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Dynamic super-resolution in particle

tracking problems ∗

Ping Liu† Habib Ammari†

Particle tracking in a live cell environment is concerned with reconstructing

the trajectories, locations, or velocities of the targeting particles, which holds

the promise of revealing important new biological insights. The standard ap-

proach of particle tracking consists of two steps: first reconstructing statically

the source locations in each time step, and second applying tracking techniques

to obtain the trajectories and velocities. In contrast to the standard approach,

the dynamic reconstruction seeks to simultaneously recover the source locations

and velocities from all frames, which enjoys certain advantages. In this paper, we

provide a rigorous mathematical analysis for the resolution limit of reconstructing

source number, locations, and velocities by general dynamical reconstruction in

particle tracking problems, by which we demonstrate the possibility of achiev-

ing super-resolution for the dynamic reconstruction. We show that when the

location-velocity pairs of the particles are separated beyond certain distances

(the resolution limits), the number of particles and the location-velocity pair can

be stably recovered. The resolution limits are related to the cut-off frequency

of the imaging system, signal-to-noise ratio, and the sparsity of the source. By

these estimates we also derive a stability result for a sparsity-promoting dynamic

reconstruction. In addition, we further show that the reconstruction of velocities

has a better resolution limit which improves constantly as the particles moving.

This result is derived by a crucial observation that the inherent cut-off frequency

for the velocity recovery can be viewed as the total observation time multiplies

the cut-off frequency of the imaging system, which may lead to a better resolution

limit as compared to the one for each diffraction-limited frame. It is anticipated

that this crucial observation can inspire many new reconstruction algorithms that

significantly improve the resolution of particle tracking in practice. In addition, we

propose super-resolution algorithms for recovering the number and values of the

velocities in the tracking problem and demonstrate theoretically or numerically

their super-resolution capability.

*This work was supported in part by the Swiss National Science Foundation grant number 200021–200307.
†Department of Mathematics, ETH Zürich, Rämistrasse 101, CH-8092 Zürich, Switzerland

(ping.liu@sam.math.ethz.ch, habib.ammari@math.ethz.ch).
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1 INTRODUCTION

The problem of particle tracking is of particular importance in many modern imaging experi-

ments such as visualization of cell migration and subcellular dynamics [28, 37, 42, 54]. It is also

utilized in ultrafast ultrasound localization microscopy to super-resolve structures of vascular

and velocities of blood flow [17, 22]. The conventional tracking methods in above applications

generally consist of two main image processing steps: 1) particle detection, and 2) particle

linking. The former refers to determining the locations of particles in each frame and the later

refers to linking particles between consecutive frames. However, this static reconstruction

strategy suffers from two major issues. The first key issue is that the particles are not well-

separated in some of the frames which results in unstable recovery of the source locations or

abandon of a large amount of frames where particles are closely-spaced. The second issue is

the ambiguities and heavy computational burden in linking particles with high densities and

velocities [37,38,45]. To fix these issues, in [4], the authors consider a model where the particles

move with constant velocities (in a short period) and propose a new dynamic reconstruction

method to simultaneously recover the source locations and velocities from measurements of

all the frames. However, theoretically the algorithm still requires that the point sources should

be separated beyond Rayleigh limit in each frame for a stable recovery, which hampered

its application in the case when sources are closely-spaced in some of the frames. In this

paper, in order to understand the super-resolution capability of the tracking problem, we

aim to analyze the resolution limit for super-resolving the source number, location-velocity

pairs, and velocities in the tracking problem . We also provide super-resolution algorithms

for reconstructing the velocities of moving particles which are able to super-resolve velocities

even when static reconstruction completely fails.

1.1 OUR MODEL AND CONTRIBUTIONS

Let us first introduce our model and main contributions. We consider the same model for

reconstructing dynamic point sources (or particles) as the one in [4]. We remark that we

will use bold symbols for vectors, matrices and some functions, and ordinary ones for scalar

values in our models and discussions throughout the paper. To be specific, we consider a

cluster of point sources that are moving constantly, represented by a time-varying measures

µt , where t ∈ [0,η] with η> 0 being the observation window. Since η is expected to be small,

the dynamics of each point can be linearly approximated. Thus each point is modeled as a

particle moving with a constant velocity:

µt =
n
∑

j=1

a jδy j+v jτt , t = 0, · · · ,T,

where y j ∈R
d are the initial source locations and v j ∈R

d are the velocities. The τt , t = 0, · · · ,T

is the time step in [0,η] at which we observe the samples. We remark that in the applications

of measuring the velocity of blood flow [17, 22] and particle tracking velocimetry [15], we may

have a larger observation window η and our model is much more applicable. The measurement
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at each time step is a noisy Fourier data in a bounded domain,

Yt (ω) =
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω+Wt (ω), ω ∈R

d , ||ω||2 ≤Ω, t = 0, · · · ,T, (1.1)

where ⊤ denotes the transpose, Ω is the cut-off frequency of the imaging system, Wt is an

additive noise with |Wt (ω)| <σ and σ being the noise level. We denote

mmin := min
j=1,··· ,n

|a j |.

For the tracking problem in R
d , we are interested in reconstructing the amplitude, location,

and velocity pair set
{

(a j ,y j ,τv j )
}n

j=1
,

from the measurements Yt ’s.

In [4], the authors proposed a fully dynamical method to reconstruct simultaneously the

source locations and velocities. They cast the inverse problem as a total variation optimization

problem satisfying the measurement constraints and showed that under certain conditions,

the optimization is able to reconstruct the amplitudes, locations and velocities of source from

noiseless measurements with infinite precision. However, for the noisy case, theoretically, to

stably recover the source, the point sources are required to be separated beyond Rayleigh limit

in each frame, which is definitely not super-resolution. Thus the superiority of the dynamic

reconstruction over the static recovery in the tracking problem is still unclear. Since when the

spikes are separated beyond Rayleigh limit, the static reconstruction is also able to recover

stably all the µt ’s.

In this paper, in contrast to [4], we consider the locations and velocities of point sources

to be closely-spaced in sub-Rayleigh regimes respectively, and explore the ability of super-

resolution of the dynamic reconstruction in the tracking problem. More precisely, we analyze

the resolution limit for recovering the number, locations, and velocities of the source from the

measurement constraint. We prove that when

min
j 6=p

∣

∣

∣

∣

∣

∣(y⊤j ,τv⊤j )− (y⊤p ,τv⊤p )
∣

∣

∣

∣

∣

∣

2
≥

C1(d ,n)

Ω

( σ

mmin

) 1
2n−2

,

where C1(d ,n) is an explicit constant only related to space dimensionality d and source

number n (so do the following constants C2(d ,n),C3(d ,n),C4(d ,n)), then we can recover the

source number n in the dynamic reconstruction. When

min
j 6=p

∣

∣

∣

∣

∣

∣(y⊤j ,τv⊤j )− (y⊤p ,τv⊤p )
∣

∣

∣

∣

∣

∣

2
≥

C2(d ,n)

Ω

( σ

mmin

) 1
2n−1

,

then we can stably recover the source locations and velocities. The estimate demonstrates that

the dynamic reconstruction could resolve the location-velocity pairs in sub-Rayleigh regimes

for sufficiently large signal-to-noise ratio. It also indicates that the dynamic reconstruction

could recover source locations and velocities even when static reconstruction fails in some of

the frames, which demonstrates its superiority.
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Moreover, by above results, we also show that any algorithms targeting at the sparsest

solution satisfying measurement constraint could achieve the resolution C2(d ,n)
Ω

(

σ
mmin

) 1
2n−1

,

which demonstrates the favorable performance and the superiority of sparsity-promoting

dynamic reconstruction as compared to the static reconstruction methods. This is consistent

with the numerical results in [4] for comparison between reconstructions by TV minimization

and static method.

In some applications, the recovery of the velocities of the particles is more interesting than

the location recovery. For instance, in the ultrafast ultrasound localization microscopy based

non-invasive super-resolution vascular imaging [17, 22], the velocities of the blood flow with a

large dynamic range can be extracted by reconstructing the velocities of microbubbles inside.

We also note that the particle tracking is a common method in velocimetry [15] which seeks to

measure accurate velocities of fluid. We thus further consider the reconstruction of individual

velocities. By some projection methods, we demonstrate super-resolution for resolving the

number of point sources and value of velocities. More precisely, when the minimum separation

distance of velocities satisfies

min
j 6=p

∣

∣

∣

∣

∣

∣τv j −τvp

∣

∣

∣

∣

∣

∣

2
≥

C3(d ,n)

TΩ

( σ

mmin

) 1
2n−2

,

we can stably recover the number of point sources. When

min
j 6=p

∣

∣

∣

∣

∣

∣τv j −τvp

∣

∣

∣

∣

∣

∣

2
≥

C4(d ,n)

TΩ

( σ

mmin

) 1
2n−1

,

we can stably reconstruct all the velocities. The results are derived by a crucial observation that

the inherent cut-off frequency for recovering velocities τv j ’s can be viewed as TΩ, by which

we obtain better resolution limits. We hope this observation could inspire new algorithms

for super-resolving velocities in the tracking problem. For fixed dimensionality d and source

number n, all the above theoretical results for the resolution limits are optimal in the sense

that at the same separation order there are counter examples in the worst-case scenario.

We also propose super-resolution algorithms for resolving the source number and velocities

respectively. They are demonstrated theoretically or numerically to achieve the same order of

the resolution limits that derived above. We also demonstrate numerically their superiority

over the static reconstruction.

1.2 RELATED WORKS

The main motivations of our work are ultrasound localization microscopy (ULM) [13, 14,

17, 19, 22] and the dynamic reconstruction algorithm proposed in [4]. The concept of ULM

is drawing increasing research interest in recent years, due to its ability to solve the trade-

off between spatial resolution, penetration depth, and acquisition time when incorporating

with ultrasound contrast agents and ultrafast imaging [17, 22], by which the conventional

ultrasound imaging and other non-invasive medical imaging methods for living organs are

usually limited. Specifically, based on the diffraction theory, the resolution of conventional

ultrasound imaging is limited by half of the wavelength of the ultrasound waves which is of the
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order of 300µm. Thus the blood vessels separated below 300µm is unable to be distinguished

by the conventional ultrasound imaging. But the ultrasound localization microscopy focus on

localizing some targeting particles (such as microbubbles) inside the blood vessels, giving rise

to a particle tracking problem [22] where both the locations and velocities are of interest. By

this innovative method, tenfold increase in resolution is achieved as compared to conventional

ultrasound imaging. Moreover, the ultrafast ultrasound imaging techniques also significantly

reduce the acquisition time of ULM imaging [22].

However, the tracking approach in [22] relies on static reconstruction of point sources in

each frame which suffers from some drawbacks. Among them the key issue is that a lot of

data are discarded whenever static reconstruction cannot be performed as particles being too

close. To solve these issues, in [4] the authors proposed a new method for the tracking problem

based on a fully dynamical inversion scheme, in which the locations and velocities of the point

sources are reconstructed simultaneously. To be specific, assuming the targeting particles

are moving at constant velocities and considering similar measurement constraint as (1.1),

they reconstruct source locations and velocities by a total variation optimization problem.

They majorly demonstrate that, for the noiseless measurement, if in more than three time

steps the point sources are well-separated to satisfy certain static dual certificates and the

configuration does not admit any "ghost particles" defined there, then the TV optimization

successfully recover the source locations and velocities. However, for recovering from the

noisy measurement, the point sources are required to be separated by more than Rayleigh

limit in each frame to ensure a stable recovery of the locations and velocities. Although the

super-resolution ability of the algorithm isn’t exhibited in the above theoretical result, but it is

confirmed by the numerical experiments there. Motivated by this, in this paper we provide

a rigorous analysis for the resolution limit of the dynamic reconstruction in the tracking

problems and theoretically demonstrate the advantages of dynamic reconstruction over the

static reconstruction methods.

On the other hand, the resolution analysis in this paper also follows the line of the au-

thors’ previous researches on exploring the super-resolution capability for different imaging

configurations [32–35]. Specifically, to analyze the resolution for recovering multiple point

sources from a single measurement, in [33–35] the authors defined "computational resolution

limits" which characterize the minimum required distance between point sources so that their

number and locations can be stably resolved under certain noise level. Based on a new ap-

proximation theory in a so-called Vandermonde space, they derived bounds for the resolution

limits of one- and multi- dimensional super-resolution problems [33–35]. In particular, they

showed that the computational resolution limit for number and location recovery should be

respectively
Cnum(d ,n)

Ω
( σ

mmin
)

1
2n−2 and

Csupp(d ,n)

Ω
( σ

mmin
)

1
2n−1 where Cnum(d ,n),Csupp(d ,n) are certain

constants depending on space dimensionality d and source number n. In addition to the

single measurement case, the stability for sparsity-promoting super-resolution algorithms in

multi-illumination imaging was also derived [32].

There were also many mathematical theories for estimating the stability of super-resolution

from the perceptive of minimax error estimation. In [20], Donoho considered a grid setting

where a discrete measure is supported on a lattice (spacing by ∆) and regularized by a so-called

"Rayleigh index" b. He demonstrated that the minimax error for the amplitude reconstruction
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is bounded from below and above by SRF 2b−1σ and SRF 2b+1σ respectively with σ being the

noise level and the super-resolution factor SRF = 1/(Ω∆). More recently, inspired by the huge

success of new super-resolution modalities [8, 25, 26, 44, 50] and the popularity of researches

for super-resolution algorithms [5, 9, 18, 21, 40, 41, 49], the study of super-resolution capability

of imaging problems also becomes popular in applied mathematics. In [16], the authors

considered n-sparse point sources supported on a grid and obtained sharper lower and upper

bounds (both SRF 2n−1σ) for the minimax error of amplitude recovery than those in [20]. The

case of multi-clustered point sources was considered in [6, 30] and similar minimax error

estimations were derived. In [3, 7], the authors considered the minimax error for recovering

off-the-grid point sources. Based on an analysis of the "prony-type system", they derived

bounds for both amplitude and location reconstructions of the point sources. More precisely,

they showed that for σ/ (SRF )−2p+1 where p is the number of point sources in a cluster, the

minimax error for the amplitude and the location recoveries scale respectively as (SRF )2p−1σ,

(SRF )2p−2σ/Ω, while for the isolated non-clustered source, the corresponding minimax error

for the amplitude and the location recoveries scale respectively as σ and σ/Ω. We also refer

the readers to [10, 39] for understanding the resolution limit from the perceptive of sample

complexity.

1.3 ORGANIZATION OF THE PAPER

The rest of the paper is organized in the following way. In Section 2, we present the main

results about the stability of location-velocity pair reconstruction in the tracking problem.

More precisely, in Section 2.1, we state the results for the stability of number recovery of the

point sources, and in Section 2.2 those for the stability of the recovery of the location-velocity

pairs. In Section 2.3, we present the stability estimate for a sparsity-promoting algorithm in

the tracking problem. In Section 3, we demonstrate better resolutions for the number and

value reconstruction of velocities. In Section 4 and Section 5, we propose projection-based

super-resolution algorithms for the number and value recovery of the velocities respectively.

Numerical experiments are also conducted to demonstrate their efficiency. Section 6 is devoted

to some concluding remarks and future works. In Section 7 and Section 8, we prove our main

results in this paper.

2 MAIN RESULTS ABOUT THE RECOVERY OF LOCATION-VELOCITY PAIRS

In this section, we present the results for the stability of the dynamic reconstruction in the

tracking problem. Suppose that a series of images is generated by n d-dimensional point

sources located at y j ’s with amplitudes a j ’s and velocities v j ’s. The inverse problem we are

concerned with is to reconstruct the number and location-velocity pairs of the point sources.

To be more specific, we consider the set of parameters {(a j ,y j ,τv j )}n
j=1

and denote the vectors

of locations and velocities as

α j =
(

y j

τv j

)

.

We first consider the stability of reconstructing the number and value of the location-velocity

pairs α j ’s. Because we are interested in the capability of super-resolution, we consider recov-
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ering point sources with close y j and τv j ’s. We define

B m
δ (x) :=

{

y
∣

∣

∣ y ∈R
m , ||y−x||2 < δ

}

,

and assume that α j ∈ B m
δ

(0), j = 1, · · · ,n, for certain δ > 0. On the other hand, in order

to analyze the stability of the reconstruction, below we first need to define a σ-admissible

parameter set of Yt ’s. In the following sections, we shall consider recovering the number and

value of location-velocity pairs from all the σ-admissible parameter sets.

Definition 2.1. Given measurement Yt ’s in (1.1), we say that {(â j , ŷ j ,τv̂ j )}k
j=1

is a σ-admissible

parameter set of Yt ’s if

∣

∣

∣

k
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−Yt (ω)
∣

∣

∣<σ, ||ω||2 ≤Ω, for all t = 0,1, · · · ,T.

Definition 2.2. We say a parameter set is a n-sparse parameter set if it contains exactly n

different elements.

2.1 STABILITY OF NUMBER RECOVERY IN THE TRACKING PROBLEM

In this subsection, we present our main results for recovering the number of point sources in

the tracking problem. Define

ξ(k) =
{

∑k
j=1

1
j

, k ≥ 1,

0, k = 0.
(2.1)

We have the following theorem for the recovery of source number in the d-dimensional

tracking problem. Its proof is given is Section 7.

Theorem 2.1. Let n ≥ 2 and T ≥ n(n−1)
2

. Let the measurement Yt ∈ R
d , t = 0, · · · ,T , in (1.1) be

generated by a n-sparse parameter set {(a j ,y j ,τv j )}n
j=1

with α j :=
(

y j

τv j

)

∈ B 2d
π

(n+1)Ω

(0). Assume

that the following separation condition is satisfied

min
p 6= j ,1≤p, j≤n

∣

∣

∣

∣

∣

∣αp −α j

∣

∣

∣

∣

∣

∣

2
≥

8.8eπ2
√

( n(n−1)
2

)2 +1(π/2)d−1
(

n(n−1)
π

)ξ(d−1)

Ω

( σ

mmin

) 1
2n−2

, (2.2)

where ξ(d −1) is defined as in (2.1). Then there does not exist any σ-admissible parameter set of

Yt ’s with less than n elements.

Remark 2.1. We remark that the condition α j ∈ B 2d
π

(n+1)Ω

(0) in the above theorem and similar

conditions in the rest of the paper can be straightforwardly extended to α j ∈ B 2d
π

(n+1)Ω

(x) for a

non-zero vector x. Also, they can be easily extended to α j ∈ B 2d
δ

(0) for a larger δ with a slight

modification of the results.
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Theorem 2.1 reveals that, for fixed space dimensionality d and source number n, when

min j 6=p

∣

∣

∣

∣

∣

∣

(

y j

τv j

)

−
(

yp

τvp

)

∣

∣

∣

∣

∣

∣

2
≥O

(

1
Ω

( σ
mmin

)
1

2n−2

)

, it is possible to reconstruct the exact source num-

ber in the tracking problem. We remark that since the space dimensionality of interest is

usually small (d = 1,2,3), the amplification factor in (2.2) due to the space dimensionality is

not large.

We next show that in the worst-case scenario, the order O( 1
Ω

( σ
mmin

)
1

2n−2 ) is optimal without

further information on the velocities. This is shown by Proposition 2.2. We first present a result

for the d-dimensional static super-resolution problem which helps to derive Propositions 2.2

and 2.3.

Proposition 2.1. For given 0 < σ < mmin and integer n ≥ 2, there exist a j ∈ C,y j ∈ R
d , j =

1, · · · ,n, and â j ∈C, ŷ j ∈R
d , j = 1, · · · ,n −1 such that

∣

∣

∣

n−1
∑

j=1

â j e i ŷ⊤
j ω−

n
∑

j=1

a j e
i y⊤

j
ω

∣

∣

∣<σ, ||ω||2 ≤Ω.

Moreover,

min
1≤ j≤n

|a j | = mmin, min
p 6= j

∣

∣

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

∣

∣

2
=

0.81e−
3
2

Ω

( σ

mmin

) 1
2n−2

.

Proof. See Proposition 2.4 in [33].

Proposition 2.2. For given 0 < σ< mmin and integer n ≥ 2, there exist a n-sparse parameter

set {(a j ,y j ,τv j )}n
j=1

, y j ∈R
d ,v j ∈R

d , and a (n −1)-sparse parameter set {(â j , ŷ j ,τv̂ j )}n−1
j=1

, ŷ j ∈
R

d , v̂ j ∈R
d , such that

∣

∣

∣

n−1
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω

∣

∣

∣<σ, ||ω||2 ≤Ω, t = 0, · · · ,T.

Moreover,

min
1≤ j≤n

|a j | = mmin, min
p 6= j

∣

∣

∣

∣

∣

∣αp −α j

∣

∣

∣

∣

∣

∣

2
=

0.81e−
3
2

Ω

( σ

mmin

) 1
2n−2

,

where α j =
(

y j

τv j

)

.

Proof. Let â j , ŷ j , a j ,y j ’s be the ones in Proposition 2.1. Then we have

∣

∣

∣

n−1
∑

j=1

â j e i ŷ⊤
j ω−

n
∑

j=1

a j e
i y⊤

j
ω

∣

∣

∣<σ, ||ω||2 ≤Ω,ω ∈R
d .

When v̂ j = v j = v, we also have

∣

∣

∣

n−1
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω

∣

∣

∣<σ, ||ω||2 ≤Ω, t = 0, · · · ,T.

The other parts of the proposition are easy to verify.
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Proposition 2.2 holds for the case when all τv j ’s are equal or very close to each other. If the

velocities are not close to each other, we next have Proposition 2.3, which shows that the order

of the resolution of number recovery in Theorem 2.1 is nearly optimal for the reconstruction

with a short time period (i.e., when T is small). For a tracking problem with long time period,

we expect that the resolution for recovering the number of different velocities is of order

O( 1
TΩ

( σ
mmin

)
1

2n−2 ). This will be demonstrated by results in Section 3.

Proposition 2.3. For given 0 <σ< mmin and integer n ≥ 2, there exist a n-sparse parameter set

{(a j ,y j ,τv j )}n
j=1

with different v j ’s, and a (n −1)-sparse parameter set {(â j , ŷ j ,τv̂ j )}n−1
j=1

, such

that
∣

∣

∣

n−1
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω

∣

∣

∣<σ, ||ω||2 ≤Ω, t = 0, · · · ,T.

Moreover,

min
1≤ j≤n

|a j | = mmin, min
p 6= j

∣

∣

∣

∣

∣

∣αp −α j

∣

∣

∣

∣

∣

∣

2
=

0.81
p

2e−
3
2

(T +1)Ω

( σ

mmin

) 1
2n−2

, (2.3)

where α j =
(

y j

τv j

)

.

Proof. Let ∆= 0.81e− 3
2

Ω

(

σ
mmin

) 1
2n−2

. For the one-dimensional case, as in the proof in [33] or [34],

Proposition 2.1 holds when the n −1 and n point sources are located at

−(n −1)∆, −(n −2)∆, · · · , 0, ∆, (n −1)∆,

with certain intensities â j , a j ’s. More specifically, let x̂ j =− j∆, x j = ( j −1)∆, j = 1, · · · ,n, we

have
∣

∣

∣

n−1
∑

j=1

â j e i x̂ jω−
n−1
∑

j=1

a j e i x jω
∣

∣

∣<σ, |ω| ≤Ω, (2.4)

with certain â j , a j ’s. We consider in the proposition the above â j , a j ’s and the following

ŷ j ,τv̂ j ,y j ,τv j ’s,

(ŷ⊤1 ,τv̂⊤1 ) =
−∆

T +1

1
p

d
(1,1, · · · ,1), · · · , (ŷn ,τv̂n) =

−(n −1)∆

T +1

1
p

d
(1,1, · · · ,1),

and

(y⊤1 ,τv⊤1 ) = (0,0, · · · ,0), (y⊤2 ,τv⊤2 ) =
∆

T +1

1
p

d
(1,1, · · · ,1), · · · ,

(y⊤n ,τv⊤n ) =
(n −1)∆

T +1

1
p

d
(1,1, · · · ,1).

Note that (2.3) is satisfied. On the other hand, for any ||ω||2 ≤ Ω,ω ∈ R
d , t = 0, · · · ,T , let

9



ωt =
(

ω

tω

)

, we have

∣

∣

∣

n−1
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω

∣

∣

∣=
∣

∣

∣

n−1
∑

j=1

â j e i (ŷ⊤
j ,τv̂⊤

j )ωt −
n
∑

j=1

a j e
i (y⊤

j
,τv⊤

j
)ωt

∣

∣

∣

=
∣

∣

∣

n−1
∑

j=1

â j e i (ŷ⊤
j ,τv̂⊤

j )(u+v) −
n
∑

j=1

a j e
i (y⊤

j
,τv⊤

j
)(u+v)

∣

∣

∣

(

u+v =ωt ,u =
(1+ t )ω

2
p

d
(1, · · · ,1)⊤, |ω| ≤Ω,u⊤v = 0

)

=
∣

∣

∣

n−1
∑

j=1

â j e i (ŷ⊤
j ,τv̂⊤

j )u −
n
∑

j=1

a j e
i (y⊤

j
,τv⊤

j
)u

∣

∣

∣

=
∣

∣

∣

n−1
∑

j=1

â j e i x̂ j ω̂−
n
∑

j=1

a j e i x j ω̂
∣

∣

∣,

where

x̂ j = (ŷ⊤j ,τv̂⊤j )
(1+T )

2
p

d
(1,1, · · · ,1)⊤ =− j∆, x j = (y⊤j ,τv⊤j )

(1+T )

2
p

d
(1,1, · · · ,1)⊤ = ( j −1)∆,

and
∣

∣

∣ω̂
∣

∣

∣=
∣

∣

∣

t +1

T +1
ω

∣

∣

∣≤Ω.

Furthermore, by (2.4), we thus have

∣

∣

∣

n−1
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω

∣

∣

∣<σ, ||ω||2 ≤Ω, t = 0, · · · ,T.

2.2 STABILITY OF LOCATION AND VELOCITY RECOVERY IN THE TRACKING PROBLEM

In this subsection, we present our main results for recovering the locations and velocities of

point sources in the d-dimensional tracking problem. We have the following theorem whose

proof is given in Section 7.

Theorem 2.2. Let n ≥ 2 and T ≥ n(n+1)
2

. Let the measurement Yt , t = 0, · · · ,T, in (1.1) be gen-

erated by a n-sparse parameter set {(a j ,y j ,τv j )}n
j=1

with α j :=
(

y j

τv j

)

∈ B 2d
(n−1)π

n(n+2)Ω

(0). Assume

that

dmin := min
p 6= j

∣

∣

∣

∣

∣

∣αp −α j

∣

∣

∣

∣

∣

∣

2
≥

11.76eπ2
√

( (n+1)n
2

)2 +14d−1
(

(n +2)(n +1)/2
)ξ(d−1)

Ω

( σ

mmin

) 1
2n−1

,

(2.5)

where ξ(d−1) is defined as in (2.1). If a n-sparse parameter set {(â j , ŷ j ,τv̂ j )}n
j=1

with α̂ j :=
(

ŷ j

τv̂ j

)

supported on B 2d
(n−1)π

n(n+2)Ω

(0) is a σ-admissible parameter set of Yt ’s, then after reordering the α̂ j ’s,

we have
∣

∣

∣

∣

∣

∣α̂ j −α j

∣

∣

∣

∣

∣

∣

2
<

dmin

2
.

10



Moreover, we have

∣

∣

∣

∣

∣

∣α̂ j −α j

∣

∣

∣

∣

∣

∣

2
≤

C (d ,n)

Ω
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n, (2.6)

where SRF is the super-resolution factor defined by π
dminΩ

and

C (d ,n) =
p

6π(2π)2n−2
(

(
n(n +1)

2
)2 +1

) 2n−1
2 (

4d−1((n +2)(n +1)/2)ξ(d−1)
)2n−1

n24n−2e2nπ− 1
2 .

Theorem 2.2 demonstrates that for fixed dimensionality d and source number n, when

min j 6=p

∣

∣

∣

∣

∣

∣

(

y j

τv j

)

−
(

yp

τvp

)

∣

∣

∣

∣

∣

∣

2
≥O

(

1
Ω

( σ
mmin

)
1

2n−1

)

, it is possible to stably reconstruct both the source

locations and velocities in the tracking problem. It also indicates that even when in some

of the frames, the point sources are spaced so close that are unable to be stably resolved,

but the dynamic reconstruction can still stably resolve the source locations and velocities. It

demonstrates the superiority of dynamic reconstruction over the static reconstruction method.

In addition, by the following results, we shall see that the order O( 1
Ω

( σ
mmin

)
1

2n−1 ) is optimal in the

worst-case scenario without further information on the velocities. We first recall the following

result on the location recovery in the static super-resolution problem.

Proposition 2.4. For given 0 <σ< mmin and integer n ≥ 2, let

∆=
0.49e−

3
2

Ω

( σ

mmin

) 1
2n−1

. (2.7)

Then there exist a j ∈C, j = 1, · · · ,n and y j ’s at {(−∆,0, · · · ,0)⊤, (−2∆,0, · · · ,0)⊤, (−n∆,0, · · · ,0)⊤}

and another â j ∈C, j = 1, · · · ,n and ŷ j ’s at {(0,0, · · · ,0)⊤, (∆,0, · · · ,0)⊤, ((n −1)∆,0, · · · ,0)⊤} such

that
∣

∣

∣

n
∑

j=1

â j e i ŷ⊤
j ω−

n
∑

j=1

a j e
i y⊤

j
ω

∣

∣

∣<σ, ||ω||2 ≤Ω, (2.8)

and either min1≤ j≤n |a j | = mmin or min1≤ j≤n |â j | = mmin.

Proof. See Proposition 2.8 in [33].

As a direct consequence of Proposition 2.4, we have the following result.

Proposition 2.5. For given 0 <σ< mmin and integer n ≥ 2, let

∆=
0.49e−

3
2

Ω

( σ

mmin

) 1
2n−1

. (2.9)

Then there exist n-sparse parameter set {(a j ,y j ,τv j )}n
j=1

’s with v j = v, j = 1, · · · ,n and

y1 = (−∆,0, · · · ,0)⊤,y2 = (−2∆,0, · · · ,0)⊤, · · · ,yn = (−n∆, · · · ,0)⊤,

and n-sparse parameter set {(â j , ŷ j ,τv̂ j )}n
j=1

’s with v̂ j = v, j = 1, · · · ,n and

ŷ1 = (0, · · · ,0)⊤, ŷ2 = (∆,0, · · · ,0)⊤, · · · , ŷn = ((n −1)∆, · · · ,0)⊤

11



such that
∣

∣

∣

n
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω

∣

∣

∣<σ, ||ω||2 ≤Ω, t = 0, · · · ,T,

and either min1≤ j≤n |a j | = mmin or min1≤ j≤n |â j | = mmin.

This result holds for the case when all τv j ’s are equal or very close to each other with respect

to T . Thus, theoretically the resolution of y j ’s in the worst-case is expected to be of order

O
(

1
Ω

( σ
mmin

)
1

2n−1

)

.

If the velocities are not close to each other, we next have Proposition 2.6, which shows that

the order of the resolution in Theorem 2.2 is nearly optimal for the reconstruction problem

with short time period (i.e., when T is small). For a tracking problem with long time period,

we expect the resolution for the velocities to be of order O( 1
TΩ

( σ
mmin

)
1

2n−1 ). This will also be

demonstrated by results in Section 3.

Proposition 2.6. For given 0 <σ< mmin and integer n ≥ 2, let

∆=
0.49e−

3
2

(T +1)Ω

( σ

mmin

) 1
2n−1

. (2.10)

Then there exist n-sparse parameter set {(â j , ŷ j ,τv̂ j )}n
j=1

’s with (ŷ⊤1 , v̂⊤1 ) = − ∆p
d

(1, · · · ,1), · · · ,

(ŷ⊤n , v̂⊤n ) =− n∆p
d

(1, · · · ,1), and n-sparse parameter set {(a j ,y j ,τv j )}n
j=1

’s with (y⊤1 ,v⊤1 ) = (0,0, · · · ,0),

(y⊤2 ,v⊤2 ) = ∆p
d

(1, · · · ,1), · · · , (y⊤n ,v⊤n ) = (n−1)∆p
d

(1, · · · ,1) such that

∣

∣

∣

n
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω

∣

∣

∣<σ, ||ω||2 ≤Ω, t = 0, · · · ,T,

and either min1≤ j≤n |a j | = mmin or min1≤ j≤n |â j | = mmin.

Proof. Let ∆̂= 0.49e− 3
2

Ω

(

σ
mmin

) 1
2n−1

. Let x̂ j =− j ∆̂, x j = ( j −1)∆̂, j = 1, · · · ,n, by Proposition 2.4 for

the one-dimensional case we have

∣

∣

∣

n
∑

j=1

â j e i x̂ jω−
n−1
∑

j=1

a j e i x jω
∣

∣

∣<σ, |ω| ≤Ω, (2.11)

for certain â j , a j ’s. We consider the above â j , a j ’s and the following ŷ j ,τv̂ j ,y j ,τv j ’s,

(ŷ⊤1 ,τv̂⊤1 ) =
−∆
p

d
(1, · · · ,1), · · · , (ŷ⊤n ,τv̂⊤n ) =

−n∆
p

d
(1, · · · ,1),

and

(y⊤1 ,τv⊤1 ) = (0, · · · ,0), (y⊤2 ,τv⊤2 ) =
∆
p

d
(1, · · · ,1), · · · , (y⊤n ,τv⊤n ) =

(n −1)∆
p

d
(1, · · · ,1).

12



For any ||ω||2 ≤Ω, t = 0, · · · ,T , we obtain that

∣

∣

∣

n
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω

∣

∣

∣=
∣

∣

∣

n
∑

j=1

â j e i (ŷ⊤
j ,τv̂⊤

j )ωt −
n
∑

j=1

a j e
i (y⊤

j
,τv⊤

j
)ωt

∣

∣

∣

=
∣

∣

∣

n
∑

j=1

â j e i (ŷ⊤
j ,τv̂⊤

j )(u+v) −
n
∑

j=1

a j e
i (y⊤

j
,τv⊤

j
)(u+v)

∣

∣

∣

(

u+v =ωt ,u =
(1+ t )ω

2
p

d
(1, · · · ,1)⊤, |ω| ≤Ω,u⊤ ·v = 0

)

=
∣

∣

∣

n
∑

j=1

â j e i (ŷ⊤
j ,τv̂⊤

j )u −
n
∑

j=1

a j e
i (y⊤

j
,τv⊤

j
)u

∣

∣

∣

=
∣

∣

∣

n
∑

j=1

â j e i x̂ j ω̂−
n
∑

j=1

a j e i x j ω̂
∣

∣

∣,

where x̂ j = (ŷ⊤j ,τv̂⊤j ) (1+T )

2
p

d
(1, · · · ,1)⊤ =− j ∆̂, x j = (ŷ⊤j ,τv̂⊤j ) (1+T )

2
p

d
(1, · · · ,1)⊤ = ( j −1)∆̂ and

∣

∣

∣ω̂
∣

∣

∣ =
∣

∣

∣

t+1
T+1

ω
∣

∣

∣≤Ω. Furthermore, by (2.11), we thus have

∣

∣

∣

n
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )ω−
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)ω

∣

∣

∣<σ, ||ω||2 ≤Ω, t = 0, · · · ,T.

2.3 STABILITY FOR SPARSITY-PROMOTING DYNAMIC RECONSTRUCTION

Sparsity-based modeling and optimization is a common way in super-resolution that seeks

to accelerate the resolving process or reduce the number of measurements. In [4], a sparsity-

promoting algorithm is proposed to super-resolve source locations and velocities in the

tracking problem, where the authors’ aim is to find an admissible 2d-dimensional source with

minimum total variation norm. There, the theoretical stability result for the optimization

requires the point sources to be separated by more than a Rayleigh length in each time step t ,

which is inadequate for demonstrating its super-resolution capability.

As a corollary of the results in Subsections 2.1 and 2.2, we can derive a stability result for a

sparsity-promoting dynamic reconstruction in the tracking problem, which demonstrates the

possibility of achieving super-resolution for the sparsity-promoting dynamic reconstructions.

We consider a sparsity-promoting dynamic tracking problem which seeks to find the sparest

solution satisfying the measurement constraints. The optimization problem is

min
{(â j ,ŷ j ,τv̂ j )},(ŷ⊤

j ,τv̂⊤
j )⊤∈O

#{(â j , ŷ j ,τv̂ j )} subject to |F [ρt ](ω)−Yk (ω)| <σ, t = 0, · · · ,T, ||ω||2 ≤Ω,

(2.12)

where ρt =
∑n

j=1
â jδŷ j+tτv̂ j

, and F [ρt ](ω) =
∑n

j=1
â j e i (ŷ⊤

j +tτv̂⊤
j )ω. We have the following theo-

rem for the stability of the minimization problem (2.12).

Theorem 2.3. Let n ≥ 2, T ≥ n(n+1)
2

, and σ ≤ mmin. Let the measurement Yt , t = 0, · · · ,T , in

(1.1) be generated by a n-sparse parameter set {(a j ,y j ,τv j )}n
j=1

with α j :=
(

y j

τv j

)

∈ B 2d
(n−1)π

n(n+2)Ω

(0).
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Assume that

dmin := min
p 6= j

∣

∣

∣

∣

∣

∣αp −α j

∣

∣

∣

∣

∣

∣

2
≥

11.76eπ2
√

( (n+1)n
2

)2 +14k−1
(

(n +2)(n +1)/2
)ξ(k−1)

Ω

( σ

mmin

) 1
2n−1

.

(2.13)

Let O in (2.12) be B 2d
(n−1)π

n(n+2)Ω

(0), then the solution to (2.12) contains exactly n elements. If a n-sparse

parameter set {(â j , ŷ j ,τv̂ j )}n
j=1

is the solution, after reordering the α̂ j ’s, we have

∣

∣

∣

∣

∣

∣α̂ j −α j

∣

∣

∣

∣

∣

∣

2
<

dmin

2
.

Moreover, we have

∣

∣

∣

∣

∣

∣α̂ j −α j

∣

∣

∣

∣

∣

∣

2
≤

C (d ,n)

Ω
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n, (2.14)

where SRF := π
dminΩ

and

C (d ,n) =
p

6π(2π)2n−2
(

(
n(n +1)

2
)2 +1

) 2n−1
2 (

4d−1((n +2)(n +1)/2)ξ(d−1)
)(2n−1)

n24n−2e2nπ− 1
2 .

Proof. Note that by σ≤ mmin, (2.13) is greater than (2.2). Thus by Theorem 2.1, the solution to

(2.12) contains n elements. Then by Theorem 2.2, we prove the desired result.

Theorem 2.3 reveals that sparsity promoting over admissible solutions satisfying the mea-

surements of all the frames could resolve the location-velocity pairs to the resolution limit

order. It provides an insight that theoretically sparsity-promoting dynamic reconstruction

algorithms would have favorable performances on the tracking problem. Especially, under the

separation condition 2.13, any tractable sparsity-promoting algorithms (such as TV minimiza-

tion) rendering the sparsest solution could stably reconstruct all the location-velocity pairs.

Theorem 2.3 also indicates that even when the static reconstruction fails in some of the frames,

the sparsity-promoting dynamic reconstruction could also resolve the location-velocity pairs,

which is consistent with the numerical results in [4].

3 MAIN RESULTS FOR VELOCITY RECOVERY

In this section, we present the results for the stability of velocity recovery in the tracking

problems. We shall first introduce better resolution estimates for recovering the number

and values of velocities and then present a stability result for a sparsity-promoting velocity

reconstruction algorithm.

3.1 BETTER RESOLUTION ESTIMATES FOR RECOVERING THE NUMBER AND VALUES OF

VELOCITIES

In this subsection, we shall derive better resolution estimates for recovering the number

of sources and the values of velocities in the tracking problem. We first have the following

theorem for the reconstruction of the number of sources.

14



Theorem 3.1. Let n ≥ 2 and T ≥ 2n −2. Let the measurement Yt , t = 0, · · · ,T, in (1.1) be gener-

ated by a n-sparse parameter set {(a j ,y j ,τv j )}n
j=1

with τv j ∈ B d
(n−1)π

TΩ

(0). Assume that

min
p 6= j

∣

∣

∣

∣

∣

∣τvp −τv j

∣

∣

∣

∣

∣

∣

2
≥

8.8πe(π/2)d−1
(

n(n −1)/π
)ξ(d−1)

TΩ

( σ

mmin

) 1
2n−2

. (3.1)

Then there does not exist any σ-admissible parameter set of Yt ’s with less than n elements.

Theorem 3.1 reveals that when the minimum difference between velocities is greater than

O( 1
TΩ

( σ
mmin

)
1

2n−2 ), then the number of point sources can be exactly reconstructed in the tracking

problem. By Proposition 2.3, we note that this order is optimal. In the following theorem, we

further develop a better estimate for the resolution of the velocity reconstruction.

Theorem 3.2. Let n ≥ 2 and T ≥ 2n −1. Let the measurement Yt , t = 0, · · · ,T, in (1.1) be gener-

ated by a n-sparse parameter set {(a j ,y j ,τv j )}n
j=1

with τv j ∈ B d
(n−1)π

TΩ

(0). Assume that

dmin := min
p 6= j

∣

∣

∣

∣

∣

∣τvp −τv j

∣

∣

∣

∣

∣

∣

2
≥

11.76eπ4d−1
(

(n +2)(n +1)/2
)ξ(d−1)

TΩ
(

σ

mmin
)

1
2n−1 . (3.2)

If a n-sparse parameter set {(â j , ŷ j ,τv̂ j )}n
j=1

with τv̂ j ’s supported on B d
(n−1)π

TΩ

(0) is a σ-admissible

parameter set of Yt ’s, then after reordering the v̂ j ’s, we have

∣

∣

∣

∣

∣

∣τv̂ j −τv j

∣

∣

∣

∣

∣

∣

2
<

dmin

2
.

Moreover, we have

∣

∣

∣

∣

∣

∣τv̂ j −τv j

∣

∣

∣

∣

∣

∣

2
≤

C (d ,n)

TΩ
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n, (3.3)

where SRF is the super-resolution factor defined by π
dminTΩ

and

C (d ,n) =
(

4d−1((n +2)(n +1)/2)ξ(d−1)
)2n−1

n26n−3e2nπ− 1
2 .

Theorem 3.2 reveals that when the minimum difference between the velocities is greater

than O( 1
TΩ

( σ
mmin

)
1

2n−2 ), then the velocities can be stably reconstructed in the tracking problem.

By Proposition 2.6, we note that this order is optimal.

In Sections 4 and 5, we will propose super-resolution algorithms for reconstructing re-

spectively the number of sources and the values of the velocities, which are demonstrated

theoretically or numerically to lead to the optimal resolution orders that are shown above.

We remark that both Theorems 3.1 and 3.2 are derived by a crucial observation that the

measurements at point ω=Ωv are

Yt (vΩ) =
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)vΩ+Wt (vΩ), t = 0, · · · ,T. (3.4)
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Let b j = a j e
i y⊤

j
vΩ

and y j = τv⊤
j

v and W(t ) = Wt (vΩ), the measurement can be written as

Y(t ) =
n
∑

j=1

b j e i y jΩt +W(t ) t = 0, · · · ,T.

Thus the inherent cut-off frequency for recovering τv j ’s can be viewed as TΩ, which results in

a much better resolution limit π
TΩ

compared to the one π
Ω

for each frame. Because recovering

objects separated larger than Rayleigh limit is stable even for imaging system with low signal-to-

noise ratio, our observation indicates that, by some dynamic reconstruction algorithms, we are

very likely able to achieve better resolution for velocities than that of the static reconstruction.

This will be confirmed by numerical algorithms in Section 5. For other examples, by applying

the algorithms in [9, 49] which are provable to resolve point sources with a separation distance

of Rayleigh limit order to several measurements like (3.4), we are able to recover the velocities

with resolution of order O( π
TΩ

). We anticipate the above observation can inspire many new

reconstruction algorithms that enhance significantly the resolution of the tracking problem in

practice.

3.2 STABILITY FOR A SPARSITY-PROMOTING VELOCITY RECONSTRUCTION

As a corollary of the results in the above subsection, we can derive a stability result for velocity

recovery by the sparsity-promoting dynamic reconstruction algorithm (2.12), by which we

demonstrate that the sparsity-promoting dynamic reconstruction attains the optimal super-

resolution capability for the velocity recovery. Specifically, we have the following theorem.

Theorem 3.3. Let n ≥ 2, T ≥ 2n−1, and σ≤ mmin. Let the measurement Yt , t = 0, · · · ,T , in (1.1)

be generated by a n-sparse parameter set {(a j ,y j ,τv j )}n
j=1

with τv j ∈ B d
(n−1)π

TΩ

(0). Assume that

dmin := min
p 6= j

∣

∣

∣

∣

∣

∣τvp −τv j

∣

∣

∣

∣

∣

∣

2
≥

11.76eπ4d−1
(

(n +2)(n +1)/2
)ξ(d−1)

TΩ
(

σ

mmin
)

1
2n−1 . (3.5)

Let O in (2.12) be B d
(n−1)π

TΩ

(0), then the solution to (2.12) contains exactly n elements. If a n-sparse

parameter set {(â j , ŷ j ,τv̂ j )}n
j=1

is the solution, after reordering the α̂ j ’s, we have

∣

∣

∣

∣

∣

∣τv̂ j −τv j

∣

∣

∣

∣

∣

∣

2
<

dmin

2
.

Moreover, we have

∣

∣

∣

∣

∣

∣τv̂ j −τv j

∣

∣

∣

∣

∣

∣

2
≤

C (d ,n)

TΩ
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n, (3.6)

where SRF := π
dminTΩ

and

C (d ,n) =
(

4d−1((n +2)(n +1)/2)ξ(d−1)
)2n−1

n26n−3e2nπ− 1
2 .
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4 PROJECTION-BASED VELOCITY NUMBER DETECTION ALGORITHM

By the projection methods we use in Section 8, we propose in this section and next section

new algorithms for super-resolving the velocities. The strength of our algorithms is that they

are able to resolve the number of sources and reconstruct the values of the velocities at the

resolution limit orders, i.e., O( 1
TΩ

( σ
mmin

)
1

2n−2 ) and O( 1
TΩ

( σ
mmin

)
1

2n−1 ), respectively. Therefore, as

the number of time steps increases, the resolution improves as well.

In this section, we propose a projection-based sweeping singular-value-thresholding num-

ber detection algorithm for the tracking problem in two dimensions. The extension to higher

dimensions is straightforward.

4.1 ONE-DIMENSIONAL SWEEPING SINGULAR-VALUE-THRESHOLDING NUMBER

DETECTION ALGORITHM

In this subsection, we review the sweeping singular-value-thresholding number detection

algorithm in dimension one [34] for the static super-resolution problem. We refer to [1, 2,

11, 23, 24, 29, 43, 47, 51, 52] and the references therein for other interesting algorithms in one

dimension.

We consider a model that is tuned for our velocity recovery problem. Especially, we consider

the measurement Y generated by µ=
∑n

j=1
a jδy j

, y j ∈R as

Y(t ) =
n
∑

j=1

a j e i y jΩt +W(t ), t = 0, · · · ,T, (4.1)

with |W(t )| <σ and min j |a j | = mmin. We choose measurements at the sample points qr, q =
0, · · · ,2s with s ≥ n and r, g being integer satisfying T +1 = 2sr + g ,0 ≤ g < 2s:

Y(qr ) =
n
∑

j=1

a j e i y jΩqr +W(qr ), 0 ≤ q ≤ 2s.

We then form the following Hankel matrix:

H(s) =













Y(0) Y(r ) · · · Y(sr )

Y(r ) Y(2r ) · · · Y((s +1)r )

· · · · · · . . . · · ·
Y(sr ) Y((s +1)r ) · · · Y(2sr )













, (4.2)

and consider the singular value decomposition of H(s)

H(s) = Û Σ̂Û∗,

where Σ̂= diag(σ̂1, · · · , σ̂n , σ̂n+1, · · · , σ̂s+1) with the singular values σ̂ j , 1 ≤ j ≤ s +1, ordered in

a decreasing manner. We then determine the source number by thresholding on these singular

values with a properly chosen threshold based on Theorem 4.1 below. To derive Theorem 4.1,

we first introduce the notation

φs(x) = (1, x, · · · , xs)⊤, (4.3)
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ζ(k) =
{

( k−1
2

!)2, k is odd,

( k
2

)!( k−2
2

)!, k is even,
(4.4)

and the following auxiliary lemma.

Lemma 4.1. Let k ≥ 2 and −π
2
≤ θ1 < θ2 < ·· · < θk ≤ π

2
. Let θmin = minp 6= j |θp − θ j | and

Vk (k −1) =
(

φk−1(e iθ1 ), · · · ,φk−1(e iθk )
)

with φk−1(x) defined as in (4.3). Then

||Vk (k −1)−1||∞ ≤
πk−1

ζ(k)θk−1
min

,

where ζ(k) is defined in (4.4).

Proof. See Lemma 3 in [34].

Theorem 4.1. Let s ≥ n and µ=
∑n

j=1
a jδy j

with y j ∈ [−(n−1)π
TΩ

, (n−1)π
TΩ

],1 ≤ j ≤ n. We have

σ̂ j ≤ (s +1)σ, j = n +1, · · · , s +1. (4.5)

Moreover, if the following separation condition is satisfied

min
p 6= j

∣

∣

∣yp − y j

∣

∣

∣>
2π(s +1)

TΩ

(2n(s +1)

ζ(n)2

σ

mmin

) 1
2n−2

, (4.6)

where ζ(n) is defined as in (4.4), then

σ̂n > (s +1)σ. (4.7)

Proof. Step 1. Note that H(s) has a decomposition that H(s) = D AD⊤+∆where A = diag(a1, · · · , an),

D =
(

φs(e i y1Ωr ), · · · ,φs(e i ynΩr )
)

with φs(ω) being defined in (4.3) and ∆ is the matrix from the

noise W. We first consider the case when W(t ) = 0, in which H(s) = D AD⊤. Denoting σn as the

n-th singular value of H(s). Note that σn is the minimum nonzero singular value of D AD⊤.

Let ker(D⊤) be the kernel space of D⊤ and ker⊥(D⊤) be its orthogonal complement, we have

σn = min
||x||2=1,x∈ker⊥(D⊤)

||D AD⊤||2 ≥σmin(D A)σn(D⊤) ≥σmin(D)σmin(A)σmin(D).

Let θmin = minp 6= j

∣

∣

∣yp rΩ− y j rΩ
∣

∣

∣. Since s ≥ n, y j rΩ ∈
[−π

2
, π

2

]

for y j ∈
[

− (n−1)π
TΩ

, (n−1)π
TΩ

]

. By

Lemma 4.1, we have

σmin(D) ≥
1

||Vn(n −1)−1||2
≥

1
p

n||Vn(n −1)−1||∞
≥

1
p

n

ζ(n)θn−1
min

πn−1
,

where Vn(n −1) =
(

φn−1(e i y1Ωr ), · · · ,φn−1(e i ynΩr )
)

. It follows that

σn ≥σmin(A)
( 1
p

n

ζ(n)θn−1
min

πn−1

)2
≥

mminζ(n)2θ2n−2
min

nπ2n−2
. (4.8)

Step 2. We now prove the theorem. Since ||W||∞ ≤σ, for ∆ in Step 1 we have ||∆||2 ≤ ||∆||F ≤
(s + 1)σ. By Weyl’s theorem, we have |σ̂ j −σ j | ≤ ||∆||2, j = 1, · · · , s + 1, where σ j is the j -th
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singular value of D AD⊤. Note that σ j = 0,n+1 ≤ j ≤ s+1, we get |σ̂ j | ≤ ||∆||2 ≤ (s+1)σ,n+1 ≤
j ≤ s +1. This proves (4.5).

Since y j ∈ [−(n−1)π
TΩ

, (n−1)π
TΩ

], by the relation between r, s,T , we have θmin ∈ [−π
2

, π
2

] and

θmin = rΩmin
p 6= j

∣

∣

∣yp − y j

∣

∣

∣>
2π(s +1)r

T

(2n(s +1)

ζ(n)2

σ

mmin

) 1
2n−2 ≥π

(2n(s +1)

ζ(n)2

σ

mmin

) 1
2n−2

,

where we have used the separation condition (4.6). By (4.8), we have

σn ≥
mminζ(n)2θ2n−2

min

nπ2n−2
> 2(s +1)σ. (4.9)

Similarly, by Weyl’s theorem, |σ̂n −σn | ≤ ||∆||2. Thus, σ̂n > 2(s +1)σ−||∆||2 ≥ (s +1)σ. Conclu-

sion (4.7) then follows.

The reconstruction procedure is summarized in Algorithm 1 below. Note that in Algorithm

1, it is required that the input integer s is greater than the source number n. However, a suitable

s is not easy to estimate and large s may yield a deterioration of resolution. To remediate this

issue, we propose a sweeping singular-value-thresholding number detection algorithm which

allows us to find the minimum (or sparsest) source number from admissible measurements;

see Algorithm 2 below. We remark that since when s = n the separation distance in (4.6) is

near c
TΩ

( σ
mmin

)
1

2n−2 for a small constant c, the resolution of Algorithm 2 attains the optimal

resolution order derived in [34].

Algorithm 1: Singular-value-thresholding number detection algorithm

Input: Number s, noise level σ;

Input: Measurement: Y = (Y(0), · · · ,Y(T ))⊤;

1: r = T +1 mod 2s, Ynew = (Y(0),Y(r ), · · · ,Y(ω2sr ))⊤;

2: Formulate the (s+1)× (s+1) Hankel matrix H(s) from Ynew , and compute the singular

values of H(s) as σ̂1, · · · , σ̂s+1 distributed in a decreasing manner;

4: Determine n by σ̂n > (s +1)σ and σ̂ j ≤ (s +1)σ, j = n +1, · · · , s +1;

Return: n

Algorithm 2: Sweeping singular-value-thresholding number detection algorithm

Input: Noise level σ, measurement: Y = (Y(0), · · · ,Y(T ))⊤;

Input: nmax = 0;

for s = 1 : ⌊T−1
2

⌋ do

Input s,σ,Y to Algorithm 1, save the output of Algorithm 1 as nr ecover ;

if nr ecover > nmax then
nmax = nr ecover

Return nmax

4.2 TWO-DIMENSIONAL SWEEPING SINGULAR-VALUE-THRESHOLDING NUMBER

DETECTION ALGORITHMS

We now derive the two-dimensional sweeping singular-value-thresholding number detection

algorithm for recovering the number of sources. The strategy is considering the measure-

ment at some proper sample points. To be specific, let the parameter set of the source be
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{(a j ,y j ,v j )}n
j=1

, a j ∈C,y j ∈R
2,v j ∈R

2 and Yt (ω) in (1.1) be the associated measurement. We

first choose the following n(n+1)
2

vectors

v(θq ) = (cosθq , sinθq )⊤ ∈R
2, q = 1, · · · ,

n(n +1)

2
, (4.10)

where θq = q2π
n(n+1)

. For each q , the measurement at Ωv(θq ) is

Yt (Ωv(θq )) =
n
∑

j=1

a j e
i y⊤

j
v(θq )Ω

e
iτv⊤

j
v(θq )Ωt +Wt (v(θq )Ω), t = 0, · · · ,T.

This can be viewed as Y(t) =
∑n

j=1
b j e

iτv⊤
j

v(θq )Ωt +W(t), t = 0, · · · ,T with b j = e
i y⊤

j
v(θq )Ω

and

W(t) = Wt (v(θq )Ω). Thus we can form the Hankel matrix Hq (s) in the same way as in (4.2)

from the above measurements. Denote σ̂q, j the j -th singular value of Hq (s), we can detect

the exact source number by thresholding on σ̂q, j ’s under a suitable separation condition, as

shown in Theorem 4.2 below. We first present a result which is needed in the proof of Theorem

4.2.

Lemma 4.2. For τv1, · · · ,τvn ∈ R
2,n ≥ 2, let dmin := minp 6= j ||τvp − τv j ||2. Let v(θq ), q =

1, · · · , n(n+1)
2

be the ones in (4.10) and Sq ’s be the one-dimensional spaces spanned by v(θq )’s.

There exists q∗ so that

min
p 6= j ,1≤p, j≤n

∣

∣

∣

∣

∣

∣PSq∗ (τvp )−PSq∗ (τv j )
∣

∣

∣

∣

∣

∣

2
≥

2dmin

n(n +1)
.

Proof. It is clear there are at most n(n−1)
2

different up j = τvp − τv j ,1 ≤ p < j ≤ n. Denote

v(θ) = (cosθ, sinθ)⊤ and ∆ = π
n(n+1)

. We observe that if |v(θ)⊤u| < ||u||2 sin∆,θ ∈ [2∆,π],

then |v(θ∗)⊤u| ≥ ||u||2 sin∆, for |θ∗−θ| ≥ 2∆,θ∗ ∈ [2∆,π]. Define N (u,∆) = {v|v ∈ R
2, ||v||2 =

1, |v⊤u| < ||u||2 sin∆}. If v(θq0
) ∈ N (up0 j0

,∆) for some 1 ≤ p0, j0 ≤ n, then v(θq ) 6∈ N (up0 j0
,∆),∀q 6=

q0, q = 1, · · · , n(n+1)
2

. Since we have n(n+1)
2

different q’s and only n(n−1)
2

up j ’s, there must be

some v(θq∗) 6∈ ∪p< j ,1≤ j ,p≤n N (up j ,∆). Hence,

min
p 6= j ,1≤p, j≤n

||PSq∗ (vp )−PSq∗ (v j )||2 ≥ dmin sin∆≥ dmin
2∆

π
,

whence the lemma follows.

Theorem 4.2. Let n ≥ 2, s ≥ n and consider the parameter set {(a j ,y j ,τv j )}n
j=1

with τv j ∈
B 2

(n−1)π
TΩ

(0),1 ≤ j ≤ n. For the singular values of Hq (s), we have

σ̂q, j ≤ (s +1)σ, j = n +1, · · · , s +1, q = 1, · · · ,
n(n +1)

2
. (4.11)

Moreover, if the following separation condition is satisfied

dmin := min
p 6= j

∣

∣

∣

∣

∣

∣τvp −τv j

∣

∣

∣

∣

∣

∣

2
>

π(s +1)n(n +1)

2TΩ

(n(s +1)

ζ(n)2

σ

mmin

) 1
2n−2

, (4.12)

then there exists q∗ so that

σ̂q∗,n > (s +1)σ. (4.13)
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Proof. Note that for each v(θq ) in (4.10), the τv j ’s satisfy that |τv⊤
j

v(θq )| ≤ (n−1)π
TΩ

, j = 1, · · · ,n.

By applying Theorem 4.1 on the Hankel matrix Hq (s) formulated from the measurements

Yt (Ωv(θq )), for t = 0, · · · ,T , we immediately get (4.11). Moreover, when the separation condi-

tion (4.12) holds, by Lemma 4.2, there is some q∗ so that

min
p 6= j ,1≤p, j≤n

∣

∣

∣PSq∗ (vp )−PSq∗ (v j )
∣

∣

∣≥
2dmin

n(n +1)
>

π(s +1)

TΩ

(2n(s +1)

ζ(n)2

σ

mmin

) 1
2n−2

.

Applying Theorem 4.1 again, we get σ̂q∗,n > (s +1)σ.

The above theorem shows that for point sources that are well-separated, we can determine

the source number n by thresholding on the singular values of the Hankel matrices Hq (s)’s.

We note that the number of required unit vectors v(θq ) is not available since n is unknown. In

practice, we can choose a large enough N , say N ≥ n(n+1)
2

. We summarize our algorithm as

below.

Algorithm 3: Two-dimensional sweeping singular-value-thresholding number detec-

tion algorithm

Input: Noise level σ, measurement: Y(ω),ω ∈R
2, ||ω||2 ≤Ω, and nmax = 0

Input: A large enough N , and corresponding N unit vectors

v(θq ) = (cosθq , sinθq )⊤,θq = π
N

, 2π
N

, · · · ,π

for θq = π
N

, 2π
N

, · · · ,π do
Input σ and Yt (Ωv(θq )), t = 0, · · · ,T to Algorithm 2, save the output of Algorithm 2

as nr ecover ;

if nr ecover > nmax then
nmax = nr ecover

Return nmax

4.3 NUMERICAL EXPERIMENTS

In this subsection, we conduct some numerical experiments to demonstrate the super-

resolution ability of our number detection algorithm and the superiority of our algorithm over

the static reconstruction method.

We present an example which shows that our algorithm can recover the source number even

when it is impossible to recover the source number by the static reconstruction in any frame.

For simplicity, we consider Ω = 1, τ = 0.2, σ = 10−2 and the measurements at 5 time steps.

We construct an example where two point sources with O(1) intensities are located at y1 =
(0,0.27),y2 = (0.20,0.17) moving respectively at the velocities v1 = (0.14,0.51),v2 = (0.45,0.17).

At each of the 5 time steps, the locations of the two point sources are,

(0,0.27), (0.20,0.17), at time step t = 0,

(0.028,0.372), (0.29,0.204), at time step t = 1,

(0.056,0.474), (0.38,0.238), at time step t = 2,

(0.084,0.576), (0.47,0.272), at time step t = 3,

(0.112,0.678), (0.56,0.306), at time step t = 4.
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Note that at each time step, the point sources are separated by a distance which is much lower

than the Rayleigh limit. Thus the conventional static reconstruction cannot recover the source

number and locations in each frame. However, by Algorithm 3 we recover the number of point

sources. This demonstrates the superiority of our algorithm over the static reconstructions for

recovering correctly the source number.

In addition, in the above example the resolution is near τ||v1 −v2||2 ≈ 0.1, which is much

better than the Rayleigh limit (π) of the imaging system. The reason is that we take T = 5 and

the resolution limit in Theorem 3.2 which of order O( 1
TΩ

( σ
mmin

)
1

2n−2 ) indicates that a very good

resolution for number detection can be achieved when we have multiple observations.

5 PROJECTION-BASED VELOCITY RECOVERY ALGORITHMS

In this section, we propose a projection-based velocity recovery algorithm in two dimensions.

The algorithm can be easily extended to higher dimensions.

5.1 REVIEW OF ONE-DIMENSIONAL MUSIC ALGORITHM

In this subsection, we review the one-dimensional MUSIC algorithm [31, 36, 46, 48]. In a

standard MUSIC algorithm for solving the inverse problem (4.1), one first assembles the

Hankel matrix H(s) as in (4.2), where

s =
{

T
2

, even T,
T−1

2
, odd T,

(5.1)

then performs the singular value decomposition of H(s),

H(s) = Û Σ̂Û∗ = [Û1 Û2]diag(σ̂1, σ̂2, · · · , σ̂n , σ̂n+1, · · · , σ̂N̂+1)[Û1 Û2]∗,

where Û1 = (Û (1), · · · ,Û (n)),Û2 = (Û (n +1), · · · ,Û (N̂ +1)) with n being the estimated source

number (model order). The source number n can be detected by many algorithms such as

those in [1, 11, 23, 24, 34, 47, 51, 52]. Denote the orthogonal projection to the space Û2 by

P̂2x = Û2(Û∗
2 x). For a test vector Φ(ω) = (1,e iΩω, · · · ,e i sΩω)⊤, one defines the MUSIC imaging

functional

Ĵ (ω) =
||Φ(ω)||2

||P̂2Φ(ω)||2
=

||Φ(ω)||2
||Û∗

2 Φ(ω)||2
.

The local maximizer of Ĵ (ω) indicates the location of the point sources. In practice, one can test

evenly spaced points in a specified region and plot the discrete imaging functional and then

determine the source locations by detecting the peaks. A peak selection algorithm Algorithm

5 is given below. Finally, we summarize the standard MUSIC algorithm in Algorithm 4 below.
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Algorithm 4: Standard MUSIC algorithm

Input: Noise level σ, source number n;

Input: Measurements: Y = (Y(0),Y(1), · · · ,Y(T ))⊤;

Input: Region of test points [T S,T E ] and spacing of test points T PS;

1: Determine s by (5.1), formulate the (s +1)× (s +1) Hankel matrix H(s) as (4.2) from Y;

2: Compute the singular vectors of H(s) as Û (1),Û (2), · · · ,Û (s +1) and formulate the

noise space Û2 = (Û (n +1), · · · ,Û (s +1));

3: For test points x in [T S,T E ] evenly spaced by T PS, construct the test vector

Φ(ω) = (1,e iΩω, · · · ,e i sΩω)⊤;

4: Plot the MUSIC imaging functional Ĵ (ω) = ||Φ(ω)||2
||Û∗

2 Φ(ω)||2
;

5: Select the peak locations ŷ j ’s in the Ĵ (x) by Algorithm 5;

Return ŷ j ’s.

Algorithm 5: Peak selection algorithm

Input: Image I MG = ( f (ω1), · · · , f (ωM ));

Input: Peak compare range PC R , differential compare range DC R, differential compare

threshold DC T ;

1: Initialize the local maximum points LMP = [ ], peak points PP = [ ];

2: Differentiate the image I MG to get the D I MG = ( f ′(ω1), · · · , f ′(ωM ));

3: for j = 1 : M do

if f (ω j ) = max( f (ω j−PC R ), f (ω j−PC R+1), · · · , f (ω j+PC R )) then

LMP appends ω j ;

4: for ω j in LMP do

if max(| f ′(ω j−DC R )|, | f ′(ω j−DC R+1)|, · · · , | f ′(ω j+DC R )|) ≥ DC T then

PP appends ω j ;

Return: PP .

5.2 PROJECTION-BASED MUSIC ALGORITHM FOR SUPER-RESOLVING VELOCITIES

In this subsection we propose a projection-based MUSIC algorithm for super-resolving the

velocities in two dimensions. As indicated by the proof of Theorem 3.2, when the velocities are

well-separated in R
2, there exist two unit vectors so that the projection of the velocities in two

one-dimensional subspaces spanned by these unit vectors can be stably recovered. We can

then find the original two-dimensional velocities from their projections. More precisely, let

N = (n+2)(n+1)
2

and

v(φ) = (cosφ, sinφ)⊤, φ ∈
{ π

N
,

2π

N
, · · · ,π

}

. (5.2)

For each v(φ), we denote the space spanned by v(φ) as S(φ) and call the (v⊤
j

v(φ))v(φ)’s the

projected velocities in S(φ). We consider the measurement at Ωv(φ) that

Yt (Ωv(φ)) =
n
∑

j=1

a j e
i y⊤

j
v(φ)Ω

e
iτv⊤

j
v(φ)Ωt +Wt (v(θq )Ω), t = 0, · · · ,T. (5.3)
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We then recover the projected velocities in each of those one-dimensional subspaces using

the one-dimensional MUSIC algorithm fed with an estimated source number. We then only

consider those subspaces S(φ)’s where n peaks appear, i.e., n projected velocities are recon-

structed. We further choose two vectors from the v(φ)’s, denoted by v(φ1),v(φ2), so that the

recovered velocities in S(φ1),S(φ2) have respectively the largest and second largest minimum

separation distance. We remark that, when N is large, one can require additionally that v(φ1) is

not too much correlated to v(φ2), say |v(φ1)⊤v(φ2)| ≤ c for some constant 0 < c < 1, to ensure

that the reconstruction of two-dimensional velocities from their projections on v(φ1),v(φ2) is

stable.

We next construct the original velocities from their projections on S(φ1) and S(φ2). This is

usually called the pair matching in the problem of direction of arrival, where ad hoc schemes

[12, 27, 53, 55] were derived to associate the estimated azimuth and elevation angles. In our

paper, this can be done in the following manner. From the recovered projected velocities in

S(φ1) and S(φ2), we first form a grid of n2 points, say z1,1,z1,2, · · · ,zn,n . It can be shown that

the original velocities are close to these grid points. These grid points reduce the off-the-grid

recovery problem to an on-the-grid one. We then employ an enumeration method to recover

the source velocities from these grid points. To be more specific, we define

Gφ(z1, j1
, · · · ,zn, jn

) =
(

φT (e
i z⊤

1, j1
v(φ)Ω

), φT (e
i z⊤

2, j2
v(φ)Ω

), · · · , φT (e
i z⊤

n, jn
v(φ)Ω

)
)

, (5.4)

where φT (x) is defined as in (4.3), and solve the following optimization problem by enumera-

tion,

min
π∈γ(n)

(

∑

φ

min
â

∣

∣

∣

∣

∣

∣Gφ(z1,π1
, · · · ,zn,πn

)â−Y(v(φ))
∣

∣

∣

∣

∣

∣

2

)

, (5.5)

where Y(v(φ)) = (Y0(v(φ)Ω), · · · ,YT (v(φ)Ω))⊤, andγ(n) is the set of all permutations of {1, · · · ,n}.

We note that the computational complexity of the enumeration is low when n is not large. We

summarize the algorithm in Algorithm 6 below.

Remark 5.1. We remark that since in each one-dimensional space, the MUSIC algorithm attains

nearly the optimal order of the resolution, say O( 1
TΩ

( σ
mmin

)
1

2n−1 ), as demonstrated in [30, 31]

numerically, our Algorithm 6 achieves the optimal order of the resolution that is derived in

Theorem 3.2.

Remark 5.2. We remark that the range of the recovered velocities is confined by the sampling

rate in (5.3). Suppose we have a large range of velocities, one way to recover them is to consider all

the possible projected velocities in a large range in one-dimensional space and construct a large

grid. Then we recover the correct velocities in a similar way as (5.5) with more measurements in

Yt ’s.
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Algorithm 6: Two-dimensional projection-based velocity recovery algorithm

Input: Noise level σ, source number n;

Input: Measurement: Yt (ω),ω ∈R
2, ||ω||2 ≤Ω, t = 0, · · · ,T ;

Input: Region of test points [T S,T E ] and spacing of test points T PS;

Input: A large enough N , and corresponding N unit vectors v(φ) in (5.2), φ ∈
{

π
N

, · · · ,π
}

1:for φ ∈
{

π
N

, 2π
N

, · · · ,π
}

do

Input σ and Yt (v(φ)Ω), t = 0, · · · ,T to Algorithm 2 to recover the projected source

number n̂;

Input σ,Yt (v(φ)Ω), t = 0, · · · ,T , n̂, [T S,T E ] and T PS to Algorithm 4, save the output

as b1, · · · ,bq ;

The recovered projected velocities are p̂1 = b1v(φ), · · · , p̂q = bq v(φ);

2: Choose two vectors v(φ1),v(φ2), from those v(φ)’s so that n projected velocities were

recovered in each of the spaces S(φ1),S(φ2) and the recovered projected velocities

p̂ j (v(φ1))’s, p̂ j (v2(φ2))’s have respectively the largest and second largest minimum

separation distance;

3:Construct the n2 grid points z1,1,z1,2, · · · ,zn,n by considering the intersection points of

lines p̂q (v(φ j ))+λg(φ j ), λ ∈R, q = 1, · · · ,n, j = 1,2, where g(φ j ) is the unit vector that

is perpendicular to v(φ j );

4: Solve the following optimization problem by enumeration,

min
π∈γ(n)

(

∑

φ

min
â

∣

∣

∣

∣

∣

∣Gφ(z1,π1
, · · · ,zn,πn

)â−Y(v(φ))
∣

∣

∣

∣

∣

∣

2

)

,

where Gφ is defined by (5.4), Y(v(φ)) = (Y0(v(φ)Ω), · · · ,YT (v(φ)Ω))⊤, and γ(n) is the set

of all permutations of {1, · · · ,n};

5: The minimizer z1,π1
, · · · ,zn,πn

’s are the recovered velocities τv̂1, · · · ,τv̂n ;

Return τv̂1, · · · ,τv̂n .

5.3 NUMERICAL EXPERIMENTS

In this subsection, we conduct some numerical experiments to demonstrate the super-

resolution ability of our velocity recovery algorithm and the superiority of our algorithm

over the static reconstruction method.

We present an example which shows that our algorithm can super-resolve the velocities

even when it is impossible to recover stably any locations and velocities by the static recon-

struction. For simplicity, we consider Ω= 1, τ= 1, σ= 10−2 and the measurements at 5 time

steps. We construct an example where two point sources with O(1) intensities are located

at y1 = (0.22,0.08),y2 = (0.05,0.08) moving respectively at the velocities v1 = (0.47,0.11),v2 =
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(0.58,0.56). At each of the 5 time steps, the locations of the two point sources are,

(0.22,0.08), (0.05,0.08), at time step t = 0,

(0.69,0.19), (0.63,0.64), at time step t = 1,

(1.16,0.30), (1.21,1.20), at time step t = 2,

(1.63,0.41), (1.79,1.76), at time step t = 3,

(2.10,0.52), (2.37,2.32), at time step t = 4.

Note that at each time step, the point sources are separated by a distance below the Rayleigh

limit. Thus the conventional static reconstruction cannot stably recover any of the locations or

velocities. Since the point sources are so close in each frame, the super-resolution algorithms

such as MUSIC algorithm even cannot resolve the locations. However, by Algorithm 6 we

recover stably the velocities: v̂1 = (0.442,0.120), v̂2 = (0.558,0.570). This demonstrates the

superiority of our algorithm over the static reconstructions for recovering the velocities.

In addition, in the above example the resolution for the velocities is near 0.4, which is

much better than the Rayleigh limit (π) of the imaging system. The reason is that we take 5

times observations and the resolution limit in Theorem 3.2 which of order O( 1
TΩ

( σ
mmin

)
1

2n−1 )

indicates a very good resolution for velocity recovery can be achieved when we have multiple

observations. On the other hand, as is indicated by measurement (5.3), the cut-off frequency

for the velocity recovery can be viewed as TΩ rather than the Ω, the inherent Rayleigh limit

for the velocity recovery should be π
TΩ

. The resolution in the example 0.4 is near the inherent

Rayleigh limit π
4

. It is also indicated that even if the signal-to-noise ratio becomes worse, we

anticipate that our algorithm or any other super-resolution algorithm for velocity recovery

can resolve the velocities stably when they are separated by a distance beyond π
4

. For our

algorithm, this is demonstrated by the following one-dimensional example.

We consider Ω= 1, τ= 1, σ= 0.3, and the measurements are taken at 5 time steps. We con-

struct an example where two point sources with O(1) intensities are located at y1 = 0.296,y2 =
0.038 moving respectively at the velocities v1 = 0.2,v2 = 1.1. Note that the signal-to-noise ratio

is small. However, we can still stably recover the velocities by the one-dimensional velocity

recovery algorithm (analogously to Algorithm 6) that yields v̂1 = 0.14, v̂2 = 1.11.

Note that we use a one-dimensional example because the resolution of our two-dimensional

algorithm is also related to the projections.

6 CONCLUSIONS AND FUTURE WORKS

In this paper, we have explored the resolution limits for recovering the number and value

of location-velocity pairs in the dynamic reconstruction of the tracking problem. We have

also derived sharp and better resolution limits for reconstructing the number and values of

velocities in the dynamic reconstruction. Also, two projection-based algorithms have been

introduced to super-resolve respectively the number and values of velocities. By these results,

we have demonstrated certain advantages of the dynamic reconstruction in the tracking

problem over the conventional static reconstructions.
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Besides our research findings, our work is also a start of many new topics. Especially, from

the crucial observation of measurement (5.3), many new algorithms can be inspired to obtain

much better resolution for the velocity recovery over the static reconstruction method. In

practice, the point spread function may be approximated by other different functions, such

as Gaussian functions, and a large amount of point sources may be clustered together in a

single image [14], which hampered the application of subspace methods. In this case, the

convex optimization based algorithms are great surrogates for resolving the point sources.

Applying convex optimization to (5.3) or its variant may enhance significantly the resolution

in the practical tracking problem. In addition, developing efficient algorithms for exploring

the amplitudes and the locations of point sources when the velocities are known is also an

interesting topic. Note that when the velocities are stably recovered, we can reconstruct the

â j , ŷ j ’s by solving the minimization problem

min
â j ,ŷ j

∣

∣

∣

∣

∣

∣

n
∑

j=1

â j e i ŷ⊤
j ωe i tτv̂⊤

j ω−Yt (ω)
∣

∣

∣

∣

∣

∣

2
, ||ω||2 ≤Ω, t = 0, · · · ,T.

The aim is to develop a tractable algorithm in order to recover stably the â j , ŷ j ’s for the above

minimization problem or its variants.

7 PROOFS OF THEOREMS 2.1 AND 2.2

7.1 THE GEOMETRY OF THE PROBLEM

For each time step, the noiseless measurement
∑n

j=1
a j e i (y j+tτv j )⊤ω, ||ω||2 ≤Ω, can be written

as
n
∑

j=1

a j e
iα⊤

j
ωt , (7.1)

where α j =
(

y j

τv j

)

,ωt =
(

ω

tω

)

, t = 0, · · · ,T, ||ω||2 ≤Ω. Define the spaces

Sd
t :=

{

(

v

tv

)

∣

∣

∣v ∈R
d
}

, t = 0,1, · · · . (7.2)

Then the measurement Yt (ω) can also be written as

Y(ωt ) =
n
∑

j=1

a j e
iP

Sd
t

(α j )⊤ωt +W(ωt ), ||ωt ||2 ≤
√

1+ t 2Ω, (7.3)

with |W(ωt )| < σ. Note that Sd
t ’s are d-dimensional spaces. For each t , the above (7.3) is

equivalent to a d-dimensional super-resolution problem in [33]; see Section 7.2 as well. Hence,

now the tacking problem can be viewed as reconstructing the 2d-dimensional vectors α j ’s

from the measurements (or super-resolution problems) in several d-dimensional subspaces

(Sd
t ’s) of R2d . By the same projection idea as the one in [33], we can estimate the stability of

the recovery. We prove our main results by analyzing some geometrical properties of these

subspaces Sd
t ’s.
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We first consider the case when d = 1 and estimate the angle between adjacent lines in

{(ω, tω)⊤}T
t=0,ω ∈R. Note that

arctan(u)±arctan(v) = arctan
( u ± v

1∓uv

)

( mod π), uv 6= 1,

and

arctan(x) ≥ x −
x3

3
.

Thus for t ≥ 1 we have

arctan(t )−arctan(t −1) = arctan
( 1

1+ t (t −1)

)

≥
1

t 2 − t +1
−

1

3(t 2 − t +1)3
>

1

t 2 +1
. (7.4)

We denote the unit vector in S1
t ’s as qt = 1p

1+t 2
(1, t)⊤. Define ∠(qt ,q j ) the angle between

vectors qt ,q j that

∠(qt ,q j ) = arccos
( q⊤

t q j

||qt ||2||q j ||2

)

.

By the above observation, we have

∠(qt ,q j ) = arctan(t )−arctan( j ) >
t

∑

k= j+1

1

1+k2
, j < t . (7.5)

We first estimate the projection to these one-dimensional subspaces S1
t ’s.

Lemma 7.1. For t = 0,1, · · · and a u ∈R
2, if

∣

∣

∣

∣

∣

∣PS1
t
(u)

∣

∣

∣

∣

∣

∣

2
<

1

2π(1+ t 2)
||u||2,

then for 0 ≤ j < t , we have
∣

∣

∣

∣

∣

∣PS1
j
(u)

∣

∣

∣

∣

∣

∣

2
≥

1

2π(1+ j 2)
||u||2.

Proof. We first prove the lemma for j = t −1. By (7.5), we have

1

t 2 +1
<∠(qt ,qt−1) ≤

π

4
. (7.6)

Since ||PS1
t
(u)||2 < 1

2π
1

1+t 2 ||u||2 and |q⊤
t u| = ||u||2|cos(∠(qt ,u))|, we have |cos(∠(qt ,u))| <

1
2π(1+t 2)

. Thus 2
π |

π
2
−∠(qt ,u)| ≤ |sin(π

2
−∠(qt ,u))| = |cos(∠(qt ,u))| < 1

2π(1+t 2)
, and consequently,

π

2
−

1

4(1+ t 2)
<∠(qt ,u) <

π

2
+

1

4(1+ t 2)
,or −

π

2
−

1

4(1+ t 2)
<∠(qt ,u) <−

π

2
+

1

4(1+ t 2)
.

Without loss of generality, we only consider the first case. Together with (7.6), we have

0 <∠(qt−1,u) <
π

2
−

3

4(1+ t 2)
,or

π

2
+

3

4(1+ t 2)
<∠(qt−1,u) <π.
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Thus,

||PSt−1
(u)||2 ≥ sin

( 3

4(1+ t 2)

)

||u||2.

By sin(x) ≥ 2x
π and 3

1+t 2 ≥ 1
1+(t−1)2 , we then show that

||PSt−1
(u)||2 ≥

1

2π

1

1+ (t −1)2
||u||2.

For j < t −1, since ∠(q j ,qt ) >
∑t

k= j+1
1

1+k2 , we have

||PS j
(u)||2 ≥ sin

( t−1
∑

k= j+1

1

1+k2
+

3

4

1

(1+ t 2)

)

||u||2.

Thus

||PS j
(u)||2 ≥

2

π

( t−1
∑

k= j+1

1

1+k2
+

3

4

1

(1+ t 2)

)

||u||2.

It is clear that 2
π

(

∑t−1
k= j+1

1
1+k2 + 3

4
1

(1+t 2)

)

≥ 1
2π

1
1+ j 2 , whence the lemma is proved.

We now consider the general Sd
t ’s.

Lemma 7.2. For any qt ∈ Sd
t and q j ∈ Sd

j
, j < t satisfying q⊤

t q j ≥ 0, we have

t
∑

k= j+1

1

1+k2
<∠(qt ,q j ) ≤

π

2
.

Proof. Let q̂t and q̂ j be two unit vectors in R
d with q̂⊤

t q̂ j > 0. Then we have

cos
(

∠
(

(

q̂t

t q̂t

)

,

(

q̂ j

j q̂ j

)

))

=
(

q̂t

t q̂t

)⊤ (

q̂ j

j q̂ j

)

/
(∣

∣

∣

∣

∣

∣

(

q̂t

t q̂t

)

∣

∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

∣

(

q̂ j

j q̂ j

)

∣

∣

∣

∣

∣

∣

2

)

=
(1+ t j )q̂⊤

t q̂ j
√

(1+ t 2)(1+ j 2)
.

Thus, introducing qt =
(

q̂t

t q̂t

)

and q j =
(

q̂ j

j q̂ j

)

yields

0 ≤ cos(∠(qt ,q j )) ≤
1+ t j

√

(1+ t 2)(1+ j 2)
.

Let q = qt −q j . Then, it follows that

||q||2 =
√

||qt ||22 +||q j ||22 −2||qt ||2||q j ||2 cos(∠(qt ,q j )) ≥ t − j .

Hence, by considering the two-dimensional space spanned by qt ,q j and using the same idea

as the one in proving (7.4) and (7.5), we show that for any qt ∈ Sd
t and q j ∈ Sd

j
, j < t , we have

t
∑

k= j+1

1

1+k2
<∠(qt ,q j ) ≤

π

2
.
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We now extend Lemma 7.1 to the multi-dimensional case.

Lemma 7.3. For t = 0,1, · · · and u ∈R
2d , if

||PSd
t

(u)||2 <
1

2π(1+ t 2)
||u||2,

then for 0 ≤ j < t , we have

||PSd
j
(u)||2 ≥

1

2π(1+ j 2)
||u||2.

Proof. For a fixed u ∈R
2d , let

qt =PSd
t

(u)/||PSd
t

(u)||2,

and

q j =P sd
j
(u)/||P sd

j
(u)||2,

if q⊤
t q j ≥ 0. Otherwise, set q j =−P sd

j
(u)/||P sd

j
(u)||2. Under the condition stated in the lemma,

we have |u⊤qt | < 1
2π(1+t 2)

||u||2. Also, by Lemma 7.2 we get

π

2
≥∠(qt ,q j ) >

t
∑

k= j+1

1

1+k2
.

Considering the two-dimensional space spanned by qt ,q j , similarly to proof of Lemma 7.1,

we obtain

u⊤q j ≥
1

2π(1+ j 2)
||u||2,

which implies that ||PSd
j
(u)||2 ≥ 1

2π(1+ j 2)
||u||2.

We next present two auxiliary lemmas that are used in the proof of main results.

Lemma 7.4. For a vector u ∈R
2, and two unit vectors q1,q2 ∈R

2 satisfying 0 ≤ |q⊤
1 q2| ≤ cosθ,

we have

|q⊤
1 u|2 +|q⊤

2 u|2 ≥ (1−cos(θ))||u||22. (7.7)

Proof. We have

∣

∣

∣

∣

∣

∣(q1 ·u, q2 ·u)⊤
∣

∣

∣

∣

∣

∣

2

2
=

∣

∣

∣

∣

∣

∣

(

q⊤
1

q⊤
2

)

·u
∣

∣

∣

∣

∣

∣

2

2
≥σ2

min(

(

q⊤
1

q⊤
2

)

)||u||22 ≥ (1−cosθ)||u||22, (7.8)

where the last inequality follows from calculating σmin(

(

q⊤
1

q⊤
2

)

).

Lemma 7.5. For a vector u ∈R
d , and for spaces Sd

t ,Sd
j

, j < t , we have

∣

∣

∣

∣

∣

∣PSd
t

(u)
∣

∣

∣

∣

∣

∣

2

2
+

∣

∣

∣

∣

∣

∣PSd
j
(u)

∣

∣

∣

∣

∣

∣

2

2
≥

(

1−cos(θ)
)

||u||22,

where θ =
∑t

k= j+1
1

1+k2 .
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Proof. We first construct the basis of Sd
t and Sd

j
. Let

e1 :=













1

0
...

0













, e2 :=













0

1
...

0













, · · · , ed :=













0

0
...

1













.

It is easy to verify that the vectors

e1,t :=
1

p
1+ t 2

(

e1

te1

)

, e2,t :=
1

p
1+ t 2

(

e2

te2

)

, · · · , ed ,t :=
1

p
1+ t 2

(

ed

ted

)

,

form an orthonormal basis of Sd
t . In the same manner, the vectors

e1, j :=
1

√

1+ j 2

(

e1

j e1

)

, e2, j :=
1

√

1+ j 2

(

e2

j e2

)

, · · · , ed , j :=
1

√

1+ j 2

(

ed

j ed

)

,

form an orthonormal basis of Sd
j

. Also, we have

|∠(ep,t ,eq, j )| =
π

2
, p 6= q, and

t
∑

k= j+1

1

1+k2
<∠(eq,t ,eq, j ) <

π

2
, (7.9)

where the second inequality is from Lemma 7.2. Thus, if we denote by Vq the two-dimensional

space spanned by {eq,t ,eq, j }, then the Vq ’s are orthogonal to each other. Moreover, we have

∣

∣

∣

∣

∣

∣PSd
t

(u)
∣

∣

∣

∣

∣

∣

2

2
+

∣

∣

∣

∣

∣

∣PSd
j
(u)

∣

∣

∣

∣

∣

∣

2

2
=

∣

∣

∣u⊤e1,t

∣

∣

∣

2
+·· ·+

∣

∣

∣u⊤ed ,t

∣

∣

∣

2
+

∣

∣

∣u⊤e1, j

∣

∣

∣

2
+·· ·+

∣

∣

∣u⊤ed , j

∣

∣

∣

2

=
(∣

∣

∣u⊤e1,t

∣

∣

∣

2
+

∣

∣

∣u⊤e1, j

∣

∣

∣

2)

+
(∣

∣

∣u⊤e2,t

∣

∣

∣

2
+

∣

∣

∣u⊤e2, j

∣

∣

∣

2)

+·· ·+
(∣

∣

∣u⊤ed ,t

∣

∣

∣

2
+

∣

∣

∣u⊤ed , j

∣

∣

∣

2)

≥
(

1−cos
( t

∑

k= j+1

1

1+k2

)) d
∑

q=1

∣

∣

∣

∣

∣

∣PVq
(u)

∣

∣

∣

∣

∣

∣

2

2

(

by Lemma 7.4 and (7.9)
)

=
(

1−cos
( t

∑

k= j+1

1

1+k2

))

||u||22
(

since Vq ’s are orthogonal to each other
)

.

7.2 RESULTS FOR THE STATIC SUPER-RESOLUTION PROBLEM

In this subsection, we review and restate the stability results in [33] for the static super-

resolution problem in multi-dimensional spaces. These results are useful to prove stability

results for the dynamic super-resolution problem.

In the super-resolution problem of single snapshot case, the source is the discrete measure

µ=
∑n

j=1
a jδy j

,y j ∈R
k with min1≤ j≤n |a j | = mmin > 0. The measurement Y is the noisy Fourier

data of µ in a bounded domain:

Y(ω) =
n
∑

j=1

a j e
i y⊤

j
ω+W(ω), ||ω||2 ≤Ω,ω ∈R

k , (7.10)
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with |W(ω)| < σ. The inverse problem is to recover the discrete measure from the set of

σ-admissible measures of Y defined below.

Definition 7.1. Given the measurement Y, we say that µ=
∑k

j=1
â jδŷ j

, ŷ j ∈R
k is a σ-admissible

measure of Y if
∣

∣

∣

k
∑

j=1

â j e i ŷ⊤
j ω−Y(ω)

∣

∣

∣<σ, ||ω||2 ≤Ω.

From [33], we have the following stability results for the recovery of source number and

locations.

Theorem 7.1. Let the measurement Y in (7.10) be generated by a n-sparse measureµ=
∑n

j=1
a jδy j

,y j ∈
B k

(n−1)π
2Ω

(0). Let n ≥ 2 and assume that the following separation condition is satisfied

min
p 6= j ,1≤p, j≤n

∣

∣

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

∣

∣

2
≥

4.4πe (π/2)k−1(n(n −1)/π)ξ(k−1)

Ω

( σ

mmin

) 1
2n−2

, (7.11)

where ξ(k −1) is defined by (2.1). Then there does not exist any σ-admissible measures of Y with

less than n supports.

Theorem 7.2. Let n ≥ 2. Let the measurement Y in (7.10) be generated by a n-sparse measure

µ=
∑n

j=1
a jδy j

,y j ∈ B k
(n−1)π

2Ω

(0) in the k-dimensional space. Assume that

dmin := min
p 6= j

∣

∣

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

∣

∣

2
≥

5.88πe4k−1
(

(n +2)(n +1)/2
)ξ(k−1)

Ω

( σ

mmin

) 1
2n−1

, (7.12)

where ξ(k −1) is defined as in (2.1). If µ̂=
∑n

j=1
â jδŷ j

supported on B k
(n−1)π

2Ω

(0) is a σ-admissible

measure of Y, then after reordering the ŷ j ’s, we have

∣

∣

∣

∣

∣

∣ŷ j −y j

∣

∣

∣

∣

∣

∣

2
<

dmin

2
, j = 1, · · · ,n.

Moreover, we have
∣

∣

∣

∣

∣

∣ŷ j −y j

∣

∣

∣

∣

∣

∣

2
≤

C (k,n)

Ω
SRF 2n−2 σ

mmin
, 1 ≤ j ≤ n, (7.13)

where SRF := π
dminΩ

is the super-resolution factor and

C (k,n) =
(

4k−1((n +2)(n +1)/2)ξ(k−1)
)2n−1

n24n−2e2nπ− 1
2 .

Remark 7.1. Note that here we have (n+2)(n+1)/2 as a factor in the separation condition (7.12),

which is different from the one in [33]. This is due to a minor error in [33] where (n +2)(n −1)/2

is used instead of (n +2)(n +1)/2.
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7.3 PROOF OF THEOREM 2.1

Proof. Note that there are at most n(n−1)
2

different vectors of the form upq =αp −αq , p < q

with αp =
(

yp

τvp

)

. Because we have

dmin :=min
p 6=q

∣

∣

∣

∣

∣

∣upq

∣

∣

∣

∣

∣

∣

2
= min

p 6=q

∣

∣

∣

∣

∣

∣αp −αq

∣

∣

∣

∣

∣

∣

2

≥
8.8eπ2

√

( (n−1)n
2

)2 +1(π/2)d−1(n(n −1)/π)ξ(d−1)

Ω

( σ

mmin

) 1
2n−2

,

(7.14)

we also have,

min
p 6=q

∣

∣

∣

∣

∣

∣up,q

∣

∣

∣

∣

∣

∣

2
≥

8.8eπ2
p

t 2 +1(π/2)d−1(n(n −1)/π)ξ(d−1)

Ω

( σ

mmin

) 1
2n−2

, ∀t ≤
(n −1)n

2
. (7.15)

Let ∆ = 4.4eπ(π/2)d−1(n(n−1)/π)ξ(d−1)

Ω

(

σ
mmin

) 1
2n−2

. We define that N (upq ,∆) :=
{

Sd
t

∣

∣

∣Sd
t ∈ (7.2), t =

0, · · · , (n−1)n
2

, ||PSd
t

(upq )||2 < 1p
t 2+1

∆

}

. If Sd
t ∈ N (upq ,∆), by (7.15) we have ||PSd

t
(upq )||2 <

1
2π(1+t 2)

||upq ||2. By Lemma 7.3 and (7.15), we have, for j < t ,

∣

∣

∣

∣

∣

∣PSd
j
(upq )

∣

∣

∣

∣

∣

∣

2
≥

1

2π(1+ j 2)
||upq ||2 ≥

1
√

j 2 +1
∆.

Thus if Sd
t ∈ N (upq ,∆), for j < t , Sd

j
6∈ N (upq ,∆). Now we start by considering t = (n−1)n

2
. If for

some up0q0
, Sd

(n−1)n
2

is in N (up0q0
,∆), then other Sd

j
, j < (n−1)n

2
are all not in N (up0q0

,∆). If there

is no such up0q0
so that Sd

(n−1)n
2

∈ N (up0q0
,∆), then

∣

∣

∣

∣

∣

∣PSd
(n−1)n

2

(upq )
∣

∣

∣

∣

∣

∣

2
≥ 1

√

( n(n−1)
2

)2+1
∆ for all upq ’s.

We can continue the process for t = (n−1)n
2

−1, · · · , t = 0. Since we have 1+ (n−1)n
2

different Sd
t ’s

and at most n(n−1)
2

different upq ’s, and

1+
n(n −1)

2
−

n(n −1)

2
= 1,

by the above process, we can find at least one Sd
t so that

∣

∣

∣

∣

∣

∣PSd
t

(upq )
∣

∣

∣

∣

∣

∣

2
≥

1
p

t 2 +1
∆ (7.16)

for all upq ’s. We consider this specific t in the following argument. In the space Sd
t , we have

the noisy measurement that
n
∑

j=1

a j e
iP

Sd
t

(α j )⊤ωt +W(ωt ),

where ||ωt ||2 ≤
p

1+ t 2Ω. On the other hand, since α j ∈ B 2d
π

(n+1)Ω

(0), we have

||PSd
t

(α j )||2 ≤ ||α j ||2 ≤
π

(n +1)Ω
=

(n −1)π

(n −1)(n +1)Ω
≤

(n −1)π

2
p

1+ t 2Ω

,
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where the last inequality is because t ≤ n(n−1)
2

and 1

2
p

1+t 2
≥ 1

2
√

1+( n(n−1)
2

)2
≥ 1

(n−1)(n+1)
. Also, by

(7.16) we have

min
p 6=q

∣

∣

∣

∣

∣

∣PSd
t

(αp )−PSd
t

(αq )
∣

∣

∣

∣

∣

∣

2
≥

4.4eπ(π/2)d−1(n(n −1)/π)ξ(d−1)

p
t 2 +1Ω

(
σ

mmin
)

1
2n−2 .

Thus now we can apply Theorem 7.1. By Theorem 7.1, there is no (n −1) vectors α̃ j ∈ Sd
t and

(n −1) ã j ’s so that

∣

∣

∣

n−1
∑

j=1

ã j e
i α̃⊤

j ωt −
n
∑

j=1

a j e
iP

Sd
t

(α j )⊤ωt +W(ωt )
∣

∣

∣<σ, ||ωt ||2 ≤
√

t 2 +1Ω.

Based on (7.3) for measurements Yt ’s, the above argument proves that there is no such (n −1)-

sparse σ-admissible parameter set {(â j , ŷ j , v̂ j )}n−1
j=1

of Yt ’s.

7.4 PROOF OF THEOREM 2.2

Proof. Note that there are at most n(n−1)
2

different vectors of the form upq =αp −αq , p < q

with αp =
(

yp

τvp

)

. Since

dmin :=min
p 6=q

∣

∣

∣

∣

∣

∣upq

∣

∣

∣

∣

∣

∣

2
= min

p 6=q

∣

∣

∣

∣

∣

∣αp −αq

∣

∣

∣

∣

∣

∣

2

≥
11.76eπ2

√

( (n+1)n
2

)2 +14d−1((n +2)(n +1)/2)ξ(d−1)

Ω
(

σ

mmin
)

1
2n−1 ,

(7.17)

we also obtain that for all t ≤ (n+1)n
2

,

min
p 6=q

∣

∣

∣

∣

∣

∣upq

∣

∣

∣

∣

∣

∣

2
= min

p 6=q

∣

∣

∣

∣

∣

∣αp −α j

∣

∣

∣

∣

∣

∣

2
≥

11.76eπ2
p

t 2 +14d−1((n +2)(n +1)/2)ξ(d−1)

Ω
(

σ

mmin
)

1
2n−1 .

(7.18)

Let∆= 5.88eπ4d−1((n+2)(n+1)/2)ξ(d−1)

Ω

(

σ
mmin

) 1
2n−1

. We define N (upq ,∆) as
{

Sd
t |Sd

t ∈ (7.2), t = 0, · · · , (n+1)n
2

,

||PSd
t

(upq )||2 < 1p
t 2+1

∆

}

. If Sd
t ∈ N (upq ,∆), by (7.18) we have ||PSd

t
(upq )||2 < 1

2π(1+t 2)
||upq ||2.

By Lemma 7.3 and (7.18), we have, for j < t ,

∣

∣

∣

∣

∣

∣PSd
j
(upq )

∣

∣

∣

∣

∣

∣

2
≥

1

2π(1+ j 2)
||upq ||2 ≥

1
√

j 2 +1
∆.

Thus if Sd
t ∈ N (upq ,∆), for j < t , Sd

j
6∈ N (upq ,∆). Again, we start by considering t = (n+1)n

2
. If

for some upq , Sd
(n+1)n

2

is in N (upq ,∆), then other Sd
j

, j < n(n+1)
2

are all not in N (upq ,∆). If there

is no such upq so that Sd
(n+1)n

2

∈ N (upq ,∆), then
∣

∣

∣

∣

∣

∣PSd
(n+1)n

2

(upq )
∣

∣

∣

∣

∣

∣

2
≥ 1

√

( n(n+1)
2

)2+1
∆ for all upq ’s.
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We can continue the discussion for t = n(n+1)
2

−1, · · · , t = 0. Since we have 1+ n(n+1)
2

different

Sd
t ’s and at most n(n−1)

2
different upq ’s, and

1+
n(n +1)

2
−

n(n −1)

2
= n +1,

by the above process, we can find at least n +1 different Sd
t ’s so that

∣

∣

∣

∣

∣

∣PSd
t

(upq )
∣

∣

∣

∣

∣

∣

2
≥

1
p

t 2 +1
∆ (7.19)

for all upq ’s. We only consider these t ’s in the sequel.

In the space Sd
t , we have the noisy measurement given by

n
∑

j=1

e
iP

Sd
t

(α j )⊤ωt +W(ωt ),

where ωt =
(

ω

tω

)

,||ωt ||2 ≤
p

1+ t 2Ω. On the other hand, since α j ∈ B 2d
(n−1)π

n(n+2)Ω

(0), we have

||PSd
t

(α j )||2 ≤ ||α j ||2 ≤
(n −1)π

n(n +2)Ω
≤

(n −1)π

2
p

1+ t 2Ω

,

where the last inequality is because t ≤ n(n+1)
2

and 1

2
p

1+t 2
≥ 1

2
√

1+( n(n+1)
2

)2
≥ 1

n(n+2)
. Thus now

we can apply Theorem 7.2. By Theorem 7.2, when (7.19) holds, i.e.,

min
p 6=q

∣

∣

∣

∣

∣

∣PSd
t

(αp )−PSd
t

(αq )
∣

∣

∣

∣

∣

∣

2
≥

5.88eπ4d−1((n +2)(n +1)/2)ξ(d−1)

p
t 2 +1Ω

( σ

mmin

) 1
2n−1 =: dmin,t ,

we can conclude that for each t , we have a permutation τt of {1, · · · ,n} so that

∣

∣

∣

∣

∣

∣PSd
t

(α̂τt ( j ))−PSd
t

(α j )
∣

∣

∣

∣

∣

∣

2
≤

C (d ,n)
p

t 2 +1Ω

( π

dmin,t

p
t 2 +1Ω

)2n−2 σ

mmin

=
C (d ,n)
p

t 2 +1Ω

( 1

5.88e4d−1((n +2)(n +1)/2)ξ(d−1)

)2n−2( σ

mmin

) 1
2n−1

, 1 ≤ j ≤ n,

(7.20)

where C (d ,n) =
(

4d−1((n+2)(n+1)/2)ξ(d−1)
)(2n−1)

n24n−2e2nπ− 1
2 . Note that, for fixed j in (7.20),

we have n +1 τt ( j )’s (since (7.19) holds for at least n +1 Sd
t ’s), while α̂p ’s take at most n values.

Therefore, by the pigeonhole principle, for each fixed α j , we can find two different t ’s, say,

t1 and t2, such that α̂τt1
( j ) = α̂τt2

( j ) = α̂p j
for some p j . Suppose t1 > t2, by (7.20) for t1, t2 and

Lemma 7.5 we have

∣

∣

∣

∣

∣

∣α̂p j
−α j

∣

∣

∣

∣

∣

∣

2
≤

√

1
t 2

1+1
+ 1

t 2
2+1

√

1−cos
(

∑t1

k=t2+1
1

k2+1

)

C (d ,n)

Ω

( 1

5.88e4d−1((n +2)(n +1)/2)ξ(d−1)

)2n−2( σ

mmin

) 1
2n−1

.
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Using the inequality 1−cos x ≥ 1
πx2, we further obtain

∣

∣

∣

∣

∣

∣α̂p j
−α j

∣

∣

∣

∣

∣

∣

2
≤

p
π
√

1
t 2

1+1
+ 1

t 2
2+1

∑t1

k=t2+1
1

k2+1

C (d ,n)

Ω

( 1

5.88e4d−1((n +2)(n +1)/2)ξ(d−1)

)2n−2( σ

mmin

) 1
2n−1

.

Since

√

1
t 2

1+1
+ 1

t 2
2+1

∑t1

k=t2+1
1

k2+1

<

√

t 2
1 +1

√

1+ t 2
1+1

t 2
2+1

(t1 − t2)
≤

√

6(t 2
1 +1),

and t1 ≤ n(n+1)
2

, we have

∣

∣

∣

∣

∣

∣α̂p j
−α j

∣

∣

∣

∣

∣

∣

2
≤

p
6π

√

( n(n+1)
2

)2 +1C (d ,n)

Ω

( 1

5.88e4d−1((n +2)(n +1)/2)ξ(d−1)

)2n−2( σ

mmin

) 1
2n−1

(7.21)

for 1 ≤ j ≤ n. We next claim that

∣

∣

∣

∣

∣

∣α̂p j
−α j

∣

∣

∣

∣

∣

∣

2
<

dmin

2
, (7.22)

where dmin is defined in (7.17). Indeed, by C (d ,n) =
(

4d−1((n+2)(n+1)/2)ξ(d−1)
)(2n−1)

n24n−2e2nπ− 1
2

and a direct calculation, we can verify that

p
6π

√

(
n(n +1)

2
)2 +1C (d ,n)

( 1

5.88e4d−1((n +2)(n +1)/2)ξ(d−1)

)2n−2

<
1

2
11.76eπ2

√

(
n(n +1)

2
)2 +14d−1

(

(n +2)(n +1)/2
)ξ(d−1)

,

whence (7.22) follows.

So far, we have proved that for each α j , there exists a point α̂p j
satisfying ||α̂p j

−α j ||2 < dmin

2
.

Thus for each α j there exists only one such α̂p j
∈ {α̂1, · · · ,α̂n} . We can reorder the index so

that
∣

∣

∣

∣

∣

∣α̂ j −α j

∣

∣

∣

∣

∣

∣

2
<

dmin

2
,

and

∣

∣

∣

∣

∣

∣α̂ j −α j

∣

∣

∣

∣

∣

∣

2
≤

p
6π(2π)2n−2(( n(n+1)

2
)2 +1)

2n−1
2 C (d ,n)

Ω

( π

dminΩ

)2n−2 σ

mmin
, 1 ≤ j ≤ n,

which follows from (7.21) and (7.17).
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8 PROOFS OF THEOREMS 3.1 AND 3.2

8.1 LEMMAS FOR PROJECTION

In this subsection, we present some lemmas for projection in multi-dimensional spaces, which

will help us to prove Theorems 3.1 and 3.2.

For a v ∈R
k , we denote by v⊥ the (k −1)-dimensional orthogonal complement space of the

one-dimensional space spanned by v. We consider the unit sphere in R
k and the following

spherical coordinates:

x1(Φ) = cos(φ1),

x2(Φ) = sin(φ1)cos(φ2),

...

xk−1(Φ) = sin(φ1) · · ·sin(φk−2)cos(φk−1),

xk (Φ) = sin(φ1) · · ·sin(φk−2)sin(φk−1),

(8.1)

where Φ= (φ1, · · · ,φk−1) ∈ [0,π]k−2 × [0,2π). For 0 < θ < π
2

and N = ⌊ π
2θ ⌋, we let

vτ1···τk−1
=

(

x1(Φτ1···τk−1
), · · · , xk (Φτ1···τk−1

)
)⊤

, 1 ≤ τ j ≤ N , (8.2)

where Φτ1···τk−1
= (τ1θ, · · · ,τk−1θ). It is obvious that Φτ1···τk−1

∈ [0, π
2

]k−1 and vτ1···τk−1
6= vp1···pk−1

if (τ1, · · · ,τk−1) 6= (p1, · · · , pk−1). There are N k−1 different unit vectors of the form (8.2).

Lemma 8.1. For two different vectors vτ1···τk−1
6= vp1···pk−1

in (8.2), we have

0 ≤ vτ1···τk−1
·vp1···pk−1

≤ cosθ. (8.3)

Proof. See Lemma 6.3 in [33].

Lemma 8.2. For a vector u ∈R
k , suppose ||Pv⊥

τ1 ···τk−1
(u)||2 < sin(θ

2
)||u||2 with vτ1···τk−1

defined in

(8.2), we have ||Pv⊥
p1 ···pk−1

(u)||2 ≥ sin(θ
2

)||u||2 for vp1···pk−1
6= vτ1···τk−1

.

Proof. See Lemma 6.4 in [33].

Lemma 8.3. Let k ≥ 2. For a vector u ∈R
k , and two unit vectors v1,v2 ∈R

k satisfying 0 ≤ v1 ·v2 ≤
cos(θ), we have

||Pv⊥
1

(u)||22 +||Pv⊥
2

(u)||22 ≥ (1−cos(θ))||u||22. (8.4)

Proof. See Lemma 3.3 in [33].

Lemma 8.4. Suppose we have n(n−1)
2

different upq ∈ R
k , then there exists a one-dimensional

space S so that for all upq ’s we have

∣

∣

∣

∣

∣

∣PS(upq )
∣

∣

∣

∣

∣

∣

2
≥

||upq ||2
(π/2)k−1

( π

n(n −1)

)ξ(k−1)
,

where ξ(k −1) is defined as in (2.1).
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Proof. Let Sk−1 be the unit sphere in R
k . For a subspace S of Rk and v ∈ S, we denote by v⊥(S)

the orthogonal complement space of v in S. For each u ∈R
k , we let

N (u,∆) =
{

v
∣

∣

∣v ∈ Sk−1, ||Pv⊥(Rk )(u)||2 < ||u||2 sin∆

}

. (8.5)

Define area(A) as the area of set A and let ∆k =
(

π
n(n−1)

) 1
k−1

, we have

area
(

∪pq N (upq ,∆k )
)

≤
n(n −1)

2

2area(Sk−2)

k −1
∆

k−1
k =

πarea(Sk−2)

k −1
≤ area(Sk−1),

where the first inequality is from Lemma 6.1 in [33] and the last one is from Lemma 6.2 in [33].

On the other hand, ∪pq N (upq ,∆k ) is an open set in Sk−1. Thus Sk−1 \∪pq N (upq ,∆k ) is not

empty. By the definition of N (upq ,∆k ), there exists a unit vector vk ∈R
k such that

∣

∣

∣

∣

∣

∣Pv⊥
k

(Rk )(upq )
∣

∣

∣

∣

∣

∣

2
≥ ||upq ||2 sin∆k ≥

||upq ||2
π/2

( π

n(n −1)

) 1
k−1

for all upq ’s. Note that Pv⊥
k

(Rk )(upq ) are at most n(n−1) different vectors in a (k−1)-dimensional

space v⊥
k

(Rk ). Applying similar arguments as above to v⊥
k

(Rk ) and Pv⊥
k

(Rk )(upq )’s, we can show

that there exists a unit vector vk−1 ∈ v⊥
k

(Rk ) such that for all upq ’s,

∣

∣

∣

∣

∣

∣Pv⊥
k−1

(v⊥
k

(Rk ))

(

Pv⊥
k

(Rk )(upq )
)∣

∣

∣

∣

∣

∣

2
≥

∣

∣

∣

∣

∣

∣Pv⊥
k

(Rk )(upq )
∣

∣

∣

∣

∣

∣

2

( 2

π

)( π

n(n −1)

) 1
k−2 ≥

||upq ||2
(π/2)2

( π

n(n −1)

) 1
k−1

+ 1
k−2

.

On the other hand, since v⊥
k−1

(v⊥
k

(Rk )) is a subspace of v⊥
k

(Rk ), we further obtain

∣

∣

∣

∣

∣

∣Pv⊥
k−1

(v⊥
k

(Rk ))(upq )
∣

∣

∣

∣

∣

∣

2
=

∣

∣

∣

∣

∣

∣Pv⊥
k−1

(v⊥
k

(Rk ))

(

Pv⊥
k

(Rk )(upq )
)∣

∣

∣

∣

∣

∣

2
≥

||upq ||2
(π/2)2

( π

n(n −1)

) 1
k−1

+ 1
k−2

.

Continuing the above arguments from dimension (k −2) to dimension 2, we can find a unit

vector v1 so that

∣

∣

∣

∣

∣

∣Pv⊥
1 (···v⊥

k−1
(v⊥

k
(Rk )))(upq )

∣

∣

∣

∣

∣

∣

2
≥

||upq ||2
(π/2)k−1

( π

n(n −1)

)ξ(k−1)
,

for all upq ’s. If we define S in the lemma as the one-dimensional space v⊥1 (· · ·v⊥
k−1

(v⊥
k

(Rk ))),

then the proof is completed.

Lemma 8.5. Suppose we have n(n−1)
2

different upq ∈R
k , then there exist n+1 (k−1)-dimensional

spaces Sk−1
j

= v⊥
j

, j = 1, · · · ,n +1 with 0 ≤ v⊤p v j ≤ cos
(

π
4

(

2
(n+1)(n+2)

) 1
k−1

)

, p 6= j , so that for all

upq ’s we have
∣

∣

∣

∣

∣

∣PSk−1
j

(upq )
∣

∣

∣

∣

∣

∣

2
≥

||upq ||2
4

( 2

(n +1)(n +2)

) 1
k−1

.

Proof. For k ≥ 2, let ∆k = π
8

(

2
(n+1)(n+2)

) 1
k−1

and θk = 2∆k . First, we consider the vectors (8.2)

in R
k with θ = θk and N = Nk = ⌊ π

2θk
⌋. We denote N (u,∆) =

{

v
∣

∣

∣v ∈ R
k , ||v||2 = 1, ||Pv⊥(u)||2 <
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||u||2 sin∆

}

. Thus, by Lemma 8.2, each N (upq ,∆k ) contains at most one unit vector in (8.2).

Next recall that there are N k−1
k

different vectors in (8.2), where Nk = ⌊ π
2θk

⌋ ≥ π
2θk

−1. Since

θk = 2∆k =
π

4

( 2

(n +1)(n +2)

) 1
k−1

,

we have

N k−1
k ≥

( π

2θk
−1

)k−1
=

(

2(
(n +1)(n +2)

2
)

1
k−1 −1

)k−1
≥

(

(
(n +1)(n +2)

2
)

1
k−1

)k−1
=

(n +1)(n +2)

2
.

Note that (n+1)(n+2)
2

− n(n−1)
2

≥ n +1, we can at least find (n +1) vectors v j ’s in (8.2) so that

||Pv⊥
j

(upq )||2 ≥ ||upq ||2 sin∆k for all upq ’s. Thus we have

∣

∣

∣

∣

∣

∣Pv⊥
j

(upq )
∣

∣

∣

∣

∣

∣

2
≥

2||upq ||2
π

π

8

( 2

(n +1)(n +2)

) 1
k−1 =

||upq ||2
4

( 2

(n +1)(n +2)

) 1
k−1

for all upq ’s. On the other hand, by Lemma 8.1 we have 0 ≤ v⊤p v j ≤ cos
(

π
4

(

2
(n+1)(n+2)

) 1
k−1

)

for

p 6= j .

Lemma 8.6. Define

dmin,k =
11.76πe4k−1((n +2)(n +1)/2)ξ(k−1)

TΩ

( σ

mmin

) 1
2n−1

.

For a vector u ∈R
k , suppose we can find two (k −1)-dimensional spaces Sk−1

j
= v⊥

j
, j = 1,2 with

0 ≤ v⊤1 v2 ≤ cos
(

π
4

(

2
(n+1)(n+2)

) 1
k−1

)

so that

∣

∣

∣

∣

∣

∣PSk−1
j

(u)
∣

∣

∣

∣

∣

∣

2
<

1

2
dmin,k−1, j = 1,2,

and
∣

∣

∣

∣

∣

∣PSk−1
j

(u)
∣

∣

∣

∣

∣

∣

2
≤

C (k −1,n)

TΩ

( π

dmin,k−1TΩ

)2n−2 σ

mmin
, j = 1,2,

where

C (k −1,n) =
(

4k−2((n +2)(n +1)/2)ξ(k−2)
)(2n−1)

n26n−3e2nπ− 1
2 .

Then we have
∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

2
<

1

2
dmin,k ,

and
∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

2
≤

C (k,n)

TΩ

( π

dmin,k TΩ

)2n−2 σ

mmin
,

where

C (k,n) =
(

4k−1((n +2)(n +1)/2)ξ(k−1)
)(2n−1)

n26n−3e2nπ− 1
2 .
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Proof. Let θ = π
4

(

2
(n+1)(n+2)

) 1
k−1

. By condition for v1,v2 in the lemma and Lemma 8.3, we have

||Pv⊥
1

(u)||22 +||Pv⊥
2

(u)||22 ≥ (1−cosθ)||u||22. (8.6)

Thus

||u||2 ≤
p

2
p

1−cosθ

C (k −1,n)

TΩ

( π

dmin,k−1TΩ

)2n−2 σ

mmin
.

Using the inequality 1−cosθ ≥ 2
π2 θ

2 = 1
8

(

2
(n+2)(n+1)

) 2
k−1 , we further obtain

∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

2
≤

4((n +2)(n +1)/2)
1

k−1 C (k −1,n)

TΩ

( π

dmin,k−1TΩ

)2n−2 σ

mmin
, 1 ≤ j ≤ n. (8.7)

We next claim that
∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

2
<

dmin,k

2
.

Indeed, by a direct calculation, we can verify that

4((n +2)(n +1)/2)
1

k−1 C (k −1,n)
( 1

11.76e4k−2((n +2)(n +1)/2)ξ(k−2)

)2n−2

<
1

2
11.76πe4(k−1)((n +2)(n +1)/2)ξ(k−1).

On the other hand, we have

(
π

dmin,k−1TΩ
)2n−2 σ

mmin
≤

( 1

11.76e4k−2((n +2)(n +1)/2)ξ(k−2)

)2n−2( σ

mmin

) 1
2n−1

.

Therefore, we have

4((n +2)(n +1)/2)
1

k−1 C (k −1,n)

TΩ

( π

dmin,k−1TΩ

)2n−2 σ

mmin

<
1

2

11.76πe4k−1((n +2)(n +1)/2)ξ(k−1)

TΩ

( σ

mmin

) 1
2n−1

.

This is
∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

2
< 1

2
dmin,k . Moreover, we have

∣

∣

∣

∣

∣

∣u
∣

∣

∣

∣

∣

∣

2
≤

(4((n +2)(n +1)/2)
1

k−1 )2n−1C (k −1,n)

TΩ

( π

dmin,k TΩ

)2n−2 σ

mmin
,

which follows from (8.7) and the equation that dmin,k−1 =
dmin,k

4((n+2)(n+1)/2)
1

k−1

. This completes the

proof.
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8.2 THEOREMS ON SOURCE NUMBER AND LOCATION RECOVERY FOR THE

ONE-DIMENSIONAL STATIC SUPER-RESOLUTION PROBLEM

The idea to prove Theorems 3.1 and 3.2 is to reduce the stability of a high-dimensional tracking

problem to many one-dimensional super-resolution problems. Thus in this subsection we

present results (Theorems 8.3 and 8.4) for the source number and location recovery in a one-

dimensional static super-resolution problem that is tuned to subsequent proofs of stability

of the velocity reconstruction. The results are slightly different from the ones in [34] and

therefore, we present their detailed proofs here for the sake of completeness.

We first introduce some lemmas and theorems from [35]. We denote for integer k ≥ 1,

ζ(k) =
{

( k−1
2

!)2, k is odd,

( k
2

)!( k−2
2

)!, k is even,
β(k) =















1
2

, k = 1,
( k−1

2
)!( k−3

2
)!

4
, k is odd, k ≥ 3,

( k−2
2

!)2

4
, k is even.

(8.8)

We also define for positive integers p, q , and z1, · · · , zp , ẑ1, · · · , ẑq ∈C, the following vector in R
p

ηp,q (z1, · · · , zp , ẑ1, · · · , ẑq ) =













|(z1 − ẑ1)| · · · |(z1 − ẑq )|
|(z2 − ẑ1)| · · · |(z2 − ẑq )|

...

|(zp − ẑ1)| · · · |(zp − ẑq )|













. (8.9)

For a complex matrix A, we denote by A∗ its conjugate transpose. For integer s and z ∈C, we

define the complex Vandermonde-vector

φs(z) = (1, z, · · · , zs)⊤. (8.10)

Lemma 8.7. For −π
2
≤ θ1 < θ2 < ·· · < θk ≤ π

2
and θ̂1, θ̂2, · · · , θ̂k ∈ [−π

2
, π

2
], suppose

||ηk,k (e iθ1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂k )||∞ < (
2

π
)kǫ, and θmin = min

q 6= j
|θq −θ j | ≥

( 4ǫ

λ(k)

) 1
k

,

where ηk,k is defined by (8.9) and

λ(k) =
{

1, k = 2,

β(k −2), k ≥ 3.
(8.11)

Then after reordering θ̂ j ’s, we have

|θ̂ j −θ j | <
θmin

2
and |θ̂ j −θ j | ≤

2k−1ǫ

(k −2)!(θmin)k−1
, j = 1, · · · ,k. (8.12)

Proof. See Corollary 9 in [34].

Theorem 8.1. Let k ≥ 1. Assume that θ j ∈
[−π

2
, π

2

]

,1 ≤ j ≤ k +1 are k +1 distinct points, and

|a j | ≥ mmin,1 ≤ j ≤ k + 1. Let θmin = minp 6= j |θp − θ j |. For q ≤ k, let â(q) = (â1, · · · , âq )⊤,

a = (a1, · · · , ak+1)⊤ and

Â(q) =
(

φ2k (e i θ̂1 ), · · · ,φ2k (e i θ̂q )
)

, A =
(

φ2k (e iθ1 ), · · · ,φ2k (e iθk+1 )
)

,
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where φ2k (z) is defined as in (8.10). Then

min
âp∈C,θ̂p∈R,p=1,··· ,q

∣

∣

∣

∣

∣

∣Â(q)â(q)− Aa
∣

∣

∣

∣

∣

∣

2
≥

ζ(k +1)β(k)mminθ
2k
min

π2k
.

Proof. See Theorem 4 in [34].

Theorem 8.2. Let k ≥ 2. Assume that θ1, · · · ,θk ∈
[−π

2
, π

2

]

are k different points and |a j | ≥
mmin,1 ≤ j ≤ k. Define θmin = minp 6= j |θp −θ j |. Let k distinct points θ̂1, · · · , θ̂k ∈

[−π
2

, π
2

]

satisfy

||Ââ − Aa||2 <σ,

where â = (â1, · · · , âk )⊤, a = (a1, · · · , ak )⊤ and

Â =
(

φ2k−1(e i θ̂1 ), · · · ,φ2k−1(e i θ̂k )
)

, A =
(

φ2k−1(e iθ1 ), · · · ,φ2k−1(e iθk )
)

.

Then

||ηk,k (e iθ1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂k )||∞ <
2kπk−1

ζ(k)θk−1
min

σ

mmin
.

Proof. See Theorem 5 in [34].

Lemma 8.8. Let ζ(n),β(n) and λ(n) be defined in (8.8) and (8.11), respectively. For n ≥ 2, we

have
( 2

p
2n −1

ζ(n)β(n −1)

) 1
2n−2 ≤

4.4e

2n −1
, (8.13)

( 8
p

2n

ζ(n)λ(n)

) 1
2n−1 ≤

5.88e

2n
, (8.14)

and
(2n)2n− 3

2

ζ(n)(n −2)!
≤ 23n−3e2nπ− 3

2 . (8.15)

Proof. See the appendix in [34].

We define a discrete measure as µ=
∑n

j=1
a jδy j

and the vector of its Fourier transform at

0,Ω,2Ω, · · · ,TΩ as

[µ] = (F [µ](0),F [µ](Ω), · · · ,F [µ](TΩ))⊤,

where F [µ](x) =
∑n

j=1
a j e i y j x . We have the following theorems for the source number and

location recovery in a one-dimensional static super-resolution problem.

Theorem 8.3. Let n ≥ 2 and T ≥ 2n −2. Suppose that the measurement is

Y(t ) =
n
∑

j=1

a j e i y jΩt +W(t ), t = 0, · · · ,T,
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with |W(t )| <σ, y j ∈ [− (n−1)π
TΩ

, (n−1)π
TΩ

] and

dmin := min
p 6=q

∣

∣

∣yp − yq

∣

∣

∣≥
8.8eπ

TΩ

( σ

mmin

) 1
2n−2

. (8.16)

Then there is no µ̂=
∑k

j=1
â jδŷ j

with k < n so that

||[µ̂]−Y||∞ <σ.

Proof. Step 1. We write

T +1 = (2n −1)r +q, (8.17)

where r, q are integers with r ≥ 1 and 0 ≤ q < 2n −1. We denote by θ j = y j rΩ, j = 1, · · · ,n. For

y j ∈ [− (n−1)π
TΩ

, (n−1)π
TΩ

], in view of (8.17), it is clear that

θ j = y j rΩ ∈
[−π

2
,
π

2

]

, j = 1, · · · ,n. (8.18)

For µ̂=
∑k

j=1
â jδŷ j

with k < n, note that

[µ̂]− [µ] =
(

F [µ̂](0),F [µ̂](Ω), · · · ,F [µ̂](TΩ)
)⊤−

(

F [µ](0),F [µ](Ω), · · · ,F [µ](TΩ)
)⊤

.

Using only the partial measurement at qrΩ,0 ≤ q ≤ 2n −2, we have

(

F µ̂(0),F µ̂(rΩ), · · · ,F µ̂((2n −2)rΩ)
)⊤−

(

Fµ(0),Fµ(rΩ), · · · ,Fµ((2n −2)rΩ)
)⊤ = B̂ â −B a,

where â = (â1, · · · , âk )⊤, a = (a1, · · · , an)⊤ and

B̂ =
(

φ2n−2(e i θ̂1 ), · · · ,φ2n−2(e i θ̂k )
)

,

B =
(

φ2n−2(e iθ1 ), · · · ,φ2n−2(e iθn )
)

,
(8.19)

with θ j = y j rΩ, θ̂ j = ŷ j rΩ. It is clear that

min
â∈Ck ,ŷ j∈R, j=1,··· ,k

||[µ̂]− [µ]||∞ ≥ min
â∈Ck ,ŷ j∈R, j=1,··· ,k

||B̂ â −B a||∞

≥
1

p
2n −1

min
α∈Ck ,ŷ j∈R, j=1,··· ,k

||B̂α−B a||2.
(8.20)

In view of (8.18), we can apply Theorem 8.1 to get

min
α∈Ck ,ŷ j∈R, j=1,··· ,k

||B̂α−B a||2 ≥
mminζ(n)β(n −1)(θmin)2n−2

π2n−2
,

where θmin = min j 6=p |θ j −θp |. Combining the above estimate with (8.20), we get

min
â∈Ck ,ŷ j∈R, j=1,··· ,k

||[µ̂]− [µ]||∞ ≥
mminζ(n)β(n −1)(θmin)2n−2

p
2n −1π2n−2

. (8.21)
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Step 2. Recall that dmin = min j 6=p |y j − yp |. Using the relation θ j = y j rΩ and (8.17), we can

show that

θmin = rΩdmin ≥
r TΩ

(2n −1)(r +1)
dmin ≥

TΩ

2(2n −1)
dmin.

(

r ≥ 1
)

Then the separation condition (8.16) implies

θmin ≥
4.4πe

2n −1

( σ

mmin

) 1
2n−2 ≥

( 2
p

2n −1

ζ(n)β(n −1)

σ

mmin

) 1
2n−2

,

where we have used (8.13) for the last inequality above. Therefore (8.21) implies that

min
â∈Ck ,ŷ j∈R, j=1,··· ,k

||[µ̂]− [µ]||∞ ≥ 2σ.

It follows that

||[µ̂]−Y||∞ = ||[µ̂]− [µ]−W||∞
≥||[µ̂]− [µ]||∞−||W||∞ ≥ ||[µ̂]− [µ]||∞−σ≥σ,

which shows that ||[µ̂]−Y||∞ <σ is impossible. This completes the proof.

Theorem 8.4. Let n ≥ 2 and T ≥ 2n −1. Suppose that the measurement is

Y(t ) =
n
∑

j=1

a j e i y jΩt +W(t ), t = 0, · · · ,T,

with |W(t )| <σ, y j ∈ [− (n−1)π
TΩ

, (n−1)π
TΩ

] and

dmin := min
p 6=q

∣

∣

∣yp − yq

∣

∣

∣≥
11.76eπ

TΩ

( σ

mmin

) 1
2n−1

. (8.22)

For a measure µ̂ =
∑n

j=1
â jδŷ j

with ŷ j ∈ [− (n−1)π
TΩ

, (n−1)π
TΩ

] and ||[µ̂]−Y||∞ < σ, we can reorder

ŷ j ’s so that
∣

∣

∣ŷ j − y j

∣

∣

∣<
dmin

2
,

and

∣

∣

∣ŷ j − y j

∣

∣

∣≤
C (n)

Ω
(

π

TΩdmin
)2n−2 σ

mmin
,

where C (n) = n26n−3e2nπ− 1
2 .

Proof. Step 1. We first write

T +1 = 2nr +q, (8.23)

where r, q are integers with r ≥ 1 and 0 ≤ q < 2n. Since y j , ŷ j ∈ [− (n−1)π
TΩ

, (n−1)π
TΩ

], we have

θ j := y j rΩ ∈
[−π

2
,
π

2

]

, θ̂p := ŷp rΩ ∈
[−π

2
,
π

2

]

, 1 ≤ j , p ≤ n. (8.24)
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Also, by (8.23),

∣

∣

∣θ j −θp

∣

∣

∣= rΩ
∣

∣

∣y j − yp

∣

∣

∣≥
r TΩ

2n(r +1)
≥

TΩ

4n

∣

∣

∣y j − yp

∣

∣

∣,
(

since r ≥ 1
)

(8.25)

and

θmin := min
j 6=p

∣

∣

∣θ j −θp

∣

∣

∣≥
TΩ

4n
dmin. (8.26)

Similar to Step 1 in the proof of Theorem 8.3, we consider

(

F [µ̂](0),F [µ̂](rΩ), · · · ,F [µ̂]((2n −1)rΩ)
)⊤

−
(

F [µ](0),F [µ](rΩ), · · · ,F [µ]((2n −1)rΩ)
)⊤ = B̂ â −B a,

where â = (â1, · · · , ân)⊤, a = (a1, · · · , an)⊤, and

B̂ =
(

φ2n−1(e i θ̂1 ), · · · ,φ2n−1(e i θ̂n )
)

, B =
(

φ2n−1(e iθ1 ), · · · ,φ2n−1(e iθn )
)

, (8.27)

with θ j = y j rΩ, θ̂ j = ŷ j rΩ. It is clear that

||B̂ â −B a||∞ ≤ ||[µ̂]− [µ]||∞.

On the other hand, since ||[µ̂]−Y||∞ < σ, we have ||[µ̂]− [µ]||∞ < 2σ. It follows that ||B̂ â −
B a||∞ < 2σ, whence we get

||B̂ â −B a||2 ≤
p

2n||B̂ â −B a||∞ < 2
p

2nσ. (8.28)

In view of (8.24), we can apply Theorem 8.2 to get

∣

∣

∣

∣

∣

∣ηn,n(e iθ1 , · · · ,e iθn ,e i θ̂1 , · · · ,e i θ̂n )
∣

∣

∣

∣

∣

∣

∞
<

p
2n2n+1πn−1

ζ(n)(θmin)n−1

σ

mmin
. (8.29)

Step 2. We apply Lemma 8.7 to estimate |θ̂ j−θ j |’s and |ŷ j−y j |’s. To do so, let ǫ= 2
p

2nπ2n−1

ζ(n)(θmin)n−1
σ

mmin
.

It is clear that ||ηn,n ||∞ < ( 2
π )nǫ and we only need to check the following condition

θmin ≥
( 4ǫ

λ(n)

) 1
n

, or equivalently (θmin)n ≥
4ǫ

λ(n)
. (8.30)

Indeed, by (8.26) and the separation condition (8.22),

θmin ≥
11.76πe

4n

( σ

mmin

) 1
2n−1 ≥π

( 8
p

2n

λ(n)ζ(n)

σ

mmin

) 1
2n−1

, (8.31)

where we have used (8.14) in the last inequality. Then

(θmin)2n−1 ≥
π2n−18

p
2n

λ(n)ζ(n)

σ

mmin
,
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whence we get (8.30). Therefore, we can apply Lemma 8.7 to get that, after reordering θ̂ j ’s,

∣

∣

∣θ̂ j −θ j

∣

∣

∣<
θmin

2
,

∣

∣

∣θ̂ j −θ j

∣

∣

∣<
p

2n2nπ2n−1

ζ(n)(n −2)!(θmin)2n−2

σ

mmin
,1 ≤ j ≤ n.

(8.32)

Finally, we estimate
∣

∣

∣ŷ j − y j

∣

∣

∣. Since
∣

∣

∣θ̂ j −θ j

∣

∣

∣< θmin

2
, it is clear that

∣

∣

∣ŷ j − y j

∣

∣

∣< dmin

2
. On the other

hand, by (8.25)
∣

∣

∣ŷ j − y j

∣

∣

∣≤
4n

TΩ

∣

∣

∣θ̂ j −θ j

∣

∣

∣.

Using (8.32), (8.26), and (8.15), a direct calculation shows that

∣

∣

∣ŷ j − y j

∣

∣

∣≤
C (n)

TΩ
(

π

TΩdmin
)2n−2 σ

mmin
,

where C (n) = n26n−3e2nπ− 1
2 . This completes the proof.

8.3 PROOF OF THEOREM 3.1

Proof. Note that for the n different v j ’s, we have at most n(n−1)
2

different upq = τvp −τvq , p < q .

By Lemma 8.4, we can find a one-dimensional subspace S so that

∣

∣

∣

∣

∣

∣PS(upq )
∣

∣

∣

∣

∣

∣

2
≥

||upq ||2
(π/2)d−1

( π

n(n −1)

)ξ(d−1)
≥

8.8eπ

TΩ

( σ

mmin

) 1
2n−2

,

where the last inequality is by the separation condition in the theorem. Thus we can find a

unit vector v ∈R
d , so that

∣

∣

∣v⊤upq

∣

∣

∣≥
8.8eπ

TΩ

( σ

mmin

) 1
2n−2

. (8.33)

We consider the measurements at ω=Ωv that

Yt (vΩ) =
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)vΩ+Wt (vΩ), t = 0, · · · ,T.

Let b j = a j e
i y⊤

j
vΩ

and y j = τv⊤
j

v and W(t ) = Wt (vΩ), the measurement can be written as

Y(t ) =
n
∑

j=1

b j e i y jΩt +W(t ) t = 0, · · · ,T,

with |W(t)| < σ. Note also that (8.33) implies minp 6=q |yp − yq | ≥ 8.8eπ
TΩ

(

σ
mmin

) 1
2n−2

and τv j ∈
B d

(n−1)π
TΩ

(0) implies y j ∈ [− (n−1)π
TΩ

, (n−1)π
TΩ

]. Thus by Theorem 8.3, there is no k < n ŷ j ’s so that

|
n
∑

j=1

b̂ j e i ŷ jΩt −Y(t )| <σ, t = 0, · · · ,T.

This implies there does not exist any σ-admissible parameter set of Yt ’s with less than n

elements.
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8.4 PROOF OF THEOREM 3.2

Proof. Step 1. Note that we have at most n(n−1)
2

different upq = τvp−τvq , p < q . The separation

condition in this theorem means

min
p<q

∣

∣

∣

∣

∣

∣upq

∣

∣

∣

∣

∣

∣

2
≥

11.76eπ4d−1
(

(n +2)(n +1)/2
)ξ(d−1)

TΩ
(

σ

mmin
)

1
2n−1 .

For a subspace S of Rd and v ∈ S, we denote v⊥(S) the orthogonal complement space of v in S.

Let

θk =
π

4

( 2

(n +1)(n +2)

) 1
k

, k = 1, · · · ,d −1,

dmin,k =
11.76πe4k−1((n +2)(n +1)/2)ξ(k−1)

TΩ

( σ

mmin

) 1
2n−1

, k = 1, · · · ,d −1. (8.34)

By Lemma 8.5, in R
d we can construct n+1 (d−1)-dimensional spaces Sd−1

jd−1
= v⊥

jd−1
(Rd ), jd−1 =

1, · · · ,n +1 with 0 ≤ v⊤pd−1
v jd−1

≤ cos(θd−1), pd−1 6= jd−1, so that for all upq ’s we have

∣

∣

∣

∣

∣

∣PSd−1
jd−1

(upq )
∣

∣

∣

∣

∣

∣

2
≥

||upq ||2
4

( 2

(n +1)(n +2)

) 1
d−1 ≥

11.76eπ4d−2
(

(n +2)(n +1)/2
)ξ(d−2)

TΩ
(

σ

mmin
)

1
2n−1 .

Since each Sd−1
jd−1

is a (d − 1)-dimensional space, applying Lemma 8.5 again for Sd−1
jd−1

and

PSd−1
jd−1

(upq )’s, for each Sd−1
jd−1

we can construct n +1 (d −2)-dimensional subspaces Sd−2
jd−2, jd−1

=

v⊥
jd−2, jd−1

(Sd−1
jd−1

), jd−2 = 1, · · · ,n +1 with 0 ≤ v⊤
pd−2, jd−1

v jd−2, jd−1
≤ cos(θd−2), pd−2 6= jd−2, so that

for all upq ’s we have

∣

∣

∣

∣

∣

∣PSd−2
jd−2, jd−1

(upq )
∣

∣

∣

∣

∣

∣

2
=

∣

∣

∣

∣

∣

∣PSd−2
jd−2, jd−1

(

PSd−1
jd−1

(upq )
)∣

∣

∣

∣

∣

∣

2
≥

||upq ||2
42

( 2

(n +1)(n +2)

) 1
d−1

+ 1
d−2

≥
11.76eπ4d−3

(

(n +2)(n +1)/2
)ξ(d−3)

TΩ
(

σ

mmin
)

1
2n−1 ,

where the first equality is because Sd−2
jd−2, jd−1

is a subspace of Sd−1
jd−1

. We can continue the pro-

cess and construct n +1 subspaces of Sd−2
jd−2, jd−1

,Sd−3
jd−3, jd−2, jd−1

, · · · ,S2
j2, j3,··· , jd−1

, respectively. For

each two dimensional space S2
j2, j3,··· , jd−1

, we can construct n +1 one-dimensional subspaces

S1
j1, j2, j3,··· , jd−1

= v⊥
j1, j2, j3,··· , jd−1

(S2
j2, j3,··· , jd−1

), j1 = 1, · · · ,n+1 with 0 ≤ v⊤
p1, j2,··· , jd−1

v j1, j2,··· , jd−1
≤ cos(θ1), p1 6=

j1, so that for all upq ’s we have

∣

∣

∣

∣

∣

∣PS1
j1, j2, j3,··· , jd−1

(upq )
∣

∣

∣

∣

∣

∣

2
≥

||upq ||2
4d−1

( 2

(n +1)(n +2)

)ξ(d−1)
≥

11.76eπ

TΩ

( σ

mmin

) 1
2n−1

.

Thus for each { j2, · · · , jd−1}, we can find n +1 unit vectors q j ’s with 0 ≤ |q⊤
p q j | ≤ cos(θ1), p 6= j ,

so that

PS1
j1, j2, j3,··· , jd−1

(upq ) = q⊤
j upq , and

∣

∣

∣q⊤
j upq

∣

∣

∣≥
11.76eπ

TΩ

( σ

mmin

) 1
2n−1

. (8.35)
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We consider these q j ’s in Step 2.

Step 2. Without loss of generality, we first consider q1. We consider the measurements at

ω=Ωq1 that

Yt (q1Ω) =
n
∑

j=1

a j e
i (y⊤

j
+tτv⊤

j
)q1Ω+Wt (q1Ω), t = 0, · · · ,T.

Let b j = a j e
i y⊤

j
q1Ω, y j = τv⊤

j
q1 and W(t ) = Wt (q1Ω), the measurement can be written as

Y(t ) =
n
∑

j=1

b j e i y jΩt +W(t ), t = 0, · · · ,T,

with |W(t )| <σ. By (8.35) we have

min
p 6=q

∣

∣

∣yp − yq

∣

∣

∣≥
11.76eπ

TΩ

( σ

mmin

) 1
2n−1

.

On the other hand, the measurement constraint

∣

∣

∣

n
∑

j=1

â j e i (ŷ⊤
j +tτv̂⊤

j )q1Ω−Yt (q1Ω)
∣

∣

∣<σ,

can be written as
∣

∣

∣

n
∑

j=1

b̂ j e i ŷ j t −Y(t )
∣

∣

∣<σ,

where b̂ j = â j e i ŷ⊤
j q1Ω and ŷ j = τv̂⊤j q1. Note that |τv⊤

j
q1| ≤

(n−1)π
TΩ

and |τv̂⊤j q1| ≤
(n−1)π

TΩ
since

τv̂ j ,τv j ∈ B d
(n−1)π

TΩ

(0). By Theorem 8.4, we have after reordering ŷ j ’s,

∣

∣

∣ŷ j − y j

∣

∣

∣<
1

2
dmin,1,

where dmin,1 is defined as in (8.34), and

∣

∣

∣ŷ j − y j

∣

∣

∣≤
C (1,n)

TΩ

( π

dmin,1TΩ

)2n−2 σ

mmin
,

where C (1,n) = n26n−3e2nπ− 1
2 . Because we have n +1 q j ’s, we have n +1 permutations τ j ’s of

{1, · · · ,n} so that
∣

∣

∣τv̂⊤τ j (p)q j −τv⊤p q j

∣

∣

∣<
1

2
dmin,1, j = 1, · · · ,n +1,

and
∣

∣

∣τv̂⊤τ j (p)q j −τv⊤p q j

∣

∣

∣≤
C (1,n)

TΩ

( π

dmin,1TΩ

)2n−2 σ

mmin
, j = 1, · · · ,n +1.

Since we have n +1 q j ’s but only n v̂p ’s, by the pigeonhole principle, for each vp , there exist

v̂τ j1
(p) = v̂τ j2

(p) = v̂p ′ so that

∣

∣

∣τv̂⊤p ′q jt
−τv⊤p q jt

∣

∣

∣<
1

2
dmin,1, t = 1,2,
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and
∣

∣

∣τv̂⊤p ′q jt
−τv⊤p q jt

∣

∣

∣≤
C (1,n)

TΩ

( π

dmin,1TΩ

)2n−2 σ

mmin
, t = 1,2.

Thus we have two S1
j1 t , j2,··· , jd−1

, t = 1,2, so that

∣

∣

∣PS1
j1 t , j2,··· , jd−1

(τv̂p ′ −τvp )
∣

∣

∣<
1

2
dmin,1, t = 1,2,

and
∣

∣

∣PS1
j1 t , j2,··· , jd−1

(τv̂p ′ −τvp )
∣

∣

∣≤
C (1,n)

TΩ

( π

dmin,1TΩ

)2n−2 σ

mmin
, t = 1,2.

From the results obtained in Step 1, S1
j1 t , j2,··· , jd−1

= v⊥
j1 t , j2, j3,··· , jd−1

(S2
j2, j3,··· , jd−1

), t = 1,2, are both

one-dimensional subspaces of S2
j2,··· , jd−1

and 0 ≤ v⊤
j11, j2,··· , jd−1

v j12, j2,··· , jd−1
≤ cos(θ1). By Lemma

8.6, we have

∣

∣

∣

∣

∣

∣PS2
j2,··· , jd−1

(τv̂p ′ −τvp )
∣

∣

∣

∣

∣

∣

2
<

1

2
dmin,2,

∣

∣

∣

∣

∣

∣PS2
j2,··· , jd−1

(τv̂p ′ −τvp )
∣

∣

∣

∣

∣

∣

2
≤

C (2,n)

TΩ

( π

dmin,2TΩ

)2n−2 σ

mmin
,

where

C (2,n) =
(

4((n +2)(n +1)/2)ξ(1)
)(2n−1)

n26n−3e2nπ− 1
2 .

Since we do not specify the { j2, · · · , jd−1}, for fixed { j3, · · · , jd−1}, the above results hold for all

{ j2, j3, · · · , jd−1}, j2 = 1, · · · ,n +1 with that the p ′ is related to j2. Again from Step 1, for fixed

{ j3, · · · , jd−1} we have S2
j2, j3,··· , jd−1

= v⊥
j2, j3,··· , jd−1

(S3
j3,··· , jd−1

), j2 = 1, · · · ,n+1 with 0 ≤ v⊤
p2, j3,··· , jd−1

v j2, j3,··· , jd−1
≤

cos(θ2), p2 6= j2. Similar to the above arguments, since we have n +1 j2’s while only n v̂q ’s, by

the pigeonhole principle, for each vp we can find v̂p ′ so that

∣

∣

∣

∣

∣

∣PS2
j2 t ,··· , jd−1

(τv̂p ′ −τvp )
∣

∣

∣

∣

∣

∣

2
<

1

2
dmin,2,

∣

∣

∣

∣

∣

∣PS2
j2 t ,··· , jd−1

(τv̂p ′ −τvp )
∣

∣

∣

∣

∣

∣

2
≤

C (2,n)

TΩ

( π

dmin,2TΩ

)2n−2 σ

mmin
, t = 1,2,

where

C (2,n) =
(

4((n +2)(n +1)/2)ξ(1)
)(2n−1)

n26n−3e2nπ− 1
2 .

By Lemma 8.6, we have

∣

∣

∣

∣

∣

∣PS3
j3,··· , jd−1

(τv̂p ′ −τvp )
∣

∣

∣

∣

∣

∣

2
<

1

2
dmin,3,

∣

∣

∣

∣

∣

∣PS3
j3,··· , jd−1

(τv̂p ′ −τvp )
∣

∣

∣

∣

∣

∣

2
≤

C (3,n)

TΩ

( π

dmin,3TΩ

)2n−2 σ

mmin
,

where

C (3,n) =
(

42((n +2)(n +1)/2)ξ(2)
)(2n−1)

n26n−3e2nπ− 1
2 .

Thus, by continuing the process, there exists v̂p ′ so that

∣

∣

∣

∣

∣

∣τv̂p ′ −τvp

∣

∣

∣

∣

∣

∣

2
<

1

2
dmin,d ,

∣

∣

∣

∣

∣

∣τv̂p ′ −τvp

∣

∣

∣

∣

∣

∣

2
≤

C (d ,n)

TΩ

( π

dmin,d TΩ

)2n−2 σ

mmin
,
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where

C (d ,n) =
(

4d−1((n +2)(n +1)/2)ξ(d−1)
)(2n−1)

n26n−3e2nπ− 1
2 .

Since minp 6=q ||vp −vq ||2 ≥ dmin,d , for each vp there exists one and only one v̂p ′ satisfying the

above condition. Thus after reordering v̂p ’s we have

∣

∣

∣

∣

∣

∣τv̂p −τvp

∣

∣

∣

∣

∣

∣

2
<

1

2
dmin,d ,

∣

∣

∣

∣

∣

∣τv̂p −τvp

∣

∣

∣

∣

∣

∣

2
≤

C (d ,n)

TΩ

( π

dmin,d TΩ

)2n−2 σ

mmin
, 1 ≤ p ≤ n.

This completes the proof.
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