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Abstract

The modeling of multi-phase flow is very challenging, given the range of scales as well as the
diversity of flow regimes that one encounters in this context. We revisit the discrete equation
method (DEM) for two-phase flow in the absence of heat conduction and mass transfer. We
analyze the resulting probability coefficients and prove their local convexity, rigorously establishing
that our version of DEM can model different flow regimes ranging from the disperse to stratified
(or separated) flow. Moreover, we reformulate the underlying mesoscopic model in terms of an
one-parameter family of PDEs that interpolates between different flow regimes. We also propose
two sets of procedures to enforce relaxation to equilibrium. We perform several numerical tests to
show the flexibility of the proposed formulation, as well as to interpret different model components.
The one-parameter family of PDEs provides an unified framework for modeling mean quantities for
a multiphase flow, while at the same time identifying two key parameters that model the inherent
uncertainty in terms of the underlying microstructure.

1 Introduction

The dynamical evolution of two (or more) distinct phases (of matter) is often referred to as
multiphase flow and it is a very important topic of study in a broad variety of engineering sys-
tems, even though it is by no means limited to modern industrial design and can be observed in
many natural/biological phenomena. A very limited list of references for multiphase flow include
[17, 21, 15, 44, 6, 7, 36, 5] and references therein.

The simplest, yet very representative, form of multiphase flow is two-phase flow. The mathematical
modeling of two-phase flow arguably originated in the so-called multi-fluid models. Herein, one assumes
that the dynamics of compressible inviscid fluid mixtures is modelled by the Euler equations [36], where
the characteristic middle field (contact discontinuity) consists of a material interface, if the adjacent
data belong to different phases. Different parameters in the equations of state (EOS) are introduced
in these models to represent the inherent heterogeneities in terms of the discontinuous variation of
the pressure-density relations. Finally, additional conservation laws are inlucded to model species
advection [37, 29, 1, 2, 3, 45, 25, 11]. Despite the inherent simplicity and flexibility of this approach,
such models are often marred by spurious velocity and pressure oscillations near material interfaces
[1, 25, 2, 3], excessive numerical diffusion [43], when approximated via classical schemes and negative
mass fractions [29].

An alternative and more popular approach, based on the theory of multiphase flows [21, 15],
assumes each phase to be distinct and described by its own set of equations, typically the Euler
equations. Pioneering works in this direction include those of Stewart and Wendroff [44] and Bear and
Nunziato [6], see also [36]. This approach has now been extended into a wide variety of possible models.
Following the observation that different phases interacts through the interface up to reaching uniform
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conditions [7] (i.e. they move with approximately the same pressure and velocity), the resulting set of
equations is classified according to the set of independent variable they consider [49]. Restricting the
discussion here to one space dimension, we start with the so called four equation models [24, 48], which
essentially resemble the reactive Euler equations and lead to similar difficulties as those experienced
with the multifluid approach described above.

Next, one considers the so-called five equations models [7, 24, 33, 26, 42], where one assumes a
fully mechanical equilibrium between the phases,implying that the mixture is macroscopically moving
with one-pressure and one-velocity. In [33], it is shown how to derive the five equation models from
the Baer and Nunziato one by a formal asymptotic expansion assuming that the relaxation parameters
tends together toward infinity, while their ratio stay bounded. In the case of non smooth solutions, a
set of jump relations for the five equation model was provided in [42].

One can follow [36] and relax the assumption of mechanical equilibrium across phases. The resulting
seven equation model requires the introduction of stiff source terms to model the underlying thermody-
namics and leads to the removal of spurious oscillations around material discontinuities. Moreover, the
source terms force a relaxation to a single pressure and velocity recovering an experimentally observed
fact in two-phase flows. Moreover, the zero relaxation limit of these models results in the five-equation
model of Kapila et al. [24].

Inspite of the tremendous progress made with regards to the modeling of two-phase flows as de-
scribed above, several pressing issues remain. To start with, these mathematical models involve non-
conservative products which make conservation of energy potentially difficult. Moreover, a mathe-
matically sound solution concept, together with rigorous proofs of well-posedness, even in one space
dimension, is extremely challenging. Notable exceptions are presented in [23, 27, 34] where the authors
provide a rigorous mathematical treatment of a simplified version of the Baer-Nunziato equations.

Furthermore, from a modelling perspective, a stark shortcoming of the many of the afore-mentioned
models lies in the fact that the interfacial velocity and pressure are difficult to determine, see [20, 32,
8, 36, 30, 13, 35, 6, 12, 10, 14, 40, 19, 41] and references therein for a discussion of this issue as well as
possible remedies.

Given these shortcomings of the afore-mentioned models, one can see that there is no consensus
on what constitutes a suitable modelling framework for two-phase flows. In particular, an uniform
description of the vast range of flow regimes, ranging from isolated interfaces to fogs and microbub-
bles, within the purview of a single predictive model is extremely challenging. The search for such a
framework brings us to the so-called Discrete Equation Method (DEM) of [5], see also [2]. Inspired
by the Godunov method and well-established theories of ensemble averaging [15], DEM entails the
statistical description of each phase in terms of its own equation of state and allows for, in principle,
all possible flow regimes. A multiscale formulation allows one to incorporate information from finer
scales. One can think of DEM as a mesoscopic model as its does not require an explicit description of
the underlying microstructure.

Despite its promise as a suitable modeling framework for multiphase flows, DEM still requires user-
defined ansatz (closure relations) on the probability coefficients that arise in course of the ensemble
averaging procedure. Although many papers such as [38] suggest modifications for overcome this
issue, for instance in the case of simulating dense-to-dilute transitions by coupling the underlying
Euler equations with an evolution equation on the number of dispersed particles, it is fair to say the
design of a flexible general purpose DEM type model, which can describe various flow regimes is still
outstanding.

These limitations of the DEM approach constitute the starting point of the current paper. Herein,
we will carefully develop and analyze the DEM approach for describing two-phase flows in one space
dimension, while neglecting heat and mass transfer. Our main aim would be to characterize the
probability coefficients that arise in the DEM framework of [5] such that all possible flow regimes
can be described by DEM. This will allow us to encapsulate all phase interactions in terms of a
single parameter that interpolates between disperse and stratified flows. Moreover, simple relaxation
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procedures will also be investigated. This will allow us to study numerically, how different choices
of parameters leads to the recovery of different flow regimes, enabling a thorough analysis of the
expressivity as well as limitations of DEM for different regimes of multiphase flow.

The rest of the paper is organized as follows: In Section 2 we summarize the DEM procedure, high-
lighting the modelling assumptions related to such procedure. Section 3 is dedicated to the analysis of
the probability coefficients resulting from the previous section, and Section 4 derives the correspond-
ing one-parameter limit along with the numerical strategy to solve it. Finally, Section 5 include the
numerical experiments we have performed on such models, and discussion of the outcomes is carried
out in Section 6.

2 The Discrete Equation Method

In this section, we will present the discrete equation method for modeling two-phase flows in one
space dimension. We start with a succinct presentation of the ensemble averaging theory on which
DEM is based.

2.1 The ensemble averaging theory

In the following we recall the procedure of [5] for a biphasic Eulerian flow without mixing. Phase
transition is excluded from the present study and we suppose that heat transfer is too slow compared
to mechanical relaxation [24].
We consider two phases Σ1 and Σ2, each governed by the Euler equations

∂tU
(k) + ∂xF

(k)(U) = 0 (1)

where U(k) = [ρ(k), ρ(k)u(k), ρ(k)E(k)]T and F(k) = [ρ(k)u(k), ρ(k)u(k)
2
+ p(k),

(
ρ(k)E(k) + p(k)

)
u(k)]T .

The notation is classical: ρ(k), u(k), p(k) denote the density, velocity and pressure of the phase k ∈ {1, 2}.

The total energy E(k) = 1
2u

(k)2 + e(k), where e(k) denotes the internal energy. Different choices of
equation of state (EOS) have severe implications on the flow regime and a typical issues in multiphase
flow is the determination of a methodology that handles different EOS.

As it is well-known [15], a prime characteristic of multiphase mixtures is that there is uncertainty in
the exact location of the particular constituents at any particular time. In turn, from the practical point
of view, for a given set of initial and boundary conditions, a single measurement of such experiment
carries limited information about the mean and distribution of dispersed particles that generated such
results. For this reason, modern multiphase flow theory is described in averaged sense. In our case, we
aim at considering both the spatial rearrangement of disperse particles and the statistical description
of repeated sampling for a fixed set of initial and boundary condition.

2.1.1 Notation

We hereby introduce some notations. Let (Ω,F ,P) be a probability space on R. We denote the
physical space of interest (i.e. domain) by an open set D ⊆ R

d, where d ∈ N is the spatial dimension.
The time horizon is denoted by T > 0, and the any time considered for our simulations is denoted
by t ∈ [0, T ]. We aim at including the randomized dependency of quantities of interest by taking
random fields between the spaces (Ω,F,P) and the space of p-integrable functions Lp (D × R+;U),
with U ⊂ R

N . Here N ∈ N is the number of quantities of interest of the system under consideration.

Existence and uniqueness (well-posedness) of solutions for systems of hyperbolic conservation laws
is restricted to one-dimensional (d = 1) and for sufficiently small initial data [9]. More sophisticated
solution paradigma [18] are also available but they are out of the scope of this work. We therefore
restrict our description to the cases d = 1.
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In such a case, weak -solution are typically found in the subspace BV (D × R+;U). We will consider
random variables between the spaces (Ω,F) and (X ,B(X )), where the topological space X = L1 is
endowed with the Borel-sigma algebra B(X ), as to make each continuous function measurable. Let ω ∈
Ω be a fixed realization. At each time level t ∈ [0, T ] we will assume that there exist a pair of open sets
D1(t;ω), D2(t;ω) affected by only one phase, namely Dk(t;ω) := {x ∈ D | phase k is present at (x, t)}
such that

1. (Non-mixing condition) Only one phase is present at each space-time location:

D1(t;ω) ∩D2(t;ω) = ∅

2. (Saturation condition) No vacuum is generated at any space-time location:

D = D1(t;ω) ∪D2(t;ω) \ ∂D.

where ∂D denotes the frontier of D.

The interface between the two-phases is then defined according to the following relation:

I(t;ω) = D1(t;ω) ∩D2(t;ω) \ ∂D

We introduce the characteristic function X(k) : Ω → X associated to phase k as the indicator function
over the points of the domain D affected by phase k, namely

X(k) : ω ∈ Ω 7−→ X(k)(x, t;ω) =

{

1 if x ∈ Dk(t;ω)

0 otherwise
∀(x, t) ∈ D × R+ (2)

Using standard theory of distribution, the characteristic function can be shown to satisfy the following
topological equation (suppressing ω-dependence for notational convenience) [15]

∂tX
(k) + σ∂xX

(k) = 0 (3)

where σ is the interface velocity of the realization highlighted by X(k)(·;ω). Hence, one can also show
that upon multiplication of (1) by the characteristic function it holds

∂tX
(k)U(k) + ∂xX

(k)F(k) = F(k)lag∂xX
(k) (4)

where the Lagrangian flux F(k)lag := F
(k)
I − σU

(k)
I and the subindex I denotes the interfacial value

from the k-th side. We introduce the ensemble average operator E [15] that is assumed to commute
with time and space derivative operators (these are commonly referred as Gauss and Leibniz Rules,
which hold for well-behaved input functions). Taking ensemble average on (4) and (3), one obtains the
following equation

{

∂tE
[

X(k)U(k)
]

+ ∂xE
[

X(k)F(k)
]

= E
[(

F
(k)
I − σU

(k)
I

)

∂xX
(k)
]

∂tE
[
X(k)

]
+ E

[
σ∂xX

(k)
]
= 0

(5)

We thus introduce the notation that will be used throughout this paper: let

Uk := E
[

X(k)U(k)
]

= [αkρk, αkρkuk, αkρkEk]
T (6)

where the ensemble average quantities are defined via

αk := E
[

X(k)
]

, ρk :=
E
[
X(k)ρ(k)

]

αk

, uk :=
E
[
X(k)ρ(k)u(k)

]

αkρk
, pk :=

E
[
X(k)p(k)

]

αk

, ek :=
E
[
X(k)ρ(k)e(k)

]

αkρk
(7)
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so that Ek := 1
2u

2
k + ek. Using this notation the ensemble-average flux can be written as

E
[

X(k)F(k)
]

=





αkρkuk
αkρku

2
k + αkpk

αkuk(ρkEk + pk)





︸ ︷︷ ︸

+





0

E [X(k)ρ(k)u(k)
2
]− αkρku

2
k

E
[
X(k)u(k)

(
ρ(k)E(k) + p(k)

)]
− αkuk(ρkEk + pk)





︸ ︷︷ ︸

=: αkFk =: F0
k

(8)

where F0
k denotes the kinetic fluctuation of momentum and energy, that will be neglected in the

following.

2.2 The DEM for Eulerian biphasic flow

Using the notation introduced in the previous section, the DEM method applies to the discrete
setting: we consider a computational mesh (xi)i=1,...,M ⊂ R and the associated control volume Ci =[

xi− 1
2
, xi+ 1

2

]

.

According to the definition of Lagrangian Fluxes, one needs to identify/be able to compute the speed
of the interface separating different components. This translates at the numerical level to the necessity
of considering Riemann Solvers able to compute a contact-discontinuity σ. Given two initial states
UL,UR we assume the solution of a Riemann Problem with possibly different phases at each side of
the discontinuity to generate three waves (shocks or rarefactions separated by a contact discontinuity),
in complete analogy to the single-phase theory.
Given UL,UR ∈ R

m, the speed of the contact-discontinuity/material interface is denoted by σLR :=
σ(UL,UR), while F (UL,UR) and U(UL,UR) denote the numerical flux and the numerical solution
generated by solving the Riemann Problem with initial states UL,UR. The concrete forms of the
numerical operators F,U depend on the Riemann Solver under consideration, for which popular choices
are the HLLC or the Roe Riemann Solvers [46, Chapter 10-11].
At each time step the preliminary stages of the method proceed as follows: at each time level t = tn,
we have

1. Subdivide randomly the computational cell xi− 1
2
= ξ0 < ξ1 < . . . < ξN(ω) = xi+ 1

2
, where ω aims

at indexing the specific realization of X(k).

2. Assign randomly in each subcell [ξj , ξj+1] the phases Σ1 or Σ2 with the state U(1) or U(2). Up to
merging adjacent subcells affected by the same phase, we have that within a volume two adjacent
subcells contain different phases. We denote the interface velocity originating at the subnode ξj
as σj , see Fig. 1.

Notice that the evolution of phase k ∈ {1, 2}

∫ t+s

t

∫

Ci

X(k)
(

∂tU
(k) + ∂xF

(k)
)

dxdr = 0 (9)
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t

t+ s

xi− 1
2
= ξ0 xi+ 1

2
= ξN(ω)

ξ0 + sσ+
0 ξN + sσ−

N

ξj−1

ξj−1 + sσj−1

ξj

ξj + sσj

ξj+1

ξj+1 + sσj+1

U
+
i−1 U

0
i U

j−1
i U

j
i U

j+1
i

U
N
i U

−
i+1

Figure 1: Schematic representation of the prototypical generation of interfaces in the control volume
Ci × [t, t+ s].

can be written as

1

∆x

∫ x
i+1

2

x
i− 1

2

(X(k)U(k))(x, t+ s) dx−
1

∆x

∫ x
i+1

2

x
i− 1

2

(X(k)U(k))(x, t) dx

+
1

∆x

(∫ t+s

t

(X(k)F(k))(xi+ 1
2
, r) dr −

∫ t+s

t

(X(k)F(k))(xi− 1
2
, r) dr

)

−

∫ t+s

t

(

F lag
0 ∂xX

(k)
)

(xi− 1
2
+ (r − t)σ+

0 , r) dr −

∫ t+s

t

(

F lag

N(ω)∂xX
(k)
)

(xi+ 1
2
+ (r − t)σ−

N(ω), r) dr

−
1

∆x

N(ω)−1
∑

j=1

∫ t+s

t

(

F lag
j ∂xX

(k)
)

(ξj + (r − t)σj , r) dr = 0

(10)

where the Lagrangian fluxes F lag
j := F

(k)
Ij

− σjU
(k)
Ij

are evaluated at the only side affected by
phase k of the interface moving with velocity σj .

3. Obtain a semi-discrete approximation of the realization according to a Godunov type scheme:
we approximate the flux integrals and the Lagrangian flux integrals by means of a Godunov type
scheme

X(k)F(k)(xi+ 1
2
, r) ≈ X(k)(xi+ 1

2
, tn)F (Un

i , U
n
i+1)

F lag
j ∂xX

(k)(ξj + (r − t)σj , r) ≈
[

X(k)
]

j

(

F (U j
i , U

j+1
i )− σ(U j

i , U
j+1
i )U(U j

i , U
j+1
i )

) (11)

for any r ∈ [tn, tn+s]. The notation
[
X(k)

]

j
stands for the jump across the j-th interface moving
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with velocity σj . Under the above assumptions and upon division by s in (10), the scheme reads

d

dt




1

∆x

∫ x
i+1

2

x
i− 1

2

(X(k)U(k))(x, t) dx





+
1

∆x

[

X(k)(xi+ 1
2
, tn)F (Un

i−1, U
n
i )−X(k)(xi− 1

2
, tn)F (Un

i , U
n
i+1)

]

=

+
1

∆x

N(ω)−1
∑

j=1

F lag(U j−1
i , U j

i )
[

X(k)
]

j

+
1

∆x

(

F lag(U+
i−1, U

0
i )
[

X(k)
]

0
+ F lag(U

N(ω)−1
i , U−

i+1)
[

X(k)
]

N(ω)

)

.

(12)

Due to the alternate character of the distribution of data in the interior of the volume Ci, one
obtains the following relations: let us define the number of interior interfaces Nint = N − 1 ≥ 0,
then

(a) Nint is even : one can rearrange the summation as to arrive to (see Table 1)

N(ω)−1
∑

j=1

F lag(U j−1
i , U j

i )
[

X(k)
]

j
=

Nint

2

(

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
)

(b) Nint is odd : then, Nint − 1 is even (if Nint > 0), thus

N(ω)−1
∑

j=1

F lag(U j−1
i , U j

i )
[

X(k)
]

j
=

Nint − 1

2

(

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
)

+ χ{X(k)(x−

i+1
2

,t)=1}F
lag
(

U
(l)
i , U

(k)
i

)

− χ{X(k)(x−

i+1
2

,t)=0}F
lag
(

U
(k)
i , U

(l)
i

)

where the characteristic function χ over the even {Y = 1} is defined as

χ{Y=1} =

{

1 if Y = 1

0 otherwise
.

Hence, by putting together the two instances that may occur, one ends up with

N(ω)−1
∑

j=1

F lag(U j−1
i , U j

i )
[

X(k)
]

j
=

Nint

2

(

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
)

+ θ(k)(ω)

where the perturbation variable θ(k) is defined as

θ(k)(ω) := χ{Nint odd }

[

χ{X(k)(x−

i+1
2

,t)=1}F
lag
(

U
(l)
i , U

(k)
i

)

− χ{X(k)(x−

i+1
2

,t)=0}F
lag
(

U
(k)
i , U

(l)
i

)

−
1

2

(

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
)
]

We thus assume that E
[
θ(k)
]
= 0 for each k, thus implying that the perturbation with respect to

the first term Nint

2

(

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
)

generated by an odd number of internal

contributions is negligible in mean. Such an assumption is clearly not verified for a low number
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Cases Cell Phase Jumps Lagrangian Fluxes

[ξj−1, ξj] [ξj, ξj+1] [ξj+1, ξj+2] [X(k)]j [X(k)]j+1 F
lag(Uj−1

i ,Uj
i) F

lag(Uj
i,U

j+1
i )

1 Σl Σk Σl 1 −1 F lag(U
(l)
i , U

(k)
i ) F lag(U

(k)
i , U

(l)
i )

2 Σk Σl Σk −1 1 F lag(U
(k)
i , U

(l)
i ) F lag(U

(l)
i , U

(k)
i )

Table 1: Possible configuration for the subcell [ξj , ξj+1] and relative jumps across discontinuity, as well as
Lagrangian fluxes. Integers k 6= l ∈ {1, 2} denote phase indexes.

of interfaces.
Under such assumption, we end up with

1

∆x

N(ω)−1
∑

j=1

F lag(U j−1
i , U j

i )
[

X(k)
]

j
≈

Nint(ω)

2∆x

[

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
]

. (13)

So the semi discrete scheme reads

d

dt




1

∆x

∫ x
i+1

2

x
i− 1

2

(X(k)U(k))(x, t) dx



+
1

∆x

[

X(k)(xi+ 1
2
, t)F (Un

i−1, U
n
i )−X(k)(xi− 1

2
, t)F (Un

i , U
n
i+1)

]

=

+
Nint(ω)

2∆x

(

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
)

+
1

∆x

(

F lag(U+
i−1, U

0
i )
[

X(k)
]

0
+ F lag(U

N(ω)−1
i , U−

i+1)
[

X(k)
]

N(ω)

)

.

(14)

4. Ensemble average of all realizations: taking ensemble average in (14) and with reference to the
notation (6), we obtain,

d

dt
(αkUk)i +

1

∆x

[

E
[

X(k)(xi+ 1
2
, t)F (Un

i−1, U
n
i )
]

− E
[

X(k)(xi− 1
2
, t)F (Un

i , U
n
i+1)

]
]

=

+ E

[
Nint(ω)

2∆x

](

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
)

+
1

∆x

(

E
[

F lag(U+
i−1, U

0
i )
[

X(k)
]

0

]

+ E

[

F lag(U
N(ω)−1
i , U−

i+1)
[

X(k)
]

N(ω)

])

.

(15)

3 The one-parameter mesoscopic scheme

In order to be of practical use, the scheme (15) requires the specification of four different terms:

• E
[
Nint(ω)
2∆x

]

: the average number of internal components of the dispersed phase in cell Ci;

• E
[

X(k)(xi+ 1
2
, tn)F (Un

i−1, U
n
i )
]

: the conservative numerical flux;

• E
[
F lag(U+

i−1, U
0
i )
[
X(k)

]

0

]
the left non-conservative term;

• E
[

F lag(U
N(ω)−1
i , U−

i+1)
[
X(k)

]

N(ω)

]

: the right non-conservative term.
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Building upon the work of Abgrall and Saurel [5], the aforementioned ensemble averages can be sim-
plified by noticing that the random variable X(k) is in fact discrete, and its average can be written
as the sum of all the instances multiplied by their probability of occurrence. In the following we will
make use of the following notation

Pi+ 1
2
[Σp,Σp] := Pi+ 1

2

[

{X(p)(x+
i+ 1

2

, tn) = 1, X(p)(x−
i+ 1

2

, tn) = 1}

]

Pi+ 1
2
[Σp,Σq] := Pi+ 1

2

[

{X(p)(x+
i+ 1

2

, tn) = 1, X(q)(x−
i+ 1

2

, tn) = 0}

]

for each phase index p 6= q ∈ {1, 2}, with the notation X(p)(x±
i+ 1

2

, tn) = lim
x→x±

i+1
2

X(p)(x, tn), for

a prescribed time level t = tn. Notice that, these probabilities are defined in terms of different
characteristic functions X(p). Nevertheless, fixing the phase k 6= l ∈ {1, 2}, one can equivalently
rewrite these latter probabilities in terms of one characteristic function

Pi+ 1
2
[Σk,Σk] = Pi+ 1

2

[

{X(k)(x+
i+ 1

2

, tn) = 1, X(k)(x−
i+ 1

2

, tn) = 1}

]

Pi+ 1
2
[Σk,Σl] = Pi+ 1

2

[

{X(k)(x+
i+ 1

2

, tn) = 1, X(l)(x−
i+ 1

2

, tn) = 0}

]

Pi+ 1
2
[Σl,Σk] = Pi+ 1

2

[

{X(k)(x+
i+ 1

2

, tn) = 0, X(k)(x−
i+ 1

2

, tn) = 1}

]

Pi+ 1
2
[Σl,Σl] = Pi+ 1

2

[

{X(k)(x+
i+ 1

2

, tn) = 0, X(k)(x−
i+ 1

2

, tn) = 0}

]

(16)

Moreover, we define the flux indicator function

β
(p,q)

i+ 1
2

:= sign
(

σ
(

U
(p)
i , U

(l)
i+1

))

=







1 if σ
(

U
(p)
i , U

(l)
i+1

)

≥ 0

−1 if σ
(

U
(p)
i , U

(l)
i+1

)

≤ 0
(17)

and the notation a+ := max(a, 0), a− := min(a, 0).
Estimation of three of the above quantities is accomplished as follows:

• Conservative Terms: We require that the Godunov state U∗
i+ 1

2

(0) [46] (i.e. the solution of the

Riemann Problem at the right cell interface at time t = 0) belongs to the phase k or not - see
Fig. 2. Hence,

E
[

X(k)(xi+ 1
2
, tn)F (Un

i−1, U
n
i )
]

= Pi+ 1
2
[Σk,Σk]F

(

U
(k)
i , U

(k)
i+1

)

+

(

β
(k,l)

i+ 1
2

)+

Pi+ 1
2
[Σk,Σl]F

(

U
(k)
i , U

(l)
i+1

)

+

(

−β
(l,k)

i+ 1
2

)+

Pi+ 1
2
[Σl,Σk]F

(

U
(l)
i , U

(k)
i+1

) (18)

• Right Non-Conservative Terms: We need to make sure that a Lagrangian flux exists at the right
interface, i.e. inflow is occurring.

E

[

F lag(U
N(ω)−1
i , U−

i+1)
[

X(k)
]

N(ω)

]

=

(

−β
(l,k)

i+ 1
2

)+

Pi+ 1
2
[Σl,Σk]F

lag
(

U
(l)
i , U

(k)
i+1

)

−

(

−β
(k,l)

i+ 1
2

)+

Pi+ 1
2
[Σk,Σl]F

lag
(

U
(k)
i , U

(l)
i+1

)
(19)
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x xxi+ 1
2

xi+ 1
2

t t

σi+ 1
2

σi+ 1
2

X(k)(xi+ 1

2

, t) ≡ 0 X(k)(xi+ 1

2

, t) ≡ 1

U
(l)
i

U
(k)
i+1 U

(l)
i

U
(k)
i+1

Figure 2: Schematic representation of the Godunov state Ui+ 1

2

(t)|t=0 at the right cell interface.

• Left Non-Conservative Terms: We need to make sure that a Lagrangian flux exists at the left
interface, i.e. inflow is occurring.

E
[

F lag(U+
i−1, U

0
i )
[

X(k)
]

0

]

=

(

β
(l,k)

i− 1
2

)+

Pi− 1
2
[Σl,Σk]F

lag
(

U
(l)
i−1, U

(k)
i

)

−

(

β
(k,l)

i− 1
2

)+

Pi− 1
2
[Σk,Σl]F

lag
(

U
(k)
i−1, U

(l)
i

)
(20)

Using formulas (18)-(20), the final scheme reads

d

dt
(αkUk)i +

1

∆x

[

Pi+ 1
2
[Σk,Σk]F

(

U
(k)
i , U

(k)
i+1

)

+

(

β
(k,l)

i+ 1
2

)+

Pi+ 1
2
[Σk,Σl]F

(

U
(k)
i , U

(l)
i+1

)

+

(

−β
(l,k)

i+ 1
2

)+

Pi+ 1
2
[Σl,Σk]F

(

U
(l)
i , U

(k)
i+1

)

− Pi− 1
2
[Σk,Σk]F

(

U
(k)
i−1, U

(k)
i

)

−

(

β
(k,l)

i− 1
2

)+

Pi− 1
2
[Σk,Σl]F

(

U
(k)
i−1, U

(l)
i

)

−

(

−β
(l,k)

i− 1
2

)+

Pi− 1
2
[Σl,Σk]F

(

U
(l)
i−1, U

(k)
i

)
]

=

+ E

[
Nint(ω)

∆x

](

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
)

+
1

∆x

((

β
(l,k)

i− 1
2

)+

Pi− 1
2
[Σl,Σk]F

lag
(

U
(l)
i−1, U

(k)
i

)

−

(

β
(k,l)

i− 1
2

)+

Pi− 1
2
[Σk,Σl]F

lag
(

U
(k)
i−1, U

(l)
i

)

+

(

−β
(l,k)

i+ 1
2

)+

Pi+ 1
2
[Σl,Σk]F

lag
(

U
(l)
i , U

(k)
i+1

)

−

(

−β
(k,l)

i+ 1
2

)+

Pi+ 1
2
[Σk,Σl]F

lag
(

U
(k)
i , U

(l)
i+1

)
)

.

(21)

Notice that the topological equation for the volume fraction is then recovered from (21) by formally
choosing F ≡ 0 and Uk ≡ 1, so that the Lagrangian flux reduces to F lag = 0− σ · 1 = −σ.
Hence, the numerical scheme is then of practical use, once the probability coefficients are defined.

Originally such probability coefficients were given by means of an ansatz, leading to a limited model,
even if thermodynamically consistent [38, 43]. We are going to close the model by proving convexity
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of such probability coefficients. The following proposition summarizes the properties each probability
coefficient has to verify [5].

Proposition 1. Let Pi+ 1
2

=

(

Pi+ 1
2
[Σp,Σp] ,Pi+ 1

2
[Σp,Σq]

)

be a pair of probabilities coefficients

defined in (16). Assume that

Pi+ 1
2
[Σp,Σp] + Pi+ 1

2
[Σp,Σq] = αp

i (22a)

Pi+ 1
2
[Σp,Σp] + Pi+ 1

2
[Σq,Σp] = αp

i+1 (22b)

Then the following consistency conditions must hold: for each p 6= q ∈ {1, 2}

Pi+ 1
2
[Σp,Σp] ≤ min

(
αp
i , α

p
i+1

)
(23a)

Pi+ 1
2
[Σp,Σq] ≥ max

(
αp
i − αp

i+1, 0
)

(23b)

where the two neighbouring volume fractions verify the saturation condition

αp
j ∈ [0, 1] and αp

j + αq
j = 1 ∀j ∈ {i, i+ 1}. (24)

A probability pair P will be termed a consistent probability pair if it verify (22)-(23), under the
assumption that (24) holds.

Remark 1. Notice that the pair consisting of the two bounds in (23)

P0
i+ 1

2

:=

(

P0
i+ 1

2

[Σp,Σp] ,P
0
i+ 1

2

[Σp,Σq]

)

:=

(

min
(
αp
i , α

p
i+1

)
,max

(
αp
i − αp

i+1, 0
)

)

is itself a consistent probability pair.

Due to this remark, Abgrall and Saurel proposed the following approximation for the probability
coefficients

Pi+ 1
2
[Σk,Σk] ≈ min(αk

i , α
k
i+1), Pi+ 1

2
[Σk,Σl] ≈ max(αk

i − αk
i+1, 0)

Pi+ 1
2
[Σl,Σl] ≈ min(αl

i, α
l
i+1), Pi+ 1

2
[Σl,Σk] ≈ max(αl

i − αl
i+1, 0)

(25)

An interesting features of this choice is that it has both mathematical and physical implications.
First, from the mathematical point of view, it can be shown that fixing the probability coefficients
Pi+ 1

2
[Σp,Σp] = P0

i+ 1
2

[Σp,Σp] then, as to form a consistent probability pair, we have no other choice

but Pi+ 1
2
[Σp,Σq] = P0

i+ 1
2

[Σp,Σq]. The viceversa also holds. Furthermore, the pair P0
i+ 1

2

constitutes

an upper-lower bound for any pair of probability coefficients Pi+ 1
2
, respectively, according to (22a)

and (22b). Thus, such probability pair is an extreme point in the space of consistent probability pairs.

On the other hand, there is an interesting example that helps understanding the physical implica-
tion of choosing Pi+ 1

2
= P0

i+ 1
2

: consider a tube filled with two different fluids one surrounded by the

other with no dispersion of one phase into the complementary one. We will term this physical regime
as stratified flow. Let us consider if the DEM scheme with Pi+ 1

2
= P0

i+ 1
2

yields reasonable approxi-

mations of such flow regime, see Fig. 3. First notice that each entry in the probability pair P0
i+ 1

2

is

not zero, that is, it is not zero the coefficient of each flux of the type F (Σm,Σm) and F (Σm,Σn) with
m 6= n ∈ {1, 2} in (15).
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xi xi+ 1
2

xi+1

αl
i

αk
i

αl
i+1

αk
i+1

xi xi+ 1
2

xi+1

αl
i

αk
i

αl
i+1

αk
i+1

Figure 3: Schematic representation of a stratified flow at the numerical level.

By computing the corresponding probability pairs, one can convince oneself that these acts as flux-
weights in (15), corresponding to the area of the surface through which a specific flux is applied.
Unfortunately, the same computations would also be carried out in the case of disconnected phases at
the interface, see Fig. 4. This second case will be called dispersed flow, where the phase that does
not share a segment of the cell interface is called the dispersed phase. In such a case, each probability
coefficient Pi+ 1

2
= P0

i+ 1
2

would still be non vanishing, thus introducing in the computation a non-zero

numerical flux for the disperse phase, even if the regime is discontinuous. At the physical level, for the
dispersed phase, this is equivalent to saying that a sound wave propagated in the dispersed phase in
cell i gets propagated into the corresponding phase of cell i+1 even if no material connection between
the phases exists.

xi xi+ 1
2

xi+1

αl
i

αk
i

αl
i+1

αk
i+1

xi xi+ 1
2

xi+1

αl
i

αk
i

αl
i+1

αk
i+1

Figure 4: Schematic representation of a numerical dispersed flow of phase k into phase l: the DEM method
would predict Pi+ 1

2

[Σk,Σk] = αk
i > 0 even if there is no continuous flow at cell interface.

These considerations, motivated us to investigate the structure of such probability coefficients: the
following proposition identify the complementary lower-upper bounds.

Proposition 2. Let Pi+ 1
2
=

(

Pi+ 1
2
[Σp,Σp] ,Pi+ 1

2
[Σp,Σq]

)

be a pair of probability coefficients defined

in (16). Then for every p 6= q ∈ {1, 2} it holds

Pi+ 1
2
[Σp,Σq] ≤ min

(
αp
i , α

q
i+1

)
(26a)
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Pi+ 1
2
[Σp,Σp] ≥ max

(
αp
i − αq

i+1, 0
)

(26b)

under the assumption that (22) holds. Moreover, the probably pair

P1
i+ 1

2

:=

(

max
(
αp
i − αq

i+1, 0
)
,min

(
αp
i , α

q
i+1

)

)

is a consistent probability pair, provided that the saturation condition (24) holds.

Proof. See Appendix A.

Remark 2. Following the considerations made before Prop. 2, one can see that the probability pair
P1

i+ 1
2

is associated with a dispersed flow regime, see Fig. 4.

It light of this final remark, it becomes not surprising the following theorem.

Theorem 3. Let Pi+ 1
2
=

(

Pi+ 1
2
[Σp,Σp] ,Pi+ 1

2
[Σp,Σq]

)

be a pair of probability coefficients defined

in (16) with p 6= q ∈ {1, 2}. Then there exist a r ∈ [0, 1] depending of (xi+ 1
2
, tn) but not on p, such

that

Pi+ 1
2
[Σp,Σp] = rmax

(
αp
i − αq

i+1, 0
)
+ (1− r)min

(
αp
i , α

p
i+1

)
(27a)

Pi+ 1
2
[Σp,Σq] = rmin

(
αp
i , α

q
i+1

)
+ (1− r)max

(
αp
i − αp

i+1, 0
)

(27b)

or, succinctly,

Pi+ 1
2
= rP1

i+ 1
2

+ (1− r)P0
i+ 1

2

under the assumption that (22) and (24) hold.

Proof. See Appendix A.

Previous result leads us to substitute the probabilities appearing in (21) with the right hand side of
(27), leading to a one-parameter semi-discrete scheme, modeling the mesoscopic description of the
underlying two-phase flow.

4 Continuous limit and solution strategy

By suppressing the dependency on the time variable t for notation convenience, the global, one-
parameter semi-discrete DEM scheme takes the form

d (αkUk)i
dt

+
Ei+ 1

2
[X(k)F ]− Ei− 1

2
[X(k)F ]

∆x
=

Eboundary[F
lag]i

∆x
+ Erelax[F

lag]i (28)

where

Ei+ 1
2

[

X(k)F
]

:= Pi+ 1
2
[Σk,Σk]F

(

U
(k)
i , U

(k)
i+1

)

+

(

β
(k,l)

i+ 1
2

)+

Pi+ 1
2
[Σk,Σl]F

(

U
(k)
i , U

(l)
i+1

)

+

(

−β
(l,k)

i+ 1
2

)+

Pi+ 1
2
[Σl,Σk]F

(

U
(l)
i , U

(k)
i+1

)

Eboundary
[

F lag
]

i
:=

(

β
(l,k)

i− 1
2

)+

Pi− 1
2
[Σl,Σk]F

lag
(

U
(l)
i−1, U

(k)
i

)

−

(

β
(k,l)

i− 1
2

)+

Pi− 1
2
[Σk,Σl]F

lag
(

U
(k)
i−1, U

(l)
i

)
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+

(

−β
(l,k)

i+ 1
2

)+

Pi+ 1
2
[Σl,Σk]F

lag
(

U
(l)
i , U

(k)
i+1

)

−

(

−β
(k,l)

i+ 1
2

)+

Pi+ 1
2
[Σk,Σl]F

lag
(

U
(k)
i , U

(l)
i+1

)

Erelax[F
lag]i := E

[
Nint(ω)

∆x

](

F lag(U
(l)
i , U

(k)
i )− F lag(U

(k)
i , U

(l)
i )
)

Pi+ 1
2
[Σp,Σp] := ri+ 1

2
max

(
αp
i − αq

i+1, 0
)
+ (1− ri+ 1

2
)min

(
αp
i , α

p
i+1

)

Pi+ 1
2
[Σp,Σq] := ri+ 1

2
min

(
αp
i , α

q
i+1

)
+ (1− ri+ 1

2
)max

(
αp
i − αp

i+1, 0
)

4.1 Continuous Limit

Due to the substantial disagreement in the scientific community about the governing equations which
regulate multiphase phenomena, many authors have tried to derive such mathematical models in
different ways. One of the advantages of taking the perspective of the DEM method, is the possibility
to derive it, starting from a local description. A first example in this direction was performed in [40],
for the specific choice of r ≡ 0. Such a model can be summarized into the following system of PDEs:
each phase k 6= l ∈ {1, 2} evolves according to

∂tαk + uI∂xαk = µ(pk − pl)

∂t(αkρk) + ∂x(αkρkuk) = 0

∂t(αkρkuk) + ∂x

(

αk(ρku
2
k + pk)

)

= pI∂xαk − λ(uk − ul)

∂t(αkρkEk) + ∂x

(

αkuk(ρkEk + pk)
)

= pIuI∂xαk − µp
′

I(pk − pl)− λu
′

I(uk − ul)

(29)

where the interfacial pressure pI and velocity uI are given by

pI := p
′

I + sign(∂xαk)
ZkZl

Zk + Zl

(ul − uk), uI := u
′

I + sign(∂xαk)
1

Zk + Zl

(ul − uk) (30)

where Zk := ρkak denotes the acoustic impedance and mean interfacial pressure p
′

I and velocity u
′

I

read

p
′

I :=
Zkpl + Zlpk
Zk + Zl

, u
′

I :=
Zkuk + Zlul
Zk + Zl

(31)

Relaxation parameters µ, λ are defined according to the interfacial area AI = E [Nint(ω)/∆x] via

µ :=
AI

Z1 + Z2
λ := Z1Z2µ (32)

In Appendix B we detail the procedure to derive the continuous limit of such scheme, as well as
the specific assumptions. The resulting model for the description of (possibly) disperse flow of phase
k into l reads

∂tαk + (1− r)uI∂xαk = −r∂x (αkuI) + µ(pk − pl)

∂t(αkρk) + ∂x(αkρkuk) = 0

∂t(αkρkuk) + ∂x

(

αk(ρku
2
k + pk)

)

= (1− r)pI∂xαk + r∂x (αkpI)− λ(uk − ul)

∂t(αkρkEk) + ∂x

(

αkuk(ρkEk + pk)
)

= (1− r)pIuI∂xαk − r∂x (pIuIαk)

− µp
′

I(pk − pl)− λu
′

I(uk − ul)

(33)

Remark 3. An interesting fact concerning this limit is that it has, in the case r = 1, a conservative
character, which has already been established by other authors, see [31, 38], independently. Indeed, in
the limit of small values of αk, one recovers the same model of [31].
In [38], a similar model is proposed replacing the volume fraction equation making assumptions on the
production rate of dispersed particles.
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4.2 Solution Strategy

In this section we make some comments about the resulting scheme (28), its equilibrium variety,
its numerical approximation and the use of relaxation procedure. In order to simplify the notation and
the following discussion, notice that (28) can be rewritten as

d

dt
(αkUk)i +

1

∆x
Gi(Ui) = λiR(Ui) (34)

where G(Ui) = Ei+ 1
2
[X(k)F ] − Ei− 1

2
[X(k)F ] − Eboundary[F

lag]i is the numerical contribution coming

from the application of the space-discretization operator applied to the states

Ui = [(αk)i, (αkUk)i , (αl)i, (αlUl)i]
T ,

λi = E [Ni/∆x] is the average number of internal particles per cell and R is the relaxation term arising
from the presence of internal disperse particles.
Due to the assumption that the micro-scale is so rich that an infinite number of dispersed particles can
be considered inside each cell (i.e. λi → ∞), the system (34) is typically split into two step, namely the
hyperbolic and the relaxation ones. This is also the strategy we follow in this work: the approximation
of (28) is accomplished by the following operator splitting method

1. Hyperbolic Step: The hyperbolic step stands for the evolution of the variables according to the
left hand side of (34), namely

d

dt
(αkUk)i +

1

∆x
Gi(Ui) = 0. (35)

2. Relaxation Step: The relaxation step updates the approximation of the solution U, coming from
the hyperbolic step, by computing the equilibrium state of the following ODE

d

dt
(αkUk)i = λiR(Ui) (36)

as λi → ∞.

Notice that (35)-(36) are intended also for the volume fraction αk with the formal substitution
F ≡ 0 and U ≡ 1.

We conclude this section by stating a convexity property of the numerical scheme (35). In particular,
we approximate the set of ODEs (35) with a Forward Euler (FE) method, as it is usual in first-order
numerical schemes. Hence, the update formula for (35) reads

(αkUk)
n+1
i = (αkUk)

n
i −

∆t

∆x
Gn

i (U
n
i , r

n
i− 1

2

, rn
i+ 1

2

) (37)

where we introduced explicitly the dependency of the scheme (28) with respect to the two parameters
rn
i+ 1

2

≈ ri+ 1
2
(tn) and rn

i− 1
2

≈ ri− 1
2
(tn).

Proposition 4. Let Uk,n+1
i (r) denote the numerical approximation resulting from (37) when consid-

ering a constant value of the function r = r(x, t), i.e. Uk,n+1
i (r) := (αkUk)

n+1
i (r, r). Assume also that

each contribution of the numerical flux is positive.
Then, the numerical solution (αkUk)

n+1
i predicted by the scheme (35) with the FE time-approximation

lies between the corresponding numerical approximations generated by the choices r ≡ 1 and r ≡ 0, i.e.

min{Uk,n+1
i (0), Uk,n+1

i (1)} ≤ (αkUk)
n+1
i ≤ max{Uk,n+1

i (0), Uk,n+1
i (1)}
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Proof. Let us rewrite the scheme (28) by using the following form

Ei+ 1
2

[

X(k)F
]

= A
(k)

i+ 1
2

P
(k)

i+ 1
2

(rn
i+ 1

2

) Eboundary
[

F lag
]

i
:= B

(k),+

i− 1
2

P
(k)

i− 1
2

(rn
i− 1

2

) + B
(k),−

i+ 1
2

P
(k)

i+ 1
2

(rn
i+ 1

2

) (38)

where the matrices A
(k)

i+ 1
2

∈ R
3×3, B

(k),±

i+ 1
2

∈ R
3×3 and the vector P

(k)

i+ 1
2

∈ R
3 are defined as

A
(k)

i+ 1
2

:=

[

F (U
(k)
i , U

(k)
i+1)

T

(

β
(k,l)

i+ 1
2

)+

F (U
(k)
i , U

(l)
i+1)

T

(

−β
(l,k)

i+ 1
2

)+

F (U
(l)
i , U

(k)
i+1)

T

]

B
(k),±

i+ 1
2

:=

[

0
T −

(

±β
(k,l)

i+ 1
2

)+

F lag
(

U
(k)
i , U

(l)
i+1

)T
(

±β
(l,k)
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)+

F lag
(

U
(l)
i , U

(k)
i+1

)T
]

P
(k)

i+ 1
2

(rn
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2

) :=
[

Pi+ 1
2
[Σk,Σk]

(
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2

)

Pi+ 1
2
[Σk,Σl]

(
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i+ 1

2

)

Pi+ 1
2
[Σl,Σk]

(

rn
i+ 1

2

)]T

and Pi+ 1
2

(

rn
i+ 1

2

)

∈ R is defined in (28). Hence, (37) can be reformulated into

(αkUk)
n+1
i (rn

i− 1
2

, rn
i+ 1

2

)− Uk,n
i =

−
∆t

∆x

[

A
(k)

i+ 1
2

P
(k)

i+ 1
2

(

rn
i+ 1

2

)

− A
(k)

i− 1
2

P
(k)

i− 1
2

(

rn
i− 1

2

)

+ B
(k),+

i− 1
2

P
(k)

i− 1
2

(

rn
i− 1

2

)

+ B
(k),−

i+ 1
2

P
(k)

i+ 1
2

(

rn
i+ 1

2

)]

=
∆t

∆x

[

A
(k)

i− 1
2

− B
(k),+

i− 1
2

−A
(k)

i+ 1
2

− B
(k),−

i+ 1
2

]






P
(k)

i− 1
2

(

rn
i− 1

2

)T

P
(k)

i+ 1
2

(

rn
i+ 1

2

)T






showing that (αkUk)
n+1
i (rn

i− 1
2

, rn
i+ 1

2

) is an affine transformation of the vector P
(k)
i := [P

(k)

i− 1
2

(

rn
i− 1

2

)

,P
(k)

i+ 1
2

(

rn
i+ 1

2

)

]T .

By Theorem 3, each P
(p)

i−j+ 1
2

(rn
i−j+ 1

2

) is an affine transformation of rn
i−j+ 1

2

, so that

P
(k)
i =




P

(k)

i− 1
2

(

rn
i− 1

2

)

P
(k)

i+ 1
2

(

rn
i+ 1

2

)



 ∈
[

P
(k)
i (0)P

(k)
i (1)

]T

where the latter relation is understood for each entry of the vector P
(k)
i . The thesis follows by positivity

of the fluxes contributions.

Remark 4. Notice that the above proposition guarantees a bound for the numerical approximation
over the hyperbolic step. This is in principle not true for the two-stages scheme (79). Nevertheless, in
the following numerical tests we do observe such behavior even though we were not able to prove the
conclusion of Proposition 4 when including the relaxation step. This may be due to some monotonicity
property of the relaxation step, whose study is out of the scope of this paper.

4.3 A comment about the relaxation step

The relaxation step has attracted a lot of attention, due to its paramount importance for an accu-
rate multi-scale description. Due to the discrete nature of the right-hand side in (36), the system of
ODEs one has to solve depend on the specific choice of the RS under use. For example, when consid-
ering the exact RS (for the single-phase case) one would need to solve two RP (for each computational
cell), typically via some root-finding procedure. This latter can become quite cumbersomeness, and a
way to circumvent it [28, 41, 42] is to simplify the system of ODEs (36) by substituting the RS with a
fixed, simple approximate RS. Typically the acoustic solver [46, 33] constitutes a reasonable and suf-
ficiently simple choice. After such a simplification step, one just derives the corresponding continuous
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limit of the right hand side (in terms of the variables Ui), and the system is solved by computing the
equilibrium state as λi → ∞.
Under the choice of the acoustic solver, one can show that the set of ODEs forces the mixture con-
stituents to move with a single velocity and single pressure, as it was observed/theorized in many works,
see [7] and references therein. Unfortunately, there are several simplification steps in this procedure,
which do not guarantee that any other reasonable solver leads to the same mechanical effects. This is
sometimes reformulated saying that the equilibrium variety (i.e. the set of states U

∞
i at the end of the

relaxation step) depends on the choice of the RS. A first investigation in this direction was performed
in [4] where the authors showed that for several solvers of common use this is not the case: for such
solvers, the equilibrium variety turns out to be defined by the conditions

p
(k),∞
i = p

(l),∞
i =: p∞i u

(k),∞
i = u

(l),∞
i =: S∞

i . (39)

where the index ∞ denotes the states at the end of the relaxation step. Hence, one is tempted to
conclude that the relaxation variety is invariant under the choice of (reasonable) solvers.
Here we consider the two following assumptions:

1. Assumption on the Equilibrium Variety: We assume that the equilibrium variety defined
by solving (36) and letting λi → ∞, can be alternatively computed as the reduced set of variables
which make R vanish, that is, we assume that there exist a Maxwellian M : u 7→ M(u) = U∞

such that R(U∞) ≡ 0.

2. Assumption on the Riemann Solver: We assume that the following flux-vector splitting con-
dition holds

F ∗ (Up, Uq) = u∗pqU
∗
pq + p∗pqD

∗
pq (40)

where D∗
pq = [0, 1, u∗pq]

T .

Proposition 5. Under the assumptions 1 and 2, the states U
k,∞
i resulting from resolving the relaxation

step (36) are defined by relations (39).

Proof. See Appendix C.

Remark 5. Notice that assumption (40) is satisfied by many popular Riemann solvers, including the
exact, HLLC, and acoustic solvers.

Remark 6. Notice that (39) does not imply that any solver fulfilling the aforementioned assumptions
will produce the same approximations for S∞

i or p∞i . Specifically, different solvers will produce different
value for the interface velocities, in general. Thus, the form of the relaxation term is characterizing
the equilibrium variety, but it yields no information on how to compute such values.

5 Numerical Experiments

In this section we test the numerical algorithm to show the influence of the newly derived set
of probabilities. Numerical fluxes have been computed using the HLLC flux for the Euler equations
[46, 47] and Lagrangian fluxes have been computed according to

F lag = FHLLC − S∗
HLLCU

∗
HLLC (41)

where FHLLC, S∗
HLLC,U∗

HLLC denote the numerical flux, the speed of the contact discontinuity and the
intermediate (star) value provided by the HLLC solver, see [46] for details. Notice that the relation
(41) is crucial: indeed, one could be tempted to use the acoustic solver provided in [33, 40, 46] to
approximately compute the Lagrangian flux. However, this choice has been found to produce erroneous
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pressure oscillations near discontinuities, especially in absence of relaxation. Furthermore, we point
out that such Riemann Solver for the Lagrangian Flux could also be interpreted to be non-positive
conservative in the sense of [16]. For all our simulations we used a CFL constraint of CFL = 0.9.
Materials are governed by the stiffened gas equation of state

pk = (γk − 1)ρkek − γkπk. (42)

The parameters of gas are γ1 = 1.4Pa, π1 = 0, while for the liquid phase are γ2 = 4.4 and πl =
6× 108 Pa. Each experiment is computed on the domain D = [−1, 1], unless differently stated.

5.1 Uniform Volume Fraction

The first numerical experiment consists of a shock-tube problem, with a uniform volume fraction.
The initial mixtures consists of a strong pressure difference. The initial condition in terms of the
primitive variables V = [α, ρ, u, p] reads:

V0(x) =

{

[V
(1)
L ,V

(2)
L ] if x < 0,

[V
(1)
R ,V

(2)
R ] if x > 0.

, V
(k)
L =







0.5
ρk
0
pL






, V

(k)
R =







0.5
ρk
0
pR







k ∈ {1, 2}

where ρ1 = 50, ρ2 = 1000, pL = 109, pL = 105.

5.1.1 The relaxation-free case

We initially assume that λi = 0 for any i: solutions associated to a stratified flow evolve inde-
pendently whereas in the dispersed regime, interactions between the fluids do occur. For the sake of
comparison, we report the solution of such problem with r = 0 in Fig.5 (originally proposed in [5]) and
the one associated to r = 1 in Fig.6. The latter case is presented using several meshes to show conver-
gence, whereas the case r = 0 is compared to the single-phase exact solutions, to show independence
of the two numerical simulations.

The stratified flow regime simulates two non-interacting fluids one on top of the other, while the
disperse one models a dilute flow of air inside water. As expected, this latter situation leads to
interaction of phases, even though no relaxation is imposed. This is due to the discontinuity of volume
fraction at cell interface that enters in the numerical flux through the probability coefficients. Notice
the perfect coupling of phases in absence of relaxation for the case r = 1. This clearly highlights the
importance of Lagrangian fluxes to maintain it. Furthermore, results for the case r = 1 show near
coalescence of velocity and pressure curves: the two phases seem to converge to equilibrium. However,
inspection of shock profiles shows slight differences between the fluids, see Fig. 7.

Notice that such an example suggests that, when choosing r 6= 0, relaxation is not the only
mechanical interaction between the two fluids. Finally, an overshoot in the top right corner of gas
density phase appears for r = 1, whose amplitude reduces by mesh refinement, see Fig. 7, suggesting
convergence in L1-norm.

5.1.2 Adding relaxation

We perform the same test, but adding the relaxation procedures described in Appendix D. In this
setting an infinite interfacial area is present inside each cell. Results for both regimes (i.e. the stratified
and the disperse case) computed with different relaxation procedures are reported in Fig. 8 and Fig.
9. In each of these figures, results for each relaxation strategy and each r ∈ {0, 1} are presented for
comparison.
Fixing a relaxation strategy, analogous results are obtained for both flow regimes (each choice of r),
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Figure 5: Uniform volume fraction test at time t = 100µs of a stratified flow (r = 0). Numerical solutions
(dashed lines) of gas (P1) and liquid (P2) phases have been computed with a uniform mesh of M = 1000, and

are reported against their exact solutions (solid and dash-dotted line).
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Figure 6: Uniform volume fraction test at time t = 100µs of a disperse flow (r = 1). Numerical solutions for
gas phase (P1) and the liquid phase (P2) computed with number of cells M are reported.
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Figure 7: Magnified details of pressure shock profiles (left) and density overshoots (right), from Fig. 6
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Figure 8: Uniform volume fraction test at time t = 100µs using an infinite drag coefficient. Left column :
comparison between the limit-based relaxation strategy and the projection method; right column: magnified

detail of phase 2 post-sock state. Numerical solutions for gas phase (P1) and the liquid phase (P2) have been
computed with M = 3000 cells for both the stratified (r = 0) and disperse (r = 1) regimes.

even though discrepancies between the two patterns can be recognized near rarefaction and shocks.
Particularly evident is the impact of the choice of r for the post-shock state of density (see first raw of
Fig. 9), even if comparable discrepancies can be recognized even for the rest of quantities of interest.
Furthermore, discrepancies can also be seen comparing results for different relaxation procedures. For
example, differences in shock location predictions are present between relaxation procedures, see Fig.
8. This highlights the fact that the numerical solution of such a test problem is highly dependent
on both the relaxation strategy and the probability coefficients at the volume interfaces, raising the
question of uniqueness: how can we single-out a physically relevant solution among the infinitely many
generated by different realizations of the relaxation strategy and the parameter r ?

5.2 Pure Phases

A prototypical benchmark problem for the simulation of two-phase flow is the ability of a scheme
of resolving sharp interfaces or reproducing pure phases. Unfortunately the present scheme does not
enjoy such property, due to numerical viscosity. Indeed, when attempting to simulate sharp interfaces
separating different constituents, the numerical scheme will not maintain the volume fraction in the
set X = {0, 1}, due to numerical diffusion. This corresponds to smearing out the interface over several
computational cells, thus creating a mixing zone around the exact interface location. A numerical
artifact used to circumvent the numerical failure arising in such situation is to assume a negligible
amount of dispersed phase, as to stabilize the algorithmic procedure.
For the sake of comparison we therefore assume such a strategy to investigate the impact of parameter
r when simulating pure phases. We consider the following initial condition in terms of the primitive
variables V = [α, ρ, u, p],

V0(x) =

{

[V
(1)
L ,V

(2)
L ] if x < 0,

[V
(1)
R ,V

(2)
R ] if x > 0.

where

V
(1)
L =







10−6

50
0

2 · 108






, V

(2)
L =







1− 10−6

1000
0

2 · 108







V
(1)
R =







1− 10−6

50
0
105






, V

(2)
R =







10−6

1000
0
105







We aim at showing the capacity of the scheme to handle nearly pure mixtures, then the following
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Figure 9: Uniform volume fraction test at time t = 100µs using an infinite drag coefficient. Left column :
comparison between the limit-based relaxation strategy and the projection method; right column: magnified

detail of phase 2 post-sock state. Numerical solutions for gas phase (P1) and the liquid phase (P2) have been
computed with M = 3000 cells for both the stratified (r = 0) and disperse (r = 1) regimes.
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Figure 10: Mixture quantities for the nearly pure phases test at time t = 229µs, using an infinite drag
coefficient. Left column : continuous limit-based relaxation strategy; right column: projection-based

relaxation strategy. Numerical solutions for gas phase (P1) and the liquid phase (P2) have been computed
with M = 1000 cells for both the stratified (r = 0) and disperse (r = 1) regimes.
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mixture quantities of interest are computed for each regime

ρ := α1ρ1 + α2ρ2 u :=
α1ρ1u1 + α2ρ2u2

ρ
p := α1p1 + α2p2 (43)

As the sum of the equations for each phase at each point location x = xi results in a formally equivalent
system to the single phase Euler equations for the mixture, one can compute the corresponding exact
solution according to well-known solvers [22, 46]. Results for both the disperse and stratified flow
mixtures are compared with exact solution between pure phases in Fig. 10. The continuous-limit
relaxation strategy is used for this test case. Again relaxed models produce analogous results, see Fig.
10. Notice that this should be not surprising: indeed, when considering the probability coefficients one
these do not depend on the choice of r, in the regions of single-phase flow: let us assume that a material
interface is located at x = xi+ 1

2
for some i; then it holds that for any j 6= i and a k 6= l ∈ {1, 2}

αk
j = αk

j+1 = 1− ε and αl
j = αl

j+1 = ε

where ε represents the virtual amount of phase l used at the numerical level, and is assumed to be
comparatively small, i.e. 0 < ε ≪ 1

2 . Then, one gets

Pj+ 1
2
[Σk,Σk] = rmax(1− ε− ε, 0) + (1− r)min(1− ε, 1− ε) = 1− (1 + r)ε

Pj+ 1
2
[Σk,Σl] = rmin(1− ε, ε) + (1− r)max(1− ε− 1 + ε, 0) = rε

Pj+ 1
2
[Σl,Σl] = rmax(ε− 1 + ε, 0) + (1− r)min(ε, ε) = (1− r)ε

Pj+ 1
2
[Σl,Σk] = rmin(ε, 1− ε) + (1− r)max(ε− ε, 0) = rε

The significance of this is that, when considering the ideal case of pure phases (ε = 0), one obtains that
the only non-zero probability coefficient is the one associated to the probability of having the same
phase on both sides of an interface for the phase that has the higher-volume fraction. This corresponds
to making all the twophase-fluxes contributions vanish, and the classical, single-phase Godunov scheme
is recovered. Hence, each phase behaves independently of the complementary one.
Conversely, around the material interface located at x = xi+ 1

2
, it holds

αk
i = 1− ε and αk

i+1 = ε and αl
i = ε and αl

i+1 = 1− ε

so that

Pi+ 1
2
[Σk,Σk] = rmax(1− ε− 1 + ε, 0) + (1− r)min(1− ε, ε) = (1− r)ε

Pi+ 1
2
[Σk,Σl] = rmin(1− ε, 1− ε) + (1− r)max(1− ε− ε, 0) = 1− (2− r)ε

Pi+ 1
2
[Σl,Σl] = rmax(ε− ε, 0) + (1− r)min(ε, 1− ε) = (1− r)ε

Pi+ 1
2
[Σl,Σk] = rmin(ε, ε) + (1− r)max(ε− 1 + ε, 0) = rε

which again make vanish all the contributions not associating to finding phase k and phase l, respec-
tively, on each side of the interface, as one would expect.
Notice that such behavior is immediately broken if even negligible (but not-zero) amount of comple-
mentary phase is considered in each volume (i.e. ε > 0). This introduces the contribution of other
fluxes terms which slightly affect the solution profile, depending on r. Indeed, slight discrepancies can
be seen around shocks, even if the overall performance of both models (r = 0 and r = 1) results ac-
ceptable and virtually equal. The significance of the above analysis is that, the discrepancies between
the two models generated by different choices of parameter r, are dependent on the amount of virtual
phase we allocate in each pure chamber. This in turn, also highlights the importance of moderately
small disperse particles/sub-scale phenomena in determining shock profiles and corresponding jump
relations.
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Figure 11: Cavitation Test problem at time t = 2ms using an infinite drag force. Mixture quantities have
been computed using a mesh of M = 2000 cells for both the stratified (r = 0) and the disperse (r = 1) regimes.

5.3 Dynamical creation of interfaces

In this test we examine the capability of the one parameter model to dynamically create interfaces.
We consider the following initial condition in terms of the primitive variables V = [α, ρ, u, p],

V0(x) =

{

[V
(1)
L ,V

(2)
L ] if x < 0,

[V
(1)
R ,V

(2)
R ] if x > 0.

where

V
(1)
L =







10−2

50
−10
105






, V

(2)
L =







1− 10−2

1000
−10
105







V
(1)
R =







10−2

50
10
105






, V

(2)
R =







1− 10−2

1000
10
105







Results for the cavitation test case are reported in Fig. 11, with magnified details shown in Fig. 12.
Here we present results only for the first relaxation procedure of Appendix D. Both the stratified
(r = 0) and the disperse (r = 1) regimes are able to dynamically create interfaces, meaning that
gas pockets are generated at the discontinuity position. Discrepancies in the velocity field can be
appreciated around the discontinuity, like in the oscillations around the peaks of volume fractions.

It is worth highlighting that this test presents a moderate speed on both sides of the diaphragm.
Increasing the expansion velocity (up to u = 100m/s, for example) would results in computational
failure. Indeed, in the present formulation no mass transfer is considered, so that the creation of gas
pockets is only due to the relaxation step.

5.4 Randomly chosen, spatially dependent regimes

In this test we want to investigate the difference of predictions with respect to the imposition
of randomly chosen r, and a piece-wise constant r. We perform test 1, considering uniform volume
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Figure 12: Cavitation Test problem at time t = 2ms using an infinite drag force. Magnified details of results
reported in Fig. 13

fraction with first relaxation procedure and compare the results obtained with r = 0 and r = 1 with
two constant, randomly chosen r and the following piece-wise constant function

r = r(x) =







0.13 if − 1 ≤ x < −0.52

0.47 if − 0.52 ≤ x < 0.395

1 if 0.395 ≤ x < 0.761

0.69 if 0.761 ≤ x ≤ 1

(44)

Results are shown in Fig. 13: we report only details of the quantity of interest to help appreciate
differences.

This test yields numerical evidence to understand the impact of the choice of the parameter r on
the corresponding numerical approximations. Firstly, one can recognize that solutions display smooth
transition as r is increased, when constant throughout space. Notice that the same conclusion carries
directly to the piece-wise constant function: depending on the domain of interest, the solution generated
by the piecewise constant r lies between the ones computed with constant values, underlying the local
dependency of the corresponding solutions.

5.5 Dense-to-dilute transition

In this test we aim at investigating the dependency of solutions with respect to variations in the
parameter r. Indeed, so far, only spatially constant cases of the parameter r have been considered;
here we extend such results to space-time varying functions.
Firstly, for the sake of comparison, we fix the same initial condition of Test 1 (i.e. the uniform volume
fraction test case), imposing initial stratified flow (r = 0). For each subsequent time level tn, each of
the interfacial regime is modeled updating rn

i+ 1
2

by perturbations of a randomly chosen slight amount.

More precisely, for each time level tn with n = 1, . . . N and at each interface x = xi+ 1
2

do

1. Produce a uniformly distributed pseudo random number q(ωn
i+ 1

2

) between −1 and 1, i.e. q ∼

Unif[−1, 1];

2. Perturb the previous flow regime associated to rn−1
i+ 1

2

according to

rn,+
i+ 1

2

= rn−1
i+ 1

2

+ ǫ · u(ωn
i+ 1

2

) (45)

for a sufficiently small ǫ.
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Figure 13: Uniform volume fraction test at time t = 100µs of different flow regimes: fixed topology r and
piece-wise constant r : PC. Numerical solutions for gas phase (P1) and the liquid phase (P2) computed with

M = 2000 number of cells are reported: volume fractions rarefactions (top left), densities shocks and
rarefactions (top right), velocity shocks (bottom left) and pressure rarefactions (bottom right).
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3. Narrow rn,+
i+ 1

2

to the domain of interest:

rn
i+ 1

2

= f

(

rn,+
i+ 1

2

)

=







0 if rn,+
i+ 1

2

< 0

rn,+
i+ 1

2

if rn,+
i+ 1

2

∈ [0, 1]

1 if rn,+
i+ 1

2

> 1

(46)
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Figure 14: Dense-to-dilute transition test at time t = 100µs. Numerical solutions have been computed using
a uniform mesh of M = 3000 cells, using different values of ǫ in (45). Magnified details of results are displayed

distinguishing the gas (P1) and the liquid (P1) phase, as well as the different values of ǫ.

Once all the newly generated rn
i+ 1

2

are computed, one updates the solution by utilizing the strategy

designed in Section 4.2. The parameter ǫ encodes the rate of dense-to-dilute transition: negligible
values of the parameter ǫ will produce virtually same results of the stratified flow case, whereas exces-
sively large values will produce discontinuous flow transition. We present in Fig. 14 only magnified
regions of the approximate solutions: results are analogous to the ones reported in Fig. 10, with oscil-
lations at post-shock states. Notice how moderately small values of ε do yield virtually same results as
constant r ≡ 0. As suggested by Proposition 4, a convergence towards the stratified flow (r ≡ 0) can
be appreciated as ǫ decreases, hence demonstrating the smooth dependency at any time of computed
solutions with respect to the parameter r.
However, the most interesting result of this test is the oscillatory effect appearing for sufficiently large
values of ǫ. In order to further investigate such oscillatory effect appearing near discontinuities, we
run the same test, increasing ǫ and comparing results with a uniformly randomly chosen rn

i+ 1
2

. Corre-

sponding results are shown in Fig. 15. Oscillatory effects appear near discontinuities which propagate
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to adjacent regions. As expected, increasing the value of ε will produce with higher probabilities re-
sults oscillating around r ≡ 1. Corresponding numerical solutions show indeed variations around the
mentioned value r ≡ 1.
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Figure 15: Dense-to-dilute transition test at time t = 100µs. Numerical solutions have been computed using
a uniform mesh of M = 3000 cells, using different values of ǫ in (45). Magnified details of results are displayed

distinguishing the gas (P1) and the liquid (P1) phase, as well as the different values of ǫ.

6 Discussion

The modeling of multi-phase flow is very challenging, given the range of scales as well as type of
distinct flow regimes that one encounters in this context. We revisit the discrete equation method
(DEM) for two-phase flow in the absence of heat conduction and mass transfer. As DEM is based
on an ensemble averaging of flow realizations, the mean flow has the potential to describe different
two-phase flow regimes. Our starting point was the derivation of Abgrall and Saurel [5] where the
authors proposed a DEM for two-phase flow. Our main contributions in this paper was to carefully
analyze the resulting probability coefficients and to prove local convexity for them. This rigorously
establishes that this version of DEM can indeed model different flow regimes ranging from the disperse
to stratified (or separated) flow. Moreover, we reformulated the the resulting mesoscopic model in
terms of an one-parameter family of PDEs that interpolates between different regime. The limit cases
of this parameter correspond to disperse and stratified flow, respectively. Furthermore, two sets of
relaxation procedures were also proposed to enforce relaxation to equilibrium.

We presented extensive numerical experiments to describe the capabilities as well as limitations
of the proposed DEM. First, we demonstrated that different values of the probability coefficients
yield different predictions on the mechanical interaction between phases. Indeed, it is the probability
coefficients, rather than relaxation terms, that lead to this behavior, rather than the details of the
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relaxation terms which serve to enforce thermodynamic constraints. Indeed, the interaction of phases
demonstrated through numerical tests without relaxation procedures, suggest mechanical exchange even
if no sub-particles are present inside each volume, in contrast to the interpretation of [5]. This point of
view clearly brings out the complimentary roles played by the probability coefficients and relaxation
terms in DEM.

The proposed formulation also brings out possible limitations of the DEM approach. In particu-
lar, we show that an infinite number of possible models can be constructed, resulting in a ill-posed
procedure to construct multiphase simulations. Although several works have investigated the mechan-
ical/thermodynamical consistency of the continuous limit associate to stratified flow, proving it to lead
to physically meaningful models. However, even under such an ansatz, the DEM method requires the
relaxation operator to be added manually assuming either an infinite drag force or an estimate of the
interfacial area in each cell. These latter may become problematic to obtain, if possible, without mak-
ing any assumption on the flow regime. Indeed, among the desiderata for multiphase flow simulations,
the avoidance of user-specification of the flow regime is paramount.

We observe that the DEM scheme represents a finer level of description as compared to the contin-
uum theory approach. In turn, such strategy achieves extensive modelling capabilities, ranging from
stratified to disperse flows. However, as demonstrated in this paper, such a mesoscopic approach is not
yielding a fully-determined system of constitutive equations as neither equilibrium states nor proba-
bility coefficients are uniquely defined. Indeed, this is due to the determination of mean flow variables
whereas information about the underlying microstructure is lost. Such inherent under-determination
does not rendering the model invalid, but it rather requires closure conditions to be supplied. This is
equivalent to saying that the microstructure details lost in the passage to the ensemble averages has to
be recovered from somewhere, which in the case of the DEM, is embodied in the probability coefficients
and in the relaxation terms. In other words, one needs to adapt the free parameters according to the
flow topology, but contrarily to other approaches, it is easy to see where new inputs must be supplied.

Moreover, from a mathematical point of view, the underlying probability coefficients in our DEM
scheme can be interpreted as two-point correlation measures. The resulting conclusion is that the DEM
approach lacks information about correlation measures, at each space-time location. Therefore, it is out
belief that the point of view of measures should be preferred over classical weak forms. Indeed, many
recent works dealing with numerical approximations of turbulent flow have shown success of weaker
notions than the usual distributional sense. Notice that such an approach is in principle also capable
to deal with non-conservative products, typically featured by most well-known two-phase models.

Our results also show that the form of the relaxation variety does not depend on the underlying
solver for the hyperbolic step, thus suggesting that a characteristic feature of such phenomena is the
determination of the speed at which they reach equilibrium.

Such an insight confirms that the essence of multiphase fluids lies in their microstructure, which
has to be considered in order to characterize mean flow variables. For this reasons, forthcoming papers
aim at including such information in the modeling of multiphase flow.
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A Proof of local convexity

We start the proof of our main result Theorem 3 by reporting the following trivial fact: for any
a, b ∈ R it holds

max(a− b, 0) + min(a, b) = a (47)

Furthermore, we will adopt the notation p 6= q ∈ {1, 2}.

Proof. (of Proposition 2)
Notice that

{

X(p)(x−
i+ 1

2

) = 1, X(p)(x+
i+ 1

2

) = 0

}

=

{

X(p)(x−
i+ 1

2

) = 1

}

∩

{

X(p)(x+
i+ 1

2

) = 0

}

Hence,

Pi+ 1
2
[Σp,Σq] = Pi+ 1

2

[

X(p)(x−
i+ 1

2

) = 1, X(p)(x+
i+ 1

2

) = 0

]

≤ Pi+ 1
2

[

X(p)(x−
i+ 1

2

) = 1

]

= Pi+ 1
2
[Σp,Σp] + Pi+ 1

2
[Σp,Σq]

(22a)
= αp

i

Similarly,

Pi+ 1
2
[Σp,Σq] ≤ Pi+ 1

2

[

X(p)(x+
i+ 1

2

) = 0

]

= Pi+ 1
2
[Σq,Σq] + Pi+ 1

2
[Σp,Σq]

(22b)
= αq

i+1

Thus, condition (26a) follows. In turn, this latter into (22a) yields (26b):

Pi+ 1
2
[Σp,Σp] ≥ αp

i −min(αp
i , α

q
i+1)

(47)
= max

(
αp
i − αq

i+1, 0
)

Finally, let us prove that, under the saturation condition (24), the probability pair

P1
i+ 1

2

=

(

P1
i+ 1

2

[Σp,Σp] ,P
1
i+ 1

2

[Σp,Σq]

)

:=

(

max
(
αp
i − αq

i+1, 0
)
,min

(
αp
i , α

q
i+1

)

)

verify (23). Indeed,

• Condition (22a) :

P1
i+ 1

2

[Σp,Σp] + P1
i+ 1

2

[Σp,Σq] = max
(
αp
i − αq

i+1, 0
)
+min

(
αp
i , α

q
i+1

)(47)
= αp

i

• Condition (22b) :

P1
i+ 1

2

[Σp,Σp] + P1
i+ 1

2

[Σq,Σp] = max
(
αp
i − αq

i+1, 0
)
+min

(
αp
i+1, α

q
i

)

(47)
= max

(
αp
i − αq

i+1, 0
)
+ αp

i+1 −max
(
αp
i+1 − αq

i , 0
)

(24)
= max

(
αp
i − 1 + αp

i+1, 0
)
+ αp

i+1 −max
(
αp
i+1 − 1 + αp

i , 0
)
= αp

i+1

• Condition (23a) :

P1
i+ 1

2

[Σp,Σp] = max(αp
i − αq

i+1, 0)
(24)
= max(αp

i − 1 + αp
i+1, 0)

= max

(

min(αp
i , α

p
i+1)−1 + max(αp

i , α
p
i+1)

︸ ︷︷ ︸
, 0

)

≤ max

(

min(αp
i , α

p
i+1), 0

)

(24)
= min(αp

i , α
p
i+1)

(24)

≤ 0
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• Condition (23b) :

P1
i+ 1

2

[Σp,Σq] = min(αp
i , α

q
i+1)

(24)
= max

(

min(αp
i , α

q
i+1), 0

)

(24)

≥ max

(

min(αp
i , α

q
i+1)− 1 + max(αp

i , α
q
i+1), 0

)

= max(αp
i − 1 + αq

i+1, 0) = max(αp
i − αp

i+1, 0)

Remark 7. Notice that the combination of the consistency conditions (23) and (26) leads to the
following relations

max
(
αp
i − αq

i+1, 0
)
≤ Pi+ 1

2
[Σp,Σp] ≤ min

(
αp
i , α

p
i+1

)
(48a)

max
(
αp
i − αp

i+1, 0
)
≤ Pi+ 1

2
[Σp,Σq] ≤ min

(
αp
i , α

q
i+1

)
(48b)

Proof. (of Theorem 3)
We split the proof into several steps.

1. Existence of r ∈ [0, 1], verifying (27a)-(27b): From (48b) we get

0 ≤ Pi+ 1
2
[Σp,Σq]−max

(
αp
i − αp

i+1, 0
)
≤ min

(
αp
i , α

q
i+1

)
−max

(
αp
i − αp

i+1, 0
)

(49)

Notice that if min
(
αp
i , α

q
i+1

)
= max

(
αp
i − αp

i+1, 0
)
, then Pi+ 1

2
[Σp,Σp] = max

(
αp
i − αp

i+1, 0
)
,

which in turn implies that Pi+ 1
2
= P0

i+ 1
2

. Hence, the proposition holds true taking r = 0. We

therefore assume that min
(
αp
i , α

q
i+1

)
6= max

(
αp
i − αp

i+1, 0
)
: by (49),

r :=
Pi+ 1

2
[Σp,Σq]−max

(
αp
i − αp

i+1, 0
)

min
(
αp
i , α

q
i+1

)
−max

(
αp
i − αp

i+1, 0
) ∈ [0, 1] (50)

It is straightforward then to see that (27b) holds true. Moreover,

min
(
αp
i , α

q
i+1

)
−max

(
αp
i − αp

i+1, 0
) (47)
= αp

i −max
(
αp
i − αq

i+1, 0
)
−

(

αp −min
(
αp
i , α

p
i+1

)

)

= −

(

max
(
αp
i − αq

i+1, 0
)
−min

(
αp
i , α

p
i+1

)

)

(51)

and

Pi+ 1
2
[Σp,Σq]−max

(
αp
i − αp

i+1, 0
) (47)
= Pi+ 1

2
[Σp,Σq]− αp

i +min
(
αp
i , α

p
i+1

)

(22a)
= −Pi+ 1

2
[Σp,Σp] + min

(
αp
i , α

p
i+1

) (52)

Inserting (51) and (52) into (50), we get an equivalent definition of r, namely

r =
Pi+ 1

2
[Σp,Σp]−min

(
αp
i , α

p
i+1

)

max
(
αp
i − αq

i+1, 0
)
−min

(
αp
i , α

p
i+1

) (53)

which implies (27a).
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2. r does not depend on p: We are going to show that the quotients (50)-(53) are in fact non-
depending of p, namely the one induced by the choice p = k coincide with the one induced by
p = l, for any k 6= l ∈ {1, 2}.
By the equivalence between (50) and (53), it is enough to show that

Pi+ 1
2
[Σk,Σl]−max

(
αk
i − αk

i+1, 0
)

min
(
αk
i , α

l
i+1

)
−max

(
αk
i − αk

i+1, 0
) =

Pi+ 1
2
[Σl,Σk]−max

(
αl
i − αl

i+1, 0
)

min
(
αl
i, α

k
i+1

)
−max

(
αl
i − αl

i+1, 0
) (54)

Subtraction of (22b) from (22a), when p = k and q = l, yields

Pi+ 1
2
[Σk,Σl] = Pi+ 1

2
[Σl,Σk] + αk

i − αk
i+1 (55)

Notice that,

αk
i − αk

i+1 −max
(

αk
i − αk

i+1, 0
)

(24)
= αl

i+1 − αl
i −max

(

αl
i+1 − αl

i, 0
)

(47)
= min

(

αl
i+1, α

l
i

)

− αl
i

(47)
= −max

(

αl
i − αl

i+1, 0
)

(56)

and

min
(

αk
i , α

l
i+1

)

− αk
i + αk

i+1
(47)
= −max

(

αk
i − αl

i+1, 0
)

+ αk
i+1

(24)
= −max

(

αk
i+1 − αl

i, 0
)

+ αk
i+1

(47)
= min(αl

i, α
k
i+1)

(57)

Equations (55), (56) and (57) into the left hand side of (54), leads to the desired equality.

B The Continuous Limit

In this section, we aim at deriving a set of PDEs for the simulation of multiphase flow phenomena.
This can be achieved by deriving the continuous limit that the set of discrete ODEs 28 is converging to.
As discussed for the relaxation term, the convergence of each single term involved in the system of ODEs
is solver-dependent, in principle. One possibility to circumvent such difficulty is to fix a specific form
of the RS, which allows for computations. We choose the assumption (40). Furthermore, we make also
the following simplification: let us assume that the RS under use computes the contact-discontinuity
speed σ and pressure p∗ as follows

σ









ρ
u
p





L

,





ρ
u
p





R



 =
ZLuL + ZRuR

ZL + ZR

−
PR − PL

ZL + ZR

(58)

p∗









ρ
u
p





L

,





ρ
u
p





R



 =
ZRpL + ZLpR

ZL + ZR

−
ZLZR(uR − uL)

ZL + ZR

(59)

where Zk = ρkck k = L,R denotes the acoustic impedances computed by the solver and ck is an
approximation to the sound speed. Specifically, we always assume that the internal energy can be
described in terms of the independent variables ρk and pk, i.e. ek = ek(ρk, pk) denotes the EOS, so
that the sound speed is denoted as

ak := ak (ρk, pk) :=

√

pk
ρ2k∂pkek

−
∂ρkek
∂pkek

. (60)
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For the case of the acoustic solver (see. [46], page 299-300), we simply get ck = ak.
Conversely, for the case of the HLLC solver (see [46, 47]) one has that ck = uk −Sk, where Sk denotes
the fasted signal speed on the k-th side.
Notice that each of the aforementioned interfacial solvers can be written into the sum of a symmetric
part and anti-symmetric part, namely:

σ(L,R) = S(L,R)−AS(L,R), S(L,R) :=
ZLuL + ZRuR

ZL + ZR

, AS(L,R) :=
PR − PL

ZL + ZR

so that S(L,R) = S(R,L) and AS(L,R) = −AS(L,R).

We split the analysis into several contributions

B.1 Relaxation Terms

Based on the assumption (40), we get that

Erelax
[

F lag
]

i
= E

[
Nint

∆x

](

F lag
lk − F lag

kl

)

=







σkl − σlk
0

p∗lk − p∗kl
p∗lkσlk − p∗klσkl
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(σlk − σkl)







−1
0
0

1
2 (p

∗
lk + p∗kl)






+ (p∗lk − p∗kl)







0
0
1

1
2 (σlk + σkl)







)

Simple algebraic manipulations by using (58) and the symmetric-antisymmetric splitting show that

σlk + σkl = 2
Zkuk + Zlul
Zl + Zk

=: 2u
′

I σlk − σkl = −2
pk − pl
Zk + Zl

p∗lk + p∗kl = 2
Zkpk + Zlpl
Zl + Zk

=: 2p
′

I p∗lk − p∗kl = −2ZkZl

uk − ul
Zk + Zl

Plugging these latter into the relaxation form, one concludes

Erelax
[

F lag
]

i
= E

[
Nint

∆x

](

− 2
pk − pl
Zk + Zl







−1
0
0

Zkpk+Zlpl
Zl+Zk






− 2ZkZl

uk − ul
Zk + Zl







0
0
1

Zkuk+Zlul

Zl+Zk







)

= E

[
Nint

∆x

](

− 2
pk − pl
Zk + Zl







−1
0
0

p
′

I






− 2ZkZl

uk − ul
Zk + Zl







0
0
1

u
′

I







)

By defining the parameters

µ := E

[
Nint

∆x

]
2

Zk + Zl

λ := ZkZlµ

one gets that

Erelax
[

F lag
]

i
= −µ(pk − pl)







−1
0
0

p
′

I






− λ(uk − ul)







0
0
1

u
′

I






=







µ(pk − pl)
0

−λ(uk − ul)

−µ(pk − pl)p
′

I − λ(uk − ul)u
′

I
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By assuming that the relative number of interfaces E
[
Nint

∆x

]

remains bounded as ∆x → 0, the contin-

uous limit for the relaxation term is derived.

B.2 Conservative Terms

The convergence of conservative fluxes is readily provided: by the finite difference approximation, one
gets

Ei+ 1
2

[
X(k)F

]
− Ei− 1

2

[
X(k)F

]

∆x
−→

∂

∂x
E

[

X(k)F(k)
]

(61)

Under the assumption that kinetic-fluctuations may be disregarded (see 8), one gets that

∂

∂x
E

[

X(k)F(k)
]

≈
∂

∂x
αkFk

so that the conservative terms of the continuous limits are proven.

B.3 Non-Conservative Terms

Inserting the new set of probabilities the boundary terms can be split into

Eboundary
[
F lag

]

i

∆x
=

1

∆x

(

ri+ 1
2
F lag

disp,i+ 1
2

+ ri− 1
2
F lag

disp,i− 1
2

+ (1− ri+ 1
2
)F lag

strat,i+ 1
2

+ (1− ri− 1
2
)F lag

strat,i− 1
2

)

=
1

∆x

(

F lag

strat,i+ 1
2

+ F lag

strat,i− 1
2

︸ ︷︷ ︸

+ ri+ 1
2

(

F lag

disp,i+ 1
2

− F lag

strat,i+ 1
2

)

+ ri− 1
2

(

F lag

disp,i− 1
2

− F lag

strat,i− 1
2

)

︸ ︷︷ ︸

)

=: F lag
strat =: F lag

disp

where

F lag

strat,i+ 1
2

:=

(

β
(l,k)

i+ 1
2

)−

max(αk
i+1 − αk

i , 0)F
lag,(l,k)

i+ 1
2

−

(

β
(k,l)

i+ 1
2

)−

max(αk
i − αk

i+1, 0)F
lag,(k,l)

i+ 1
2

F lag

strat,i− 1
2

:=

(

β
(l,k)

i− 1
2

)+

max(αk
i − αk

i−1, 0)F
lag,(l,k)

i− 1
2

−

(

β
(k,l)

i− 1
2

)+

max(αk
i−1 − αk

i , 0)F
lag,(k,l)

i− 1
2

F lag

disp,i+ 1
2

:=

(

β
(l,k)

i+ 1
2

)−

min(αl
i, α

k
i+1)F

lag,(l,k)

i+ 1
2

−

(

β
(k,l)

i+ 1
2

)−

min(αk
i , α

l
i+1)F

lag,(k,l)

i+ 1
2

F lag

disp,i− 1
2

:=

(

β
(l,k)

i− 1
2

)+

min(αl
i−1, α

k
i )F

lag,(l,k)

i− 1
2

−

(

β
(k,l)

i− 1
2

)+

min(αk
i−1, α

l
i)F

lag,(k,l)

i− 1
2

Before detailing each term, we introduce the following convenient notation

f+ := max(f, 0) =
f + |f |

2
f− := min(f, 0) =

f − |f |

2
δ±
i+ 1

2

αk :=
(

αk
i+1 − αk

i

)±

So that also we rewrite the flux-indicators

(

β
(p,q)

i+ 1
2

)±

= σ±
i+ 1

2

(p, q)/|σi+ 1
2
|.
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B.3.1 Stratified-Flow terms

This continuous limit was firstly derived in [40], we recall it for the sake of completeness. By
utilizing the aforementioned notation we get

F lag
strat =

σ+
i− 1

2

(l, k)

|σi− 1
2
(l, k)|

δ+
i− 1

2

αkF lag

i− 1
2

(l, k) +
σ+
i− 1

2

(k, l)

|σi− 1
2
(k, l)|

δ−
i− 1

2

αkF lag

i− 1
2

(k, l)

−
σ−
i+ 1

2

(l, k)

|σi+ 1
2
(l, k)|

δ+
i+ 1

2

αkF lag

i+ 1
2

(l, k)−
σ−
i+ 1

2

(k, l)

|σi+ 1
2
(k, l)|

δ−
i+ 1

2

αkF lag

i+ 1
2

(k, l)

As ∆x → 0, we perform the following approximations which hold under the assumption of smooth
flow:

• F lag

i+ 1
2

(l, k) = F lag

i− 1
2

(l, k) = F lag
i (l, k) as well as F lag

i+ 1
2

(k, l) = F lag

i− 1
2

(k, l) = F lag
i (k, l)

• σi+ 1
2
(k, l) = σi− 1

2
(k, l) =: σi(k, l) as well as σi+ 1

2
(l, k) = σi− 1

2
(l, k) =: σi(l, k)

so that one writes

δ+i α
k :=

σ+(l, k)

|σ(l, k)|
δ+
i− 1

2

αk −
σ−(l, k)

|σ(l, k)|
δ+
i+ 1

2

αk δ−i α
k := −

σ+(k, l)

|σ(k, l)|
δ−
i− 1

2

αk +
σ−(k, l)

|σ(k, l)|
δ−
i+ 1

2

αk

and

1

∆x
F lag
strat ≈

δ+i α
kF lag

i (l, k)− δ−i α
kF lag

i (k, l)

∆x
=

δ+i α
k

∆x







−σi(l, k)
0

p∗i (l, k)
p∗i (l, k)σi(l, k)






−

δ−i α
k

∆x







−σi(k, l)
0

p∗i (k, l)
p∗i (k, l)σi(k, l)







where we used assumption (40) and the interfacial quantities are computed as in (58).
By using the symmetric-antisymmetric splitting of interfacial quantities, one can rearrange each equa-
tion in the form

δ+i α
k

∆x
(S(l, k)−AS(l, k))−

δ−i α
k

∆x
(S(k, l)−AS(k, l)) =

δ+i α
k − δ−i α

k

∆x

(

S(k, l) +
δ+i α

k + δ−i α
k

δ+i α
k − δ−i α

k
AS(k, l)

)

So that

1

∆x
F lag
strat →







−uI
0
pI

pIuI







∂αk

∂x
(62)

where interfacial quantities are defined as

pI := p
′

I + sign(∂xαk)
ZkZl

Zk + Zl

(ul − uk), uI := u
′

I + sign(∂xαk)
1

Zk + Zl

(pl − pk)

B.3.2 Disperse-Flow Terms

Here we assume that the variation with respect to the parameter r is smooth, so that we conclude
that

• ri+ 1
2
= ri− 1

2
=: ri.
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Under such assumption, the disperse term can be rearranged as

F lag
disp

∆x
= − ri

(

F lag

strat,i+ 1
2

+ F lag

strat,i− 1
2

)

∆x
︸ ︷︷ ︸

+
ri
∆x

(

F lag

disp,i+ 1
2

+ F lag

disp,i− 1
2

)

︸ ︷︷ ︸

−→ r







−uI
0
pI

pIuI







∂αk

∂x
=: Fdisp

due to the discussion of previous subsection. We then focus on the convergence of the second term.
Under the hypotheses performed for the previous section, we can write

Fdisp = αdisp
lk F lag

i (l, k) + αdisp
lk F lag

i (k, l)

where

αdisp
lk = −

σ−
i (l, k)

|σ−
i (l, k)|

min(αl
i, α

k
i+1) +

σ+
i (l, k)

|σ+
i (l, k)|

min(αl
i−1, α

k
i )

αdisp
kl = −

σ−
i (k, l)

|σ−
i (k, l)|

min(αk
i , α

l
i+1) +

σ+
i (k, l)

|σ+
i (k, l)|

min(αk
i−1, α

l
i)

Hence, by analogous splitting to the one performed above, one gets that

Fdisp

∆x
→

∂

∂x

(

αdisp







−uI
0
pI

pIuI







)

where αdisp denotes the volume fraction with lowest value.

C A solver-invariant equilibrium variety

In this section we are concerned with the proof of a result concerning the equilibrium variety of (36).
For the sake of simplicity we will avoid the subscript i, meaning that all the following considerations
hold cell-wise. This means Up := (Up)i for each p ∈ {1, 2}. Furthermore, we will make use of
the following notation: F ∗(UL, UR), σ(UL, UR), U∗(UL, UR) denote the flux, the interface/contact
discontinuity speed and the solution (i.e. the Godunov state) generated from the resolution of the RP

∂tU + ∂xF(U) = 0

U(x, 0) =

{

UL x < 0

UR x > 0

by means of a prescribed RS. For the sake of brevity, we will also use q∗pq to denote the resulting quantity
q in the star region yielded by the resolution of the RP with initial data UL = Up and UR = Uq as
referring to the RP between the phases p and q.
Without loss of generality, we consider the relaxation term (36) for phase k 6= l ∈ {1, 2}, which reads

{

σ (Uk, Ul)− σ(Ul, Uk) = 0

F ∗
I (Ul, Uk)− σ (Ul, Uk)U

∗
I (Ul, Uk)− F ∗

I (Uk, Ul) + σ (Uk, Ul)U
∗
I (Uk, Ul) = 0

(63)
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where the sub-index I denotes the evaluation of the corresponding quantity close to the interface from
the side of phase k. By the evaluation of each Lagrangian flux to the interface and assumption (40),
one has that

F ∗
I (Ul, Uk)− σ (Ul, Uk)U

∗
I (Ul, Uk) = p∗lkD

∗
lk = p∗lk





0
1
σlk



 , ∀l 6= k. (64)

Hence, plugging this latter into (63) one gets that the equilibrium variety is defined by the set of ODEs

0 =







σkl − σlk
0

p∗lk − p∗kl
p∗lkσlk − p∗klσkl






= (σlk − σkl)







−1
0
0

1
2 (p

∗
lk + p∗kl)






+ (p∗lk − p∗kl)







0
0
1

1
2 (σlk + σkl)







(65)

Solving such system of ODEs implies the well-known conditions on relaxed states

σkl = σlk = S∞ p∗lk = p∗kl = p∗.

Notice that, the first equation in (65) is actually a trivial equation, 0 = 0. This is indeed stating
that no matter the values of U

∞, conditions (63) for mass are always fulfilled. From the point of view
of our ODE (36) this implies the following

d

dt
(αkρk) = 0 ⇒ αkρk = const. (66)

over the relaxation step.
Therefore, by assumption on the equilibrium variety, the primitive variables vector of relaxed states
can be rewritten as

V ∞
k =







α∞
k

ρ∞k
S∞

p∞







V ∞
l =







α∞
l

ρ∞l
S∞

p∞







(67)

so that the relaxed volume fractions are given by α∞
k = α0

kρ
0
k/ρ

∞
k , by (66). Therefore, a natural

Maxwellian M is defined as

u =











α∞
k

ρ∞k
S∞

p∞

α∞
l

ρ∞l











7−→ M(u) =







α∞
k

α∞
k U∞

k

α∞
l

α∞
l U∞

l







D Relaxation Strategies

One important feature of two-phase flow models is to correctly model the interaction between
mixture phases. This has been studied for example in [7, 36]. Several strategies have been developed so
far, and one robust approach is to model interaction between phases by means of relaxation procedure,
typically involving stiff source terms. As firstly suggested by Abgrall and Saurel in [5], if the relaxation
term Erelax

[
F lag

]

i
in (28) consists of moderate amount of bubbles, standard resolution of (28) can be

applied. However, it is usual to associate such relaxation terms to a large values of source terms, i.e.
large numbers of disperse particles are considered. Therefore, relaxation strategies that capture the
equilibrium states have to be derived. For the seven-equation model, standard techniques are given in
[36, 41, 28], in which velocity and pressure relaxation steps are split into subsequent operators.

In this work we propose two relaxation strategies that aims at deriving equilibrium states avoiding
further splitting methods.
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D.1 A single continuous limit relaxation

A well-established procedure is to compute the equilibrium values of the unknown solution by firstly
deriving a set of ODEs as limit of (36) as ∆x → 0. The resulting system of ODEs is then solved in
time, determining the equilibrium states. Following this line we propose a unique relaxation: after
application of the hyperbolic operator, by means of an approximation of an acoustic solver [33], the
continuous limit of the relaxation term reads [40] for each k 6= l ∈ {1, 2}

d

dt
αk = µ(pk − pl)

d

dt
(αkρk) = 0

d

dt
(αkρkuk) = λ(ul − uk)

d

dt
(αkρkEk) = µp

′

I(pl − pk) + λu
′

i(ul − uk)

(68)

where p
′

I , u
′

I are given by

p
′

I =
Zkpl + Zlpk
Zk + Zl

, u
′

I =
Zkuk + Zlul
Zk + Zl

(69)

where Zk = ρkak denotes the acoustic impedance of phase k.
It is not difficult to show that this system of ODEs results to have a single velocity and a single

pressure, as λ, µ → ∞. We denote by u∗ and p∗ the relaxed velocity and relaxed pressure, respectively.
Notice that the conservation over the relaxation procedure of the quantity αkρk leads to the following
reformulation of mass and momentum equations

d

dt
ρk = −

ρk
αk

d

dt
αk, αkρk

d

dt
uk = λ(ul − uk). (70)

Summing over phase index k the momentum equation and integrating over the relaxation step, we get

(αρ)0,1(u
∗ − u0,1) + (αρ)0,2(u

∗ − u0,2) = 0

from which we deduce

u∗ =
(αρu)0,1 + (αρu)0,2
(αρ)0,1 + (αρ)0,2

(71)

where the sub-index 0 stands for the value resulting from the hyperbolic operator. Moreover, the
energy equation can be rewritten as

αkρk

(

uk
d

dt
uk +

d

dt
ek

)

= −p
′

I

d

dt
αk + αkρku

′

I

d

dt
uk (72)

which, by means of first equation in (70), yields

d

dt
ek = (u

′

I − uk)
d

dt
uk +

p
′

I

ρ2k

d

dt
ρk = u

′

I

d

dt
uk −

d

dt

(
1

2
u2k

)

− p
′

I

d

dt

(
1

ρk

)

(73)

Integration between the pre-relaxed time t0 and the relaxed time t∗ yields

e∗k − ek0 =
1

2
(u∗ − u0,k)

[

2u
′

I − (u∗ + uk)
]

− p
′

I

(
1

ρ∗k
−

1

ρ0,k

)

(74)

where u
′

I := 1
u∗−uk0

∫ t∗

t0
u

′

I
d
dt
uk dt and p

′

I := 1
1
ρ∗
k
− 1

ρk0

∫ t∗

t0
p
′

I

(
1
ρk

)

dt. Following the work of [39], a

possible choice that has been shown to be compatible with the entropy inequality and with energy
conservation is

p
′

I(t) ≈ p
′

I(t
∗) = p∗, u

′

I(t) ≈ u
′

I(t
∗) = u∗
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By means of such an approximation, we are led to compute the root of the following non-linear function

Fk = Fk(ρk, p) := 2ρkρk0(ek − ek0)− ρkρk0(u
∗ − uk0)

2 − 2p(ρk − ρk0) (75)

where ek = ek(ρk, p) and u∗ is computed according to (71). The multivariate function F = (F1, F2)
depends on 2 + 1 = 3 variables, namely ρk and p, so one equation is missing. We complete the system
by enforcing fulfillment of the saturation condition:

F3 :=
∑

k

αk − 1 = 0 (76)

where, by virtue of mass conservation, αk = (αkρk)0
ρk

. Hence, the Jacobian matrix of F = (F1, F2, F3)
T

reads

DF :=





A1 0 B1

0 A2 B2

C1 C2 0



 (77)

with definitions

Ak :=
∂Fk

∂ρk
= 2ρk0(ek − ek0) + 2ρkρk0∂ρkek − ρk0(u

∗ − uk0)
2 − 2p

Bk :=
∂Fk

p
= 2ρkρk0∂pek − 2(ρk − ρk0)

Ck :=
∂F3

∂ρk
= −

(αkρk)0
ρk2

(78)

The computation of the root of the the multivariate function F is accomplished by means of a standard
Newton-Raphson method. The iterative scheme is stopped when the relative increment is sufficiently
small and a robust initial guess has been shown to be F0 = (ρ10, ρ20, p

′

I(t0))
T . Therefore, the approxi-

mation of the equilibrium states (ρ∗1, ρ
∗
2, p

∗) can be summarized into the following algorithm:

1. Compute the mixture velocity u∗ according to (71);

2. Compute p∗, ρ∗k for each k by finding the roots of the non linear function F given in (75)-(76);

3. Update velocity, density and pressure of each phase by assigning u∗, ρ∗k, p
∗.

4. Reconstruct the vector of conserved variables and go to the following time step.

Notice that such procedure is a generalization of the standard splitting strategy proposed in [28,
41, 40].

D.2 A projection-relaxation strategy

We propose a second relaxation strategy, that aims at avoiding the computation of the continuous
limit of the source term R in (36). This is accomplished making use of the approach developed by
Murrone et al in [33]. Such a strategy starts with the introduction of a small parameter to model the
speed of the relaxation. More precisely, we introduce the relaxation time ε → 0, so that (34) becomes

d

dt

(

α
(k)
i U

(k)
i

)

+
1

∆x
Gi(Ui) =

λi

ǫ
R(Ui) (79)

As discussed in Appendix C, we define a set of relaxed states u which, upon mapping to conserved
variables U∞ = MU(u), defines a root of the function R, namely R

(
MU(u)

)
= 0. Based on the

discussion exposed in Appendix C, there exist a natural parametrization in terms of the primitive
variables, namely
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u =











α1

ρ1
u
p
α2

ρ2











7−→ MV(u) = V∞ =















α1

ρ1
u
p
α2

ρ2
u
p















(80)

Then, looking for a solution of the form W = MW(u)+ǫY, one assumes that there exists an expansion
of the source term R such that

R(W) = R(M(u)) + ǫJWR(M(u))Y +O(ǫ2) (81)

where J is the Jacobian of the source term R in terms of the variables W evaluated at W = MW(u).
Then (79) becomes

d

dt

(

α
(k)
i U

(k)
i

)

+
1

∆x
Gi(Ui) = JUR(M(u))Y +O(ǫ) (82)

If we are able to find the projection matrix PU onto the kerJUR(M(u)), then neglecting the second
order terms we get

PU

(

d

dt

(

α
(k)
i U

(k)
i

)

+
1

∆x
Gi(Ui)

)

= 0 (83)

Equations (83) tell us the following: advancing the solution with the hyperbolic step followed by
the multiplication of PU is yielding relaxed states. Notice that, this strategy has in principle just the
cost of a matrix vector multiplication, in contrast to the rich variety of iterative processes that can
arise form solving the continuous limit (36) as λi → ∞ .
One can show that each solver that admits the splitting form (40) are associated to the same projection
matrix Π proposed in [4], in case of transonic flow regimes. Indeed, the Jacobian matrix in terms of
the primitive variables of M reads

dMV

u := JuM
V =















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0















(84)

If the solver under consideration admits the representation (40), the relaxation term (63) for phase
k reduces to

Rk(U) :=







σkl − σlk
0

plk − pkl
plkσlk − pklσkl






= (σlk − σkl)







−1
0
0

1
2(plk + pkl)






+ (plk − pkl)







0
0
1

1
2(σlk + σkl)







(85)
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We then deduce clearly that the range of JUR(M(u)) is spanned by the vectors

V1 =















1
0
0
−p
−1
0
0
p















V2 =















0
0
1
u
0
0
−1
−u















(86)

However, notice that the Jacobian of the Maxwellian is written in terms of the primitive variables,
therefore we need to transform Vj in terms of the primitive variables. This can be done, by com-
puting the linear transformation T between conservative and primitive variables (see [4]), such that
straightforward computations lead to

T (M(u))V1 =

















1
− ρ1

α1

0

−
ρ1a

2
1

α1

−1
ρ2
α2

0
ρ2a

2
2

α2

















T (M(u))V2 =
















0
0
1

α1ρ1

0
0
0

− 1
α2ρ2

0
















(87)

Assembling the matrix S = [dM(u), T (M(u))V1, , T (M(u))V2] and inverting it, yields the projec-
tion matrix

Π =












1 0 0 α1α2
d

0 0 0 −α1α2
d

0 1 0 −α2ρ1
d

0 0 0 α2ρ1
d

0 0 m1
m1+m2

0 0 0 m2
m1+m2

0

0 0 0
α1ρ2a

2
2

d
0 0 0

α2ρ1a
2
1

d

0 0 0 −α1α2
d

1 0 0 α2α1
d

0 0 0 α1ρ2
d

0 1 0 −α1ρ2
d












(88)

where mk := αkρk, ak denotes the sound speed of phase k and d := α1ρ2a
2
2 + α2ρ1a

2
1. We point out

that the form of Π is independent on the EOS for each phase, but has been derived by the assumption
on the RS (40). Therefore, the result of [4] can be extended to each solver that fulfills (40).
Finally, we design our alternative relaxation strategy as follows

1. From the values coming from the hyperbolic step U0, compute the vector of primitive variables
V0 and the projection matrix Π.

2. Compute the vector of reduced variables

u∞ :=











α∞
1

ρ∞1
u∞

p∞

α∞
2

ρ∞2











= ΠV0

3. Build up the vector of conserved variables U∞ = MU(u∞) and V∞ = MV(u∞).
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