
Generic bounds on the approximation error

for physics-informed (and) operator learning

T. De Ryck and S. Mishra

Research Report No. 2022-20

May 2022

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

__

Generic bounds on the approximation error for

physics-informed (and) operator learning

Tim De Ryck Siddhartha Mishra
Seminar for Applied Mathematics

ETH Zürich, Switzerland

Abstract

We propose a very general framework for deriving rigorous bounds on the approxi-
mation error for physics-informed neural networks (PINNs) and operator learning
architectures such as DeepONets and FNOs as well as for physics-informed opera-
tor learning. These bounds guarantee that PINNs and (physics-informed) Deep-
ONets or FNOs will efficiently approximate the underlying solution or solution
operator of generic partial differential equations (PDEs). Our framework utilizes
existing neural network approximation results to obtain bounds on more involved
learning architectures for PDEs. We illustrate the general framework by deriving
the first rigorous bounds on the approximation error of physics-informed operator
learning and by showing that PINNs (and physics-informed DeepONets and FNOs)
mitigate the curse of dimensionality in approximating nonlinear parabolic PDEs.

1 Introduction

The efficient numerical approximation of partial differential equations (PDEs) is of paramount
importance as PDEs mathematically describe an enormous range of interesting phenomena in the
sciences and engineering. Machine learning techniques, particularly deep learning, are playing
an increasingly important role in this context. For instance, given their universal approximation
properties, deep neural networks serve as ansatz spaces for supervised learning of a variety of
(parametric) PDEs [17, 66, 37, 50, 51] and references therein. In this setting, large amounts of training
data might be required. However, this data is often acquired from expensive computer simulations
or physical measurements [50], necessitating the design of learning frameworks that work with
limited data. Physics-informed neural networks (PINNs), proposed by [16, 39, 38] and popularized
by [63, 64], are a prominent example of such a learning framework as the residual of the underlying
PDE is minimized within the class of neural networks and in principle, little (or even no) training
data is required. PINNs and their variants have proven to be a very powerful and computationally
efficient framework for approximating solutions to PDEs, [65, 48, 52, 61, 72, 31, 32, 55, 56, 57, 2]
and references therein.

Often in the context of PDEs, one needs to approximate the underlying solution operator that
maps one infinite-dimensional function space into another [36]. As neural networks can only map
between finite dimensional spaces, a new field of operator learning is emerging wherein novel
learning frameworks need to be designed in order to approximate operators. These include deep
operator networks (DeepONets) [8, 46] and their variants as well as neural operators [36], which
generalize neural networks to this setting. A variety of neural operators have been proposed, see
[42, 43] but arguably, the most efficient form of neural operators is provided by the so-called Fourier
neural operators (FNOs) [41]. Both DeepONets and FNOs have been very successfully deployed in
scientific computing [47, 53, 7, 45, 44, 62] and references therein. Finally, one can combine PINNs
and operator learning to design physics-informed DeepONets/FNOs [70, 44, 69, 20].

Preprint. Under review.

From a theoretical perspective, one needs to provide a rigorous guarantee that the learning framework
can approximate the underlying PDE solution (operator) to desired accuracy. More precisely, given
an error tolerance ε > 0, we need to rigorously prove that the approximation error of the neural
network (operator) can be made smaller than ε. For efficient approximation, one has to further
ensure that the computational complexity (measured in terms of the size) of the learning architecture
grows at most polynomially in ε−1. In particular, exponential growth has to be ruled out. As neural
networks, DeepONets and FNOs are all universal approximators [12, 8, 46, 40, 35] of the underlying
functions or operators, it is possible to show that the approximation error can be made as small as
desired. However, these results do not guarantee efficient approximation as the underlying network
size could still grow exponentially with decreasing error, see [73] for neural networks in very high
spatial dimensions, [40] for DeepONets and [35] for FNOs. Hence, the real theoretical challenge
in this context lies in proving efficient approximation results for the different learning architectures
in scientific computing. Such efficient approximation results have mostly been obtained for neural
networks in the supervised learning setting e.g. [21, 33, 29, 4, 59] and references therein. In contrast,
there is a relative scarcity of such efficient approximation results for PINNs and operator learning
with notable exceptions being [23, 13, 14] (for PINNs), [40] (for DeepONets) and [35] (for FNOs).
Moreover, the underlying proofs in these works are often on a case-by-case basis and the overall
abstract structure is not clearly identified. Finally, no similar rigorous approximation results for
physics informed operator learning are available till date.

This paucity of generic efficient approximation results for PINNs and operator learning for PDEs sets
the stage for the current paper where our main contribution is to propose a very general framework
(Section 3) for proving bounds on the approximation error for space-time neural networks, PINNs,
DeepONets, FNOs and physics-informed DeepONets and FNOs for very general PDEs. Consequently,
we obtain the first rigorous bounds for physics-informed operator learning in literature. Our framework
is based on the observation that error estimates for different types of neural network architectures
can all be obtained from one another. As error estimates for neural network approximations of PDE
solutions at a fixed time are the easiest to obtain, and hence constitute the largest proportion of
currently available estimates, we devote particular attention to demonstrating how these available
estimates can be used to obtain novel bounds on the approximation error for space-time networks,
PINNs and (physics-informed) operator learning. Our results provide a roadmap for deriving
mathematical guarantees for deep learning methods in scientific computing by simplifying the proofs,
as the needed work essentially reduces to verifying a small number of assumptions. We demonstrate
how the generic error bounds from Section 3 can be applied in practice in Section 4, among others
by giving short alternative proofs for known results and also proving a number of novel results.
In particular, we show in Section 4.1 that PINNs can overcome the curse of dimensionality for
nonlinear parabolic PDEs such as the Allen-Cahn equation i.e., the network size does not grow
exponentially with increasing spatial dimension. Moreover, dimension-independent convergence
rates are also obtained for (physics-informed) DeepONets and FNOs, provided that the PDE solutions
are sufficiently smooth. These are the first results of their kind. We note that many of the proofs and
some examples are deferred to the supplementary material (SM).

2 Preliminaries

2.1 Setting

Given T > 0 and D ⊂ R
d, consider the function u : [0, T]×D → R

m, for m ≥ 1, that solves the
following (time-dependent) PDE,

La(u)(t, x) = 0 and u(x, 0) = u0 ∀(t, x) ∈ [0, T]×D, (2.1)

where u0 ∈ Y ⊂ L2(D) is the initial condition and La is a differential operator that can depend
on a parameter (function) a ∈ Z ⊂ L2(D). In our notation, we will often suppress the parameter
dependence of L := La on a for simplicity. Depending on the context, one might want to recover
one of the following mathematical objects: for fixed a and u0, one might want to approximate u(T)
or u(·, t), for all t ∈ [0, T] with a neural network; a more challenging task would be to learn the
operator G : X → L2(Ω), where X = Y or X = Z and Ω = D or Ω = [0, T]×D. We will use this
notation consistently throughout the paper, see SM A.1 for an overview.

2

2.2 Approximating PDEs with neural networks

Neural networks A (feedforward) neural network Ψθ : Rd0 → R
dL is defined as a concatenation

of affine maps Al : R
dl−1 → R

dl : z 7→ Wlz + bl and an activation function σ : R → R that is
applied component-wise resulting in,

uθ(y) = AL ◦ σ ◦ AL−1 ◦ σ ◦ A2 ◦ σ ◦ A1(y). (2.2)

The weights and biases of the affine maps θ = {Wl, bl}1≤l≤L are the trainable parameters. We will
quantify the size of a neural network by its depth(uθ) := L and its width(uθ) = maxl dl. In order to
obtain a neural network that approximates the solution u of PDE (2.1) at time t = T , one chooses the
parameters of uθ such that a discretization (quadrature) of J (θ) = ∥u(T)− uθ∥L2(D) is minimized.
The training data is acquired from either measurements or potentially expensive simulations.

PINNs Physics-informed neural networks are neural networks that are trained with a different,
residual-based loss function. As the PDE solution u satisfies L(u) = 0, the goal of physics-
informed learning is to find a neural network uθ for which the PDE residual is approximately zero,
L(uθ) ≈ 0. To ensure uniqueness, one also needs to require that the initial condition is satisfied i.e.,
uθ(0, x) ≈ u0(x), and similarly for boundary conditions. In practice one minimizes a quadrature
approximation of J (θ) = ∥L(uθ)∥2L2([0,T]×D)+∥uθ(0, ·)−u0∥2L2(D), where additional terms can be
added to (approximately) impose boundary conditions and augmented by data. A desirable property
of PINNs is that only very little or even no training data is needed to construct the loss function.

Operator learning In order to approximate operators, one needs to allow the input and output of
the learning architecture to be infinite-dimensional. A possible approach is to use deep operator
networks (DeepONets), as proposed in [46]. Given m, fixed sensor locations {xj}mj=1 ⊂ D and
the corresponding sensor values {v(xj)}mj=1 as input, a DeepONet can be formulated in terms
of two (deep) neural networks: a branch net β : R

m → R
p and a trunk net τ : D → R

p+1.
The branch and trunk nets are then combined to approximate the underlying nonlinear operator
as the following DeepONet Gθ : X → L2(D), with Gθ(v)(y) = τ0(y) +

∑p
k=1 βk(v)τk(y). A

second approach is that of neural operators, which generalize hidden layers by including a non-local
integral operator [42], of which particularly Fourier neural operators (FNOs) [41] are already well-
established. The practical implementation (i.e. discretization) of an FNO maps from and to the space
of trigonometric polynomials of degree at most N ∈ N, denoted by L2

N , and can be identified with
a finite-dimensional mapping that is a composition of affine maps and nonlinear layers of the form
Ll(z)j = σ(Wlvj + bl,jF−1

N (Pl(k) · FN (z)(k)j)), where the Pl(k) are coefficients that define a
non-local convolution operator via the discrete Fourier transform FN , see [35].

Physics-informed operator learning Both DeepONets and FNOs are trained by choosing a suitable
probability measure µ on X and minimizing a quadrature approximation of J (θ) = ∥Gθ(v) −
G(v)∥L2

µ×dx(X×Ω). Generating training sets might require many calls to an expensive PDE solver,
leading to an enormous computational cost. In order to reduce or even fully eliminate the need
for training data, physics-informed operator learning has been proposed in [70] for DeepONets
and in [44] for FNOs. Similar to PINNs, the training procedure aims to minimize a quadrature
approximation of J (θ) = ∥L(Gθ)∥L2

µ×dx(X×Ω).

3 General results

We propose a framework to obtain bounds on the approximation error for the various neural network
architectures introduced in Section 2.2. Figure 1 visualizes how different types of error estimates can
be obtained from one another. Every box shows the name of the network architecture, the form of the
relevant loss and the theorem which proves the corresponding estimate for the approximation error.
Every arrow in the flowchart represents a proof technique that allows one to transfer an error estimate
from one type of method to another (see caption of Figure 1 for an overview of those techniques).

We give particular attention to the case where it is known that a neural network can efficiently
approximate the solution to a time-dependent PDE at a fixed time. Such neural networks are usually
obtained by emulating a classical numerical method. Examples include finite difference schemes,
finite volume schemes, finite element methods, iterative methods and Monte Carlo methods, e.g.

3

Neural network (fixed time)∥∥u(T)− uθ(T)
∥∥
Lq(D)

< ε

Assumed to be known

FNO
∥G − Gθ∥L2(X×D) < ε

Theorem 3.6

DeepONet
∥G − Gθ∥L2(X×D) < ε

Corollary 3.7

Neural network (space-time)
∥u− uθ∥Lq([0,T]×D) < ε

Theorem 3.4

PINN∥∥L(uθ)
∥∥
Lq([0,T]×D)

< ε

Theorem 3.4

Physics-informed FNO∥∥L(Gθ)
∥∥
L2(X×Ω)

< ε

Theorem 3.8

Physics-informed DeepONet∥∥L(Gθ)
∥∥
L2(X×Ω)

< ε

Theorem 3.8 & 3.9

A

B

B B

C

C

D

D

Figure 1: Flowchart of the structure of the results in this paper, with q ∈ {2,∞}. The letters reflect
the techniques used in the proofs: A uses Taylor approximations (Section 3.1), B is based on finite
difference approximations (Section 3.1), C uses trigonometric polynomial interpolation (Section 3.2)
and D uses the connection between FNOs and DeepONets (Section 3.2).

[33, 59, 9]. For ε > 0, we denote by Uε an operator that for any t ∈ [0, T] maps any initial
condition/parameter function v ∈ X to a neural network Uε(v, t) that approximates the PDE solution
G(v)(·, t) = u(·, t) at time t, as specified below. Moreover, we will assume that we know how its
size depends on the accuracy ε.

Assumption 3.1. Let q ∈ {2,∞}. For any B, ε > 0, ℓ ∈ N, t ∈ [0, T] and any v ∈ X with
∥v∥Cℓ ≤ B there exist a neural network Uε(v, t) : D → R and a constant CB

ε,ℓ > 0 s.t.

∥∥Uε(v, t)− G(v)(·, t)
∥∥
Lq(D)

≤ ε and max
t∈[0,T]

∥∥Uε(v, t)
∥∥
W ℓ,q(D)

≤ CB
ε,ℓ. (3.1)

Under this assumption, we prove the existence of space-time neural networks and PINNs that
efficiently approximate the PDE solution (Section 3.1), as well as FNOs and DeepONets (Section
3.2) and physics-informed FNOs and DeepONets (Section 3.3).

3.1 Estimates for (physics-informed) neural networks

We will construct a space-time neural network uθ for which both ∥uθ − u∥Lq([0,T]×D) and the PINN
loss ∥L(uθ)∥Lq([0,T]×D) are small. To accurately approximate the time derivatives of u we emulate
Taylor expansions, whereas for the spatial derivatives, we employ finite difference (FD) operators
in our proofs. Depending on whether forward, backward or central differences are used, a FD
operator might not be defined on the whole domain D, e.g. for f ∈ C([0, 1]) the (forward) operator
∆+

h [f] := f(x+ h)− f(x) is not well-defined for x ∈ (1− h, 1]. This can be solved by resorting
to piecewise-defined FD operators, e.g. a forward operator on [0, 0.5] and a backward operator on
(0.5, 1]. In a general domain Ω one can find a well-defined piecewise FD operator if Ω satisfies the
following assumption, which is satisfied by many domains (e.g. rectangular, smooth).

Assumption 3.2. There exists a finite partitionP of Ω such that for all P ∈ P there exists εP > 0 and
vP ∈ B1

∞ = {x ∈ R
dim(Ω) : ∥x∥∞ ≤ 1} such that for all x ∈ P it holds that x+εP (vP +B1

∞) ⊂ Ω.

Additionally, we need to assume that the PINN error can be bounded in terms of the errors related to
all relevant partial derivatives, denoted by D(k,α) := Dk

tD
α
x := ∂kt ∂

α1
x1
. . . ∂αd

xd
, for (k,α) ∈ N

d+1
0 .

Assumption 3.3. Let k, ℓ ∈ N, C > 0 be independent from d. It holds for all v ∈ X that,

∥∥L(Gθ(v))
∥∥
Lq([0,T]×D)

≤ C · poly(d) ·
∑

(k′,α)∈N
d+1
0

k′≤k,∥α∥1≤ℓ

∥∥∥D(k′,α)(G − Gθ)
∥∥∥
Lq([0,T]×D)

. (3.2)

In this setting, we prove the following approximation result for space-time networks and PINNs.

4

Theorem 3.4. Let r, s ∈ N, let u ∈ C(s,r)([0, T] × D) be the solution of the PDE (2.1) and let
Assumption 3.1 be satisfied. There exists a constant C(s, r) > 0 such that for every M ∈ N and
ε, h > 0 there exists a tanh neural network uθ : [0, T]×D → R for which it holds that,

∥uθ − u∥Lq([0,T]×D) ≤ C(∥u∥C0M
−s + ε). (3.3)

and if additionally Assumption 3.2 and Assumption 3.3 hold then,
∥∥L(uθ)

∥∥
Lq([0,T]×D)

+ ∥uθ − u∥L2(∂([0,T]×D))

≤ C · poly(d) · lnk(M)(∥u∥C(s,ℓ)M
k−s +M2k(εh−ℓ + CB

ε,ℓh
r−ℓ)).

(3.4)

Moreover, depth(uθ) ≤ C · depth(Uε) and width(uθ) ≤ CM · width(Uε).

Proof. We only provide a sketch of the full proof (SM B.2). The main idea is to divide [0, T] into M
uniform subintervals and construct a neural network that approximates a Taylor approximation in time
of u in each subinterval. In the obtained formula, we approximate the monomials and multiplications
by neural networks (SM A.7) and approximate the derivatives of u by finite differences and use
(A.2) of SM A.2 to find an error estimate in Ck([0, T], Lq(D))-norm. We use again finite difference
operators to prove that spatial derivatives of u are accurately approximated as well. The neural
network will also approximately satisfy the initial/boundary conditions as ∥uθ − u∥L2(∂([0,T]×D)) ≲

Cpoly(d)∥uθ − u∥H1([0,T]×D), which follows from a Sobolev trace inequality.

We note that the bounds (3.3) and (3.4) together imply that there exists a neural network for which
the total error as well as the PINN loss can be made as small as possible, providing a solid theoretical
foundation to PINNs for approximating the PDE (2.1).

3.2 Estimates for operator learning

In this section, we use Assumption 3.1 to prove estimates for DeepONets and FNOs. First, we prove
a generic error estimate for FNOs. Using the known connection between FNOs and DeepONets
(SM Lemma B.6) this result can then easily be applied to DeepONets (Corollary 3.7). In order to
prove these error estimates, we need to assume that the operator Uε from Assumption 3.1 is stable
with respect to its input function, as specified in Assumption 3.5 below. Moreover, we will take the
d-dimensional torus as domain D = T

d = [0, 2π)d and assume periodic boundary conditions for
simplicity in what follows. This is not a restriction, as for every Lipschitz subset of Td there exists a
(linear and continuous) Td-periodic extension operator of which also the derivatives are T

d-periodic
[35, Lemma 41].

Assumption 3.5. Assumption 3.1 is satisfied, let p ∈ {2,∞} and let p∗ ∈ {2,∞} \ {p}. For every
ε > 0 there exists a constant Cε

stab > 0 such that for all v, v′ ∈ X it holds that,
∥∥Uε(v, T)− Uε(v′, T)

∥∥
L2 ≤ Cε

stab

∥∥v − v′
∥∥
Lp . (3.5)

In this setting, we prove a generic approximation result for FNOs.

Theorem 3.6. Let r ∈ N, T > 0, let G : Cr(Td) → Cr(Td) be an operator that maps a function
u0 to the solution u(·, T) of the PDE (2.1) with initial condition u0, and let Assumption 3.5 be
satisfied. Then there exists a constant C > 0 such that for every ε > 0, N ∈ N there is an FNO
Gθ : L2

N (Td)→ L2
N (Td) of depth O(depth(Uε)) and width O(Ndwidth(Uε)) with accuracy,

∥G − Gθ∥L2 ≤ C(ε+ Cε
stabBN

−r+d/p∗

+ CCB
ε,r N

−r). (3.6)

Proof. We give a sketch of the proof, details can be found in SM B.3. Given function values of v
on a uniform grid with grid size 1/N , we use trigonometric polynomial interpolation (SM A.6) to
reconstruct v and use this together with Assumption 3.1 to construct a neural network. The resulting
approximation is then projected onto L2

N through trigonometric polynomial interpolation.

A recent result, [35, Theorem 36] (SM Lemma B.6), shows that any error bound for FNOs also
implies an error bound for DeepONets, by choosing the trunk nets as neural network approximations
of the Fourier basis. We apply this result with ε ∼ poly(1/N) to Theorem 3.6 to obtain the following
generic error bound for DeepONets.

5

Corollary 3.7. Assume the setting of Theorem 3.6. Then for every ε > 0, N ∈ N and ev-
ery corresponding FNO Gθ from Theorem 3.6 there exists a DeepONet G∗θ : X → L2(D) with

width(β) = O(Nd), depth(β) = O(depth(Gθ)), width(τ) = O(Nd+1) and depth(τ) ≤ 3 that
satisfies (3.6).

3.3 Estimates for physics-informed operator learning

Using the techniques from previous sections, we now present the very first theoretical result for
physics-informed operator learning. We demonstrate that if an error estimate for a DeepONet/FNO
and the growth of its derivatives are known (see SM D.1 on how to obtain these), then one can
prove an error estimate for the corresponding physics-informed DeepONet/FNO. For simplicity,
the following result focuses only on operators mapping to Cr(D) but the generalization to e.g.
Cr([0, T]×D) is immediate by setting D′ := [0, T]×D.

Theorem 3.8. Consider an operator G : X → Cr(D), r ∈ N, that satisfies Assumption 3.2 and
Assumption 3.5 with ℓ ∈ N . Let λ∗ ∈ (0,∞], let λ,C(λ) > 0 with λ ≤ λ∗ and let σ : N→ R be a
function such that for all p ∈ N there is a DeepONet/FNO Gθ such that

∥∥G(v)− Gθ(v)
∥∥
L2(D)

≤ Cp−λ and
∣∣Gθ(v)

∣∣
Cr(D)

≤ Cpσ(r) ∀r ∈ N, v ∈ X . (3.7)

Then for all β ∈ R with 0 < β ≤ (r−ℓ)λ∗−ℓσ(r)
r there exists a constant C∗ > 0 such that for all

v ∈ X and p ∈ N it holds that
∥∥L(Gθ(v))

∥∥
L2(D)

≤ C∗p−β . (3.8)

Proof. For suitable Dα, use SM Lemma B.1 with q = 2, f1 = G(v) and f2 = Gθ(v) together with
(3.7) to find ∥∥Dα(G(v)− Gθ(v))

∥∥
L2(D)

≤ C(r, λ)(p−λh−ℓ + pσ(r)hr−ℓ). (3.9)

Let β ∈ R with 0 < β ≤ (r−ℓ)λ∗−ℓσ(r)
r . We carefully balance terms by setting h = p−

σ(r)+β
r−ℓ and

λ = ℓ
r−ℓσ(r) +

r
r−ℓβ to find (3.8). Conclude using Assumption 3.5.

Finally, we use Theorem 3.4 to present an alternative error estimate for a physics-informed DeepONet
in the case that Assumption 3.1 is satisfied. As this assumption is different from assuming access
to an error bound for the corresponding DeepONet, it is interesting to use the techniques from the
previous sections rather than directly apply Theorem 3.8. The proof of the following theorem can be
found in SM B.4.

Theorem 3.9. Let r, s ∈ N, T > 0, let G : Cr(Td)→ C(s,r)([0, T]× T
d) be an operator that maps

a function u0 to the solution u of the PDE (2.1) with initial condition u0, and let Assumption 3.5
be satisfied. There exists a constant C > 0 such that for every Z,N,M ∈ N, ε, ρ > 0 there is an
DeepONet Gθ : Cr(Td)→ L2([0, T]× T

d) with Zd sensors with accuracy,

∥∥L(Gθ(v))
∥∥
L2([0,T]×Td)

≤ CMk+ρ(∥u∥C(s,ℓ)M
−s+Ms−1N ℓ(ε+Cε

stabZ
−r+d/p∗

+CCB
ε,r N

−r)).

(3.10)
Moreover, it holds that, depth(β) = depth(Uε), width(β) = O(M(Zd + Ndwidth(Uε))),
depth(τ) = 3 and width(τ) = O(MNd(N + ln(NM))).

4 Applications

We demonstrate the power and generality of the framework proposed in Section 3 by applying the
presented theory to the following case studies. First, we demonstrate how these generic bounds can
be used to overcome the curse of dimensionality (CoD) for linear Kolmogorov PDEs and nonlinear
parabolic PDEs (Section 4.1). These are the first available results that overcome the CoD for nonlinear
parabolic PDEs for PINNs and (physics-informed) operator learning. Next, we apply the results of
Section 3.3 to both linear and nonlinear operators and provide bounds on the approximation error for
physics-informed operator learning.

6

4.1 Overcoming the curse of dimensionality

For high-dimensional PDEs, it is not possible to obtain efficient approximation results using standard
neural network approximation theory [73, 13] as they will lead to convergence rates that suffer
from the CoD, meaning that the neural network size scales exponentially in the input dimension. In
literature, one has shown for some PDEs that their solution at a fixed time can be approximated to
accuracy ε > 0 with a network that has size O(poly(d)ε−β) and therefore overcomes the CoD.

Linear Kolmogorov PDEs We consider linear time-dependent PDEs of the following form.

Setting 4.1. Let s, r ∈ N, u0 ∈ C2
0 (R

d) and let u ∈ C(s,r)([0, T]× R
d) be the solution of

∂tu(x, t) =
1

2
Trace(σ(x)σ(x)T∆x[u](x, t)) + µ(x)T · ∇x[u](x, t), u(0, x) = u0(x) (4.1)

for all (x, t) ∈ D × [0, T], where σ : Rd → R
d×d and µ : Rd → R

d are affine functions and for
which ∥u∥C(s,2) grows at most polynomially in d. For every ε > 0, there is a neural network û0 of

depth O(poly(d) log
(
1/ε
)
) and width O(poly(d)ε−β) such that ∥u0 − û0∥L∞(Rd) < ε.

Prototypical examples of such linear Kolmogorov PDEs include the heat equation and the Black-
Scholes equation. In [21, 6, 33] the authors construct a neural network that approximates u(T) and
overcomes the CoD by emulating Monte-Carlo methods based on the Feynman-Kac formula. In [14]
one has proven that PINNs overcome the CoD as well, in the sense that the network size grows as
O(poly(dρd)ε−β) with ρd as defined in SM (C.10)). For a subclass of linear Kolmogorov PDEs it is
known that ρd = poly(d), such that the CoD can be fully overcome. We provide a shorter, alternative
proof (in SM C.2) for this result based on Theorem 3.4. SM Lemma C.6 verifies that Assumption 3.1
is satisfied.

Theorem 4.2. Assume that Setting 4.1 holds. For every ε > 0 and d ∈ N, there is a neural network

uθ of depth O(depth(û0)) and width O(poly(dρd)ε−(2+β) r+σ
r−2

s+1
s−1−

1+σ
s−1) such that,

∥∥L(uθ)
∥∥
L2([0,T]×[0,1]d)

+ ∥uθ − u∥L2(∂([0,T]×[0,1]d)) ≤ ε. (4.2)

Nonlinear parabolic PDEs Next, we consider nonlinear parabolic PDEs as in Section 4.3, which
typically arise in the context of nonlinear diffusion-reaction equations that describe the change in
space and time of some quantities, such as in the well-known Allen-Cahn equation [1].

Setting 4.3. Let s, r ∈ N and for u0 ∈ X ⊂ Cr(Td) let u ∈ C(s,r)([0, T]× T
d) be the solution of

(∂tu)(t, x) = (∆xu)(t, x) + F (u(t, x)), u(0, x) = u0(x), (t, x) ∈ [0, T]×D, (4.3)

with period boundary conditions, where F : R→ R is a polynomial and for which ∥u∥C(s,2) grows

at most polynomially in d. For every ε > 0, there is a neural network û0 of depthO(poly(d) ln
(
1/ε
)
)

and width O(poly(d)ε−β) such that ∥u0 − û0∥L∞(Td) < ε. Let µ, resp. µ∗, be the normalized

Lebesgue measure on [0, T]× T
d, resp. ∂([0, T]× T

d).

In [29] the authors have proven that ReLU neural networks overcome the CoD in the approximation
of u(T). We have reproven this result in SM Lemma C.14 for tanh neural networks to show that
Assumption 3.1 is satisfied. Using Theorem 3.4 we can now prove that PINNs overcome the CoD for
nonlinear parabolic PDEs. The proof is analogous to that of Theorem 4.2.

Theorem 4.4. Assume Setting 4.3. For every σ, ε > 0 and d ∈ N there is a neural network uθ of

depth O(ln
(
1/ε
)
) and width O(poly(d)ε−(2+β) r+σ

r−2
s+1
s−1−

1+σ
s−1) such that,

∥∥∂tuθ −∆xuθ − F (uθ)
∥∥
L2([0,T]×Td,µ)

+ ∥u− uθ∥L2(∂([0,T]×Td,µ∗)) ≤ ε. (4.4)

Similarly, one can use the results from Section 3.2 to obtain estimates for (physics-informed)
DeepONets for nonlinear parabolic PDEs (4.3) such as the Allen-Cahn equation. In particular, a
dimension-independent convergence rate can be obtained if the solution is smooth enough, which
improves upon the result of [40], which incurred the CoD. For simplicity, we present results for C(2,r)

functions, rather than C(s,r) functions, as we found that assuming more regularity did not necessarily
further improve the convergence rate. The proof is given in SM B.4.

7

Theorem 4.5. Assume Setting 4.3 and let G : X → Cr(Td) : u0 7→ u(T) and G∗ : X →
C(2,r)([0, T]× T

d) : u0 7→ u. For every σ, ε > 0, there exists a DeepONets Gθ and G∗θ such that

∥G − Gθ∥L2(Td×X) ≤ ε,
∥∥L(G∗θ)

∥∥
L2([0,T]×Td×X)

≤ ε. (4.5)

Moreover, for Gθ we have O(ε− d+σ
r) sensors and,

width(β) = O(ε− (d+σ)(2+β)
r), depth(β) = O(ln

(
1/ε
)
),

width(τ) = O(ε− d+1+σ
r), depth(τ) = 3,

(4.6)

whereas for G∗θ we have O(ε−
(3+σ)d
r−2) sensors and,

width(β) = O(ε−1−
(3+σ)(d+r(2+β))

r−2), depth(β) = O(ln
(
1/ε
)
),

width(τ) = O(ε−1−
(3+σ)(d+1)

r−2), depth(τ) = 3.
(4.7)

4.2 Error bounds for physics-informed operator learning

We demonstrate how Theorem 3.8 can be used to generalize available error estimates for DeepONets
and FNOs, e.g. [40, 35] and SM D.1, to estimates for their physics-informed counterparts.

Linear operators In the simplest case, the operator G of interest is linear. In [40, Theorem D.2], a
general error bound for ReLU DeepONets for linear operators has been established, which still holds
for tanh DeepONets. Using Theorem 3.8 it is then straightforward to prove convergence rates for
physics-informed DeepONets for solution operators of linear PDEs (2.1).

Consider an operator G : X → L2(Td) : v 7→ u as in Section 2.1, where v is the parameter/initial
condition and u the solution of the PDE (2.1). Following [40], we fix the measure µ on L2(Td) as
a Gaussian random field, such that v allows the Karhunen-Loève expansion v =

∑
k∈Zd αkXkek,

where |αk| ≤ exp
(
−ℓ|k|

)
with ℓ > 0, the Xk ∼ N (0, 1) are iid Gaussian random variables

and {ek}k∈Zd is the standard Fourier basis (SM A.5). In this setting, we can prove the following
approximation result, the proof of which can be found in SM D.3.

Theorem 4.6. Assume the setting above and that of Assumption 3.3, and assume that G(v) ∈
Cℓ+1(Td) for all v ∈ X . For all β > 0 there exists a constant C > 0 such that for any p ∈ N there
exists a DeepONet Gθ with p sensors and branch and trunk nets such that

∥∥L(Gθ))
∥∥
L2(L2(Td),µ)

≤ Cp−β . (4.8)

Moreover, size(τ) ≤ Cp d+1
d , depth(τ) = 3, size(β) ≤ p and depth(β) = 1.

Nonlinear operators For nonlinear PDEs a general result like Theorem 4.6 can not be obtained
from the currently available tools. Instead one needs to use Theorem 3.8 for every PDE of interest. In
the SM, we demonstrate this for a nonlinear ODE (gravity pendulum with external force, SM D.5)
and an elliptic PDE (Darcy flow, SM D.6).

5 Related work and discussion

This is the first paper to rigorously expose the connections between the different deep learning
frameworks from Section 2.2 for generic PDEs. Until now, most available results focus on providing
generic results for one specific method. In [28] and [22] one uses neural networks that approxi-
mate solutions to a generic ODE/PDE at a fixed time to construct space-time neural networks. A
generalization to PINNs is not immediate as the proof involves the emulation of the forward Euler
method. We have overcome this difficulty by constructing space-time neural networks using Taylor
expansions instead (Theorem 3.4). To bound the approximation error of PINNs one can use the
generic error bounds in Sobolev norms of e.g. [23, 24] for very general activation functions or the
more concrete bounds [13] for tanh neural networks. In both approaches, the only assumption is that
the solution of the PDE has sufficient Sobolev regularity. As a consequence, these results incur the
curse of dimensionality and are not applicable to high-dimensional PDEs. The authors of [13] analyze
PINNs based on three theoretical questions related to approximation, stability and generalization.

8

Other theoretical analyses of PINNs include e.g. [67, 68, 27]. For DeepONets, convergence rates for
advection-diffusion equations are presented in [15] and a clear workflow for obtaining generic error
estimates as well as worked out examples can be found in [40]. Similar results are obtained for FNOs
in [35]. A comprehensive comparison of DeepONets and FNOs is the topic of [47]. To the best of
the authors’ knowledge, no theoretical results for physics-informed operator learning are currently
available.

A second goal of the paper is to prove that deep learning-based frameworks can overcome the curse of
dimensionality (CoD). PDEs for which the curse of dimensionality has been overcome include linear
Kolmogorov PDEs e.g. [21, 33], nonlinear parabolic PDEs [29] and elliptic PDEs [4]. By assuming
that the initial data lies in a Barron class, the authors of [49] proved for elliptic PDEs that the Deep
Ritz Method [18] can overcome the CoD. Since the Barron class is a Banach algebra [9] it is possible
that our results, which mostly only involve multiplications and additions of neural networks, can be
extended to Barron functions. For PINNs, it is proven that they can overcome the CoD for linear
Kolmogorov PDEs [14]. We give an alternative proof of this result, improve the convergence rate
(Theorem 4.2) and additionally prove that PINNs can also overcome the CoD for nonlinear parabolic
PDEs (Theorem 4.4). DeepONets and FNOs can overcome the CoD in many cases [40, 35] but we
note that this does not yet include nonlinear parabolic PDEs such as the Allen-Cahn equation. In
Theorem 4.5 we prove that dimension-independent convergence rates can be obtained if the solution
is sufficiently regular.

It is evident that the generic bounds presented here can only be obtained under suitable assumptions.
These should always be checked to prevent misleading claims about mathematical guarantees for
the considered deep learning methods. We briefly discuss how restrictive these are and whether
they can be relaxed. Assuming the existence of a neural network that approximates the solution
of PDE at a fixed time (Assumption 3.1) is of course essential, but such a result can usually be
obtained by emulating an existing numerical method. Proving a bound on the Sobolev norm of
that network is always possible as we only consider smooth networks. Assumption 3.2 holds for
many domains, including rectangular and smooth ones. Assumption 3.3 and Assumption 3.5 also
hold for a very broad class of PDEs, much like the assumption on the size of the neural network
approximation in Setting 4.1 and 4.3 holds for most functions of interest. Therefore, the assumption
that the PDE solution isC(s,r)-regular seems to be the most restrictive. However, results like Theorem
3.4 could be extended to e.g. Sobolev regular functions by using the Bramble-Hilbert lemma instead
of Taylor expansions. Another restriction is that we exclusively focused on neural networks with the
tanh activation function. This was only for simplicity of exposition. All results still hold for other
sigmoidal activation functions, as well as more general smooth activation functions, which might
give rise to slightly different convergence rates. A last restriction is that the obtained rates are not
optimal, but this is not the goal of our framework. In particular, for PINNs for low-dimensional PDEs
it is beneficial to use e.g. [24, 13].

Optimizing the obtained convergence rates and comparing with optimal ones is one direction for
future research. Previously mentioned possibilities include extending to more general activation
functions and less regular functions. Another direction is to make the connection between our results
and that of [9] where they prove that Barron spaces are Banach algebras and use this to obtain
dimension-independent convergence rates for PDEs with initial data in a Barron class by emulating
numerical methods. Finally, we only considered the approximation error in the present analysis. It
would be interesting to prove generic results for the total error of the trained learning architectures by
also bounding the underlying generalization error.

9

References

[1] S. M. Allen and J. W. Cahn. A microscopic theory for antiphase boundary motion and its application to
antiphase domain coarsening. Acta metallurgica, 27(6):1085–1095, 1979.

[2] G. Bai, U. Koley, S. Mishra, and R. Molinaro. Physics informed neural networks (PINNs) for approximating
nonlinear dispersive PDEs. arXiv preprint arXiv:2104.05584, 2021.

[3] A. Barth, A. Jentzen, A. Lang, and C. Schwab. Numerical Analysis of Stochastic Ordinary Differential
Equations. ETH Zürich, 2018.

[4] C. Beck, L. Gonon, and A. Jentzen. Overcoming the curse of dimensionality in the numerical approximation
of high-dimensional semilinear elliptic partial differential equations. arXiv preprint arXiv:2003.00596,
2020.

[5] C. Beck, F. Hornung, M. Hutzenthaler, A. Jentzen, and T. Kruse. Overcoming the curse of dimensionality
in the numerical approximation of Allen-Cahn partial differential equations via truncated full-history
recursive multilevel Picard approximations. Journal of Numerical Mathematics, 28(4):197–222, 2020.

[6] J. Berner, P. Grohs, and A. Jentzen. Analysis of the generalization error: Empirical risk minimization over
deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of
Black-Scholes partial differential equations. SIAM Journal on Mathematics of Data Science, 2(3):631–657,
2020.

[7] S. Cai, Z. Wang, L. Lu, T. A. Zaki, and G. E. Karniadakis. DeepM&Mnet: Inferring the electroconvection
multiphysics fields based on operator approximation by neural networks. Journal of Computational Physics,
436:110296, 2021.

[8] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks with arbitrary
activation functions and its application to dynamical systems. IEEE Transactions on Neural Networks,
6(4):911–917, 1995.

[9] Z. Chen, J. Lu, and Y. Lu. On the representation of solutions to elliptic PDEs in Barron spaces. arXiv
preprint arXiv:2106.07539, 2021.

[10] A. Cohen, R. Devore, and C. Schwab. Analytic regularity and polynomial approximation of parametric
and stochastic elliptic PDEs. Analysis and Applications, 9(01):11–47, 2011.

[11] G. Constantine and T. Savits. A multivariate Faa di Bruno formula with applications. Transactions of the
American Mathematical Society, 348(2):503–520, 1996.

[12] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314, 1989.

[13] T. De Ryck, S. Lanthaler, and S. Mishra. On the approximation of functions by tanh neural networks.
Neural Networks, 2021.

[14] T. De Ryck and S. Mishra. Error analysis for physics informed neural networks (PINNs) approximating
Kolmogorov PDEs. arXiv preprint arXiv:2106.14473, 2021.

[15] B. Deng, Y. Shin, L. Lu, Z. Zhang, and G. E. Karniadakis. Convergence rate of DeepONets for learning
operators arising from advection-diffusion equations. arXiv preprint arXiv:2102.10621, 2021.

[16] M. Dissanayake and N. Phan-Thien. Neural-network-based approximations for solving partial differential
equations. Communications in Numerical Methods in Engineering, 1994.

[17] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional parabolic partial
differential equations and backward stochastic differential equations. Communications in Mathematics and
Statistics, 5(4):349–380, 2017.

[18] W. E and B. Yu. The deep Ritz method: a deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

[19] R. A. Fisher. The wave of advance of advantageous genes. Annals of eugenics, 7(4):355–369, 1937.

[20] S. Goswami, M. Yin, Y. Yu, and G. E. Karniadakis. A physics-informed variational DeepONet for
predicting crack path in quasi-brittle materials. Computer Methods in Applied Mechanics and Engineering,
391:114587, 2022.

10

[21] P. Grohs, F. Hornung, A. Jentzen, and P. Von Wurstemberger. A proof that artificial neural networks
overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential
equations. arXiv preprint arXiv:1809.02362, 2018.

[22] P. Grohs, F. Hornung, A. Jentzen, and P. Zimmermann. Space-time error estimates for deep neural network
approximations for differential equations. arXiv preprint arXiv:1908.03833, 2019.

[23] I. Gühring, G. Kutyniok, and P. Petersen. Error bounds for approximations with deep ReLU neural
networks in W s,p norms. Analysis and Applications, 18(05):803–859, 2020.

[24] I. Gühring and M. Raslan. Approximation rates for neural networks with encodable weights in smoothness
spaces. Neural Networks, 134:107–130, 2021.

[25] P. Henry-Labordere. Counterparty risk valuation: A marked branching diffusion approach. Available at
SSRN 1995503, 2012.

[26] P. Henry-Labordere, X. Tan, and N. Touzi. A numerical algorithm for a class of BSDEs via the branching
process. Stochastic Processes and their Applications, 124(2):1112–1140, 2014.

[27] B. Hillebrecht and B. Unger. Certified machine learning: A posteriori error estimation for physics-informed
neural networks. arXiv preprint arXiv:2203.17055, 2022.

[28] F. Hornung, A. Jentzen, and D. Salimova. Space-time deep neural network approximations for high-
dimensional partial differential equations. arXiv preprint arXiv:2006.02199, 2020.

[29] M. Hutzenthaler, A. Jentzen, T. Kruse, and T. A. Nguyen. A proof that rectified deep neural networks
overcome the curse of dimensionality in the numerical approximation of semilinear heat equations. SN
partial differential equations and applications, 1(2):1–34, 2020.

[30] M. Hutzenthaler, A. Jentzen, B. Kuckuck, and J. L. Padgett. Strong Lp-error analysis of nonlinear
Monte Carlo approximations for high-dimensional semilinear partial differential equations. arXiv preprint
arXiv:2110.08297, 2021.

[31] A. D. Jagtap and G. E. Karniadakis. Extended physics-informed neural networks (XPINNs): A general-
ized space-time domain decomposition based deep learning framework for nonlinear partial differential
equations. Communications in Computational Physics, 28(5):2002–2041, 2020.

[32] A. D. Jagtap, E. Kharazmi, and G. E. Karniadakis. Conservative physics-informed neural networks on
discrete domains for conservation laws: Applications to forward and inverse problems. Computer Methods
in Applied Mechanics and Engineering, 365:113028, 2020.

[33] A. Jentzen, D. Salimova, and T. Welti. A proof that deep artificial neural networks overcome the curse of
dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant
diffusion and nonlinear drift coefficients. arXiv preprint arXiv:1809.07321, 2018.

[34] A. N. Kolmogorov. Étude de l’équation de la diffusion avec croissance de la quantité de matière et son
application à un problème biologique. Bull. Univ. Moskow, Ser. Internat., Sec. A, 1:1–25, 1937.

[35] N. Kovachki, S. Lanthaler, and S. Mishra. On universal approximation and error bounds for Fourier Neural
Operators. arXiv preprint arXiv:2107.07562, 2021.

[36] N. Kovachki, Z. Li, B. Liu, K. Azizzadensheli, K. Bhattacharya, A. Stuart, and A. Anandkumar. Neural
operator: Learning maps between function spaces. arXiv preprint arXiv:2108.08481v3, 2021.

[37] G. Kutyniok, P. Petersen, M. Raslan, and R. Schneider. A theoretical analysis of deep neural networks and
parametric PDEs. Constructive Approximation, pages 1–53, 2021.

[38] I. E. Lagaris, A. Likas, and P. G. D. Neural-network methods for boundary value problems with irregular
boundaries. IEEE Transactions on Neural Networks, 11:1041–1049, 2000.

[39] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial
differential equations. IEEE Transactions on Neural Networks, 9(5):987–1000, 2000.

[40] S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates for DeepONets: A deep learning framework
in infinite dimensions. Transactions of Mathematics and Its Applications, 6(1):tnac001, 2022.

[41] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar. Fourier
neural operator for parametric partial differential equations, 2020.

11

[42] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. M. Stuart, and A. Anandkumar.
Neural operator: Graph kernel network for partial differential equations. CoRR, abs/2003.03485, 2020.

[43] Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. Liu, A. M. Stuart, K. Bhattacharya, and A. Anandkumar.
Multipole graph neural operator for parametric partial differential equations. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 6755–6766. Curran Associates, Inc., 2020.

[44] Z. Li, H. Zheng, N. Kovachki, D. Jin, H. Chen, B. Liu, K. Azizzadenesheli, and A. Anandkumar. Physics-
informed neural operator for learning partial differential equations. arXiv preprint arXiv:2111.03794,
2021.

[45] C. Lin, Z. Li, L. Lu, S. Cai, M. Maxey, and G. E. Karniadakis. Operator learning for predicting multiscale
bubble growth dynamics. The Journal of Chemical Physics, 154(10):104118, 2021.

[46] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis. Learning nonlinear operators via DeepONet based
on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3):218–229, 2021.

[47] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and G. E. Karniadakis. A comprehensive and fair
comparison of two neural operators (with practical extensions) based on fair data. Computer Methods in
Applied Mechanics and Engineering, 393:114778, 2022.

[48] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis. DeepXDE: A deep learning library for solving differential
equations. SIAM Review, 63(1):208–228, 2021.

[49] Y. Lu, J. Lu, and M. Wang. A priori generalization analysis of the deep Ritz method for solving high
dimensional elliptic partial differential equations. In Conference on Learning Theory, pages 3196–3241.
PMLR, 2021.

[50] K. O. Lye, S. Mishra, and D. Ray. Deep learning observables in computational fluid dynamics. Journal of
Computational Physics, page 109339, 2020.

[51] K. O. Lye, S. Mishra, D. Ray, and P. Chandrashekar. Iterative surrogate model optimization (ISMO): An
active learning algorithm for pde constrained optimization with deep neural networks. Computer Methods
in Applied Mechanics and Engineering, 374:113575, 2021.

[52] Z. Mao, A. D. Jagtap, and G. E. Karniadakis. Physics-informed neural networks for high-speed flows.
Computer Methods in Applied Mechanics and Engineering, 360:112789, 2020.

[53] Z. Mao, L. Lu, O. Marxen, T. A. Zaki, and G. E. Karniadakis. DeepM&Mnet for hypersonics: Predicting
the coupled flow and finite-rate chemistry behind a normal shock using neural-network approximation of
operators. Journal of Computational Physics, 447:110698, 2021.

[54] H. P. McKean. Application of brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov.
Communications on pure and applied mathematics, 28(3):323–331, 1975.

[55] S. Mishra and R. Molinaro. Estimates on the generalization error of physics informed neural networks
(PINNs) for approximating PDEs. arXiv preprint arXiv:2006.16144, 2020.

[56] S. Mishra and R. Molinaro. Estimates on the generalization error of physics-informed neural networks for
approximating a class of inverse problems for PDEs. IMA Journal of Numerical Analysis, 2021.

[57] S. Mishra and R. Molinaro. Physics informed neural networks for simulating radiative transfer. Journal of
Quantitative Spectroscopy and Radiative Transfer, 270:107705, 2021.

[58] B. Øksendal. Stochastic differential equations. Springer, 2003.

[59] J. A. Opschoor, P. C. Petersen, and C. Schwab. Deep ReLU networks and high-order finite element
methods. Analysis and Applications, 18(05):715–770, 2020.

[60] J. A. Opschoor, C. Schwab, and J. Zech. Exponential ReLU DNN expression of holomorphic maps in high
dimension. Constructive Approximation, pages 1–46, 2021.

[61] G. Pang, L. Lu, and G. E. Karniadakis. fPINNs: Fractional physics-informed neural networks. SIAM
journal of Scientific computing, 41:A2603–A2626, 2019.

[62] J. Pathak, S. Subramanian, P. Harrington, S. Raja, A. Chattopadhyay, M. Mardani, T. Kurth, D. Hall, Z. Li,
K. Azizzadenesheli, p. Hassanzadeh, K. Kashinath, and A. Anandkumar. Fourcastnet: A global data-driven
high-resolution weather model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214,
2022.

12

[63] M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of nonlinear partial differential
equations. Journal of Computational Physics, 357:125–141, 2018.

[64] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707, 2019.

[65] M. Raissi, A. Yazdani, and G. E. Karniadakis. Hidden fluid mechanics: A Navier-Stokes informed deep
learning framework for assimilating flow visualization data. arXiv preprint arXiv:1808.04327, 2018.

[66] C. Schwab and J. Zech. Deep learning in high dimension: Neural network expression rates for generalized
polynomial chaos expansions in uq. Analysis and Applications, 17(01):19–55, 2019.

[67] Y. Shin, J. Darbon, and G. E. Karniadakis. On the convergence and generalization of physics informed
neural networks. arXiv preprint arXiv:2004.01806, 2020.

[68] Y. Shin, Z. Zhang, and G. E. Karniadakis. Error estimates of residual minimization using neural networks
for linear equations. arXiv preprint arXiv:2010.08019, 2020.

[69] S. Wang and P. Perdikaris. Long-time integration of parametric evolution equations with physics-informed
DeepONets. arXiv preprint arXiv:2106.05384, 2021.

[70] S. Wang, H. Wang, and P. Perdikaris. Learning the solution operator of parametric partial differential
equations with physics-informed DeepOnets. arXiv preprint arXiv:2103.10974, 2021.

[71] J. Yang, Q. Du, and W. Zhang. Uniform Lp-bound of the Allen-Cahn equation and its numerical
discretization. International Journal of Numerical Analysis & Modeling, 15, 2018.

[72] L. Yang, X. Meng, and G. E. Karniadakis. B-PINNs: Bayesian physics-informed neural networks for
forward and inverse pde problems with noisy data. Journal of Computational Physics, 425:109913, 2021.

[73] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:103–114,
2017.

13

A Notation and preliminaries

We introduce notation and preliminary results regarding finite differences, Sobolev spaces, the Legen-
dre basis, the Fourier basis, trigonometric polynomial interpolation and neural network approximation
theory.

A.1 Overview of used notation

Table 1: Glossary of used notation.

Symbol Description Page

σ tanh activation function
d spatial dimension of domain
T
d periodic torus, identified with [0, 2π)d

D general d-dimensional spatial domain p. 2
Ω general domain, either Ω = D or Ω = [0, T]×D p. 2
∂Ω boundary of Ω
Y function space of parameters for L, e.g. La with a ∈ Y p. 2
Z function space of initial conditions for the PDE (2.1) p. 2
X input function space of the operator G p. 2
G operator of interest, G : X → L2(Ω) p. 2
L, La differential operator that describes the PDE p. 2
r, s regularity of the PDE solution, u ∈ Cr(D) or u ∈ C(s,r)([0, T]×D) p. 3
D(k,α) D(k,α) := Dk

tD
α
x := ∂kt ∂

α1
x1
. . . ∂αd

xd
, for (k,α) ∈ N

d+1
0 p. 4

ℓ upper bound on ∥α∥1 p. 4
q see Assumption 3.1 p. 4
p, p∗ see Assumption 3.5 p. 5
poly(d) a polynomial in d p. 5
Cr

0 subset of Cr functions with compact support
∆α,r

h finite difference operator; if the variable is time: ∆α,s
h,t p. 6

JN grid point indices, JN = {0, . . . , 2N}d p. 14
KN Fourier wavenumbers KN = {k ∈ Z

d | |k|∞ ≤ N}
L2 Space of square-integrable functions
Hs Sobolev space of smoothness s, with norm ∥ · ∥Hs p. 14
L2
N L2

N ⊂ L2 trigonometric polynomials of degree ≤ N p. 16

A.2 Finite differences

For h > 0, α ∈ N
d
0, r ∈ N and ℓ := ∥α∥1, we define a finite difference operator ∆α,r

h as,

∆α,r
h [f](t, x) =

k+r−1∑

ℓ=0

ck,rℓ f(t, x+ hb), (A.1)

for some b ∈ R
d that allows to approximate Dα

x f up to accuracy O(hs). This means that for any
f ∈ Cr+ℓ it holds that∣∣∣h−ℓ ·∆α,r

h [f](t, x)−Dα
x f(t, x)

∣∣∣ ≤ cℓ,r
∣∣f(t, ·)

∣∣
Cr+ℓh

r for h > 0, (A.2)

where cℓ,r > 0 does not depend on f and h. Similarly, we can define a finite difference operator
∆k,s

h,t [f](t, x) to approximate Dk
t f(t, x) with the same accuracy as in (A.2).

A.3 Sobolev spaces

Let d ∈ N, k ∈ N0, 1 ≤ p ≤ ∞ and let Ω ⊆ R
d be open. For a function f : Ω → R and a

(multi-)index α ∈ N
d
0 we denote by

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαd

d

(A.3)

14

the classical or distributional (i.e. weak) derivative of f . We denote by Lp(Ω) the usual Lebesgue
space and for we define the Sobolev space W k,p(Ω) as

W k,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ N
d
0 with |α| ≤ k}. (A.4)

For p <∞, we define the following seminorms on W k,p(Ω),

|f |Wm,p(Ω) =

 ∑

|α|=m

∥Dαf∥pLp(Ω)

1/p

for m = 0, . . . , k, (A.5)

and for p =∞ we define

|f |Wm,∞(Ω) = max
|α|=m

∥Dαf∥L∞(Ω) for m = 0, . . . , k. (A.6)

Based on these seminorms, we can define the following norm for p <∞,

∥f∥Wk,p(Ω) =

k∑

m=0

|f |pWm,p(Ω)

1/p

, (A.7)

and for p =∞ we define the norm

∥f∥Wk,∞(Ω) = max
0≤m≤k

|f |Wm,∞(Ω). (A.8)

The space W k,p(Ω) equipped with the norm ∥·∥Wk,p(Ω) is a Banach space.

We denote by Ck(Ω) the space of functions that are k times continuously differentiable and equip
this space with the norm ∥f∥Ck(Ω) = ∥f∥Wk,∞(Ω).

Lemma A.1 (Continuous Sobolev embedding). Let d, ℓ ∈ N and let k ≥ d/2 + ℓ. Then there exists

a constant C > 0 such that for any f ∈ Hk(Td) it holds that

∥f∥Cℓ(Td) ≤ C∥f∥Hk(Td). (A.9)

A.4 Notation for Legendre basis

In a one-dimensional setting, we denote for j ∈ N0 the j-th Legendre polynomial by Lj . Following
the notation of [60], it holds that Lj(x) =

∑ℓ
j=0 c

j
ℓx

ℓ where, with m(ℓ) := (j − ℓ)/2,

cjℓ =

{
0 j − ℓ{0, . . . , j} ∪ 2Z+ 1,

(−1)m2−j
(
j
m

)(
j+ℓ
j

)√
2j + 1 j − ℓ{0, . . . , j} ∪ 2Z,

(A.10)

where each polynomial is normalized in L2([−1, 1], λ/2), where λ is the Lebesgue measure. Simi-
larly, the tensorized Legendre polynomials,

Lν(x) =

d∏

j=1

Lνj (xj) for all ν ∈ N
d
0, (A.11)

constitute an orthonormal basis of L2([−1, 1]d, λ/2d). By considering the lexicographic order on
N

d
0, of which we denote the enumeration by κ : N→ N

d
0, one can defined an ordered basis (Lj)j∈N

by setting Lj := L
κ(j).

From [60, eq. (2.19)] it also follows that,

∀s ∈ N0,ν ∈ N
d
0 : ∥Lν∥Cs([−1,1]d) ≤

d∏

j=1

(1 + 2νj)
1/2+2s. (A.12)

15

A.5 Notation for Standard Fourier basis

Using the notation from [40], we introduce the following “standard” real Fourier basis {eκ}κ∈Zd in d
dimensions. For κ = (κ1, . . . , κd) ∈ Z

d, we let σ(κ) be the sign of the first non-zero component of
κ and we define

eκ := Cκ

1, σ(κ) = 0,

cos
(
⟨κ, x⟩

)
, σ(κ) = 1,

sin
(
⟨κ, x⟩

)
, σ(κ) = −1,

(A.13)

where the factor Ck > 0 ensures that eκ is properly normalized, i.e. that ∥eκ∥L2(Td) = 1. Next, let
κ : N → Z

d be a fixed enumeration of Zd, with the property that j 7→ |κ(j)|∞ is monotonically
increasing, i.e. such that j ≤ j′ implies that |κ(j)|∞ ≤ |κ(j′)|∞. This will allow us to introduce an
N-indexed version of the Fourier basis,

ej(x) := e
κ(j)(x), (j ∈ N). (A.14)

Finally we note that
∥eκ∥Cs([0,2π]d) ≤ |κ|

s
∞. (A.15)

A.6 Trigonometric polynomial interpolation

For N ∈ N, let xj =
2πj

2N+1 and let yj ∈ R for all j ∈ JN = {0, . . . , 2N + 1}d. We will construct
an operator

QN : R|JN | → L2(Td) : y 7→ QN (y), (A.16)

where QN (y) is a trigonometric polynomial of degree at most N such that QN (y)(xj) = yj for
all j ∈ JN . We construct this polynomial using the discrete Fourier transform and its inverse. For
k ∈ KN = {−N, . . . , N}d, we define the discrete Fourier transform as,

Xk(y) =
∑

j∈JN

yj exp
(
−i⟨k, xj⟩

)
, (A.17)

and the trigonometric interpolation polynomial as,

QN (y)(z) =
1

|KN |
∑

k∈KN

Xk(y) exp
(
i⟨k, z⟩

)

=
1

|KN |
∑

k∈KN

∑

j∈JN

yj cos
(
⟨k, z − xj⟩

)

=
1

|KN |
∑

k∈KN

∑

j∈JN

yj

(
cos
(
⟨k, xj⟩

)
cos
(
⟨k, z⟩

)
− sin

(
⟨k, xj⟩

)
sin
(
⟨k, z⟩

))

=
1

|KN |
∑

k∈KN

∑

j∈JN

yjak,jek(z),

(A.18)

where,

ak,j =

1, σ(k) = 0,

cos
(
⟨k, xj⟩

)
, σ(k) = 1,

sin
(
⟨k, xj⟩

)
, σ(k) = −1.

(A.19)

We can also define an encoder EN by,

EN : C(Td)→ R
|JN | : f 7→ (f(xj))j∈JN

. (A.20)

The composition QN ◦ EN is called the pseudo-spectral projection onto the space of trigonometric
polynomials of degree at most N and has the following property [35].

Lemma A.2. For s, k ∈ N0 with s > d/2 and s ≥ k, and f ∈ Cs(Td) it holds that
∥∥f − (QN ◦ EN)(f)

∥∥
Hk(Td)

≤ C(s, d)N−(s−k)∥f∥Hs(Td), (A.21)

for a constant C(s, d) > 0 that only depends on s and d.

16

A.7 Neural network approximation theory

We recall some basic results on the approximation of functions by tanh neural networks in this section.
All results are adaptations from results in [13]. The following two lemmas address the approximation
of univariate monomials and the multiplication operator.

Lemma A.3 (Approximation of univariate monomials, Lemma 3.2 in [13]). Let k ∈ N0, s ∈ 2N− 1,
M > 0 and define fp : [−M,M] → R : x 7→ xp for all p ∈ N. For every ε > 0, there exists a

shallow tanh neural network ψs,ε : [−M,M]→ R
s of width

3(s+1)
2 such that

max
p≤s

∥∥fp − (ψs,ε)p
∥∥
Wk,∞ ≤ ε. (A.22)

Furthermore, the weights of ψs,ε scale as O
(
ε−s/2

)
for small ε.

Lemma A.4 (Shallow approximation of multiplication of d numbers, Corollary 3.7 in [13]). Let
d ∈ N, k ∈ N0 and M > 0. Then for every ε > 0, there exist a shallow tanh neural network

×̂ε
d : [−M,M]d → R of width 3

⌈
d+1
2

⌉ ∣∣Pd,d

∣∣ (or 4 if d = 2) such that

∥∥∥∥∥∥
×̂ε

d(x)−
d∏

i=1

xi

∥∥∥∥∥∥
Wk,∞

≤ ε. (A.23)

Furthermore, the weights of the network scale as O(ε−d/2) for small ε.

B Additional material for Section 3

B.1 Auxiliary results for Section 3

Lemma B.1. Let q ∈ [1,∞], r, ℓ ∈ N with ℓ ≤ r and f1, f2 ∈ C(0,r)([0, T]×D). If Assumption 3.2

holds then there exists a constant C(r) > 0 such that for any α ∈ N
d
0 with ℓ := ∥α∥1 it holds that

∥∥Dα
x (f1 − f2)

∥∥
Lq ≤ C(∥f1 − f2∥Lqh

−ℓ + max
j=1,2

∣∣fj
∣∣
C(0,r)h

r−ℓ) ∀h > 0. (B.1)

Proof. From the triangle inequality and (A.2) the existence of a constant C(r) > 0 follows such that,

∥∥Dα
x (f1 − f2)

∥∥
Lq ≤ max

j=1,2

∥∥∥Dαf1 − h−ℓ ·∆α,s
h [f1]

∥∥∥
Lq

+ C(r)h−ℓ∥f1 − f2∥Lq

≤ cℓ,r max
j=1,2

∣∣fj
∣∣
C(0,r)h

r−ℓ + C(r)h−ℓ∥f1 − f2∥Lq .

Lemma B.2. Using the notation of the proof of Theorem 3.4 (SM B.2), it holds that
∥∥∥D(k,α)(ũ− û)

∥∥∥
C0
≤ δ. (B.2)

Proof. Using the Faà di Bruno formula [11] and its consequences for estimating the norms of deriva-
tives of compositions [13, Lemma A.7] one can prove for sufficiently regular functions g1, g2, h1, h2
estimates of the form,

∥∥∥Dβ(g1 ◦ h1 − g2 ◦ h2)
∥∥∥
C0
≤ C(∥g1 − g2∥C∥β∥1 + ∥h1 − h2∥C∥β∥1), (B.3)

assuming that the compositions are well-defined and where the constant C > 0 may depend on
g1, g2, h1, h2 and their derivatives. Using this theorem we can prove that

∥∥∥∥∥∥
D(k,α)û−D(k,α)

M∑

m=1

s−1∑

i=0

∆i,s−i
1/M,t[f](tm, x)

M−ii!
· φ̂δ

i (t− tm) · ΦM
m (t)

∥∥∥∥∥∥
< Cδ. (B.4)

Because the size of the neural network ×̂δ in the definition of û does not depend on its accuracy δ
(see Lemma A.4) we can rescale δ and therefore set C = 1/2 in the above inequality.

17

Next, we observe that,

D(k,α)
M∑

m=1

s−1∑

i=0

∆i,s−i
1/M,t[f](tm, x)

M−ii!
· (φ̂δ

i − φi)(t− tm) · ΦM
m (t)

=

M∑

m=1

s−1∑

i=0

∆i,s−i
1/M,t[D

α
x f](tm, x)

M−ii!
·

k∑

n=0

(
k

n

)
∂nt (φ̂

δ
i − φi)(t− tm) · ∂k−n

t ΦM
m (t)

(B.5)

Analogously to before, because the sizes of the neural networks φ̂δ
i are independent of their accuracy

δ we can rescale δ such that ∥(B.5)∥C0 ≤ δ/2. The claim follows by the triangle inequality,
∥∥∥D(k,α)(ũ− û)

∥∥∥
C0
≤ ∥(B.4)∥C0 + ∥(B.5)∥C0 ≤ δ. (B.6)

Lemma B.3. Let ∆k,s
h,t be a finite difference operator cf. Section 3.3, let 1 ≤ j ≤ d, let ℓ ∈ N0 and

let α ∈ N
d
0 with ∥α∥1 = ℓ. Let u, û ∈ C(s,ℓ)([−2h, 2h]×D) such that

∥∥Dα
x (u(t, ·)− û(t, ·))

∥∥
Lq ≤ ε. (B.7)

Then there exists cr > 0 holds that,
∥∥∥∥∥∥
Dk,α

s−1∑

i=0

∆i,s−i
h,t [û](0, x)

hii!
ti − u(t, ·)

∥∥∥∥∥∥
Lq

≤ cr
(
εh−k + |Dα

x u|C(s,0)h
s−k
)
. (B.8)

Proof. Let t ∈ [−2h, 2h], α ∈ N
d
0 with ∥α∥1 = ℓ and x ∈ R

d be arbitrary. We first observe that,

Dk,α
s−1∑

i=0

∆i,s−i
h,t [û](0, x)

hii!
ti =

s−1∑

i=k

∆i,s−i
h,t [Dα

x û](0, x)

hi(i− k)! ti−k. (B.9)

Taylor’s theorem then guarantees the existence of ξt,x ∈ [−2h, 2h] such that

Dk,α

s−1∑

i=0

∆i,s−i
h,t [û](0, x)

hii!
ti − u(t, ·)

=

s−1−k∑

i=0

∆

i+k,s−i−k
h,t [Dα

x û](0, x)

hi+ki!
ti − Di+k,αu(0, x)

i!
ti

+

Ds,αu(ξt,x, x)

(s− k)! ts−k.

(B.10)

Now observe that because of assumption (B.7) and the definition and properties (A.2) of the finite
difference operator, there exists a constant Cs > 0 such that,

∥∥∥∆i+k,s−i−k
h,t [Dα

x û](0, x)−∆i+k,s−i−k
h,t [Dα

x u](0, x)
∥∥∥
Lq
≤ Csε,

∣∣∣∣∣∣
∆i+k,s−i−k

h,t [Dα
x u](0, x)

hi+k
−Di+k,αu(0, x)

∣∣∣∣∣∣
≤ Cs|Dα

x u|C(s,0)h
r−i−k.

(B.11)

Combining all previous results provides us with the existence of a constant cs > 0 such that,
∥∥∥∥∥∥
Dk,α

s−1∑

i=0

∆i,s−i
h,t [û](0, x)

hii!
ti − u(t, ·)

∥∥∥∥∥∥
Lq

≤
s−1−k∑

i=0

[
Csε

hi+ki!
hi +

Cs

i!
|Dα

x u|C(s,0)h
s−i−khi

]
+

1

r!
|Dα

x u|C(s,0)h
s−k

≤ cs
(
εh−k + |Dα

x u|C(s,0)h
s−k
)
.

(B.12)

18

Definition B.4. Let C > 0, N ∈ N, 0 < ε < 1 and α = ln
(
CNk/ε

)
. For every 1 ≤ j ≤ N , we

define the function ΦN
j : [0, T]→ [0, 1] by

ΦN
1 (t) =

1

2
− 1

2
σ

(
α

(
t− T

N

))
,

ΦN
j (t) =

1

2
σ

(
α

(
t− T (j − 1)

N

))
− 1

2
σ

(
α

(
t− Tj

N

))
,

ΦN
N (t) =

1

2
σ

(
α

(
t− T (N − 1)

N

))
+

1

2
.

(B.13)

The functions {ΦN
j }j approximate a partition of unity in the sense that for every j it holds on INj

that for some ε > 0,

1−
1∑

v=−1

ΦN
j+v ≲ ε and

∑

|v|≥2,
j+v∈{1,...,N}

ΦN
j+v ≲ ε. (B.14)

This is made exact in [13, Section 4].
Theorem B.5. Let k ∈ N ∪ {0}, q ∈ {2,∞}, ξ > 0 and s ∈ N. Let µ be a probability measure on
D and let f ∈ Cs([0, T], Lq(µ)). Assume that for every 0 ≤ ℓ ≤ k there is a constant C∗ℓ > 0 for

which it holds that for every N ∈ N there exist functions {pNj }Nj=1 that satisfy for all 1 ≤ j ≤ N ,
∣∣∣f − pNj

∣∣∣
Cℓ(JN

j ,Lq(µ))
= max

t∈
[

(i−2)T
N ,

(i+1)T
N

]

∥∥∥Dℓ
t(f(t)− pNj (t))

∥∥∥
Lq(µ)

≤ C∗ℓN−s+ℓ + ξ. (B.15)

Let Ck := max{max0≤ℓ≤k C∗ℓ , ∥f∥Ck([0,T],Lq(µ)), 1}. There exists a constant C(k) > 0 that only

depends on k such that for all N ≥ 3 it holds that,∥∥∥∥∥∥
f −

N∑

j=1

pNj · ΦN
j

∥∥∥∥∥∥
Ck([0,T],Lq(µ))

≤ C lnk (N)

[Ck
Ns−k

+ ξNk

]
. (B.16)

Proof. We follow the proof of [13, Theorem 5.1]. All steps of the proofs are identical, with the only
difference being that the W k,∞([0, 1]d)-norm of [13] is replaced by the Ck([0, T]× L2(µ))-norm
in this work. Following [13], one divides the domain [0, T] into intervals INi = [ti−1, ti], with
ti = iT/N and N ∈ N large enough. On each of these intervals, f locally can be approximated (in
Sobolev norm) by pNj , by virtue of the assumptions of the theorem. A global approximation can
then be constructed by multiplying each pNj with an approximation of the indicator function of the
corresponding intervals and summing over all intervals.

We now highlight the main steps in the proof. Step 2a (as in [13]) results in the following estimate,∥∥∥∥∥∥
f −

N∑

j=1

f · ΦN
j

∥∥∥∥∥∥
Ck(IN

i ,Lq(µ))

≤ C∥f∥Ck(IN
i ,Lq(µ))

ε+Nk+1 lnk

(
CNk

ε

)
ε

 . (B.17)

Step 2b results in the estimate,∥∥∥∥∥∥

N∑

j=1

(f − pNj) · ΦN,d
j

∥∥∥∥∥∥
Ck(IN

i ,Lq(µ))

≤ C lnk

(
CNk

ε

)[Ck
Ns−k

+ ξNk + CkNk+1ε

]
, (B.18)

Putting everything together, we find that if CNk ≥ ε,∥∥∥∥∥∥
f −

N∑

j=1

pNj · ΦN
j

∥∥∥∥∥∥
Ck([0,T],Lq(µ))

≤ C lnk

(
CNk

ε

)[
(∥f∥Ck(IN

i ,Lq(µ)) + Ck)Nk+1ε+
Ck

Ns−k
+ ξNk

]
.

(B.19)

19

In particular, if we set Nk+1ε = N−s+k and N ≥ 3, then we find that
∥∥∥∥∥∥
f −

N∑

j=1

pNj · ΦN
j

∥∥∥∥∥∥
Ck([0,T],Lq(µ))

≤ C lnk (N)

[
∥f∥Ck(IN

i ,Lq(µ)) + Ck
Ns−k

+ ξNk

]
. (B.20)

Lemma B.6. Let Gθ : X → Y be an tanh FNO with grid size N ∈ N and let B > 0. For every
ε > 0, there exists a tanh DeepONet G∗θ : X → Y with Nd sensors and Nd branch and trunk nets
such that

sup
∥v∥L∞≤B

sup
x∈Td

∣∣G∗θ (v)(x)− Gθ(v)(x)
∣∣ ≤ ε. (B.21)

Furthermore, width(β) ∼ Nd, depth(β) ∼ ln(N), width(τ) ∼ Nd(N + ln
(
N/ε

)
) and

depth(τ) = 3.

Proof. This is a consequence of [35, Theorem 36] and Lemma D.1 with ε← Ndε.

B.2 Proof of Theorem 3.4

Proof. Step 1: construction. To define the approximation, we divide [0, T] into M subintervals
of the form [tm−1, tm], where tm = mT/M with 1 ≤ m ≤ M . One could approximate u on
every subinterval by an s-th order accurate Taylor approximation around tm, provided that one
has access to Di

tu(·, tm) for 0 ≤ i ≤ s − 1. As those values are unknown, we resort to the
finite difference approximation Di

tu(·, tm) ≈M i ·∆i,s−i
1/M,t[Uε(u0, tm)], which is a neural network.

See SM for an overview of the notation for finite difference operators. Moreover, we replace the
univariate monomials φi : [0, T] → R : t 7→ ti in the Taylor approximation by neural networks
φ̂δ
i : [0, T] → R with ∥φi − φ̂δ

i ∥Ck+1 ≲ δ. Lemma A.3 guarantees that the output of (φ̂δ
i)

s−1
i=1 can

be obtained using a shallow network with width 2(s + 1) (independent of δ). The multiplication
operator is replaced by a shallow neural network ×̂δ : [−a, a]2 → R (for suitable a > 0) for which
∥ × −×̂δ∥Ck+1 ≲ δ. By Lemma A.4 only four neurons are needed for this network. This results in
the following approximation for f ∈ C0([0, T]×D),

N̂ δ
m[f](t, x) :=

s−1∑

i=0

×̃δ

∆i,s−i

1/M,t[f](tm, x)

M−ii!
, φ̂δ

i (t− tm)

 ∀t ∈ [0, T], x ∈ D, 1 ≤ m ≤M.

(B.22)
Next, we patch together these individual approximations by (approximately) multiplying them with a
NN approximation of a partition of unity, denoted by ΦM

1 , . . . ,Φ
M
M : [0, T]→ [0, 1], as introduced

in Definition B.4 in SM B. Every ΦM
m can be thought of as a NN approximation of the indicator

function on [tm−1, tm]. For any ε, δ > 0, we then define our final neural network approximation
û : [0, T]×D → R as,

û(t, x) :=

M∑

m=1

×̂δ

(
N̂ δ

m[Uε(u0, tm)](t, x),ΦM
m (t)

)
∀t ∈ [0, T], x ∈ D. (B.23)

Step 2: error estimate. In order to facilitate the proof, we introduce the intermediate approximations
ũ : [0, T]×D → R and Nm : C0(D)× [0, T]×D → R by,

ũ(t, x) :=

M∑

m=1

Nm[ûεm](t, x)·ΦM
m (t) :=

M∑

m=1

s−1∑

i=0

∆i,s−i
1/M,t[û

ε
m](tm, x)

M−ii!
·φi(t−tm)·ΦM

m (t), (B.24)

where ûεm = Uε(u0, tm). Note that û can be obtained from ũ by replacing the multiplication operator
and the monomials by neural networks. Since these the size of these networks are independent of
their accuracy δ, we can assume without loss of generality that ∥D(k,α)(ũ− û)∥Lq ≤ δ (see Lemma
B.2) for any relevant D(k,α).

20

It remains to prove that D(k,α)ũ ≈ D(k,α)u. Combining the observation that D(k,α)Nm[ûεm] =
Dk

tNm[Dα
x û

ε
m] with Lemma B.3 lets us conclude that for all 0 ≤ k ≤ s− 1 and t ∈ [tm−2, tm+2],

∥∥∥D(k,α)(Nm[ûεm](t, ·)− u(t, ·))
∥∥∥
Lq
≤ C(r)Mk(

∥∥Dα
x (û

n − u)(·, tm)
∥∥
Lq + |u|C(s,ℓ)M

−s)

(B.25)
We use Theorem B.5 with f ← u, pNj ← Nm[Dα

x û
n], ξ ← C(r)Mk

∥∥Dα
x (û

ε
m − u)(·, tm)

∥∥
Lq ,

C∗ℓ ← C(s)|u|C(k,ℓ) to find that,
∥∥∥D(k,α)(û−u)

∥∥∥
Lq
≤ C lnk(M)(∥u∥C(s,ℓ)M

k−s +M2k
∥∥Dα

x (û
ε
m − u)(·, tm)

∥∥
Lq), (B.26)

where C(r, s) > 0 only depend on r and s. Finally, using Lemma B.1 to bound∥∥Dα
x (û

ε
m − u)(·, tm)

∥∥
Lq and combining this with Assumption 3.1 proves (3.4).

Step 3: size estimate. The following holds,

depth(û) ≤ Cdepth(Uε),width(û) ≤ CMwidth(Uε). (B.27)

B.3 Proof of Theorem 3.6

Proof. Step 1: construction. Let N ∈ N, let EN : C0(T d) → R
|JN | be an encoder and

QN : R|JN | → L2
N be a trigonometric polynomial interpolation operator. If we let Ĝ = Uε◦QN ◦EN

then we can define an FNO Gθ : L2
N (Td)→ L2

N (Td) as Gθ(u0)(x) = (QN ◦ EN ◦ Ĝ)(u0)(x).
Step 2: error estimate. We decompose the L2-error of the FNO using the triangle inequality and the
inequality ∥Uε − Ĝ∥L2 ≤ Cε

stab∥u0 −QN ◦ EN ◦ u0∥Lp , which follows from Assumption 3.5,

∥G − Gθ∥L2 ≤ ∥G − Uε∥L2 + Cε
stab∥u0 −QN ◦ EN ◦ u0∥Lp + ∥Ĝ − Gθ∥L2 . (B.28)

First, we find using a Sobolev embedding result (Lemma A.1) and Lemma A.2 that,
∥∥u0 − (QN ◦ EN)(u0)

∥∥
Lp ≤

∥∥u0 − (QN ◦ EN)(u0)
∥∥
Hd/p∗ ≤ C(d)N−r+d/p∗∥u0∥Hr , (B.29)

where p∗ is such that 1/p+ 1/p∗ = 1/2. Next, we observe that for any u0 ∈ X with ∥u0∥Cr ≤ B
that

∥∥(QN ◦ EN)(u0)
∥∥
Hr(Td)

≤ CB =: B. Hence, by applying Lemma A.2 to the second and last
term of (B.28) we find that,

∥G − Gθ∥L2 ≤ C(ε+ Cε
stabBN

−r+d/p∗

+ CB
ε,rN

−r). (B.30)

Step 3: size estimate. As for any FNO, the width is equal to Ndwidth(Uε). The depth in this case
is equal to depth(Uε).

B.4 Proof of Theorem 3.9

Proof. Step 1: construction.

Let ε > 0 and n,N ∈ N. We first introduce some notation. Let JN = {0, . . . , 2N + 1}d,
KN = {−N, . . . , N}d, let {ej}j∈N be an ordered Fourier basis, as described in SM A.5, and let
{êj}j∈N be a neural network approximation of the same basis such that

max
k∈KN

∥ek − êk∥Cr ≤ ε. (B.31)

Using notation from SM A.6, letQN : R|JN | → C(Td) be the trigonometric polynomial interpolation
operator as in (A.18) and let EN : C(Td)→ R

|JN | be the encoder as in (A.20). We define

Q̂N : R|JN | → C(Td) : y 7→ 1

|KN |
∑

k∈KN

∑

j∈JN

yjak,j êk, (B.32)

21

with coefficients ak,j as in (A.19), as a neural network approximation of QN .

Inspired by the proof of Theorem 3.4 (and using its notation as well), we define Ĝ : C(Td)→ L2(µ)
by

Ĝ(u0)(t, x) =
M∑

m=1

s−1∑

i=0

∆i,s−i
1/M [Uε(QZ ◦ EZ ◦ u0, tm)](tm, x)

M−ii!
· φξ

i (t− tm)ΦM
m (t), (B.33)

Then it holds that

(QN ◦ EN ◦ Ĝ)(u0)(t, x) =
∑

k∈KN

∑

j∈JN

M∑

m=1

s−1∑

i=0

ak,j
|KN |

∆i,s−i
1/M [Uε(QZ ◦ EZ ◦ u0, tm)](tm, xj)

M−ii!
·Ψi,m,k(t, x)

Ψi,m,k(t, x) = φδ
i (t− tm)ΦM

m (t)ek(x).
(B.34)

Now for every i,m, k let Ψi,m,k : [0, T]× T
d → R be defined as,

Ψ̂i,m,k(t, x) = ×̂δ

(
φδ
i (t− tm),ΦM

m (t), êk(x)
)
, (B.35)

where ×̂δ is a neural network approximation of the multiplication operator. We can then construct a
DeepONet as

Gθ(u0)(t, x) =
p∑

j=1

βj(u0)τj(t, x)

=
s−1∑

i=0

M∑

m=1

∑

k∈KN

 ∑

j∈JN

ak,j
|KN |

∆i,s−i
1/M [Uε(QZ ◦ EZ ◦ u0, tm)](tm, xj)

M−ii!

 · Ψ̂i,m,k(t, x).

(B.36)

We see that we need to set p = sM(2N + 1)d and that the trunk nets are given by τj ∼ Ψ̂i,m,k, up
to a different indexing.

Step 2: error estimate. First we use Assumption 3.3 to see that
∥∥L(G − Gθ)

∥∥
L2 ≤ C

∑

k,α

∥∥∥D(k,α)(G − Gθ)
∥∥∥
L2
. (B.37)

Next, we observe that using Assumption 3.1, Assumption 3.5 and (B.29) it holds that,
∥∥Uε(QZ ◦ EZ ◦ u0)− G(u0)(·, T)

∥∥ ≤ ε+ Cε
stabCBZ

−r+d/q. (B.38)

One can then use Theorem 3.4, but by replacing ε by (B.38) in the error bound (3.4), to find that
∥∥∥D(k,α)(G − Ĝ)

∥∥∥
L2
≤ C lnk(M)(∥u∥C(s,ℓ)M

k−s +M2k((ε+Cε
stabZ

−r+d/q)h−ℓ +CCB
ε,ℓ h

r−ℓ))

(B.39)
Then, using the observation that D(k,α)(Id−QN ◦ EN)Ĝ = Dα

x (Id−QN ◦ EN)Dk
t Ĝ we find that

∥∥∥D(k,α)(Id−QN ◦ EN)Ĝ(u0)
∥∥∥ ≤ CN−(r−ℓ)

∥∥∥Dk
t Ĝ(u0)

∥∥∥
Hr
, (B.40)

which can be combined with the estimate∥∥∥Dk
t Ĝ(u0)

∥∥∥
Hr
≤Ms−1 ·Mk lnk(M)

∥∥Uε(QZ ◦ EZ ◦ u0)
∥∥
Hr ≤Ms+k−1 lnk(M)CB

ε,r, (B.41)

where we used that for u0 ∈ X with ∥u0∥Cr ≤ B it holds
∥∥(QN ◦ EN)(u0)

∥∥
Hr(Td)

≤ CB =: B.
Next, we make the rough estimate that,

∥∥∥D(k,α)(Q̂N −QN) ◦ EN)Ĝ(u0)
∥∥∥
L2
≤ CNdMs+k−1 lnk(M)max

k
∥ek − êk∥Cr . (B.42)

Finally, using Lemma B.2 we find that
∥∥∥D(k,α)(Q̂N ◦ EN ◦ Ĝ − Gθ)(u0)

∥∥∥
L2
≤ δ. (B.43)

22

By setting ε =M−r−sN−d, h = 1/N and using that M2k ≤Mk+s−1 and CB
ε,ℓ ≤ CB

ε,r we find,
∥∥L(G − Gθ)

∥∥
L2 ≤ C lnk(M)(∥u∥C(s,ℓ)M

k−s +Mk+s−1((ε+Cε
stabZ

−r+d/q)N ℓ +CB
ε,rN

ℓ−r)).
(B.44)

We conclude by using that lnk(M) ≤ CMρ for any ρ > 0.

Step 3: size estimate. It follows immediately that depth(β) = depth(Uε), width(β) = O(M(Zd+
Ndwidth(Uε))), depth(τ) = 3 and width(τ) = O(MNd(N + ln(NM))).

C Additional material for Section 4.1

C.1 Auxiliary results

Lemma C.1. Let ε > 0, let (Ω,F ,P) be a probability space, and let X : Ω → R be a random

variable that satisfies E
[
|X|
]
≤ ε. Then it holds that P(|X| ≤ ε) > 0.

Proof. This result is [21, Proposition 3.3].

Lemma C.2. Let γ ∈ {0, 1}, β ∈ [1,∞), α0, α1, x0, x1, x2, . . . ∈ [0,∞) satisfy for all k ∈ N0 that

xk ≤ ✶N(k)(α0 + α1k)β
k +

k−1∑

l=0

(k − l)γ β(k−l)
[
xl + xmax{l−1,0}

]
. (C.1)

Then it holds for all k ∈ N0 that

xk ≤
(α0 + α1)β

k
✶N(k)

(4 + γ)1/2(1 + 2(1+γ)/2)−k
=

✶N(k)(α0 + α1)2

−1(1 + 21/2)kβk : γ = 0

✶N(k)(α0 + α1)5
−1/2(3β)k : γ = 1.

(C.2)

Proof. This result is [30, Corollary 4.3].

Lemma C.3. Let α ∈ [1,∞), x0, x1, . . . ∈ [0,∞) satisfy for all k ∈ N0 that xk ≤ αxkk−1. Then it
holds for all k ∈ N0 that

xk ≤ α(k+1)!xk!0 (C.3)

Proof. We provide a proof by induction. First of all, it is clear that x0 ≤ αx0. For the induction step,
assume that xk−1 ≤ αk!x

(k−1)!
0 for an arbitrary k ∈ N0. We calculate that

xk ≤ α
(
αk!x

(k−1)!
0

)k
≤ α(k+1)!xk!0 . (C.4)

This proves the statement.

Lemma C.4. Let ℓ ∈ N, f ∈ Cℓ(R,R), h ∈ Cℓ(Td,R) and let Bℓ denote the ℓ-th Bell number.
Then it holds that

|f ◦ h|Cℓ(R) ≤ ∥f∥Cℓ(R)

(
Bℓ∥h∥ℓCℓ−1(Td) + |h|Cℓ(Td)

)
. (C.5)

Proof. Let Π be the set of all partitions of the set {1, . . . , ℓ}, let α ∈ N
d
0 such that ∥α∥1 = ℓ and

let ι : Nℓ → N
d be a map such that Dα = ∂ℓ

∏ℓ
j=1 xι(j)

. Then the Faà di Bruno formula can be

reformulated as [11],

Dαf(h(x)) =
∑

π∈Π

f (|π|)(h(x)) ·
∏

B∈π

∂|B|h(x)∏
j∈B ∂xι(j)

=
∑

π∈Π,
|π|≥2

f (|π|)(h(x)) ·
∏

B∈π

∂|B|h(x)∏
j∈B ∂xι(j)

+ f ′(h(x))Dαh(x).
(C.6)

23

Combining this formula with the definition of the Bell number as Bℓ = |Π|, we find the following
upper bound,

|f ◦ h|Cℓ(R) ≤
∑

π∈Π

∥f∥Cℓ(R)∥h∥
ℓ
Cℓ−1(R) + ∥f∥C1(R)|h|Cℓ(R)

≤ ∥f∥Cℓ(R)

(
Bℓ∥h∥ℓCℓ−1(R) + |h|Cℓ(R)

)
.

(C.7)

C.2 Proof of Theorem 4.2

Definition C.5. Let (Ω,F , µ) be a measure space and let q > 0. For every F/B(Rd)-measurable

function f : Ω→ ❘d, we define

∥f∥Lq(µ,∥·∥
Rd

) :=

[
ˆ

Ω

∥∥f(ω)
∥∥q
Rdµ(dω)

]1/q
. (C.8)

Let (Ω,F , P, (Ft)t∈[0,T]) be a stochastic basis, D ⊆ R
d a compact set and, for every x ∈ D, let

Xx : Ω × [0, T] → R
d be the solution, in the Itô sense, of the following stochastic differential

equation,
dXx

t = µ(Xx
t)dt+ σ(Xx

t)dBt, Xx
0 = x, x ∈ D, t ∈ [0, T], (C.9)

where Bt is a standard d-dimensional Brownian motion on (Ω,F , P, (Ft)t∈[0,T]). The existence of
Xx is guaranteed by [3, Theorem 4.5.1].

As in [14, Theorem 3.3] we define ρd as

ρd := max
x∈D

sup
s,t∈[0,T],

s<t

∥Xx
s −Xx

t ∥Lq(P,∥·∥
Rd

)

|s− t| 1p
<∞, (C.10)

where Xx is the solution, in the Itô sense, of the SDE (C.9), q > 2 is independent of d and
∥·∥Lq(P,∥·∥

Rd
) is as in Definition C.5.

Lemma C.6. In Setting 4.1, Assumption 3.1 and Assumption 3.5 are satisfied with

∥∥u(·, t)− Uε(φ, t)
∥∥
L2(µ)

≤ ε, CB
ε,ℓ = CB · poly(dρd), Cε

stab = 1, (C.11)

where t ∈ [0, T] and φ ∈ C2
0 (R

d). Moreover, there exists C∗ > 0 (independent of d) for which it
holds that depth(Uε) ≤ C∗depth(φ̂ε) and {width, size}(Uε) ≤ C∗ε−2{width, size}(φ̂ε).

Proof. It follows from the Feynman-Kac formula that u(t, x) = E
[
φ(Xx

t)
]

[58]. Replacing φ by a
neural network φ̂ε with ∥φ− φ̂ε∥C0 ≤ ε gives us,

∥∥∥E
[
φ(Xx

t)
]
− E

[
φ̂ε(Xx

t)
]∥∥∥

L2(µ)
≤ ∥φ− φ̂ε∥C0 . (C.12)

Using [14, Lemma A.2] (which is based on [21]) we find,

E
[
(I)
]
:= E

ˆ

D

∣∣∣∣∣∣
E
[
φ̂ε(Xx

t)
]
− 1

m

m∑

i=1

φ̂ε(Xx
t (ωm))

∣∣∣∣∣∣

2

µ(dx)

1/2

 ≤

2∥φ̂ε∥C0√
m

. (C.13)

From [14, Lemma A.5], for all x ∈ R
d, t ∈ [0, T] and ω ∈ Ω it holds that

Xx
t (ω) =

d∑

i=1

(
Xei

t (ω)−X0
t (ω)

)
xi +X0

t (ω). (C.14)

24

Using this equality, together with Hölder’s inequality and the boundedness of ∥Xx
t ∥Lp [14, Lemma

A.5] we find that,

E
[
(IIα)

]
:= E

ˆ

D

∣∣∣∣∣∣
E
[
Dα

x φ̂
ε(Xx

t)
]
− 1

m

m∑

i=1

Dα
x φ̂

ε(Xx
t (ωm))

∣∣∣∣∣∣

2

µ(dx)

1/2

≤ C · poly(ρd) · E

ˆ

D

∣∣∣∣∣∣
E
[
φ̂ε(Xx

t)
]
− 1

m

m∑

i=1

φ̂ε(Xx
t (ωm))

∣∣∣∣∣∣

4

µ(dx)

1/4

≤ CB · poly(ρd)

(C.15)

Combining the previous results gives us,

E

√
m · (I) +

∑

∥α∥1≤ℓ

(IIα)

 ≤ CB · poly(ρd). (C.16)

If we combine this with Lemma C.1 then we find the existence of (ω∗
i)

m
i=1 such that for

Uε(φ, t)(x) =
1

m

m∑

i=1

φ̂ε

d∑

i=1

(
Xei

t (ω∗
i)−X0

t (ω
∗
i)
)
xi +X0

t (ω
∗
i)

 (C.17)

it holds that ∥∥∥E
[
φ̂ε(Xx

t)
]
− Uε(φ, t)

∥∥∥
L2(D)

≤ 2C√
m
. (C.18)

and by setting m = ε−2 and (C.12) we find that,
∥∥u(·, t)− Uε(φ, t)

∥∥
L2(D)

≤ ε, CB
ε,ℓ = CB · poly(ρd), Cε

stab = 1. (C.19)

Moreover, it holds that

depth(Uε) ≤ C∗depth(φ̂ε), {width, size}(Uε) ≤ C∗ε−2{width, size}(φ̂ε) (C.20)

where we write C∗ = Cpoly(dρd).

We can now present the proof of the actual theorem.

Proof of Theorem 4.2. We use Theorem 3.4 with k = 1 and ℓ = 2 and combine the result with
Lemma C.6. We find that for every M ∈ N and δ, h > 0 it holds that,

∥∥L(û− u)
∥∥
Lq([0,T]×D)

+ ∥û− u∥L2(∂([0,T]×D))

≤ CB · poly(dρd) · ln(M)(|u|C(1,2)M
1−s +M2(δh−2 + hr−2)).

(C.21)

Set δ = hr, M−1−s = δ1−2/r we find that
∥∥L(û− u)

∥∥
Lq([0,T]×D)

+ ∥û− u∥L2(∂([0,T]×D)) ≤ CB · poly(dρd) ln
(
1/δ
)
δ

r−2
r

s−1
s+1 (C.22)

Using that ln(M) ≤ CMσ for arbitrarily small σ > 0, we find that we should set

δ = ε
r+σ
r−2

s+1
s−1 , M = ε

−1−σ
s−1 (C.23)

25

C.3 Nonlinear parabolic equations

Some examples of nonlinear parabolic PDEs of the type (4.3) are:

• The Kolmogorov–Petrovsky–Piskunov (KPP) equation [34] is a celebrated model that is often
used to model wave propagation and population genetics. The model is particularly useful
for systems that exhibit phase transitions. One obtains the KPP equation if one chooses
a sufficiently smooth nonlinearity F that satisfies the requirements F (0) = F (1) = 0,
F ′(0) = r > 0, F (u) > 0 and F ′(u) < r for all 0 < u < 1. Well-known examples include
the Fisher equation [19] with F (u) = ru(1 − u) and the Allen-Cahn equation [1] with
F (u) = ru(1− u2).

• Branching diffusion processes give a probabilistic representation of the KPP equation for
the case where F (u) = β(

∑∞
k=0 aku

k − u) with ak ≥ 0 and
∑

k ak = 1. In this setting,
the PDE (4.3) describes a d-dimensional branching Brownian motion, where every particle
in the system dies in an an exponential time of parameter β and created k i.i.d. descendants
with probability ak [26, 54].

• Finally, the PDE (4.3) arises in the context of credit valuation adjustment when pricing
derivative contracts to compute the counterparty risk valuation, e.g. [25]. The dimension d
corresponds to the number of underlying assets and can be very high.

C.4 Multilevel Picard approximations

In what follows, we will provide a definition of a particular kind of MLP approximation (cf. [30])
and a theorem that quantifies the accuracy of the approximation. First, we rigorously introduce the
setting of the nonlinear parabolic PDE (4.3) that is under consideration, cf. [30, Setting 3.2 with
p← 0]. We choose the d-dimensional torus Td = [0, 2π)d as domain and impose periodic boundary
conditions. This setting allows us to use the results of [30], which are set in R

d, and yet still consider
a bounded domain so that the error can be quantified using an uniform probability measure.

Setting C.7. Let d,m ∈ N, T, L,L ∈ [0,∞), let (Td,B(Td), µ) be a probability space where µ is

the rescaled Lebesgue measure, let g ∈ C(Td,R) ∩ L2(µ), let F ∈ C(R,R), assume for all x ∈ T
d,

y, z ∈ R that ∣∣F (y)− F (z)
∣∣ ≤ L|y − z|, max{

∣∣F (y)
∣∣,
∣∣g(x)

∣∣} ≤ L. (C.24)

Let ud ∈ C1,2([0, T]× R
d,R) ∩ L2(µ) satisfy for all t ∈ [0, T], x ∈ R

d that

(∂tud)(t, x) = (∆xud)(t, x) + F (ud(t, x)), ud(0, x) = g(x). (C.25)

Assume that for every ε > 0 there exists a neural network F̂ε, a neural network ĝε and a neural

network Iε with depth depth(Iε) = depth(F̂ε) such that

∥∥∥F̂ε − F
∥∥∥
C0(R)

≤ ε, ∥ĝε − g∥L2(µ) ≤ ε, ∥Iε − Id∥C0([−1−L,1+L]) ≤ ε. (C.26)

Note that for some of the equations introduced in Section C.3 the nonlinearity F might not be globally
Lipschitz and hence does not satisfy (C.24). However, it is easy to argue or rescale g [40, 5] such
that ud is globally bounded by some constant C. For instance, for the Allen-Cahn equation it holds
that if ∥g∥L∞ ≤ 1 then

∥∥ud(t, ·)
∥∥
L∞ ≤ 1 for any t ∈ [0, T] [71]. One can then define a ‘smooth’,

globally Lipschitz, bounded function F̃ : R→ R such that F̃ (v) = F (v) for |v| ≤ C and such that
F̃ (v) = 0 for |v| > 2C. This will then also ensure the existence of a neural network F̂ that is close
to F̃ in C0(R)-norm.

In this setting, multilevel Picard approximations can be introduced. We follow the definition of [30].

Definition C.8 (MLP approximation). Assume Setting C.7. Let Θ =
⋃

n∈N
Z
n, let (Ω,F ,P) be a

probability space, let Y θ : Ω → [0, 1], θ ∈ Θ, be i.i.d. random variables, assume for all θ ∈ Θ,

r ∈ (0, 1) that P(Y θ ≤ r) = r, let Uθ : [0, T]× Ω→ [0, T], θ ∈ Θ, satisfy for all t ∈ [0, T], θ ∈ Θ
that Uθ

t = t + (T − t)Y θ, let W θ : [0, T] × Ω → R
d, θ ∈ Θ, be independent standard Brownian

motions, assume that (Uθ)θ∈Θ and (W θ)θ∈Θ are independent, and let Uθ
n : [0, T]× T

d × Ω → R,

26

n ∈ Z, θ ∈ Θ, satisfy for all n ∈ N0, θ ∈ Θ, t ∈ [0, T], x ∈ T
d that

Uθ
n(t, x) =

✶N(n)

mn

[
mn∑

k=1

g(x+W
(θ,0,−k)
T−t)

]

+
n−1∑

i=0

(T − t)
mn−i

[
mn−i∑

k=1

(F (U
(θ,i,k)
i)− ✶N(i)F (U

(θ,−i,k)
i−1))(U

(θ,i,k)
t , x+W

(θ,i,k)

U
(θ,i,k)
t −t

)

]
.

(C.27)

Example C.9. In order to improve the intuition of the reader regarding Definition C.8, we provide
explicit formulas for the multilevel Picard approximation (C.27) for n = 0 and n = 1,

Uθ
0 (t, x) = 0 and Uθ

1 (t, x) =
1

m

[
m∑

k=1

g(x+W
(θ,0,−k)
T−t)

]
+ (T − t)F (0). (C.28)

Finally, we provide a result on the accuracy of MLP approximations at single space-time points.

Theorem C.10. It holds for all n ∈ N0, t ∈ [0, T], x ∈ T
d that

(
E

[∣∣∣U0
n(t, x)− u(t, x)

∣∣∣
2
])1/2

≤ L(T + 1) exp(LT)(1 + 2LT)n

mn/2 exp
(
−m/2

) . (C.29)

Proof. This result is [30, Corollary 3.15] with p← 0, p← 2 and L ← L/2.

C.5 Neural network approximation of nonlinear parabolic equations

In this section, we will prove that the solution of the nonlinear parabolic PDE as in Setting C.7 can
be approximated with a neural network without the curse of dimensionality. At this point, we do not
specify the activation function, with the only restriction being that the considered neural networks
should be expressive enough to satisfy (C.26). By emulating an MLP approximation and using that
F , g and the identity function can be approximated using neural networks, the following theorem can
be proven.

Theorem C.11. Assume Setting C.7. For every ε, σ > 0 and t ∈ [0, T] there exists a neural network

ûε : T
d → R such that ∥∥ûε(·)− u(t, ·)

∥∥
L2(µ)

≤ ε. (C.30)

In addition, û satisfies that

depth(ûε) ≤ depth(ĝδ) + logC2
(3C1 exp

(
m/2

)
/ε)depth(F̂δ),

width(ûε), size(ûε) ≤ (size(ĝδ) + size(F̂δ) + size(Iδ))
(
4C1 exp

(
m/2

)

ε

)2+3σ

,
(C.31)

where

C1 = (T + 1)(1 + L exp(LT)), C2 = 5 + 3LT,

δ =
ε2

9C2
1 exp

(
m/2

) , m = C
2(1+1/σ)
2 .

(C.32)

Proof. Step 1: construction of the neural network. Let ε, δ > 0 be arbitrary and let F̂ = F̂δ,
ĝ = ĝδ and I = Iδ as in Setting C.7. We then define for all n ∈ N and θ ∈ Θ,

Ûθ
n(t, x) =

✶N(n)

mn

[
mn∑

k=1

(In−1 ◦ ĝ)(x+W
(θ,0,−k)
T−t)

]

+

n−1∑

i=0

(T − t)
mn−i

[
mn−i∑

k=1

((In−i−1 ◦ F̂)(Û (θ,i,k)
i)− ✶N(i)(In−i ◦ F̂)(Û (θ,−i,k)

i−1))(U
(θ,i,k)
t , x+W

(θ,i,k)

U
(θ,i,k)
t −t

)

]
,

(C.33)

27

with notation and random variables cf. Definition C.8. Note that for every t ∈ [0, T], n ∈ N, θ ∈ Θ,
every realization of the random variable Ûθ

n(t, ·) is a neural network that maps from T
d to R.

Let n ∈ N0, m ∈ N and t ∈ [0, T] be arbitrary. Integrating the square of the error bound of Theorem
C.10 and Fubini’s theorem tell us that

E

[
ˆ

Td

∣∣∣U0
n(t, x)− u(t, x)

∣∣∣
2

dµ(x)

]
=

ˆ

Td

E

[∣∣∣U0
n(t, x)− u(t, x)

∣∣∣
2
]
dµ(x)

≤ 4L2(T + 1)2 exp(2LT)(1 + 2LT)2n

mn exp(−m)
.

(C.34)

From Lemma C.1 it then follows that

P

(
ˆ

Td

∣∣∣U0
n(t, x)− u(t, x)

∣∣∣
2

dµ(x) ≤ 4L2(T + 1)2 exp(2LT)(1 + 2LT)2n

mn exp(−m)

)
> 0. (C.35)

As a result, there exists ω = ω(t, n,m) ∈ Ω and a realization U0
n(ω) such that

∥∥∥U0
n(ω)(t, ·)− u(t, ·)

∥∥∥
L2(µ)

≤ L(T + 1) exp(LT)(1 + 2LT)n

mn/2 exp
(
−m/2

) . (C.36)

We define
ω : [0, T]× N

2 → Ω : (t, n,m) 7→ ω(t, n,m) (C.37)
and set for every 1 ≤ k ≤ n,

Ûθ
k,ω(t, x) = Ûθ

k (ω(t, n,m))(t, x) and Uθ
k,ω(t, x) = Uθ

k (ω(t, n,m))(t, x) (C.38)

for all k ∈ N0 and all θ ∈ Θ. We then define our approximation as Û0
n,ω(t, ·).

Step 2: error estimate. We will quantify how well Û0
n,ω approximates U0

n,ω . Using the calculation
that for f1, f2 ∈ C1(R) and h1, h2 ∈ L2(µ) it holds that

∥f1 ◦ h1 − f2 ◦ h2∥L2(µ) ≤ ∥f1 ◦ h1 − f2 ◦ h1∥L2(µ) + ∥f2 ◦ h1 − f2 ◦ h2∥L2(µ)

≤ ∥f1 − f2∥C0(R) + |f2|Lip(R)∥h1 − h2∥L2(µ),
(C.39)

and the fact that 2n ≤ 2n for n ∈ N we find that it holds for every θ ∈ Θ that,
∥∥∥Ûθ

n,ω(t, ·)− Uθ
n,ω(t, ·)

∥∥∥
L2(µ)

≤ ✶N(n)
(
∥ĝ − g∥L2(µ) + (n− 1)∥I − Id∥C0

)
+ T

n−1∑

i=0

∥∥∥In−i−1 ◦ F̂ ◦ Û (θ,i,k)
i,ω − F ◦ U (θ,i,k)

i,ω

∥∥∥
L2(µ)

+ T
n−1∑

i=0

✶N(i)
∥∥∥In−i ◦ F̂ ◦ Û (θ,−i,k)

i−1,ω − F ◦ U (θ,−i,k)
i−1,ω

∥∥∥
L2(µ)

≤ ✶N(n)

[
∥ĝ − g∥L2(µ) + 2Tn

∥∥∥F̂ − F
∥∥∥
C0(R)

+

(
(n− 1) +

(n− 1)n

2
+

(n+ 1)n

2

)
∥I − Id∥C0

]

+ LT

n−1∑

i=0

(∥∥∥Û (θ,i,k)
i − U (θ,i,k)

i

∥∥∥
L2(µ)

+ ✶N(i)
∥∥∥Û (θ,−i,k)

i−1 − U (θ,−i,k)
i−1

∥∥∥
L2(µ)

)

≤ ✶N(n)2
n

[
∥ĝ − g∥L2(µ) + T

∥∥∥F̂ − F
∥∥∥
C0(R)

+ n∥I − Id∥C0

]

+

n−1∑

i=0

(max{1, LT})n−i

(∥∥∥Û (θ,i,k)
i − U (θ,i,k)

i

∥∥∥
L2(µ)

+ ✶N(i)
∥∥∥Û (θ,−i,k)

i−1 − U (θ,−i,k)
i−1

∥∥∥
L2(µ)

)
.

,

(C.40)

Now let us set for every k ∈ N0,

xk = sup
θ∈Θ

∥∥∥Ûθ
k,ω(t, ·)− Uθ

k,ω(t, ·)
∥∥∥
L2(µ)

, (C.41)

28

and in addition we define α0 = ∥ĝ − g∥L2(µ)+T
∥∥∥F̂ − F

∥∥∥
C0(R)

, α1 = ∥I − Id∥C0 and β = 2+LT .

Taking the supremum over all θ ∈ Θ in (C.40) gives us for all k ∈ N0 that,

xk ≤ ✶N(k)(α0 + α1k)β
k +

k−1∑

i=0

βk−i(xi + xmax{i−1,0}). (C.42)

Therefore, we can use Lemma C.2 with γ ← 0 then gives us that for all k ∈ N0 it holds that,

sup
θ∈Θ

∥∥∥Ûθ
k,ω(t, ·)− Uθ

k,ω(t, ·)
∥∥∥
L2(µ)

≤ ✶N(k)
(1 +

√
2)k

2

(
∥ĝ − g∥L2(µ) + T

∥∥∥F̂ − F
∥∥∥
C0(R)

+ ∥I − Id∥C0

)
(2 + LT)k.

(C.43)

Next we define
C1 = (T + 1)(1 + L exp(LT)), C2 = 5 + 3LT. (C.44)

Combining (C.36) with (C.43) then gives us that,
∥∥∥Û0

n,ω(t, ·)− u(t, ·)
∥∥∥
L2(µ)

≤
∥∥∥Û0

n,ω(t, ·)− U0
n,ω(t, ·)

∥∥∥
L2(µ)

+
∥∥∥U0

n,ω(t, ·)− u(t, ·)
∥∥∥
L2(µ)

≤ C1C
n
2

(
∥ĝ − g∥L2(µ) +

∥∥∥F̂ − F
∥∥∥
C0(R)

+ ∥I − Id∥C0 +m−n/2 exp
(
m/2

))
.

(C.45)

For an arbitrary σ > 0, we choose

m = C
2(1+1/σ)
2 , n = σ logC2

(4C1 exp
(
m/2

)
/ε) (C.46)

and if we choose ĝ = ĝδ and F̂ = F̂δ such that,

∥ĝ − g∥L2(µ) ≤ δ =
ε

4C1Cn
2

=
ε1+σ

(4C1)1+σ exp
(
σm/2

) , (C.47)

then we obtain that ∥∥∥Û0
n,ω(t, ·)− u(t, ·)

∥∥∥
L2(µ)

≤ ε. (C.48)

Step 3: size estimate. We now provide estimates on the size of the network constructed in Step 1.
First of all, it is straightforward to see that the depth of the network can be bounded by

Lε(Û
0
n,ω) ≤ Lδ(ĝ) + (n− 1)Lδ(F̂) ≤ Lδ(ĝ) + logC2

(3C1 exp
(
m/2

)
/ε)Lδ(F̂). (C.49)

Next we prove an estimate on the number of needed neurons. For notation, we write Mn =

Mε(Û
0
n,ω). We find that for all 0 ≤ k ≤ n,

Mk ≤ ✶N(k)m
k(Mδ(ĝ) + (k − 1)Mδ(I))

+

k−1∑

i=0

mk−i(2Mδ(F̂) + (2k − 2i− 1)Mδ(I) +Mi +Mmax{i−1,0})

≤ ✶N(k)(Mδ(ĝ) +Mδ(F̂) + kMδ(I))(2m)k +

k−1∑

i=0

mk−i(Mi +Mmax{i−1,0}).

(C.50)

Applying Lemma C.2 to (C.50) (i.e. α0 ← Mδ(ĝ) +Mδ(F̂), α1 ← Mδ(I) and β ← 2m) then
gives us that

Mn ≤
1

2
(Mδ(ĝ) +Mδ(F̂) +Mδ(I))(1 +

√
2)n(2m)n. (C.51)

29

Observing that 2 + 2
√
2 ≤ C2 and recalling that m = C

2(1+1/σ)
2 we find that

Mn ≤
1

2
(Mδ(ĝ) +Mδ(F̂) +Mδ(I))C(3σ+2)n/σ

2

=
1

2
(Mδ(ĝ) +Mδ(F̂) +Mδ(I))

(
4C1 exp

(
m/2

)

ε

)2+3σ

.

(C.52)

For the width, we make the estimate widthε(Û
0
n,ω) ≤Mn.

C.6 PINN approximation of nonlinear parabolic equations

Setting C.12. Assume Setting C.7, let ĝ ∈ C(Td,R) ∩ L2(µ)1 and let ω : [0, T] × N
2 → Ω be

defined as in (C.37) in the proof of Theorem C.11. Let Ûθ
n,ω : [0, T]× T

d × Ω→ R, n ∈ Z, θ ∈ Θ,

satisfy for all n ∈ N0, ε > 0, θ ∈ Θ, t ∈ [0, T], x ∈ T
d that

Ûθ
n,ω(t, x) =

✶N(n)

mn

[
mn∑

k=1

(In−1
ε ◦ ĝ)(x+W

(θ,0,−k)
T−t (ω(t, n,m)))

]

+

n−1∑

i=0

(T − t)
mn−i

[
mn−i∑

k=1

(
(In−i−1

ε ◦ F̂ε)(Û
(θ,i,k)
i,ω)

− ✶N(i)(In−i
ε ◦ F̂ε)(Û

(θ,−i,k)
i−1,ω)

)(
U

(θ,i,k)
t (ω(t, n,m)), x+W

(θ,i,k)

U
(θ,i,k)
t −t

(ω(t, n,m))
)
]
.

(C.53)

Lemma C.13. Assume Setting C.12. Under the assumption that,

max
1≤j≤k

∥∥∥Ij
∥∥∥
Ck([−L−1,L+1])

≤ 2, (C.54)

where Ij denotes j compositions of I, it holds for all ℓ, k ∈ N0 that,

sup
θ∈Θ

∥∥∥Ûθ
k,ω

∥∥∥
C(0,ℓ)([0,T]×Td)

≤
[
∥ĝ∥Cℓ(Td) + 2Bℓ(1 +

√
2)k(1 + 2BℓT

∥∥∥F̂
∥∥∥
ℓ

Cℓ(R)
)k
]2(ℓ+1)!

,

(C.55)

and where Bℓ denote the ℓ-th Bell number i.e., the number of possible partitions of a set with ℓ
elements.

Proof. We prove the claim by induction on ℓ.

Base case. From Definition C.8, we find that for ℓ = 0 and all k ∈ N0 it holds that

sup
θ∈Θ

∥∥∥Ûθ
k,ω

∥∥∥
C0([0,T]×Td)

≤ ∥ĝ∥C0(Td) + 2T
∥∥∥F̂
∥∥∥
C0(R)

k. (C.56)

Claim (C.55) follows immediately for ℓ = 0.

Induction step. We assume that claim (C.55) holds true for all 0 ≤ ℓ∗ ≤ ℓ − 1 and k ∈ N0. From
this assumption, we will deduce that (C.55) holds true for ℓ and all k ∈ N0. We first observe that it
follows from Lemma C.4, the induction hypothesis and the fact that (Ck,ℓ)ℓ≥0 is non-decreasing for
any k, that for all θ ∈ Θ and 0 ≤ i, j ≤ k it holds that,
∣∣∣(Ij ◦ F̂)(Ûθ

i,ω)
∣∣∣
Cℓ([0,T]×Td)

≤
∥∥∥Ij ◦ F̂

∥∥∥
Cℓ(R)

(
BℓC

ℓ
k,ℓ−1 +

∣∣∣Ûθ
i,ω

∣∣∣
C(0,ℓ)([0,T]×Td)

)
, (C.57)

and where (again using Lemma C.4) it holds that
∥∥∥Ij ◦ F̂

∥∥∥
Cℓ(R)

≤ 2Bℓ

∥∥∥F̂
∥∥∥
ℓ

Cℓ
.

1The function ĝ can but need not be the same as the function ĝε, for some ε > 0, of Setting C.7.

30

Using this estimate and the fact that (Ck,ℓ)k≥0 is non-decreasing for any ℓ, we can make the following
calculation for every k ∈ N0,

sup
θ∈Θ

∣∣∣Ûθ
k,ω

∣∣∣
C(0,ℓ)([0,T]×Td)

≤ ✶N(k)|ĝ|Cℓ(Td) + T

k−1∑

i=0

sup
θ∈Θ

∣∣∣(Ik−i−1 ◦ F̂)(Ûθ
i,ω)
∣∣∣
C(0,ℓ)(([0,T]×Td))

+ T

k−1∑

i=0

✶N(i) sup
θ∈Θ

∣∣∣(Ik−i ◦ F̂)(Ûθ
i−1,ω)

∣∣∣
C(0,ℓ)(([0,T]×Td))

≤ ✶N(k)|ĝ|Cℓ(Td) + 2BℓT
∥∥∥F̂
∥∥∥
ℓ

Cℓ(R)

k−1∑

i=0

(
BℓC

ℓ
k,ℓ−1 + sup

θ∈Θ

∣∣∣Ûθ
i,ω

∣∣∣
C(0,ℓ)(([0,T]×Td))

)

+ 2BℓT
∥∥∥F̂
∥∥∥
ℓ

Cℓ(R)

k−1∑

i=0

✶N(i)

(
BℓC

ℓ
k,ℓ−1 + sup

θ∈Θ

∣∣∣Ûθ
i−1,ω

∣∣∣
C(0,ℓ)(([0,T]×Td))

)

≤ ✶N(k)(|ĝ|Cℓ(Td) + 2BℓT
∥∥∥F̂
∥∥∥
ℓ

Cℓ(R)
Cℓ

k,ℓ−1k)

+

k−1∑

i=0

2BℓT
∥∥∥F̂
∥∥∥
ℓ

Cℓ(R)

(
sup
θ∈Θ

∣∣∣Ûθ
i,ω

∣∣∣
C(0,ℓ)(([0,T]×Td))

+ ✶N(i) sup
θ∈Θ

∣∣∣Ûθ
i−1,ω

∣∣∣
C(0,ℓ)(([0,T]×Td))

)

(C.58)

Application of Lemma C.2 with α0 ← |ĝ|Cℓ(Td), α1 ← 2BℓC
ℓ
k,ℓ−1, β ← (1 + 2BℓT

∥∥∥F̂
∥∥∥
ℓ

Cℓ(R)
) and

γ ← 0 gives us

sup
θ∈Θ

∥∥∥Ûθ
k,ω

∥∥∥
C0([0,T]×Td)

≤
|ĝ|Cℓ(Td) + 2BℓC

ℓ
k,ℓ−1

2
(1 +

√
2)k(1 + 2BℓT

∥∥∥F̂
∥∥∥
ℓ

Cℓ(R)
)k

≤
[
|ĝ|Cℓ(Td) + 2Bℓ(1 +

√
2)k(1 + 2BℓT

∥∥∥F̂
∥∥∥
ℓ

Cℓ(R)
)k
]
Cℓ

k,ℓ−1.

(C.59)

Filling in the definition of Ck,ℓ−1 indeed gives us the formula as stated in (C.55), thereby concluding
the proof of the claim.

Lemma C.14. Let F be a polynomial. For every σ, ε > 0 there is an operator Uε as in Assumption
3.1 such that for every t ∈ [0, T],
∥∥Uε(u0, t)− G(v)(u0, t)

∥∥
L2(Td)

≤ ε, CB
ε,ℓ ≤ C(Bε−σ)2(l+1)!, Cε

stab ≤ Cε−σ. (C.60)

Moreover it holds that depth(Uε(u0, t)) ≤ depth(û0) + C ln
(
ε−1
)
, width(Uε(u0, t)) ≤

width(û0)ε
−2−σ and size(Uε(u0, t)) ≤ size(û0)ε

−2−σ .

Proof. The three bounds are a consequence of, respectively, Theorem C.11 and Lemma C.13 and
(C.45). The size estimates follow from Theorem C.11. Note that one might have to rescale the
constant σ > 0.

D Additional material for Section 4.2

D.1 Errors of DeepONets

In [40], numerous error estimates for DeepONets are proven, with a focus on DeepONets that use
the ReLU activation function. In order to quantify this error, the authors fix a probability measure
µ ∈ P(X) and define the error as,

Ê =

ˆ

X

ˆ

U

∣∣G(u)(y)− Gθ(u)(y)
∣∣2 dy dµ(u)

1/2

, (D.1)

31

assuming that there exist embeddings X →֒L2(D) and Y →֒L2(U). From [40, Lemma 3.4], it then
follows that Ê (D.1) can be bounded as,

Ê ≤ Lipα(G)Lip(R ◦ P) (ÊE)
α + Lip(R)ÊA + ÊR, (D.2)

where Lipα(·) denotes the α-Hölder coefficient of an operator and where ÊE quantifies the encoding
error, where ÊA is the error incurred in approximating the approximator A and where ÊR quantifies
the reconstruction error. Assuming that all Hölder coefficients are finite, one can prove that Ê is
small if ÊE , ÊA and ÊR are all small. We summarize how each of these three errors can be bounded
using the results from [40].

• The upper bound on the encoding error ÊE depends on the chosen sensors and the spectral
decay rate for the covariance operator associated to the measure µ. Use bespoke sensor
points to obtain optimals bounds when possible, otherwise use random sensors to obtain
almost optimal bounds. More information can be found in [40, Section 3.5].

• The upper bound on the reconstruction error ÊR depends on the smoothness of the operator
and the chosen basis functions τ i.e., neural networks, for the reconstruction operator R.
Following [40, Section 3.4], one first chooses a standard basis τ̃ of which the properties
are well-known. We denote the corresponding reconstruction by R̃ and the corresponding
reconstruction error by ÊR̃. In this work, we focus on Fourier and Legendre basis function,
both of which are introduced in SM A. One then proceeds by constructing the neural network
basis τ i.e., the trunk nets, that satisfy for some ε > 0 and p ≥ 1 the condition

max
k=1,...,p

∥τk − τ̃k∥L2 ≤ ε

p3/2
, (D.3)

which is shown to imply that,

ÊR ≤ ÊR̃ + Cε, (D.4)

where C ≥ 1 depends only on
´

L2 ∥u∥2 dG#µ(u). Using standard approximation theory,

one can calculate an upper bound on ÊR̃ and using neural network theory one can quantify
the network size of τ needed such that (D.3) is satisfied. For the Fourier and Legendre bases
such results are presented in Lemma D.1 and Lemma D.2, respectively.

• The upper bound on the approximation error ÊA depends on the regularity of the operator
G. We present the tanh counterparts of some results of [40, Section 3.6] in the following
sections, with the main result being Theorem D.6.

For bounded linear operators, these calculations are rather straightforward and are presented in [40,
SM D]. For nonlinear operators, one has to complete all the above steps for each specific case. In [40,
Section 4], this has been done for four types of differential equations.

D.2 Auxiliary results for linear operators

Following Section D.1, we need results on the required neural network size to approximate the
reconstruction basis to a certain accuracy (D.3). The following lemma provides such a result for the
Fourier basis introduced in SM A.5.

Lemma D.1. Let s, d, p ∈ N. For any ε > 0, there exists a trunk net τ : Rd → R
p with 2 hidden

layers of width O(p d+1
d + ps ln

(
psε−1

)
) and such that

p3/2 max
j=1,...,p

∥τj − ej∥Cs([0,2π]d) ≤ ε, (D.5)

where e1, . . . , ep denote the first p elements of the Fourier basis, as in SM A.5.

Proof. We note that each element in the (real) trigonometric basis e1, . . . , ep can be expressed in the
form

ej(x) = cos(κ · x), or ej(x) = sin(κ · x), (D.6)

32

for κ = κ(j) ∈ Z
d with |κ|∞ ≤ N , where N is chosen as the smallest natural number such that

p ≤ (2N + 1)d. We focus only focus on the first form, as the proof for the second form is entirely
similar. Define f : [0, 2π]d → R : x 7→ κ · x and g : [−2πdN, 2πdN] → R : x 7→ cos(x).
As f([0, 2π]d) ⊂ [−2πdN, 2πdN], the composition g ◦ f is well-defined and one can see that it
coincides with a trigonometric basis function ej . Moreover, the linear map f is a trivial neural
network without hidden layers. Approximating ej by a neural network τj therefore boils down to
approximating g by a suitable neural network.

From [13, Theorem 5.1] it follows that the function g there exists an independent constantR > 0 such
that for large enough t ∈ N there is a tanh neural network ĝt with two hidden layers and O(t+N)
neurons such that

∥g − ĝt∥Cs([−2πdN,2πdN]) ≤ 4(8(s+ 1)3R)s exp(t− s). (D.7)

This can be proven from [13, eq. (74)] by setting δ ← 1
3 , k ← s, s← t, N ← 2 and using ∥g∥Cs = 1

and Stirling’s approximation to obtain

1

(t− s)!

(
3

2 · 2

)t−s

≤ 1√
2π(t− s)

(
e

t− s

)t−s

≤ exp(s− t) for t > s+ e2. (D.8)

Setting t = O(ln
(
δ−1
)
+ s ln(s)) then gives a neural network ĝt with ∥g − ĝt∥Cs < η. Next, it

follows from [13, Lemma A.7] that

∥g ◦ f − ĝt ◦ f∥Cs([0,2π]d) ≤ 16(e2s4d2)s∥g − ĝt∥Cs([−2πdN,2πdN])∥f∥
s
Cs([0,2π]d)

≤ 16(e2s4d2)sη(2πdN)s.
(D.9)

From this follows that we can obtain the desired accuracy (D.5) if we set τj = ĝt(η) ◦ f with

η =
εp−3/2

16(2πNd3e2s4)s
, (D.10)

which amounts to t = O(s ln
(
sNε−1

)
). As a consequence, the tanh neural network τj has two

hidden layers with O(s ln
(
sNε−1

)
+ N) neurons and therefore, by recalling that p ∼ Nd, the

combined network τ has two hidden layers with

O(p(s ln
(
sNε−1

)
+N)) = O(ps ln

(
psε−1

)
+ p

d+1
d) (D.11)

neurons.

D.3 Proof of Theorem 4.6

Proof. Consider the setting of Theorem 4.6. Using [40, Theorem D.3], the reasoning as in [40,
Example D.4] and Lemma D.1 we find that there exists a constant C = C(d, ℓ) > 0, such that for
any m, p, s ∈ N there exists a DeepONet with trunk net τ and branch net β, such that

size(τ) ≤ C(p d+1
d + ps ln

(
psε−1

)
), depth(τ) = 3, (D.12)

and where

size(β) ≤ p, depth(β) ≤ 1, (D.13)

and such that the DeepONet approximation error (D.1) is bounded by

∥∥G(v)− Gθ(v)
∥∥
L2(µ×λ)

≤ ε+ C exp
(
−c p1/d

)
+ C exp

(
− cm1/d

log(m)
1/d

)
. (D.14)

Moreover, it holds that ∣∣N (u)(·)
∣∣
Cs ≤ Cps/d, (D.15)

since in this case τ approximates the Fourier basis (SM A.5). From (A.15), one can then deduce
the estimate on the Cs-norm of the DeepONet. This proves that (3.7) in Theorem 3.8 holds with
σ(s) = s/d. This concludes the proof.

33

D.4 Auxiliary results for nonlinear operators

We provide a neural network approximation result for the Legendre basis from SM A.4.

Lemma D.2. Let n, p ∈ N. For any ε > 0, there exists a trunk net τ : Rd → R
p with two hidden

layers of width O(p) such that

p3/2 max
j=1,...,p

∥τj − Lj∥Cs([−1,1]d) ≤ ε, (D.16)

where L1, . . . , Lp denote the first p elements of the Legendre basis, as in SM A.4.

Proof. Let j ∈ 1, . . . , p. It holds by definition of Legendre polynomials and the corresponding
enumeration (SM A.4) that the degree in every variable is at most p. Therefore, Lj is a product of d
univariate polynomials of degree at most p. From [13, Lemma 3.2] it follows that one needs a shallow
tanh neural network with O(p) neurons to approximate a univariate polynomial to any accuracy. The
result from [13, Corollary 3.7] can be used to construct a shallow tanh network that approximates the
product of the d univariate polynomials. Note that its size only depends on the dimension d and not
on the polynomial degree p or the accuracy. Finally, [13, Lemma A.7] ensures the accuracy of the
composition of the two subnetworks. It then follows that there exist a tanh neural network of width
O(p) and two hidden layers that achieves the wanted error estimate.

In our proofs, we require tanh counterparts to the results for DeepONets with ReLU activation
function from [40]. We present these adapted results below for completeness.

The first lemma considers the neural network approximation of the map u 7→ Ŷ (u), as defined in
[40, Eq. (3.59)].

Lemma D.3. LetN, d ∈ N, and denotem := (2N+1)d. There exists a constantC > 0, independent
of N , such that for every N there exists a tanh neural network Ψ : Rm → R

m, with

size(Ψ) ≤ C(1 +m log(m)), depth(Ψ) ≤ C(1 + log(m)), (D.17)

and such that Ψ(u) = (Ŷ1(u), . . . , Ŷm(u)), for all u ∈ R
m.

Proof. The proof is identical to that of [40, Lemma 3.28].

We can now state the following result [66, Theorem 3.10] which is the counterpart of [40, Theorem
3.32] for tanh neural networks.

Theorem D.4. Let V be a Banach space and let J be a countable index set. Let F : [−1, 1]J → V
be a (b, ε, κ)-holomorphic map for some b ∈ ℓq(N) and q ∈ (0, 1), and an enumeration κ : N→ J .
Then there exists a constant C > 0, such that for every N ∈ N, there exists an index set

ΛN ⊂
{
ν = (ν1, ν2, . . .) ∈

∏
j∈JN0 | νj ̸= 0 for finitely many j ∈ J

}
, (D.18)

with |ΛN | = N , a finite set of coefficients {cν}ν∈ΛN
⊂ V , and a tanh network Ψ : RN → R

ΛN ,
y 7→ {Ψν(y)}ν∈ΛN

with

size(Ψ) ≤ C(1 +N log(N)), depth(Ψ) ≤ C(1 + log log(N)), (D.19)

and such that

sup
y∈[−1,1]J

∥∥∥∥∥∥
F(y)−

∑

ν∈ΛN

cνΨν(yκ(1), . . . , yκ(N))

∥∥∥∥∥∥
V

≤ CN1−1/q. (D.20)

Using this theorem, we can state the tanh counterpart to [40, Corollary 3.33].

Corollary D.5. Let V be a Banach space. Let F : [−1, 1]J → V be a (b, ε, κ)-holomorphic map
for some b ∈ ℓq(N) and q ∈ (0, 1), where κ : N → J is an enumeration of J . In particular, it is
assumed that {bj}j∈N is a monotonically decreasing sequence. If P : V → R

p is a continuous linear
mapping, then there exists a constant C > 0, such that for every m ∈ N, there exists a tanh network
Ψ : Rm → R

p, with

size(Ψ) ≤ C(1 + pm log(m)), depth(Ψ) ≤ C(1 + log log(m)), (D.21)

34

and such that

sup
y∈[−1,1]J

∥P ◦ F(y)−Ψ(yκ(1), . . . , yκ(m))∥ℓ2(Rp) ≤ C∥P∥m−s, (D.22)

where s := q−1 − 1 > 0 and ∥P∥ = ∥P∥V→ℓ2 denotes the operator norm.

Proof. The proof is identical to the one presented in [40, Appendix C.18].

Finally, we use this result to state the counterpart to [40, Theorem 3.34], which considers the
approximation of a parametrized version of the operator G, defined as a mapping

F : [−1, 1]J → L2(U) : y 7→ G(u(·;y)). (D.23)

A more detailled discussion can be found in [40, Section 3.6.2].
Theorem D.6. Let F : [−1, 1]J → L2(U) be (b, ε, κ)-holomorphic with b ∈ ℓq(N) and κ : N→ J
an enumeration, and assume that F is given by (D.23). Assume that the encoder/decoder pair is
constructed as in [40, Section 3.5.3], so that [40, Eq. (3.69)] holds. Given an affine reconstruction
R : Rp → L2(U), let P : L2(U)→ R

p denote the corresponding optimal linear projection [40, Eq.
(3.17)]. Then given k ∈ N, there exists a constant Ck > 0, independent of m, p and an approximator
A : Rm → R

p that can be represented by a neural network with

size(A) ≤ Ck(1 + pm log(m)), depth(A) ≤ Ck(1 + log(m)).

and such that the approximation error ÊA can be estimated by

ÊA ≤ Ck∥P∥m−k,

where ∥P∥ = ∥P∥L2(U)→Rp is the operator norm of P .

Proof. The proof is as in [40, Appendix C.19.1].

D.5 Gravity pendulum with external force

Next, we consider the following nonlinear ODE system, already considered in the context of approxi-
mation by DeepONets in [46] and [40],

dv1
dt

= v2,

dv2
dt

= −γ sin(v1) + u(t).

(D.24)

with initial condition v(0) = 0 and where γ > 0 is a parameter. Let us denote v = (v1, v2) and

g(v) :=

(
v2

−γ sin(v1)
)
, U(t) :=

(
0
u(t)

)
, (D.25)

so that equation (D.24) can be written in the form

dv

dt
= g(v) + U, v(0) = 0. (D.26)

In (D.26), v1, v2 are the angle and angular velocity of the pendulum and the constant γ denotes a
frequency parameter. The dynamics of the pendulum is driven by an external force u. With the
external force u as the input, the output of the system is the solution vector v and the underlying
nonlinear operator is given by G : L2([0, T]) → L2([0, T]) : u 7→ G(u) = v. Following the
discussion in [40], we choose an underlying (parametrized) measure µ ∈ P(L2([0, T])) as a law of a
random field u, that can be expanded in the form

u(t;Y) =
∑

k∈Z

Ykαkek

(
2πt

T

)
, t ∈ [0, T], (D.27)

where ek(x), k ∈ Z, denotes the one-dimensional standard Fourier basis (A.5) and where the coeffi-
cients αk ≥ 0 decay to zero as αk ≤ Cα exp

(
−|k|ℓ

)
for some constants Cα, ℓ > 0. Furthermore,

we assume that the {Yk}k∈Z are iid random variables on [−1, 1].
Assuming the described setting, the following lemma gives an error bound of tanh DeepONets in
terms of the sizes of the corresponding branch and trunk nets.

35

Lemma D.7. Consider the DeepONet approximation problem for the gravity pendulum (D.24), where
the forcing u(t) is distributed according to a probability measure µ ∈ P(L2([0, T])) given as the
law of the random field (D.27). For any k, r ∈ N, there exists a constant C = C(k, r) > 0, and a
constant c > 0, independent of m, p, such that for any m, p ∈ N, there exists a DeepONet with trunk
net τ and branch net β, such that

size(τ) ≤ Cp, depth(τ) = 2, (D.28)

and

size(β) ≤ C(1 + pm log(m)), depth(β) ≤ C(1 + log(m)), (D.29)

and such that the DeepONet approximation error (D.1) is bounded by

Ê ≤ Ce−cℓm + Cm−k + Cp−r, (D.30)

and that for all s ∈ N , ∣∣N (u)(·)
∣∣
Cs ≤ Cpd/2+2sd. (D.31)

Proof. The proof of the statement is identical to that of [40, Theorem 4.10], with the only difference
that we consider tanh neural networks instead of ReLU neural networks. As a result, the proof comes
down to determining the size of the trunk net τ using Lemma D.2 instead of [60, Proposition 2.10],
thereby proving the tanh counterpart of [40, Proposition 4.5], and replacing [40, Proposition 4.9] by
Theorem D.6. The Cs-bound of the DeepONet follows from the Cs-bound of Legendre polynomials
(A.12) and Lemma D.2.

We can again follow Theorem 3.8 to obtain error bounds for physics-informed DeepONets. As-
sumption 3.2 is satisfied for [0, T]. As a result, we can apply Theorem 3.8 to obtain the following
result.

Theorem D.8. Consider the setting of Lemma D.7. For every β > 0, there exists a constant C > 0
such that for any p ∈ N , there exists a DeepONet Gθ with a trunk net τ = (0, τ1, . . . , τp) with p
outputs and branch net β = (0, β1, . . . , βp), such that

size(τ) ≤ Cp, depth(τ) = 2, (D.32)

and

size(β) ≤ C(1 + p2 log(p)), depth(β) ≤ C(1 + log(p)), (D.33)

and such that
∥∥∥∥
dGθ(u)1
dt

− Gθ(u)2
∥∥∥∥
L2(µ)

+

∥∥∥∥
dGθ(u)2
dt

+ γ sin
(
Gθ(u)1

)
− u(t)

∥∥∥∥
L2(µ)

≤ Cp−β . (D.34)

Proof. Lemma D.7 with s ← 1, k ← r and m ← p then provides a DeepONet that satisfies
the conditions of Theorem 3.8 with r∗ = +∞ and equation (3.7) with σ(s) = d/2 + 2sd. The
smoothness of v is guaranteed by [40, Lemma 4.3]. Moreover, it holds that,
∥∥∥∥
dGθ(u)1
dt

− Gθ(u)2
∥∥∥∥
L2(µ)

≤
∥∥∥∥
dGθ(u)1
dt

− dG(u)1
dt

∥∥∥∥
L2(µ)

+
∥∥G(u)2 − Gθ(u)2

∥∥
L2(µ)

, (D.35)

and also that,
∥∥∥∥
dGθ(u)2
dt

+ γ sin
(
Gθ(u)1

)
− u(t)

∥∥∥∥
L2(µ)

≤
∥∥∥∥
dGθ(u)2
dt

− dG(u)2
dt

∥∥∥∥
L2(µ)

+ γ
∥∥∥sin

(
G(u)1

)
− sin

(
Gθ(u)1

)∥∥∥
L2(µ)

≤
∥∥∥∥
dGθ(u)2
dt

− dG(u)2
dt

∥∥∥∥
L2(µ)

+ γ
∥∥G(u)1 − Gθ(u)1

∥∥
L2(µ)

.

(D.36)

Combining this estimate with Theorem 3.8 with k = 2 then gives the wanted result.

36

D.6 An elliptic PDE: Multi-d diffusion with variable coefficients

Next, again following [40], we consider a popular model problem for elliptic PDEs with unknown
diffusion coefficients [10] and references therein. For the sake of definiteness and simplicity, we shall
assume a periodic domain D = T

d in the following. For b ∈ N0, we consider an elliptic PDE with
variable coefficients a,

−∇ · (a(x)∇u(x)) = f(x), (D.37)

for u ∈ Cb+2(D) with suitable boundary conditions, and for fixed f ∈ Cb(D). Similar to the
previous examples, we fix a probability measure µ on the coefficient a by assuming that every a can
be written as

a(x, Y) = a(x) +
∑

k∈Zd

αkYkek(x), (D.38)

with notation from SM A.5, and where for simplicity a(x) ≡ 1 is assumed to be constant. Further-
more, we will consider the case of smooth coefficients x 7→ a(x;Y), which is ensured by requiring
that there exist constants Cα > 0 and ℓ > 1, such that |αk| ≤ Cα exp

(
−ℓ|k|∞

)
for all k ∈ Z

d. Still
following [40], we define b = (b1, b2, . . .) ∈ ℓ1(N) by

bj := Cα exp
(
−ℓ|κ(j)|∞

)
, (D.39)

where κ : N → Z
d is the enumeration for the standard Fourier basis, (SM A.5). Note that by

assumption on the enumeration κ, we have that b is a monotonically decreasing sequence. In the
following, we will assume throughout that ∥b∥ℓ1 < 1, ensuring a uniform coercivity condition on all
random coefficients a = a(· ;Y) in (D.37). Finally, we assume that the Yj ∈ [−1, 1] are centered
random variables and we let µ ∈ P(L2(Td)) denote the law of the random coefficient (D.38).

The following lemma provides an error estimate for DeepONets approximating the operator G that
maps the input coefficient a into the solution field u of the PDE (D.37).

Lemma D.9. For any k, r ∈ N, there exists a constant C > 0, such that for any m, p ∈ N, there
exists a DeepONet Gθ = R ◦ A ◦ E with m sensors, a trunk net τ = (0, τ1, . . . , τp) with p outputs
and branch net β = (0, β1, . . . , βp), such that

size(β) ≤ C(1 + pm log(m)), depth(β) ≤ C(1 + log(m)), (D.40)

and

size(τ) ≤ Cp d+1
d depth(τ) ≤ 2 (D.41)

such that the DeepONet approximation error (D.1) satisfies

Ê ≤ Ce−cℓm
1
d + Cm−k + Cp−r, (D.42)

and that for all s ∈ N ∣∣N (u)(·)
∣∣
Cs ≤ Cps/d. (D.43)

Proof. This statement is the tanh counterpart of [40, Theorem 4.19], which addresses ReLU Deep-
ONets. We only highlight the differences in the proof. First, one should use Lemma D.1 instead of
[40, Lemma 3.13], which then results in different network sizes in [40, Lemma 3.14, Proposition
3.17, Corollary 3.18, Proposition 4.17]. Second, one needs to replace [40, Proposition 4.18] with
Theorem D.6.

Moreover, in this case the trunk net τ approximates the Fourier basis (SM A.5). From (A.15), one
can then deduce the estimate on the Cs-norm of the DeepONet.

It is straightforward to verify that the conditions of Theorem 3.8 are satisfied in the current setting.
Applying Theorem 3.8 then results in the following theorem on the error of physics-informed
DeepONets for (D.37).

37

Theorem D.10. Consider the elliptic equation (D.37) with b ≥ 1. For every β > 0, there exists
a constant C > 0 such that for any p ∈ N , there exists a DeepONet Gθ with a trunk net τ =
(0, τ1, . . . , τp) with p outputs and branch net β = (0, β1, . . . , βp), such that

size(β) ≤ C(1 + p2 log(p)), depth(β) ≤ C(1 + log(p)), (D.44)

and

size(τ) ≤ Cp2 depth(τ) ≤ 2 (D.45)

such that ∥∥∇ · (a(x)∇Gθ(a)(x))− f(x)
∥∥
L2(µ)

≤ Cp−β . (D.46)

Proof. We first check the conditions of Theorem 3.8. Lemma D.9 with s← 1, k ← r and m← p
then provides a DeepONet that satisfies the conditions of Theorem 3.8 with r∗ = +∞ and equation
(3.7) with σ(s) = s/d. Moreover, the following estimate holds,

∥∥∇ · (a(x)∇Gθ(a)(x))− f(x)
∥∥
L2(µ)

≤
∥∥∇ · (a(x)∇Gθ(a)(x))−∇ · (a(x)∇G(a)(x))

∥∥
L2(µ)

≤
d∑

j=1

∥a∥C0

∥∥∥∂2j (Gθ − G)(a)(x)
∥∥∥
L2(µ)

+
d∑

j=1

∥a∥C1

∥∥∂j(Gθ − G)(a)(x)
∥∥
L2(µ)

.

(D.47)

Combining this estimate with Theorem 3.8 with k = 2 then gives the wanted result.

38

	Introduction
	Preliminaries
	Setting
	Approximating PDEs with neural networks

	General results
	Estimates for (physics-informed) neural networks
	Estimates for operator learning
	Estimates for physics-informed operator learning

	Applications
	Overcoming the curse of dimensionality
	Error bounds for physics-informed operator learning

	Related work and discussion
	Notation and preliminaries
	Overview of used notation
	Finite differences
	Sobolev spaces
	Notation for Legendre basis
	Notation for Standard Fourier basis
	Trigonometric polynomial interpolation
	Neural network approximation theory

	Additional material for Section 3
	Auxiliary results for Section 3
	Proof of Theorem 3.4
	Proof of Theorem 3.6
	Proof of Theorem 3.9

	Additional material for Section 4.1
	Auxiliary results
	Proof of Theorem 4.2
	Nonlinear parabolic equations
	Multilevel Picard approximations
	Neural network approximation of nonlinear parabolic equations
	PINN approximation of nonlinear parabolic equations

	Additional material for Section 4.2
	Errors of DeepONets
	Auxiliary results for linear operators
	Proof of Theorem 4.6
	Auxiliary results for nonlinear operators
	Gravity pendulum with external force
	An elliptic PDE: Multi-d diffusion with variable coefficients

