
0 (θ

ε
0)

−1∂θL0;β(θ
ε
0) +O(ε2β2) (97)

where L0;β is the Lyapunov function of Section B.3 and Mε
0 is the Riemannian matrix given by

Mε
0 (θ

ε
0) := ∂2

θG
ε
0(u

ε, θε0) = ∂2
θU(uε, θε0) + ε∂2

θF (0, θε0). (98)

Proof of Theorem 3. By definition, θεβ minimizes Gε
β(u

ε, ·) = U(uε, ·) + εF (β, ·). The equilibrium

condition for θεβ writes out as

∂θU(uε, θεβ) + ε ∂θF (β, θεβ) = 0. (99)

Let us subtract this equilibrium condition for arbitrary β and for β = 0 :
[
∂θU(uε, θεβ)− ∂θU(uε, θε0)

]
+ ε

[
∂θF (β, θεβ)− ∂θF (0, θε0)

]
= 0. (100)

On the one side we have

∂θU(uε, θεβ)− ∂θU(uε, θε0) = ∂2
θU(uε, θε0) · (θεβ − θε0) +O(

∥∥θεβ − θε0
∥∥2) (101)

= ∂2
θU(uε, θε0) · (θεβ − θε0) +O(ε2β2), (102)

since

∥∥∥θεβ − θε0

∥∥∥ = O(εβ) by Lemma 12. On the other side,

∂θF (β, θεβ)− ∂θF (0, θε0) = ∂θ
(
F (β, θεβ)− F (β, θε0)

)
+ ∂θ (F (β, θε0)− F (0, θε0)) (103)

which, by Theorem 8, is

= ∂θ
(
F (β, θεβ)− F (β, θε0)

)
+ β∂θLβ(θ

ε
0) (104)

= β∂θLβ(θ
ε
0) + ∂2

θF (β, θε0) · (θεβ − θε0) +O(
∥∥θεβ − θε0

∥∥2) (105)

= β∂θLβ(θ
ε
0) + ∂2

θF (0, θε0) · (θεβ − θε0) +O(β
∥∥θεβ − θε0

∥∥+
∥∥θεβ − θε0

∥∥2)
(106)

= β∂θLβ(θ
ε
0) + ∂2

θF (0, θε0) · (θεβ − θε0) +O(εβ2) (107)

using Lemma 12 again.

Thus, returning to (100) again, we find

∂2
θU(uε, θε0) · (θεβ − θε0) = −ε

[
β∂θLβ(θ

ε
0) + ∂2

θF (0, θε0) · (θεβ − θε0)
]
+O(ε2β2), (108)

namely

θεβ − θε0 = −εβMε
0 (θ

ε
0)

−1∂θLβ(θ
ε
0) +O(ε2β2). (109)

where the Riemannian Matrix Mε
0 is given by (98).

Note that this Hessian matrix is positive definite, since θε0 achieves a strict minimum of Gε
0(u

ε, ·) by
definition.

Finally, we have θε0 = θt−1. When ε → 0, uε tends to u0 and Mε
0 is ∂2

θU(u0, θt−1) + O(ε). By

definition, u0 is the value of u such that argminθ U(u0, θ) = θt−1, This is the last claim to be proven
in Theorem 3.

23

B.7 Proof of the SGD Property with Quadractic Coupling and ε, β → 0 (Theorem 1)

By Proposition 9, the Lyapunov function of Optimistic Æqprop is

Lβ = L0;β(θ) = L(θ) +O(β) (110)

when β → 0. Moreover, the Riemannian metric Mε
0 is

Mε
0 (θ) = M0

0 (θ) +O(ε) (111)

when ε→ 0. Injecting these expressions in (97) (Theorem 3), we get

θεβ = θε0 − εβM0
0 (θ

ε
0)

−1∂θL(θε0) +O(εβ2 + ε2β) (112)

when both ε and β tend to 0. In particular, using the quadratic control energy U(u, θ) = ∥u− θ∥2 /2,
we have M0

0 (θ) = Id and we recover standard SGD.

Similar results hold for Pessimistic Æqprop and Centered Æqprop, using that L−β;0(θ) = L(θ) +
O(β) and L−β/2;β/2(θ) = L(θ) +O(β2) (Proposition 9).

24

C Simulation Details

In this section, we provide the implementation details of our numerical simulations of Æqprop on
Hopfield-like networks (section 5).

Datasets. We perform experiments on the MNIST and FashionMNIST datasets.

The MNIST dataset (the ‘modified’ version of the National Institute of Standards and Technology
dataset) of handwritten digits is composed of 60,000 training examples and 10,000 test examples
[LeCun et al., 1998]. Each example x in the dataset is a 28× 28 gray-scaled image and comes with a
label y ∈ {0, 1, . . . , 9} indicating the digit that the image represents.

The Fashion-MNIST dataset Xiao et al. [2017] shares the same image size, data format and the sane
structure of training and testing splits as MNIST. It comprises a training set of 60,000 images and a
test set of 10,000 images. Each example is a 28× 28 grayscale image from ten categories of fashion
products.

Energy minimization. We recall our general strategy to simulate energy minimization: at every
step, we pick a variable (layer or parameter) and we ‘relax’ that variable, i.e. we compute analytically
the state of that variable that minimizes the energy, given the state of other variables (layers and
parameters) fixed. We are able to do that because, when E is the Hopfield energy and C is the
squared error, the global energy E = ||u− θ||2/2ϵ+ E + βC is a quadratic function of each of its
variables (layers and parameters). Using this property, we can then alternate relaxation of the layers
and parameters until a minimum of the energy is reached.

More specifically, during each phase of energy minimization, we relax the layers one by one, either
from the first hidden layer to the output layer (in the ‘forward’ direction), or from the output layer
back to the first hidden layer (in the ‘backward’ direction). Relaxing all the layers one after the other
(once each), constitutes one ‘iteration’. We repeat as many iterations as is necessary until convergence
is attained. We decide converge using the following criterion: at each iteration, we measure the
L1-norm ∥snext − sprevious∥, where sprevious is the state of the layers before the iteration, and snext
is the state of the layers after the iteration. The convergence criterion is ∥snext − sprevious∥ < ξ,
where ξ is a given threshold.

The threshold ξ is itself an adaptive threshold ξt that we update at each epoch of training t. At the
beginning of training, we start with ξ0 = 10−3. Then, at each epoch t, we proceed as follows: for

each mini-batch in the training set, we measure the L1-norm ∥s(2)⋆ − s
(1)
⋆ ∥ between the equilibrium

state s
(1)
⋆ of the first phase and the equilibrium state s

(2)
⋆ of the second phase, and we compute µt, the

mean of ∥s(2)⋆ − s
(1)
⋆ ∥ over the entire training set during epoch t. Then, at the end of epoch t, we set

the threshold for epoch t+ 1 to ξt+1 = min(ξt, γµt), for some constant γ. We choose γ = 0.01 in
our simulations.

Training procedure. We train our networks with optimistic, pessimistic and centered Æqprop.
At each training step of SGD, we proceed as follows. First we pick a mini-batch of samples in the
training set, x, and their corresponding labels, y. Then we set the nudging to 0 and we perform a
homeostatic phase. This phase allows us in particular to measure the training loss for the current
batch, to monitor training. Next, if the training method is either pessimistic or centered Æqprop, we
set the nudging to either −β or −β/2 respectively, and we perform a new homeostatic phase. Finally,
we set the nudging to the second nudging value (which is 0, β/2 or β depending on the training
method) and we perform a phase with clamped control knobs.

At each iteration of inference (homeostatic phase without nudging), we relax the layers from the first
hidden layer to the output layer. We choose to do so because in this phase, the source of external
signals comes from the input layer. Conversely, during the phases with non-zero nudging (either −β,
−β/2, +β/2 or +β), we relax the layers from the output layer back to the first hidden layer, because
the new source of external signals comes from the output layer. Finally, in the ‘clamped’ phase (with
clamped control knobs), the parameters are all relaxed in parallel.

25

Table 2: Hyper-parameters used for the simulations on MNIST and FashionMNIST with Hopfield-like
networks.

Hyper-parameter Dense Network Convolutional Network

layer shapes 1×28×28− 2048− 10 1×28×28− 32×12×12− 64×4×4− 10
weight shapes 1×28×28×2048− 2048×10 32×1×5×5− 64×32×5×5− 64×4×4×10
state space (S) [0, 1]2048 × [−1, 2]10 [0, 1]32×12×12 × [0, 1]64×4×4 × [−1, 2]10

gains (α) 0.8 - 1.2 0.6 - 0.6 - 1.5
initial threshold (ξ0) 0.001 0.001

max iterations (first phase) 100 100
max iterations (second phase) 100 100

nudging (β) 0.5 0.2
batch size 32 16

learning rates (weights) 0.1 - 0.05 0.128 - 0.032 - 0.008
learning rates (biases) 0.02 - 0.01 0.032 - 0.008 - 0.002
decay of learning rates 0.99 0.99

Weight initialization. We initialize the weights of dense interactions according to (half) the ‘xavier
uniform’ scheme, i.e.

wij ∼ U(−c,+c), c =
α

2

√
6

fan_in + fan_out
, (113)

where α is a gain, i.e. a scaling number. See Table 2 for the choice of the gains. We initialize the
weights of convolutional interactions according to (half) the ‘kaiming normal’ scheme, i.e.

wij ∼ N (0, c), c =
α

2

√
1

fan_in
, (114)

where α is a gain. The factor 1
2 in (113) and (114) comes from the fact that, unlike feedforward

networks where each layer receives input only from the bottom layer, in Hopfield networks, hidden
layers receive input from both the bottom layer and the upper layer.

Simulation details. The code for the simulations uses PyTorch 1.9.0 and TorchVision 0.10.0.
Paszke et al. [2017]. The simulations were carried on a server of GPUs. For the dense networks,
each run was performed on a single GPU for an average run time of 6 hours. For the convolutional
networks, each run was performed on a single GPU for an average run time of 30 hours. The
parameters were chosen based on trial and errors (Table 2).

Benchmark. We compare the three Æqprop training procedures (optimistic, pessimistic and cen-
tered) against automatic differentiation (autodiff). To establish the benchmark via autodiff, we
proceed as follows: we unfold the graph of computations during the free phase minimization (with
β = 0), and we compute the gradient with respect to the parameters. We then take one step of
gradient descent for each parameter θk, with step size βεk.

26

Figure 4: Dense and Convolutional Hopfield-like Networks trained via Æqprop on MNIST

27

Figure 5: Dense and Convolutional Hopfield-like Networks trained via Æqprop on FashionMNIST

28

D From Eqprop to Agnostic Eqprop

In this section, we present equilibrium propagation (Eqprop) Scellier and Bengio [2017] and explain
in more details the problems of Eqprop that Agnostic Eqprop (Æqprop) solves.

Recall that we consider an optimization problem of the form

J(θ) := E(x,y) [L(θ, x, y)] , where L(θ, x, y) := C(s(θ, x), y), (115)

where C is a cost function and s(θ, x) is a minimizer of some other function E:

s(θ, x) := argmin
s

E(θ, x, s). (116)

We call E the energy function and s(θ, x) the equilibrium state. The idea of Eqprop is to augment the
energy at the output part of the system (the s-part) by adding an energy term β C(s, y) proportional
to the cost. The total energy of the system is then E(θ, x, s) + β C(s, y). As we vary β, the total
energy varies, and therefore the equilibrium state varies, too. Specifically, for every nudging value β,
we define the equilibrium state

sβ := argmin
s

[E(θ, x, s) + β C(s, y)] . (117)

In particular s0 = s(θ, x). The main theoretical result of Eqprop is that the loss gradients can be
computed by varying the nudging factor β, via the following formula.

Theorem 13 (Equilibrium propagation). The gradient of the loss is equal to

∂L
∂θ

(θ, x, y) =
d

dβ

∣∣∣∣
β=0

∂E

∂θ
(θ, x, sβ) . (118)

In this expression, ∂E
∂θ represents the partial derivative of E(θ, x, s) with respect to its first argument,

θ ; we note that sβ also depends on θ through Eq. (117), but importantly, ∂E
∂θ (θ, x, sβ) does not take

into account the differentiation paths through sβ . Thanks to Theorem 13, we can estimate the gradient
of L with finite differences, using e.g. the first-order finite difference forward estimator

∇̂(β, θ, x, y) := 1

β

(
∂E

∂θ
(θ, x, sβ)−

∂E

∂θ
(θ, x, s0)

)
. (119)

We note that ∇̂(β, θ, x, y) depends on y through sβ . Eqprop training then consists in optimizing the
objective J(θ) by stochastic gradient descent:

θt := θt−1 − η∇̂(β, θt−1, xt, yt), (120)

where, at each step t, θt−1 is the previous parameter value, (xt, yt) is an input/target pair taken from

the training set, and η is the learning rate. The gradient estimator ∇̂(β, θt−1, xt, yt) can be obtained
with two phases and two measurements, as follows. In the first phase, we present input xt to the
system, we set the nudging factor β to zero, and we let the system’s state settle to equilibrium, s0.

For each parameter θk, the quantity ∂E
∂θk

is measured and stored. In the second phase, we present the

desired output yt and set the nudging factor β to a positive value, and we let the system settle to a

new equilibrium state sβ . For each parameter θk, the quantity ∂E
∂θk

is measured again. Finally, the

parameters are updated in proportion to their gradient using (120).

However, Eqprop training presents several challenges for physical implementations, including the

following three. First of all, for each parameter θk, the partial derivatives ∂E
∂θk

need to be measured

in both phases. To this end, some knowledge about the analytical form of the energy function is
necessary, which can be a limitation in physical systems whose components’ characteristics are

unknown or only partially known. Second, the quantities ∂E
∂θk

of the first phase need to be stored,

since they are no longer physically available at the end of the second phase when the parameters are
updated. Third and most importantly, after computing the gradient estimators, we still need to update
the parameters according to some (nontrivial) physical procedure. The Æqprop method presented in
this work fixes these three issues at once.

To derive Æqprop from Eqprop, our starting point is Lemma 10. For brevity of notation, we omit θ, x
and y, and we denote sβ the state that minimizes E(s) + βC(s). Using this notation, if ∂C

∂s (s0) ̸= 0,

29

then for β > 0 small enough, the perturbed equilibrium state sβ yields a lower value of the underlying
cost function than s0 i.e., C(sβ) < C(s0). More specifically, we have the following formula for the
derivative of sβ with respect to β:

∂sβ
∂β

∣∣∣∣
β=0

= −∂2E

∂s2
(s0)

−1 · ∂C
∂s

(s0) . (121)

This is shown by differentiating the equilibrium condition ∂sE(sβ) + β ∂sC(sβ) = 0 with respect to
β. Written as a Taylor expansion, (121) rewrites

sβ = s0 − β ∂2
sE (s0)

−1 · ∂sC (s0) +O(β2), (122)

where the Hessian ∂2
sE (s0) is positive definite, provided that s0 is a proper minimum of E(s). The

main thrust of Æqprop is to establish a formula similar to (122) for the parameters, by viewing them
as another set of floating variables that minimize the system’s energy (like the state variables). The
SGD property (Theorem 1) and the more general Riemannian SGD property (Theorem 3) shown in
this paper achieve this.

We note that the formulae of Section B.3 relating the loss, Lyapunov function and energy (Theorem 8,
Proposition 9 and Corollary 11) hold more broadly in the context of Eqprop. In particular, the gradient
estimator (119) of the true loss L is the true gradient of the Lyapunov function Lβ :

∇̂(β, θ) = 1

β
(∂θF (β, θ)− ∂θF (0, θ)) = ∂θLβ(θ), (123)

where we recall that F (β, θ) := mins(E(θ, s) + βC(s)). But in Eqprop, unlike in Æqprop, the
function Lβ does not necessarily decrease at each step of training: if the learning rate η is too large,
Lβ may increase after one step of (120), like in standard SGD.

Directly derived from Eqprop is the method proposed by Stern et al. [2021] called coupled learning.
Stern et al. [2021] considers the case of the squared error cost function C(s) = ∥s− y∥2, for which
we have ∂sC (s) = (s− y). With this choice of C, and assuming that ∂2

sE ≈ Id, Eq. (122) yields
sβ ≈ s0 − β (s0 − y). Thus, to achieve nudging in the second phase, instead of adding an energy
term βC(s) to the system as in Eqprop, Stern et al. [2021] propose to clamp the output unit to the
state

sclamped := (1− β)s0 + βy, (124)

and to let the system relax to equilibrium. However, contrary to Eqprop, this method does not in
general compute the gradient of the loss, even in the limit of infinitesimal perturbation (β → 0),
except in the special case where the Hessian of E is the identity matrix.

Theorem 13 also has implications for meta-learning and other bilevel optimization problems: [Zucchet
et al., 2021] introduced the contrastive meta-learning rule (CML), which uses the differentiation
method of Eqprop to compute the gradients of the meta-parameters. We refer to Zucchet and
Sacramento [2022] for a review of implicit gradient methods in bilevel optimization problems.

30

	Introduction
	Æqprop: an Agnostic Physical Procedure for Gradient Descent
	Monotonous Improvement: A Lyapunov Function for Æqprop
	Optimistic Æqprop, Pessimistic Æqprop, and Centered Æqprop
	A Numerical Illustration
	Simulating Convergence to Equilibrium and Homeostatic Control
	A Simple Linear Regression Example
	Hopfield-Like Networks and Real Datasets

	Related Work
	Discussion, Limitations, and Conclusion
	A Generalization of Theorem 1: Æqprop with Large or , Centered and Pessimistic Æqprop
	Proofs
	Notation
	Technical Assumption: Smooth, Strict Energy Minimizers
	Relationships Between the Loss, Lyapunov Function, and Energy
	Proof of the Lyapunov Property (Theorem 2)
	A Technical Lemma
	Proof of the Riemannian SGD Property (Theorem 3)
	Proof of the SGD Property with Quadractic Coupling and , 0 (Theorem 1)

	Simulation Details
	From Eqprop to Agnostic Eqprop

