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Abstract

This work introduces a concept of “generalized meshes”, similar to simplicial meshes, but
allowing for overlapping elements, and with adjacency relations that are defined independently
from the number of shared vertices. This additional flexibility allows for the representation of
complex geometries such as fractured meshes and two sided complex surfaces. The generalized
mesh is then a convenient object to accompany a numerical method, as its so-called “generalized
subfacets” play naturally the role of degrees of freedom for finite/boundary element methods.
Our emphasis is on precise definitions and proofs, as well as numerical implementation especially
for the boundary element applications.
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Introduction

For an n-dimensional domain Ω ⊂ Rn, a fracture may be modeled by an embedded (n − 1)-
dimensional structure. There are two points of view.

(i) In the first one, the physical equations are posed in the domain Ω surrounding the fracture,
with boundary conditions on ∂Ω and Γ. A key example is the so-called mixed-dimensional
modeling of flow in fractured porous media. References on this topic include [1, Section 5],
[11, Section 3.5], [2, 4, 12, 24, 28] but the list is far from begin exhaustive.

(ii) In the second one, the physical equations are formulated directly and only on the surface of
Γ. This is the approach followed for example in wave scattering problems, where the obstacle
Γ is a complex screen embedded in the space R3. A lot of attention has been devoted to the
analysis and numerical resolution of this type of problem in recent years. References include
[9, 15, 16, 18, 19, 23].

We adapt the notion of fractures to triangulated domains and treat both perspectives in a unified
way. We introduce a mathematical structure, called generalized mesh, that enlarges the class of
usual regular simplicial meshes to allow for some more flexibility, while retaining good properties
with respect to the action of the boundary operator. In generalized meshes, simplices are allowed
to overlap arbitrarily, and their mutual adjacency is supplied as part of the definition of the mesh,
independently from the number of shared vertices. Through generalized meshes, perspectives (i)
and (ii) are connected via a boundary operator that maps an n-dimensional to an (n−1)-dimensional
generalized mesh.
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In some parts of this work, readers with a fracture mechanics background (point of view (i))
will find familiar concepts, that are a standard part of modern codes. For instance, the automatic
splitting of mesh vertices into independent copies at a fracture intersection – here formalized through
the concept of generalized vertices – is well established (see e.g. [24, Fig. 8]), and can be considered
as “common-practice” knowledge.

Nevertheless, the mathematical formalization and rigorous treatment of those fairly well-spread
ideas bears fruits, especially in the second perspective. For instance, the automatic splitting of
vertices located on the fracture is also possible even when the surrounding mesh is not available
(see Section 4.4). This removes the need for manual intervention in the mesh construction for
the boundary element multi-screen solver. It also unlocks useful results for the analysis such as
Theorem 2.

The paper is organized as follows: in Section 1, we review some combinatorial geometry back-
ground. We then define generalized meshes in Section 2, and their boundary in Section 3, and
we show that it generalizes the usual concept of boundary. In Section 4, we focus on factured
meshes and their boundary. We present an algorithm to reconstruct the boundary without relying
on a mesh of the surrounding volume. In Section 5, we define spaces of Whitney forms and study
the surjectivity of a trace operator relating those spaces for a generalized mesh and its boundary.
Finally, some numerical experiments are presented in Section 6.

For the reader’s convenience a list of frequently used notation is provided in the end of the
article.

1 Preliminaries

1.1 Simplices and orientation

In this work, an n-simplex S is a subset of cardinality (n + 1) of some vertex set V (for example,
but not necessarily, V = R3). The elements of S are called its vertices. Let σd(S) denote the set of
(d+1)-subsets of S, also called d-subsimplices of S. The (n− 1)-subsimplices are called facets and
we write F(S) := σn−1(S). The set of all subsimplices of S, including S, is denoted by σ(S). An
n-simplex is called a vertex, an edge, a triangle and a tetrahedron for n = 0, 1, 2 and 3.

When the vertices of an n-simplex S are points in Rm with n ≤ m, we systematically assume
that they are affinely independent, and we denote by |S| the closed convex hull of S:1

|S| = Hull({V1 , . . . , Vn+1}) :=
{

n+1∑

i=1

λiVi

∣∣∣∣∣ ∀i ∈ {1 . . . , n+ 1}, λi ≥ 0,

n+1∑

i=1

λi = 1

}
. (1)

For n ≥ 1, an orientation of a simplex S is an ordering V1 , . . . , Vn+1 of its vertices, with the
rule that two orderings define the same orientation if they differ by an even permutation. If n = 0,
i.e. when S is a vertex, an orientation of S is simply an element of {+,−}.

An oriented simplex [S] is a simplex S together with a choice of orientation. As in [26, Chap. 5],
we denote by [V1, . . . , Vn+1] the simplex {V1 , . . . , Vn+1} oriented by the order V1 , . . . , Vn+1. Given
an oriented simplex [S], we denote by and by −[S] the same simplex with the opposite orientation.
Hence for example

[A,B,C,D] = −[A,C,B,D] = [C,A,B,D] .

1In most reference, a simplex is defined as the convex hull of its vertices, but the definition that we adopt here,
(i.e. a simplex is defined as a finite set of vertices) is more convenient for our needs.
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When n ≥ 2, an oriented n-simplex [S] = [V1, . . . , Vn+1] induces an orientation on its facets: for

the facet Fi = {V1, . . . , V̂i, . . . , Vn+1}, where the hat denotes an omission, the induced orientation
is defined by

[Fi]|[S] := (−1)i+1[V1, . . . , V̂i, . . . , Vn+1] . (2)

For n = 1, given an oriented edge E = [V1, V2], we take the convention

[V1]|[E] := [V1,−], [V2]|[E] := [V2,+] .

Two oriented n-simplices [S1] and [S2], with n ≥ 1, sharing a facet F , are consistently oriented if

[F ]|[S1] = −[F ]|[S2] (3)

i.e. they induce opposite orientations on their common facet. One has the following elementary
result:

Lemma 1. If [K] is an oriented n-simplex with n ≥ 2, and F and F ′ are two distinct facets of K,
then [F ]|[K] and [F ′]|[K] are consistently oriented.

If V ⊂ Rn, the n-simplices have a natural orientation: [V1 , . . . , Vn+1] is naturally oriented if

det [V2 − V1 , . . . , Vn+1 − V1] > 0 .

Let us mention the following result (see e.g. the proof of [26, Prop. 5.16])

Lemma 2. Let [K] and [K ′] be two naturally oriented n-simplices in Rn that share a facet, but
have disjoint interiors. Then [K] and [K ′] are consistently oriented.

Choosing an orientation of a triangle T in R3 is equivalent to deciding on a unit normal vector
n on T : the orientation [A,B,C] corresponds to the vector

n =

−−→
AB ×−→AC∥∥∥−−→AB ×−→AC

∥∥∥
. (4)

1.2 Abstract triangulations

An n-dimensional abstract triangulation (or simply triangulation) M is a finite set of n-simplices
that we call the elements of M. The d-subsimplices of M are defined as the d-subsimplices of its
elements:

σd(M) :=
⋃

K∈M

σd(K) , F(M) := σn−1(M) , σ(M) :=
⋃

d≤n

σd(M) . (5)

With those definitions, σ(M) is a pure abstract simplicial complex, see e.g. [29, Chap. 7].
In an abstract triangulationM, we say that S ∈ σd(M) and S′ ∈ σd′(M) are incident if

|d− d′| = 1 and S ⊂ S′ or S′ ⊂ S .

Two d-subsimplices S and S′ are adjacent if they are incident to a common (d− 1)-subsimplex, in
which case we write S ←→

M
S′. An abstract triangulationM is branching if at least one facet ofM

is incident to more than two elements ofM, and non-branching otherwise.
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Given a subsimplex S ∈ σ(M), the star and the link (see e.g. [14, p.3]) of S are the abstract
triangulations defined by

st(S,M) := {K ∈M | S ⊂ K} , (6)

lk(S,M) := {S′ ∈ σ(M) | S ∩ S′ = ∅ , (S ∪ S′) ∈M} . (7)

For n ≥ 1, the boundary ∂M of an n-dimensional triangulation M is the (n − 1)-dimensional
triangulation defined by

∂M := {F ∈ F(M) | F is incident to exactly one element ofM} . (8)

When n = 0, we define ∂M as the empty set. Hence for example if

M = {{A,B,C}, {A,B,D} , {A,C,D} , {B,C,D} , {C,D,E}} , V = {A,B,C,D,E}

then ∂M = {{C,E} , {D,E}}, ∂∂M = {{C}, {D}} and ∂∂∂M = ∅. One can check that if M is
non-branching, then ∂∂M = ∅. The boundary of a non-branching triangulation can be branching,
for example

M = {{A,B,C}, {C,D,E}} (9)

is non-branching, while its boundary is branching.
An orientation of a triangulation M is a choice of an orientation of each of its simplices. An

oriented triangulation is a triangulation equipped with an orientation. IfM is oriented, the oriented
simplex corresponding to the element K ∈M is denoted by [K]M.

The orientation ofM is called compatible if for any two adjacent elements K and K ′, [K]M and
[K ′]M are consistently oriented. An abstract triangulation which admits a compatible orientation
is called orientable. Obviously, an orientable triangulation must be non-branching. Hence, the
example (9) above also shows that an orientable triangulation can have a non-orientable boundary.

1.3 Simplicial meshes

An n-dimensional abstract triangulation M is called a simplicial mesh (or simply mesh) if the
associated vertex set V is a subset of Rm, with n ≤ m and if

∀(K,K ′) ∈M×M , |K| ∩ |K ′| = |K ∩K ′| . (10)

We write
|M| :=

⋃

K∈M

|K| , (11)

and say that M is regular if |M| is an n-manifold with or without boundary, meaning that each
point x ∈ |M| has a neighborhood in |M| that is homeomorphic to either Rn or Rn

+ := Rn−1×R+.
It is a well-known result of piecewise linear topology (see e.g. [30, Ex. 2.21(i)]) that an n-

dimensional mesh is regular if and only if the link of any vertex is piecewise linearly homeomorphic to
either [0, 1]n−1 or ∂([0, 1]n).2 A simplicial complex satisfying this property is called a triangulation
in [13], and a combinatorial n-manifold in [14]. An example of a non-regular mesh is given by
Figure 1, while Figure 2 shows the link and the star of a vertex in a regular mesh.

2The definition of a piecewise linear homeomorphism can be found e.g. in [14, p.3].
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Figure 1: Example of a non-regular triangu-
lar mesh. This and some other examples in
this paper are constructed using Gmsh [22].

A lk(A,M)

st(A,M)

M

Figure 2: An example of regular triangular
mesh. The link (resp. the star) of the ver-
tex A, represented in red, (resp in blue) is
homeomorphic to [0, 1] (resp. [0, 1]2).

Every facet of a regular mesh is incident to at most two elements (see e.g. [13, Lemma 11.1.2]).
Hence, when n = 3, this notion of regular mesh also corresponds to that of Ciarlet [17, Chap.
2], which is well-established in finite element literature. The previous observation also implies that
regular meshes are a particular case of non-branching triangulations. Moreover, whenM is regular,
then so is its boundary ∂M, and |∂M| is the manifold boundary of |M| (cf. [14, p. 4]).

We also record the following classical property of regular meshes for later use:

Lemma 3. If M is a regular mesh and S ∈ σ(M), then the star of S is face-connected, in the
sense that given two elements K and K ′ in st(S,M), there are elements K1 , . . . ,KQ of st(S,M)
such that

(i) K1 = K

(ii) KQ = K ′

(iii) ∀i ∈ {1 , . . . , Q− 1} , Ki ←→
M

Ki+1 .

Proof. Following the comment below Theorem 2.2 in [14], the mesh st(S,M) is piecewise linearly
homeomorphic to [0, 1]n. In particular, it is a connected regular mesh, so the result follows from
[13, Lemma 11.1.3].

1.4 Data structures

We provide a Matlab implementation as supplementary material [6], in which simplicial meshes
over V ⊂ R3 are manipulated via the toolbox openMsh from [3]. The mesh class is defined as follows
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classdef msh

properties

vtx ; % Nvtx x 3 array of reals coordinates

elt ; % Nelt x (n+1) array with entries in {1,...,Nvtx}
end

The points of V are stored in the array vtx. Each line of this array corresponds to a vertex V ∈ V,
the three column giving the x, y and z coordinates. The lines of the array elt are mutually distinct
and encode the simplices of M, referring to the vertices by their index in vtx. This is essentially
the same data structure as the one used in the standard meshing tool Gmsh [22]. Let us mention
that alternative choices of data structure to represent more general simplicial complexes are also
common, see e.g. [20] for a review.

2 Generalized meshes

We now introduce a more flexible type of mesh, where elements can overlap arbitrarily, and where
adjacency is not defined by the number of shared vertices between elements, but directly supplied
as part of the definition.

2.1 Definitions

Definition 1 (Generalized mesh). For n ≥ 0, an n-dimensional generalized mesh M∗ is a
quadruple (VM∗ ,KM∗ ,KM∗ ,GM∗) where

• VM∗ is a set called the vertex set ofM∗.

• KM∗ is a finite set. Its elements are called elements of M∗, and we write k ∈ M∗ as
short for k ∈ KM∗ .

• KM∗ is a realization function, mapping each element of k ∈ M∗ to a simplex KM∗(k)
with vertices in VM∗ . The simplex KM∗(k) is called the simplex attached to k. If
VM∗ ⊂ Rm for some m ≥ n, then the simplices attached to the elements of M∗ are
assumed to be non-degenerate. The realization function need not be injective: the same
simplex may be attached to several distinct elements.

• GM∗ is a graph between the split facets ofM∗, by which we mean the pairs of the form

(F,k) , with k ∈M∗ and F a facet of K = KM∗(k) . (12)

We write F(M∗) for the set of split facets. The graph GM∗ is called the adjacency graph
ofM∗, and is assumed to satisfy the following axioms:

(i) the nodes of GM∗ have degree 0 or 1, and
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(ii) if two split facets (F,k) and (F ′,k′) are connected by an edge in GM∗ , then

F = F ′ and k 6= k′ .

.

When the split facets facets (F,k) and (F ′,k′) are connected by an edge in GM∗ , we write

k
F←→

M∗
k′ , (13)

and say that k and k′ are adjacent through F . If k
F←→

M∗
k′ and S ∈ σ(F ), then we also say that k

and k′ are adjacent through S and extend the notation k
S←→

M∗
k′ to this case.

For each split facet (F,k) ∈ F(M∗), by requirement (i), there is at most one element k′ such

that k
F←→

M∗
k′. If such an an element exist, it is called the neighbor of k through F . Otherwise, we

write k
F←→

M∗
⊥. Hence, for each element k ∈M∗, we can define a neighbor function

NM∗(k, ·) : F(K)→ KM∗

mapping each facet F of the simplex K = KM∗(k) to the neighbor of k through F :

∀F ∈ F(K) , NM∗(k, F ) :=





k′ if k
F←→

M∗
k′ ,

⊥ if k
F←→

M∗
⊥ .

(14)

When the generalized mesh under consideration is sufficiently clear from the context, we drop the

subscriptM∗, i.e. write V,K, K, G, F←→, instead of VM∗ ,KM∗ , KM∗ , GM∗ ,
F←→

M∗
, and so on.

Definition 2 (Subsimplices of a generalized mesh). The subsimplices and facets of an element
k ∈M∗ are defined by

σd(k) := σd(K) , σ(k) := σ(K) , F(k) := F(K) ,

where K is the simplex attached to k. If K is a non-degenerate simplex of Rm, we also write
|k| := |K|. Similarly, the subsimplices and facets of a generalized meshM∗ are

σd(M∗) :=
⋃

k∈KM∗

σd(k) , σ(M∗) :=
⋃

0≤d≤n

σd(M∗) , F(M∗) := σn−1(M∗) . (15)

Definition 3 (Relabeling of generalized meshes). The generalized meshM∗
2 is a relabeling of

the generalized meshM∗
1 if

❼ there is a bijection ϕ : KM∗
1
→ KM∗

2
,
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❼ the realizations functions KM∗
1
and KM∗

2
satisfy

KM∗
1
= KM∗

2
◦ ϕ ,

❼ there holds
k

F←→
M∗

1

k′ ⇐⇒ ϕ(k)
F←→

M∗
2

ϕ(k′) .

Every non-branching simplicial mesh can also be regarded as a generalized mesh, in the following
sense:

Definition 4 (Generalized mesh respresenting a non-branching mesh). The generalized mesh
M∗ representing the non-branching meshM is defined as follows:

• the vertex set is the same as that ofM, i.e. VM∗ := σ0(M),

• the elements ofM∗ are the elements ofM, i.e. KM∗ :=M,

• the realization ofM∗ is the identity map, i.e. KM∗(K) = K , ∀K ∈M,

• the adjacency graph is defined by

K
F←→

M∗
K ′ ⇐⇒ K

F←→
M

K ′ ⇐⇒ F = K ∩K ′ .

It is necessary forM to be non-branching for the adjacency graph in the definition above to satisfy
the requirement (i) of Definition 1.

Finally, one can define a notion of orientability for generalized meshes as for simplicial meshes:

Definition 5 (Orientable generalized mesh). An oriented generalized mesh is a generalized
mesh endowed with an orientation, i.e. a choice of orientation for each of its elements. For an
element k ∈ M∗, an orientation of k is an orientation of its realization KM∗(k). We denote
the corresponding oriented simplex by [k]M∗ .

The orientation ofM∗ is called compatible if, for two adjacent elements k and k′, the sim-
plices [k]M∗ and [k′]M∗ are consistently oriented. A generalized mesh that admits a compatible
orientation is called orientable.

2.2 Examples

Example 1 (Domain with a crack). LetM∗
1 (represented in Figure 3) be the generalized triangular

mesh defined by
V = {A , . . . , J} , K = {1 , . . . , 10} ,

with the realization

K(1) = ABC , K(2) = BCD , K(3) = BDE , K(4) = BEF , K(5) = BFG

K(6) = ABG , K(7) = AGH , K(8) = AHI , K(9) = AIJ , K(10) = ACJ.
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5

6

7

8

9

10

1

2

3

4

G F

B EA

C D

H

I

J

Figure 3: Graphical representation of the generalized meshM∗
1 of Example 1. The adjacency graph

GM∗
1
is shown in green. The dot in the element i and near the edge E is associated to the split

facet (E, i) ∈ F(M∗
1). Even though the elements 1 and 6 have the edge AB (highlighted in red) in

common, they are not adjacent.

There are 3× 10 = 30 split facets (green dots in Figure 3), the first few are given by

F(M∗
1) = {(AB, 1), (BC, 1), (AC, 1) , (BC, 2) , (CD, 2), (BD, 2) , . . .} .

The adjacency graph (represented in green in Figure 3) can be summarized by

1
BC←→ 2

BD←→ 3
BE←→ 4

BF←→ 5
BG←→ 6

AG←→ 7
AH←→ 8

AI←→ 9
AH←→ 10

AC←→ 1 .

The elements 1 and 6 are not adjacent, although the triangles K(1) and K(6) share the edge AB.
This creates the “fracture”, highlighted in red.

Example 2 (Two-sided segment). One can consider the generalized edge meshM∗
2 (see Figure 4)

with
V = {A,B} , K = {1, 2}

with the realization K(1) = K(2) = AB. In this example, there are 4 split facets:

F(M∗
2) = {(A, 1), (B, 1), (A, 2), (B, 2)}

and the adjacency graph (represented in green in Figure 4) is given by 1
A←→ 2

B←→ 1.

1

2
A B

Figure 4: Graphical representation of the generalized mesh M∗
2 of Example 2, where the two red

curves, supposed to be two instances of the segment AB, shoud be on top of each other. They have
been torn apart to visualize the adjacency graph, represented in green.

The two elements of M∗
2 can be thought of as the upper and lower sides of the segment AB.

They are adjacent through both of their vertices. We shall see in that this generalized mesh is one
of the components of the boundary of the generalized meshM∗

1 from the previous example.
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2.3 Data structures

We represent generalized meshes in Matlab using the following data structure:

classdef GeneralizedMesh

properties

vtx ; % List of vertices of size Nvtx

elt ; % Nelt x (n+1) array with entries in {1,...,Nvtx}
nei elt ; % Nelt x (n+1) array with entries in {0,...,Nelt}
nei fct ; % Nelt x (n+1) array with entries in {0,...,n+1}

end

The attribute elt is used as in the msh class, except this time, the rows of elt are not necessarily
mutually distinct. An instance of GeneralizedMesh represents a generalized mesh with elements
{1 , . . . , Nelt}. The i-th line of elt encodes the simplex attached to the element i. The adjacency
graph is encoded by the attributes nei elt, nei fct with the following conventions:

i
F←→ j ⇐⇒

{
(nei elt[i,α], nei fct[i,α]) = (j, β) ,

Fα(i) = Fβ(j) = F ,

i
F←→⊥⇐⇒

{
(nei elt[i,α], nei fct[i,α]) = (0, 0) ,

Fα(i) = F .

for all i, j ∈ {1 , . . . , Nelt} .
Here, for α ∈ {1 , . . . , n + 1}, Fα(i) denotes the facet of the simplex attached to the element i,
obtained by removing the vertex in position α in the i-th line of elt.

The d-subsimplices of a generalized mesh M∗ are computed by removing duplicate entries in
the list of all subsimplices of all elements. This is done by first sorting the list of subsimplices
lexicographically (according to the vertex indices), and then removing duplicates in a second, linear
pass. Hence, the number of operations required is proportional to N1 logN1, where

N1 :=

(
n

d

)
Card (KM∗) . (16)

One of the class constructors for GeneralizedMesh is an implementation of Definition 4. Called
on a non-branching meshM, it outputs a generalized meshM∗ representingM. This involves the
computation of the adjacency graph ofM, which requires a number of operations proportional to
Card (M), the proportionality constant depending polynomially on n.

For more details, the reader is invited to consult our Matlab implementation included as sup-
plementary material.

2.4 Generalized subfacets

The generalized d-subfacets defined in this section play an important role in the remainder of this
work.
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5

6

S

1

2

3

4

5

6

G(S)

γ1

γ2

γ3

Figure 5: Possible configuration of the generalized star of a vertex S, with the same conventions as
in Figure 3 (left), and corresponding graph G(S) (right). In this example, there are three generalized
vertices attached to S: (S, {1}), (S, {2 , 3 , 4}) and (S, {5 , 6}).

Given S ∈ σ(M∗), the generalized star of S is defined by

st(S,M∗) := {k ∈M∗ | S ∈ σ(k)} . (17)

Let G(S) be the graph between the elements of st(S,M∗), with an edge between k and k′ if k
S←→ k′

(see Figure 5). The connected components of G(S) define a partition γ1 , . . . , γQ of st(S,M∗), and
we write C(S) := {γ1 , . . . , γQ}.

Definition 6 (Generalized subfacets). For 0 ≤ d ≤ n, a generalized d-subfacet is a d-simplex
S ∈ σd(M∗) labeled by a component γ ∈ C(S). The set of generalized d-subfacets, denoted by
Sd(M∗), is thus

Sd(M∗) := {s = (S, γ) | S ∈ σd(M∗) , γ ∈ C(S)} . (18)

We say that a generalized d-subfacet s = (S, γ) is attached to the subsimplex S, and we extend
the meaning of the realization K so that K(s) := S. Also, let us write

σd(s) := σd(S) , st(s,M∗) := γ .

A generalized d-subfacet is called a generalized vertex and a generalized facet for d = 0 and
d = n− 1, respectively. We again adopt a special notation for the set of generalized facets:

F(M∗) := Sn−1(M∗) . (19)

For an n-dimensional gen-meshM∗, when K ∈ σn(M∗), the graph G(K) has no edges. Indeed,
the elements in st(K,M∗) can only be adjacent through simplices of dimension d ≤ n − 1, hence,
not through K. Therefore,

Sn(M∗) ≃ σn(M∗) = KM∗ ,

and we identify elements with generalized n-subfacets. WhenM∗ represents a regular mesh, then
Sd(M∗) ≃ σd(M∗) for all 0 ≤ d ≤ n because of Lemma 3.

One can compute all the generalized d-subfacets ofM∗ in a number of operations proportional
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to N1 logN1 +N2N3 where

N2 = Card (σd(M∗)) , N3 = max
S∈σd(M∗)

Card (st(S,M∗)) ,

and where N1 is defined in Eq. (16). This is achieved by a standard graph exploration, summarized
in Algorithms 1 and 2.

Algorithm 1 GeneralizedSubfacets(M∗, d)

INPUTS: Generalized meshM∗, subfacet dimension d.
RETURNS: The set of generalized d-subfacets ofM∗, Sd(M∗).

Sd ← {} % Initialization

FOR S ∈ σd(M∗) % Loop over the d-subsimplices of M∗

l← st(S,M∗); % Generalized star of S
WHILE (l 6= {})

Choose k ∈ l; % Pick element of the star of S not already visited

γ ← {};
(γ, l)← AUX(M∗, S, γ, l,k); % Visit component of k and store it in γ.
s← (S, γ); % Create the corresponding new generalized facet

Sd ← Sd ∪ {s}; % Append it to the list Sd

END WHILE

RETURN Sd

Algorithm 2 AUX(M∗, S, γ, l,k)

INPUTS: A generalized mesh M∗, a simplex S ∈ σ(M∗), two disjoint subsets γ and l of
st(S,M∗), an element k ∈ l.
RETURNS The set γ augmented with all elements in the same component as k in G(S), and the
set l from which those elements have been removed.

γ ← γ ∪ {k}; % Append element k to γ
l← l \ {k}; % Remove element k from l
FOR F ∈ F(k) such that S ∈ σ(F ) % Loop over the facets of k incident to S

k′ ← N (k, F ) % Neighbor of k through F
IF k′ ∈ l

(γ, l)← AUX(M∗, S, γ, l,k′); % Recursively visit neighbors of k′ through S
END IF

END FOR

RETURN (γ, l)

Definition 7 (Incidence and adjacency of generalized subfacets). Given s, s′ ∈ Sd′(M∗), with
0 ≤ d < d′ ≤ n, we write s ⊂ s′ if

K(s) ⊂ K(s′) and st(s,M∗) ⊃ st(s′,M∗) ,

12



in whice case we say that s is contained in s′. When |d − d′| = 1, we say that s and s′ are
incident. Two generalized d-subfacets are adjacent if they are incident to a common generalized
(d− 1)-subfacet.

For d = n, this new notion of adjacency is consistent with the previous one:

Lemma 4. Two elements k,k′ ∈ KM∗ are adjacent in the sense of Definition 1 if and only if they
are adjacent in the sense of Definition 7.

Proof. If k
F←→ k′, then there is a genfacet f ∈ F(M∗), with {k,k′} ⊂ st(f ,M∗). But this implies

that k and k′ are both incident to f .
Conversely, if k and k′ are both incident to a facet f attached to a simplex F , then {k,k′} ⊂

st(f ,M∗), so by definition of G(F ), k
F←→ k′.

Lemma 5. Let k and k′ be elements of a generalized mesh, and let V(k) and V(k′) be the set of

generalized vertices contained in k and k′, respectively. If k
F←→ k′, then

∀V ∈ σ0(F ) , ∃v ∈ V(k) ∩V(k′) : K(v) = V .

In words, for each vertex V of F , there is a generalized vertex v attached to V , and contained
both in k and in k′. As a consequence, two adjacent elements share at least n distinct generalized
vertices.

Proof. Write F = {V1, V2, . . . , Vn}. For each k ∈ {1 , . . . , n}, since Vk ∈ σ(F ) one has

k
Vk←→ k′ .

Hence, there is a component γk ∈ C(Vk) containing both k and k′. Set vk := (Vk, γk) ∈ S0(M∗).
Then, the generalized vertices v1 , . . . ,vn all belong to both k and k′.

Example 3 (Domain with a crack). We consider again the generalized mesh M∗
1 introduced in

Example 1, see Figure 3. The generalized vertices are

a = (A, {6, 7, 8, 9, 10, 1}), b = (B, {1, 2, 3, 4, 5, 6}) ,

c = (C, {1, 2, 10}) , d = (D, {2, 3}) , e = (E, {3, 4}) , f = (F, {4, 5}) ,
g = (G, {5, 6, 7}) , h = (H, {7, 8}) , i = (I, {8, 9}) , j = (J, {9, 10}).

In this case, Card (σ0(M∗
1)) = Card (S0(M∗

1)). However, we have

Card (S1(M∗
1)) = Card (σ1(M∗

1)) + 1 ,

as there are two generalized edges attached to the segment AB, namely

e1 := (AB, {1}) , e2 := (AB, {6}) .

They can be interpreted as the top and bottom sides, respectively, of the segment AB.

Remark 1. In the previous example, we see that the elements 1 and 6 share the two generalized
vertices a and b, but they are not adjacent. This shows that the converse of the last statement in
Lemma 5 above, is false.
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Example 4. We consider the generalized mesh M∗
3 represented in Figure 6 below. It represents

a rectangular domain Ω containing a fracture Γ (red edges in the figure). The main merit of this
example is to show an instance of a generalized mesh with “split nodes”, as there are 4 generalized
vertices attached to the vertex O:

o1 = (O, {11, 12}) , o2 = (O, {14}) , o3 = (O, {19}) , and o4 = (O, {21, 22}).
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Figure 6: A generalized mesh representing a domain with a cross-shaped fracture, with the same
conventions as in Figure 3.

3 Boundary of a generalized mesh

In this section, we define the boundary ∂∗M∗ of a generalized meshM∗, in a way that generalizes
the boundary of regular meshes.

Recall the definition of the set of split facets F(M∗) from Eq. (12) and the neighbor function N
from Eq. (14). In what follows, Fb(M∗) denotes the set of boundary split facets ofM∗, defined by

Fb(M∗) := {(F,k) ∈ F(M∗) | N (k, F ) =⊥} , (20)

that is, the set of nodes of degree 0 in the adjacency graph GM∗ .
The set Fb(M∗) will the set of elements of ∂∗M∗. Our main task is now to define a suitable

adjacency graph G∂∗M∗ , which amounts to specifying the adjacency relations among elements of
Fb(M∗). The key idea is illustrated in Figure 7. Given two split facets

f = (F,k) , f ′ = (F ′,k′)

such that F and F ′ share a common facet S, we will declare that f and f ′ are adjacent through S
if they can be linked by a chain of adjacent elements through S.

We now describe this idea more precisely.
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Figure 7: Sketch of the idea for the definition of the adjacency relation in the generalized boundary.

Lemma 6. Let M∗ be an n-dimensional generalized mesh, n ≥ 2, and let (F,k) ∈ Fb(M∗).
For each S ∈ F(F ), there exists a unique sequence {kq}1≤q≤Q ⊂ KM∗ of distinct elements, and
a unique sequence {Fq}0≤q≤Q ⊂ F(M∗) of distinct facets, all containing S, such that k = k1,
F = F0, and

⊥ F0←→ k1
F1←→ k2

F2←→ . . .
FQ−2←→ kQ−1

FQ−1←→ kQ
FQ←→⊥ .

Proof. Let k1 := k, F0 := F , and let F1 be the unique facet of k, distinct from F , containing S. If
N (k, F1) =⊥, then

⊥ F0←→ k1
F1←→⊥ ,

and there is nothing left to prove.
Otherwise, let k2 := N (k1, F1), and let the construction be continued recursively in the following

way: ki and Fi−1 being defined, let Fi be the facet of ki, distinct from Fi−1, and containing S. If

N (ki, Fi) =⊥ ,

then stop with Q = i. Otherwise, let

ki+1 = N (ki, Fi) .

Let us show by induction that for each j such that kj is defined, the elements k1 , . . . ,kj are
all distinct. For j = 2, this follows from the requirement (ii) of Definition 1, i.e. that

k
F←→ k′ =⇒ k 6= k′ . (21)

Next, assuming that it is true for some j ≥ 2, and if kj+1 is defined, let us show by contradiction
that kj+1 /∈ {ki}1≤i≤j . To this end, we assume that there exists a < j + 1 such that ka = kj+1.
The situation is then summarized by the diagram below.

ka
Fa←→ ka+1

=

kj
Fj←→ kj+1

Note that ka+1 6= kj+1, again by the property (21) above. Consequently, a 6= j, so either a < j − 1
or a = j − 1.
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On the one hand, if we assume that a < j − 1, then ka+1 and kj are two distinct neighbors of
ka through Fa and Fj , respectively. Hence, Fj 6= Fa so that Fa−1 = Fj and therefore

N (ka, Fa−1) = kj 6=⊥ .

This implies that a ≥ 2, and kj = ka−1, which is in contradiction with the induction hypothesis.
On the other hand, assume that a = j−1. We now face the situation represented in the diagram

below.

kj−1
Fj−1←→ kj

Fj←→ kj+1 = kj−1

By definition of Fj , we have Fj 6= Fj−1, and because of the situation above, both are faces of
the simplex attached to kj−1. Hence, we must have Fj−2 = Fj , and therefore

N (kj−1, Fj−2) = kj 6=⊥ .

This means that kj−2 is defined and equal to kj , leading to a contradiction also in this case. The
existence of a is therefore contradictory, concluding the induction.

Having established that the sequence of elements generated by this process has no repetition,
we conclude that it must be finite, sinceM∗ only has a finite number of elements. With this, the
existence of the chain is proved. The fact that the chain is unique follows immediately from the
axiom (i) of the adjacency graph in Definition 1.

Hence for each boundary split facet f := (F,k) ∈ Fb(M∗), and for each facet S of F , there is
a finite and unique “chain of elements” starting from this boundary split facet and circling around
S. The opposite end of this chain, f ′ := (FQ,kQ) is again a boundary split facet, and we deem it
the neighbor of f through S. We write

Nb(f , S) := f ′ .

Corollary 1. The function Nb satisfies

∀f ∈ Fb(M∗), ∀S ∈ F(F ) , Nb(f , S) 6= f and

Nb(f , S) = f ′ ⇐⇒ Nb(f
′, S) = f .

Definition 8 (Generalized boundary). Given an n-dimensional generalized mesh M∗, with
n ≥ 1, the generalized boundary (or simply boundary) of M∗ is the (n − 1)-dimensional
generalized mesh ∂∗M∗ with

❼ the vertex set V∂M∗ := VM∗ ,

❼ the elements K∂∗M∗ := Fb(M∗),

❼ the realization K∂∗M∗ , defined by K∂∗M∗(f) := F when f = (F,k).

❼ If n ≥ 2, the adjacency graph G∂∗M∗ defined by

f
S←→

∂∗M∗
f ′ ⇐⇒ Nb(f , S) = f ′ .
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IfM∗ is a 0-dimensional generalized mesh, we set ∂∗M∗ := ∅.

This definition respects the axioms of generalized meshes by Corollary 1.

Example 5. Consider again the generalized mesh M∗
3 represented in Figure 6. Its generalized

boundary is represented in Figure 8 below, where the inner component of the boundary (in red)
has been “inflated” to help visualizing the adjacency structure.

Γ

∂M∗
3

Figure 8: Sketch of the generalized boundary ofM∗
3, as shown in Figure 6.

Now, we prove that the previous definition suitably generalizes the notion of boundary for
regular meshes.3 For the terminology used in the next lemma, recall Definitions 3 and 4:

Lemma 7. Let M be a regular mesh, and let M∗ (resp. (∂M)∗) be the generalized mesh repre-
sentingM (resp. ∂M). Then, the meshes ∂∗M∗ and (∂M)∗ are equal, up to a relabeling.

Proof. Given F ∈ ∂M, there exists a unique element K ∈M incident to F , and it satisfies

K
F←→
M
⊥ .

Hence, (F,K) ∈ Fb(M∗), and we write (F,K) =: ϕ(F ). Since K(∂M)∗ = ∂M and K∂∗M∗ =
Fb(M∗), this gives a bijection

ϕ : K(∂M)∗ → K∂∗M∗ .

Obviously, there holds K(∂M)∗ = K∂∗M∗ ◦ ϕ. Moreover, given F, F ′ ∈ K(∂M)∗ , assume that

F
S←→

(∂M)∗
F ′ .

3We cannot formulate Lemma 7 in general for non-branching triangulations, since they can have branching
boundaries – for which there is no corresponding generalized mesh, see the remark below Definition 4.
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Let K and K ′ be such that ϕ(F ) = (F,K) and ϕ(F ′) = (F ′,K ′). Both K and K ′ are in the star
of S. Therefore, by Lemma 3, there exists K1 , . . . ,KQ in the star of S, with K1 = K, KQ = K ′,
such that

K1
F1←→
M

K2
F2←→
M

K2
F3←→
M

. . .
FQ−2←→
M

KQ−1
FQ−1←→
M

KQ ,

with Fi := Ki ∩Ki+1, 1 ≤ i ≤ Q− 1. Furhtermore, we have

⊥ F←→
M

K , K ′ F ′

←→
M
⊥ .

By definition ofM∗, it follows that

⊥ F←→
M∗

K
F1←→
M∗

K2
F3←→
M∗

. . .
FQ−2←→
M∗

KQ−1
FQ−1←→
M∗

K ′ F ′

←→
M∗
⊥ ,

that is to say
(F ′,K ′) = Nb((F,K), S) .

We have thus shown
F

S←→
(∂M)∗

F ′ =⇒ ϕ(F )
S←→

∂∗M∗
ϕ(F ′) .

The reverse implication is immediate. Hence ∂∗M∗ is a relabeling of (∂M)∗.

From now on, we drop the star from ∂∗. The following result is a direct consequence of the
definition:

Lemma 8. Given a generalized meshM∗, the generalized mesh ∂∂M∗ is empty.

Definition 9 (Induced orientation on the boundary of a generalized mesh). Let M∗ be an
n-dimensional generalized mesh, with n ≥ 1, equipped with some (possibly non-compatible)
orientation. We define an orientation of ∂M∗ as follows: for each element f = (F,k) ∈ Fb(M∗)
ofM∗, we choose

[f ]∂M∗ := [F ]|[K]

where K is the simplex attached to k, [K] = [k]M∗ is fixed by the orientation of M∗, and
[F ][K] is defined by Eq. (2). This orientation of ∂M∗ is called the orientation induced byM∗.

The next result shows that the boundary of an orientable generalized mesh is orientable.

Lemma 9. If the orientation of M∗ is compatible, then the induced orientation of ∂M∗ is com-
patible.

Proof. Let M∗ be a generalized mesh equipped with a compatible orientation. Consider two ele-
ments f = (F,k) and f ′ = (F ′,k′) such that

f
S←→

∂M∗
f ′ .

We may introduce the chain

⊥ F0←→
M∗

k1
F1←→
M∗

k2
F2←→
M∗

. . .
FQ−2←→
M∗

kq−1
FQ−1←→
M∗

kQ
FQ←→
M∗
⊥ , (22)
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where F0 = F , k1 = k, FQ = F ′ and kQ = k′. We define

[Fq]left := orientation of Fq induced by [kq]M∗ q ∈ {1 , . . . , Q} ,
[Fq]right := orientation of Fq induced by [kq+1]M∗ q ∈ {0 , . . . , Q− 1} .

On the one hand, by Lemma 1, it holds that

∀q ∈ {1 , . . . , Q} , [Fq−1]right and [Fq]left induce opposite orientations on S ,

On the other hand, by the property that [kq]M∗ and [kq+1]M∗ are consistently oriented (since
the orientation ofM∗ is compatible), it holds that

∀q ∈ {1 , . . . , Q− 1} , [Fq]right = −[Fq]left ,

Consequently, [Fq]left and [Fq]right also induce opposite orientations on S.
It results from those two facts that [F0]right and [FQ]left induce opposite orientations on S, so

they are consistently oriented. The conclusion of the lemma follows once we notice that [F0]left and
[FQ]left are nothing else than the orientations of F and F ′ fixed by the orientation induced byM∗

on ∂M∗ according to Definition 9.

4 Fractured meshes and virtual inflation

In this section, we focus on one particular kind of generalized mesh: those obtained, starting from
a regular mesh MΩ, by dropping the adjacency between selected pairs of neighbor simplices, see
below for a more precise definition. The set of facets shared by those selected pairs,MΓ, is called
the fracture. Particular examples of such meshes have already been encountered in Example 1 and
Example 4.

We are interested in the generalized boundaries of those “fractured meshes”. The main goal of
this section is to provide an algorithm that reconstructs the generalized boundary efficiently from
the fracture meshMΓ alone, i.e. without relying on the external regular meshMΩ.

4.1 Fractured meshes

Consider a regular meshMΩ of dimension n ≥ 2 and let Ω := |M|. LetMΓ ⊂ F(MΩ) be a (not
necessarily regular) simplicial mesh of dimension n− 1, called the fracture, and let Γ := |MΓ|. For
example, if n = 3,MΓ may be the mesh represented in Figure 1.

Definition 10 (Fractured mesh). Given MΩ and MΓ fulfilling the conditions above, the
fractured meshM∗

Ω\Γ is the generalized mesh with

❼ the vertex set VM∗
Ω\Γ

:= σ0(MΩ),

❼ the elements KM∗
Ω\Γ

:=MΩ,

❼ the identity realization KM∗
Ω\Γ

i.e. ∀K ∈MΩ , KM∗
Ω\Γ

(K) = K,
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❼ the adjacency graph defined by

K
F←→

M∗
Ω\Γ

K ′ ⇐⇒
(
K ←→

MΩ

K ′ and F = K ∩K ′ /∈MΓ

)
.

In words, two elements ofM∗
Ω\Γ are adjacent if they share a facet F which is not in the

fracture.

4.2 Extrinsic virtual inflation

Given a fractured mesh M∗
Ω\Γ, one can consider its boundary ∂M∗

Ω\Γ according to Definition 8.

In this paragraph, we assume that Γ ∩ ∂Ω = ∅. Then, some components of ∂M∗
Ω\Γ are in ∂MΩ,

and the remaining components give a generalized mesh that we denote by M∗
Γ(Ω), and call the

extrinsic inflation ofMΓ viaMΩ. More precisely:

Definition 11 (Extrisinc inflation). Given an n-dimensional regular meshMΩ and a mesh

MΓ ⊂ F(MΩ) \ ∂MΩ ,

the extrinsic inflation ofMΓ viaMΩ is the (n−1)-dimensional generalized meshM∗
Γ(Ω) with

❼ the vertex set VM∗
Γ
(Ω) := σ0(MΓ),

❼ the elements KM∗
Γ
(Ω) := {(F,K) ∈MΓ ×MΩ | F ∈ F(K)},

❼ the realization KM∗
Γ
(Ω) defined by

KM∗
Γ
(Ω)((F,K)) := F

❼ the adjacency graph defined by

∀f , f ′ ∈ KM∗
Γ
(Ω) , f

S←→
M∗

Γ
(Ω)

f ′ ⇐⇒ f
S←→

∂M∗
Ω\Γ

f ′ ,

whereM∗
Ω\Γ is the fractured mesh defined in Definition 10.

Observe that KM∗
Γ
(Ω) ⊂ K∂M∗

Ω\Γ
, so that the definition of the adjacency graph makes sense.

Furthermore, note that the assumption Γ ∩ ∂Ω = ∅ ensures the property

∀(f , f ′) ∈ ∂M∗
Ω\Γ × ∂M∗

Ω\Γ , (f ∈M∗
Γ(Ω) and f

S←→
M∗

Γ
(Ω)

f ′) =⇒ f ′ ∈M∗
Γ(Ω) .

For example, ifM∗
Ω\Γ is equal to the generalized meshM∗

1 of Example 1, thenM∗
Γ(Ω) is equal to

the generalized meshM∗
2 of Example 2. The idea is also represented schematically in Figure 9.

This defines a simple, purely combinatorial procedure which, on the input of a possibly non-
regular meshMΓ and a surrounding regular meshMΩ, returns a generalized meshM∗

Γ(Ω), which
is roughly speaking a two sided version ofMΓ. As a result of this procedure, most vertices ofMΓ

are duplicated into two distinct generalized vertices, one on each “side” of the surface |MΓ| (except
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MΓ
M∗

Ω\Γ M∗
Γ(Ω)

Figure 9: Schematic representation of the extrinsic inflation procedure. Starting from a possibly
non-regular meshMΓ (left panel), form the fractured meshM∗

Ω\Γ using the exterior regular mesh

MΩ (middle), compute its generalized boundary and return the “submesh” obtained by only keeping
components corresponding toMΓ (right). The blue dots on the left (resp. right) figure represent
the vertices (resp. generalized vertices) ofMΓ (resp. ofM∗

Γ(Ω)). As in Figure 8, a gap has been
introduced in the center of the cross shape only for visualization purposes. In reality, the four
central blue dots are on top of each other, and so on. On the middle figure, only a subset of the
elements ofMΩ is represented (gray triangles), the exterior boundary ∂Ω is not visible.

those vertices located on junction points or on the boundary, which may be multiplicated into more
than two copies, or not at all).

It turns out that when MΓ is an edge mesh in R2, or a triangular mesh in R3, M∗
Γ(Ω) is in

fact independent of MΩ up to a relabeling, and one can construct such a relabeling intrinsically,
without the need for any external mesh MΩ. The construction has been sketched by two of the
authors in [19, Section 4.2]. To present it more precisely, we now review some properties of oriented
angles in R3.

4.3 Oriented angles in R3

Let T1 and T2 be two triangles in R3, sharing an edge. Let us denote their vertices by {A,B,C}
and {B,C,D}, respectively. We define the geometric angle Θ(T1, T2) ∈ [0, π) by

cosΘ(T1, T2) =

−−→
OA′ · −−→OD′

∥∥∥
−−→
OA′

∥∥∥
∥∥∥
−−→
OD′

∥∥∥
, (23)

C ′ (resp. D′) is the orthogonal projections of C (resp. D) on the plane perpendicular to
−−→
BC,

through the origin O, i.e.

−−→
OA′ =

−→
OA− (

−→
OA · u)u ,

−−→
OD′ =

−−→
OD − (

−−→
OD · u)u , u :=

−−→
BC∥∥∥−−→BC

∥∥∥
.
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Figure 10: The triangles [T ] = [A,B,C] and [T ′] = [B,D,C] are consistently oriented. The oriented
angle ∠([T ], T ′) is represented in red.

Given an orientation [T1] of T1, we define the oriented angle ∠([T1], T2) ∈ (0, 2π] by

∠([T1], T2) =

{
Θ(T1, T2) if

−−→
AD · nT1

> 0 ,

2π −Θ(T1, T2) otherwise ,
(24)

where nT1
is the unit normal vector to T1 fixed by its orientation according to Eq. (4) (see Figure 10).

One has
∠([T1], T2) = 2π − ∠(−[T1], T2) . (25)

In addition, every oriented triangle [T ] satisfies ∠([T ], T ) = 2π.
Let E1 and E2 be two edges in the plane sharing exactly one vertex, and let [E1] be an orientation

of E1. Write [E1] = [A,B] and let C be the vertex of E2 not shared by E1. We define ∠([E1], E2)

as the counter-clockwise measure in (0, 2π) of the angle from
−−→
AB to

−→
AC around A. We furthermore

define ∠([E1], E1) := 2π. With this definition, Eq. (25) also holds for oriented angles between edges
in R2.

Lemma 10. If [T1] and [T2] are consistently oriented triangles, then

∠([T1], T2) = ∠([T2], T1) .

The same result holds for oriented edges.

Proof. Using the rule (25) above, we can assume without loss of generality that T1 = [A,B,C] and
T2 = [C,B,D]. The corresponding normal vector are given by

n1 =

−−→
AB ×−→AC∥∥∥−−→AB ×−→AC

∥∥∥
, n2 =

−−→
BD ×−−→BC∥∥∥−−→BD ×−−→BC

∥∥∥
.

By the properties of cross product, one has

−−→
AD ·

(−−→
AB ×−→AC

)
=
−−→
DA ·

(−−→
BD ×−−→BC

)
.

We deduce that
−−→
AD · n1 and

−−→
DA · n2 have the same sign, and thus ∠([T1], T2) = ∠([T2], T1).
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We now state an elementary property of oriented angles in regular meshes, and an useful con-
sequence for the next subsection.

Lemma 11. Let [K] be a naturally oriented tetrahedron in R3, with vertices A, B, C and D. Let E
be a point in R3, and denote by T1, T2 and T3 the triangles with vertices {A,B,C}, {B,C,D} and
{B,C,E}, respectively (see Figure 11). Let [T1] be the orientation of T1 induced by [K]. Assume
that

∠([T1], T3) < ∠([T1], T2)

Then T2 intersects the interior of K, and thus

|T2| ∩ |K| 6= |T2 ∩K| .

Figure 11: Configuration of Lemma 11.

Corollary 2. Let M be a regular tetrahedral mesh, let [K] be a naturally oriented element of M,
and T1, T2 two of its triangular faces, sharing an edge E. Let [T1] be the orientation of T1 induced
by [K]. Then it holds that

∀T ′ ∈ F(M) s.t. E ∈ F(T ′) , ∠([T1], T
′) ≤ ∠([T1], T2) =⇒ T ′ = T2 .

In words, T2 is the unique minimizer of ∠([T1], ·) among triangles T ′ ∈ F(M) incident to E.

4.4 Intrinsic mesh inflation

In what follows, we consider an (n− 1)-dimensional meshMΓ with vertices in Rn, where n = 2 or
3. Let

FΓ := {oriented simplex of the form [F ] with F ∈MΓ} . (26)

Every element ofMΓ appears twice in FΓ, once with each of the two opposite orientations.
Given [F ] ∈ FΓ, and S ∈ F(F ), let F ′ be the minimizer, among elements F ′ ∈MΓ incident to

S (including F itself), of the quantity ∠([F ], F ′). Then define

Ñb([F ], S) := [F ′]

where [F ′] is the orientation of F ′ consistent with [F ].
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Definition 12 (Intrinsic inflation). The intrinsic inflation ofMΓ is the generalized meshM∗
Γ

defined by

❼ the vertex set VM∗
Γ
:= σ0(MΓ)

❼ the elements KM∗
Γ
:= FΓ,

❼ the realization KM∗
Γ
defined by

∀[F ] ∈ FΓ , KM∗
Γ
([F ]) := F ,

❼ the adjacency graph defined by

[F ]
S←→

M∗
Γ

[F ′] ⇐⇒ [F ′] = Ñb([F ], S)

By Lemma 10, and since an oriented triangle is never consistently oriented with itself, this is a
well-defined generalized mesh.

Theorem 1. LetMΩ be a regular n-dimensional mesh in Rn, with n = 2 or 3, and let

MΓ ⊂ F(MΩ) \ ∂MΩ .

Let M∗
Γ(Ω) be the extrinsic inflation of MΓ via MΩ and M∗

Γ the intrinsic inflation of MΓ, cf.
Definitions 11 and 12 respectively. Then,M∗

Γ(Ω) andM∗
Γ are equal up to a relabeling.

Proof. To fix ideas, we write the proof for the case n = 3 (the case n = 2 is analogous). Recall that
the elements of M∗

Γ(Ω) are the pairs (F,K) with K ∈ MΩ and F ∈ MΓ ∩ F(K). Given such a
pair, we define

ϕ((F,K)) := [F ]|[K]

where [K] is the natural orientation of K (recall the notation from Eq. (2)). SinceMΓ is disjoint
from the boundary ofMΩ, by Lemma 2 this defines a bijection

ϕ : KM∗
Γ
(Ω) → KM∗

Γ
,

with, obviously, K1◦ϕ = K2, where K1 and K2 are the realizations ofM∗
Γ andM∗

Γ(Ω), respectively.
It remains to show that the adjacency graphs of M∗

Γ and M∗
Γ(Ω) are compatible with this

bijection. This amounts to proving that, for (F,K) ∈ KM∗
Γ
(Ω) and S ∈ F(F ), there holds

ϕ (Nb((F,K), S)) = Ñb (ϕ((F,K)), S) . (27)

Hence, pick a pair (F,K) ∈MΩ×MΓ, with F ∈ F(K), let [F ] = ϕ((F,K)) and let S ∈ F(F ). Let
M∗

Ω\Γ be the fractured mesh defined by MΩ and MΓ (cf Definition 10). By definition of M∗
Ω\Γ,

we have
⊥ F←→

M∗
Ω\Γ

K .

According to Lemma 6, we can introduce the chain

⊥ F←→
M∗

Ω\Γ

K
F1←→

M∗
Ω\Γ

K2
F2←→

M∗
Ω\Γ

. . .
FQ−2←→
M∗

Ω\Γ

KQ−1
FQ−1←→
M∗

Ω\Γ

KQ
FQ←→

M∗
Ω\Γ

⊥ . (28)
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Note that since S ∈ F(FQ), S ∈ σ(MΓ) andMΓ ∩ ∂MΩ = ∅, it must be true that FQ ∈MΓ. We
rewrite K ′ := KQ, F

′ := FQ so that

(F ′,K ′) = Nb((F,K), S) .

From Corollary 2, we deduce that for each i ∈ {1 , . . . , Q},

Fi = argmin
{
∠([F ], F̃ )

∣∣∣ F̃ ∈ F(MΩ) \ {Fj}1≤j≤i−1

}
.

By definition ofM∗
Ω\Γ, for i ∈ {1 , . . . , Q− 1}, the facet Fi is not inMΓ. Hence

FQ = F ′ = argmin
{
∠([F ], F̃ )

∣∣∣ F̃ ∈MΓ

}
. (29)

Finally, let
[F ′] := ϕ((F ′,K ′)) .

Reasoning as in the proof of Lemma 9, we see that [F ] and [F ′] are consistently oriented. From
this property, Eq. (29) and Definition 12, it follows that

Ñb([F ], S) = [F ′] ,

which proves the claim (27) and concludes the proof of the theorem.

The following result is immediate, by the very definition of Ñb:

Lemma 12. LetMΓ be a (n− 1)-dimensional generalized mesh in Rn, with n = 2 or 3. ThenM∗
Γ

is orientable, with a compatible orientation given by

∀[F ] ∈M∗
Γ , [F ]M∗

Γ
:= [F ] .

5 Finite element exterior calculus on generalized meshes

5.1 Whitney forms

We now fix the Euclidean space Rm as the ambient space. Every generalized mesh discussed below
has its vertices in Rm and its elements are non-degenerate n-simplices, with n ≤ m. Recall that for
an element k ofM∗ attached to the simplex K, we write |k| := |K|.

In this setting, we discuss the construction of lowest-order discrete differential forms on gener-
alized meshes, which are the simplest specimen of trial and test spaces required for Finite-Element
Exterior Calculus (FEEC, see [5]). Those spaces of discrete differential forms are spanned by locally
supported basis functions, known as Whitney forms [31].

To define Whitney forms we need some additional structure. We have to choose an orientation
for every simplex S ∈ σ(M∗). One standard way to do this is to choose an arbitrary order on the
finite set σ0(M∗) and equip each d-simplex S = {V1 , . . . , Vd+1} ∈ σd(M∗) with the orientation
[V1 , . . . , Vd+1]. Typically, this doesn’t incur any additional cost in the implementation, as simplices
are stored using arrays, which are naturally ordered.

We also need barycentric coordinate functions on a non-degenerate n-simplex K. Given a vertex
V of K, the barycentric coordinate λK

V : Rn → R is the affine function defined by the equations

∀V ′ ∈ σ0(K) , λK
V (V ′) =

{
1 if V = V ′ ,

0 otherwise.
(30)
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Definition 13 (Whitney form associated to a generalized facet). Consider a generalized d-
subfacet s ∈ Sd(M∗), s = (S, γ) with the orientation of S given by the order (V1, . . . , Vd+1).
The associated Whitney d-form ωs is a tuple of differential forms

ωs = (ωk

s )k∈M∗ .

For each k ∈M∗, ωk
s is the d-differential form on |k| defined by

ωk

s
:=





d+1∑

j=1

(−1)j+1λK
Vj
∧ dλK

V1
∧ . . . ∧ d̂λK

Vj
∧ . . . ∧ dλK

Vd+1
, for k ∈ γ ,

0 for k /∈ γ ,

(31)

where K is the simplex attached to k, d designates the exterior derivative, and the hat notation
is used to denote a suppressed term.

It is a standard fact that this definition is correct, i.e. that the formula (31) is invariant with respect
to even permutations of the chosen order (V1, . . . , Vd+1). Note that for d = 0, when S is a vertex,
say V1, of K, then ωk

s agrees with the barycentric coordinate function of K associated to the vertex
V1 when k ∈ γ.

Using the vector space structure of tuples of differential forms, we can consider linear combina-
tions of the Whitney forms defined above, and we define Λd(M∗) as the vector space spanned by
{ωs}s∈Sd(M∗). We call its elements Whitney d-forms onM∗.

Definition 14 (Trace). Given a Whitney d-form ω = (ωk)k∈M∗ ∈ Λd(M∗), the trace Trω is
the Whitney d-form ν = (νf )f∈∂M∗ ∈ Λd(∂M∗) where, for each element f = (F,k) of ∂M∗,
νf is given on |F | by

νf := Tr|k|,|F |ω
k .

Here, TrΩ,Ω′µ is the trace of the differential form µ from the manifold Ω to the submanifold
Ω′ ⊂ Ω [5, p.16]. It is defined as the pullback

TrΩ,Ω′µ := ι∗µ

where ι is the inclusion Ω′ →֒ Ω.

Lemma 13. The Whitney d-forms satisfy the following patch condition: if k
F←→

M∗
k′, then

∀ω ∈ Λd(M∗) , Tr|k|,|F |ω
k = Tr|k′|,|F |ω

k
′

.

Proof. By linearity, it suffices to check that the patch condition is satisfied by ωs for each s ∈
Sd(M∗). Hence let s = (S, γ), with the orientation defined by the ordering (V1 , . . . , Vd+1). We
first remark that if K is the simplex attached to k, and if S ∈ σ(K) doesn’t contain Vj , the function
λK
Vj

is identically 0 on |S|. Hence, if F is a facet of k not containing S, then ωk
s vanishes on |F |.

Consequently, if k and k′ are adjacent through such a facet F , the patch condition is immediately
verified. On the other hand, if F does contain S, then it follows that k and k′ are adjacent through
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S, so there are two cases: either k /∈ γ and k′ /∈ γ, either k ∈ γ and k′ ∈ γ. The patch condition is
obvious in the former case since ωs then vanishes on both k and k′. Finally the patch condition in
the latter case follows from

1. the property that if K is an n-simplex and F one of its facets, then

∀V ∈ σ0(F ) , λF
V = Tr|K|,|F | λ

K
V , (32)

2. the commutation of pullbacks with wedge products and exterior derivative.

The significance of this lemma is to ensure that when M∗ is a fractured mesh, then Λd(M∗) is a
subset of a suitable Sobolev space, see Section 6.2.

5.2 Surjectivity of the trace operator

In this section, we wish to identify a condition for Tr to be surjective from Λd(M∗) to Λd(∂M∗).
The importance of this surjectivity will be seen in Section 6.2. The main technical tool is given in
the following lemma:

Lemma 14. Let s = (S, γ) ∈ Sd(M∗) be a generalized d-subfacet ofM∗, and denote

st∂ s := {f = (F,k) ∈ ∂M∗ | S ∈ σ(F ) and k ∈ γ} .

Assume that st∂ s is non-empty and connected in M∗, in the sense that for any two elements f , f ′

of st∂ s, there is a chain

f = f1
S←→

∂M∗
f2

S←→
∂M∗

. . .
S←→

∂M∗
fQ−1

S←→
∂M∗

fQ = f ′ ,

with fq ∈ st∂ s for each q ∈ {1 , . . . , Q}. Then, there is a generalized d-subfacet t of ∂M∗ given by
t = (S, st∂ s), and the Whitney forms ωs ∈ Λd(M∗) and ωt ∈ Λd(∂M∗) are related by

Trωs = ±ωt ,

with a positive sign if the orientations of the simplex S in M∗ and ∂M∗ agree, and negative
otherwise.

Proof. Pick an element f0 = (F0,k0) ∈ st∂ s, and let t = (S, η) ∈ Sd(∂M∗) be the unique general-
ized d-subfacet attached to S such that f0 ∈ η. We claim that

η = st∂ s . (33)

Indeed, if f ′ is another element of st∂ s, then by the assumption of the lemma, f0 and f ′ are in the
same component of the graph G∂M∗(S), so f ′ ∈ η. Hence st∂ s ⊂ η.

Conversely, if f ′ = (F ′,k′) ∈ η, then f ′ is in the same connected component as f in the graph
G∂M∗(S), which by definition of adjacency of the boundary, implies that k′ is in the same component
as k0 in the graph GM∗(S). Hence k′ ∈ γ, so f ′ ∈ st∂ s. Therefore, η ⊂ st∂ s, which proves (33).
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Let µ = Trωs. For each f = (F,k) ∈ ∂M∗, we compare the expressions of µf and ωf
t . On the

one hand, if f ∈ st∂ s, then, writing S = (V1 , . . . , Vd+1) (with an order defining the orientation of
S inM∗), and denoting by K the simplex attached to k,

µf = Tr|K|,|F |




d+1∑

j=1

(−1)j+1λK
Vj
∧ dλK

V1
. . . ∧ d̂λK

Vj
∧ . . . ∧ dλK

Vd+1




=

d+1∑

j=1

(−1)j+1λF
Vj
∧ dλF

V1
. . . ∧ d̂λF

Vj
∧ . . . ∧ dλF

Vd+1

again by property (32). Clearly, this is equal to ωf
t on |F |, up to a sign (the same sign will occur if

the orientation of S inM∗ agrees with the one in ∂M∗).
On the other hand, if f /∈ st∂ s, then ωf

t vanishes on |F |, so it remains to check that the same
holds for µf . By definition of st∂ s, either k /∈ γ, or S /∈ σ(F ). In the former case, we have µf = 0
since ωk

s = 0. In the latter, there is a vertex V of S not in F , so λK
V = 0 identically on |F |. This

confirms that µf vanishes on |F |, and concludes the proof of the lemma.

Corollary 3. LetM∗ be a generalized mesh such that for each d-subsimplex S ∈ σd(∂M∗) and for
each generalized d-subfacet s ∈ Sd(M∗) attached to S, st∂ s satisfies the assumption of Lemma 14.
Then, there holds

Tr
(
Λd(M∗)

)
= Λd(∂M∗) .

Proof. Let t = (S, η) ∈ Sd(∂M∗), pick f0 = (F0,k0) ∈ η, and let s = (S, γ) ∈ Sd(M∗) be
the generalized d-subfacet of M∗ defined by the condition that k0 ∈ γ. We have f0 ∈ st∂ s, so,
following the beginning of the proof of Lemma 14, in fact t = (S, st∂ s). Hence, by Lemma 14, there
holds

ωt = ±Trωs .

Since this holds for any t ∈ Sd(∂M∗), the conclusion follows immediately.

The previous result has the following application in three dimensions: let MΓ be a triangular
mesh andMΩ, a regular tetrahedral mesh such thatMΓ ⊂ F(MΩ) \ ∂MΩ. Correspondingly, let
M∗

Ω\Γ, M∗
Γ(Ω) andM∗

Γ be the fractured mesh (cf. Definition 10), the extrinsic inflation viaMΩ

(cf. Definition 11) and the intrinsic inflation ofMΓ (cf. Definition 12), respectively. SinceM∗
Γ is

a relabeling ofM∗
Γ(Ω) by Theorem 1, there exists a bijection

ϕΓ : KM∗
Γ
→ KM∗

Γ
(Ω)

satisfying the conditions of Definition 3. Noting that KM∗
Γ
(Ω) ⊂ K∂M∗

Ω\Γ
, this allows to define a

“pullback”
ϕ∗
Γ : Λd(∂M∗

Ω\Γ) → Λd(M∗
Γ)

ω 7→ µ ,

where µ is defined by
µf := ωf

′

, f ∈M∗
Γ , f ′ := ϕΓ(f) .

Essentially, ϕ∗
Γ is the restriction of Whitney d-forms from ∂M∗

Ω\Γ toM∗
Γ.
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Theorem 2. Assume that for each vertex S of MΓ, st(S,MΓ) is edge-connected. Then the
composition

ϕ∗
Γ ◦ Tr : Λd(M∗

Ω\Γ)→ Λd(M∗
Γ)

is surjective. When d = 0, it is also necessary that st(S,MΓ) be edge-connected for the surjectivity
to hold.

The only challenging case is when d = 0. To avoid a lengthy proof, we limit ourselves to a rather
informal description of the key idea. Given a vertex S of MΓ, one may look at S := lk(S,MΩ),
the link of S inMΩ, which is a triangular mesh homeomorphic to a sphere becauseMΩ is regular.
On S , some edges are incident to a triangle of MΓ: those edges define a plane graph G drawn
on the surface of S , as represented in Figure 12. Crucially, this graph is connected if and only if
st(S,MΓ) is edge-connected.

Figure 12: Illustration of the idea of the proof of Theorem 2. The link of the vertex S is represented
in gray, the meshMΓ in orange and the graph G drawn on lk(S,MΩ) in red.

To each generalized vertex s = (S, γ) ∈ S0(M∗
Ω\Γ), corresponds a unique face f of G.4. Namely,

if k ∈ γ, K is the simplex attached to K, and F is the facet of K not containing S, then f is the
face of G containing the interior of |F |. This correspondence is in fact bijective: each face of G
corresponds to a unique generalized vertex attached to S.

To prove the lemma, the idea is then to show that st∂ s is connected in the sense described in
Lemma 14 if and only if the face f has a connected boundary.5 The conclusion follows from this
and the observation that a plane graph is connected if and only if all of its faces have connected
boundaries.

4A face of G is a connected component of S \G.
5In fact, the set st∂ s is closely related to the set of edges visited by the “right-hand wall following” of G (in

the “maze” whose walls are the edges of G, put a hand on a wall and keep walking forward, maintaining contact
between your hand and the wall). The main task in the proof of Theorem 2 can be restated as follows: show that
the right-hand wall following visits the connected component of the face boundary on which it starts.
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5.3 Finite element assembly

Given an n-dimensional generalized mesh M∗ and 0 ≤ d ≤ n, we discuss the computation of the
Galerkin matrix associated to a bilinear form

a : Λd(M∗)× Λd(M∗)→ R .

We assume that a has the form

a(ω, ω′) =
∑

k∈M∗

ak(ωk, ω
′
k) ,

where for each k ∈ M∗, ak is a bilinear form on the space of d-differential forms on |k|. The
Galerkin matrix A of a is defined by

As,t = a(ωs, ωt) , s, t ∈ Sd(M∗) ,

where {ωs}s∈Sq(M∗) is the Whitney form basis defined in the previous section. We use indexing by
generalized d-subfacets to avoid the heavier notation that would result from introducing orderings.

As in standard finite element computations, one first needs a method to compute so-called local
matrices, involving the local Whitney forms defined on each element. For each d-subsimplex S of
an element k ∈M∗, there is a unique generalized q-subfacet s of the form

s = (S, γ) with k ∈ γ .

We write s =: J(k, S). In the implementation, J corresponds to a “local-to-global” index mapping.
One can then form the local

(
n
d

)
×
(
n
d

)
matrices Aloc(k), defined by

[Aloc(k)]S,S′ := a(ωk

s , ω
k

s′) S, S′ ∈ σd(k) , s = J(k, S) , s′ = J(k, S′) .

To assemble the global matrix A from the local matrices Aloc, one can then use Algorithm 3
below:

Algorithm 3 Assembly(M∗, d, Aloc)

INPUTS: Generalized meshM∗, subsimplex dimension d, local matrices Aloc

RETURNS: The (sparse) matrix A.

Nd ← Card (Sd(M∗)) % Number of generalized d-subfacets
A← zeros(Nd, Nd) % Initialize matrix

FOR k ∈ KM∗

A← Aloc(k) % Compute local matrix

FOR S, S′ ∈ σd(k)
s← J(k, S) % find indices in global matrix

t← J(k, S′)
As,t ← As,t +A(S, S′) % add local contribution to the global matrix

END FOR

END FOR

RETURN A
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In the context of boundary elements, the bilinear form a rather takes the form

a(ω, ω′) =
∑

k∈KM∗

∑

k′∈KM∗

ak,k′(ωk, ω
′
k′) .

This case can be tackled very similarly, using two nested loops over elements, instead of just one,
in Algorithm 3.

6 Numerical experiments

To conclude this paper, we present two applications of generalized meshes to the resolution of PDEs
in non regular geometries.

6.1 Laplace eigenvalue problem in a disk with cut radius

First, we solve the Laplace equation in a disk with cut radius, i.e. the domain

Ω = B(0, 1) \ ([0, 1)× {0}) ⊂ R2 .

Generalized meshes are perfectly suited to represent such a geometry, see e.g. Figure 13 below. To
create meshes like this one, we have implemented a function

M∗
Ω\Γ = fracturedMesh(MΩ,MΓ)

which takes as an input a regular n-dimensional meshMΩ, a (n − 1)-dimensional meshMΓ such
that MΓ ⊂ F(MΓ), and returns the fractured mesh M∗

Ω\Γ as defined in Section 4. Then, the

Galerkin matrices in the basis {ωv}v∈S0(M∗
Ω\Γ

) of the operators needed, (i.e. the mass matrix, for

the identity operator, and the stiffness matrix, for the Laplace operator) can be assembled by using
Algorithm 3.6

If initially, the meshMΩ does not resolve the fracture, in the sense thatMΓ ⊂ F(MΓ) is not
fulfilled, then one may remesh the domainMΩ using constrained meshing algorithms, see e.g. [10].

The eigenvalue problem reads formally

{
∆u = λu in Ω ,
∂nu = 0 on ∂Ω ,

(34)

and its solutions can be found analytically by separation of variables; they take the form

un,p(r, θ) = fp(r)gn(θ)

with
gn(θ) = cos(nθ/2) , n ∈ N ,

fp(r) = Jn
2
(ρn,p r) , p ∈ N ,

where ρn,p is the p-th zero of J ′
n/2. The associated eigenvalue is λn,p = ρ2n,p.

6For our Matlab implementation, we have rather adopted a global assembly algorithm as in [3], in which the
nested loops can be avoided to increase the performance.
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Figure 13: Generalized mesh representing a disk with cut radius. The adjacency graph is represented
in green, with the same conventions as in Figures 3 and 6

To test our implementation, we compute numerical approximations of those eigenvalues using
a variational formulation and the finite element method on a generalized mesh like the one of
Figure 13. We do not dwell on the details of the method, but refer to our Matlab implementation.
The numerical values of the first λn,p that we obtain for various mesh sizes are compared against
reference values computed to high precision using a Newton iteration. The numerical values indeed
approach the reference values, see Table 1. The fact that the first non-constant eigenfunction,

u1,1(r, θ) = J1/2(
√

λ1,1r) cos(θ/2)

behaves like O(
√
r) near the origin, explains the slow rate of convergence for the corresponding

eigenvalue, and is a manifestation of a well-known feature in the field of fracture physics (see e.g.
[25, Chap.3]), the so-called “crack-tip singularity”.

One can of course tackle more complex geometries and PDEs, use vectorial elements and work
in three dimensions. Here we have restricted our attention to the simplest model problem for the
sake of clarity.

6.2 Laplace hypersingular equation on a multi-screen

Introduction

To conclude this paper, we consider the resolution of a Laplace hypersingular integral equation on
a multi-screen. This is the main intended application of this work.

Multi-screens were introduced by two of the authors in [18] as a model for complex geometries
that fall out of the scope of orientable Lipschitz manifolds. A representative example of a multi-
screen is the geometry depicted in Figure 1. Many linear PDEs in the domain surrounding a
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h ≈ 0.7 h ≈ 0.35 h ≈ 0.18 h ≈ 0.09

|λ1,h − λ1| /λ1 0.15152 0.062438 0.028606 0.014625
|λ2,h − λ2| /λ2 0.046833 0.01163 0.0028283 0.00083173
|λ3,h − λ3| /λ3 0.054236 0.015154 0.0039806 0.0011769
|λ4,h − λ4| /λ4 0.076291 0.021513 0.0057585 0.0016574
|λ5,h − λ5| /λ5 0.094939 0.028421 0.007837 0.002246

Table 1: Numerical approximations of the the first eigenvalues of the Neumann eigenvalue problem
on the disk with cut radius as computed by the finite element method, compared to theoretical value.
We report the relative error |λi,h − λi| /λi where λi,h is the numerical approximation returned by
the finite element method and λi is the corresponding reference value. The parameter h is the
diameter of the smallest element in the mesh. The first eigenvalue, λ0 = 0, is ignored.

multi-screen can be recast as boundary integral equations on the surface of the multi-screen, but
this requires the introduction of adapted Sobolev trace spaces for such singular geometry. We will
summarize the essential aspects below, and refer to [18] for the details.

A fist work on the numerical implementation of this method has been published [19]. We will
now revisit more formally some parts of that previous article:

❼ As we have already seen, the intrinsic inflation method, described in Section 4.4 provides a
generic algorithm to create the “inflated mesh” associated to a multi-screen [19, Section 4.1],

❼ The concepts of Section 5 will allow for a more formal description of the spaces introduced in
[19, Section 4.2],

❼ Theorem 1 allows for a characterization of the space of Whitney forms on the multi-screen
as the range of the multi-trace operator applied to Whitney forms in the volume surrounding
the multi-screen (see Lemma 15),

❼ Finally, the notion of generalized subfacets allows to get rid of the kernel of the linear systems
to be eventually solved, making it unnecessary to work with quotient-space iterative methods.

Abstract Galerkin method

We consider a triangular meshMΓ in R3, and assume that

|MΓ| = Γ

where Γ is a multi-screen. This means [18, Definition 2.3] that there are disjoint Lipschitz domains
Ω1,...,ΩJ such that

• R3 =
⋃J

j=1 Ωj

• Γ ⊂ ⋃J
j=1 ∂Ωj

• For each 1 ≤ j ≤ J , Γj := Γ ∩ ∂Ωj is a Lipschitz screen in the sense of [15, Section 1.1].
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We also assume that Γ and R3\Γ are connected and further thatMΓ satisfies the following property:

∀S ∈ σ(MΓ) , st(S,MΓ) is edge-connected. (35)

An example of such mesh is given by Figure 1. The condition above rules out “point contacts”
between triangles, as in Figure 14 below.

Figure 14: A mesh that does not satisfy condition (35).

Condition (35) might be automatically implied by the fact that |MΓ| is a multi-screen, but we
shall not attempt to prove this implication.

Recall from [18, Section 4] the definitions of the spaces H1(R3 \Γ), H(div,R3 \Γ), H1
0,Γ(R

3) and
H0,Γ(div,R

3). The multi-trace spaces are the quotient spaces

H1/2(Γ) = H1(R3 \ Γ)/H1
0,Γ(R

3) , H−1/2(Γ) = H(div,R3 \ Γ)/H0,Γ(div,R
3) .

By πD and πN we denote the associated canonical surjections. Let the bilinear form 〈〈· , ·〉〉 :
H1/2(Γ)×H−1/2(Γ)→ C be defined by

〈〈u̇ , ṗ〉〉 :=
∫

Rd\Γ

p · ∇u+ u div(p) dx

where πD(u) = u̇ and πN (p) = ṗ (the value of the rhs does not depend on the choice of the
representatives) [18, Prop. 5.1]. The single-trace spaces are the closed subspaces of the respective
multi-trace spaces defined by

H1/2([Γ]) := πD(H1(R3)) , H−1/2([Γ]) := πN (H(div,R3)) .

The jump spaces are defined as the duals

H̃
±1/2

([Γ]) := (H∓1/2([Γ]))′ ,

and one can define two continuous and surjective jump operators (denoted in the same way): [·] :
H±1/2(Γ)→ H̃±1/2([Γ]) by

〈[u̇], ṗ〉 := 〈〈u̇ , ṗ〉〉 , (u̇, ṗ) ∈ H1/2([Γ])×H−1/2([Γ])

〈[ṗ], u̇〉 := 〈〈u̇ , ṗ〉〉 , (u̇, ṗ) ∈ H1/2([Γ])×H−1/2(Γ) ,
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which furthermore satisfy (see [18, Props. 6.3])

∀u̇ ∈ H1/2(Γ) , [u̇] = 0 ⇐⇒ u̇ ∈ H1/2([Γ]) ,

∀ṗ ∈ H−1/2(Γ) , [ṗ] = 0 ⇐⇒ ṗ ∈ H−1/2([Γ]) ,

A double-layer potential DL : H1/2(Γ) → C∞(R3 \ Γ) can be defined [18, Section 8]. When
solving the following Neumann boundary value problem problem:





∆H = 0 on Rd \ Γ ,

πN (∇H) = ġ on Γ ,

H(x) → 0 x→∞ ,

(36)

with ġ ∈ H−1/2([Γ]), one can seek a solution in the form

H = DL u̇ .

A necessary and sufficient condition for this ansatz to solve problem (36) is that u̇ solve the varia-
tional problem

a(u̇, v̇) = 〈〈v̇ , ġ〉〉 , ∀v̇ ∈ H1/2(Γ) , (37)

where the bilinear form a : H1/2(Γ)×H1/2(Γ) is defined by

a(u̇, v̇) = 〈〈v̇ , πN (∇DL u̇)〉〉 .

However, because of the property

∀u̇ ∈ H1/2([Γ]), [πN (∇DL u̇)] = 0

it follows that, whenever u̇ ∈ H1/2([Γ]) or v̇ ∈ H1/2([Γ]), a(u̇, v̇) = 0. Hence the variational problem
(37) is not uniquely solvable, and this is the reason why the authors of [19] used quotient-space

iterative methods. Nevertheless, one can define an other bilinear form ã : H̃
1/2

([Γ])×H̃
1/2

([Γ])→ R

by
ã(ũ, ṽ) := a(u̇, v̇)

whenever [u̇] = ũ and [v̇] = ṽ. This definition is independent of the choice of u̇ and v̇ satisfying
this condition. Moreover, u̇ solves the variational problem (37) if and only if ũ = [u̇] solves the new
variational problem

ã(ũ, ṽ) = 〈ṽ, ġ〉 , ∀ṽ ∈ H̃
−1/2

([Γ]) . (38)

One can show that ã is positive definite [7], and as a consequence of [18, Prop. 8.9], there exists a
constant c > 0 such that

∀ũ ∈ H̃
1/2

([Γ]), ã(ũ, ũ) ≥ c ‖ũ‖2
H̃

1/2
([Γ])

. (39)

Hence, according to standard Galerkin theory, given a sequence of spaces Ṽn ⊂ H̃
1/2

([Γ]), one can
compute a sequence of approximations ũn of the solution ũ of (38), which converge (quasi-optimally)

to ũ in H̃
1/2

([Γ]) provided that

∀ṽ ∈ H̃
1/2

([Γ]) , lim
n→∞

sup
w̃∈Ṽn

‖ṽ − w̃‖
H̃

1/2
([Γ])

= 0 . (40)
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Construction of the discrete spaces

We construct the spaces Ṽn as follows. We start by considering a Lipschitz domain Ω surrounding
Γ and a Lipschitz partition Ω0,Ω1, . . . ,ΩJ of disjoint Lipschitz domains such that

R3 =

J⋃

j=0

Ωj

with Ω0 = R3 \ Ω. LetMΩ1
, . . . ,MΩJ

be regular tetrahedral meshes such that

❼

∣∣MΩj

∣∣ = Ωj

❼ MΩ :=
⋃J

j=1MΩj is a regular mesh and |MΩ| = Ω.

❼ MΓ ⊂ F(MΩ) \ ∂MΩ.

For each h > 0, we assume the existence of refinements7 MΩj ,h (resp. MΩ,h,MΓ,h) ofMΩj (resp.
MΩ,MΓ) whose element diameters do not exceed h, and such that the family of meshes (MΩj ,h)h>0

(resp. (MΩ,h)h>0, (MΓ,h)h>0) be shape-regular [21, Def. 1.107] andMΓ,h ⊂ F(MΩ,h). This can
be achieved for example using tetrahedral refinement methods, see e.g. [27]. For each h > 0, we
define

Vh(Ω \ Γ) :=
{
u ∈ Λ0(M∗

Ω\Γ,h)
∣∣∣ u = 0 on ∂Ω

}

whereM∗
Ω\Γ,h is the fractured mesh defined byMh

Ω andMh
Γ and Λ0(M∗) is the set of 0-Whitney

forms as defined in Section 5. Thanks to the patch condition established in Lemma 13, we can view
Vh(Ω \Γ) as a subspace of H1(R3 \Γ). Intuitively, Vh(Ω \Γ) is a space of Lagrange piecewise linear
functions on the meshMΩ, that are allowed to “jump” across Γ.

Next, we define

Vh(Γ) := πD(Vh(Ω \ Γ)) , Vh([Γ]) := πD

(
C0(R3) ∩ Vh(Ω \ Γ)

)
, Ṽh([Γ]) := [Vh([Γ])] .

It follows immediately from these definitions that

Vh(Γ) ⊂ H1/2(Γ) , Vh([Γ]) ⊂ H1/2([Γ]) , Ṽh(Γ) ⊂ H̃
1/2

([Γ]) ,

and hence Ṽh(Γ) is a candidate to play the role of the subspace Ṽn. The approximation property
(40) follows from approximation properties of the spaces Vh(Ω \Γ) in a subspace of H1(R3 \Γ) and
the continuity of the operator πD. We refer to [8] for quantitative results on this topic.

In the next lemma, we further characterize Vh(Γ) and state an important formula for the bilinear
form a:

Lemma 15 (Characterization of Vh(Γ)). One has an isomorphism

Jh : Vh(Γ) ≃ Λ0(M∗
Γ,h) ,

whereM∗
Γ,h is the virtual inflation ofMh

Γ. Moreover, there holds

a(u, v) =
∑

k∈M∗
Γ,h

∑

k′∈M∗
Γ,h

ak,k′(ωk, ω
′
k′) , u, v ∈ Vh(Γ) (41)

7A mesh M2 is a refinement of M1 if |M1| = |M2| and for each element K ∈ M1, there is a subset m2 ⊂ M2

such that m2 is a regular mesh and |m2| = |K|.
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where ω = Jhu, ω′ = Jhv, and

ak,k′(ωk, ω
′
k′)=

∫

|k|×|k′|

〈δωk(x), δω
′
k′(y)〉

4π ‖x− y‖ dx dy . (42)

where the operator δ and the inner product 〈·, ·〉 are defined in [5].

Proof. By Theorem 2, the operator ϕ∗
Γ ◦ Tr maps surjectively

ϕ∗
Γ ◦ Tr : Vh(Ω \ Γ)→ Λ0(M∗

Γ,h) .

To proceed, we use the following property: a function u ∈ H1(R3 \Γ) is such that for all j = 1 . . . J ,
the trace γ(u|Ωj

) vanishes on Γj , if and only if u ∈ H1
0,Γ(R

3) (this result can be found e.g. in [8]).
We deduce that

Ker (ϕ∗
Γ ◦ Tr) = Vh(Ω \ Γ) ∩H1

0,Γ(R
3)

and thus ϕ∗
Γ ◦ Tr induces an isomorphism on the quotient space:

Jh : Vh(Γ)→ Λ0(M∗
Γ,h) .

Finally, we prove eqs. (41) and (42) in [7] (those formulas are also stated in [19]).

Remark 2. Note that if ωk is regarded as a scalar linear function on |k|, then one can rewrite Eq.
(42) in the more familiar form

ak,k′(ωk, ω
′
k′)=

∫

|k|×|k′|

curlωk(x) · curlω′
k′(y)

4π ‖x− y‖ dx dy .

From now on, we omit the isomorphism Jh and identify Vh(Γ) to Λ0(M∗
Γ,h). Now, we turn our

attention to the space Ṽh(Γ). Let Yh([Γ]) be a complement of Vh([Γ]) in Vh(Γ), i.e.

Vh(Γ) = Vh([Γ])⊕ Yh([Γ]) .

We denote by Ñh the dimension of Yh(Γ). Then, the jump operator maps

[·] : Yh([Γ])→ Ṽh(Γ)

bijectively. In particular, given {ei}1≤i≤Ñh
a basis of Yh([Γ]), the family {ẽi}1≤i≤Ñh

is a basis of

Ṽh([Γ]), with ẽi := [ei]. Moreover, if P is the rectangular matrix defined by

ei =
∑

v∈S0(M∗
Γ,h)

Pi,v ωv , 1 ≤ i ≤ Ñh ,

then there holds
W̃ = PWP ′ ,

where W (resp. W̃) is the matrix of the bilinear forms a (resp. ã) in the basis {ωv}v∈S0(M∗
Γ,h)

(resp. {ẽi}1≤i≤Ñh
).

It remains to propose a candidate for the space Yh([Γ]), and its basis. We start by a simple
characterization of Vh([Γ]).
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Lemma 16 (Characterization of Vh([Γ])). Vh([Γ]) is (isomorphic to) the vector subspace of Λ0(M∗
Γ,h)

spanned by the forms

ωV :=
∑

v

ωv ,

where V ∈ σ0(M∗
Γ,h) is a vertex of M∗

Γ,h and the sum extends over all generalized vertices v ∈
S0(M∗

Γ,h) attached to V .

Proof. Let u̇ ∈ Vh([Γ]) and let u ∈ C0(R3)∩Vh(Ω \Γ) be a representative of u̇. This is nothing else
than a piecewise linear continuous function on the meshMΩ, so we have

u =
∑

V ∈σ0(MΩ)

u(V )λV

where λV is the “tent function” associated to the vertex V in the meshMΩ. Hence

ϕ∗
Γ ◦ Tru =

∑

V ∈σ0(MΩ)

u(V )ϕ∗
Γ ◦ Tr(λV ) .

Finally, one can check that

ϕ∗
Γ ◦ Tr(λV ) =

∑

v

ωv

where the sum extends over all generalized vertices v ∈ S0(M∗
Γ,h) attached to V , by examining the

definition of Tr and ϕ∗
Γ. This concludes the proof.

We now define Yh([Γ]) directly by specifying its basis {ei}1≤i≤Ñh
. For each vertex V ∈ σ0(M∗

Γ,h),
we consider the set of {v1, . . . ,vL} of generalized vertices attached to V . For l = 1 . . . L− 1, let

eV,l := ωvl
− ωvL

.

We define {ei}1≤i≤Ñh
as the set of all functions obtained is this way. Clearly, the subspace Yh([Γ])

that they span is a complement of Vh([Γ]) in Vh(Γ).

Results

For the concrete application, we consider the following triangular mesh

MΓ = {OIJ,OI’J,OIJ’,OI’J’,OIK,OJK,OI’K,OJ’K,OIK’,OJK’,OI’K’} .

where
O = (0, 0, 0) , I = (1, 0, 0) , J = (0, 1, 0) , K = (0, 0, 1) ,

and I′ = −I, J′ = −J,K′ = −K. A 3D representation ofMΓ is given in Figure 15. To avoid some
symmetries and to have more varied generalized vertices, we intentionally omit the triangle OJ’K’.
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Refinement level Mesh size dim(Vh(Γ)) dim(Ṽh([Γ]))
1 1.4142 13 6
2 0.70711 46 22
3 0.35355 178 87
4 0.17678 706 349
5 0.088388 2818 1401
6 0.044194 11266 5617

Table 2: Characteristics of the generalized meshM∗
Γ,h and dimensions of boundary element spaces.

Figure 15: The meshMΓ (left) and one of its refinements the mesh (right) where the vertices have
been colored according to the number of generalized vertices attached to them. Red, black, blue,
green and yellow stand for 1, 2, 3, 4, and 7, respectively.

With the intrinsic inflation algorithm, we construct the corresponding generalized meshM∗
Γ, and

through mid point refinement, we construct a sequence of generalized meshesM∗
Γ,h with decreasing

mesh sizes. In Table 2, we report the dimensions of the spaces Vh(Γ) and Ṽh([Γ]) depending on the
level of refinement.

On this sequence of mesh, we assemble the matrices W and W̃ and report their condition
number. For W, we use, as in [19], the “generalized condition number”, i.e. the ratio of the largest
to the least non-zero singular values. We also report the dimension of the kernel of W – note that
it corresponds exactly to dim(Vh(Γ))−dim(Ṽh([Γ]))), i.e. the dimension of the discrete single trace
space Vh([Γ]). For the refinement level l = 6, the matrix W does not fit in memory.

Finally, we solve a the variational problem (37) with ġ = πN (e3), where e3 = (0, 0, 1), in two
different ways. First, we solve the equation

Wx = L
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Refinement level cond(W) dim(Ker(W)) cond(W̃)
1 1.9688 7 8.2226
2 4.3002 24 12.2002
3 6.7184 91 14.5876
4 9.988 357 16.2966
5 19.1046 1401 23.8994

Table 3: Condition numbers of the Galerkin BEM matrices.

Refinement level n1 n2 e1 e2
1 3 6 2.473e-07 2.4728e-07
2 9 16 3.4876e-07 6.2505e-07
3 16 24 1.5859e-07 3.238e-07
4 19 27 1.2437e-07 1.3563e-07
5 24 32 6.9676e-08 1.0503e-07

Table 4: Resolution of the variational formulation, comparison between the quotient-space approach
and the formulation without kernel.

where L is the vector of coefficients the linear form 〈〈· , ġ〉〉 in the multi-trace basis. We use the
quotient-space iterative method, in this case, the conjugate gradient method (CG). We set the
tolerance to 10−6. Once the solution x is found, the function

u̇ :=
∑

v∈S0(M∗
Γ,h)

xv ωv

is the approximate solution of the variational problem.
Second, we solve the equation

W̃x̃ = L̃

where L̃ = PL, again using CG. The solution x̃ is the vector of coefficients, in the basis of Ṽh([Γ]),
of the approximate solution ũ of (38).

We check that when ũ is a solution of (38), and if u̇ is chosen such that [u̇] = ũ, then u̇ solves
(37). Algebraically, one can find u̇ by applying the matrix P ′ to the coefficients of the solution ũ.

In Table 4, we report the numbers of iterations n1 and n2 observed in each case (respectively,
for the resolution in the quotient space and with the modified matrix), and the residuals e1 and e2
defined by

e1 := ‖Wx− L‖2 , e2 := ‖WP ′x̃− L‖2 .

For both problems the tolerance of CG is set to ε = 10−6.

Acknowledgement: The first author would like to thank Maxence Novel for his help in the
proof of Theorem 2, and Nikolas Stott for his suggestions of presentation.
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Index of notation

σd(S) d-subsimplices of the simplex S
F(S) facets of the simplex S
σ(S) subsimplices of the simplex S, including S
|S| convex hull of the simplex S Eq. (1)
[V1, . . . , Vn+1] n-simplex oriented by the order (V1 , . . . , Vn+1)
−[S] simplex S with the orientation opposite to [S]
[F ]|[S] facet F of S with the orientation induced by [S] Eq. (2)
σd(M) d-subsimplices of the triangulationM Eq. (5)
σ(M) subsimplices of the triangulationM Eq. (5)
F(M) facets of the triangulationM Eq. (5)
←→
M

adjacency in the triangulationM
st(S,M) star of the subsimplex S ofM Eq. (6)
lk(S,M) link of the subsimplex S ofM Eq. (7)
∂M boundary of the triangulationM Eq. (8)
|M| geometry of the meshM Eq. (11)
VM∗ , V vertex set ofM∗ Definition 1
KM∗ , K set of elements ofM∗ Definition 1
KM∗ , K realization function ofM∗ Definition 1
GM∗ , G adjacency graph ofM∗ Definition 1
F(M∗) split facets ofM∗ Eq. (12)
F←→

M∗
,

F←→ adjacency through F inM∗ Eq.(13)

NM∗ , N neighbor function ofM∗ Eq. (14)
σd(M∗) subsimplices ofM∗ Definition 2
[k]M∗ orientation of the simplex attached to k Definition 5

assigned by the orientation ofM∗

st(S,M∗) generalized star of S inM∗ Eq. (17)
GM∗(S),G(S) graph between elements of st(S,M∗) Figure 5
Sd(M∗) set of generalized d-subfacets ofM∗ Definition 6
F(M∗) generalized facets, ofM∗ Eq. (19)
Fb(M∗) boundary split facets ofM∗ Eq. (20)
∂M∗ boundary ofM∗, temporarily denoted by ∂∗M∗ Definition 8
M∗

Ω\Γ fractured mesh Section 4.1

M∗
Γ(Ω) extrinsic inflation ofMΓ viaMΩ Definition 11

Θ(T1, T2) geometric angle between T1 and T2 Eq. (23)
∠([T1], T2) oriented angle between [T1] and T2 Eq. (24)
FΓ set of all orientations of the facets ofMΓ Eq. (26)
M∗

Γ intrinsic inflation ofMΓ Definition 12
λK
V barycentric coordinate Eq.(30)

ωs Whitney form associated to the generalized d-subfacet s Definition 13
Λd(M∗) vector space of d-Whitney forms onM∗

Tr trace operator for Whitney forms Definition 14
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