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Abstract. This article provides a rigorous mathematical analysis of acoustic wave scattering induced by a
high-contrast subwavelength resonator whose material density is periodically modulated in time, and with a
modulation frequency that is much larger than the one of the incident wave. We find that in general, the effect
of the fast modulation is averaged over time and that the system behaves as an unmodulated resonator with

an apparent effective density. However, under a suitable tuning of the modulation, which achieves a matching
between temporal Sturm-Liouville and spatial Neumann eigenvalues, the low frequency incident wave becomes

suddenly able to excite high frequency modes in the resonator. This phenomenon leads to the generation
of scattered waves carrying high frequency components in the far field, and to the existence of exponentially
growing outgoing modes. From these findings, it is expected that such time-modulated system could serve as a
spontaneously radiating device, or as a high harmonic generator.
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The work of F. Feppon was supported by ETH Zürich through the Hermann-Weyl fellowship of the Institute for Mathematical

Research (FIM).
We warmly thank Euan Spence for his insights on high-frequency bounds for the Helmholtz equation.
Declarations of interest: none.

1



1. Introduction

Time-modulated metamaterials [94, 28, 27] have been receiving a lot of attention for the promising appli-
cations they offer in the design of wave devices. Modulating in time the physical parameters of a medium
allows indeed to perform a variety of wave operations, such as temporal dispersion or frequency conversion
[92, 85, 84, 81, 53], signal amplification [49, 76], signal compression [35], spacetime cloaking [70], and non-
reciprocal propagation [34, 78]. On the other hand, subwavelength resonators are known to be ideal constituents
of spatial metamaterials or metasurfaces [68, 66, 69]: these can be achieved through high contrast inclusions
which have the property of resonating with incident wavelengths much larger than the size of the resonators,
thereby allowing to manipulate waves at subwavelength scales [88, 69, 37, 89]. High-contrast metamaterials
obtained by filling a homogeneous medium with many of such inclusions enable to achieve a variety of applica-
tions in photonics and phononics, such as negative index scattering [13], spatial cloaking [5, 60], superfocusing
[65, 10], guiding [75, 16, 9], sensing [35, 7] or superresolution imaging [56, 57, 20].

Quite many works have been proposed for modelling and understanding time-modulated media from physical
or numerical studies, e.g. [29, 28, 30, 41, 50, 49, 55, 62, 76, 77, 82, 85, 83, 94, 80, 93]. There exist, however and
to the best of our knowledge, very few works proposing a systematic mathematical analysis of wave propagation
in temporal media. We can mention the work of Koutserimpas and Fleury [61, 62] who propose an approach for
understanding wave amplification, in periodic media only. Quite recently, Ammari and Hiltunen [15] proposed
an analysis for predicting the arising of subwavelength resonances in high contrast time-modulated phononic
crystals, with the motivation of achieving non-reciprocal wave propagation [3]. The authors assumed the
frequency of the modulation to be small–of the same order of the propagating wave frequency–leading to band
gaps asymmetric with respect to the origin, ω–gaps and folding effects. Still, the rigorous characterization of
the resonances in this regime is delicate, and the derivation proposed in this work remains formal. In this case
also, the authors assume that the medium is extended periodically and infinitely in the three space directions,
which allows for simplifications thanks to the Floquet transform on the coordinate variables. Apart from
these contributions, we are not aware of any work investigating wave scattering in an open medium due to a
time-modulated obstacle.

In this work, we propose a rigorous mathematical analysis of wave scattering induced by a subwavelength
resonator subjected to a fast periodic time-modulation of one of the physical parameters. By fast, we mean
that the time modulation has a significantly larger frequency compared to the incident frequency. Although a
fast time-modulation may be challenging to realize in a practical physical system, this setting is mathematically
more amenable to a rigorous analysis than to the case where the time modulation has a frequency of the same
order of the incident wave. Furthermore, it leads to interesting physical effects. More specifically, we consider
the following acoustic scattering problem in a three-dimensional homogeneous medium, with a time-modulated
and highly contrasted resonator D:





1

κ0

∂2u

∂t2
− 1

ρ0
∆u = 0 in R× R

3\D,

1

κr

∂2u

∂t2
− 1

ρ(t)ρr
∆u = 0 in R×D,

1

ρ0

∂u

∂n

∣∣∣∣
+

=
1

ρrρ(t)

∂u

∂n

∣∣∣∣
−

on R× ∂D, 1 ≤ i ≤ N,

u|+ = u|− on R× ∂D,

u− uin is outgoing,

(1.1)

where n is the outward normal to D. The parameters ρ0 and κ0 denote respectively the density and bulk
modulus of the homogeneous background medium. The resonator D is a simply connected, smooth bounded
domain; it is characterized by its bulk modulus κr and a time-modulated density ρrρ(t). The modulation
t 7→ ρ(t) is a T–periodic function whose frequency is denoted by

Ω =
2π

T
.

We assume that uin is an incident plane wave, which is a time-harmonic solution to the wave equation in the
free-space R

3 propagating with a given frequency ω > 0:

uin(t, x) = ûin(x)e
−iωt, (1.2)

where ûin is solution to the Helmholtz equation:
(
∆+

ω2

v20

)
ûin = 0 in R

3. (1.3)
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In what follows, we denote by v0 and vr the wave speeds

v0 :=

√
κ0
ρ0
, vr :=

√
κr
ρr
,

and by δ the ratio between the densities of both media:

δ :=
ρr
ρ0
.

We consider the scattering problem (1.1) in the subwavelength and high contrast regimes:

ω → 0 and δ → 0. (1.4)

On the other hand, the frequency Ω of the modulation ρ(t) is kept constant, so that Ω is large compared to the
incident frequency (ω ≪ Ω), which corresponds to the fast modulation setting. In Section 4.3, we show that
the solution u(t, x) to (1.1) is fully determined by considering a suitable outgoing radiation condition, where
“outgoing” means that u− uin should be a function of t− |x|/v0 at infinity.

When there is no time-modulation, i.e. ρ(t) = 1, the system (1.1) models the scattering of sound waves by a
small bubble in water. It is then known that the high contrast regime δ → 0 leads to the arising of subwavelength
or the so-called Minnaert resonances [73, 11], corresponding to a strong amplification of the scattered field for
incident frequencies close to the resonances. In the present study, we consider, for the simplicity of the derivation,
only the case where only the density of the medium is modulated. The modulation of the parameter κr could
be taken into account up to a small adaptation described in Remark 4.1.

Given this context, the purpose of this article is to show the arising of a special kind of subwavelength
resonances under some exceptional–yet feasible–conditions on the time modulation ρ(t). In general, the effect
of the modulation is averaged over time and the system behaves as if the time-dependent physical parameter

1/ρ(t) were replaced with its average 1
T

∫ T

0
1

ρ(t) dt in (1.1), thereby yielding no particularly visible effect on

the scattered field at first order (Section 5.1.3). However, when a set of explicit conditions are fulfilled, a
strong coupling between the low frequency incident field and the high frequency modulation arises, leading the
resonator D to generate pulsed scattered waves with high frequency components (we illustrate this phenomenon
on Figure 1). Furthermore, we find the existence of modes exponentially growing in time, which suggests that
such a tuned system could serve as a spontaneously radiating device or for high harmonic generation [91, 79, 33].
One possible application of such metamaterial could be the design of acoustic insulators, due to its potentiality
in converting large (audible) wavelength into tiny (inaudible) ones, which could then be more easily absorbed
by more classical materials adapted to small wavelengths. If these properties are expected to arise in time-
modulated metamaterials [76, 49, 61], our work is the first, to the best of our knowledge, to propose a rigorous
mathematical analysis of such phenomena in open systems, and high-frequency time-modulated metamaterials.
A significant advance is also to account for modulations ρ which can be arbitrarily rough (we assume only
1/ρ ∈ L∞

per((0, T ))), while [15] assumed that ρ has a finite number of Fourier modes.

uin(t, x)

D

ρ(t)

us(t, x)

Figure 1. High frequency coupling between a low frequency incident field and a subwavelength
resonator D modulated by a high-frequency time modulation ρ(t). Upon a strong coupling
between the resonator and the modulation (namely when Λ 6= {(0, 0)}, where Λ is given by
(1.7)), the scattered field us = u− uin carries high frequency components in the far field.

The conditions under which the exceptional resonant coupling arise can be formulated in terms of two
eigenvalue problems naturally associated to (1.1). First, let us denote by 0 = λ0 < λ1 ≤ λ2 ≤ . . . and by
(φl)l∈N the eigenvalues and eigenvectors of the Laplace operator with Neumann boundary conditions on ∂D:





−∆φl = λlφl in D,

∂φl
∂n

= 0 on ∂D,
l ∈ N. (1.5)
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Second, consider the Sturm-Liouville eigenvalue problem associated to the modulation 1/ρ(t) with eigenvalues
0 = µ0 < µ1 ≤ µ2 ≤ . . . and eigenvectors (pm)m∈N:




− d2

dt2
pm(t) =

µm

ρ(t)
pm(t),

pm is T–periodic,

m ∈ N. (1.6)

Let us finally denote by Λ the set of indices associated to the eigenvalues λl and µm which are proportional by
a factor 1/v2r :

Λ :=

{
(m, l) ∈ N× N |λl =

µm

v2r

}
. (1.7)

Since λ0 = µ0/v
2
r = 0 (these eigenvalues are associated to constant functions in D and on (0, T )), the set Λ is

not empty and contains the tuple (0, 0). It is reasonable to believe that generically, the coincidence of further
eigenvalues is exceptional and that in most situations, Λ = {(0, 0)}. In that case, we show that the tuple (0, 0)
is associated to the existence of a single subwavelength resonant mode that is approximately constant in time
and space in the resonator D, which generates scattered waves devoid of high frequency components at first
order.

However, under an appropriate tuning of the modulation ρ(t), the set Λ may contain a non-trivial pair of
indices (m, l) 6= (0, 0). This can be achieved, for instance, upon a magnification of ρ(t) by a suitable constant
multiplicative factor, since this would result in the same magnification for the eigenvalues (µm)m∈N. Then, this
configuration leads to the arising of as many additional subwavelength resonant modes as the size of the set
Λ, which are approximately equal to linear combinations of the functions (pm(t)φl(x))(l,m)∈Λ inside D. More
precisely, the result of Proposition 5.3 shows that there are 2#Λ resonant frequencies whose leading order
asymptotics are given by

ω±
i (δ) ∼ ±vrδ

1
2λ

1
2

i , 1 ≤ i ≤ #Λ, (1.8)

where #Λ denotes the number of elements of the set Λ, and where (λi)1≤i≤#Λ are the eigenvalues of the following
generalized eigenvalue problem with eigenvectors (ai)1≤i≤#Λ:

Tai + λiGai = 0.

The matrix T ≃ (Tml,m′l′)(m,l),(m′,l′)∈Λ is determined by the Dirichlet-to-Neumann operator of the (time-
modulated) acoustic scattering problem (defined in (5.11)). The matrix G = diag(γm)1≤m≤#Λ is a diagonal
matrix of coefficients (γm)1≤m≤#Λ (equation (5.10)). In the exceptional coupling case Λ 6= {(0, 0)}, both
matrices have no distinguished signs, so that the eigenvalues λi are complex in all generality. Then, we find

in Proposition 5.5 that at least in the case where D is the disk, one of the complex square roots ±λ
1
2

i in (1.8)
must have a strictly positive imaginary part, which is associated to the existence of some exponentially growing
outgoing mode (i.e. a non-trivial solution to (1.1) with uin = 0).

Besides the analysis of these resonant phenomena, we identify in Corollary 5.1 a leading order approximation
for the far field pattern of the scattered wave. After suitable rescalings and a Foldy-Lax approximation argument
inspired from [21, 43], this allows us to discuss, at least at a formal level, the arising of an effective medium for
the temporal metamaterial which would be constituted of many tiny copies of such time-modulated resonator
D.

The paper outlines as follows. After describing our notation conventions in Section 2, our work starts in
Section 3 with the introduction of a novel mathematical method for the study of subwavelength resonances in
open media. Our approach relies on a variational formulation of (1.1) and the Dirichlet-to-Neumann operator
associated to the Helmholtz equation in exterior domains. We expose our method on the unmodulated version of
(1.1) in which ρ(t) = 1, which allows us to verify that we retrieve all the results of [11, 8, 45, 21, 43] concerned
with this setting, namely the leading asymptotic of the subwavelength resonant frequencies, point scatterer
approximations, and a formal derivation of an effective medium theory for a system constituted of many small
subwavelength resonators. Our novel approach leads to slightly simpler derivations because we do not rely on
a layer potential representation, but is also more flexible in the sense that it could easily be applied in other
dimensions (d = 1 or d = 2, left for a future work), and to the time-modulated case which is the object of the
remainder of the paper.

We then focus on the scattering problem (1.1) with the time-dependent coefficient ρ(t). The formulation
of an associated outgoing radiation condition for such time-dependent problem is non-standard and requires a
particular study, which is the object of Section 4. We formulate an outgoing radiation condition which ensures
the existence and uniqueness of a quasi-periodic, outgoing solution to the scattering problem (1.1). We define the
Dirichlet-to-Neumann operator associated with such radiating solutions and we describe its main properties.
We mention the existence of an associated time-modulated fundamental solution and of an associated layer
potential theory which has resemblances with retarded potentials [87], and which enables us to compute far
field asymptotic expansions for time-modulated outgoing waves.
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In Section 5, we establish the arising of subwavelength resonances and we identify the leading order asymp-
totics of resonant frequencies for the time-modulated system (1.1), using the Dirichlet-to-Neumann approach
introduced in Section 3. We show that there are exactly as many (complex) subwavelength resonant frequencies
as twice the size of the set Λ. Assuming that the modulation is tuned in such a way that Λ = {(0, 0), (l,m)}
for some (l,m) 6= (0, 0), we show how the nature of these resonances can be determined by the sign of the
parameter γm and a matrix (Tlm,l′m′)(l,m),(l′,m′)∈Λ of coefficients determined by the Dirichlet-to-Neumann op-
erator. Then, we derive a far field pattern approximation of the scattered field in the strong coupling tuning
for which Λ = {(0, 0), (l,m)}, and we discuss the arising of an effective medium theory for a temporal meta-
material that would be constituted of many small identical time-modulated resonators. We find that under
some assumptions on the size and number of the resonators, the effective medium is governed by an integral
equation of the second-kind with a direction and time-dependent kernel. In general, let us mention that the
arising of high frequency scattered waves makes difficult the identification of a homogenized equation for the
complete scattered field, but such homogenization can be achieved for the low frequency part of the scattered
field; in that case we retrieve the possibility of achieving negative index refraction or strong absorption as in
the unmodulated setting. However, we believe that the true originality brought by the exceptional coupling lies
in the generation of high frequency scattered waves.

A final Appendix A gathers the definition and properties of the Bloch and Floquet transforms of tempered
distributions, which would be the appropriate setting for studying time-modulated wave scattering induced by
not necessarily time harmonic incident fields. These transforms are usually defined on L2 spaces and are applied
in the spatial domain to solution fields decaying at infinity. This setting is too restrictive for treating periodicity
in the time-domain, hence our motivation for extending the Bloch and Floquet transform on the larger space
of tempered distributions.

2. General setting and notation conventions

In all what follows, D ⊂ R
3 is a simply connected, smooth bounded domain. Its characteristic function is

written 1D, whose values are defined by

1D(x) =

{
1 if x ∈ D,

0 if x ∈ R
3\D. (2.1)

2.1. Functional spaces

We write Hs(D) and Hs(∂D) the usual space of complex-valued functions with Sobolev exponent s ∈ R.
For a given Hilbert space W , we denote by Hs

per((0, T ),W ) the space of functions (t, x) 7→ u(t, x) which are
T–periodic with respect to the variable t (u(t+T, ·) = u(t, ·)) with u(t, ·) ∈W for almost every t ∈ R, and such
that ∑

n∈Z

(1 + n2)
s
2 ||ûn||2W < +∞,

where || · ||W is the norm of W and (ûn)n∈Z denote the Fourier trigonometric coefficients of u:

u(t, x) =
∑

n∈Z

ûne
−inΩt with ûn :=

1

T

∫ T

0

u(t, x)einΩt dt.

In a similar manner, we consider L∞
per((0, T ),W ) (resp. C∞

per((0, T ),W )) the space of bounded (resp. smooth)
periodic functions with values in W .

Throughout the paper, we consider the Hilbert space H := L2
per((0, T ), L

2(D)), equipped with the inner
product induced by the modulation ρ:

〈u, v〉H :=
1

T

∫ T

0

∫

D

1

ρ(t)
u(t, x)v(t, x) dx dt, (2.2)

and the Hilbert space

V := H1
per((0, T ), L

2(D)) ∩ L2
per((0, T ), H

1(D)) (2.3)

equipped with the inner product

〈u, v〉V :=
1

T

(∫ T

0

∫

D

u dx dt

)(∫ T

0

∫

D

v dx dt

)
+

∫ T

0

∫

D

[
∇u · ∇v + 1

ρ(t)
∂tu∂tv

]
dx dt. (2.4)

We denote by ||u||H := 〈u, u〉
1
2

H and ||u|V := 〈u, u〉
1
2

V the associated norms.
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2.2. Layer potentials

For a given real number k ∈ R, Sk
D and Kk∗

D denote respectively the single layer potential and the adjoint of

the Neumann-Poincaré operator on D: for any φ ∈ H− 1
2 (∂D),

Sk
D[φ](x) :=

∫

∂D

Γk(x− y)φ(y) dσ(y), x ∈ R
3, (2.5)

Kk∗
D [φ](x) :=

∫

∂D

∇xΓ
k(x− y) · n(x)φ(y) dσ(y), x ∈ ∂D, (2.6)

where

Γk(x) := − eik|x|

4π|x| (2.7)

is the fundamental solution to the Helmholtz equation and dσ is the surface measure of ∂D. We recall that
when k is not a Dirichlet eigenvalue of D, Sk

D is an invertible operator from H− 1
2 (∂D) to H

1
2 (∂D), whose

inverse is denoted by (Sk
D)−1 : H

1
2 (∂D) → H− 1

2 (∂D) [18]. The purely imaginary number is denoted by (a
straight) i.

Finally, we denote by Φ the solution to the exterior problem




−∆Φ = 0 in R
3\D,

Φ = 1 on ∂D,

Φ(x) = O(|x|−1) as |x| → +∞,

(2.8)

and we recall the definition of the capacity of D:

cap(D) := −
∫

∂D

∂Φ

∂n
dσ,

where n is the outward normal to D. We denote by |D| the volume of D.

3. A Dirichlet-to-Neumann approach to subwavelength resonances in the unmodulated case

In this section, we introduce a novel approach for analyzing subwavelength resonances based on the weak
formulation of the wave scattering problem and the Dirichlet-to-Neumann operator. We illustrate this method
by retrieving well-established results for the static version of (1.1) in which the modulation is kept constant;
namely ρ(t) = 1 for all t ∈ R. This procedure will then be extended to the time-modulated system (1.1) in the
subsequent Sections 4 and 5.

Since we assume the time harmonic regime (1.2) for the incident field, the solution to (1.1) is itself time-
harmonic and is given by

u(t, x) = û(x)e−iωt, (3.1)

where û solves the following system of coupled Helmholtz equations:




∆û+
ω2

v20
û = 0 in R

3\D,

∆û+
ω2

v2r
û = 0 in D,

u|+ = u|− on ∂D,

∂û

∂n

∣∣∣∣
−
= δ

∂û

∂n

∣∣∣∣
+

on ∂D,

(
∂|x| −

iω

v0

)
(û− ûin) = O(|x|−2) as |x| → +∞.

(3.2)

The last equality is the outgoing Sommerfeld radiation condition, which ensures the uniqueness of the solution
and that the scattered wave is outgoing [71]. The analysis of the amplitude response to (3.2) in the high-contrast
regime δ → 0 by using integral representations of the solution is now quite established [11, 6, 45]. The object of
this section is to propose a slightly simpler characterization of the subwavelength resonances, by reformulating
(3.2) in the domain D in terms of the Dirichlet-to-Neumann map associated to the Helmholtz equation in
R

3\D. This approach turns out to be quite flexible, and it can be generalized naturally for the analysis of the
time-modulated system (1.1).

This section is organized in four parts. We first recall the definition of the Dirichlet-to-Neumann map in
Section 3.1 and we rewrite the scattering problem (3.2) in terms of this operator. We then provide an explicit
characterization of the subwavelength resonances in Section 3.2 based on a variational formulation posed in the
bounded domain D, and we compute their leading order asymptotic. Then, we explain how to retrieve a modal
decomposition and a point scatterer approximation formula in Section 3.3. Finally, we outline in Section 3.4
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the Foldy-Lax approximation argument which allows to derive an effective medium theory for a heterogeneous
medium filled with many rescaled copies of such resonators.

3.1. Formulation of the scattering problem in terms of the Dirichlet-to-Neumann map

We start by recalling the definition of the Dirichlet-to-Neumann map [36, 63, 74, 71].

Definition 3.1. The Dirichlet-to-Neumann map with wave number k ∈ R is the operator denoted by T k :
H

1
2 (∂D) → H− 1

2 (∂D) and defined by

T kf :=
∂wf

∂n

∣∣∣∣
+

where





∆wf + k2wf = 0 in R
d\D,

wf = f on ∂D,
(
∂|x| − ik

)
wf (x) = O(|x|−2) as |x| → +∞.

(3.3)

Throughout this section, we assume that k = ω/v0 with ω → 0. We have the following well-known result

regarding the analyticity of T
ω
v0 with respect to ω in a neighborhood of zero, in three dimensions (see e.g.

[19, 12, 17], and also the proof of Proposition 4.7 below for the analyticity on the whole real line).

Proposition 3.1. The operator T
ω
v0 : H

1
2 (∂D) → H− 1

2 (∂D) is analytic with respect to ω ∈ C in a neighborhood

of zero. In other words, there exist operators (Tn)n∈N such that T
ω
v0 can be decomposed as the following

convergent power series in the space of operators H
1
2 (∂D) → H− 1

2 (∂D):

T
ω
v0 =

+∞∑

n=0

ωn

vn0
Tn. (3.4)

Furthermore, the leading order asymptotic of T
ω
v0 reads, as ω → 0:

T
ω
v0 [φ] = T0[φ] +

iω

4πv0

(∫

∂D

∂Φ

∂n
φ dσ

)
∂Φ

∂n
+O(ω2),

where Φ is the solution to the exterior problem (2.8).

Proof. It is well-known that the Dirichlet-to-Neumann map can be expressed in terms of the single layer potential
and the Neumann-Poincaré operator (see [12, 17]):

T
ω
v0 =

(
1

2
I +K

ω
v0

∗
D

)
(S

ω
v0

D )−1. (3.5)

The analyticity of T
ω
v0 follows because the operators S

ω
v0

D and K
ω
v0

∗
D are analytic in ω and S

ω
v0

D is invertible for
small values of ω ∈ C. We can then compute the expansion of the Dirichlet-to-Neumann operator thanks to a
Neumann series:

T
ω
v0 =

(
1

2
I +K∗

D +O(ω2)

)(
S−1
D − ω

v0
S−1
D SD,1S−1

D +O(ω2)

)

= T0 −
ω

v0
T0SD,1S−1

D +O(ω2),

where SD,1 is the operator SD,1[φ] := − i
4π

∫
∂D

φ dσ (see e.g [45, Proposition 3.1]). Therefore, we find that

T
ω
v0 [φ] = T0[φ] +

iω

4πv0

(∫

∂D

S−1
D [φ] dσ

)
T0[1D] +O(ω2).

The result follows since S−1
D is self-adjoint and S−1

D [1∂D] = ∂Φ
∂n . �

Classically, the scattering problem (3.2) can be rewritten in terms of T
ω
v0 as a PDE posed on the bounded

domain D: 



∆û+
ω2

v2r
û = 0 in D,

∂û

∂n
= δT

ω
v0 [û− ûin] + δ

∂ûin
∂n

on ∂D.

(3.6)

It can equivalently be rewritten as the following variational formulation: find û ∈ H1(D) such that for any
v ∈ H1(D),

∫

D

(
∇û · ∇v − ω2

v2r
ûv

)
dx− δ

∫

∂D

T
ω
v0 [û]v dσ = δ

∫

∂D

(
∂ûin
∂n

− T
ω
v0 [ûin]

)
v dσ. (3.7)

The system (3.6) fully determines û inside D, while the value of û outside D can be obtained by solving an
exterior Helmholtz problem. In the regime ω → 0, we have for instance the representation

û = ûin + S
ω
v0

D [(S
ω
v0

D )−1[û|∂D − ûin|∂D]] in R
3\D, (3.8)

where the trace û|∂D is determined by (3.6).
7



The goal of this section is to analyse the arising of the resonances of (3.6), which are defined as the poles of
the scattering operator.

Definition 3.2. We call subwavelength “resonance” a complex frequency ω ≡ ω(δ) ∈ C satisfying ω(δ) → 0 as
δ → 0 and such that (3.6) admits a non-zero solution u(ω, δ) ∈ H1(D) for a zero right-hand side ûin = 0:





∆u(ω, δ) +
ω2

v2r
u(ω, δ) = 0 in D,

∂u(ω, δ)

∂n
= δT

ω
v0 [u(ω, δ)].

(3.9)

Equation (3.9) is an instance of a nonlinear eigenvalue problem [72] in ω ∈ C. Setting δ = 0 in (3.6), we
see that ω = 0 is a resonant frequency associated to the constant function u(0, 0) := 1D, where 1D is the
characteristic function (2.1) of D. By using a continuation argument as in [45] or Gohberg-Sigal theory, [12], we

find that it is possible to construct two resonant frequencies ω+(δ) and ω−(δ) of order O(δ
1
2 ) upon a suitable

perturbation u(ω, δ) of u(0, 0). The problem of characterizing the resonances is therefore reduced to the analysis
of the perturbation and the splitting of the nonlinear eigenvalue ω = 0 with respect to the parameter δ = 0.

It is possible thanks to a simple calculation to predict the leading order of the resonance and its connexion with
the capacity of D (assumed here to have a single connected component for simplicity), based on an argument
inspired from [88]. Setting v = 1D in (3.7) for a zero right-hand side ûin ≡ 0 and û ≡ u(ω, δ) ≃ u(0, 0) = 1D,
we obtain in the regime δ, ω → 0:

0 ≃ −ω
2

v2r
|D| − δ

∫

∂D

T
ω
v0 [1∂D] dσ ≃ −ω

2

v2r
|D| − δ

∫

∂D

T 0[1∂D] dσ. (3.10)

Since by the definition (3.3) of T 0, it holds

cap(D) = −
∫

∂D

T 0[1∂D] dσ,

we can predict from (3.10) that there are two resonant frequencies ω+(δ) and ω−(δ) satisfying

ω±(δ) ≃ ±vr

√
cap(D)

|D| δ
1
2 ,

which is the result derived in [11, 6, 45]. In the next subsections, we make this argument more systematic and
we express the leading order asymptotic of the solution û to (3.6) for a positive real frequency ω close to the
resonant value ω+(δ).

3.2. Characterization of the resonances

In what follows, we introduce the bilinear form aω,δ defined for u, v ∈ H1(D) by

aω,δ(u, v) :=

∫

D

∇u · ∇v dx+

∫

D

u dx

∫

D

v dx− ω2

v2r

∫

D

uv dx− δ

∫

∂D

T
ω
v0 [u]v dσ.

The bilinear form aω,δ is obtained by adding the rank-one bilinear form (u, v) 7→
∫
D
u dx

∫
D
v dx to the left-hand

side of (3.7). It is an analytic perturbation in ω and δ of the bilinear form a0,0 defined by

a0,0(u, v) :=

∫

D

∇u · ∇v dx+

∫

D

u dx

∫

D

v dx,

which is continuous coercive on H1(D) owing to the Poincaré-Wirtinger inequality.
From standard perturbation theory, it is clear that aω,δ remains coercive for sufficiently small complex values

of δ, ω. Hence, for any right hand-side f ∈ H−1(D), there exists a unique Lax-Milgram solution uf (ω, δ) to the
problem

aω,δ(uf (ω, δ), v) = 〈f, v〉H−1(D),H1(D), (3.11)

which is analytic in ω and δ (see e.g. [42]). In the context of (3.7), we shall consider

〈f, v〉H1(D),H−1(D) := δ

∫

∂D

(
∂ûin
∂n

− T
ω
v0 [ûin]

)
v dσ.

We now show that subwavelength resonant frequencies ω±(δ) are the root of a single well-determined scalar
equation.
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Lemma 3.1. Let ω ∈ C and δ ∈ R belong to a neighborhood of zero. For any f ∈ H−1(D), the variational
problem

find u ∈ H1(D) such that ∀v ∈ H1(D),
∫

D

(
∇u · ∇v − ω2

v2r
uv

)
dx− δ

∫

∂D

T
ω
v0 [u]v dσ = 〈f, v〉H−1(D),H1(D), (3.12)

admits a unique solution u if and only if ∫

D

u1(ω, δ) dx 6= 1, (3.13)

where u1(ω, δ) ∈ H1(D) is the unique solution to the variational problem

aω,δ(u1(ω, δ)) = 〈1D, v〉H−1(D),H1(D) =

∫

D

v dx. (3.14)

When (3.13) is satisfied, the solution to (3.12) reads

u ≡ u(ω, δ) = uf (ω, δ) +

∫
D
uf (ω, δ) dx

1−
∫
D
u1(ω, δ) dx

u1(ω, δ), (3.15)

where uf (ω, δ) is the solution to (3.11). When (3.13) is not satisfied, then u1(ω, δ) is a non-zero solution to
(3.12) with f = 0 and ω ≡ ω(δ) is a subwavelength resonant frequency.

Proof. Clearly, (3.12) is equivalent to

aω,δ(u, v)−
∫

D

u dx

∫

D

v dx = 〈f, v〉H−1(Ω),H1(Ω)

⇔ aω,δ(u, v) = aω,δ(uf (ω, δ), v) +

(∫

D

u dx

)
aω,δ(u1(ω, δ), v),

which implies

u = uf (ω, δ) +

(∫

D

u dx

)
u1(ω, δ).

Integrating on D, this equation has a solution given by (3.15) if and only if (3.13) is satisfied. �

In other words, subwavelength resonances ω ≡ ω(δ) are characterized by the equation
∫

D

u1(ω, δ) dx = 1, (3.16)

where u1(ω, δ) is the solution to (3.14), which also reads in strong form




−∆u1(ω, δ)−
ω2

v2r
u1(ω, δ) +

(∫

D

u1(ω, δ) dx

)
1D = 1D in D,

∂u1(ω, δ)

∂n
= δT

ω
v0 [u1(ω, δ)] on ∂D.

(3.17)

The existence of the complex resonant frequencies ω ≡ ω(δ) such that (3.16) is then guaranteed by applying the
analytic implicit function theorem (see [59, Chapter 0]) to (3.16) as in [45]. In order to obtain an asymptotic
expansion of ω(δ), we start by computing the leading order term in the asymptotic expansion of u1(ω, δ) as
ω → 0 and δ → 0.

Proposition 3.2. The solution u1(ω, δ) to (3.17) has the following asymptotic behavior as ω, δ → 0:

u1(ω, δ) =

(
1

|D| +
ω2

v2r |D|2 − cap(D)

|D|3 δ +
iωδ cap(D)2

4πv0|D|3
)
1D +

(
1− iω cap(D)

4πv0

)
δũ0,1 +O(ω2 + δ)2, (3.18)

where the remainder is estimated with the H1(D)–norm. The function ũ0,1 is the solution to the following
Laplace problem: 




−∆ũ0,1 =
cap(D)

|D|2 in D,

∂ũ0,1
∂n

=
1

|D|
∂Φ

∂n
on ∂D,

∫

D

ũ0,1 = 0,

(3.19)

where Φ is the solution to (2.8).
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Proof. Since u1(ω, δ) is analytic in ω and δ, there exist functions (up,k)p,k≥0 such that the following series is
convergent in H1(D):

u1(ω, δ) =

+∞∑

p,k=0

ωpδkup,k. (3.20)

Inserting (3.4) into (3.14) and identifying powers of δ and ω, we obtain the following cascade of equations
characterizing the functions (up,k)p,k≥0:





−∆up,k +

(∫

D

up,k dx

)
1D =

1

v2r
up−2,k + 1Dδp=0δk=0 in D,

∂up,k
∂n

=

p∑

n=0

1

vn0
Tn[up−n,k−1],

where we assume that up,k = 0 for negative indices p and k. It is easily obtained by induction that

u2p,0 =
1D

v2pr |D|p+1
and u2p+1,0 = 0, for any p ≥ 0.

Then, for p = 0 and k = 1, we find that u0,1 satisfies, for any v ∈ H1(D):
∫

D

∇u0,1 · ∇v dx+

∫

D

u0,1 dx

∫

D

v dx =

∫

∂D

T0
[
1D
|D|

]
v dσ =

1

|D|

∫

∂D

∂Φ

∂n
v dσ.

Setting v = 1D, we find that
∫
D
u0,1 dx = − cap(D)

|D|2 and

u0,1 = −cap(D)

|D|3 1D + ũ0,1,

where ũ0,1 is the solution to the Laplace problem (3.19). Let us finally compute u1,1, that is the solution to




−∆u1,1 +

(∫

D

u1,1 dx

)
1D = 0 in D,

∂u1,1
∂n

= T0[u1,0] +
1

v0
T1[u0,0] =

1

v0|D|T1[1D].

Using the result of Proposition 3.1, we find T1[1D] = −i cap(D)
4π

∂Φ
∂n , and then

u1,1 = − i cap(D)

4πv0
u0,1 =

i cap(D)2

4πv0|D|3 1D − i cap(D)

4πv0
ũ0,1.

Substituting these results in (3.20) yields the expansion (3.18). �

Corollary 3.1. We have the following asymptotic expansion for the equation (3.16) characterizing the resonant
frequencies:

0 =

∫

D

u1(ω, δ) dx− 1 =
ω2

v2r |D| −
cap(D)

|D|2 δ +
iωδ cap(D)2

4πv0|D|2 +O(ω2 + δ)2.

Consequently, there exist two subwavelength resonant frequencies ω+(δ) and ω−(δ) which are analytic functions

of δ
1
2 and whose leading asymptotic expansions are given by

ω±(δ) = ±vr cap(D)
1
2

|D| 12
δ

1
2 − iv2r cap(D)2

8πv0|D| δ +O(δ
3
2 ). (3.21)

The asymptotic (3.21) coincides with the result derived from layer potential representations in [11, 45].

3.3. Modal decomposition and point scatterer approximation

We now show how a modal decomposition and a point-scatterer approximation can be derived for the solution
û to (3.2) based on this Dirichlet-to-Neumann approach, which we shall reproduce later in Section 5.2 on the
time-modulated system (1.1). In this part, we assume that the resonator D is centered around the origin.

We first need an asymptotic expansion of the solution uf (ω, δ) to the variational problem (3.11), which reads
in strong form





−∆uf (ω, δ) +

(∫

D

uf (ω, δ) dx

)
1D − ω2

v2r
uf (ω, δ) = 0 in D,

∂uf (ω, δ)

∂n
− δT

ω
v0 [uf (ω, δ)] = δ

∂ûin
∂n

− δT
ω
v0 [ûin] on ∂D.

(3.22)
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Proposition 3.3. The function uf (ω, δ) solution to (3.22) satisfies at the leading order:

uf (ω, δ) = δ
cap(D)

|D| ûin(0)1D − δûin(0)|D|ũ0,1 +O(ωδ), (3.23)

where ũ0,1 is the solution to (3.19).

Proof. Since the incident field solves the homogeneous Helmholtz equation (1.3) in R
3, its Fourier transform is

supported in the sphere of radius ω/v0. Therefore, there exists a function α : S2 → C such that

ûin(x) =

∫

S2

α(θ)ei
ω
v0

θ·x dσ(θ).

From this expression, it is clear that we can expand the incident field in powers of ω as follows:

ûin(x) =

+∞∑

p=0

∫

S2

α(θ)
ipωp

p!vp0
(θ · x)p dσ(θ) ≡

+∞∑

p=0

ωpuin,p(x),

where we remark that the functions uin,p satisfy

ωpuin,p(x) =
1

p!
∇pûin(0) · xp, ∇ûin(x) =

∑

p≥1

ωp∇uin,p(x).

Substituting ûin into (3.22), we write an ansatz uf (ω, δ) =
∑

p≥0,k≥1 ω
pδkvp,k which yields the following cascade

of equations for (vp,k)p≥0,k≥1:




−∆vp,k +

(∫

D

vp,k dx

)
1D =

1

v2r
vp−2,k in D,

∂vp,k
∂n

=

p∑

n=0

1

vn0
Tn[vp−n,k−1] +

(
∇uin,p · n−

p∑

n=0

1

vn0
Tn[uin,p−n]

)
δk=1 on ∂D,

where we assume that vp,k = 0 for k ≤ 0 and p < 0 by convention. Therefore, we find by using an integration
by parts on D for k = 1 and p = 0 that∫

D

v0,1 dx = −
∫

∂D

ûin(0)
∂Φ

∂n
dσ = cap(D)ûin(0),

and hence v0,1 can be decomposed as

v0,1 =
cap(D)

|D| ûin(0)1D + ûin(0)ṽ0,1,

with ṽ0,1 being the unique solution to




−∆ṽ0,1 = −cap(D)

|D| 1D in D,

∂ṽ0,1
∂n

= −∂Φ
∂n

on ∂D,
∫

D

ṽ0,1 = 0.

Remembering the definition (3.19), we find that ṽ0,1 = −|D|ũ0,1 and the result follows. �

Coming back to the formula (3.15), we obtain the following modal approximation of the solution û inside the
domain D.

Corollary 3.2. For real values of the frequency ω satisfying ω = O(δ
1
2 ), the solution û to (3.12) has the

following asymptotic expansion in H1(D):

û ≡ û(ω, δ) = − ûin(0)
ω2

ω2
M

− 1 + iω cap(D)
4πv0

(1 +O(δ
1
2 ))1D,

where

ωM := vr

√
cap(D)

|D| δ
1
2 . (3.24)

Proof. Inserting (3.18) and (3.23) into (3.15), we obtain:

û = O(δ)− δuin(0) cap(D) +O(δω)
ω2

v2
r
− cap(D)

|D| δ + iωδ cap(D)2

4πv0|D| +O((ω2 + δ)2)

(
1D +O(ω2 + δ)

)
,

which yields the result after using [45, Lemma 4.3] for bounding the error induced by approximating the
denominator. �
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Coming back to the representation (3.8) outside the resonatorD, we obtain thatD behaves in the far field as a
point source with a resonant amplification coefficient. The following result was obtained in [45, Proposition 5.5]
and in a slightly different form in [11].

Corollary 3.3. The following far field approximation holds for the scattered field in the regime where ω is real
and ω = O(δ

1
2 ):

û(x)− ûin(x) =
ûin(0)

ω2

ω2
M

− 1 + iω cap(D)
4πv0

cap(D)(1 +O(δ
1
2 ) +O(|x|−1))Γ

ω
v0 (x) as |x| → +∞, (3.25)

where we recall that Γ
ω
v0 is the fundamental solution (2.7) to the Helmholtz equation in the background medium

with wave number ω/v0.

Proof. Let us recall the following far field approximation for the single layer potential in the low frequency
regime:

S
ω
v0

D [φ](x) =

(∫

∂D

φ dσ

)
(1 +O(ω) +O(|x|−1))Γ

ω
v0 (x).

The result follows from (3.8) with

φ = (S
ω
v0

D )−1[û|∂D − ûin|∂D] = − ûin(0)
ω2

ω2
M

− 1 + iω cap(D)
4πv0

(1 +O(δ
1
2 ))(SD)−1[1D] +O(1).

�

3.4. Dilute regime and effective medium theory for high-contrast metamaterial

The point scatterer approximation (3.25) is a key ingredient for deriving an effective medium theory for
a medium constituted of many small copies of the resonator D. In this part, we sketch the derivation of

y1

y2 yN

y3

yi
D

s

DN,s = ∪N
i=1(yi + sD)

Ω

ûin ûN,s

Figure 2. Scattering of an incident wave ûin by a cloud of N copies of a high-contrast subwave-
length resonator D rescaled by a small size factor s > 0 and located around centers (yi)1≤i≤N .
The highly-contrasted medium is denoted by DN,s and is filling a bounded domain Ω.

the homogenized equation for a medium containing N resonators rescaled by a factor s, based on [21]. Our
motivation is later to adapt this procedure in Section 5.2 in order to obtain, under some conditions, an effective
medium theory for the time-modulated system. The procedure outlined in this article remains formal and is
based on the well-established Foldy-Lax approximation of the effective medium [48, 47, 21]; we refer the reader
to our recent work [43] for a rigorous justification with quantitative error estimates.

The setting is depicted on Figure 2: we consider a set DN,s of N copies of the inclusions D, rescaled by a
small factor s > 0 and translated in the vicinity of centers (yi)1≤i≤N :

DN,s =
⋃

1≤i≤N

(yi + sD).

The centers (yi)1≤i≤N are randomly and independently distributed in a bounded domain Ω ⊂ R
3 according to

a probability density V dx (this density satisfies V ∈ L∞(Ω), V ≥ 0 and
∫
Ω
V dx = 1). In particular, the law of
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large number asserts that we have the convergence of the empirical measure in the sense of distributions:

1

N

N∑

i=1

δyi
→ V dx as N → +∞.

We denote by ûN,s the solution to the scattering problem in the medium DN,s:




∆ûN,s +
ω2

v20
ûN,s = 0 in R

3\DN,s,

∆ûN,s +
ω2

v2r
ûN,s = 0 in DN,s,

ûN,s|+ = uN,s|− on ∂DN,s,

∂ûN,s

∂n

∣∣∣∣
−
= δ

∂ûN,s

∂n

∣∣∣∣
+

on ∂DN,s,

(
∂|x| −

iω

v0

)
(ûN,s − ûin) = O(|x|−2) as |x| → +∞.

(3.26)

Recalling that

cap(sD) = s cap(D), |sD| = s3|D|, (3.27)

we find that the subwavelength resonant frequency ωM (equation (3.24)) scales as

ωM = vr

√
cap(D)

|D|
δ

1
2

s
.

Hence, we assume that there exists some constant α > 0 such that the size factor s scales as

s ∼ αδ
1
2 ,

so that ωM converges to a determined frequency that is of order one. Then, the Foldy-Lax approximation
states that in the medium DN,s, if the centers yi are “sufficiently far” from one another, then the resonators
behave as a system of N distant point sources. Furthermore, the field scattered at the point yi should match
the contribution of the other point sources according to the law given by point scatterer approximation formula
(3.25). Using the rescaling (3.27), we expect therefore uN,s(yi) ≃ zN,i where (zN,i)1≤i≤N satisfies

zN,i − ûin(yi) =
∑

j 6=i

zN,j

ω2

ω2
M

− 1
s cap(D)Γ

ω
v0 (yi − yj), 1 ≤ i ≤ N.

The latter equation is an algebraic system of N equations for the N unknowns (zN,i)1≤i≤N , called Foldy-Lax
system [46, 4]. Using a law of large number result from [44], we can show the convergence of the solution
(zN,i)1≤i≤N as N → +∞ to the values of the solution (û(yi))1≤i≤N of the integral equation

û(y)− sN
cap(D)
ω2

ω2
M

− 1

∫

Ω

Γ
ω
v0 (y − y′)û(y′)V (y′) dy′ = ûin(y).

Left-multiplying this equation by the operator ∆ + ω2/v20 , we finally obtain the following equation for the
homogenized wave field û in the effective medium Ω:





∆û+


ω

2

v20
− sN

cap(D)
ω2

ω2
M

− 1
V 1Ω


u = 0 in R

3,

(
∂|x| −

iω

v0

)
(û− ûin)(x) = O(|x|−2) as |x| → +∞.

(3.28)

Observe that the resonant denominator ω2/ω2
M − 1 can take negative or positive values depending on whether

ω < ωM or ω > ωM . The heterogeneous medium behaves then respectively as a highly dispersive or a highly
dissipative medium. We refer the reader to [43] for a formal analysis and a statement of assumptions on s→ 0,
N → +∞ and δ → 0 for which there is a rigorous convergence result ûN,s → û.

4. Outgoing waves in a periodically time-modulated medium

In the remainder of this paper, we consider the time-modulated scattering problem (1.1) with a non-constant
time-modulation ρ ∈ L∞

per((0, T ),R). The goal of this section is to give a precise sense to “outgoing” for the
scattered wave generated by the time-modulated resonator D. Inspired from the Floquet-Bloch decomposition
[64, 1, 15], it is natural to seek a solution to (1.1) of the form

u(t, x) = e−iωtû(t, x), (4.1)
13



where the function (t, x) 7→ û(t, x) is T–periodic in time. The ansatz (4.1) generalizes the time-harmonic
regime (3.1) to the periodically modulated case; this form is peculiar to the time-harmonic assumption (1.2)
on the incident field but it would generalize to arbitrary incident waves by using an appropriate Floquet-
Bloch decomposition in time (see the Appendix A for a mathematical setting and Appendix A.4 for a formal
justification of the ansatz (4.1) based on the Bloch transform). Inserting (4.1) into (1.1) leads us to consider
the following time-dependent Helmholtz equation for û(t, x):





1

v20
(−iω + ∂t)

2
û(t, x)−∆û(t, x) = 0, (t, x) ∈ R× R

3\D,

1

v2r
(−iω + ∂t)

2
û(t, x)− 1

ρ(t)
∆û(t, x) = 0, (t, x) ∈ R×D,

1

ρ(t)

∂û(t, x)

∂n

∣∣∣∣
−
= δ

∂û(t, x)

∂n

∣∣∣∣
+

, (t, x) ∈ R× ∂D,

û|+(t, x) = û|−(t, x), (t, x) ∈ R× ∂D,

t 7→ û(t, x) is T–periodic,

e−iωt(û(t, x)− ûin(t, x)) is outgoing,

(4.2)

where we now need to clarify the meaning of the word “outgoing” in the last line of (4.2).

This section is organized as follows. Section 4.1 starts by stating the set of assumptions on the geometry of
the resonator D and on the modulation ρ(t) which are considered in our analysis. In Section 4.2, we show that
a suitable definition of “outgoing” for (4.2) is to require that all the Fourier modes of the T -periodic scattered
wave be outgoing (in the usual sense), which translates into the following radiation condition for the modulated
amplitude û(t, x): (

∂|x| −
iω

v0
+

1

v0
∂t

)
u(t, x) = O(|x|−2) as |x| → +∞. (4.3)

This outgoing radiation condition is associated to a time-perodic Dirichlet-to-Neumann operator T ω
per, for which

we state the main properties. Relying on Fredholm’s theory, we propose a well-posedness theory for the time-
modulated wave equation (4.2) subjected to the radiation condition (4.3) in Section 4.3, in the regime where
both the incident frequency ω and the contrast parameter δ > 0 are small. Finally, the last Section 4.4 defines
periodic layer potentials Sω

D,per and Kω∗
D,per from a suitable T–periodic Green function Γω

per(t, x) satisfying the

outgoing radiation condition (4.3). We prove a number of properties which we use in the subsequent Section 5.2.

4.1. Assumptions on the geometry of the resonator D and on the modulation ρ

In order to establish the well-posedness of the problem (4.2), we assume a set of conditions on the geometry
of the resonator D and on the modulation ρ(t).

4.1.1. Nontrapping assumption on D and explicit high frequency bounds

The remainder of our analysis requires frequency explicit bounds on the exterior Dirichlet-to-Neumann map
T k of the Helmholtz equation on the domain R

3\D (Definition 3.1). We therefore assume the following hypoth-
esis which brings substantial simplifications.

(H1) The resonator D is a smooth nontrapping set, in the sense of [54, Definition 1.1].

The “nontrapping” condition physically states that incident rays illuminating and reflecting on D according
to the law of geometric optics exit any bounded set in finite time, which is the case for instance if D is convex.
This property implies the following convenient result obtained in [52].

Proposition 4.1. For any sufficiently large R > 0 and f ∈ H
1
2 (∂D), the solution wf,k to the problem





(
−k2 −∆

)
wf,k = 0 in R

3\D,
wf,k = f on ∂D,

(
∂|x| − ik

)
wf,k = O(|x|−2) as |x| → +∞,

(4.4)

satisfies the bound

||∇wf,k||L2(B(0,R)\D) + |k| ||wf,k||L2(B(0,R)\D) ≤ C||f ||
H

1
2 (∂D)

, (4.5)

with a constant C independent of k ∈ R and f .

This result also entails that the Dirichlet-to-Neumann map T k of (3.3) is linearly bounded with respect to
the frequency k ∈ R (see [32, Lemma 4.2]).
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Proposition 4.2. Assume (H1). The Dirichlet-to-Neumann map T k of Definition 3.1 satisfies the following
frequency dependent bound:

||T k[f ]||
H− 1

2 (∂D)
≤ C(|k| ||f ||L2(∂D) + ||f ||

H
1
2 (∂D)

), (4.6)

for a constant C > 0 independent of f ∈ H
1
2 (∂D) and k.

4.1.2. Non-coincidence of Dirichlet eigenvalues with the harmonic frequencies nΩ/v0

We consider the following non-degeneracy condition in Section 4.4 when examining the invertibility of a
periodic single layer potential:

(H2) infλ∈σdir(−∆),n∈Z

∣∣∣nΩv0
−
√
λ
∣∣∣ > 0 where σdir(−∆) is the Dirichlet spectrum of −∆.

This assumption implies in particular that the single layer potential S
ω+nΩ

v0

D : H− 1
2 (∂D) → H

1
2 (∂D) is an

invertible operator for any n ∈ Z and ω sufficiently small.

4.1.3. Assumptions on the modulation ρ: coincidence of a finite number of Sturm-Liouville and Neumann
eigenvalues

We now list the assumptions on the modulation ρ which we consider in all the remainder of this paper, and in
particular in our well-posedness analysis of the time-modulated reduced wave equation (4.2). First, we assume
that the modulation is T–periodic (ρ(t + T ) = ρ(t) for almost any t ∈ R), and is such that 1

ρ is a bounded

function, positively bounded from below:

1

ρ
∈ L∞

per((0, T ),R) and
1

ρ(t)
> c for a.e. t ∈ R, for a constant c > 0.

In addition, we make some hypothesis on the kernel of the time-modulated wave operator with periodic and
Neumann boundary conditions on (0, T ) × ∂D. Let us first introduce an analytic family of relevant Sturm-
Liouville eigenvalues and eigenvectors which extend those of the problem (1.6).

Proposition 4.3. There exist a sequence of eigenfunctions (pm(·;ω))m∈N and eigenvalues (µm(ω))m∈N param-
eterized by ω ∈ (−Ω/2,Ω/2) solving the eigenvalue problem




−
(
−iω +

d

dt

)2

pm(t;ω) =
µm(ω)

ρ(t)
pm(t;ω),

pm(·;ω) is T–periodic,
(4.7)

and which satisfy the following properties:

(i) the eigenvalues (µm(ω)) are non-negative and ordered increasingly at ω = 0:

0 = µ0(0) < µ1(0) ≤ µ2(0) . . . ;

(ii) the sequence (pm(·;ω))m∈N is an orthonormal basis of H1
per((0, T )) with respect to the weighted inner

product induced by 1/ρ:

1

T

∫ T

0

1

ρ(t)
pm(t;ω)pm′(t;ω) dt = δmm′ for any m,m′ ∈ N; (4.8)

(iii) the eigenvalues (µm(ω)) and the orthonormal sequence (pm(·;ω)) are analytic functions of ω.

Proof. This proposition is the consequence of classical perturbation theory for the analytic self-adjoint operator
ω 7→ −(−iω + d/ dt), see [58, 25]. �

By convention, we assume that pm(t) ≡ pm(t; 0) and µm ≡ µm(0) where we recall the definition (1.6) for
the Sturm-Liouville eigenfunctions (pm(t))m∈N and eigenvalues (µm)m∈N. Let us also recall the definition (1.5)
of the Neumann eigenfunctions (φl)l∈N and eigenvalues (λl(x))l∈N. The following proposition motivates the
consideration of the set Λ introduced in (1.7).

Proposition 4.4. The non-zero solutions v ∈ H1
per((0, T ), H

1(D)) to the problem




(
1

v2r
∂tt −

1

ρ(t)
∆

)
v = 0, (t, x) ∈ R×D,

1

ρ(t)

∂v

∂n
= 0, (t, x) ∈ R× ∂D,

t 7→ v(t, x) is T–periodic,

are the functions of the form

v(t, x) = pm(t)φl(x), with (m, l) ∈ Λ,
15



where Λ is the set defined by (1.7), that is the set of tuples (m, l) associated to a Sturm-Liouville eigenvalue µm

and a Neumann eigenvalue satisfying λl = µm/v
2
r .

Proof. Decomposing v(t, x) :=
∑

m∈N
pm(t)um(x), we find that





−µm

v2r
um −∆um = 0,

∂um
∂n

= 0 on ∂D,

which shows that um is a Neumann eigenvector of −∆ with eigenvalue µm/v
2
r . �

Throughout our analysis of the reduced T–periodic wave equation (4.2), we assume the following assumptions
on the modulation ρ.

(H3) The set Λ defined by (1.7) is finite and all the eigenvalues µm or λl with (m, l) ∈ Λ are simple. Further-
more, there exists a constant c > 0 such that

inf
(m,l)∈N×N\Λ,

|ω|≤c

∣∣∣∣1−
µm(ω)

λlv2r

∣∣∣∣ > 0, (4.9)

where µm(ω) is the Sturm-Liouville eigenvalue of (4.7).

The bound (4.9) requires that the Sturm-Liouville eigenvalues (µm(ω)) and the Neumann eigenvalues (λl(ω))l∈N

remain well separated for (m, l) /∈ Λ and for |ω| < c. For instance, there are no subsequences (µmn
)n∈N

and (λln)n∈N such that the difference |µmn
/v2r − λln | becomes arbitrarily small for subsequences of integers

ln, mn → +∞. We expect that this assumption of non coincidence of more than a finite number of eigenvalues
is generically satisfied: in fact, in general, we expect that Λ is reduced to the singleton {(0, 0)}.

Remark 4.1. It is possible to adapt the above hypotheses in order to take into account a time-modulated bulk-
modulus κr ≡ κrκ(t) with κ(t + T ) = κ(t). The Sturm-Liouville eigenvalue problem (4.7) would need to be
changed into 



−
(
−iω +

d

dt

)[
1

κ(t)

(
−iω +

d

dt

)]
pm(t;ω) =

µm(ω)

ρ(t)
pm(t;ω),

pm(·;ω) is T–periodic.

4.2. Time-dependent Dirichlet-to-Neumann map and outgoing periodic waves

We now discriminate a suitable outgoing radiation condition for the reduced T–periodic wave equation (4.2),
before introducing an associated Dirichlet-to-Neumann map which characterize time-modulated waves in the
background medium R

3\D.

4.2.1. A time-periodic outgoing radiation condition

For a T–periodic boundary datum f ∈ L2((0, T ), H
1
2 (∂D)) and ω ∈ (−Ω/2,Ω/2), we consider the following

time-dependent Helmholtz problem in the exterior domain R
3\D:





1

v20
(−iω + ∂t)

2
wf (t, x)−∆wf (t, x) = 0, (t, x) ∈ R× R

3\D,

wf (t, x;ω) = f(t, x), (t, x) ∈ R× ∂D,

t 7→ wf (t, x;ω) is T–periodic.

(4.10)

We denote by (f̂n)n∈Z the Fourier coefficients of f , namely

f(t, x) =
∑

n∈Z

f̂n(x)e
−inΩt, with ||f ||2

L2
per((0,T ),H

1
2 (∂D))

=
∑

n∈Z

||f̂n||2
H

1
2 (∂D)

< +∞.

The following lemma shows that one can discriminate an outgoing solution to (4.15) by requiring all the Fourier
modes of wf to be outgoing.

Lemma 4.1. Assume (H1). For any f ∈ L2
per((0, T ), H

1
2 (∂D)), there exists a unique solution

wf ∈ H1
per((0, T ), L

2
loc(R

3\D)) ∩ L2
per((0, T ), H

1
loc(R

3\D))

to (4.15) whose Fourier expansion reads

wf (t, x) =
∑

n∈Z

ŵn(x)e
−inΩt, (4.11)
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and which is determined by the following cascade of Helmholtz equations for the coefficients ŵn:




− 1

v20
(ω + nΩ)2ŵn −∆ŵn = 0 in R

3\D,

ŵn = f̂n on ∂D,
(
∂|x| −

i(ω + nΩ)

v0

)
ŵn = O(|x|−2) as |x| → +∞, for any n ∈ Z.

(4.12)

Owing to the Sommerfeld radiation condition, wf is the unique solution such that ŵn(x)e
−inΩte−iωt is outgoing

for any n ∈ Z, and it further satisfies the following continuity estimate on any ball B(0, R) of radius R > 0:

||wf ||H1
per((0,T ),L2(B(0,R)) + ||wf ||L2

per((0,T ),H1(B(0,R))) ≤ C||f ||
L2

per((0,T ),H
1
2 (∂D))

, (4.13)

for a constant C > 0 independent of f . Going back to the temporal domain, the cascade of radiation conditions
of (4.12) can be rewritten in the following radiation condition for the solution wf (t, x) to (4.15):

(
∂|x| −

iω

v0
+

1

v0
∂t

)
wf (t, x) = O(|x|−2) as |x| → +∞. (4.14)

Proof. The fact that wf is a solution to (4.15) is clear by decomposing wf on its Fourier modes. The continuity
estimate (4.13) is a consequence of the assumption (H1) and the bound (4.5), which implies that for any R > 0,
there exists a constant C > 0 such that

||w||2H1
per((0,T ),L2(B(0,R)) =

∑

n∈Z

(1 + n2)||ŵn||2L2(B(0,R)) ≤ C
∑

n∈Z

||f̂n||2
H

1
2 (∂D)

≤ C||f ||2
L2

per((0,T ),H
1
2 (∂D))

,

and similarly,

||w||2L2
per((0,T ),H1(B(0,R)) =

∑

n∈Z

||ŵn||2H1(B(0,R)) ≤ C
∑

n∈Z

||f̂n||2
H

1
2 (∂D)

≤ C||f ||2
L2

per((0,T ),H
1
2 (∂D))

.

�

4.2.2. Time-periodic Dirichlet-to-Neumann map and its main properties

Definition 4.1 (Time-periodic Dirichlet-to-Neumann map). Assume (H1). The Dirichlet-to-Neumann map

associated to the time-dependent Helmholtz equation (4.15) is the operator T ω
per : L2

per((0, T ), H
1
2 (∂D)) →

L2
per((0, T ), H

− 1
2 (∂D)) defined by

T ω
per[f ] =

∂wf

∂n
, for any f ∈ L2

per((0, T ), H
1
2 (∂D)),

where wf is the unique solution to (4.15) equipped with the radiation condition (4.14):





1

v20
(−iω + ∂t)

2
wf (t, x)−∆wf (t, x) = 0, (t, x) ∈ R× R

3\D,

wf (t, x;ω) = f(t, x), (t, x) ∈ R× ∂D,

t 7→ wf (t, x;ω) is T–periodic,(
∂|x| −

iω

v0
+

1

v0
∂t

)
wf (x) = O(|x|−2) as |x| → +∞.

(4.15)

In the next propositions, we establish a number of useful properties of the T–periodic Dirichlet-to-Neumann
map T ω

per.

Proposition 4.5. Assume (H1). The periodic Dirichlet-to-Neumann map T ω
per admits the following trigono-

metric series expansion for any f ∈ L2
per((0, T ), H

1
2 (∂D)):

T ω
per[f ] =

∑

n∈Z

T
ω+nΩ

v0 [f̂n]e
−inΩt, (4.16)

where (f̂n)n∈Z are the Fourier coefficients of f , and T
ω+nΩ

v0 is the exterior Dirichlet-to-Neumann operator of
the Helmholtz equation with wave number (ω + nΩ)/v0 defined in (3.3).

Proof. This is a direct consequence of the Fourier expansion (4.11). �

The following property plays an important role in the well-posedness analysis of (4.2) in Section 4.3 below.
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Proposition 4.6. The periodic Dirichlet-to-Neumann T ω
per is a continuous operator from L2((0, T ), H

1
2 (∂T ))∩

H
1
2 ((0, T ), L2(∂D)) into its dual: there exists a uniform constant C > 0 such that for any f ∈ L2((0, T ), H

1
2 (∂T ))∩

H
1
2 ((0, T ), L2(∂D)),∣∣∣∣∣

∫ T

0

∫

∂D

T ω
per[f ]g dσ dt

∣∣∣∣∣ ≤ C||f ||
L2((0,T ),H

1
2 (∂D))∩H

1
2
per((0,T ),L2(∂D))

||g||
H

1
2
per((0,T ),L2(∂D))

.

Proof. Using the Plancherel identity and the bound (4.6), we obtain:∣∣∣∣∣

∫ T

0

∫

∂D

T ω
per[f ]g dσ dt

∣∣∣∣∣ =
∣∣∣∣∣T
∑

n∈Z

∫

∂D

T
ω+nΩ

v0 [f̂n]gn dσ

∣∣∣∣∣

≤ TC
∑

n∈Z

(|n| ||f̂n||L2(∂D) + ||f̂n||
H

1
2 (∂D)

)||ĝn||L2(∂D)

≤ C(||f ||
H

1
2
per((0,T ),L2(∂D))

||g||
H

1
2
per((0,T ),L2(∂D))

+ ||f ||
L2

per((0,T ),H
1
2 (∂D)

||g||L2((0,T ),L2(∂D))).

�

Remark 4.2. If (H2) holds, then T
ω+nΩ

v0 can be rewritten for any ω ∈ R sufficiently small and n ∈ Z as

T
ω+nΩ

v0 =

(
1

2
+K

ω+nΩ
v0

∗
D

)
(S

ω+nΩ
v0

D )−1.

The next proposition will be needed in the analysis of resonances in Section 5.

Proposition 4.7. Assume (H1). T ω
per is an analytic operator for ω in a neighborhood of zero: there exist

operators (Tk)k∈N of L2
per((0, T ), H

1
2 (∂D)) → H−1

per((0, T ), H
− 1

2 (∂D)) such that

T ω
per =

+∞∑

k=0

ωk

vk0
Tper,k. (4.17)

In fact, in view of (4.16), the operators Tper,k are given by

Tper,k[f ] =
∑

n∈Z

T
nΩ
v0

k [fn]e
−inΩt,

where (T
nΩ
v0

k )k∈N denote the coefficients of the asymptotic expansion T
ω+nΩ

v0 =
∑

k∈N

ωk

vk
0

T
nΩ
v0

k of the Dirichlet-

to-Neumann operator of the Helmholtz equation with wave number (ω + nΩ)/v0.

Proof. It is a classical fact that the exterior Dirichlet-to-Neumann map T k is analytic with respect to any wave
number k ∈ R in dimension 3; for instance, T k can be expressed in terms of the inverse of the combined field

layer potential, see [31, Equation (2.85)]. This implies the analyticity of T
ω+nΩ

v0 , hence of T ω
per. �

The first term Tper,0 ≡ T 0
per of the asymptotic expansion (4.17) of T ω

per exhibits a symmetry property upon
time-reversal.

Proposition 4.8. Assume (H1) and (H2). Let f, g ∈ L2
per((0, T ), H

1
2 (∂D)). It holds

∫ T

0

∫

∂D

T 0
per[f ]g dσ dt =

∫ T

0

∫

∂D

f ◦ τT 0
per[g ◦ τ ] dσ dt, (4.18)

where τ(t) = −t is the time-reversal operation. In particular, T 0
per is a hermitian operator when restricted to

T–periodic functions which are invariant by time-reversal.

Proof. Denote by (f̂n)n∈Z and (ĝn)n∈Z the Fourier coefficients of f and g. From (4.16) and (4.17), the following
trigonometric expansion holds for T 0

per[f ] ≡ Tper,0[f ]:

T 0
per[f ](x, t) =

∑

n∈Z

(
1

2
I +K

nΩ
v0

∗
D

)
(S

nΩ
v0 )−1[f̂n](x)e

−inΩt, t ∈ R, x ∈ ∂D.

Therefore, the Plancherel and the Calderón identity imply
∫ T

0

∫

∂D

Tper,0[f ]g dσ dt = T
∑

n∈Z

∫

∂D

(
1

2
+K

nΩ
v0

∗
D

)
(S

nΩ
v0

D )−1[f̂n]ĝn dσ = T
∑

n∈Z

∫

∂D

f̂n(S
−nΩ
v0

D )−1

(
1

2
+K

−nΩ
v0

D

)
[ĝn] dσ

= T
∑

n∈Z

∫

∂D

f̂n

(
1

2
+K

−nΩ
v0

∗
D

)
(S

−nΩ
v0

D )−1[ĝn] dσ = T
∑

n∈Z

∫

∂D

f̂−n

(
1

2
+K

nΩ
v0

∗
D

)
(S

nΩ
v0

D )−1[ĝ−n] dσ

=

∫ T

0

∫

∂D

f ◦ τTper,0[g ◦ τ ] dσ dt,
18



where we have used that (f̂−n)n∈Z and (ĝ−n)n∈Z are the Fourier coefficients of f ◦ τ and g ◦ τ . �

We conclude this part by stating a positivity property for T 0
per in the case of a spherical resonator D.

Proposition 4.9. Assume (H1) and that D is a ball: D = B(0, R) for some R > 0. Then there exists a

constant C > 0 such that for any f ∈ L2
per((0, T ), H

1
2 (∂D)) ∩H

1
2
per((0, T ), H

1
2 (∂D)),

−ℜ
(∫ T

0

∫

∂D

T 0
per[f ]f dσ dt

)
≥ C||f ||2L2((0,T ),L2(∂D)). (4.19)

Proof. Let us recall the uniform negativity of the real part of the exterior Dirichlet-to-Neumann map T k with
wave number k ∈ R on the ball, also known as the capacity operator: [74, Theorem 2.6.4] implies the existence
of a constant C > 0 independent of k such that

−ℜ
(∫ T

0

∫

∂D

T k[f̂ ]f̂ dσ dt

)
≥ C||f̂ ||2L2((0,T ),L2(∂D)). (4.20)

Using the Plancherel identity, we therefore obtain

−ℜ
(∫ T

0

∫

∂D

T 0
per[f ]f dσ dt

)
= −T

∑

n∈Z

ℜ
(∫

∂D

T0,n[f̂n]f̂n dσ
)

≥ TC
∑

n∈Z

||f̂n||2L2(∂D)

≥ C

∫ T

0

∫

∂D

|f(t, x)|2 dσ(x) dt.

�

4.3. Well-posedness of the time-periodic reduced wave equation

Based on the properties of the time-periodic Dirichlet-to-Neumann operator T ω
per established in the previous

Section 4.2.2, we now provide an existence and uniqueness theory for the time-periodic reduced wave equation
(4.2). Following Section 3, the system (4.2) can be rewritten as a partial differential equation posed on the
bounded domain (0, T )×D:





1

v2r
(−iω + ∂t)

2
û(t, x)− 1

ρ(t)
∆û(t, x) = 0, (t, x) ∈ R×D,

1

ρ(t)

∂û(t, x)

∂n
− δTω[û(t, x)] = δ

(
∂ûin
∂n

− T ω
per[ûin]

)
, (t, x) ∈ R× ∂D,

t 7→ û(t, x) is T–periodic.

(4.21)

We recall the definition of the space V = H1
per((0, T ), L

2(D)) ∩ L2
per((0, T ), H

1(D)) (see Section 2.1) and we
consider the following variational formulation for (4.21):

find u ∈ V such that ∀v ∈ V, a(u, v) = δ

∫ T

0

∫

∂D

(
∂ûin
∂n

− T ω
per[ûin]

)
v dσ dt, (4.22)

where a(u, v) is defined for any u, v ∈ V by

a(u, v) :=

∫ T

0

∫

D

[
1

ρ(t)
∇u · ∇v − 1

v2r
[(−iω + ∂t)u]

[
(−iω + ∂t)v

]]
dx dt− δ

∫ T

0

∫

∂D

T ω
per[u]v dσ dt. (4.23)

In order to prove that (4.21) is well-posed, we resort to Fredholm’s theory [71]. For this purpose, we introduce
a0,0 the bilinear form

a0,0(u, v) :=

∫ T

0

∫

D

(
1

ρ(t)
∇u · ∇v − 1

v2r
∂tu∂tv

)
dx dt+

∑

(m,l)∈Λ

〈u, pmφl〉H〈v, pmφl〉H , (4.24)

where we recall the definition (2.2) of the inner product on H = L2
per((0, T ), L

2(D)), and where the assumption
(H3) ensures that the set Λ is finite.

Remark that any u ∈ V can be decomposed as the convergent sum

u(t, x) =
∑

m,l∈N

umlpm(t)φl(x) with ||u||2V = |u00|2 +
∑

m,l∈N

(µm + λl)|uml|2, (4.25)

where we have denoted uml := 〈u, pmφl〉H . In what follows, we denote by † : H → H the operator defined by

∀u ∈ H, u† :=
∑

m,l∈N

sign

(
λl −

µm

v2r

)
〈u, pmφl〉Hpmφl with sign(t) :=

{
1 if t ≥ 0,

−1 if t < 0.

Obviously, the operator † is an isometry of H and V , and it holds (u†)† = u for any u ∈ H.
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Proposition 4.10. Assume (H3). There exists a uniform constant c > 0 such that the following coercivity
inequality holds:

∀u ∈ V, a0,0(u, u
†) ≥ c||u||2V . (4.26)

Proof. By the definition of †, it holds

a0,0(u, u
†) =

∑

(m,l)∈N×N

∣∣∣∣λl −
µm

v2r

∣∣∣∣ |uml|2 +
∑

(m,l)∈Λ

|uml|2

=
∑

(m,l)∈N×N\Λ

1

λl + µm

∣∣∣∣λl −
µm

v2r

∣∣∣∣ (λl + µm)|uml|2 + |u0,0|2 +
∑

(m,l)∈Λ\{(0,0)}

1

λl + µm
(λl + µm)|uml|2.

Since
1

λl + µm
≥ 1

2max(λl, µm)
≥ min

(
1

2λl
,

1

2µm

)
,

we have the lower bound

1

λl + µm

∣∣∣∣λl −
µm

v2r

∣∣∣∣ ≥
1

2
inf

(m,l)∈N×N\Λ
min

(∣∣∣∣1−
µm

λlv2r

∣∣∣∣ ,
1

v2r

∣∣∣∣
λlv

2
r

µm
− 1

∣∣∣∣
)

≥ c,

for a constant c > 0 which is inferred from (H3). Then, we obtain

a0,0(u, u
†) ≥ min

(
c, min

(m,l)∈Λ\{(0,0)}

1

λl + µm
, 1

)
|u0,0|2 +

∑

(m,l)∈N×N

(λl + µm)|uml|2

 ,

and the result follows from (4.25). �

The property (4.26) entails that the bilinear form a satisfies a Garding’s inequality for δ > 0.

Lemma 4.2. Assume (H1) and (H3). For any δ ∈ R in small neighborhood of zero, there exist constants
α, β > 0 such that the bilinear form a of (4.23) satisfies the following Garding’s inequality:

∀u ∈ V, |a(u, u†)| ≥ α||u||2V − β||u||2H . (4.27)

Proof. First, it is a classical fact that the trace of a function u ∈ V = H1
per((0, T ), L

2(D))∩L2
per((0, T ), H

1(D))

is an element of H
1
2
per((0, T ), L2(∂D)) ∩ L2

per((0, T ), H
1
2 (∂D)) (see [67, Theorem 2.1]). Therefore, owing to the

Proposition 4.6, the bilinear form a is continuous on V . Then, one can rewrite a(u, u†) in terms of a0,0(u, u
†)

as follows:

ℜ
(
a(u, u†)

)
= a0,0(u, u

†)−
∑

(m,l)∈Λ

|〈u, pmφl〉H |2

− 1

v2r

∫ T

0

∫

D

(
ω2uu† − iωu∂tu

† + iω∂tuu
†) dx dt− δ

∫ T

0

∫

∂D

T ω
per[u]u

† dσ dt. (4.28)

This yields (4.27) by using the Haussdorff-Young inequality (|ab| ≤ (ǫa2+ǫ−1b2)/2) and the continuity property
of T ω

per (Proposition 4.6). �

Relying on Fredholm’s theory, we obtain the following existence and uniqueness result.

Proposition 4.11. Assume (H1) and (H3) and that δ ∈ R is sufficiently small for (4.27) to hold. For any
δ > 0, the wave problem (4.2), admits a unique solution u ∈ H1

per((0, T ), L
2(D)) ∩ L2

per((0, T ), H
1(D)) for any

real ω satisfying |ω| < c with c being the constant of (H3).

Proof. Due to the Garding’s inequality (4.27), we infer that the operator A : V 7→ V ′ defined by

〈Au, v〉V ′,V := a(u, v)

is Fredholm. Therefore, (4.23) admits a unique solution in V if and only if A is injective. In order to obtain
the injectivity of A, it is enough to show that a(u, v) = 0 for any v ∈ V implies u = 0. Assuming therefore
a(u, v) = 0 for any v ∈ V , let us denote by

u(t, x) =
∑

n∈Z

ûn(x)e
−inΩt, t ∈ R, x ∈ D,

the Fourier decomposition of u in L2
per((0, T ), H

1(D)). Taking the imaginary part of a(u, une
−in·) = 0 for a

given n ∈ Z yields

0 = −δT
∫

∂D

T
ω+nΩ

v0 [ûn]ûn dσ.
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This equality implies from the Rellich’s uniqueness theorem [36] that ûn = 0 on ∂D for any n ∈ N, and hence
u(t, x) = 0 for any t ∈ R and x ∈ ∂D. Decompose now u(t, x) on the Sturm-Liouville and Neumann eigenvectors
pm(t;ω) and φl(x) defined in (4.7):

u(t, x) =
∑

m,l∈Z

umlpm(t;ω)φl(x), (4.29)

where this series is convergent in V . Computing a(u(t, x), pm(·;ω)φl) = 0, we find that for any (m, l) ∈ N× N,

uml

(
λl −

µm(ω)

v2r

)
= 0.

Therefore, either uml = 0 or λl = µm(ω)/v2r , however (H3) implies that the latter equality is possible only
for (m, l) ∈ Λ. Consequently, the sum (4.29) is finite and involves indices (m, l) ∈ Λ. Then, u(t, x) = 0 for
any t ∈ R and x ∈ ∂D, and if u(t, x) is not identically zero on D, then one of the Neumann eigenfunctions φl
must satisfy φl = 0 on ∂D. However, this is not possible, because the only function solving the overdetermined
problem 




−∆φ = λlφ in D,

φ = 0 on ∂D,

∂φ

∂n
= 0 on ∂D,

is φ = 0 (this can be seen using the layer potential representation φ = D
√
λl

D [JuK]−S
√
λl

D

[
J∂φ
∂nK
]
). Consequently,

u(t, x) = 0 for any t ∈ R and x ∈ D, which completes the proof. �

4.4. Time-periodic layer potentials

In this last part, we give the expression of the outgoing fundamental solution to the exterior T–periodic
Helmholtz equation (4.15). We then introduce associated periodic layer potentials and we state their main
properties.

4.4.1. Outgoing fundamental solution

The radiation condition (4.14) is related to the choice of a particular Green function for (4.15). We define
the periodic outgoing fundamental solution Γω

per(t, x) to be the unique T–periodic distribution solution to the
time-dependent Helmholtz equation

[
1

v20
(−iω + ∂t)

2 −∆

]
Γω
per(t, x) =

∑

n∈Z

δ(t− nT )δ(x), (t, x) ∈ R× R
3, (4.30)

satisfying the radiation condition of (4.15).

Proposition 4.12. The distribution

Γω
per(t, x) := −e

i ω
v0

|x|

4π|x|
∑

n∈Z

δ

( |x|
v0

− t− nT

)
=
∑

n∈Z

Γ
ω+nΩ

v0 (x)e−inΩt, (4.31)

is the unique fundamental solution to (4.30) satisfying the outgoing radiation condition
(
∂|x| −

iω

v0
+

1

v0
∂t

)
Γω
per(t, x) = O(|x|−2) as |x| → +∞.

Proof. Let us solve (4.30) using Fourier series: we represent Γω
perper as

Γω
per(t, x) =

∑

n∈Z

Γ̂ω
per,n(x)e

−inΩt.

Using the Poisson summation formula, we find

∑

n∈Z

δ(t− nT ) =
1

T

∑

n∈Z

δ

(
t

T
− n

)
=

1

T

∑

n∈Z

e
2iπ
T

nt =
1

T

∑

n∈Z

e−inΩt.

Inserting into (4.30), we find that Γ̂ω
per,n is solution to the Helmholtz equation

− 1

v20
(ω + nΩ)2Γ̂ω

per,n −∆Γ̂ω
per,n =

1

T
δ in R

3.
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The only solution Γ̂ω
per,n(x)e

−i(ω+nΩ)t that is outgoing is Ĝω
n(x) = − e

i
ω+nΩ

v0
|x|

4πT |x| . Consequently, using the Poisson

summation formula, we find

Γω
per(t, x) = − ei

ω
v0

|x|

4πT |x|
∑

n∈Z

einΩ( 1
v0

|x|−t) = − ei
ω
v0

|x|

4πT |x|
∑

n∈Z

δ

(
1

T

( |x|
v0

− t

)
− n

)

= −e
i ω
v0

|x|

4π|x|
∑

n∈Z

δ

( |x|
v0

− t− nT

)
.

�

4.4.2. Periodic retarded layer potentials

We now define the single and double layer potential associated to the periodic Green function (4.31). We
first define these potentials on functions smooth with respect to time, before extending them to T–periodic
distributions. In what follows, let us denote by D′

per((0, T ),W
′) the space of T–periodic distributions with

values in the dual W ′ of a Hilbert space W . We recall that any T ∈ D′
per((0, T ),W

′) can be decomposed as a
trigonometric Fourier expansion

T =
∑

n∈Z

T̂ne
−inΩt, with T̂n ∈W ′ for any n ∈ Z,

where the Fourier coefficients grow at most polynomially: ||T̂n||W ′ ≤ C|n|p for some constant C > 0 and a
polynomial exponent p ∈ N (see [40]). Then, T ∈ D′

per(W
′) defines a distribution of C∞

per(W ) from the duality
pairing

〈T, φ〉D′
per((0,T ),W ′) :=

∑

n∈Z

〈T̂n, φ̂n〉W ′,W , for any φ ∈ C∞
per((0, T ),W ) with φ(t, x) =

∑

n∈Z

φ̂ne
−inΩt. (4.32)

In particular, if T ∈ L2
per((0, T ),W ), it holds

〈T, φ〉D′
per((0,T ),W ) =

1

T

∫ T

0

〈T, φ〉W dt. (4.33)

Accordingly, for a given function φ(t, x) ∈ C∞
per((0, T ), H

− 1
2 (∂D)) which is T–periodic in t and for x ∈ ∂D, we

pose

Sω
D,per[φ](t, x) := 〈Γω

per(t− ·, x− ·)φ(·, ·)〉D′
per(L

2(∂D)), (4.34)

which, from the identification (4.32) of the duality pairing and (4.31), leads to the following definition.

Definition 4.2. We denote by Sω
D,per : C∞

per((0, T ), H
− 1

2 (∂D)) → C∞
per((0, T ), H

1
loc(R

3)) the single layer poten-

tial defined for φ ∈ C∞
per((0, T ), H

− 1
2 (∂D)) by

Sω
D,per[φ](t, x) :=

∫

∂D

Γ
ω
v0 (x− y)φ

(
t− |x− y|

v0
, y

)
dσ(y), (4.35)

where we recall the definition (2.7) for the fundamental solution Γ
ω
v0 of the (static) Helmholtz equation.

Remark 4.3. The operator Sω
D,per can be called a “retarded” potential, following the terminology of the works

[38, 90, 23, 22, 87] considering scattering problems for the wave equation in the time-domain.

One could think from the definition (4.35) that φ requires some smoothness in the variable t for (4.35) to be
well-defined. In fact, this is not the case as the periodic layer potential Sω

D,per can be extended as an operator

Sω
D,per : D′

per((0, T ), H
− 1

2 (∂D)) → D′
per((0, T ), H

1
loc(R

3)).

Indeed, we have the following characterization.

Lemma 4.3. The periodic single layer potential Sω
D,per can be extended to periodic distributions by setting

Sω
D,per[φ](t, x) :=

∑

n∈Z

S
ω+nΩ

v0

D [φ̂n]e
−inΩt, (4.36)

for any φ ∈ D′
per((0, T ), H

− 1
2 (∂D)) with Fourier coefficients (φ̂n)n∈Z, where for k ∈ R, Sk

D is the “usual” single

layer potential as defined in (2.5). The operator Sω
D,per thus defined is a mapping from D′

per((0, T ), H
− 1

2 (∂D))

into D′
per((0, T ), H

1
loc(R

3)).
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Proof. Expanding φ ∈ C∞
per((0, T ), H

− 1
2 (∂D)) in Fourier series, we obtain

Sω
D,per[φ](t, x) =

∑

n∈Z

∫

∂D

Γ
ω
v0 (x− y)e

inΩ
(

|x−y|
v0

−t
)

φ̂n(y) dσ(y)

=
∑

n∈Z

e−inΩt

∫

∂D

Γ
ω+nΩ

v0 (x− y)φ̂n(y) dσ(y) =
∑

n∈Z

S
ω+nΩ

v0

D [φ̂n](x)e
−inΩt,

which shows that the identity (4.36) holds for functions φ ∈ C∞
per((0, T ), H

− 1
2 (∂D)). Now, let us assume that

φ ∈ D′
per((0, T ), H

− 1
2 (∂D)). In order to show that (4.36) defines a periodic distribution of D′

per((0, T ), H
1
2 (∂D)),

it is sufficient to show that the Fourier coefficients of Sω
D,per[φ] are polynomially bounded with respect to the

norm of H
1
2 (∂D). This holds because there exists a constant C > 0 independent of n such that

|||S
ω+nΩ

v0

D |||
H− 1

2 (∂D)→H
1
2 (∂D)

≤ Cn
1
2 log n, (4.37)

for a smooth domain D (see [51]), and the Fourier coefficients (φ̂n)n∈Z) grow also polynomially. Finally, the
uniform estimate of (4.5) implies that Sω

D,per[φ] defines also a distribution of D′
per((0, T ), H

1
loc(R

3)). �

Remark 4.4. The bound (4.37) implies that Sω
D,per maps Hs

per((0, T ), H
− 1

2 (∂D)) into H
s− 1

2
−ǫ

per ((0, T ), H
1
2 (∂D))

for any ǫ > 0.

4.4.3. Neumann-Poincaré operator and jump relations

We define the adjoint of the Neumann-Poincaré operator by a definition similar to (4.34); we pose for any

φ ∈ C∞
per((0, T ), H

− 1
2 (∂D)):

Kω∗
D,per[φ](t, x) := 〈n(x) · ∇xΓ

ω
per(t− ·, x− ·)φ(·, ·)〉D′

per((0,T ),L2(∂D)),

which leads to the following definition.

Definition 4.3. We denote by Kω∗
D,per : C∞

per((0, T ), H
− 1

2 (∂D)) → C∞
per((0, T ), H

− 1
2 (∂D)) the operator defined

by

Kω∗
D,per[φ](t, x) :=

∫

∂D

n(x) ·
[
∇xΓ

ω
v0 (x− y)φ

(
t− |x− y|

v0
, y

)

− 1

v0

x− y

|x− y|Γ
ω
v0 (x− y)∂tφ

(
t− |x− y|

v0
, y

)]
dσ(y), x ∈ ∂D. (4.38)

The first term of (4.38) is analogous to the standard Neumann-Poincaré operator and features a singular
kernel. The second part of the integral is non-singular, but features partial derivative with respect to time.

Similarly, Kω∗
D,per can be extended into an operator

Kω∗
D,per : D′

per((0, T ), H
− 1

2 (∂D)) → D′
per((0, T ), H

− 1
2 (∂D)).

Lemma 4.4. The operator Kω∗
D,per can be extended to periodic distributions by setting

Kω∗
D,per[φ](t, x) :=

∑

n∈Z

K
ω+nΩ

v0
∗

D [φ̂n]e
−inΩt,

for any T–periodic distribution φ ∈ D′
per((0, T ), H

− 1
2 (∂D)) with Fourier coefficients (φ̂n)n∈Z, where for k ∈ R,

Kk∗
D is the “usual” adjoint of the Neumann-Poincaré operator defined by (2.6). The operator Kω∗

D,per defines a

mapping from D′
per((0, T ), H

− 1
2 (∂D)) into itself.

Proof. The result is obtained similarly as in the proof of Lemma 4.3, using the wave number explicit bound

|||K
ω+nΩ

v0
∗

D |||
H− 1

2 (∂D)→H− 1
2 (∂D)

≤ Cn
1
4 log n, (4.39)

which holds for smooth domains D (see the appendix of [54]). �

Remark 4.5. The bound (4.39) implies that Kω∗
D,per maps Hs

per((0, T ), H
− 1

2 (∂D)) intoH
s− 1

4
−ǫ

per ((0, T ), H− 1
2 (∂D))

for any ǫ > 0.

Due to standard properties of singular kernels [71], we have the following result.

Proposition 4.13. The time-periodic single layer potential Sω
D,per satisfies the following jump relation:

∂Sω
D,per[φ]

∂n

∣∣∣∣
±
=

(
±1

2
I +Kω∗

D,per

)
[φ], where I is the identity mapping.

23



4.4.4. Invertibility of the single layer potential

It seems difficult, if not unfeasible, to show that Sω
D,per is invertible as a mapping Hs

per((0, T ), H
− 1

2 (∂D))

into H
s− 1

2
−ǫ

per ((0, T ), H
1
2 (∂D)) for some s > 0 and ǫ > 0. However, it is fairly easy to state an invertibility result

when considering Sω
D,per as an operator acting on T–periodic distributions.

Proposition 4.14. Assume (H1) and (H2). For any ω ∈ R in a small neighborhood of zero, the single layer

potential Sω
D,per is an invertible operator from D′

per((0, T ), H
− 1

2 (∂D)) → D′
per((0, T ), H

1
2 ((0, T ), ∂D)), whose

inverse reads:

(Sω
D,per)

−1[f ] =
∑

n∈Z

(S
ω+nΩ

v0

D )−1[f̂n]e
−inΩt, (4.40)

where (f̂n)n∈Z denote the Fourier coefficients of a given f ∈ D′
per((0, T ), H

1
2 (∂D)).

Proof. Assumption (H2) ensures that S
ω+nΩ

v0

D is invertible for any n ∈ N and ω sufficiently small. Owing to the
Fourier series expansion (4.36), it is necessary that (4.40) be the inverse of Sω

D,per, if this operator is invertible.

Therefore, the only point to verify is that (4.40) defines a periodic distribution of D′
per((0, T ), H

− 1
2 (∂D)), i.e.

that the coefficients of the trigonometric series (4.40) grow polynomially with respect to n. For this, we need a

wave number explicit bound on the operator norm (S
ω+nΩ

v0

D )−1. From the jump relation, we infer that

(S
ω+nΩ

v0

D )−1 = T
ω+nΩ

v0 − T
ω+nΩ

v0

− , (4.41)

where T
ω+nΩ

v0

− denotes the interior Dirichlet-to-Neumann map of the Helmholtz operator ∆+(ω+nΩ)2/v20 , and

T
ω+nΩ

v0 is the exterior one (Definition 3.1). By standard variational estimates, the mapping T
ω+nΩ

v0

− satisfies the

following bound for any φ ∈ H
1
2 (∂D):

||T
ω+nΩ

v0

− [φ]||
H− 1

2 (∂D)
≤ C

infλ∈σdir(−∆),n∈Z

∣∣∣∣
(

nΩ+ω
v0

)2
− λ

∣∣∣∣
||φ||

H
1
2 (∂D)

, (4.42)

for an independent constant C > 0. Since for ω ∈ R sufficiently small,

inf
λ∈σdir,n∈Z

∣∣∣∣∣

(
nΩ+ ω

v0

)2

− λ

∣∣∣∣∣ =
∣∣∣∣
∣∣∣∣
nΩ+ ω

v0

∣∣∣∣− λ

∣∣∣∣×
∣∣∣∣
nΩ+ ω

v0
+ λ

∣∣∣∣ ≥ C inf
λ∈σdir(−∆),n∈Z

∣∣∣∣
nΩ

v0
−
√
λ

∣∣∣∣ ,

the bound (4.42) together with (H2) imply that for ω sufficiently small, the operator norm of T ω+nΩ
− is uniformly

bounded in n and ω. Therefore, (4.41) and the asumption (H1) imply the existence of a constant C > 0
independent of n such that

|||(S
ω+nΩ

v0

D )−1|||
H− 1

2 (∂D)→H
1
2 (∂D)

≤ C|n|, (4.43)

so that (4.40) defines an element of D′
per((0, T ), H

1
2 (∂D)). �

Remark 4.6. The wave number explicit bound (4.43) implies that (Sω
D,per)

−1 maps Hs
per((0, T ), H

− 1
2 (∂D)) into

Hs−1
per ((0, T ), H

1
2 (∂D)).

Finally, it is possible to express the periodic Dirichlet-to-Neumann operator T ω
per in terms of the potentials

Sω
D,per and Kω∗

D,per, generalizing the identity (3.5).

Proposition 4.15. Assume (H1) and (H2). The periodic Dirichlet-to-Neumann map T ω
per of (4.15) can be

extended to periodic distributions by setting

T ω
per[φ] :=

∑

n∈Z

T
ω+nΩ

v0 [φ̂n]e
−inΩt,

for any φ ∈ D′
per((0, T ), H

1
2 (∂D)). Then, the operator

T ω
per : D′

per((0, T ), H
1
2 (∂D)) → D′

per((0, T ), H
− 1

2 (∂D))

thus defined admits the following representation:

T ω
per =

(
1

2
I +Kω∗

D,per

)
(Sω

D,per)
−1.
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5. Subwavelength resonances in fast time-modulated media

This last section is dedicated to the study of scattering resonances in the fast time-modulated medium (1.1),
for time-harmonic incident fields (1.2) and in the subwavelength and high-contrast regimes (1.4). Our analysis
is based on the Dirichlet-to-Neumann approach introduced in Section 3, where the considered Dirichlet-to-
Neumann map is the one associated to outgoing time-periodic outgoing waves studied in Section 4. Throughout
this part, we assume that the assumptions (H1) to (H3) are fulfilled.

We start in Section 5.1 by characterizing the behavior of the solution operator of the reduced time-modulated
wave equation (4.2) for small ω and δ. This allows us to determine the leading order asymptotics of the
subwavelength resonant frequencies which arise due to the scattering with the time-modulated resonator D. We
find that in the exceptional situation where Λ 6= {(0, 0)}, resonant frequencies with positive imaginary parts
may exist, leading to the arising of exponentially growing outgoing modes.

Assuming that the modulation is tuned in order to ensure that the exceptional coupling occurs, we determine
a modal decomposition for the scattered field in (5.2) which is shown to oscillate like pm(t)φl(x) inside the
resonator D. We then identify a far field expansion for the scattered wave.

Finally, we consider a metamaterial constituted of N time-modulated resonators rescaled by a factor s in
Section 5.3. We show how to formally identify an effective medium theory for such an heterogeneous medium
in the subcritical regime sN → 0, and we find that effective scattered waves carry high-frequency components.
In the critical regime where sN converges to a positive constant, higher order reflections involve high frequency
scattered waves which cannot be easily described by an effective medium theory. Following [14], we content
ourselves to provide a homogenized equation for the low frequency truncation of the total wave field.

5.1. Asymptotics of the subwavelength resonant frequencies

In what follows, we consider the reformulation of (4.2) in terms of the Dirichlet-to-Neumann map T ω
per

given by (4.21), or equivalently by the variational formulation (4.22). Following the Definition 3.2, we call
“subwavelength resonance” a complex frequency ω ≡ ω(δ) ∈ C satisfying ω(δ) → 0 as δ → 0 and such that
(4.21) admits a non-zero solution u(ω, δ) for a zero right-hand side ûin = 0. According to the well-posedness
result of Proposition 4.11, such frequencies must necessarily have a non-zero imaginary part.

5.1.1. Characterization of the inverse of the scattering operator

In this part, we characterize the inverse of the solution operator to (4.21), whose poles are the resonant
frequencies.

Following Section 3.2, we introduce the bilinear form aω,δ defined for u, v ∈ V by

aω,δ(u, v) := a0,0(u, v)−
1

v2r

∫ T

0

∫

D

(2iω∂t + ω2)uv dx− δ

∫ T

0

∫

D

T ω
per[u]v dσ,

where we recall the definition (4.24) of the bilinear form a0,0 and the definition (2.3) of the space V . Since a0,0
satisfies the coercivity property (4.26), the perturbed bilinear form aω,δ is also coercive for small ω and δ > 0.
By using Fredholm’s theory as in Proposition 4.11, we obtain for any f ∈ V ′ the existence and uniqueness of a
solution uf (ω, δ) to the variational problem

aω,δ(uf (ω, δ), v) = 〈f, v〉V ′,V , ∀v ∈ V. (5.1)

Let us, in particular, denote by uml(ω, δ) the unique solution to the problem

aω,δ(uml(ω, δ), v) = 〈pmφl, v〉H , (5.2)

where we recall the definition (2.2) of the inner product 〈·, ·〉H .

Let us finally recall that the solution û(t, x) to the time-periodic reduced wave problem (4.22) satisfies

a(û, v) = 〈f, v〉V ′,V , ∀v ∈ V,

with f being the linear form

〈f, v〉V ′,V := δ

∫ T

0

∫

∂D

(
∂ûin
∂n

− T ω
per[ûin]

)
dσ dt. (5.3)

The following proposition is the counterpart of Lemma 3.1 in the time-modulated setting.

Proposition 5.1. For a given right-hand side f ∈ V ′, the variational problem

a(u, v) = 〈f, v〉V ′,V , for any v ∈ V, (5.4)

admits a unique solution u ∈ V if and only if the linear system

(I − C(ω, δ))x = F (5.5)
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has a unique solution x ≡ x(ω, δ) ≡ (xml(ω, δ))(m,l)∈Λ, where C(ω, δ) and F are the matrix and column vectors
given by

C(ω, δ) := (〈um′,l′(ω, δ), pmφl〉H)(m,l),(m′,l′)∈Λ×Λ , F := (〈uf (ω, δ), pmφl〉H)(m,l)∈Λ . (5.6)

When it is the case, the solution u ≡ u(ω, δ) to (5.4) reads

u(ω, δ) = uf (ω, δ) +
∑

(m,l)∈Λ

xml(ω, δ)uml(ω, δ), (5.7)

with uf (ω, δ) and uml(ω, δ) defined by (5.1) and (5.2).

Proof. The variational problem (5.4) can be equivalently written as

a(u, v) = aω,δ(u(ω, δ), v)−
∑

(m,l)∈Λ

〈u(ω, δ), pmφl〉H〈v, pmφl〉H = 〈f, v〉V ′,V

⇔ aω,δ(u(ω, δ), v)−
∑

(m,l)∈Λ

〈u(ω, δ), pmφl〉Haω,δ(uml(ω, δ), v) = aω,δ(uf (ω, δ), v)

⇔ u(ω, δ)−
∑

(m,l)∈Λ

〈u(ω, δ), pmφl〉Huml(ω, δ) = uf (ω, δ).

Integrating against pmφl/ρ, we find that this linear system has a solution if and only if

〈u(ω, δ), pmφl〉H −
∑

(m′,l′)∈Λ

〈um′,l′(ω, δ), pmφl〉H〈u(ω, δ), pm′φ′l〉H = 〈uf (ω, δ), pmφl〉H .

This system is equivalent to (5.5) with xml(ω, δ) := 〈u(ω, δ), pmφl〉H and admits (5.7) as a solution. �

5.1.2. Asymptotic expansion of the subwavelength resonances

The Proposition 5.1 reduces the study of the resonances of the infinite dimensional problem (5.4) to the
one of the finite-dimensional problem (5.5): the subwavelength resonant frequencies of (5.4) are the complex
numbers (ω(δ)) for which the matrix I − C(ω(δ), δ) is not invertible. To characterize these numbers, we write
an asymptotic expansion for I − C(ω, δ), which is obtained from an asymptotic expansion of uml(ω, δ).

Proposition 5.2. The solution uml(ω, δ) to (5.2) has the following asymptotic expansion as ω, δ → 0:

uml(ω, δ)(t, x) = pm(t)φl(x) + iωp1m(t)φl(x) + ω2

(
γm
v2r
pm(t) + p2m(t)

)
φl(x)

+ δ
∑

(m′,l′)∈Λ

Tm′l′,mlpm′(t)φl′(x) + δw̃ml(t, x) +O(ω3 + δω + δ2),
(5.8)

where for any (m, l) ∈ Λ:

• pm is the eigenvector of the Sturm-Liouville problem (1.6), and p1m and p2m are the unique T–periodic
solutions to




− d2p1m
dt2

− µm

ρ(t)
p1m = −2

dpm
dt

,

p1m is T–periodic,
∫ T

0

1

ρ(t)
p1m(t)pm(t) dt = 0,





− d2p2m
dt2

− µm

ρ(t)
p2m = 2

dp1m
dt

− pm +
γm
T

pm
ρ(t)

,

p2m is T–periodic,
∫ T

0

1

ρ(t)
p2m(t)pm(t) dt = 0,

(5.9)

• w̃ml(t, x) is a function satisfying 〈w̃ml, pmφl〉H = 0 for all (m, l) ∈ Λ,
• γm is the real number

γm :=

∫ T

0

(
−2

d

dt
p1mpm + |pm(t)|2

)
dt =

∫ T

0

(
−
∣∣∣∣
d

dt
p1m

∣∣∣∣
2

+
µm

ρ(t)

∣∣p1m
∣∣2 + |pm(t)|2

)
dt, (5.10)

• T ≡ (Tml,m′l′)(m,l),(m′,l′)∈Λ×Λ is the real matrix

Tml,m′l′ :=

∫ T

0

∫

∂D

T 0
per[pm′φl′ ]pm(t)φl(x) dt dσ(x), (5.11)

where T 0
per is the time-periodic Dirichlet-to-Neumann map of Definition 4.1 with frequency ω = 0.
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Proof. To simplify the notation, let us write w(ω, δ) := uml(ω, δ) in this proof. The strong form of (5.2) reads




1

v2r
∂ttw − 1

ρ(t)
∆w +

∑

(m′,l′)∈Λ

〈w, pm′φl′〉H
1

T

1

ρ(t)
pm′(t)φl′(x)−

1

v2r
(2iω∂t + ω2)w =

1

T

1

ρ(t)
pm(t)φl(x)

1

ρ(t)

∂w

∂n
− δT ω

per[w] = 0.

Since this system is invertible for any values of ω and δ small enough, w ≡ w(ω, δ) is analytic in ω and δ and
we can write the asymptotic expansion

w =

+∞∑

p,k=0

ωpδkwp,k.

Inserting this ansatz in the above equation yields the following cascade of equations determining (wp,k)p,k≥0:





1

v2r
∂ttwp,k − 1

ρ(t)
∆wp,k+

∑

(m′,l′)∈Λ

〈wp,k, pm′φl′〉H
1

T

1

ρ(t)
pm′φl′

=
1

T

1

ρ(t)
pm(t)φl(x)δp=0δk=0 +

1

v2r
(2i∂twp−1,k + wp−2,k),

1

ρ(t)

∂wp,k

∂n
=

p∑

n=0

1

vn0
Tper,n[wp−n,k−1],

(5.12)

where we define wp,k = 0 for negative p, k < 0 by convention. Let us now compute the first terms of this cascade
of equation. In what follows, we consider two indices (m′, l′) ∈ Λ.

• p = 0, k = 0 yields w0,0 = pmφl;
• p = 1, k = 0. Integrating (5.12) against v = pm′φl′ yields

〈w1,0, pm′φl′〉H =
2i

v2r

∫ T

0

∫

D

d

dt
pm(t)φl(x)pm′(t)φl′(x) dx dt = δl=l′δm=m′

2i

v2r

∫ T

0

d

dt
pm(t)pm(t) dt = 0.

Therefore, w1,0 is the solution to




1

v2r
∂ttw1,0 −

1

ρ(t)
∆w1,0 =

2i

v2r

d

dt
pm(t)φl(x),

1

ρ(t)

∂w1,0

∂n
= 0.

We deduce that w1,0(t, x) = ip1m(t)φl(x) where p
1
m(t) satisfies

1

v2r

d2

dt2
p1m +

λl
ρ(t)

p1m =
2

v2r

d

dt
pm ⇔ − d2

dt2
p1m − µm

ρ(t)
p1m = −2

d

dt
pm.

According to the Fredholm’s alternative, this equation has a unique T–periodic solution p1m which satisfies

∫ T

0

1

ρ(t)
p1m(t)pm(t) dt = 0.

• p = 2, k = 0. Integrating (5.12) against v = pm′φl′ yields

〈w2,0, pm′φl′〉H =
1

v2r

(
2i× i

∫ T

0

∫

D

d

dt
p1m(t)φl(x)pm′(t)φl′(x) dx dt+

∫ T

0

∫

D

pm(t)φl(x)pm′(t)φl′(x) dx dt

)

=
δm=m′δl=l′

v2r

(
−2

∫ T

0

d

dt
p1mpm dt+

∫ T

0

|pm(t)|2 dt
)
.

Therefore, we obtain w2,0 = γm

v2
r
pm(t)φl(x) + w̃2,0(t, x), where w̃2,0(t, x) is the unique solution to





1

v2r
∂ttw̃2,0 −

1

ρ(t)
∆w̃2,0 =

1

v2r

(
−2∂tp

1
m + pm − γm

T

1

ρ(t)
pm

)
φl,

1

ρ(t)

∂w̃2,0

∂n
= 0,

〈w̃2,0, pm′φl′〉H = 0 for all (m′, l′) ∈ Λ.

Similarly, we find w̃2,0(t, x) = p2m(t)φl(x) with p
2
m(t) being the unique solution to (5.9).
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• p = 0, k = 1. Integrating (5.12) against v = pm′φl′ yields

〈w0,1, pm′φl′〉H =

∫ T

0

∫

∂D

T 0
per[pmφl]pm′(t)φl′(x) dt dσ(x) = Tm′l′,ml.

Therefore, w0,1 =
∑

(m′,l′)∈Λ Tm′l′,mlpm′φl′ + w̃ml, where w̃ml is the unique solution to




1

v2r
∂ttw̃ml −

1

ρ(t)
∆w̃ml = −

∑

(m′,l′)∈Λ

Tml,m′l′
1

T

1

ρ(t)
pm′φl′ ,

1

ρ(t)

∂w̃ml

∂n
= T 0

per[pmφl],

〈w̃ml, pm′φl′〉H = 0 for all (m′, l′) ∈ Λ.

(5.13)

The asymptotic (5.8) follows. �

Inserting this expansion into the definition (5.6) of C(ω, δ) yields the following characterization of the resonances.

Proposition 5.3. The asymptotic expansion of the matrix C(ω, δ) defined in (5.6) reads at the leading order:

C(ω, δ) = I +
ω2

v2r
diag(γm)(m,l)∈Λ + δT +O(ω3 + δω + δ2), (5.14)

where (γm)(m,l)∈Λ and the matrix T are given by (5.10) and (5.11). Consequently, the problem (4.2) admits

exactly 2#Λ subwavelength resonances (ω±
i (δ))1≤i≤#Λ whose leading asymptotic expansions are given by:

ω±
i (δ) ∼ ±vrδ

1
2λ

1
2

i , (5.15)

where (λi)1≤i≤#Λ are the (complex) eigenvalues of the generalized eigenvalue problem

Tai + λiGai = 0, G = diag(γm)(m,l)∈Λ. (5.16)

Proof. Integrating (5.8) against the function pm(t)φl(x)/ρ(t) yields the following asymptotic expansion for
C(ω, δ):

C(ω, δ)ml,m′l′ = δm=m′δl=l′ +
ω2

v2r
γmδm=m′δl=l′ + δTml,m′l′ +O(ω3 + δω + δ2),

which coincides with (5.14). Resorting to the generalized Rouché theorem [12] or to the implicit function
theorem as in [45] (this would require the eigenvalues of T to be simple), we obtain the existence of exactly
2#Λ subwavelength resonances (ω±

i (δ))1≤i≤#Λ for which I − C(ω±
i (δ), δ) is not invertible, and these can be

approximated at first order by those of the following nonlinear eigenvalue problem in ω:

ω2

v2r
Gx+ δTx = 0,

which yields the expansion (5.15). �

The matrix T plays a role analogous to the capacity cap(D) involved in (3.18), or to the capacitance matrix
in the context of subwavelength resonances induced by several simply connected resonators (see [45]). The next
proposition lists a few properties of the matrix T .

Proposition 5.4. Let us denote by (p̂m,n)n∈Z the Fourier coefficients of the Sturm-Liouville eigenvector pm:

pm(t) =
∑

n∈Z

p̂m,ne
−inΩt.

(i) The coefficients (Tml,m′l′)(m,l),(m′,l′)∈Λ×Λ are real and are also given by

Tml,m′l′ = T
∑

n∈Z

p̂m′,np̂m,n

∫

∂D

T
nΩ
v0 [φl′ ]φl dσ.

(ii) The matrix T is symmetric if ρ is invariant by time reversal: ρ(t) = ρ(−t). If further, D is a ball, then
T is symmetric negative definite.

(iii) T00,00 = −Tp20
cap(D)

|D| and γ0 = Tp20 where

p0 :=

(
1

T

∫ T

0

1

ρ(t)
dt

)− 1
2

. (5.17)

(iv) For any (m, l) ∈ Λ,

T00,ml = Tml,00 = T |D|− 1
2 p0p̂m,0

∫

∂D

∂Φ

∂n
φl dσ,

where Φ is the solution to the exterior problem (2.8).
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Proof. (i) Decomposing pmφl into Fourier modes, we find

T 0
per[pm′φl′ ] =

∑

n∈Z

p̂m′,nT
nΩ
v0 [φl′ ]e

−inΩt,

and consequently,

Tml,m′l′ =

∫ T

0

∫

∂D

T0[pm′φl′ ]pmφl dσ dt = T
∑

n∈Z

p̂m′,np̂m,n

∫

∂D

T
nΩ
v0 [φl′ ]φl dσ.

Using the property T
nΩ
v0 [φl] = T −nΩ

v0 [φl], and the fact that pm is real, we find that Tml,m′l′ is real.
(ii) If ρ(t) = ρ(−t), then the simplicity assumption (H3) of the eigenvector pm implies that pm(t) = pm(−t).

The symmetry of T is then a consequence of Proposition 4.8. If further D is the sphere, then the bound
of Proposition 4.9 implies the negative definiteness of the matrix T .

(iii)-(iv) It is easy to compute T00,ml for (m, l) ∈ Λ, because it is associated with the constant, normalized
Sturm-Liouville and Neumann eigenmodes p0 and φ0 given by

p0(t) =

(
1

T

∫ T

0

1

ρ(t)
dt

)− 1
2

, φ0(x) =
1D(x)

|D| 12
.

Hence, p̂0,n =
(

1
T

∫ T

0
1

ρ(t) dt
)− 1

2

δ0n and the result follows.

�

In the next subsections, we discuss the nature of the subwavelength resonances depending on the set Λ
introduced in (1.7), the constant γm and the matrix T of (5.10) and (5.11).

5.1.3. Absence of exceptional subwavelength resonances in the generic case Λ = {(0, 0)}
In the generic case where the modulation ρ(t) and the resonator D are not “tuned”, it can be expected that

Λ = {(0, 0)}, i.e. only the zero eigenvalues µ0/v
2
r and λ0 coincide. In this situation, we find that the matrix

C(ω, δ) of (5.14) is reduced to a constant, which has the following asymptotic expansion:

C(ω, δ) = 1 + T

(
1

T

∫ T

0

1

ρ(t)
dt

)−1
ω2

v2r
− T

(
1

T

∫ T

0

1

ρ(t)
dt

)−1
cap(D)

|D| δ +O(ω3 + δω + δ2).

Computing the zeros of C(ω, δ)− I, we retrieve two subwavelength resonances which coincide at first order with
the classical “Minnaert resonance” ω±(δ) of (3.21):

ω±
1 (δ) ∼ vr

√
cap(D)

|D| δ
1
2 .

This resonant frequency is associated to a resonant mode that is approximately constant inside the resonator
D in both time and space. Owing to the properties of the time-periodic Dirichlet-to-Neumann map T ω

per, the

associated scattered field does not propagate high-frequency components in the exterior domain R
3\D. One

can then verify that everything happens at first order as in the unmodulated case, with the modulation ρ(t)

being replaced with its harmonic average
(

1
T

∫ T

0
1

ρ(t) dt
)−1

.

5.1.4. Subwavelength resonances in the exceptional coupling situation Λ = {(0, 0), (m, l)}
We now consider the more interesting case where the modulation ρ(t) is tuned in such a way there exists

another pair of coinciding eigenvalues µm/v
2
r = λl 6= 0 with (m, l) 6= (0, 0):

Λ = {(0, 0), (m, l)}.
From the point (iii) of Proposition 5.4, the constant γ0 is positive, but the constant γm defined in (5.10) does
not have a clear sign. In fact, we conjecture from numerical experiments that the modulation ρ(t) can be tuned
in such a way both cases γm > 0 and γm < 0 are possible. The following proposition shows that complex
resonances with positive imaginary parts generally arise.

Proposition 5.5. Assume that D is a disk and that the modulation is invariant by time-reversal: ρ(t) = ρ(−t).
Let us denote by P (ξ) the second order polynomial

P (ξ) := γ0γmξ
2 + (T00,00γm + Tml,mlγ0) ξ + (T00,00Tml,ml − T 2

ml,00), (5.18)

and by ∆ its discriminant:

∆ = (T00,00γm − Tml,mlγ0)
2 + 4γ0γmT

2
ml,00. (5.19)

Then, the three following situations are possible depending on the sign of γm and ∆:
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• if γm > 0, then the four subwavelength resonances of (4.2) are real at the leading order and satisfy

ω±
i (δ) ∼ ±ξ

1
2

i vrδ
1
2 , 1 ≤ i ≤ 2,

where the eigenvalues (ξi)i=1,2 of (5.16) are the real positive numbers given by

ξ1 =
−T00,00γm − Tml,mlγ0 −

√
∆

2γ0γm
, ξ2 =

−T00,00γm − Tml,mlγ0 +
√
∆

2γ0γm
; (5.20)

• if γm < 0 and ∆ > 0, then the reduced wave problem (4.2) admits exactly two resonances ω±
1 (δ) which

are purely imaginary at first order, and two resonances ω±
2 (δ) which are purely real at first order:

ω±
1 (δ) ∼ ±i

√
−ξ1vrδ

1
2 , ω±

2 (δ) ∼ ±ξ
1
2

2 vrδ
1
2 ,

where the eigenvalues ξ1 and ξ2 of (5.20) are respectively negative and positive;

• if γm < 0 and ∆ < 0, then the four resonances of (4.2) are complex at the order in O(δ
1
2 ), and their

leading asymptotics are given by

ω±
1 (δ) = ±vrδ

1
2

√
a+ ib and ω±

2 (δ) = ±vrδ
1
2

√
a− ib, (5.21)

where a and b are the positive numbers

a =
−T00,00γm − Tml,mlγ0

2γ0γm
, b =

√
−∆

2γ0γm
,

and where
√· is a determination of the square root in C.

Proof. In this context, the matrix of the eigenvalue problem (5.16) reads, for a given ξ ∈ C:

T + ξG =


ξγ0 + T00,00 T00,ml

Tml,00 ξγm + Tml,ml.


 .

This matrix is not invertible when P (ξ) = 0. Recalling that T is a symmetric negative definite matrix due to
the symmetry assumption on D and ρ, which implies that T00,00Tml,ml − T 2

ml,00 ≥ 0. The result follows by

discussing the complex nature of the root of the polynomial (5.18) depending on the sign of γm and ∆. �

This proposition shows that at least if γm < 0 and in the most symmetric case where D is a ball and ρ is
symmetric upon time-reversal, there exist outgoing nonzero solutions to the time-modulated scattering problem
(1.1), which grow exponentially in time and with a growth rate of order O(δ

1
2 ).

5.2. Modal decomposition and point scatterer approximation of the scattered field

We now follow the lines of Section 3.3 to obtain a modal decomposition and a far field approximation
for the scattered solution û − ûin based on the formula (5.7). In the remainder of this section, we consider
the “exceptional” coupling situation where there are two pairs of coinciding Sturm-Liouville and Neumann
eigenvalues:

Λ = {(0, 0), (m, l)} for some (m, l) ∈ N× N\{(0, 0)}. (5.22)

5.2.1. Modal decomposition of the scattered field in the exceptional coupling

In order to obtain a modal decomposition of uf (ω, δ) based on (5.7), we first need an approximation of the
function uf (ω, δ) solution to (5.1) where f ∈ V ′ is the linear form (5.3).

Proposition 5.6. The function uf (ω, δ) solution to (5.1) with f given by (5.3) reads at first order

uf (ω, δ) = −δûin(0)p−1
0 |D| 12


 ∑

(m,l)∈Λ

T00,mlpmφl + w̃00


+O(ωδ), (5.23)

where w̃00 is the function of the Proposition 5.2 satisfying

〈w̃00, pmφl〉H = 0 for all (m, l) ∈ Λ.

Proof. The problem (5.1) reads in strong form




1

v2r
∂ttuf − 1

ρ(t)
∆uf +

∑

(m,l)∈Λ

〈uf , pmφl〉H
1

T

1

ρ(t)
pm(t)φl(x)−

1

v2r
(2iω∂t + ω2)uf = 0, (t, x) ∈ R×D,

1

ρ(t)

∂uf
∂n

= δ

(
∂ûin
∂n

− T ω
per[ûin]

)
, (t, x) ∈ R× ∂D,

uf is T–periodic.
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Following the proof of Proposition 3.3, we find that

∂ûin
∂n

− T ω
per[ûin] = −ûin(0)T 0

per[1D] +O(ω) = −ûin(0)p−1
0 |D| 12 T 0

per[p0φ0] +O(ω).

Hence, uf (ω, δ) = δ(u0,1 + ũ0,1) +O(ωδ), where

u0,1(t, x) = −ûin(0)p−1
0 |D| 12

∑

(m,l)∈Λ

(∫ T

0

∫

∂D

T 0
per[p0φ0]pmφl dσ(x) dt

)
pm(t)φl(x)

= −ûin(0)p−1
0 |D| 12

∑

(m,l)∈Λ

T00,mlpm(t)φl(x),

and ũ0,1 is the unique solution to




1

v2r
∂ttũ0,1 −

1

ρ(t)
∆ũ0,1 = uin(0)p

−1
0 |D| 12

∑

(m′,l′)∈Λ

T00,m′l′
1

T

1

ρ(t)
pm′(t)φl′(x),

1

ρ(t)

∂ũ0,1
∂n

= −ûin(0)p−1
0 |D| 12 T 0

per[p0φ0],

〈ũ0,1, pmφl〉H = 0 for all (m, l) ∈ Λ,

ũ0,1 is T–periodic.

Comparing with (5.13), we obtain the result with ũ0,1 = −ûin(0)p−1
0 |D| 12 w̃00. �

The next proposition establishes a “modal decomposition”in the exceptional coupling situation (5.22). For
simplicity, we consider only the “least favourable” case where both resonant frequencies are complex at first
order, that is the situation of (5.21). This case is the “least favourable” in the sense that the resonances are
damped and there is no amplification of the input wave field (a resonance which is purely real at first order

would result in an amplification of the incident field by a factor O(δ−
1
2 )). However, we find that the scattered

field has an amplitude of the same order of the incident wave field and contains high frequency components
generated by the mode pm(t)φl(x). In the other cases, one observes an amplification of the scattered field near
the real part of the resonant frequency.

Proposition 5.7. Assume that the determinant ∆ of (5.19) is negative and Λ = {(0, 0), (m, l)}. Then, for a

real subwavelength frequency ω = O(δ
1
2 ), we have the following modal decomposition for the wave field û(t, x)

solution to (4.2) for x ∈ D:

û(t, x) =
ûin(0)p

−1
0 |D| 12

P
(

ω2

v2
rδ

)
[(

ω2

v2rδ
γmT00,00 + Tml,mlT00,00 − T 2

00,ml

)
p0(t)φ0(x) +

ω2

v2rδ
γ0T00,mlpm(t)φl(x)

]
+O(δ

1
2 ),

(5.24)
where P (ξ) is the second order polynomial of (5.18), which is negative and bounded from below by a constant
independent of ω and δ.

Proof. We use the exact formula (5.7). In order to have an approximation of the coefficients xml(ω, δ), we need
to compute the right-hand side F = (F00, Fml). By integrating (5.23) against pm′φl′/ρ, we obtain

Fm′l′ = −δûin(0)p−1
0 |D| 12T00,m′l′ +O(ωδ) for (m′, l′) ∈ {(0, 0), (m, l)}.

Then, computing explicitly the inverse of the matrix (I − C(ω, δ)) yields

(I − C(ω, δ))
−1

= − 1

det((I − C(ω, δ)))




ω2

v2
r
γm + δTml,ml −δT00,ml

−δTml,00
ω2

v2
r
γ0 + δT00,00


+O

(
ω3 + δω + δ2

det((I − C(ω, δ)))

)
.

For a real frequency ω = O(δ
1
2 ) in the regime where the polynomial P of (5.18) has no real roots (∆ < 0), the

determinant can be approximated by

det((I − C(ω, δ))) = δ2P

(
ω2

v2rδ

)
+O(ω5 + δω3 + δ2ω) = δ2P

(
ω2

v2rδ

)(
1 +O(δ

1
2 )
)
.

Therefore, the coefficients xml(ω, δ) of (5.7) read

x00 =
ûin(0)p

−1
0 |D| 12

P
(

ω2

v2
rδ

)
[(

ω2

v2rδ
γm + Tml,ml

)
T00,00 − T 2

00,ml

]
+O(δ

1
2 ),

xml =
ûin(0)p

−1
0 |D| 12

P
(

ω2

v2
rδ

)
[(

ω2

v2rδ
γ0 + T00,00

)
T00,ml − T00,mlT00,00

]
+O(δ

1
2 ),

which yields the result. �
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Remark 5.1. The expansion (5.24) still holds the other situations in which ∆ > 0 and where P (λ) has a real

root up to a correction of the approximation error O(δ
1
2 ): in that case P

(
ω2

v2
rδ

)
becomes a resonant denominator

which vanishes as ω becomes closer to the resonant frequency. A more precise approximation would be obtained
by using a higher order expansion of det ((I − C(ω, δ))), which would capture the leading order of the imaginary
parts of the resonances, expected to be of order O(δ) (see e.g. [45, Section 4.3]).

Remark 5.2. In this situation where the resonances are complex at the leading order in O(δ
1
2 ), (5.24) shows that

these “resonances” are damped to the point where there is no significant amplification of the incident field in
the regime ω = O(δ

1
2 ). However, we still find an order one high-frequency response which periodically oscillates

in time at the “fast” frequency Ω.

5.2.2. Far field expansion of the scattered field in the exceptional coupling situation

We now determine a far field approximation for the scattered field. The scattered field û−ûin can be rewritten
thanks to the periodic single layer potential Sω

D,per. Using the inversion property of Proposition 4.14, we can

indeed write the following representation formula for û in R
3\D, assuming (H3):

û− ûin = Sω
D,per[(Sω

D,per)
−1[û|∂D − ûin]] in R

3\D. (5.25)

In what follows, we denote by ĉl,n : S2 → R the functions defined for any θ in the unit sphere S
2 by

ĉl,n(θ) :=

∫

∂D

e−inΩ
v0

y·θ(S
nΩ
v0

D )−1[φl](y) dσ(y), (5.26)

where φl is the Neumann eigenmode of (1.5). From the functions (ĉl,n)n∈Z, we construct for any (m, l) ∈ N×N

a T–periodic distribution Gml : R× S
2 by the formula

Gml(t, θ) :=
∑

n∈Z

p̂m,nĉl,n(θ)e
−inΩt, (5.27)

where we recall that (p̂m,n)n∈N denote the Fourier coefficients of the Sturm-Liouville eigenmode pm(t). The
functions Gml allow to obtain the far field patterns generated by the modes pm(t)φl(x) as shown in the following
lemma.

Lemma 5.1. The following far field expansions hold in the regimes ω → 0 and |x| → +∞ and for (m, l) ∈ N×N:

Sω
D,per[(Sω

D,per)
−1[pmφl]](x) = Gml

(
t− |x|

v0
,
x

|x|

)
(1 +O(|x|−1) +O(ω))Γ

ω
v0 (x).

Proof. For a given φ ∈ H− 1
2 (∂D), the far-field expansion of the single layer potential S

ω+nΩ
v0

D [φ](x) reads

S
ω+nΩ

v0

D [φ](x) =

(∫

∂D

e−inΩ
v0

y· x
|x|φ(y) dσ(y)

)
(1 +O(|x|−1) +O(ω))Γ

ω+nΩ
v0 (x).

By using (H3), we have the asymptotic expansion

(S
ω+nΩ

v0 )−1 = (S
nΩ
v0

D )−1 +O(ω).

Consequently, we obtain that for any (m, l) ∈ N× N,

Sω
D,per[(Sω

D,per)
−1[pm(t)φl(x)]] =

∑

n∈Z

p̂m,nS
ω+nΩ

v0

D [(S
ω+nΩ

v0

D )−1[φl]]e
−inΩt

=
∑

n∈Z

p̂m,n

(∫

∂D

e−inΩ
v0

y· x
|x| (S

nΩ
v0

D )−1[φl](y) dσ(y)

)
(1 +O(ω) +O(|x|−1))Γ

ω+nΩ
v0 (x)e−inΩt. (5.28)

Using Γ
ω+nΩ

v0 (x)e−inΩt = Γ
ω
v0 (x)e

−inΩ
(

t− |x|
v0

)

, we obtain the result. �

Remark 5.3. It is easy to verify that G00 is the constant function given by

G00(t, θ) ≡ G00 = −p0|D|− 1
2 cap(D), ∀(t, θ) ∈ R× S

2. (5.29)

Remark 5.4. Far field expansions of retarded potentials featuring such a function Gml depending on the prop-
agation direction x/|x| are classical, see e.g. [26, Lemma 4.3].

Using this result and the modal decomposition (5.24), we obtain the far field expansion of the scattered field,
assuming the exceptional coupling situation (5.22).
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Corollary 5.1. Assume that the determinant ∆ of (5.19) is negative, and that the exceptional coupling situation
(5.22) is satisfied. The scattered field generated by the time modulated resonator admits the following far field

expansion as |x| → +∞ and ω = O(δ
1
2 ):

û(x)− ûin(x) = ûin(0)

(
A

(
ω2

v2rδ

)
+B

(
ω2

vrδ

)
Gml

(
t− |x|

v0
,
x

|x|

))
(1 +O(δ

1
2 ) +O(|x|−1))Γ

ω
v0 (x), (5.30)

where the constant coefficients A (ξ) and B (ξ) are given by

A (ξ) := cap(D)

(
1−

ξγmT00,00 + Tml,mlT00,00 − T 2
00,ml

P (ξ)

)
, B (ξ) :=

p−1
0 |D| 12
P (ξ)

γ0T00,mlξ, (5.31)

where P is the second order polynomial of (5.18).

Proof. This result is obtained by inserting (5.24) into the layer potential representation formula (5.25). Using

Lemma 5.1 and remembering that ûin = uin(0)p
−1
0 |D| 12 +O(ω) on ∂D yields:

û(x)− ûin(x) =
ûin(0)p

−1
0 |D| 12

P
(

ω2

v2
rδ

)
[(

ω2

v2rδ
γmT00,00 + Tml,mlT00,00 − T 2

00,ml

)
G00

+
ω2

v2rδ
γ0T00,mlGml

(
t− |x|

v0
,
x

|x|

)]
Γ

ω
v0 (x)− ûin(0)p

−1
0 |D| 12G00(1 +O(|x|−1) +O(ω))Γ

ω
v0 (x). (5.32)

The result follows by substituting G00 with (5.30). �

Remark 5.5. Using the Fourier expansion of Gml, we can also write û(x)− ûin(x) as a superposition of spherical
waves with wave numbers (ω + nΩ)/v0 for all n ∈ Z:

û(x)−ûin(x) = ûin(0)(1+O(δ
1
2 )+O(|x|−1))

(
A

(
ω2

v2rδ

)
Γ

ω
v0 (x) +B

(
ω2

v2rδ

)∑

n∈Z

p̂m,nĉl,n

(
x

|x|

)
Γ

ω+nΩ
v0 (x)e−inΩt

)
.

Remark 5.6. The point scatterer approximation (5.30) appeals to two remarks: first, the scattered field propa-
gates outgoing waves with high frequency components, more precisely with wave numbers ω+nΩ

v0
for any n ∈ Z.

Second, these high frequency waves propagate with an amplitude which depends on the space direction x
|x| .

This suggests that a suitable tuning of the geometry of the resonator D could be used for confining the energy
of the scattered high frequency pulse to a desired spatial direction.

5.3. Effective medium theory for fast time-modulated high-contrast metamaterials

In this conclusive part, we consider a metamaterial obtained by filling a bounded domain Ω with N time-
modulated high-contrast resonators D around centers (yn)1≤n≤N and rescaled by a factor s: we assume the
homogenization setting of Section 3.4 which is also illustrated on Figure 2. In this dilute regime where s → 0
and N → +∞, the incident frequency is of order one (ω = O(1)) while the modulation frequency is rescaled by a
factor 1/s; we assume that the modulation is sT–periodic and is of the form ρ(·/s) for a T–periodic modulation
ρ. These rescalings can be summarized as follows:

D → sD, T → sT, Ω → Ω

s
, ρ→ ρ(·/s). (5.33)

Therefore, the modulation frequency is still much larger than the incident frequency: Ω ≫ ω. Then, we
assume that the size factor is of order s = O(δ

1
2 ). Finally, we still assume that the modulation ρ is tuned

to the “exceptional” coupling situation (5.22) featuring two pairs of coinciding Sturm-Liouville and Neumann
eigenvalues.

In this part, we denote by ûN,s the solution to the scattering problem in the time-modulated, heterogeneous
medium DN,s: 




1

v20
(−iω + ∂t) ûN,s(t, x)−∆ûN,s = 0, (t, x) ∈ R× R

3\DN,s,

1

v2r
(−iω + ∂t) ûN,s(t, x)−

1

ρ(t/s)
∆ûN,s = 0, (t, x) ∈ R×DN,s,

1

ρ(t/s)

∂ûN,s

∂n

∣∣∣∣
−
= δ

∂ûN,s

∂n

∣∣∣∣
+

on ∂DN,s,

ûN,s|+ = ûN,s|+ on ∂DN,s,

t 7→ ûN,s(t, x) is sT–periodic,(
∂|x| −

iω

v0
− 1

v0
∂t

)
(ûN,s − ûin) = O(|x|−2) as |x| → +∞.

(5.34)
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5.3.1. Rescalings of the point-scatterer approximation formula

In what follows, we reproduce the Foldy-Lax approximation argument of Section 3.4 in order to formally derive
a homogenized equation for the heterogeneous system (5.34). To do so, we rewrite the far field approximation
formula (5.30) in this dilute setting.

First, the Neumann eigenvectors and eigenvalues of (1.7), and the Sturm-Liouville eigenvectors and eigenval-
ues of (1.6) must be replaced according to the dilute regime (5.33) as follows:

φl → s−
3
2φl(·/s), λl →

λl
s2
, pm → pm (·/s) , µm → µm

s2
.

We verify that the obtained eigenvectors are normalized since

1

sT

∫ sT

0

1

ρ(t/s)
pm(t/s)2 dt =

1

T

∫ T

0

1

ρ(t)
pm(t)2 dt = 1 and

∫

sD

s−3|φl(x/s)|2 dx =

∫

D

|φl|2 dx = 1.

Now, we observe that the set Λ of (1.7) remains invariant by the rescaling (5.33) since

Λ =

{
(m, l) ∈ N× N | λl

s2
=

µm

s2v2r

}
=

{
(m, l) ∈ N× N |λl =

µm

v2r

}
.

The next lemma summarizes how the different quantities occuring in the point-scatterer approximation formula
(5.30) are affected by the rescaling.

Lemma 5.2. The coefficients (γm)(m,l)∈Λ, (Tml,m′l′)(m,l),(m′,l′)∈Λ×Λ, the polynomial P of (5.24), the coefficients
ĉl,n(θ) of (5.26) and the functions (Gml)(m,l)∈Λ of (5.27) are changed as follows after the rescaling (5.33):

(i) γm → sγm ,
(ii) Tml,m′l′ → s−1Tml,m′l′ ,
(iii) P (ξ) → s−2P (s2ξ),

(iv) ĉl,n(θ) → s−
1
2 ĉl,n(θ),

(v) Gml(t, θ) → s−
1
2Gml(t, θ),

(vi) A
(

ω2

v2
rδ

)
→ sA

(
s2ω2

v2
rδ

)
and B

(
ω2

v2
rδ

)
→ s

3
2B
(

s2ω2

v2
rδ

)
.

Proof. Changing ρ(t) in ρ(t/s), we find that the function p1m of (5.9) needs to be changed according to the
transformation p1m → sp1m(·/s), from where the point (i) follows. Then one can verify that the sT–periodic
Dirichlet-to-Neumann map T 0

sD,per associated to the dilute domain DN,s verifies

T 0
sD,per[pm(·/s)φl(·/s)] = s−1T0,D[pmφl](·/s, ·/s),

which implies that the transformation (ii) for the matrix (Tml,m′l′)(m,l),(m′,l′)∈Λ×Λ. The point (iii) follows by
inserting the rescalings (i) and (ii) in (5.18). Then, the rescaling of the coefficients ĉl,n(θ) of (5.26) can be
computed from the integral

∫

s∂D

e−i nΩ
sv0

y·θ
(
S

nΩ
sv0

sD

)−1

[φl (·/s)](y) dσ(y) = s2
∫

∂D

e−inΩ
v0

y·θs−1

(
S

nΩ
v0

D

)−1

[s−
3
2φl](y) dσ(y),

which yields the updates (iv)-(v). The result (vi) is a consequence of (i)-(iii). �

The rescaling rules of Lemma 5.2 yields the following point-scatterer approximation formula for a single
rescaled resonator sD centered at zero and modulated by the sT–periodic function ρ(·/s):

û(t, x)− ûin(x) ≃ sûin(0)

(
A

(
ω2s2

v2rδ

)
+B

(
ω2s2

v2rδ

)
Gml

(
t

s
− |x|
v0s

,
x

|x|

))
Γ

ω
v0 (x) as

|x|
s

→ +∞. (5.35)

Assuming now the setting of Figure 2 where we consider N time-modulated resonators located at the centers
(yi)1≤i≤N , the resonator located at yi receives the incident source field and N − 1 scattered waves coming from
the other centers (yj)1≤j 6=i≤N . If s is sufficiently small in the sense that the scatterers located at (yj)1≤j 6=i≤N

behave as point sources for the center yi, we can expect that the total field ûN,s of (5.34) can be approximated
by the contribution of ûin and these scattered fields:

ûN,s(yi)− ûin(yi) ≃ s
∑

1≤j 6=i≤N

[
A

(
ω2s2

v2rδ

)
+B

(
ω2v2r
δ

)
Gml

(
t

s
− |yi − yj |

sv0
,
yi − yj
|yi − yj |

)]
Γ

ω
v0 (yi − yj)ûin(yj).

(5.36)
Based on this formula, we can discuss the formulation of an effective medium theory following the Foldy-Lax
argument of Section 3.4.
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5.3.2. Effective medium theory for the time-modulated medium in a subcritical regime

Using the law of large numbers, we deduce that ûN,s can be approximated by

ûN,s(x) ≃ ûin(x) + sN

∫

Ω

[
K

(
t− |y − y′|

v0
,
y − y′

|y − y′|

)]
Γ

ω
v0 (y − y′)ûin(t, y

′)V (y′) dy′,

where K(t, θ) is the sT–periodic integral kernel defined for any t ∈ R and θ ∈ S
2 by

K(t, θ) := A

(
ω2s2

v2rδ

)
+B

(
ω2s2

v2rδ

)
Gml

(
t

s
,
y − y′

|y − y′|

)
,

and where A and B are the coefficients defined by (5.31). When sN → 0, this equation can be seen as the first
“Born” approximation of the solution ûeff to an effective integral equation.

Corollary 5.2. Assume that the Foldy-Lax approximation (5.36) is valid and the “subcritical” regime sN → 0.
Then we can expect the convergence of the total wave field ûN,s to an effective wave field ûeff solution to the
integral equation

ûeff(t, y)− sN

∫

Ω

[
K

(
t− |y − y′|

v0
,
y − y′

|y − y′|

)]
Γ

ω
v0 (y − y′)ûeff(t, y

′)V (y′) dy′ = ûin(y), y ∈ Ω, (5.37)

where V dx is the probability distribution of the centers (yi)1≤i≤N .

Therefore, in the regime where sN → 0, the effective medium is governed by the integral equation (5.37),
which further emphasizes that the output signal carries a high frequency component in the far field. This
“subcritical” regime corresponds to the one in which higher-order reflections, which correspond to those coming
from subsequent interactions between the high-frequency components of (5.36) and the resonators themselves,
can be neglected: indeed, (5.36) shows that these reflections are of order O((sN)2). Nevertheless, the scattered
field remains small in this situation (of order O(sN)), and it seems that it would be more relevant to consider
the case where sN converges to a constant.

Unfortunately, it does not seem clear that one can write a homogenization theory for (5.34) in the “critical”
regime sN → α for some α > 0. Indeed, the higher order reflections induce scattered waves with arbitrarily
small wavelengths (equal to 2πv0

ω+nΩ/s for any n ∈ Z), which can resolve the lower order reflections entirely on a

“small” resonator yi + sD. Hence, these rescaled resonators yi + sD can neither be considered “small” by the
higher order reflecting waves nor be approximated by point sources. Hence, a different analysis (for instance, a
high frequency homogenization approach in the spirit of [39]) is needed to derive a homogenized medium in the
regime sN = O(1), left for a future work.

However, it is still possible to write a homogenized equation for the low frequency component of the scattered
field in the regime sN = O(1), following the ideas of [14]. Let us introduce the time-averaging operator P defined
by

P v̂ :=
1

T

∫ T

0

v̂(t, ·) dt for any v̂ ∈ L2
per((0, T ), H

1
loc(R

3)) ∩H1
per((0, T ), L

2
loc(R

3)).

Then, (5.35) and (5.27) imply that the far field of Pû generated by a single rescaled resonator sD is

Pû(t, x)− ûin(x) ≃ sûin(0)

(
A

(
ω2s2

v2rδ

)
−B

(
ω2s2

v2rδ

)
p̂m,0|D|− 1

2 cap(D)

)
Γ

ω
v0 (x) as

|x|
s

→ +∞.

Repeating the Foldy-Lax approximation argument, one can expect that Pû(t, x) converges to the solution û∗eff
to the following Lippmann-Schwinger equation with varying refractive index:

[
∆+

(
ω2

v20
− sNC

(
ω2s2

v2rδ

)
V 1Ω

)]
û∗eff = 0,

where C(ξ) :=
(
A (ξ)−B (ξ) p̂m,0|D|− 1

2 cap(D)
)
, with A(ξ) and B(ξ) defined in (5.31). This equation has

properties similar to those of the effective equation (3.28) obtained in the unmodulated case, namely the
possibility to achieve negative index wave propagation and amplification close to the resonance frequency.
Therefore, the true interest of the time-modulated medium lies in the generation of high frequency scattered
waves.

Appendix A. Bloch transform of tempered distributions

The Bloch transform (or its variant, the Floquet transform), is a classical mathematical tool in nanophotonics
and condensed matter theory; it allows to study the properties of periodic crystals, which are lattice structures
featuring a periodically repeated pattern in the three directions of space R

3. Its most importance property is
the invariance with respect to the multiplication by a periodic function (see Appendix A.3), which allows to
reduce a spectral posed in H1(R3) into a parameterized family of elliptic problems posed on the unit-cell of the
periodic lattice with periodic boundary conditions. The Bloch transform is in most textbooks [64, 2] taken to
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be L2(R3), because wave packets which propagate in such structures decay at infinity. We are only aware of
[24] regarding the definition of the Bloch transform of Lp functions with a general p ≥ 1.

In the context of scattering due to a time-modulated media, where the periodicity affects the time variable
rather than the space variable, it is not physically relevant to assume that the wave fields decay at infinite times,
due to the energy conservation. Hence, there is a need for introducing a Bloch transform on a larger space of
functions, which do not necessary decay at infinity.

In this appendix, we propose a definition of the Bloch transform of tempered distributions. Our construction
is quite classical: we transpose the ideas that are considered for defining the Fourier transform of tempered
distribution. Namely, we start by defining the Bloch transform B in the Schwartz space of smooth rapidly
decaying functions in Appendix A.1. We also define the Floquet transform U , which is its counterpart in the
Fourier space. Then, in Appendix A.2, we extend B to tempered distributions by duality. We show that the
main properties of this extension of the Bloch transform remain true, namely the fact that the Bloch transform
of a distribution is equal, up to a multiplicative constant, to the Floquet transform of its Fourier transform. In
Appendix A.3, we show an extension of the invariance property of the Bloch transform, namely B[ρf ] = ρBf
for a periodic smooth function ρ and a tempered distribution f . In fact, this invariance property holds for
periodic distributions ρ, whenever the multiplication ρf makes sense (see Definition A.3). Finally, we compute
the Bloch transform of a time-harmonic function t 7→ e−iωt for ω ∈ R in Appendix A.4, and we highlight how
we can retrieve from this formalism the time harmonic ansatz (4.1) for the solution to the time-modulated wave
equation (1.1).

In what follows, we denote by S(R) the Schwartz space S(R) of smooth rapidly decaying functions (see e.g. [86]):

S(R) :=
{
f ∈ C∞(R) | sup

x∈R

∣∣∣∣xp
dqf

dxq

∣∣∣∣ < +∞, for any p, q ∈ N

}
.

We denote by S ′(R) the space of tempered distributions T , which are linear forms on S(R) satisfying the
continuity property

〈T, f〉S′,S ≤ C sup
x∈R

0≤i,j≤p

∣∣∣∣xi
djf

dxj

∣∣∣∣ ,

for some integer p ∈ N and independent constant C > 0.

A.1. The Bloch and Floquet transforms on the Schwartz space

We start by introducing a variant of the Floquet transform for functions defined in the Fourier space. For

any f̂ ∈ S(R), we consider the transformed function U f̂ defined by the formula

U f̂(t, α) :=
∑

p∈Z

f̂(α+ pΩ)e−ipΩt, ∀(t, α) ∈ R× R. (A.1)

Since f̂ ∈ S(R), this series and all its derivatives converge normally, which implies that U f̂ ∈ V(R× R) where
V(R×R) is the space of C∞ functions φ(t, α) which are T–periodic in the first variable and Ω quasi-periodic in
the second variable:

V(R× R) := {φ ∈ C∞(R× R) | ∀t ∈ R, ∀α ∈ R, φ(t+ T, α) = φ(t, α) and φ(t, α+Ω) = φ(t, α)eiΩt}.
Lemma A.1. The transform U is an isomorphism from S(R) to V(R × R), whose inverse is the mapping
U−1 : V(R× R) → S(R) given by

U−1φ(α) :=
1

T

∫ T

0

φ(t, α) dt. (A.2)

Proof. It is straightforward to see that f̂ = U−1(U f̂) with U−1 given by (A.2), which proves that U is injective.
In order to prove that U is also surjective, it is enough to show that U−1φ ∈ S(R) for any φ ∈ V(R×R), because
the Fourier inversion formula for trigonometric series yields U(U−1φ) = φ. For an arbitrary n ∈ N, we have:

αp dq

dαq
U−1φ(α) =

αp

T

∫ T

0

∂qαφ(t, α) dt =
αp

T

∫ T

0

∂qαφ(t, α− nΩ+ nΩ) dt

=
αp

T

∫ T

0

∂qαφ(t, α− nΩ)einΩt dt,

where we use the fact that for any q ∈ N, ∂qαφ is Ω–quasi-periodic in the second variable. Using p+1 integration
by parts with n := ⌊α/Ω⌋, we obtain

∣∣∣∣αp dq

dαq
[U−1φ(α)]

∣∣∣∣ =
∣∣∣∣∣
αp(−1)p+1

T (inΩ)p+1

∫ T

0

∂qα∂
p+1
t φ(t, α− nΩ)einΩt dt

∣∣∣∣∣

≤ C
|α|p

|α|p+1
sup

t∈R,α′∈R

|∂qα∂p+1
t φ(t, α′)|

(A.3)
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for some constant C > 0 independent of α. This shows that U−1φ ∈ S(R). �

For a given function f ∈ S(R) defined in the time domain, the Bloch transform of f is the C∞(R×R) function
Bf defined by

Bf(t, α) =
∑

n∈Z

f(t− nT )eiα(t−nT ), (t, α) ∈ R× R. (A.4)

The following lemma relates the Bloch transform B in the time-domain and the Floquet transform U in the
Fourier space.

Lemma A.2. We have

Bf(t, α) = 1

T
U f̂(t, α) = 1

T

∑

p∈Z

f̂(α+ pΩ)e−ipΩt,

where f̂ is the Fourier transform of f :

f̂(α) :=

∫ ∞

−∞
f(t)eiαt dt.

Proof. Let us compute the trigonometric coefficients of B(f, α): for any p ∈ N, we find

1

T

∫ T

0

Bf(t, α)eipΩt dt =
∑

n∈Z

1

T

∫ T

0

f(t− nT )eiα(t−nT )eipΩt dt =
∑

n∈Z

1

T

∫ −(n−1)T

−nT

f(t)eiαteipΩ(t+nT ) dt

=
1

T

∫ +∞

−∞
f(t)ei(α+pΩ)t dt =

1

T
f̂(α+ pΩ).

�

By using the properties of the Floquet transform U , we obtain the following result.

Corollary A.1. The Bloch transform is an isomorphism from S(R) to V(R× R), and the following inversion
formula holds true:

f(t) =
1

Ω

∫ Ω
2

−Ω
2

Bf(t, α)e−iαt dα, for any f ∈ S(R). (A.5)

We have also the following inversion formula for the Fourier transform of f ∈ S(R):

f̂(α) =

∫ T

0

Bf(t, α) dt.

We now state the well-known Plancherel identities which hold for the Floquet and Bloch transforms.

Proposition A.1. The following Plancherel identities hold for any f, g ∈ S(R):

1

T

∫

R

f(t)g(t) dt =
1

2π

∫ T

0

∫ Ω
2

−Ω
2

Bf(t, α)Bg(t, α) dα dt, (A.6)

1

Ω

∫

R

f̂(α)ĝ(α) dα =
1

2π

∫ T

0

∫ Ω
2

−Ω
2

U f̂(t, α)U ĝ(t, α) dα dt. (A.7)

Proof. This classical property is an easy consequence of the result of Lemma A.2. Using the usual Plancherel

identity for the Fourier transforms f̂ and ĝ of f and g, we write

∫

R

f(t)g(t) dt =
1

2π

∫ +∞

−∞
f̂(α)ĝ(α) dα =

1

2π

∑

p∈Z

∫ ( 1
2
+p)Ω

(− 1
2
+p)Ω

f̂(α)ĝ(α) dα

=
1

2π

∑

p∈Z

∫ Ω
2

−Ω
2

f̂(α+ pΩ)ĝ(α+ pΩ) dα =
1

2π

∫ T

0

∫ Ω
2

−Ω
2

U f̂(t, α)U ĝ(t, α) dα dt

=
1

2π

1

T
T 2

∫ T

0

∫ Ω
2

−Ω
2

Bf(t, α)Bg(t, α) dt dα =
1

Ω

∫ T

0

∫ Ω
2

−Ω
2

Bf(t, α)Bg(t, α) dα dt.

�
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A.2. Bloch transform of tempered distributions

We now use the Plancherel identities of Proposition A.1 to extend B to tempered distributions by duality.
Let us introduce the space of distributions V ′(R× R) on V(R× R).

Definition A.1. We call Φ a distribution on V(R × R) a linear form on V(R × R) for which there exist an
integer p ∈ N and an independent constant C > 0 such that

|〈Φ, φ〉V′,V | ≤ C sup
t,α∈R

0≤i,j≤p

|∂it∂jαφ(α, t)| for all φ ∈ V(R× R).

We denote by V ′(R× R) the corresponding space of such distributions.

Any function (t, α) 7→ φ(t, α) integrable on (0, T )×(−Ω
2 ,

Ω
2 ) can be identified to a distribution Φφ ∈ V ′(R×R)

by defining

〈Φφ, ψ〉V′,V :=
1

2π

∫ T

0

∫ Ω
2

−Ω/2

φ(t, α)ψ(t, α) dt dα, for all ψ ∈ V(R× R),

where we choose 2π = ΩT as the normalisation constant. We can now define the Bloch transform of a tempered
distribution by mimicking the duality identity (A.4).

Definition A.2. For a given tempered distribution f ∈ S ′(R), the Bloch transform of f is the distribution
Bf ∈ V ′(R× R) defined by the formula

〈Bf, φ〉V′,V :=
1

T
〈f,B−1φ〉S′,S , for any φ ∈ V(R× R). (A.8)

For a given tempered distribution f̂ ∈ S(R), the Floquet transform of f̂ is the distribution U f̂ ∈ V ′(R × R)
defined by the formula

〈U f̂ , φ〉V′,V :=
1

Ω
〈f̂ ,U−1φ〉S′,S , for any φ ∈ V(R× R). (A.9)

Remark A.1. The fact that U maps S ′(R) to V ′(R × R) is a direct consequence of the inequality (A.3), and
similarly for B.

In what follows, we still write (A.1) and (A.4) for Bf and U f̂ , remembering that these mean (A.8) and (A.9)
in the distributional sense. Clearly, the property of Lemma A.2 remains true for f ∈ S ′(R).

Proposition A.2. The following properties hold:

(i) the Bloch transform B and Floquet transform U of (A.8) and (A.9) are bijective mappings from S ′(R)
onto V ′(R × R) whose reciprocal map are the transform denoted by B−1 : V ′(R × R) → S ′(R) and
U−1 : V ′(R× R) → S ′(R) defined for any φ ∈ V ′(R× R) by

〈B−1φ, f〉S′,S = T 〈φ,Bf〉V′,V , ∀f ∈ S(R),

〈U−1φ, f̂〉S′,S = Ω〈φ,U f̂〉V′,V , ∀f̂ ∈ S(R);
(ii) for any f ∈ S ′(R), it holds Bf = 1

T U f̂ , where f̂ is the Fourier transform of the tempered distribution f .

Proof. (i) is a straightforward consequence of the definition and the inverse mapping properties of B and U
defined on the Schwartz class. The point (ii) is obtained as follows: using the Definition A.2, we find, for any
φ ∈ V(R× R):

〈Bf, φ〉 = 1

T
〈f,B−1φ〉 = 1

2π
〈f̂ ,U−1φ〉 = Ω

2π
〈U f̂ , φ〉 = 〈 1

T
U f̂ , φ〉.

�

A.3. Invariance property by multiplication with a periodic distribution

We now extend one the main properties of the Bloch transform, which is its invariance by multiplication by
a smooth periodic function (or by a L∞ periodic function for the Bloch transform in L2).

An important observation is to remark that, although the multiplication of two distributions is in general
not well determined, the product of a tempered distribution by a T–periodic distribution ρ can be defined
upon a certain condition. We recall that a T–periodic distribution can be written in the form of an arbitrary
trigonometric series

∑
p∈Z

ρpe
−ipΩ· with coefficients (ρp)p∈Z growing at most polynomially as p → ∞, see e.g.

[86, 40].

Definition A.3. Let ρ be a T–periodic distribution and denote by (ρp)p∈N the Fourier coefficients of ρ:

ρ(t) =
∑

p∈Z

ρpe
−ipΩt. (A.10)
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Let f ∈ S ′(R) be a tempered distribution. Whenever the series
∑

p∈Z
ρp(fe

−ipΩ·) is convergent in S ′, we say
that the “product” of ρ and f is well-defined and we write

ρf :=
∑

p∈Z

ρpfe
−ipΩ· ∈ S ′(R). (A.11)

Remark A.2. The definition (A.11) makes sense thanks to two remarks. First, the product of the tempered
distribution f ∈ S ′(R) with the smooth bounded function t 7→ e−ipΩt is a well-defined tempered distribution.
This series converges in S ′(R) if and only if the series

∑
p∈Z

ρp〈fe−ipΩ·, φ〉S′,S converges for any φ ∈ S(R).
When this is the case, the Banach-Steinhaus theorem implies that the linear form ρf defined by

〈ρf, φ〉 := lim
n→+∞

∑

|p|≤n

ρp〈fe−ipΩ·, φ〉S′,S

belongs automatically to S ′(R).

Similarly, we can define the product of a T–periodic distribution with a distribution φ ∈ V ′(R× R).

Definition A.4. Let ρ be a T–periodic distribution whose Fourier series can be written as (A.10). Whenever
the series

∑
p∈Z

ρp(Φe
−iΩp·) converges in V ′(R× R), we say that the product ρΦ is well-defined and we write

ρΦ =
∑

p∈Z

ρpΦe
−iΩp·.

We can now extend the classical invariance result B(ρf) = ρBf , which is obvious for f ∈ S and ρ ∈
C∞
per((0, T ),R) a smooth T–periodic function.

Proposition A.3. Let f ∈ S ′(R) and ρ be a T–periodic distribution. If ρf is well-defined (in the sense of
Definition A.3), then the product ρBf is also well-defined (in the sense of Definition A.4) and it holds

B(ρf) = ρBf.
Proof. For any φ ∈ V(R× R), we have by using the Definition A.2:

〈B(ρf), φ〉V′,V =
1

T
〈ρf,B−1φ〉S′,S =

1

T

∑

p∈Z

ρp〈f, e−iΩp·B−1φ〉S′,S .

It is clear from Corollary A.1 that for φ ∈ V(R× R), e−iΩp·B−1φ = B−1(e−iΩp·φ). Therefore, we arrive at

〈B(ρf), φ〉V′,V =
1

T

∑

p∈Z

ρp〈f,B−1(e−iΩp·φ)〉S′,S =
∑

p∈Z

〈Bf, e−iΩp·φ〉S′,S .

From the Definition A.4, we obtain that the product ρBf is well-defined, and that

〈B(ρf), φ〉V′,V = 〈ρBf, φ〉V′,V .

�

Remark A.3. One can verify that if ρ ∈ L∞
per((0, T ),R) and f ∈ L2(R), then the tempered distribution ρf

of (A.11) is well-defined and coincides with the “usual” product ρf . Therefore, we retrieve the well-known
invariance property B(ρf) = ρBf which holds on these spaces.

A.4. The Bloch transform of time-harmonic functions

We conclude this appendix by computing the Bloch transform of time-harmonic functions t 7→ e−iωt, ω ∈ R.
These functions do not belong to L2(R) but they are tempered distributions.

Lemma A.3. Let ω ∈ R. The Bloch transform of t 7→ e−iωt is the distribution

〈Be−iω·, φ〉V′,V =
1

T

∫ T

0

φ(t, ω) dt, φ ∈ V, (A.12)

which can also formally be written as

B(e−iω ·)(t, α) = Ω
∑

p∈Z

δ0(ω − α− pΩ)e−ipΩt. (A.13)

Proof. Using Proposition A.2 and the fact that the Fourier transform of e−iω· is α 7→ 2πδ0(ω − α), we find

Be−iω·(t, α) =
2π

T
[Uδ(ω − ·)](t, α) = 2π

T

∑

p∈Z

δ(ω − α− pΩ)e−ipΩt, (A.14)

which is the result (A.13). The distributional sense (A.12) is a consequence of (A.9), which states that

2π

T
〈[Uδ(ω − ·)], φ〉V,V′ =

2π

TΩ
〈δ(ω − ·),U−1φ〉S′,S =

1

T

∫ T

0

φ(t, ω) dt.

�
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As an application, we can use Lemma A.3 to formally deduce that the solution u(t, x) to (1.1) must be in
the time-harmonic form (4.1). Due to Lemma A.3, the Bloch transform of the incident field uin(t, x) of (1.2) is
equal to

Buin(t, x;α) = Ω
∑

p∈Z

ûin(x)δ(ω − α− pΩ)e−ipΩt, (A.15)

where we observe some separability between the variable α and ω. Then, if 1/ρ(t)u is well-defined, the Bloch
transform Bu solves the following set of partial differential equations:




1

κ0

(
−iα+

∂

∂t

)2

Bu(t, x;α)− 1

ρ0
∆Bu(t, x;α) = 0, (t, x) ∈ R× R

3\D,

1

κr

(
−iα+

∂

∂t

)2

Bu(t, x;α)− 1

ρ(t)ρr
∆Bu(t, x;α) = 0, (t, x) ∈ R×D, 1 ≤ i ≤ N,

1

ρ0

∂Bu(t, x;α)
∂n

∣∣∣∣
+

=
1

ρrρ(t)

∂Bu(t, x;α)
∂n

∣∣∣∣
+

, (t, x) ∈ R× ∂D, 1 ≤ i ≤ N,

Bu|+(t, x;α) = Bu|−(t, x;α), (t, x) ∈ R× ∂D,

t 7→ Bu(t, x;α) is T–periodic,
e−iαt(Bu(t, x;α)− Buin(t, x;α)) is outgoing.

(A.16)
Using the decomposition (A.15), we expect that

Bu(t, x;α) = Ω
∑

p∈Z

δ(ω − α− pΩ)û(t, x)e−ipΩt,

where û(t, x) is the solution to (4.2), because the solution to the problem (4.2) with right-hand side ûin(x)δ(ω−
α− pΩ)e−ipΩt is û(t, x)δ(ω − α− pΩ)e−ipΩt. Then, the inverse Bloch transform yields

u(t, x;ω) = B−1


Ω
∑

p∈Z

δ(ω − α− pΩ)û(t, x)e−ipΩt


 = û(t, x)B−1


Ω
∑

p∈Z

δ(ω − α− pΩ)e−ipΩt


 = e−iωtû(t, x),

which is the time-harmonic decomposition (4.1).
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[19] Ammari, H., and Nédélec, J. C. Full low-frequency asymptotics for the reduced wave equation. Applied Mathematics Letters
12, 1 (1999), 127–131.

[20] Ammari, H., and Zhang, H. Super-resolution in high-contrast media. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 471, 2178 (2015), 20140946.

[21] Ammari, H., and Zhang, H. Effective medium theory for acoustic waves in bubbly fluids near minnaert resonant frequency.
SIAM Journal on Mathematical Analysis 49, 4 (2017), 3252–3276.

[22] Bamberger, A., and Ha Duong, T. Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la
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