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Exponential convergence of hp-FEM for the
integral fractional Laplacian in 1D

Markus Faustmann, Carlo Marcati, Jens Markus Melenk, and Christoph Schwab

Abstract We prove weighted analytic regularity for the solution of the integral frac-
tional Poisson problem on bounded intervals with analytic right-hand side. Based on
this regularity result, we prove exponential convergence of the hp-FEM on geometric
boundary-refined meshes.

1 Introduction

The (numerical) analysis of non-integer powers of elliptic differential operators has
garnered a lot of interest recently, as such operators can be used to derive models
for anomalous diffusion processes in various applications. The prototype of such an
operator is the so called fractional Laplacian (−∆)s for s ∈ (0, 1), which can be
defined in several different ways. On the full space, a classical way is to define it as
an operator with Fourier symbol |ξ|2s, but (equivalent) alternatives via semi-group
theory, operator theory, or via singular integrals exist as well, [18]. Here, we consider
the so called integral fractional Laplacian, using the singular integral definition.

Solutions to equations involving the integral fractional Laplacian on bounded
domains usually are non-smooth at the boundary and feature only finite regularity
even if the data is smooth, [16]; we mention finite regularity results in Hölder spaces
[20, 16] (smooth domains), in isotropic weighted Sobolev spaces [1] or unweighted
Besov spaces [6] on Lipschitz domains. In our recent work, [11], we provide weighted
analytic regularity estimates in two space dimensions that reflect both the interior
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analyticity and the anisotropic nature of the solution near the boundary. In the present
article, we provide similar weighted analytic estimates for the one dimensional case.

The numerical approximation of fractional PDEs by means of finite element
techniques is in principle well understood; we mention the survey articles [9, 4, 5, 19]
and references therein. An important active field is the design of suitably designed
meshes to counteract the singular behavior at the boundary, [1, 4]. We mention [14],
where a sharp analysis of vertex and edge singularities via Mellin techniques is used
to derive the correct mesh grading for methods converging at the optimal algebraic
rate. In this article, we leverage our weighted analytic regularity estimates to design
an exponentially convergent method by means of hp-finite element approximation
in one dimension. The generalization to two dimensions is the topic of our follow-up
work [12].

The techniques employed in the present work are closely related to the higher
dimensional case done in [11], but the one dimensional case allows for simplifications
and clearer presentation of the main concepts. A crucial step is a reformulation of
the fractional PDE as a Dirichlet to Neumann operator of a degenerate local elliptic
PDE, the so-called Caffarelli-Silvestre extension, [7]. For this extension, the second
crucial step is that a (global) regularity shift of essentially 1/2 can be obtained using
difference quotient techniques, [21]. Then, we derive interior regularity estimates of
Caccioppoli type and bootstrap these regularity results to obtain weighted analytic
regularity.

2 Model problem and main results

2.1 The fractional Laplacian

We consider the integral fractional Laplacian defined pointwise as the principal value
integral

(−∆)su(x) := C(s) P.V.

∫

R

u(x)− u(z)

|x− z|1+2s dz with C(s) := −22s
Γ (s+ 1/2)

π1/2Γ (−s)
,

where Γ (·) denotes the Gamma function.
Fractional differential equations are conveniently described using fractional

Sobolev spaces. Let Ω ⊂ R be an open, bounded interval. Denoting by Ht(Ω)
the classical integer order Sobolev spaces with t ∈ N0, fractional order Sobolev
spaces for t ∈ (0, 1) are defined in terms of the Aronstein-Slobodeckĳ seminorm
| · |Ht(Ω) and the corresponding full norm ‖ · ‖Ht(Ω), which are given by

|v|2Ht(Ω) =

∫

Ω

∫

Ω

|v(x)− v(z)|2
|x− z|1+2t dz dx, ‖v‖2Ht(Ω) = ‖v‖2L2(Ω) + |v|2Ht(Ω).
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For t ∈ (0, 1), we employ the spaces H̃t(Ω) :=
{
u ∈ Ht(Rd) : u ≡ 0 on R

d\Ω
}

with norm

‖v‖2H̃t(Ω) := ‖v‖2Ht(Ω) +
∥∥v/rt

∥∥2
L2(Ω)

,

where r(x) := dist(x, ∂Ω) denotes the Euclidean distance of a point x ∈ Ω from the
boundary ∂Ω. For t ∈ (0, 1)\{ 1

2}, the norms ‖·‖H̃t(Ω) and ‖·‖Ht(Ω) are equivalent,

see, e.g., [15]. For t > 0, the space H−t(Ω) denotes the dual space of H̃t(Ω), and
we write 〈·, ·〉L2(Ω) for the duality pairing that extends the L2(Ω)-inner product.

On a bounded interval Ω ⊂ R, we consider the fractional differential equation

(−∆)su = f inΩ, (1)

u = 0 inΩc := R\Ω, (2)

where s ∈ (0, 1) and f ∈ H−s(Ω) is a given right-hand side. The weak form of (1),
(2) is to find u ∈ H̃s(Ω) such that

a(u, v) :=
C(s)

2

∫

R

∫

R

(u(x)− u(z))(v(x)− v(z))

|x− z|1+2s dz dx = 〈f, v〉L2(Ω) (3)

for all v ∈ H̃s(Ω). Existence and uniqueness of u ∈ H̃s(Ω) follow from the Lax–
Milgram Lemma for any f ∈ H−s(Ω), upon the observation that the bilinear form
a(·, ·) : H̃s(Ω)× H̃s(Ω) → R is continuous and coercive, see, e.g., [1, Sec. 2.1].

2.2 Weighted analytic regularity

Our first main result, Theorem 1, asserts analytic regularity of the solution u ∈
H̃s(Ω) to our model problem (3) in scales of weighted Sobolev spaces, provided f
in (3) is analytic in Ω. The weights for these spaces are powers of the distance to the
boundary of the computational domain, r(x) := dist(x, ∂Ω).

Theorem 1 Let the data f ∈ C∞(Ω) satisfy, for constants Cf , γf > 0,

∀p ∈ N0 : ‖Dpf‖L2(Ω) ≤ Cfγ
p
fp!.

Let u solve (3). Then, there is γ (depending only on γf , s, Ω) such that for any ε > 0
there exists a constant Cε > 0 (depending on Cf , s, Ω, ε) such that

∀p ∈ N :
∥∥∥rp−1/2−s+εDpu

∥∥∥
L2(Ω)

≤ Cεγ
pp!.

In terms of the space B1
β := {u ∈ L2(Ω) : ‖rn+βDn+1u‖L2(Ω) ≤ Cγnn! ∀n ∈

N0} we have u ∈ B1
β for β = 1/2− s+ ε. In particular, u ∈ C(Ω).
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2.3 Exponential convergence of hp-FEM

Once weighted regularity results are available, numerical approximation by means
of the hp-FEM, [22], can be analyzed. In fact, employing geometric meshes and
piecewise polynomials of higher degree, our second main result, Theorem 2, states
exponential convergence of the hp-FEM for the integral fractional Laplacian.

Definition 1 (geometric mesh on (−1, 1)) On (−1, 1), for a grading factor σ ∈
(0, 1) and a numberL of layers of geometric refinement, the geometric mesh T L

geo,σ =
{Ti : i = 1, . . . , 2L+2} with 2L+2 elements Ti = (xi−1, xi) is given by the nodes

x0 := −1, xi = −1 + σL−i+1, i = 1, . . . , L,
xi+1 = 1− σi−L, i = L, . . . , 2L, x2L+2 := 1.

(4)

Geometric partitions T L
geo,σ on bounded intervals Ω ⊂ R are obtained from (4) by

translation and dilation. Key features of a geometric partition T L
geo,σ are a) elements

Ti ∈ T L
geo,σ with T i ∩ ∂Ω = ∅ satisfy diam(Ti) ∼ dist(Ti, ∂Ω) and b) elements

Ti ∈ T L
geo,σ with T i ∩ ∂Ω 6= ∅ satisfy diam(Ti) = O(σL).

On a geometric mesh T L
geo,σ and for a polynomial degree p ∈ N, we introduce the

spline space Sp,1(T L
geo,σ) := {v ∈ H1(Ω) : v|Ti

∈ Pp(Ti) ∀Ti ∈ T L
geo,σ}. Here,

Pp(Ti) is the space of all polynomials of degree (at most) p on Ti. The subspace
with zero boundary conditions is Sp,1

0 (T L
geo,σ) := {v ∈ Sp,1(T L

geo,σ) : v|∂Ω = 0}.

We note N := dimSp,1
0 (T L

geo,σ) ∼ pL.
The hp-FEM approximation uN is the Galerkin discretization of (3):

uN ∈ Sp,1
0 (T L

geo,σ) : a(uN , vN ) = 〈f, vN 〉L2(Ω) ∀vN ∈ Sp,1
0 (T L

geo,σ). (5)

Theorem 2 Let T L
geo,σ be a geometric mesh on the intervalΩ with grading factor σ ∈

(0, 1) andL layers of refinement towards the boundary points. LetuN ∈ Sp,1
0 (T L

geo,σ)
solve (5) and u solve (3). Then, there are constants Capx, b > 0 independent of p
and L such that

‖u− uN‖H̃s(Ω) ≤ Capx(e
−bp + σ(1−β−s)L),

where β ∈ (0, 1) is given by Theorem 1. The particular choice L ∼ p leads to

convergence ‖u− uN‖H̃s(Ω) ≤ C exp(−b′
√
N), where N = dimSp,1

0 (T L
geo,σ) is

the problem size, and C, b′ are constants independent of N .

The rest of this note will provide short proofs of Theorems 1 and 2.
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3 Regularity results

3.1 The Caffarelli-Silvestre extension

The main tool in our regularity analysis is the very influential reformulation of
the nonlocal fractional Laplacian as the Dirichlet-to-Neumann operator of a local,
degenerate elliptic PDE posed on a half space in one additional space dimension,
the so-called Caffarelli-Silvestre extension, [7].

For its formulation, let α := 1− 2s and write ω+ := ω×R+ for any measurable
subset ω ⊂ R, where R+ = (0,∞). We define L2

α(ω
+) as the space of square-

integrable functions with respect to the weight yα with the norm

‖U‖2L2
α(ω+) :=

∫

y∈R+

yα
∫

x∈ω

|U(x, y)|2 dx dy.

Moreover, we introduce the Beppo-Levi space H1
α(R × R+) := {U ∈ L2

loc(R ×
R+) : ∇U ∈ L2

α(R×R+)}. For elements of H1
α(R×R+), one can give meaning

to their trace at y = 0, which is denoted trU . In fact, trU ∈ Hs(R) (see, e.g.,
[17, Lem. 3.8]) with |trU |Hs(R) . ‖∇U‖L2

α(R×R+). We also require the space

H1
α,0(R× R+) := {V ∈ H1

α(R× R+) : trV = 0 on Ωc}.

Let data F ∈ C∞
0 (R2) and f ∈ C∞(Ω) be given. The Caffarelli-Silvestre

extension problem reads: Find U = U(x, y) ∈ H1
α(R× R+) such that

− div(yα∇U) = F in R× (0,∞),

∂nα
U(·, 0) = f in Ω, (6)

trU = 0 on Ωc,

where ∂nα
U(x, 0) = −ds limy→0 y

α∂yU(x, y) for ds = 22s−1Γ (s)/Γ (1− s). The
weak form of (6) is: Find U ∈ H1

α,0(R× R+) such that for all V ∈ H1
α,0(R× R+)

b(U, V ) :=

∫

R×R+

yα∇U · ∇V dxdy =

∫

R×R+

FV dxdy +

∫

Ω

f trV dx. (7)

Finally, the solution u to (3) is given by u = trU with U being the unique solution
of (6) with F = 0.

3.2 Global regularity

The following Lemma 1 provides additional global regularity in the x-variable.
Although it is a special case of [11, Lem. 3.2], which is valid for any space dimension
d ≥ 1, we sketch the proof as it is crucial for this article.
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Lemma 1 Let f ∈ C∞(Ω),F ∈ C∞
0 (R2), and letU solve (6). Then, for t ∈ [0, 1/2),

there is Ct > 0 depending only on t and Ω, such that

∫

R+

yα ‖∇U(·, y)‖2Ht(Ω) dy < CtN
2(F, f)

with

N2(F, f) := ‖f‖2H1(Ω) + ‖F‖2L2
−α(R×R+). (8)

Proof (Sketch) The idea is to apply the difference quotient argument from [21]
only in the x-direction. For h ∈ R, denote ThU := ηUh + (1 − η)U , where
Uh(x, y) := U(x+ h, y) and η is a cut-off function that localizes to a fixed interval
B2ρ(x0) in the first variable and that is constant in the second variable.

The main result of [21] is that estimates for the modulus ω(U) defined by

ω(U) :=

sup
h∈D\{0}

b(ThU, ThU)− b(U,U) +
∫
R×R+

F (ThU − U) +
∫
Ω
f tr(ThU − U)

|h|

can be used to derive regularity results in Besov spaces. Here,D ⊂ R denotes a set of
admissible directions h. These directions are chosen such that the function ThU is an
admissible test function, i.e., ThU ∈ H1

α,0(R×R+). In the present case this set can
easily be characterized as h ∈ [−ρ, ρ], if B4ρ(x0) ⊂ Ω or dist(B3ρ(x0), Ω) ≥ ρ.
In the other cases, we can take h ∈ [0, ρ], if the right endpoint of the interval Ω is in
the intersection of B4ρ(x0)∩Ω or h ∈ [−ρ, 0], if the left endpoint of the interval Ω
is in the intersection of B4ρ(x0) ∩Ω.

Step 1. (Estimate of b(·, ·)-terms). Using support properties of η as well as the
estimate ‖U(·, y)− Uh(·, y)‖L2(B2ρ)

. |h| ‖∇U(·, y)‖L2(B3ρ)
, one can deduce

|b(ThU, ThU)− b(U,U)| . |h|
∫

B+

3ρ

yα |∇U |2 dx dy.

Step 2. (Estimate of F -integral). Similarly to the first step, one can estimate
∣∣∣∣∣

∫

R×R+

F (U − ThU) dx dy

∣∣∣∣∣ ≤ ‖F‖L2
−α(B+

2ρ)
‖U − Uh‖L2

α(B+

2ρ)

. |h| ‖F‖L2
−α(B+

2ρ)
‖∇U‖L2

α(B+

3ρ)
.

Step 3. (Estimate of f -integral). With the trace inequality from [17, Lem. 3.3],
we obtain

∣∣∣∣
∫

Ω

f tr(U − ThU) dx

∣∣∣∣ . |h| ‖f‖H1(B4ρ)
‖∇U‖L2

α(B+

4ρ)
. (9)
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Step 4. (Application of the abstract framework of [21]). We introduce the semi-
norms [U ]2 :=

∫
R×R+

yα|∇U |2 dxdy. By the coercivity of b(·, ·) on H1
α,0(R×R+)

with respect to [·]2 and the abstract estimates in [21, Sec. 2], we have

[U − ThU ]2 . ω(U)|h|
. |h|‖∇U‖L2

α(B+

4ρ)

(
‖∇U‖L2

α(B+

3ρ)
+ ‖F‖L2

−α(B+

2ρ)
+ ‖f‖H1(B4ρ)

)
.

Employing the a priori estimate ‖∇U‖L2
α(R×R+) . ‖F‖L2

−α(R×R+) + ‖f‖H−s(Ω)

and using η ≡ 1 on B+
ρ (x0) leads to

∫

B+
ρ

yα|∇U −∇Uh|2 dx dy ≤ [U − ThU ]2 ≤ |h| N2(F, f). (10)

Step 5a: (Ht(Ω)–estimate). Thus far, we only consider one sided difference quo-
tients, i.e., h ∈ D in (10). The restriction h ∈ D in (10) can be lifted as shown in
[11]. In the present 1D situation, the key observation is that when computing the
Aronstein-Slobodecki norm, one can write for functions v defined on R

∫

x∈R

∫

|h|≤h0

|v(x+ h)− v(x)|2
|h|1+2σ

dh dx =

∫

x∈R

∫ h0

h=0

|v(x+ h)− v(x)|2
h1+2σ

dh dx

+

∫

x∈R

∫ h0

h=0

|v(x− h)− v(x)|2
h1+2σ

dh dx,

and a change of variables x−h = x′ in the second integral leads again to a one-sided
difference quotient. For simplicity of presentation, we will therefore assume in the
following Step 5b that (10) holds for all |h| ≤ h0, and we will assume that Bρ in
(10) can be replaced by Ω; this is possible by covering with suitable localizations
and using (10).

Step 5b: (Ht(Ω)–estimate). For t < 1/2 and R̃ large enough (s.t.Ω ⊂ (−R̃, R̃)),
we estimate with the Aronstein-Slobodeckĳ seminorm

∫

R+

|∇U(·, y)|2Ht(Ω) dy ≤
∫

R+

∫

Ω

∫

|h|≤R̃

|∇U(x+ h, y)−∇U(x, y)|2
|h|1+2t

dh dx dy.

The integral in h is split into the range |h| ≤ ε for some fixed ε > 0, for which (10)
can be brought to bear, and ε < |h| < R̃, for which a triangle inequality can be used.
This gives the sought estimate. �

3.3 Interior regularity

In the following, we are interested in Caccioppoli type estimates that allow to control
higher order derivatives by lower order derivatives on slightly enlarged intervals.
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Lemma 2 Let BR ⊂ Ω be a ball of radius R and BcR the concentrically scaled ball

of radius cR. Let U satisfy (6) with given data f and F . There is a constant CCac

depending only on Ω, s such that for every c ∈ (0, 1)

‖∇∂xU‖L2
α(B+

cR) ≤ CCac

(
((1− c)R)−1 ‖∇U‖L2

α(B+

R)

+ ‖∂xf‖L2(BR) + ‖F‖L2
−α(B+

R)

)
. (11)

With a constant γ > 0 depending only on s, Ω, and c, it holds for all p ∈ N

‖∇∂p
xU‖L2

α(B+

cR) ≤ (γp)pR−p ‖∇U‖L2
α(B+

R) (12)

+

p∑

i=1

(γp)p−iRi−p
(∥∥∂i

xf
∥∥
L2(BR)

+
∥∥∂i−1

x F
∥∥
L2

−α(B+

R)

)
.

Proof Estimate (11) follows from [11, Lem. 3.4], which holds for any space dimen-
sion d, using difference quotient techniques as previously employed in [13].

We now show (12): As the x-derivatives commute with the differential operator
in (6), we have that ∂i

xU solves (6) on B+
R with data ∂i

xF and ∂i
xf for any i.

For given c > 0, we choose sets BciR with ci = c+ (i− 1) (1−c)
p , which implies

ci < ci+1 < 1 for all i < p. Then, we have ci+1R − ciR = (1−c)R
p . Applying (11)

to ∂p−1
x U with the sets Bc1R, Bc2R leads to the estimate

‖∇∂p
xU‖L2

α(B+

c1R) ≤ CCac

( p

(1− c)
R−1

∥∥∇∂p−1
x U

∥∥
L2

α(B+

c2R)

+ ‖∂p
xf‖L2(BR) +

∥∥∂p−1
x F

∥∥
L2

−α(B+

R)

)
.

Inductively applying (11) to control
∥∥∇∂p−j+1

x U
∥∥
L2

α(B+

cjR
)

for 2 ≤ j ≤ p with sets

BcjR, Bcj+1R provides the claimed estimate with γ = CCac/(1− c). �

The right-hand side of the Caccioppoli estimate (11) suggests that we need to
control R−1 ‖∇U‖L2

α(B+

R). This term is actually small for R → 0 in the presence of

regularity of U , which was asserted in Lemma 1.

Lemma 3 Let SR := {x ∈ Ω : r(x) < R}. Let U solve (6). Then, for t ∈ [0, 1/2),
there exists Creg > 0 depending only on t and Ω such that, with the constant Ct > 0
from Lemma 1 and N2(F, f) given by (8), we have

R−2t‖∇U‖2
L2

α(S+

R)
≤ ‖r−t∇U‖2L2

α(Ω+) ≤ CregCtN
2(F, f). (13)

Proof The first estimate in (13) is trivial. For the second bound, we start by not-

ing that Lemma 1 provides the global regularity

∫

R+

yα ‖∇U(·, y)‖2Ht(Ω) dy ≤

CtN
2(F, f). For t ∈ [0, 1/2) and any v ∈ Ht(Ω), we have by, e.g., [15,

Thm. 1.4.4.3] the embedding result ‖r−tv‖L2(Ω) ≤ Creg‖v‖Ht(Ω). Applying this
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embedding to ∇U(·, y), multiplying by yα, and integrating in y yields the claimed
estimate. �

With the Caccioppoli estimate, we obtain estimates for the derivatives.

Lemma 4 Let U solve (6) with data f , F satisfying for some Cf , CF , γ > 0

∀p ∈ N0 : ‖∂p
xf‖L2(Ω) ≤ Cfγ

ppp, ‖∂p
xF‖L2

−α(Ω+) ≤ CF γ
ppp.

Then, there is γ̃ > 0 (depending on γ, s, Ω) and, for every ε ∈ (0, 1), t ∈ [0, 1/2) a

constant Cε (depending only on ε, t, Ω) such that for all p ∈ N0, we have

∥∥rp−t+ε∇∂p
xU

∥∥
L2

α(Ω+)
≤ Cεγ̃

pp!(Cf + CF +N(F, f)).

Proof The case p = 0 follows immediately from Lemma 3. For p ≥ 1 and for any
ball BR ⊂ Ω and c > 0, Lemma 2 combined with Lemma 3 gives

‖∇∂p
xU‖L2

α(B+

cR) . γpppRt−pN(F, f) (14)

+

p∑

i=1

γp−ipp−iRi−p
(∥∥∂i

xf
∥∥
L2(BR)

+
∥∥∂i−1

x F
∥∥
L2

−α(B+

R)

)
.

In order to obtain an estimate for the L2-norm over Ω = (a, b), we dyadically cover
Ω ⊂ ⋃

i∈N
Bcri(xi) with intervals Bcri(xi) ⊂ Ω, where the points xi run through

the set {a+(b−a)2−j : j ∈ N}∪{b−(b−a)2−j : j ∈ N}, c ∈ (1/2, 1) is fixed and
ri = dist(xi, ∂Ω). A geometric series argument gives

∑
i r

ε
i < ∞ for any chosen

ε. Using the assumption on the data f , F and (14), we obtain using t < 1/2

‖rp∇∂p
xU‖L2

α(Bcri
(xi)+) . rpi ‖∇∂p

xU‖L2
α(Bcri

(xi)+)

. γ̃ppprti(Cf + CF +N(F, f)) (15)

for suitable γ̃. Therefore, we have for fixed ε > 0

∥∥rp−t+ε(∇∂p
xU)

∥∥2
L2(Ω+)

.
∑

i∈N

r2p−2t+2ε
i ‖∇∂p

xU‖2L2(Bcri
(xi)+)

(15)

. γ̃2pp2p
∑

i∈N

r2εi (Cf + CF +N(F, f))2 = C2
ε γ̃

2pp2p(Cf + CF +N(F, f))2,

which finishes the proof after noting pp ≤ p!ep and adjusting γ̃. �

Taking traces, we obtain weighted analytic estimates for the fractional Laplacian:

Proof (of Theorem 1) [17, Lem. 3.7] gives

|V (x, 0)|2 . ‖V (x, ·)‖1−α
L2

α(R+) ‖∂yV (x, ·)‖1+α
L2

α(R+) + ‖V (x, ·)‖2L2
α(R+).

Using this trace estimate with V = ∂p
xU , additionally multiplying with r2p−1−2s+2ε,

and using α = 1− 2s provides
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r2p−1−2s+2ε |∂p
xU(x, 0)|2 . ‖rp−1/2−s+ε∂p

xU(x, ·)‖2L2
α(R+)

+
∥∥∥rp−3/2+ε∂p

xU(x, ·)
∥∥∥
1−α

L2
α(R+)

∥∥∥rp−1/2+ε∂y∂
p
xU(x, ·)

∥∥∥
1+α

L2
α(R+)

.

Integration over Ω gives in view of u(x) = U(x, 0)

∥∥∥rp−1/2−s+ε∂p
xu

∥∥∥
2

L2(Ω)
. ‖rp−1/2−s+ε∂p

xU(x, ·)‖2L2
α(Ω+)

+
∥∥∥rp−3/2+ε∂p

xU
∥∥∥
1−α

L2
α(Ω+)

∥∥∥rp−1/2+ε∂y∂
p
xU

∥∥∥
1+α

L2
α(Ω+)

.

Note that for p ≥ 1, we have |∂p
xU | ≤ |∇∂p−1

x U | and |∂y∂p
xU | ≤ |∇∂p

xU |. Applying
Lemma 4 with t = 1/2 − ε/2 and ε/2 instead of ε therein for the two terms with
weights rp−3/2+ε and rp−1/2+ε and t = max(0, s − 1/2) for the term with the
weight rp−1/2−s+ε provides the desired estimate.

The statementu ∈ B1
β follows by definition. The assertionu ∈ C(Ω) is implied by

the observationu ∈ C∞(Ω) together withu ∈ L2(Ω) and r−1/2−s+εu′ ∈ L2(Ω).�

3.4 Exponential convergence of hp-FEM

For β′ ∈ [0, 1), it is convenient to introduce the norm ‖ · ‖H1

β′
(Ω) by

‖v‖2H1

β′
(Ω) := ‖rβ′

v′‖2L2(Ω) + ‖rβ′−1v‖2L2(Ω).

Lemma 5 Let β′ ∈ [0, 1), σ ∈ (0, 1− β′). Then, there is Cβ′,σ > 0 such that

‖v‖H̃σ(Ω) ≤ Cβ′,σ

[
‖rβ′

v′‖L2(Ω) + ‖rβ′−1v‖L2(Ω)

]
(16)

for all v such that the right-hand side is finite.

Proof For two continuously embedded Banach spaces X1 ⊂ X0 and for v ∈ X0,
t > 0, we define the K-functional by K(v, t) := infw∈X1

‖v − w‖X0
+ t‖w‖X1

.
For θ ∈ (0, 1) and fine index q ∈ [1,∞], the interpolation spaces (e.g. [23, Lecture
22]) Xθ,q := (X0, X1)θ,q are given by the norm

‖v‖qXθ,q
:=

∫ ∞

t=0

(
t−θK(v, t)

)q dt

t
, q ∈ [1,∞), ‖v‖Xθ,∞

:= sup
t∈(0,∞)

t−θK(v, t).

We use the fact that, since X1 ⊂ X0, replacing the integration and the supremum
limit ∞ by a finite number T leads to an equivalent norm, [10, Chap. 6, Sec. 7].
Let St := {x ∈ Ω | r(x) < t} denote a t-neighborhood of ∂Ω. For each t > 0
sufficiently small, we may choose χt ∈ C∞

0 (R) such that χt ≡ 0 on St/2 and

χt ≡ 1 on Ω \ St as well as ‖χ(j)
t ‖L∞(R) ≤ Ct−j , j ∈ {0, 1}. Decomposing
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v = χtv+(1−χt)v, we have χtv ∈ H1
0 (Ω) and (1−χt)v ∈ L2(Ω). A calculation

reveals

‖(χtv)
′‖L2(Ω) ≤ Ct−β′‖v‖H1

β′
(Ω),

‖(1− χt)v‖L2(Ω) ≤ C‖v‖L2(St) ≤ t1−β′‖rβ′−1v‖L2(Ω).

This implies for X0 = L2(Ω), X1 = H1
0 (Ω) that K(v, t) ≤ Ct1−β′‖v‖H1

β′
(Ω). For

the Besov space B̃1−β′

2,∞ (Ω) := (L2(Ω), H1
0 (Ω))1−β′,∞, we obtain ‖v‖

B̃1−β′

2,∞ (Ω)
≤

C‖v‖H1

β′
(Ω). We conclude the proof by noting

H̃σ(Ω)
[23]
= (L2(Ω), H1

0 (Ω))σ,2
σ<1−β′

⊂ (L2(Ω), H1
0 (Ω))1−β′,∞ = B̃1−β′

2,∞ (Ω).
⊓⊔

Lemma 6 Let β′ ∈ [0, 1), ε > 0. Then, there is Cβ′,ε > 0 such that the following

holds: For v̂ ∈ C([0, 1]) let Iv̂ be the linear interpolant in the endpoints 0, 1. Then,

provided the right-hand side is finite, there holds for e := v̂ − Iv̂

‖xβ′−1e‖L2(0,1) + ‖xβ′

e′‖L2(0,1) ≤ Cβ′,ε‖xmin{β′+1,3/2−ε}v̂′′‖L2(0,1).

Proof Step 1: Let π̃1v̂ ∈ P1 be the linear interpolant of v̂ in the points 1/2 and 1.
From [3, Lemma 15, (A.4)], we get for any α > −1

‖xα/2(v̂ − π̃1v̂)
′‖L2(0,1) ≤ Cα‖xα/2+1v̂′′‖L2(0,1). (17)

A maximum norm estimate is obtained from

|(v̂ − π̃1v̂)(x)| ≤
∫ 1

x

|(v̂ − π̃1v̂)
′(t)| dt

≤
√∫ 1

0

t−1+2ε dt

∫ 1

0

t1−2ε|(v̂ − π̃1v̂)′(t)|2 dt
(17)

≤ Cε‖x3/2−εv̂′′‖L2(0,1).

Step 2 (β′ < 1/2): Abbreviate e := v̂ − Iv̂ and note e(x) =
∫ x

0
e′(t) dt. For

β′ ∈ [0, 1/2), Hardy’s inequality [10, Chap. 2, Thm. 3.1] is applicable and yields

‖xβ′−1e‖L2(0,1) ≤ C‖xβ′

e′‖L2(0,1).

We estimate with w = π̃1v̂ ∈ P1

‖xβ′

e′‖L2(0,1) ≤ ‖xβ′

(v̂ − w)′‖L2(0,1) + ‖xβ′

(I(v̂ − w))′‖L2(0,1)

P1 finite dimensional

. ‖xβ′

(v̂ − w)′‖L2(0,1) + ‖v̂ − w‖L∞(0,1)

Step 1, w = π̃1v̂

. ‖xmin{β′+1,3/2−ε}v̂′′‖L2(0,1).



12 Markus Faustmann, Carlo Marcati, Jens Markus Melenk, and Christoph Schwab

Step 3 (β′ > 1/2): From the representation e(x) =
∫ x

0
e′(t) dt we get for any

α ∈ [0, 1/2) by the Cauchy-Schwarz inequality |e(x)| ≤ Cαx
1/2−α‖xαe′‖L2(0,1).

Hence, for α sufficiently close to 1/2,

‖xβ′−1e‖L2(0,1) .

√∫ 1

0

x2β′−2+1−2α dx ‖xαe′‖L2(0,1) . ‖xαe′‖L2(0,1).

We conclude, since α < 1/2 < β′, that ‖xβ′−1e‖L2(0,1) + ‖xβ′

e′‖L2(0,1) .

‖xαe′‖L2(0,1). Applying Step 2 with α taking the role of β′ there, we get, by
selecting α sufficiently close to 1/2

‖xαe′‖L2(0,1) . ‖x3/2−εu′′‖L2(0,1).

Step 4 (β′ = 1/2): Given ε > 0, we note for ε′ > 0 sufficiently small that min{β′ +
1, 3/2− ε} = 3/2− ε = min{β′ − ε′ + 1, 3/2− ε} so that we obtain the result by
applying Step 2 to the choice β′ = 1/2− ε′. �

Proof (of Theorem 2) Since the bilinear form a(·, ·) is elliptic on H̃s(Ω), by Céa’s
lemma it suffices to construct a function v ∈ Sp,1

0 (T L
geo,σ) that satisfies the stated

error bound. By Theorem 1, we have u ∈ B1
β(Ω) for β = 1/2−s+ε, ε > 0 arbitrary

and u ∈ C(Ω). We approximate u ∈ C(Ω) by a v ∈ Sp,1(T L
geo,σ) defined as the

linear interpolant in the elements abutting ∂Ω and the Gauss-Lobatto interpolant of
degree p on all other elements. Selecting β′ := 1 − s − ε′ for ε′ sufficiently small,
Lemma 5 shows ‖u − v‖H̃s(Ω) ≤ C‖u − v‖H1

β′
(Ω), which can be estimated by

summing elementwise error contributions. For the approximation on the elements
abutting ∂Ω, we observe that, for sufficiently small ε, we can select ε′ to ensure

3/2− s+ ε = β + 1 < min{β′ + 1, 3/2− ε} = min{2− s− ε′, 3/2− ε}. (18)

In Lemma 6, we may therefore replace xmin{β′+1,3/2−ε} by xβ+1. Combining then
Lemma 6 with a scaling argument, we get for Ti with T i ∩ ∂Ω 6= ∅

‖rβ′−1(u− v)‖L2(Ti) + ‖rβ′

(u− v)′‖L2(Ti) ≤ Ch
1−β−(1−β′)
i ‖rβ+1u′′‖L2(Ti).

For the remaining elements Ti with T i ∩ ∂Ω = ∅, we use u ∈ B1
β(Ω) and get

following [2, Thm. 3.13] with a scaling argument

‖rβ′−1(u− v)‖L2(Ti) + ‖rβ′

(u− v)′‖L2(Ti) ≤ Ch
1−β−(1−β′)
i e−bp

for some b > 0 independent of p. Noting that β′ − β = 1/2 − ε − ε′ > 0, we
obtain from a geometric series argument by summation over all elements and using
hi = O(σL) for the elements abutting on ∂Ω that

‖u− v‖H1

β′
(Ω) . σL(β′−β) + e−bp = σL(1/2−ε−ε′) + e−bp.

The proof of Theorem 2 is completed by suitably adjusting ε. �
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Fig. 1 Exponential energy norm error convergence of hp-FEM on geometric mesh with grad-
ing factor σ = 0.6 for s ∈ {0.3, 0.5, 0.7}, Ω = (−1, 1), f = 1. Left: hp-FEM based on

S
p,1
0 (T L

geo,σ) with p = L. Right: hp-FEM based on subspace S̃L ⊂ S
L,1
0 (T L

geo,σ).

4 Numerical example

On the interval (−1, 1) with f = 1, the exact solution to (3) is u(x) =
2−2s

√
π(Γ (s+1/2)Γ (1+s))−1(1−x2)s. The singularity of u(x) ∼ dist(x, ∂Ω)s

is generic for the Dirichlet problem of the integral fractional Laplacean, also in higher
dimensions, [20]. We employ the geometric mesh T L

geo,σ that is graded towards ±1
with grading factor σ = 0.6 and L levels of refinement. We utilize two hp-FEM
spaces: a) the space SL,1

0 (T L
geo,σ) of piecewise polynmomials of degree p = L and

b) the subspace S̃L ⊂ SL,1
0 (T L

geo,σ) obtained by lowering the polynomial degree
from p = L to 1 in the two elements touching ∂Ω. The hp-FEM approximation is
computed in Matlab by using an implementation from [8].

In Fig. 1, the energy norm error
√
a(u− uN , u− uN ) =

√
a(u, u)− a(uN , uN )

between the exact solution u ∈ H̃s(Ω) and the hp-FEM approximation uN is plotted
versus L. Note that a(v, v) ∼ ‖v‖2

H̃s(Ω)
. The left panel shows the performance of

hp-FEM based on SL,1
0 (T L

geo,σ) whereas the right panel that of hp-FEM based on

S̃L. As predicted by Theorem 2, we observe exponential convergence with respect
to the number of layers L. In fact, the convergence is close to O(σL/2L−1). The
additional factorL−1 is due to the fact that we approximate by polynomials of degree
p = L on the boundary elements, whereas the proof of Theorem 2 employed the
linear interpolant on these elements, i.e., an approximation in S̃L. The right panel
of Fig. 1 shows the convergence behavior O(σL/2) predicted by Theorem 2.
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