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Abstract

We develop a multilevel Monte Carlo (MLMC) FEM algorithm for linear, elliptic diffusion
problems in polytopal domain D ⊂ Rd, with Besov-tree random coefficients. This is to
say that the logarithms of the diffusion coefficients are sampled from so-called Besov-tree
priors, which have recently been proposed to model data for fractal phenomena in science
and engineering. Numerical analysis of the fully discrete FEM for the elliptic PDE includes
quadrature approximation and must account for a) nonuniform pathwise upper and lower
coefficient bounds, and for b) low path-regularity of the Besov-tree coefficients.

Admissible non-parametric random coefficients correspond to random functions exhibiting
singularities on random fractals with tunable fractal dimension, but involve no a-priori speci-
fication of the fractal geometry of singular supports of sample paths. Optimal complexity and
convergence rate estimates for quantities of interest and for their second moments are proved.
A convergence analysis for MLMC-FEM is performed which yields choices of the algorithmic
steering parameters for efficient implementation. A complexity (“error vs work”) analysis of
the MLMC-FEM approximations is provided.

1 Introduction

The efficient numerical solution of partial differential equations with uncertain inputs is key in for-
ward uncertainty quantification, i.e., the computational quantification of uncertainty of solutions
to PDEs with uncertain inputs. It is also crucial in computational inverse uncertainty quantifi-
cation, e.g. via Markov chain Monte Carlo methods, where numerous numerical solves of the
forward model subject to realizations of the uncertain input are required. Here, we consider the
linear, elliptic diffusion with uncertain coefficient. It models a wide range of phenomena such
as diffusion through a medium with uncertain or even unknown permeability, e.g. in subsurface
flow, light scattering in dust clouds, to name but a few. Physical modelling of subsurface flow
in particular stipulates systems of fractures of uncertain geometry with high permeability along
fractures (see, e.g., [7] and the references there). With fracture geometry being only statistically
known, it is natural in computational uncertainty quantification (UQ) to specify the geometry in
a nonparametric fashion, rather than, for instance, through a Gaussian random field (GRF for
short) with a known, parametric two-point correlation to be calibrated from experimental data.
This function space perspective has also become topical recently in the context of inverse imaging
noisy signals. Modelling with random, fractal geometries also has found applications in biology
(roots, lungs [2]). There, Gaussian parametric models have been found computationally efficient
due to the availability of padding and circulant embedding based numerics, enabling the use of fast
Fourier transform algorithms for sample path generation. However, Gaussian models are perceived
as inadequate for the efficient representation of edges and interfaces in imaging. Accordingly, non-
parametric representations of inputs with fractal irregularities in sample paths have been proposed
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recently, e.g. in [22, 18], and the references there. We also mention the so-called Besov priors in
Bayesian inverse problems with elliptic PDE constraints (e.g. [23, 21, 4] and the references there).

In the present paper, we investigate so-called Besov random tree priors [22], as stochastic
log-diffusion coefficient in a linear elliptic PDE. These priors are given by a wavelet series with
stochastic coefficients, and certain terms in the expansion vanishing at random, according to the
law of so-called Galton-Watson trees. Samples of the corresponding random fields involve fractal
geometries, hence the Besov random tree prior may be a viable candidate in applications, where
models based on GRFs do not allow for sufficiently flexibility. We quantify the pathwise regularity
of the random tree prior in terms of Hölder-regularity, and investigate the forward propagation of
the uncertainty in the elliptic PDE model in a bounded domain. All results in the present article
encompass the ”standard” Besov prior from [23] as special case, when no terms in the wavelet
series are eliminated. As we point out in our analysis, regularity is inherently low, both with
respect to the spatial and stochastic domain of the random field. This is taken into account when
developing efficient numerical methods for the elliptic PDE problem at hand.

We develop a multilevel Monte Carlo (MLMC) Finite Element (FE) simulation algorithm and
furnish its mathematical analysis for the estimation of quantities of interest (QoI) in the for-
ward PDE model. Multilevel Monte Carlo methods ([13, 14, 5]) are, by now, a well-established
methodology in computational UQ, and are effective in regimes with comparably low regular-
ity. In contrast, higher-order methods that consider an equivalent parametric, deterministic PDE
problem, such as (multilevel) Quasi-Monte Carlo ([19]), generalized polynomial chaos (gPC) ex-
pansions ([20]), or multilevel Smolyak quadrature ([27]) are not suitable in the present random
tree model: The parametrization of the prior involves discontinuities in the stochastic domain,
which strongly violates the regularity requirements of the aforementioned higher-order methods.
On the other hand, MLMC techniques merely require square-integrability in the probability space.

1.1 Contributions

For a model linear elliptic diffusion equation, in a polytopal domain D ⊂ Rd, we provide the
mathematical setting and the numerical analysis of a MLMC-FEM for diffusion in random media
with log-fractal Besov random tree structure. In particular, we establish well-posedness of the
forward problem including strong measurability of random solutions (a key ingredient in the
ensuing MLMC-FE convergence analysis), and pathwise almost sure Besov regularity of weak
solutions. Technical results of independent interest include: (i) Bounds on exponential moments
of Besov random variables in Hölder norms, generalizing results in [22, 10, 23], (ii) Numerical
analysis of elliptic forward problems with fractal coefficient, in particular bounds on the fractal
scale truncation error and on the finite element approximation error, as well as the impact of
numerical quadrature in view of low (Hölder) path regularity of the random coefficients, (iii) a
complete MLMC-FE convergence analysis, for estimating the mean of non-linear functionals of
the random solution field.

1.2 Preliminaries and Notation

We denote by V ′ the topological dual for any vector space V and by V′〈·, ·〉V the associated dual
pairing. We write X →֒ Y for two metric spaces X ,Y, if X is continuously embedded in Y, i.e.,
there exists C > 0 such that ‖ϕ‖Y ≤ C‖ϕ‖X holds for all ϕ ∈ X . The Borel σ-algebra of any
metric space X is generated by the open sets in X and denoted by B(X ). For any σ-finite and
complete measure space (E, E , µ), a Banach space (X , ‖·‖X ), and integrability exponent p ∈ [1,∞],
we define the Lebesgue-Bochner spaces

Lp(E;X ) := {ϕ : E → X| ϕ is strongly measurable and ‖ϕ‖Lp(E;X ) <∞},

where

‖ϕ‖Lp(E;X ) :=

{(∫
E
‖ϕ(x)‖pXµ(dx)

)1/p
, p ∈ [1,∞)

ess supx∈E ‖ϕ(x)‖X , p = ∞.
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In case that X = R, we use the shorthand notation Lp(E) := Lp(E;R). If E ⊂ Rd is a subset of
Euclidean space, we assume E = B(E) and µ is the Lebesgue measure, unless stated otherwise.
For any bounded and connected spatial domain D ⊂ Rd we denote for k ∈ N and p ∈ [1,∞] the
standard Sobolev spaceW k,p(D) with k-order weak derivatives in Lp(D). The Sobolev-Slobodeckji
space with fractional order s ≥ 0 is denoted by W s,p(D). Furthermore, Hs(D) := W s,2(D) for
any s ≥ 0 and we use the identification H0(D) = L2(D). Given that D is a Lipschitz domain, we
define for any s > 1/2

Hs
0(D) := ker(γ0) = {ϕ ∈ Hs(D)| γ0(ϕ) = 0 on ∂D}, (1)

Here, γ0 ∈ L(Hs(D), Hs−1/2(∂D)) denotes the trace operator.
Let C(D) denote the space of all continuous functions ϕ : D → R. For any α ∈ N, Cα(D) is

the space of all functions ϕ ∈ C(D) with α continuous partial derivatives. For non-integer α > 0,
we denote by Cα(D) the space of all ϕ ∈ C⌊α⌋(D) with α− ⌊α⌋-Hölder continuous ⌊α⌋-th partial
derivatives. For any positive, real α > 0 we further denote by Cα(D) the Hölder-Zygmund space
of smoothness α. We refer to, e.g., [24, Section 1.2.2] for a Definition. We denote by S(Rd) the
Schwartz space of all smooth, rapidly decaying functions, and with S′(Rd) its dual, the space of
tempered distributions. Moreover, for any open set O ⊆ Rd, D(O) denotes the space of all smooth
functions ϕ ∈ C∞(O) with compact support in O.

1.3 Layout of this paper

In Section 2 we introduce the class of random fields taking values in the Besov spaces Bs
p,p which

we will use in the sequel to model the logarithm of the diffusion coefficient function. Using
multiresolution (“wavelet”) bases in Bs

p,p, in Sections 2.2, 2.3 we construct probability measures
on Bs

p,p in the spirit of the Gaussian measure on path space for the Wiener process, in Lévy-
Cieselski representation. The multilevel structure of the construction will be essential in the
ensuing MLMC-FE convergence analysis and its algorithmic realization. In Section 3 we introduce
the linear, elliptic divergence-form PDE with Besov-tree coefficients. We recapitulate (mostly
known) results on existence, uniqueness and on strong measurability of random solutions. In
Section 4 we introduce a conforming Galerkin Finite Element discretization based on continuous,
piecewise linear approximations in the physical domain. We account for the error due to finite
truncation of the random tree priors, and provide sharp error bounds for the Finite Element
discretization errors, under the (generally low) Besov regularity of the coefficient samples. Section 5
then addresses the MLMC-FE error analysis, also for Fréchet-differentiable, possibly nonlinear
functionals. Section 6 then illustrates the theory with several numerical experiments, where the
impact of the parameter choices in the Besov random tree priors on the overall error convergence
of the MLMC-FEM algorithms is studied. Section 7 provides a brief summary of the main results,
and indices several generalizations of these and directions of further research. Appendix A collects
definitions and key properties of Galton-Watson trees which are used in the main text. Appendix B
provides a detailed description of the FE implementation in the experiments reported in Section 6.

2 Random Variables in Besov Spaces

2.1 Wavelet representation of Besov spaces

Let Td := [0, 1]d denote the d-dimensional torus for d ∈ N. We briefly recall the construction of
orthonormal wavelet basis on L2(Rd) and L2(Td) and the wavelet representation of the associated
Besov spaces. For more detailed accounts we refer to [25, Chapter 1], [26, Chapter 1.2], and to
[11, Chapter 5] for orthonormal wavelets in multiresolution analysis (MRA).
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2.1.1 Univariate MRA

Let φ and ψ be compactly supported scaling and wavelet functions in Cα(R), α ≥ 1, suitable for
multi-resolution analysis in L2(R). We assume that ψ satisfies the vanishing moment condition

∫

R

ψ(x)xmdx = 0, m ∈ N0, m < α. (2)

One example are Daubechies wavelets with M := ⌊α⌋ ∈ N vanishing moments also known as
DB(⌊α⌋)-wavelets), that have support [−M + 1,M ] and are in C1(R) for M ≥ 5 (see, e.g., [11,
Section 7.1]). For any j ∈ N0 and k ∈ Z, the MRA is defined by the dilated and translated
functions

ψj,k,0(x) := φ(2jx− k), and ψj,k,1(x) := ψ(2jx− k), x ∈ R. (3)

As ‖φ‖L2(R) = ‖ψ‖L2(R) = 1, it follows that ((ψ0,k,0), k ∈ Z) ∪ ((2j/2ψj,k,1), (j, k) ∈ N0 × Z) is an
orthonormal basis of L2(R).

2.1.2 Multivariate MRA

A corresponding isotropic1 wavelet basis that is orthormal in L2(Rd), d ≥ 2 may be constructed by
tensorization of univariate MRAs. We define index sets L0 := {0, 1}d and Lj := L0 \ {(0, . . . , 0)}
for j ∈ N. We note that Lj has cardinality |Lj | = 2d if j = 0, and |Lj | = 2d − 1 otherwise. For
any l ∈ L0, we define furthermore

ψj,k,l(x) := 2dj/2
d∏

i=1

ψj,ki,l(i)(xi), j ∈ N0, k ∈ Zd, x ∈ Rd, (4)

to obtain that ((ψj,k,l), j ∈ N0, k ∈ Zd, l ∈ Lj) is an orthonormal basis of L2(Rd).
Orthonormal bases consisting of locally supported, periodic functions on the torus Td can be

introduced by tensorization, as e.g. in [25, Section 1.3]. Given φ and ψ, we fix a scaling factor
w ∈ N such that

supp(ψw,0,l) ⊂

{
x ∈ Rd

∣∣ ‖x‖2 <
1

2

}
, l ∈ L0.

With this choice of w, it follows for j ∈ N0 that

supp(ψj+w,0,l) ⊂
{
x ∈ Rd

∣∣ ‖x‖2 < 2−j−1
}
.

Now let Kj := {k ∈ Zd| 0 ≤ k1, . . . , kd < 2j} ⊂ 2jTd and note that |Kj+w| = 2d(j+w). Define the
index set Iw := {j ∈ N0, k ∈ Kj+w, l ∈ Lj}, the one-periodic wavelet functions

ψper
j+w,k,l(x) :=

∑

n∈Zd

ψj+w,k,l(x− n), (j, k, l) ∈ Iw, x ∈ Rd,

and their restrictions to Td by

ψl
j+w,k(x) := ψper

j+w,k,l(x), (j, k, l) ∈ Iw, x ∈ Td. (5)

We now obtain that
Ψw :=

(
(ψl

j+w,k), (j, k, l) ∈ Iw
)

(6)

is a L2(Td)-orthonormal basis, see [25, Proposition 1.34]. We next introduce Besov spaces via
suitable wavelet-characterization as developed in [25, Chapter 1.3]. We distinguish between spaces
of one-periodic functions on Rd and their restrictions to the torus Td:

1Anisotropic tensorizations leading upon truncation to so-called “hyperbolic cross approximations” may be
considered. As such constructions tend to inject preferred directions along the cartesian axes, we do not consider
them here.
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Definition 2.1.

1. For any p ∈ [1,∞) and s ∈ (0, α) the Besov space Bs,per
p,p (Rd) of one-periodic functions on

Rd is given by

Bs,per
p,p (Rd) :=



ϕ ∈ S′(Rd)

∣∣∣∣
∑

(j,k,l)∈Iw

2jp(s+
d+w

2 − d
p )|(ϕ, ψper

j+w,k,l)L2(Td)|
p <∞



 . (7)

In case that p = ∞, one has

Bs,per
∞,∞(Rd) :=

{
ϕ ∈ S′(Rd)

∣∣∣∣ sup
(j,k,l)∈Iw

2j(s+
d+w

2 )|(ϕ, ψper
j+w,k,l)L2(Td)| <∞

}
. (8)

2. For any p ∈ [1,∞) and s ∈ (0, α) the Besov space Bs
p,p(T

d) on Td is given by

Bs
p,p(T

d) :=



ϕ ∈ D′(Td)

∣∣∣∣
∑

(j,k,l)∈Iw

2jp(s+
d+w

2 − d
p )|(ϕ, ψl

j+w,k)L2(Td)|
p <∞



 . (9)

In case that p = ∞, we set

Bs
∞,∞(Td) :=

{
ϕ ∈ D′(Td)

∣∣∣∣ sup
(j,k,l)∈Iw

2j(s+
d+w

2 )|(ϕ, ψl
j+w,k)L2(Td)| <∞

}
. (10)

Remark 2.2. Definition 2.1 may be generalized to define the spaces Bs,per
p,q (Rd) and Bs

p,q(T
d) with

p, q ∈ [1,∞] and p 6= q, see [25, Chapter 1.3]. The random fields introduced in Subsections 2.2
and 2.3 are naturally Bs

p,p(T
d)-valued by construction, thus we only treat the case p = q for the

sake of brevity. By [25, Theorem 1.29] exists an prolongation isomorphism

prlper : Bs
p,p(T

d) → Bs,per
p,p (Rd), (11)

that extends ϕ ∈ Bs
p,p(T

d) to its (unique) one-periodic counterpart in prlper(ϕ) ∈ Bs,per
p,p (Rd). This

in turn allows to identify any ϕ ∈ Bs
p,p(T

d) as the restriction of a periodic function prlper(ϕ) ∈

Bs,per
p,p (Rd) to Td. We use prlper to define (non-periodic) Besov space-valued random variables on

subsets D ⊂ Td by restriction in Subsection 3.2.
Definition 2.1 is based on an equivalent characterization of the spaces Bs,per

p,p (Rd) and Bs
p,p(T

d).
They are often (equivalently) defined using a dyadic partition of unity (see e.g. [25, Definitions 1.22
and 1.27]): Using the latter definition for Bs,per

p,p (Rd), [25, Theorem 1.36(i)] shows that the spaces

(7) resp. (8) are isometrically isomorphic to Bs,per
p,p (Rd). As a consequence of the prolongation

map prlper in (11), the same holds true for the spaces Bs
p,p(T

d), see [25, Theorem 1.37(i)].

2.1.3 Besov Spaces and MRAs

We define the subspace Vw+1 := span{ψl
w,k| k ∈ K0, l ∈ L0} ⊂ L2(Td) and observe that

dim(Vw+1) = 2d(w+1). By the multiresolution analysis for one-periodic, univariate functions in [11,
Chapter 9.3], it follows that ((ψl

j,k), j ≤ w, k ∈ Kj , l ∈ Lj) is another orthonormal basis of Vw+1.

Hence, we may replace the first 2d(w+1) basis functions in (5) to obtain the (computationally more
convenient) L2(Td)-orthonormal basis

Ψ :=
(
(ψl

j,k), (j, k, l) ∈ IΨ
)
, IΨ := {j ∈ N0, k ∈ Kj , l ∈ Lj}. (12)

Based on (12), we define for s > 0, p ∈ [1,∞), and sufficiently regular ϕ ∈ L2(Td) the Besov
norms

‖ϕ‖Bs
p,p(T

d) :=




∑

(j,k,l)∈IΨ

2jp(s+
d
2−

d
p )|(ϕ, ψl

j,k)L2(Td)|
p




1/p

, (13)
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and
‖ϕ‖Bs

∞,∞(Td) := sup
(j,k,l)∈IΨ

2j(s+
d
2 )|(ϕ, ψl

j,k)L2(Td)| <∞. (14)

By Definition 2.1, it follows that ϕ ∈ Bs
p,p(T

d) if and only if ‖ϕ‖Bs
p,p(T

d) <∞.

2.1.4 Notation

We fix some notation for Besov, Hölder and Zygmund spaces to be used in the remainder of
this paper. As the (periodic) domain Td does not vary in the subsequent analysis, we use the
abbreviations Bs

p := Bs
p,p(T

d), Cα := Cα(Td) and Cα := Cα(Td) for convenience in the following.
Furthermore, we will assume that the basis functions in Ψw,Ψ ⊂ Cα, are sufficiently smooth with
Hölder index α > s for given s > 0, and therefore omit the restriction s ∈ (0, α) in the following.
In this case, it holds that Ψw (and thus Ψ) is a basis of Bs

p for p <∞, see [25, Theorem 1.37].
We recall that for any s > 0 there holds Cs = Bs

∞ (see [25, Remark 1.28]), as well as Cs = Cs

for s ∈ (0,∞) \ N, and Cs ( Cs for s ∈ N (see [24, Section 1.2.2]). By (13) and (14) we further
obtain the continuous embeddings

Bs
p →֒ Bt

q if 1 ≤ p ≤ q <∞ and s−
d

p
≥ t−

d

q
,

Bs
p →֒ Bt

∞ = Ct for t ∈

(
0, s−

d

p

]
,

(15)

with the embedding constants in (15) bounded by one (cf. [26, Chapter 2.1]).

2.2 Besov priors

To introduce Besov space-valued random variables as in [23], we consider a complete probability
space (Ω,A, P ). Following the constructions in [10, 4, 22], based on the representation in (9), we
now define Bs

p-valued random variables by replacing the L2(Td)-orthogonal projection coefficients

(ϕ, ψl
j,k)L2(Td) with suitable random variables. More precisely, consider for any p ∈ [1,∞) an inde-

pendent and identically distributed (i.i.d.) sequence X = ((X l
j,k), (j, k, l) ∈ IΨ) of p-exponential

random variables. That is, each X l
j,k : Ω → R is A/B(R)-measurable with density

φp(x) :=
1

cp
exp

(
−
|x|p

κ

)
, x ∈ R, cp :=

∫

R

exp

(
−
|x|p

κ

)
dx, (16)

where κ > 0 is a fixed scaling parameter. We recover the normal distribution with variance κ
2 if

p = 2, and the Laplace distribution with scaling κ for p = 1.

Definition 2.3. [23, Definition 9] Let Ψ be the L2(Td)-orthogonal wavelet basis as in (12), let
s > 0, p ∈ [1,∞) and let X = ((X l

j,k), (j, k, l) ∈ IΨ) be an i.i.d. sequence of p-exponential random

variables with density φp as in (16). Let the random field b : Ω → L2(Td) be given by

b(ω) :=
∑

(j,k,l)∈IΨ

ηjX
l
j,k(ω)ψ

l
j,k, ω ∈ Ω, where ηj := 2−j(s+ d

2−
d
p ), j ∈ N0. (17)

We call b a Bs
p-valued random variable, or simply a Bs

p-random variable.

The random variables b from Definition 2.3 are also referred to as Besov priors in the literature
on inverse problems. The following regularity results are well-known:

Proposition 2.4.

1. [23, Lemma 10] Let b be a Bs
p-random variable for s > 0 and p ∈ [1,∞). Then, the following

conditions are equivalent:
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(i) ‖b‖Bt
p
<∞ holds P -a.s.;

(ii) E
(
exp

(
ε‖b‖pBt

p

))
<∞, ε ∈ (0, 1κ );

(iii) t < s− d
p .

2. [10, Theorem 2.1] If, in addition, Ψ forms a basis of Bt
p for a t < s− d

p , t /∈ N, then it holds

E (exp (ε‖b‖Ct)) <∞, ε ∈ (0, ε),

where ε > 0 is a constant depending on p, d, s and t.

Remark 2.5. We derive a considerably stronger version of [10, Theorem 2.1] in Theorem 2.9
below, that implies in particular

E
(
exp

(
ε‖b‖pCt

))
<∞, ε ∈ (0, ε),

for any p ≥ 1 and some ε > 0. In the Gaussian case with p = 2, this estimate would be a
consequence of Fernique’s theorem, however, we are not aware of a similar result for arbitrary
p ≥ 1 in the literature.

We recall from [25, Theorem 1.37] that Ψ forms an unconditional basis of Bt
p (since p < ∞), if

the scaling and wavelet functions φ and ψ satisfy φ, ψ ∈ Cα(Rd) for α > t > 0 and the vanishing
moment condition (2).

2.3 Besov random tree priors

Taking the cue from [22], we introduce Besov random tree priors in this subsection and derive
several regularity results for this Bs

p-valued random variable. We investigate all results for periodic

functions defined on the torus Td in this subsection. For the elliptic problem in Section 3, we will
later introduce the corresponding Bs

p(D)-valued random variables on physical domains D ⊂ Rd

with D ⊆ Td by their restrictions from Td (cf. Definition 3.6). The random tree structure in our
prior construction is based on certain set-valued random variables, so-called Galton-Watson (GW)
trees. For the readers’ convenience, definitions of discrete trees, GW trees, along with some other
useful results, are listed in Appendix A.

Definition 2.6. [22, Definition 3] Let Ψ, s > 0, p ∈ [1,∞), X = ((X l
j,k), (j, k, l) ∈ IΨ) and

(ηj , j ∈ N0) be as in Definition 2.3. Let T denote the set of all trees with no infinite node (cf.
Definition A.1) and let T : Ω → T be a GW tree (cf. Definition A.3) with offspring distribution
P = Bin(2d, β) for β ∈ [0, 1], and independent of X. Furthermore, let IT be the set of wavelet
indices associated to T from (69). We define the random tree index set IT (ω) := {(j, k, l)| (j, k) ∈
IT (ω), l ∈ Lj} and

bT (ω) :=
∑

(j,k,l)∈IT (ω)

ηjX
l
j,k(ω)ψ

l
j,k, ω ∈ Ω. (18)

We refer to bT as a Bs
p-random variable with wavelet density β.

Remark 2.7. Definition 2.6 actually slightly deviates from [22, Definition 3]. By definition of

IT (ω), we include the constant function ψ
(0,...,0)
0,0 ≡ 1 ∈ L2(Td) in the series expansion (18). Of

course, adding the random constant X
(0,...,0)
0,0 does not affect the spatial regularity or integrability

of bT . However, in our definition, series (18) has a natural interpretation as orthogonal expansion
of a random function with respect to the (deterministic, fixed) basis Ψ. The tree structure in the
”active” (i.e., with index in IT ) coefficients in the wavelet representation of bT gives rise to random
fractals on Td, that occur whenever the tree T in Definition 2.6 does not terminate after a finite
number of nodes. It follows by Lemma A.4, that the latter event occurs with positive probability
if β ∈ (2−d, 1]. In this case the Hausdorff dimension of the fractals is d+ log2(β) ∈ (0, d], see [22,
Section 3] for further details.
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Figure 1: Samples of a Bs
p-valued random variable on T2 = [0, 1]2 with s = p = 2 and wavelet density β ∈ { 1

4
, 1
3
, 1
2
}

(top row, from left to right) and β ∈ { 2
3
, 3
4
, 1} (bottom row, from left to right). All samples are based on the

same array of random numbers, have been sampled with a spatial resolution of 29 × 29 equidistant grid points,
and the expansion in (18) was truncated at N = 9 levels of dyadic subdivision (cf. Subsection 4.1). By fixing the
array of random numbers, the spatial grid and N , the depicted ”evolution” in the panels highlights the effect of an
increasing wavelet density β.

Examples of realizations of a Bs
p-random variable on T2 with varying wavelet density β are

shown in Figure 1.

Proposition 2.8. Let s > d
p , β ∈ [0, 1], and let bT be a Bs

p-random variable with wavelet density

β. Then bT : Ω → C(Td) and bT is (strongly) A/B(C(Td))-measurable.

Proof. Note that bT : Ω 7→ Bs
p holds by (18), and Bs

p →֒ Ct for t = s − d
p > 0 by (15). Thus

bT : Ω 7→ C(Td) follows. As in Appendix A, we denote by U the set of finite all sequences in N

and introduce the subset UBin ⊂ U with entries in {1, . . . , 2d} as

UBin := {n ∈ U| ni ∈ {1, . . . , 2d} for i ∈ {1, . . . , |n|} }.

Note that T (ω) ⊂ UBin holds P -a.s., since P = Bin(2d, β). Now let Id,j be as in (68) and recall from
Appendix A.2 that (j, k) ∈ IT (ω) if and only if there is n ∈ T (ω) such that (j, k) = (|n|, Id,|n|(|n|)).
Hence, we may rewrite the series expansion (18) as

bT (ω) =
∑

(j,k)∈IT (ω)

ηj
∑

l∈Lj

X l
j,k(ω)ψ

l
j,k =

∑

n∈UBin

1{n∈T (ω)}η|n|
∑

l∈L|n|

X l
|n|,Id,|n|(|n|)

(ω)ψl
|n|,Id,|n|(|n|)

.

As T : Ω → T is A/B(T)-measurable, it holds that 1{n∈T (·)} : Ω → {0, 1} is measurable for any

fixed n ∈ UBin. Also, the X l
j,k are real-valued random variables and ψl

j,k ∈ C(Td) by assumption

(recall that we assumed Ψ ⊂ Cα for some α ≥ 1 in Subsection 2.1). Thus, bT : Ω → C(Td) is
measurable, and strongly measurable as C(Td) is separable.

More insight in the pathwise regularity of Besov random tree priors, in particular with regard
to their Hölder regularity, is obtained by the following result.
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Theorem 2.9. Let bT be a Bs
p-random variable with wavelet density β = 2γ−d as in Definition 2.6

with γ ∈ (−∞, d].

1.) It holds that bT ∈ Lq(Ω;Bt
q), and hence bT ∈ Bt

q P -a.s., for all t > 0 and q ≥ 1 such that

t < s+ d−γ
q − d

p .

2.) Let s− d
p > 0 and t ∈ (0, s− d

p ). Then there is a εp > 0 such that

E
(
exp

(
ε‖b‖pCt

))
<∞, ε ∈ (0, εp),

In particular, it holds bT ∈ Lq(Ω; Ct) for any q ≥ 1.

3.) Let q ≥ 1 and s− d
p − min(γ,0)

q > 0. For any t ∈ (0, s− d
p − min(γ,0)

q ) it holds bT ∈ Lq(Ω; Ct).

Proof. 1.) For given q ≥ 1 and t > 0 it holds by (13) that

‖bT ‖
q
Bt

q
=

∑

(j,k,l)∈IT (ω)

2jq(t+
d
2−

d
q )ηqj |X

l
j,k(ω)|

q =
∑

(j,k,l)∈IT (ω)

2jq(t−
d
q−s+ d

p )|X l
j,k(ω)|

q.

For any given j ∈ N, by Definition 2.6, the number of nodes v(j) on scale j in the random tree T
is binomial distributed (conditional on v(j − 1)) as

v(j) := #{k ∈ Kj |(j, k, l) ∈ IT } ∼ Bin(2dv(j − 1), 2γ−d),

with initial value v(0) = 1. Now let (Xj,m, j ∈ N0,m ∈ N) be an i.i.d. sequence of p-exponential
random variables, independent of v(j) for any j ∈ N. We obtain by Fubini’s theorem, Wald’s
identity, E(v(j)) = (2dβ)j = 2jγ , and since E (|Xj,m|q) <∞ for any q > 0 that

E
(
‖bT ‖

q
Bt

q

)
= E




∞∑

j=0

2jq(t−
d
q−s+ d

p )

(2d−1)v(j)∑

m=1

|Xj,m|q


+ E

(
|X0,2d |

q
)

=

∞∑

j=0

2jq(t−
d
q−s+ d

p )E
(
(2d − 1)v(j)

)
E (|Xj,m|q) + E

(
|X0,2d |

q
)

≤ 2dE (|X1,1|
q)

∞∑

j=0

2jq(t−
d
q−s+ d

p+
γ
q ),

with E (|X1,1|
q) <∞. The series converges if t < s+ d−γ

q − d
p , in which case bT ∈ Lq(Ω;Bt

q), and

hence bT ∈ Bt
q holds P -a.s.

2.) Now let q0 ≥ q ≥ 1, t0 >
d
q0

and t = t0 − d
q0
, so that Bt0

q0 →֒ Ct holds by (15). The

embedding follows by a direct comparison of the norms in (13), (14) with t = t0 −
d
q0
, and also

shows that the corresponding embedding constant C0 > 0 is bounded by C0 ≤ 1.
We obtain with Hölder’s inequality and analogously to the first part the estimate

‖bT ‖
q
Lq(Ω;Ct) ≤ E

(
‖bT ‖

q0
Ct

) q
q0

≤ E

(
‖bT ‖

q0

B
t0
q0

) q
q0

≤ 2
dq
q0 E (|X1,1|

q0)
q
q0




∞∑

j=0

2jq0(t0−
d
q0

−s+ d
p+

γ
q0

)




q
q0

= 2
dq
q0 E (|X1,1|

q0)
q
q0




∞∑

j=0

2jq0(t−s+ d
p+

γ
q0

)




q
q0

.

(19)
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Now let t < s− d
p be fixed, and let γ ∈ (0, d]. We choose q0 = max

(
2γ(s− d

p − t)−1, q
)
to obtain

for every q ≥ max(2γ(s− d
p − t)−1, 1) that

‖bT ‖
q
Lq(Ω;Ct) ≤ 2dE (|X1,1|

q)




∞∑

j=0

2jq0(t−s+ d
p )/2




q
q0

≤ 2dE (|X1,1|
q)




∞∑

j=0

2−jγ




≤ CE (|X1,1|
q) ,

(20)

with a constant C > 0 that is independent of q. We now define for given ε > 0, finite n ∈ N and
p ∈ [1,∞) the random variable

En(ω) :=

n∑

k=0

(ε‖bT (ω)‖
p
Ct)k

k!
, ω ∈ Ω.

Clearly, En(ω) → exp(ε‖bT (ω)‖
p
Ct) holds P -.a.s as n → ∞ and Inequality (20) yields, for any

n ∈ N and nγ := ⌊2γ(s− d
p − t)−1⌋, that

E(En) =

n∑

k=0

εk

k!
E(‖bT ‖

pk
Ct ) ≤ C̃ +

n∑

k=nγ

εk

k!
CpkE(|X1,1|

pk) = C̃ + E




n∑

k=nγ

(εCp|X1,1|
p)k

k!


 ,

where C̃ = C̃(γ, s, d, p, t) > 0. The monotone convergence theorem then shows that for sufficiently
small ε > 0 and t < s− d

p , it holds

E
(
exp(ε‖bT ‖

p
Ct)
)
≤ C̃ + lim

n→∞
E




n∑

k=nγ

(εCp|X1,1|
p)k

k!


 ≤ C̃ + E (exp(εCp|X1,1|

p)) <∞.

3.) For γ ∈ (−∞, 0], q ≥ 1 and t ∈ (0, s− d
p − γ

q ), we finally use q0 = q and t0 = t+ d
q in (19)

to obtain that

‖bT ‖Lq(Ω;Ct) ≤ CqE (|X1,1|
q)




∞∑

j=0

2jq(t−s+ d
p+

γ
q )


 <∞.

Remark 2.10. [22, Theorems 4 and 5] state that bT ∈ Bt
p holds P -a.s. for all t ∈ (0, s− γ/p),

and that bT /∈ B
s−γ/p
p occurs with probability 1 − pβ > 0 for γ ∈ (0, d], where pβ is the solution

to the equation pβ = ((1 − β) + βpβ)
2d (cf. Lemma A.4 in the Appendix.) We emphasize that

Theorem 2.9 significantly extends these previous results, as we quantify precisely the regularity of
bT in terms of Besov and Hölder-Zygmund norms.

Recall that we may replace the Hölder-Zygmund spaces Ct in Theorem 2.9 by the ”usual”
Hölder spaces Ct if t /∈ N (which is not necessarily true for integer t). Theorem 2.9 shows that a
wavelet density β = 2γ−d < 1 improves smoothness in Bt

q, as the upper bound t < s+ d−γ
q − d

p is

decreasing in γ ∈ (−∞, d]. However, given that γ > 0 we may not expect to gain any (pathwise)
Hölder regularity beyond t < s− d

p . This is not surprising with regard to Remark 2.7: bT admits

an infinite series expansion on random fractals in D for β > 2−d with positive probability. Hence,
the local Hölder-regularity of bT on such fractals corresponds to a Bs

p-random variable b as in
Definition 2.3 (with full wavelet density β = 1). In case that γ ≤ 0, the series expansion of bT
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terminates almost surely after a finite number of terms. This may also increase the smoothness

exponent t for bT ∈ Lq(Ω; Ct) to the admissible range t < s− d
p −

min(γ,0)
q . For large q, we see that

essentially the restriction t < s− d
p applies as for γ > 0. This in turn indicates that the bound

E
(
exp

(
ε‖b‖pCt

))
<∞, ε ∈ (0, εp),

from part 2.) of Theorem 2.9 can not be improved to Hölder indices t ≥ s− d
p , even if γ ≤ 0.

3 Elliptic PDEs with Besov Coefficients

In this section, we first recall well-posedness and regularity results for linear, second order elliptic
diffusion problems with random coefficient. Thereafter, we transfer the results to a setting with
Besov tree random diffusion coefficient by exploiting the results from Section 2.

3.1 Well-posedness and regularity

Let D ⊂ Rd, d ∈ {1, 2, 3} be a convex polygonal domain, with the boundary ∂D consisting
of a finite number of line or plane segments. We consider the random elliptic problem to find
u(ω) : D → R for given ω ∈ Ω such that

−∇ · (a(ω)∇u(ω)) = f in D, u(ω) = 0 on ∂D. (21)

The diffusion coefficient a in Problem (21) admits positive paths on D, i.e., a(ω) : D → R>0.
Moreover, a is a random variable a : Ω → X , taking values in a suitable Banach space X ⊂ L∞(D).
The source term f : D → R is assumed to be a deterministic function for the sake of simplicity,
but may as well be modeled by a random function f : D×Ω → R. For the variational formulation
of Problem (21) we define H := L2(D), V := H1

0 (D) and recall that ‖·‖V : V → R≥0, v 7→ ‖∇v‖H
defines a norm on V by Poincare’s inequality. The weak formulation of Problem (21) for fixed
ω ∈ Ω is to find u(ω) ∈ V such that for any v ∈ V it holds

∫

D

a(ω)∇u(ω) · ∇vdx = V ′〈f, v〉V . (22)

Definition 3.1. The map ω 7→ u(ω) ∈ V with u(ω) the solution of (22) is the pathwise weak
solution.

Existence and uniqueness of pathwise weak solutions are ensured by the following theorem.

Theorem 3.2. Let a : Ω → L∞(D) be strongly A/B(L∞(D))-measurable such that

a−(ω) := ess inf
x∈D

a(x, ω) > 0, P -a.s., (23)

and let f ∈ V ′. Then, there exists for all ω ∈ Ω a unique weak solution u(ω) ∈ V to Problem (21).
The map u : Ω → V is strongly A/B(V )-measurable.

Proof. By the completeness of (Ω,A, P ), we may assume without loss of generality that a−(ω) > 0
and a(ω) ∈ L∞(D) holds for all ω ∈ Ω2.

Existence and uniqueness of a pathwise solution u(ω) now follows for all ω ∈ Ω by the Lax-
Milgram Lemma. To show measurability of u, consider two diffusion coefficients a1, a2 : Ω →

2If this holds only P -.a.s., we may modify a : Ω → L∞(D) on a P -nullset to obtain a strongly measurable
modification ã : Ω → L∞(D) of a, so that ess infx∈D ã(x, ω) > 0 and ã ∈ L∞(D) holds for all ω ∈ Ω. In fact, let

A0 := {ω ∈ Ω| a−(ω) ≤ 0 or a(ω) /∈ L∞(D)}.

Then P (A0) = 0 by assumption, and hence A0 ∈ A by completeness of (Ω,A, P ). Thus, we may consider, for
instance, the modification ã(ω) := a(ω)1{ω/∈A0} + 1{ω∈A0}. It is readily verified that ã is strongly A/B(L∞(D))-
measurable, and for all ω ∈ Ω it holds ess infx∈D ã(x, ω) > 0 and ã ∈ L∞(D).
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L∞(D) that satisfy the assumption of the theorem with lower bounds a1,−, a2,− > 0 as in (23)
and denote by u1, u2 : Ω → V the associated unique weak solutions. Equation (21) together with
‖v‖2V = ‖∇v‖2H and Hölder’s inequality yields for any fixed coefficients a1, a2 ∈ L∞(D) such that
ai,− := ess infx∈D ai(x) > 0 that

‖u1 − u2‖V ≤
‖u2‖V
a1,−

‖a1 − a2‖L∞(D) ≤
‖f‖V ′

a1,−a2,−
‖a1 − a2‖L∞(D). (24)

Therefore, the data-to-solution map U : S → V, a 7→ u is (Lipschitz) continuous on the set
S := {a ∈ L∞(D)| ess infx∈D a(x) > 0}. Since the pathwise weak solution u : Ω → V of (21)
may be written as u = U ◦ a, the claim follows with the strong A/B(L∞(D))-measurability of
a : Ω → L∞(D).

Lipschitz continuity (24) of the data-to-solution map will be essential in deriving error estimates
in Section 4 ahead, and also implies strong measurability of random solutions.

Proposition 3.3. Let a1, a2 : Ω → L∞(D) be strongly A/B(L∞(D))-measurable such that

ai,−(ω) := ess inf
x∈D

ai(x, ω) > 0, P -a.s. for i ∈ {1, 2}. (25)

Then, for every f ∈ V ′ exists for i ∈ {1, 2} and for all ω ∈ Ω a unique weak solution ui(ω) ∈ V
to Problem (21) (with a in place of ai). There holds the continuous-dependence estimate

‖u1 − u2‖V ≤
‖f‖V ′

a1,−a2,−
‖a1 − a2‖L∞(D).

Proof. This follows immediately with Theorem 3.2 and (24).

From the regularity analysis of deterministic linear elliptic problems it is well known that
Hs(D)-regularity of u may be derived for certain s > 1, provided that a is Hölder continuous.
The corresponding estimates usually do not reveal the explicit dependence of constants on a(ω)
or bounds on the Hölder norm ‖a(ω)‖Ct . For the stochastic problem and the ensuing numerical
analysis in Sections 4 and 5, however, we need the explicit dependence for given ω to ensure
that all pathwise estimates also hold in in Lq(Ω;Hs(D)) for suitable q ≥ 1. To obtain explicit
estimates, we follow the approach from [12, Chapter 3.3] for parametric elliptic PDEs, where
regularity estimates are derived via the K-method of function space interpolation. 3 One obtains
in particular Hölder spaces Cr(D) by interpolation ([3, Lemma 7.36]):

Cr(D) = [L∞(D),W 1,∞(D)]r,∞, r ∈ (0, 1).

To investigate spatial regularity of solutions to (21), we introduce the normed space

W := {v ∈ V | ∆v ∈ H}, ‖v‖W := ‖∆v‖H . (26)

3Recall the K-method of interpolation of two Banach spaces (A0, ‖·‖A0
) and (A1, ‖·‖A1

) with continuous em-
bedding A1 →֒ A0: their K-functional is defined by

K(a, z;A0, A1) := inf
a1∈A1

{‖a− a1‖A0 + z‖a1‖A1}, a ∈ A0, z > 0.

For any r ∈ (0, 1) and q ∈ [1,∞] the interpolation space of order r with fine index q is

[A0, A1]r,q =
{
a ∈ A0| ‖a‖[A0,A1]r,q < ∞

}
,

where

‖a‖[A0,A1]r,q :=

{(∫∞
0 z−rqK(a, z;A0, A1)q

1
z
dz

) 1
q , q ∈ [1,∞),

supz>0 z
−rK(a, z;A0, A1), q = ∞.

The set [A0, A1]r,q is a (generally non-separable) Banach space.
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Note that v = 0 ⇔ ‖v‖W = 0 follows by the maximum principle, since v ∈ V = H1
0 (D) has

vanishing trace. We formulate regularity results in terms of the interpolation space

W r := [V,W ]r,∞, r ∈ (0, 1). (27)

For a concise notation, we further set W 1 :=W in the following.

Lemma 3.4. [12, Propositions 3.2 and 3.5] Let a : Ω → Cr(D) ⊂ L∞(D) be strongly measurable
for some r ∈ (0, 1] such that a−(ω) > 0 holds P -a.s. and let f ∈ H. Then, there is a constant
C = C(r,D), such that it holds

‖u(ω)‖W r ≤
C

a−(ω)


1 +

(
‖a(ω)‖Cr(D)

a−(ω)

)1/r

 ‖f‖H . (28)

All results from this subsection so far hold under the considerably weaker assumption that
D ⊂ Rd is a bounded Lipschitz domain. However, since D is assumed convex, we are able to
embed W r in (fractional) Sobolev spaces. This is made precise in the following Lemma, which is
in required for the finite element error analysis in Section 4.2.

Lemma 3.5. Let D be convex, W r := [V,W ]r,∞ for r ∈ (0, 1) and let W 1 := W . Then, it holds
that W =W 1 →֒ H2(D). Moreover, W r →֒ H1+r0(D) for any r0 ∈ (0, r).

Proof. By convexity of D, we have that ‖v‖H2(D) ≤ CD‖v‖W holds for all v ∈W , where CD only
depends on the diameter of D, see, e.g., [15, Theorem 3.2.1.2]. Thus, W →֒ H2(D) ∩ V follows.

For the case r ∈ (0, 1), we recall that there is CV > 0, such that ‖v‖H1(D) ≤ CV ‖v‖V holds for
all v ∈ V by Poincaré’s inequality. Moreover, we have ‖w‖H2(D) ≤ CD‖w‖W for any w ∈W , and
hence W ⊂ H2 ∩ V from the first part. For v ∈ V ⊂ H1 this yields

‖v‖[H1(D),H2(D)]r,∞ = sup
z>0

z−r inf
w∈H2

{‖v − w‖H1(D) + ‖w‖H2(D)}

≤ sup
z>0

z−r inf
w∈W

{‖v − w‖H1(D) + ‖w‖H2(D)}

≤ sup
z>0

z−r inf
w∈W

{CV ‖v − w‖V + CD‖w‖W }

≤ max(CV , CD)‖v‖W r .

Hence, W r →֒ [H1(D), H2(D)]r,∞. The claim now follows since for any ε ∈ (0, 1 + r) there holds

[H1(D), H2(D)]r,∞ = [H1+r−ε(D), H1+r+ε(D)] 1
2 ,∞

→֒ H1+r−ε(D),

see [3, Section 7.32].

3.2 Besov random tree priors as log-diffusion coefficient

To formulate Problem (21) with a Besov random tree coefficient, we assume that D ⊆ Td. We
follow [25, Section 2] and define, for given ω ∈ Ω, the random element bT (ω) : D → R as the
restriction of a periodic function in Bs,per

p,p to the domain D. The restriction ϕ|D of any ϕ ∈ S′(Rd)
to D is in turn given by the element ϕ|D ∈ D′(D) such that

D′(D)〈ϕ|D, v〉D(D) = S′(Rd)〈ϕ, v0〉S(Rd), v ∈ D(D),

where v0 ∈ D(Rd) ⊂ S(Rd) denotes the zero-extension of any v ∈ D(D).

Definition 3.6. Let D ⊆ Td be a bounded, connected domain. Let bT be given in Definition 2.6
for p ∈ [1,∞), s > 0 and β = 2γ−d ∈ [0, 1], and let prlper : Bs

p,p(T
d) → Bs,per

p,p (Rd) denote the
isomorphic extension operator from (11). Then we define for any ω ∈ Ω

bT,D(ω) := (prlperbT (ω))|D,

and call bT,D a Bs
p(D)-valued random variable.
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Remark 3.7. In case that D = Td, we may readily use the identification bT,D = bT . Note that
bT,D is periodic in this case, in the sense that there exists an extension prlperbT,D ∈ Bs,per

p,p (Rd).

If D ( Td, however, bT,D is not (necessarily) periodic, but merely the restriction of a periodic
function from the torus Td.

Remark 3.8. The same procedure could be applied for general bounded domains D 6⊂ Td, by
extending Definition (2.6) from the torus Td to a sufficiently large (periodic) domain [−L,L]d for
L > 1. This would increase the index-set Kj of wavelet coefficients by at most a constant factor
on each dyadic scale j. However, all regularity proofs from Section 2 are carried out similar in
this setting, with minor changes to absolute constants. For instance, the admissible range of ε in
Proposition 2.4 may be become smaller if L > 1, but the smoothness parameter t ∈ (0, s − d

p )

is unaffected. Therefore, assuming D ⊆ Td for the sake of brevity does not have any substantial
impact on the following results.

We consider Problem (21), resp. its weak formulation (22), with a(ω) := exp (bT (ω)), where
bT is a Bs

p-random variable with wavelet density β. That is, we model the log-diffusion by a Besov
random tree prior to incorporate fractal structures. With this preparation, we are able to derive
well-posedness and regularity of the corresponding pathwise weak solution.

Theorem 3.9. Let a := exp (bT,D) with bT,D given in Definition 3.6 for p ∈ [1,∞), s > 0 and
β = 2γ−d ∈ [0, 1], so that sp > d. Furthermore, let f ∈ V ′.

1.) Then, there exists almost surely a unique weak solution u(ω) ∈ V to (21) and u : Ω → V is
strongly measurable.

2.) For sufficiently small κ > 0 in (16), there are constants q ∈ (1,∞) and C > 0 such that

‖u‖Lq(Ω;V ) ≤ C‖f‖V ′ <∞

{
for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.

3.) Let r ∈ (0, s − d
p ) ∩ (0, 1] , f ∈ H and W r as in (27). For sufficiently small κ > 0 in (16),

there are constants q ∈ (1,∞) and C > 0 such that

‖u‖Lq(Ω;W r) ≤ C‖f‖H <∞

{
for q ∈ [1, q) if p = 1 and

for any q ∈ [1,∞) if p > 1.

Proof. 1.) As sp > d, Theorem 2.9 shows that bT ∈ C(Td) holds P -a.s. Moreover, bT : Ω →
C(Td) is strongly measurable by Proposition 2.8, and thus in particular strongly A/B(L∞(Td))-
measurable, since B(C(Td)) ⊂ B(L∞(Td)). As bT,D in Definition 3.6 is the restriction of extperbT
to D ⊂ Td, and a = exp ◦ bT,D, it follows that, a : Ω → C(D), and a is strongly A/B(L∞(D))-
measurable such that a− > 0 holds P -a.s. Theorem 3.2 then guarantees the P -a.s. existence
of a unique pathwise weak solution u(ω). Moreover, u : Ω → V is strongly measurable and
Equation (22) shows that

‖u(ω)‖V ≤
‖f‖V ′

a−(ω)
.
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2.) To show the second part, we fix t ∈ (0, s− d
p ) and q ≥ 1 to see that

‖u‖qLq(Ω;V ) ≤ E
(
a−q
−

)
‖f‖qV ′

= E

((
ess inf
x∈D

exp(−bT,D(x))

)q)
‖f‖qV ′

= E

(
exp

(
ess inf
x∈D

−qbT,D(x)

))
‖f‖qV ′

≤ E

(
exp

(
ess sup
x∈Td

qbT (x)

))
‖f‖qV ′

= E
(
exp

(
q‖bT ‖L∞(Td)

))
‖f‖qV ′

≤ E (exp (q‖bT ‖Ct)) ‖f‖qV ′ .

We have used that exp(·) is strictly increasing for the second equality, and that bT (x) is a centered
random variable such that bT and −bT are equal in distribution. The last estimate is due to
‖bT ‖L∞(Td) ≤ ‖bT ‖Ct for any t > 0. For p = 1, we note that εp in the second part of Theorem 2.9
may be chosen as εp = (κC)−1, where C > 0 is the constant in (20). Therefore, for sufficiently
small κ > 0, we may set q := εp > 1 in the claim. In case that p > 1, Young’s inequality shows
that for any q ≥ 1 there is an arbitrary small ε > 0 and a constant Cε ∈ (0,∞) such that

q‖bT ‖Ct ≤ ε‖bT ‖
p
Ct + Cε.

Thus, we have no restrictions on q ∈ [1,∞), which proves the second part of the claim.
3.) For any fixed r ∈ (0, s− d

p ) ∩ (0, 1] and t ∈ (0, s− d
p ) Lemma 3.4 shows that

‖u‖qLq(Ω;W r) ≤ CqE

[
exp

(
ess inf
x∈D

−qbT (x)

)(
1 + ‖bT,D‖

q
r

Cr(D)
exp

(
ess inf
x∈D

−
q

r
bT,D(x)

))]
‖f‖qH

≤ CqE
(
exp

(
qq1‖bT,D‖L∞(D)

)) 1
q1

·

[
1 + E

(
exp

(qq2
r

‖bT,D‖L∞(D)

)) 1
q2

E
(
exp

(qq3
r

‖bT,D‖Cr(D)

)) 1
q3

]
‖f‖qH

≤ Cq
[
E (exp (qq1‖bT ‖Ct))

1
q1 + E

(
exp

(
qmax(q1,

q2
r
,
q3
r
)‖bT ‖Cr

))]
‖f‖qH ,

(29)

where we have used Hölder’s inequality with q1, q2, q3 > 1 such that 1
q1
+ 1

q2
+ 1

q3
= 1, together with

E(a−q
− ) = E(exp(q‖bT ‖L∞(D))) in the second step. In the last estimate, we used ‖bT,D‖L∞(D) ≤

‖bT,D‖Ct and ‖bT ‖Cr(D) ≤ ‖bT ‖Cr for any r > 0, as well as 1
q1

+ 1
q2

+ 1
q3

= 1.

To bound the Hölder-norm ‖bT ‖Cr in (29), we first consider the case r < 1. Then, we recall
from Subsection 2.1 that Cr = Cr with equivalent norms, thus ‖bT ‖Cr ≤ C‖bT ‖Cr . If r = 1, then
s − d

p > 1, and we use the same argument to derive the bound ‖bT ‖Cr ≤ ‖bT ‖Cr+ε ≤ C‖bT ‖Cr+ε

for any ε ∈ (0, s− d
p − 1).

For p = 1, Theorem 2.9 now shows again that for sufficiently small κ > 0, there are admissible
choices q, q1, q2, q3 ∈ [1,∞), dependent on r, such that the right hand side in (29) is finite. The
proof is concluded by noting that q ∈ [1,∞) may again be arbitrary large in (29) if p > 1,
independent of r.
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4 Pathwise Finite Element Approximation

4.1 Dimension truncation

To obtain a tractable approximation of bT in (18), we truncate the wavelet series expansion after
N ∈ N scales to obtain the truncated random tree Besov prior

bT,N (ω) :=
∑

(j,k,l)∈IT (ω)
j≤N

ηjX
l
j,k(ω)ψ

l
j,k, ω ∈ Ω. (30)

The corresponding diffusion problem in weak form with truncated coefficient for fixed ω ∈ Ω
is to find uN (ω) ∈ V such that for all v ∈ V

∫

D

aN (ω)∇uN (ω) · ∇vdx = V ′〈f, v〉V , (31)

where
aN : Ω → L∞(D), ω 7→ exp(bT,N (ω)|D). (32)

Existence, uniqueness, and regularity of uN follows analogously as for u in the previous section.

Corollary 4.1. Let N ∈ N, aN = exp (bT,N |D) with bT,N be given as in (31) for p ∈ [1,∞), s > 0
and β = 2γ−d ∈ [0, 1], so that sp > d. Furthermore, let f ∈ V ′. Then the following holds.

1.) There exists almost surely a unique weak solution uN (ω) ∈ V to the truncated Problem (31)
and uN : Ω → V is strongly measurable.

2.) For sufficiently small κ > 0 in (16), there are constants q ∈ (1,∞) and C > 0 such that for
any N ∈ N

‖uN‖Lq(Ω;V ) ≤ C‖f‖V ′ <∞

{
for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.

3.) Let r ∈ (0, s− d
p ) ∩ (0, 1] and f ∈ H. There are constants q ∈ (1,∞) and C > 0 such that for

any N ∈ N

‖uN‖Lq(Ω;W r) ≤ C‖f‖H <∞

{
for q ∈ [1, q) if p = 1 and

for any q ∈ [1,∞) if p > 1.

Proof. The result follows analogously to Theorems 2.9 and 3.9, upon observing that ‖bT,N (ω)‖Bt
q
≤

‖bT (ω)‖Bt
q
holds P -a.s. for any t > 0, q ∈ [1,∞], and N ∈ N.

The important observation from Corollary 4.1 is that the bounds are independent of N , which
is crucial when estimating the finite element discretization error of uN in the next subsection. We
bound the truncation errors a− aN and u− uN in the remainder of this section.

Proposition 4.2. Let a := exp (bT,D) with bT,D as given in Definition 3.6 with p ∈ (1,∞), s > 0,
β = 2γ−d ∈ [0, 1] and such that sp > d+min(γ, 0). Let bT,N and aN be the approximations of bT
and a for given N ∈ N as in (31) and (32), respectively.

1.) For any q ≥ 1 and t ∈ (0, s− d
p −

min(γ,0)
q ) there is a constant C > 0 such that for every N ∈ N

it holds

‖bT,D − bT,N |D‖Lq(Ω;Ct(D)) ≤ C2N(t−s+ d
p+

min(γ,0)
q ).
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2.) Moreover, for any q ≥ 1, ε > 0 and t ∈ (0, s − d
p − min(γ,0)

q ) there is a C > 0 such that for
every N ∈ N it holds

‖a− aN‖Lq(Ω;Ct(D)) ≤ C2N(t−s+ d
p+

min(γ+ε,0)
q ).

Proof. 1.) Let q0 ≥ q, t0 >
d
q0

and t = t0 −
d
q0
, so that Bt0

q0 →֒ Ct. For any fixed N ∈ N, we obtain
with Hölder’s inequality analogously to the proof of Theorem 2.9 the estimate

‖bT,D − bT,N |D‖Lq(Ω;Ct(D)) ≤ ‖bT − bT,N‖Lq(Ω;Ct)

≤ E
(
‖bT − bT,N‖q0Ct

) 1
q0

≤ E

(
‖bT − bT,N‖q0

B
t0
q0

) 1
q0

≤




∞∑

j=N+1

2jq0(t0−
d
q0

−s+ d
p+

γ
q0

)




1
q0

= 2N(t−s+ d
p+

γ
q0

)




∞∑

j=1

2jq0(t−s+ d
p+

γ
q0

)




1
q0

.

(33)

Now let t < s − d
p and γ ∈ (0, d] in (33), and choose q0 = max

(
γN, 2γ(s− d

p − t)−1, q
)

(for

sufficiently large, given N) to obtain that

‖bT,D − bT,N |D‖Lq(Ω;Ct(D)) ≤ 2N(t−s+ d
p )+1




∞∑

j=1

2jq0(t−s+ d
p )

1
2




1
q0

≤ 2N(t−s+ d
p )2




∞∑

j=1

2j(t−s+ d
p )

1
2


 .

(34)

The final bound in (34) is independent of q0 = q0(N), which shows the first part of the claim for
γ ∈ (0, d]. For γ ∈ (−∞, 0], we use q0 = q in (33) to obtain for any t ∈ (0, s− d

p − γ
q ) that

‖bT,D − bT,N |D‖Lq(Ω;Ct(D)) ≤ 2N(t−s+ d
p+

γ
q )




∞∑

j=1

2jq(t−s+ d
p+

γ
q )




1
q

≤ 2N(t−s+ d
p+

γ
q ). (35)

2.) To prove the second part, we take t ∈ (0, s − d
p − min(γ,0)

q ) and use Taylor’s expansion

together with Hölder’s inequality for exponents p1, p2 > 1 such that 1
p1

+ 1
p2

= 1 to obtain

‖a− aN‖Lq(Ω;Ct(D)) ≤ E
(
exp

(
q(‖bT,D‖L∞(D) + ‖bT,N |D‖Ct(D))

)
‖bT,D − bT,N |D‖

q

Ct(D)

) 1
q

≤ E
(
exp

(
p1q(‖bT,D/‖Ct(D) + ‖bT,N |D‖Ct(D))

))(qp1)
−1

· E
(
‖bT,D − bT,N |D‖

p2q

Ct(D)

)(qp2)
−1

≤ E (exp (2p1q‖bT ‖Ct))
(qp1)

−1

‖bT,D − bT,N |D‖Lp2q(Ω;Ct(D))

≤ CE (exp (2p1q‖bT ‖Ct))
(qp1)

−1

2N(t−s+ d
p+

min(γ,0)
p2q )

We have used ‖bT,N |D‖Ct(D) ≤ ‖bT,D‖Ct(D) ≤ ‖bT ‖Ct for the third estimate, and combined (34)

and (35) to obtain the last bound. As p > 1, Theorem 2.9 yields that E (exp (2p1q‖bT ‖Ct)) < ∞
for any p1, q ∈ [1,∞). The claim follows for any ε > 0 by choosing p2 > 1 so small that
min(γ, 0) ≤ p2 min(γ + ε, 0).
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Remark 4.3. We emphasize that all estimates in Proposition 4.2 are independent of D ⊂ Td, as
all uniform error bounds are derived with respect to Td. Proposition 4.2 shows in particular that

for any q ≥ 1 and t ∈ (0, s− d
p − min(γ,0)

q ) there is a C > 0 such that for any N ∈ N it holds

‖a− aN‖Lq(Ω;L∞(D)) ≤ C2−Nt.

This estimate is essential to bound the truncation error u−uN of the approximated elliptic problem
in (31), see Theorem 4.4 below. In the borderline case p = 1 with sufficiently small κ > 0 and
sp > d, we still recover the slightly weaker estimates

‖a− aN‖Lq(Ω;Ct(D)) ≤ C2N(t−s+ d
p ), ‖a− aN‖Lq(Ω;L∞(D)) ≤ C2−tN (36)

for sufficiently small q ≥ 1 (depending on κ) and t ∈ (0, s− d
p ), independently of γ. This may be

seen from by letting p1 → 1 and p2 → ∞ in the last part of the proof for Proposition 4.2.

Theorem 4.4. Let u be as in (21) with a = exp (bT,D) and let uN be as in (21) with aN =
exp (bT,N |D) given by (32). Furthermore, let bT,D be such that p ∈ (1,∞), s > 0, β = 2γ−d ∈ [0, 1],

and sp > d ≥ d + min(γ, 0). Then, for any q ≥ 1 and t ∈ (0, s − d
p − min(γ,0)

q ) there is a C > 0
such that for every N ∈ N and it holds

‖u− uN‖Lq(Ω;V ) ≤ C2−Nt.

Proof. For fixed ω ∈ Ω and N ∈ N, we obtain by Proposition 3.3

‖u(ω)− uN (ω)‖V ≤
‖f‖V ′

a−(ω)aN,−(ω)
‖a(ω)− aN (ω)‖L∞(D),

where aN,−(ω) := ess infx∈D aN (ω, x). Taking expectations yields with Hölder’s inequality

‖u− uN‖Lq(Ω;V ) ≤ ‖f‖V ′‖a−1
− ‖Lq1 (Ω)‖a

−1
N,−‖Lq2 (Ω)‖a− aN‖Lq3 (Ω;L∞(D)), (37)

where q1, q2, q3 > 1 are such that 1
q =

∑3
i=1

1
qi

and ‖f‖V ′ < ∞. As in the proof of part 2.) in

Theorem 3.2, we conclude for any q1 ∈ [1,∞) and t ∈ (0, s− d
p ) with Theorem 2.9 that

‖a−1
− ‖Lq1 (Ω) ≤ ‖ exp(‖bT,D‖L∞(D))‖Lq1 (Ω) ≤ ‖ exp(‖bT ‖Ct)‖Lq1 (Ω) <∞.

Similarly, it follows for all q2 ∈ [1,∞) that

‖a−1
N,−‖Lq2 (Ω) ≤ ‖ exp(‖bT,N‖Ct)‖Lq2 (Ω) ≤ ‖ exp(‖bT ‖Ct)‖Lq2 (Ω) <∞,

where we emphasize that the last bound is uniform with respect to N . Proposition 4.2 and

Remark 4.3 show for q3 ∈ [1,∞) and t ∈ (0, s− d
p − min(γ,0)

q3
) that

‖a− aN‖Lq3 (Ω;L∞(D)) ≤ C2−Nt.

This, together with (37), shows the claim, as q3 > q may be chosen arbitrary close to q, and

‖a−1
− ‖Lq1 (Ω) + ‖a−1

N,−‖Lq2 (Ω) ≤ C <∞

holds for all q1, q2 ∈ [1,∞) with C = C(q1, q2) > 0, and uniform with respect to N .

Remark 4.5. In view of Remark 4.3, we note that for p = 1 with sufficiently small κ > 0 and
sp > d there holds the slightly weaker estimate

‖u− uN‖Lq(Ω;V ) ≤ C2−Nt.

for sufficiently small q ≥ 1 (depending on κ) and t ∈ (0, s− d
p ), independently of γ. This may also

be seen by letting q1, q2 → 1
2q and q3 → ∞ in the proof of Theorem 4.4.
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4.2 Finite element discretization

The solution uN : Ω → V to Problem (31) with truncated diffusion coefficient is still not fully
tractable, as it takes values in the infinite-dimensional Hilbert space V . Thus, we consider
Galerkin-finite element approximations of uN in a finite-dimensional subspace of V . Corollary 4.1
provides the necessary regularity of uN , independent of the truncation index N , therefore we fix
N ∈ N for the remainder of this section.

We partition the convex, polytopal domain D ⊂ Td, d ∈ {1, 2, 3} by a sequence of simplices (in-
tervals/triangles/tetrahedra) or parallelotopes (intervals/parallelograms/parallelepipeds), denoted
by (Kh)h∈H. The refinement parameter h > 0 takes values in a countable index set H ⊂ (0,∞)
and corresponds to the longest edge of a simplex/parallelotope K ∈ Kh. We impose the following
assumptions on (Kh)h∈H to obtain a sequence of ”well-behaved” triangulations.

Assumption 4.6. The sequence (Kh)h∈H satisfies:

1. Admissibility: For each h ∈ H, Kh consists of open, non-empty simplices/parallelotopes K
such that

• D =
⋃

K∈Kh
K,

• K1 ∩K2 = ∅ for any two K1,K2 ∈ Kh such that K1 6= K2, and

• the intersection K1 ∩ K2 for K1 6= K2 is either empty, a common edge, a common
vertex, or (in space dimension d = 3) a common face of K1 and K2.

2. Shape-regularity: Let ρK,in and ρK,out denote the radius of the largest in- and circumscribed
circle, respectively, for a given K ∈ Kh. There is a constant ρ > 0 such that

ρ := sup
h∈H

sup
K∈Kh

ρK,out

ρK,in
<∞.

Based on a given tesselation Kh, we define the space of piecewise (multi-)linear finite elements

Vh :=

{
{v ∈ V | v|T is linear for all K ∈ Kh}, if Kh consists of simplices,

{v ∈ V | v|T is d-linear for all K ∈ Kh}, if Kh consists of parallelotopes.

Clearly, Vh ⊂ V is a finite-dimensional space and we define nh := dim(Vh) ∈ N. This yields for
fixed ω ∈ Ω the fully discrete problem to find uN,h(ω) ∈ Vh such that for all vh ∈ Vh

∫

D

aN (ω)∇uN,h(ω) · ∇vhdx = V ′〈f, vh〉V . (38)

Theorem 4.7. Let (Kh)h∈H be a sequence of triangulations satisfying Assumption 4.6, and let
uN and uN,h be the pathwise weak solutions to (31) and (38). Furthermore, let N ∈ N, aN be
given as in (32) for p ∈ [1,∞) and s > 0, such that sp > d, and with β = 2γ−d ∈ [0, 1].

For any f ∈ H, sufficiently small κ > 0 in (16) and any r ∈ (0, s − d
p ) ∩ (0, 1], there are

constants q ∈ (1,∞) and C > 0 such that for any N ∈ N and h ∈ H there holds

‖uN − uN,h‖Lq(Ω;V ) ≤ Chr

{
for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.

Proof. We recall that aN,−(ω) := ess infx∈D aN,−(ω) > 0 and obtain by Cea’s Lemma

‖uN (ω)− uh,N (ω)‖V ≤
‖aN (ω)‖L∞(D)

aN,−(ω)
‖f‖V ′ inf

vh∈Vh

‖uN (ω)− vh‖V . (39)

Now first suppose that p > 1. Since f ∈ H, it holds by Corollary 4.1 for any q ≥ 1 that
uN ∈ Lq(Ω;W r) for r ∈ (0, s − d

p ) ∩ (0, 1]. For 0 < s − d
p ≤ 1, we have r ∈ (0, s − d

p ), and

Lemma 3.5, shows uN ∈ Lq(Ω;H1+r0(D)) for any r0 ∈ (0, r). It hence follows for r0 ∈ (0, r) that

inf
vh∈Vh

‖uN (ω)− vh‖V ≤ C‖uN (ω)‖H1+r0 (D)h
r0 . (40)
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This is a standard result for first order Lagrangian FEM, see, e.g., [16, Theorems 8.62/8.69] or [8,
Theorem 4.4.20]. The constant C > 0 in (40) depends on the shape-regularity parameter ρ and
on D, but is independent of uN and h. Combining (39) and (40) shows with Hölder’s inequality

‖uN (ω)− uh,N (ω)‖Lq(Ω;V ) ≤ C‖f‖V ′‖aN‖L3q(Ω;L∞(D))‖a
−1
N,−‖L3q(Ω)‖uN‖L3q(Ω;H1+r0 (D))h

r0

≤ C‖aN‖2L3q(Ω;L∞(D))‖uN‖L3q(Ω;H1+r0 (D))h
r0

≤ C‖aN‖2L3q(Ω;L∞(D))‖uN‖L3q(Ω;W r)h
r0

≤ Chr0 .

(41)

We have used that aN,− and ‖aN‖L∞(D) are equal in distribution for the second estimate, and
Lemma 3.5 in the third line. The last step follows for any q ∈ [1,∞) by Corollary 4.1 and Propo-
sition 4.2 since p > 1. Moreover, as a further consequence of Corollary 4.1 and Proposition 4.2,
the constant C > 0 in the final estimate in (41) bounded independently of N and h. Since
0 < s− d

p ≤ 1, we may choose r0 < r < s− d
p arbitrary close to s− d

p .

On the other hand, if s − d
p > 1 and r = 1, Lemma 3.5 implies that uN ∈ Lq(Ω;H2(D)).

Estimates (40) and (41) then hold for r0 = r = 1, which proves the claim in case that p > 1.
For p = 1 and given q ≥ 1, we need to assume in addition that κ > 0 be sufficiently small such

that Corollary 4.1 and (36) in Remark 4.3 hold with q replaced 3q. In this case, the claim for
p = 1 follows analogously as for p > 1.

Theorem 4.8. Let the assumptions of Theorem 4.7 hold. For any f ∈ H, sufficiently small κ > 0
in (16) and for any r ∈ (0, s− d

p ) ∩ (0, 1], there are constants q ∈ (1,∞) and C > 0 such that for
any N ∈ N and h ∈ H there holds

‖uN − uN,h‖Lq(Ω;H) ≤ Ch2r

{
for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.

Proof. The proof uses the well-known Aubin-Nitsche duality argument. Let eN,h := uN − uN,h

and consider for fixed ω ∈ Ω the dual problem to find ϕ(ω) ∈ V such that for all v ∈ V it holds

∫

D

aN (ω)∇ϕ(ω) · ∇vdx = V ′〈eN,h(ω), v〉V . (42)

We need to investigate the regularity and integrability of ϕ as a first step. Lemma 3.4 shows that

‖ϕ(ω)‖W r ≤
C

a−(ω)


1 +

(
‖a(ω)‖Cr(D)

a−(ω)

)1/r

 ‖eN,h(ω)‖H . (43)

Let t ∈ (0, s − d
p ) be fixed. We integrate both sides of (43) and use Hölder’s inequality as in the

third part of Theorem 3.9 to obtain for q0 ≥ 1 and q1, . . . , q4 ∈ [1,∞) such that 1 =
∑4

i=1
1
qi

‖ϕ‖q0Lq0 (Ω;W r) ≤ Cq

[
E (exp (q0q1‖bT ‖Ct))

1
q1 + E

(
exp

(
q0 max(q1,

q2
r
,
q3
r
)‖bT ‖Cr

)) 1
q3

+ 1
q2

+ 1
q3

]

· E(‖eN,h‖
q0q4
H )1/q4 ,

(44)

By Theorems 2.9, 4.7 and Proposition 4.2, we now conlude that the right hand side in (44) is finite
and bounded uniformly in N for any q0 ≥ 1 if p > 1, as the Hölder conjugates q1, . . . , q4 ∈ [1,∞)
may be arbitrary large. For p = 1, we further need that κ > 0 in (16) is sufficiently small, so that
εp > q0 max(q1,

q2
r ,

q3
r ) in Theorem 2.9 and that q ≥ q0q4 in Theorem 4.7. Given that κ > 0 is

sufficiently small, there is for any p ≥ 1 a q0 ≥ 1 such that ϕ ∈ Lq0(Ω;W r).
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For the next step, we combine Equations (31) and (38) to show the Galerkin orthogonality
∫

D

aN (ω)∇eN,h(ω) · ∇vhdx = 0, vh ∈ Vh. (45)

Let Ph : V → Vh denote the V -orthogonal projection onto Vh. Testing with v = eN,h(ω) ∈ V in
(42) then shows together with vh = Phϕ(ω) in (45) that

‖eN,h(ω)‖
2
H =

∫

D

aN (ω)∇ϕ(ω) · ∇eN,h(ω)dx

≤ ‖aN (ω)‖L∞(D)‖eN,h(ω)‖V ‖(I − Ph)ϕ(ω)‖V .

(46)

Estimate (46) then yields for q ∈ [1,∞) with Hölder’s inequality

‖eN,h‖Lq(Ω;H) ≤ ‖aN‖
L

3q
2 (Ω;L∞(D))

‖eN,h‖
L

3q
2 (Ω;V )

‖(I − Ph)ϕ‖
L

3q
2 (Ω;V )

.

First, suppose again that p > 1, where ϕ ∈ Lq0(Ω;W r) holds for any q0 ≥ 1. Proposition 4.2
and Theorem 4.7 yield

‖eN,h‖Lq(Ω;H) ≤ Chr‖(I − Ph)ϕ‖
L

3q
2 (Ω;V )

,

where C > 0 is independent of N and h. Lemma 3.5, ϕ ∈ Lq0(Ω;W r), and (40) further show that

‖eN,h‖Lq(Ω;H) ≤ Chr+r0 , r0 ∈ (0, r) ∪ {⌊r⌋}. (47)

The claim follows as in Theorem 4.7, since r = r0 = 1 if s − d
p > 1, and r0 < r < s − d

p may be

arbitrary close to s− d
p otherwise.

For p = 1 and given q ≥ 1 on the other hand, we need to assume that κ > 0 is sufficiently
small so that ϕ ∈ Lq0(Ω;W r(D)) for q0 = 3q

2 , and that (36) and Theorem 4.7 hold with q replaced

by 3q
2 . The claim then follows as for p > 1 from (4.2).

Bounds on the overall approximation errors with respect to V and H now follow as an imme-
diate consequence of Theorems 4.4, 4.7, 4.8 and Remark 4.5.

Corollary 4.9. Let the assumptions of Theorem 4.7 hold, let f ∈ H, let t ∈ (0, s− d
p ) and assume

given r ∈ (0, s− d
p ) ∩ (0, 1]. Then there holds:

1.) For p = 1 and sufficiently small κ > 0 in (16), there are constants q = q(κ) ∈ (1,∞) and
C > 0 such that for any q ∈ [1, q), N ∈ N and h ∈ H there holds

‖u− uN,h‖Lq(Ω;V ) ≤ C(2−tN + hr),

‖u− uN,h‖Lq(Ω;H) ≤ C(2−tN + h2r).

2.) For p ∈ (1,∞) and any q ∈ [1,∞) there is a constant C > 0 such that for any N ∈ N and
h ∈ H there holds

‖u− uN,h‖Lq(Ω;V ) ≤ C(2N(−t+
min(γ,0)

q ) + hr),

‖u− uN,h‖Lq(Ω;H) ≤ C(2N(−t+
min(γ,0)

q ) + h2r).

5 Multilevel Monte Carlo Estimation

We consider Monte Carlo estimation of E(Ψ(u)) for a given functional Ψ and u as solution to (22)
with Besov random tree coefficient a. We replace u by a tractable approximation uN,h to eval-
uate Ψ(uN,h) ≈ Ψ(u) and bound the overall error consisting of the pathwise discretization from
Section 4 and the statistical error of the Monte Carlo approximation.
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Assumption 5.1.

1.) Let θ ∈ [0, 1], let Ψ : Hθ(D) → R be Fréchet-differentiable on Hθ(D) and denote by

Ψ′ : Hθ(D) → L(Hθ(D);R) = (Hθ(D))′

the Fréchet-derivative of Ψ. There are constants C > 0, ρ1, ρ2 ≥ 0 such that for all v ∈ Hθ(D)

|Ψ(v)| ≤ C(1 + ‖v‖ρ1

Hθ(D)
), ‖Ψ′(v)‖L(Hθ(D);R) ≤ C(1 + ‖v‖ρ2

Hθ(D)
). (48)

2.) For q := 2max(ρ1, ρ2 + 1), there holds u ∈ Lq(Ω;V ).

3.) (Kh)h∈H is a collection of triangulations satisfying Assumption 4.6.

4.) There are constants t > 0, r ∈ (0, 1] and C > 0 such that for q = 2max(ρ1, ρ2 + 1) and any
N ∈ N and h ∈ H it holds

‖u− uN,h‖Lq(Ω;V ) ≤ C(2−tN + hr), ‖u− uN,h‖Lq(Ω;H) ≤ C(2−tN + h2r).

Remark 5.2. Assumption 5.1 is natural, and includes in particular bounded linear functions Ψ,
where ρ1 = 1 and ρ2 = 0. Item 2 follows by Theorem 3.9 and Item 4 by Corollary 4.9, with no
further restrictions whenever p > 1. Only in case that p = 1, κ > 0 needs to be sufficiently small
to ensure that all bounds hold for q = 2max(ρ1, ρ2 + 1) ≥ 2.

5.1 Singlelevel Monte Carlo

We use Monte Carlo (MC) methods to approximate E(Ψ(u)) for a given functional Ψ. To this
end, we first consider the standard MC estimator for (general) real-valued random variables.

Definition 5.3. Let Y : Ω → R be a random variable and let (Y (i), i ∈ N) be a sequence of i.i.d.
copies of Y . For M ∈ N we define Monte Carlo estimator EM (Y ) : Ω → R as

EM (Y ) :=
1

M

M∑

i=1

Y (i). (49)

As we are not able to sample directly from the distribution of u, we rely on i.i.d. copies

(u
(i)
N,h, i ∈ N) of the pathwise approximation uN,h from Section 4. Thereby, in addition to the

statistical MC error of order O(M−1/2), we introduce a sampling bias that depends on N and h.

Theorem 5.4. Let M ∈ N, let EM (Ψ(uN,h)) be the MC estimator as in (49), and let Assump-
tion 5.1 hold. Then, there is a constant C > 0, such that for any M,N ∈ N and h ∈ H it
holds

‖E(Ψ(u))− EM (Ψ(uN,h))‖L2(Ω) ≤ C
(
M−1/2 + 2−tN + h(2−θ)r

)

Proof. We split the overall error via

‖E(Ψ(u))− EM (Ψ(uN,h))‖L2(Ω) ≤ ‖E(Ψ(u))− EM (Ψ(u))‖L2(Ω)

+ ‖EM (Ψ(u))− EM (Ψ(uN,h))‖L2(Ω)

:= I + II.

To bound I, we use independence of Ψ(u)(i) and Ψ(u)(j) for i 6= j to see that

I2 = E



(
E(Ψ(u))−

1

M

M∑

i=1

Ψ(u)(i)

)2



= E(Ψ(u))2 −
2

M

M∑

i=1

E(Ψ(u))2 +
1

M2

M∑

i,j=1

E
(
Ψ(u)(i)Ψ(u)(j)

)

=
Var(Ψ(u))

M
.
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Assumption 5.1 further shows that

I ≤
‖Ψ(u)‖L2(Ω)

M1/2
≤ C

1 + ‖u‖L2ρ1 (Ω;Hθ(D))

M1/2
≤ C

1 + ‖u‖L2ρ1 (Ω;V )

M1/2
≤ CM−1/2,

where we have used that θ ≤ 1 and u ∈ L2ρ1(Ω;V ).
To bound II, we use Equation (48) and derive the pathwise estimate

|Ψ(u)−Ψ(uN,h)| =

∣∣∣∣
∫ 1

0

Ψ′(u+ z(uN,h − u))(u− uN,h)dz

∣∣∣∣

≤

∫ 1

0

‖Ψ′(u+ z(uN,h − u))‖L(Hθ(D);R)‖u− uN,h‖Hθ(D)dz

≤ C
(
1 + ‖u‖ρ2

Hθ(D)
+ ‖u− uN,h‖

ρ2

Hθ(D)

)
‖u− uN,h‖Hθ(D)

≤ C
(
1 + ‖u‖ρ2

Hθ(D)
+ ‖uN,h‖

ρ2

Hθ(D)

)
‖u− uN,h‖Hθ(D).

(50)

By Assumption 5.1, there is a C > 0 such that for every N and every 0 < h ≤ 1 it holds

‖uN,h‖L2(ρ2+1)(Ω;Hθ(D)) ≤ C‖u‖L2(ρ2+1)(Ω;Hθ(D)) ≤ C‖u‖L2(ρ2+1)(Ω;V ) <∞. (51)

Furthermore, as θ ∈ [0, 1], we have by the Gagliardo-Nirenberg interpolation inequality

‖u− uN,h‖L2(ρ2+1)(Ω;Hθ(D)) ≤ ‖u− uN,h‖
1−θ
L2(ρ2+1)(Ω;H)

‖u− uN,h‖
θ
L2(ρ2+1)(Ω;V ) ≤ C(2−tN + h(2−θ)r).

(52)
Thus, Hölder’s inequality with conjugate exponents q1 = ρ2+1

ρ2
, q2 = ρ2 + 1 (and q1 = ∞, q2 = 1

for ρ2 = 0) shows that

II ≤ ‖Ψ(u)−Ψ(uN,h)‖L2(Ω)

(50)

≤ C(1 + ‖u‖Lq12ρ2 (Ω;Hθ(D)) + ‖uN,h‖Lq12ρ2 (Ω;Hθ(D)))‖u− uN,h‖Lq22(Ω;Hθ(D))

(51)

≤ C(1 + ‖u‖L2(ρ2+1)(Ω;V ))‖u− uN,h‖L2(ρ2+1)(Ω;Hθ(D))

(52)

≤ C(2−tN + h(2−θ)r).

(53)

The error contributions in Theorem 5.4 are balanced by choosing

M ≈ 22tN ≈ h−2(2−θ)r. (54)

With this choice, achieving the target accuracy ‖E(Ψ(u)) − EM (Ψ(uN,h))‖L2(Ω) = O(ε) requires

sampling M = O(ε−2) high-fidelity approximations uN,h with N = O( log(ε)t ) scales and mesh

refinement h = O(ε
1

(2−θ)r ). This is computationally challenging in dimension d ≥ 2 and for low-
regularity problems, i.e., when t, r > 0 are small. To alleviate the computational burden, we
propose a multilevel Monte Carlo extension of the estimator EM in the next subsection.

5.2 Multilevel Monte Carlo

The multilevel Monte Carlo (MLMC) algorithm was invented by Heinrich [17] to compute para-
metric integrals, then rediscovered and popularized by Giles [13, 14], and has since then found
various applications in uncertainty quantification and beyond.

To apply this methodology to our model problem we fix a maximum refinement level L ∈ N

and consider a sequence of approximated solutions uNℓ,hℓ
with (Nℓ, hℓ) ∈ N×H for ℓ ∈ {1, . . . , L}.

We assume that N1 < · · · < NL and h1 > · · · > hL, so that the error u − uNℓ,hℓ
decreases with
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respect to the level ℓ. For notational convenience, we define Ψℓ := Ψ(uNℓ,hℓ
) as the approximation

of the quantity of interest Ψ(u) on level ℓ, and set Ψ0 := 0. The basic idea of the MLMC method
for estimating E(Ψ(u)) is to exploit the telescopic expansion

E(Ψ(u)) ≈ E(ΨL) = E(ΨL)− E(Ψ0) =
L∑

ℓ=1

E(Ψℓ −Ψℓ−1) (55)

of the high-fidelity approximation ΨL. On each level ℓ, the correction E(Ψℓ −Ψℓ−1) is estimated
by (standard) MC estimator with Mℓ samples. This yields the multilevel Monte Carlo estimator

EL(ΨL) :=
L∑

ℓ=1

EMℓ
(Ψℓ −Ψℓ−1), (56)

with level-dependent numbers of samples M1, . . . ,ML ∈ N. We assume that the estimators
EMℓ

(Ψℓ −Ψℓ−1) are jointly independent across the levels ℓ = 1, . . . , L.
Provided that Var(Ψℓ−Ψℓ−1) decays sufficiently fast in ℓ, we chooseM1 > · · · > ML such that

the majority of samples are generated cheaply on low levels ℓ, while only a few expensive samples
for large ℓ are necessary. This entails massive computational savings compared to a singlelevel
Monte Carlo (SLMC) estimator as in (49), that requires a large number of expensive samples
on level L, and does not exploit the level hierarchy whatsoever. The computational gain of the
MLMC method is precisely quantified under certain assumptions in Giles’ complexity theorem
([13, Theorem 3.1]). Given some ε > 0, Giles derives the optimal number of refinement levels L
and associated numbers of samples M1, . . . ,ML that guarantee ‖E(Ψ(u)) − EL(Ψ(u))‖L2(Ω) ≤ ε.
The latter requires exact knowledge of all constants in Assumption 5.1, and, furthermore, exact
knowledge of the cost for sampling one instance of Ψℓ. As this is not feasible a-priori, we choose
a slightly different approach to determine the MLMC parameters. We retain the optimal order of
complexity as in [13, Theorem 3.1].

Assumption 5.5. Let (Kh)h∈H be a sequence of triangulations satisfying Assumption 4.6, and
assume that hℓ ∈ H for any ℓ ∈ N. Furthermore, in view of the multilevel convergence analysis,
we assume that there are 0 < cK ≤ cK < 1 and h0 > 0 such that

cℓKh0 ≤ hℓ ≤ cℓKh0, ℓ ∈ N. (57)

One sample of Ψℓ = Ψ(uNℓ,hℓ
) with uNℓ,hℓ

∈ Vhℓ
and nℓ := dim(Vhℓ

) = O(h−d
ℓ ) is realized in

O(nℓ) work and memory.

Remark 5.6. Assumption 5.5 is natural and holds, for instance, with cK, cK ≈ 1
2 if the mesh

Khℓ
is obtained from Khℓ−1

by bisection of the longest edge of each K ∈ Khℓ−1
. We remark that

in general, it may be hard to achieve cK = cK, which is why we imposed an upper and lower
bound in (57). Simulating Ψℓ requires O(nℓ) = O(h−d

ℓ ) floating point operations per sample when
using multilevel solvers for continuous piecewise linear or multi-linear elements. We also refer
to Lemma B.2 in Appendix B.3, where we show that the expected cost of sampling bN,T on the
associated grid is of order O(h−d

ℓ ) if β < 1.

Theorem 5.7. Let Assumptions 5.1 and 5.5 hold, and let ε > 0. For t, r and θ as in Assump-
tion 5.1, select the MLMC parameters in (56) for ℓ ∈ {1, . . . , L} as

L :=

⌈
log(ε)

(2− θ)r log(cK)
−

log(h0)

log(cK)

⌉
, Mℓ :=

⌈(
hℓ
hL

)2(2−θ)r

wℓ

⌉
, Nℓ :=

⌈
−
log(hℓ)(2− θ)r

log(2)t

⌉
.

(58)

For given L ≥ 1, choose the weights wℓ > 0 to determine Mℓ such that
∑L

ℓ=1 w
−1
ℓ ≤ Cw <∞, for

sufficiently large, fixed Cw > 0 independent of L.
Then, there is a C > 0, such that for any ε > 0 it holds

‖E(Ψ(u))− EL(ΨL)‖L2(Ω) ≤ Cε.
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Proof. We use the error splitting

‖E(Ψ(u))− EL(ΨL)‖L2(Ω) ≤ ‖E(Ψ(u))− E(ΨL))‖L2(Ω) + ‖E(ΨL)− EL(ΨL)‖L2(Ω).

We obtain in the same fashion as for the term II in the proof of Theorem 5.4 that

‖E(Ψ(u))− E(ΨL)‖L2(Ω) ≤ ‖Ψ(u)−Ψ(uNL,hL
)‖L2(Ω) ≤ C(2−tNL + h

(2−θ)r
L ) ≤ Ch

(2−θ)r
L ,

where we have used 2−tNL ≤ h
(2−θ)r
L by (58) in the last step. To bound the second term, we

expand E(ΨL) in a telescopic sum to obtain with (56)

‖E(ΨL)− EL(ΨL)‖
2
L2(Ω) =

L∑

ℓ=1

‖E(Ψℓ −Ψℓ−1)− EMℓ
(Ψℓ −Ψℓ−1)‖

2
L2(Ω)

=

L∑

ℓ=1

M−1
ℓ ‖Ψℓ −Ψℓ−1‖

2
L2(Ω).

The first equality holds since the MC estimators EM1(Ψ1), . . . , EML
(ΨL − ΨL−1) are jointly in-

dependent and unbiased in the sense that E(Ψℓ − Ψℓ−1) = E(EMℓ
(Ψℓ − Ψℓ−1)). The triangle

inequality and the estimate (53) (from the proof of Theorem 5.4) then further yield

‖E(ΨL)− EL(ΨL)‖
2
L2(Ω) ≤ 2

L∑

ℓ=1

M−1
ℓ

[
‖Ψℓ −Ψ(u)‖2L2(Ω) + ‖Ψ(u)−Ψℓ−1‖

2
L2(Ω)

]

≤ C

L∑

ℓ=1

M−1
ℓ

[
2−2tNℓ + h

2(2−θ)r
ℓ + 2−2tNℓ−1 + h

2(2−θ)r
ℓ−1

]

≤ C

L∑

ℓ=1

w−1
ℓ h

2(2−θ)r
L ,

where we have used Assumption 5.5 and the choices for Mℓ and Nℓ in (58) in the last step. As∑L
ℓ=1 w

−1
ℓ ≤ Cw < ∞ is bounded independently of L, we conclude with (57), L as in (58), and

0 < cK ≤ cK < 1 that

‖E(Ψ(u))− EL(ΨL)‖L2(Ω) ≤ Ch
(2−θ)r
L ≤ C(cLKh0)

(2−θ)r ≤ Cε
log(cK)

log(cK)h

(

1−
log(cK)

log(cK)

)

(2−θ)r

0 ≤ Cε.

The computational advantages of the MLMC method are precisely quantified in the next
statement. Therein, the choice of wℓ plays a key role and depends on the relation of variance
decay and cost of sampling on each level.

Theorem 5.8. Let Assumptions 5.1 and 5.5 hold, and let ε > 0. Given t, r and θ and ε > 0, set
L,Mℓ and Nℓ as in Theorem 5.7 and choose the weight functions

wℓ =





ℓ1+ι if 2(2− θ)r > d

L if 2(2− θ)r = d

c
(2(2−θ)r−d)ιℓ
K if 2(2− θ)r < d

, ℓ ∈ {1, . . . , L},

where ι ∈ (0, 1
L ] is an arbitrary small constant. Then, the MLMC estimator satisfies

‖E(Ψ(u))− EL(ΨL)‖L2(Ω) ≤ Cε,

with computational cost CMLMC for ε→ 0 of order

CMLMC =





O(ε−2) if 2(2− θ)r > d

O(ε−2 log(ε)2) if 2(2− θ)r = d

O(ε−2−
d−2(2−θ)r

(2−θ)r ) if 2(2− θ)r < d.
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Proof. Since cK ∈ (0, 1), it holds in each scenario
∑L

ℓ=1 w
−1
ℓ ≤ C for a constant C > 0, and

uniform with respect to L. Therefore, we conclude by Theorem 5.7 that

‖E(Ψ(u))− EL(ΨL)‖L2(Ω) ≤ Cε,

and it remains to derive the complexity in terms of ε.

Assumption 5.5 implies that hL ≤ hℓc
(L−ℓ)
K h0. We obtain with (58) that

Mℓ =
⌈
cK

(ℓ−L)2(2−θ)rwℓ

⌉
. (59)

Let Cℓ denote the work required to generate on sample of Ψℓ. As hℓ ≥ cℓKh0, it holds that

Cℓ = O(dim(Vhℓ
)) = O(h−d

ℓ ) ≤ CcK
−dℓ (60)

Since we generateMℓ independent Ψℓ−Ψℓ−1 on each level (and also generate independent samples
across all levels), the overall cost of the MLMC estimator is with (59) and (60) bounded by

CMLMC :=
L∑

ℓ=1

Mℓ(Cℓ + Cℓ−1)

≤ C

L∑

ℓ=1

c
(ℓ−L)2(2−θ)r
K wℓ(c

−dℓ
K + c

−d(ℓ−1)
K )

≤ Cc
−L2(2−θ)r
K

L∑

ℓ=1

(
c
2(2−θ)r−d
K

)ℓ
wℓ.

Now first suppose that 2(2 − θ)r − d > 0. Since cK ∈ (0, 1), the ratio test for sum convergence
shows that for any ι > 0 we obtain the uniform bound (with respect L ∈ N)

L∑

ℓ=1

(
c
2(2−θ)r−d
K

)ℓ
wℓ ≤

∑

ℓ∈N

(
c
2(2−θ)r−d
K

)ℓ
ℓ1+ι <∞.

On the other, hand if 2(2− θ)r − d = 0, there holds with wℓ = L

L∑

ℓ=1

(
c
2(2−θ)r−d
K

)ℓ
wℓ = L2.

Finally, for 2(2− θ)r − d < 0, it follows with ι ∈ (0, 1
L ] that there is a C > 0 such that

L∑

ℓ=1

(
c
2(2−θ)r−d
K

)ℓ
wℓ =

L∑

ℓ=1

c
ℓ(1+ι)(2(2−θ)r−d)
K ≤ Cc

L(2(2−θ)r−d)
K .

Altogether, we obtain that there exists a constant C > 0 independent of L such that

CMLMC ≤ C





c
−L2(2−θ)r
K if 2(2− θ)r > d,

c
−L2(2−θ)r
K L2 if 2(2− θ)r = d,

c
−L2(2−θ)r
K c

L(2(2−θ)r−d)
K if 2(2− θ)r < d.

With L from (58) it follows that cLK = O(ε
1

(2−θ)r h−1
0 ) for ε → 0. This shows the following

asymptotics for the ε-cost bounds as ε→ 0

CMLMC(ε) =





O(ε−2) if 2(2− θ)r > d,

O(ε−2 log(ε)2) if 2(2− θ)r = d,

O(ε−2−
d−2(2−θ)r

(2−θ)r ) if 2(2− θ)r < d.
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Remark 5.9. The asymptotic complexity bounds for ε→ 0 are of the same magnitude as in [13,
Theorem 3.1] and [9, Theorem 1], but only require knowledge of the parameters r, t and θ, but not
on further absolute constants. From Theorem 5.4, the SLMC estimator requires for given ε > 0
a total of M ≈ ε−2 samples with refinement parameters satisfying 2−tN ≈ h(2−θ)r ≈ ε. Hence,

h = O(ε
1

(2−θ)r ) and, assuming availability of a linear complexity solver such as multigrid, the

computational cost per sample is bounded asymptotically asO(dim(Vh)) = O(h−d) = O(ε−
d

(2−θ)r ).
The total cost of the SLMC estimator to achieve ε-accuracy is therefore

CSLMC(ε) = O(ε−2− d
(2−θ)r ) > CMLMC(ε), as ε→ 0. (61)

Consequently, under the stated assumptions, MLMC-FEM achieves a considerable reduction in
(asymptotic) ε-complexity, even in low-regularity regimes with 2(2− θ)r < d.

In case that 2(2−θ)r > d, the assumption that EM1
(Ψ1), . . . , EML

(ΨL−ΨL−1) are independent
MC estimators is not required to derive the optimal complexity CMLMC = O(ε−2). Instead, setting
wℓ = ℓ2(1+ι) is sufficient to compensate for the dependence across discretiation levels. This could
be exploited in a simulation to ”recycle” samples from coarser discretization levels in order to
further increase efficiency. We refer, e.g., to the discussion in [6, Section 5.2].

6 Numerical Experiments

We consider numerical experiments in the rectangular domain D := T2 = (0, 1)2 and use the
constant source function f ≡ 1. For the spatial discretization we use bilinear finite elements
that may be efficiently computed by exploiting their tensor product-structure, see Appendix B.2
for details. The initial mesh width is given by h0 = 1

2 and we use dyadic refinements with
factor cK = cK = 1

2 to obtain a sequence of tesselations (Kh, h = 2−ℓh0, ℓ ∈ N) that satisfies
Assumption 4.6 for the MLMC algorithm. We further use midpoint quadrature to assemble the
stiffness matrix for each realization of the diffusion coefficient. The resulting quadrature error does
not dominate the FE error convergence from Theorems 4.7 and 4.8, as we show in Lemma B.1 in
the Appendix. For given N and a rectangular mesh Kh, we evaluate bT,N at the midpoint of each
K ∈ Kh as described in Appendix B.3.

We investigate different parameter regimes of varying smoothness for the diffusion coefficient,
the values and resulting pathwise approximation rates r and t as in Corollary 4.9 are collected
in Table 1. In all experiments, we build the random field bT resp. bT,N based on Daubechies
wavelets with five vanishing moments (”DB(5)-wavelets”), with smoothness φ, ψ ∈ C1.177(R) (see
[11, Section 7.1.2]). We consider the L2(D)-norm of the gradient as quantity of interest (QoI),
with associated functional given by

Ψ : H1(D) → [0,∞), u 7→

(∫

D

|∇u|2dx

)1/2

,

so that Assumption 5.1 holds with θ = 1.

Parameter values s p κ β t r MLMC complexity for θ = 1

”smooth Gaussian” 2 2 1 1
2 1 1 O(ε−2| log(ε)|2)

”rough Gaussian” 3
2 2 1 1

2
1
2

1
2 O(ε−4)

”p-exponential” 2 8
5 1 3

4
3
4

3
4 O(ε−

8
3 )

Table 1: Parameters values for the random tree Besov priors in the numerical experiments.

Given θ, r and t, we prescribes target accuracies ε = 2−rξ, ξ ∈ {5, . . . , 9} and select, for given
ε > 0, the MLMC parameters as in Theorem 5.7. The maximum refinement level is denoted by Lε

and the corresponding estimators by ELε(ΨLε
). We sample nML = 28 realizations of ELε(ΨLε

)
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for every ε. As reference solution, we use nref = 24 realizations of ELref (ΨLref
) with parameters

adjusted to achieve εref := 2−r11. We report for prescribed ε the realized empirical RMSE

RMSE(ε) =




1

nML

nML∑

i=1


ELε(ΨLε

)(ωi)−


 1

nref

nref∑

j=1

ELref (ΨLref
)(ωj)






2



1
2

.

All computations are realized using MATLAB on a workstation with two Intel Xeon E5-2697
CPUs with 2.7 GHz, a total of 12 cores, and 256 Gigabyte RAM.

We start with the ”smooth Gaussian” case from Table 1. A sample of the diffusion coefficient
and the associated bilinear FE approximation of u is given in Figure 2, where we also plot the
(average) CPU times against the realized RMSE and the prescribed accuracies ε. As we see, the
realized error is very close to the prescribed accuracy ε, which corresponds to the error estimate
from Theorem 5.7. Moreover, the empirical results are in line with the work estimates from
Theorem 5.8, as is seen in the right plot of Figure 2, since the computational complexity is
(asymptotically) of order O(ε−2| log(ε)|2).

Next, we decrease the parameter s to obtain the ”rough Gaussian” scenario from Table 1.
A sample of the diffusion coefficient and the associated bilinear FE approximation of u is given
in Figure 3. Compared to Figure 2, we now see more detailed, sharp features in the diffusion
coefficient, due to the slower decay factor of the wavelet basis. Average CPU times vs. realized
RMSE are given in Figure 3. Again, the realized error is of order O(ε), and the computational
times are asymptotically of order O(ε−4), as expected from Theorem 5.8.

Finally, we investigate the ”p-exponential” scenario from Table 1, where we use a heavier-tailed
distribution of X l

j,k and increase the wavelet density to β = 3
4 . We use a standard Acceptance-

Rejection algorithm to sample from the p-exponential density for p = 1.6. A sample of the diffusion
coefficient and the associated bilinear FE approximation of u is given in Figure 4. We observe
that the variance of coefficient and solution is increased, compared to the previous two examples.
This is indicated by the larger bars of the confidence intervals in the right plot of Figure 4. The
a-priori accuracy has been scaled by a factor of three in this plot, for a better visual comparison of
realized and prescribed RMSE. Although absolute magnitude and variance of the realized RMSE
have increased, we still recover in line with Theorem 5.8 the asymptotic error decay of order O(ε),

together with CPU times of order O(ε−
8
3 ).

7 Conclusions

We have developed a computational framework for the efficient discretization of linear, elliptic
PDEs with log-Besov random field coefficients which are modelled by a multiresolution in the
physical domain whose coefficients are standard normal with random choices of active coefficients
according to GW-trees. The corresponding pathwise diffusion coefficients generally admit only
rather low path regularity, thereby mandating low order Finite Element discretizations in the
physical domain. We established strong pathwise solution regularity, and FE error bounds for the
corresponding single-level Monte Carlo-FEM algorithm. The corresponding error vs. work bounds
for the multi-level Monte Carloalgorithm follow then in the standard way. We emphasize again
that higher order sampling methods seem to be obstructed by the GW-tree structure which has
recently been identified in [22] as well-suited for modelling diffuse media such as clouds, fog and
aerosols. The presently proposed MLMC-FE error analysis for Elliptic PDEs with (log-) Besov
random tree coefficients will imply corresponding complexity bounds in multilevel Markov Chain
Monte Carlo sampling strategies for Bayesian Inverse Problems on log-Besov random tree priors,
as considered for example in imaging applications in [23, 10, 4, 18]. Details on their analysis and
computation will be developed elsewhere.
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Figure 2: Sample of a Besov random tree prior/log-diffusion coefficient bT (left) and the corresponding finite element
approximation of u (middle) for the “smooth Gaussian” case in Table 1. Coefficient and solution in the figures
have been sampled on a grid with 29 × 29 equidistant points, and wavelet series truncation was after N = 9 scales.
Fractal structures in the log-diffusion caused by the wavelet density β = 1

2
are clearly visible in the left plot. The

realized RMSE (blue) resp. predicted RMSE (red) vs. computational complexity is depicted in the right plot. Both
curves exhibit the predicted asymptotic behavior of O(ε−2| log(ε)|2), as indicated by the dashed line. The support
line O(ε−2.35) has been added to show that the complexity is indeed non-linear in the log-scale. The bars indicate
95%-confidence intervals of the realized RMSE.

Figure 3: Sample of a Besov random tree prior/log-diffusion coefficient bT (left) and the corresponding finite element
approximation of u (middle) for the “rough Gaussian” case in Table 1. Coefficient and solution in the figures have
been sampled on a grid with 29 × 29 equidistant points, and wavelet series truncation was after N = 9 scales.
The diffusion coefficient exhibits sharper features, as compared to the smooth case Figure 2. The realized RMSE
(blue) resp. predicted RMSE (red) vs. computational complexity is depicted in the right plot, both curves show
the predicted asymptotic behavior of O(ε−4). The bars indicate 95%-confidence intervals of the realized RMSE.

Figure 4: Sample of a Besov random tree prior/log-diffusion coefficient bT (left) and the corresponding finite element
approximation of u (middle) for the “p-exponential” case in Table 1. Coefficient and solution in the figures have
been sampled on a grid with 29 × 29 equidistant points, and wavelet series truncation after N = 9 scales. The
variance is significantly increased compared to the previous examples, as indicated by the bars 95%-confidence
intervals of the realized RMSE (right plot). The a-priori fixed ε (red curve) has been scaled by a factor of three in

this plot. We still recover the predicted asymptotic error of order O(ε) with computational work of order O(ε−
8
3 ).
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Birkhäuser, 2020.

[27] J. Zech and C. Schwab. Convergence rates of high dimensional Smolyak quadrature. ESAIM:
Mathematical Modelling and Numerical Analysis, 54(4):1259–1307, 2020.

A Galton-Watson trees

We provide some basic concepts of discrete trees, give a formal definition of Galton-Watson trees,
and record a result on their extinction probabilities. The presentation follows [1, Section 2], with
modified notation where necessary.

A.1 Notation and basic definitions

Let U :=
⋃

n≥0 N
n be the set of all finite sequences of positive integers, where ̺ := () denotes the

empty sequence, and we use the convention N0 = {̺}. For any n ∈ U , let |n| denote the length
of n, with |̺| := 0. For n,m ∈ U , we denote by nm the concatenation of two sequences, with the
convention n̺ = ̺n = n for all n ∈ U . There exists a partial order, called the genealogical order,
on U : we say that m � n, whenever there is a n0 ∈ U such that mn0 = n. We say that m is an
ancestor of n and write m ≺ n if m � n and m 6= n. The set of all ancestors of n is denoted by
An := {m ∈ U|m ≺ n} ⊂ U .

Definition A.1. [1, Section 2.1] A tree t is a subset t ⊂ U that satisfies

• ̺ ∈ t,

• If n ∈ t, then An ⊂ t,

• For any n ∈ t, there exists Kn(t) ∈ N ∪ {∞}, such that for every n ∈ N, nn ∈ t if, and only
if, 1 ≤ n ≤ Kn(t).

We denote the set of all trees by T∞. Let |t| ∈ N∪{∞} be the cardinality of the tree t ∈ T∞,
and introduce the set of all finite trees by T0 := {t ∈ T| |t| < ∞}. The set T0 is countable. The
integer Kn(t) represents the number of offsprings in t at the node n. The set of all trees without
infinite nodes is a subset T∞ and denoted by

T := {t ∈ T∞|Kn(t) <∞ for all n ∈ t.} (62)

For n ∈ t, the sub-tree Sn(t) of t above node n is defined as:

Sn(t) := {m ∈ U| nm ∈ t}. (63)

We also need the restriction functions rn : T → T, n ∈ N0 which are given by

rn(t) := {n ∈ t| |n| ≤ n}. (64)

With these preparations, we are in position to define metric and associated Borel σ-algebra on T.
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Definition A.2. [1, Section 2.1] Let

δ : T× T → [0, 1], (t, t′) 7→ 2− sup{n∈N0|rn(t)=rn(t
′)}. (65)

Furthermore, define the σ-algebra

B(T) := σ

(
⋃

t∈T

⋃

n∈N

r−1
n (rn(t))

)
= σ

(
⋃

t∈T

⋃

n∈N

{t′| δ(t, t′) ≤ 2−n}

)
. (66)

By [1, Lemma 2.1], (T, δ) is a complete and separable metric space. The countable set of all
finite trees T0 is dense in T: for all t ∈ T, we have rn(t) → t as n→ ∞ in (T, δ). Further, δ is an
ultra-metric (see [1, Section 2.1]), hence r−1

n (rn(t)) is the set of open (and closed) balls with center
t and radius n [1, Section 2.1] with respect to δ. By separability, B(T) coincides with the Borel
σ-algebra on T, that is generated by all open sets on (T, δ). Given a probability space (Ω,A, P ),
we then call any A/B(T)-measurable mapping τ : Ω → T a T-valued random variable. This allows
us to formalize Galton-Watson trees:

Definition A.3. [Galton-Watson(GW) tree with offspring distribution P] A T-valued random
variable T has the branching property if, for any n ∈ N, conditionally on {k̺(τ) = n}, the sub-
trees S1(T ), . . . ,Sn(T ) are independent and distributed as the original tree τ . Now let P be
a probability distribution on N0, i.e., a probability measure on (N0,B(N0)). A T-valued random
variable T is called a Galton-Watson(GW) tree with offspring distribution P if T has the branching
property and if K̺(T ) ∼ P.

According to [1, Equation (12)], the distribution PT of a GW tree T , restricted to the set of
finite trees, is given by

PT (T = t) =
∏

n∈t

P(Kn(t)), t ∈ T0, (67)

where the product on the right hand side is finite.

A.2 Random wavelet trees and extinction probabilities

Now we consider again the d-dimensional torus Td with wavelet basis Ψ as in (12). To relate the
nodes of a GW tree to the wavelet indices in IΨ = {j ∈ N0, k ∈ Kj , l ∈ Lj}, we assume that T is
a GW tree with offspring distribution P = Bin(2d, β) for some β ∈ [0, 1]. For a given realization
T (ω) and node n ∈ T (ω), we identify the length of n with the corresponding wavelet scale via
j := |n| ∈ N0. Further, since P is binomial, there are at most 2dj nodes n of length j in T (ω).
Each of this nodes has j entries in {1, . . . , 2d}. We assign an integer to all n ∈ T (ω) with |n| = j
via the bijection

I1d,j : {1, . . . , 2
d}j → {1, . . . , 2dj}, n 7→ 1 +

j∑

i=1

2d(j−i)(ni − 1).

On the other hand, we assign for any {1, . . . , 2jd} an index in Kj = {0, . . . , 2j − 1}d via

I2d,j : {1, . . . , 2
jd} → Kj , n 7→

(
max(n− 2j(i−1), 0) mod 2j

)

i=1,...,d
,

which yields a one-to-one mapping

Id,j : {1, . . . , 2
d}j → Kj , n 7→

(
I2d,j ◦ I

1
d,j

)
(n). (68)

Thus, each n ∈ T (ω) corresponds to a unique pair of indices (j, k) via n 7→ (|n|, I2d,|n| ◦ I
1
d,|n|(n)).

Collecting the pairs (j, k) for all nodes in T yields the random active index set

IT (ω) :=
⋃

n∈T (ω)

(
|n|, I2d,|n| ◦ I

1
d,|n|(n)

)
⊂ {j ∈ N0, k ∈ Kj}. (69)

32



Then, only wavelets with indices IT (ω) := {(j, k, l)| (j, k) ∈ IT (ω), l ∈ Lj} ⊂ IΨ are “activated”
in the series expansion of a sample of bT in Definition 2.6.

It is then of course of interest whether the GW tree T terminates after a finite number of
nodes, in which case IT is finite, or if T has infinitely many nodes. In the latter case, bT exhibits
fractal structures on Td, in areas where the wavelet expansion has infinitely many terms. Let the
extinction event of a GW tree T be denoted by E(T ) := {T ∈ T0}. The extinction probability of
GW trees are quantified in the following result:

Lemma A.4. [1, Corollary 2.5/Lemma 2.6] Let T : Ω → T be GW tree with offspring distribution
P and let ζ ∼ P.

1. If P(0) = 0, then PT (E(T )) = 0,

2. If P(0) ∈ (0, 1) and P(0) + P(1) = 1, then PT (E(T )) = 1,

3. If P(0) ∈ (0, 1), P(0) + P(1) < 1, and E(ζ) ≤ 1, then PT (E(T )) = 1,

4. If P(0) ∈ (0, 1), P(0) + P(1) < 1, and E(ζ) > 1, then PT (E(T )) = q ∈ (0, 1). Here q is the
smallest root in [0, 1] of the equation E(qζ) = q.

Lemma A.4 does not require a Binomial offspring distribution, but remains true for arbitrary
distributions P on N0. Moreover, we conclude that a GW tree T with offspring distribution
P = Bin(2d, β) generates finite wavelet expansions via IT P -a.s. if and only if β ∈ [0, 2−d].

B Finite element approximation

This appendix collects details on the (standard) implementation of the pathwise FE discretization
from Section 4. In particular, we analyze the quadrature error arising during matrix assembly,
describe an assembly routine based on tensorization for bilinear finite elements on T2, and comment
on the efficient evaluation and sampling cost of aN .

B.1 Finite element quadrature error

Let h > 0 be the FE meshwidth and let {v1, . . . , vnh
} be a suitable basis of Vh. As uh,N =∑nh

i=1 uivi for a coefficient vector u, problem (38) is equivalent to the linear system of equations

Auh = F . (70)

For any i, j ∈ {1, . . . , nh}, the entries of A and F are given by

Ai,j :=

∫

D

aN (ω)∇vi · ∇vjdx, and F i := V ′〈f, vi〉V , (71)

and have in general to be evaluated by numerical quadrature. Thereby, we commit a variational
crime in the assembling of A and F . As an resp. a is of low regularity, we have to make sure to
choose an appropriate quadrature method, that does not spoil the convergence rate of the finite
element approximation. It turns out that the midpoint rule is sufficient for (d-)linear elements, as
we show in the remainder of this subsection. We restrict ourselves to the quadrature error analysis
for the stiffness matrix A for brevity, the corresponding analysis for the load vector F is carried
out analogously. We denote for any simplex/parallelotope K ∈ Kh its midpoint or barycenter by
xmK ∈ K. Furthermore, we define the piecewise constant approximation aN of an given by

aN (ω, x) := aN (ω, xmK), x ∈ K, K ∈ Kh.

As we consider piecewise (d-)linear finite elements, approximating Aij in (71) by midpoint quadra-
ture on each K is equivalent to solving the following discrete problem: Find uN,h(ω) ∈ Vh such
that for all v ∈ V it holds

∫

D

aN (ω)∇uN,h(ω) · ∇vhdx = V ′〈f, vh〉V .

33



There exists a.s. a unique solution uN,h(ω) and the quadrature error is bounded in the following.

Lemma B.1. Let the assumptions of Theorem 4.7 hold. For any f ∈ H, sufficiently small κ > 0
in (16) and any r ∈ (0, s− d

p )∩ (0, 1], there are constants q ∈ (1,∞) and C > 0 such that for any
N ∈ N and h ∈ H there holds

‖uN,h − uN,h‖Lq(Ω;V ) + h−r‖uN,h − uN,h‖Lq(Ω;H) ≤ Chr

{
for q ∈ [1, q) if p = 1, and

for any q ∈ [1,∞) if p > 1.

Furthermore, if s− d
p > 1, the statement holds for t = 1.

Proof. There exists a.s. a unique solution uN,h(ω) and the distance to uN,h(ω) is readily bounded
with Proposition 3.3 by

‖uN,h(ω)− uN,h(ω)‖V ≤
‖f‖V ′

aN (ω)aN (ω)
‖aN (ω)− aN (ω)‖L∞(D). (72)

Theorems 2.9 and Proposition 4.2 show that aN ∈ L3q(Ω; Ct(D)) for all t ∈ (0, s− d
p ) and q ≥

1
3 .

For p > 1, we may again choose any q ∈ [ 13 ,∞), for p = 1 we have q ∈ [ 13 , q), where q > 1 for
sufficiently small κ > 0. This yields for q ∈ [1, q) with Hölder’s inequality

‖uN,h − uN,h‖Lq(Ω;V ) ≤ C‖a2N,−‖L3q/2(Ω)‖aN − aN‖L3q(Ω;L∞(D))

≤ C‖aN,−‖
2
L3q(Ω)‖aN‖L3q(Ω;Ct(D))h

min(t,1)

≤ Chr.

To prove the error with respect to H, we recall the duality argument from Theorem 4.8: Let
eN,h := uN,h − uN,h and consider for fixed ω ∈ Ω the dual problem to find ϕ(ω) ∈ V such that for
all v ∈ V it holds ∫

D

aN (ω)∇ϕ(ω) · ∇vdx = V ′〈eN,h(ω), v〉V ,

Analogously to the proof of Theorem 4.8, we derive the pathwise estimate

‖eN,h(ω)‖
2
H ≤ ‖aN (ω)‖L∞(D)‖eN,h(ω)‖V ‖(I − Ph)ϕ(ω)‖V .

Provided sufficiently integrability if p = 1, we find that ‖uN,h − uN,h‖Lq(Ω;H) ≤ Ch2r.

Note that r in Lemma B.1 is identical to r in Theorems 4.7 and 4.8. Hence the quadrature error
does not dominate the finite element convergence rate. We further emphasize that Lemma B.1
holds for arbitrary piecewise (multi-)linear elements, regardless if we use simplices or parallelotopes
to discretize D.

B.2 Bilinear finite element discretization

We focus on the rectangular domain D = T2 = [0, 1]2 in this subsection. It is convenient to
use a spatial discretization based on bilinear finite elements. Let therefore h = 1/n for a n ∈ N

and consider the nodes xi := ih, i ∈ {0, . . . , n}. Then Ξh := {x0, . . . , xn} ⊂ [0, 1] defines an
equidistant mesh of T1. A rectangular tesselation of Kh of T2 is then given by the (n + 1)2 grid
points Ξ2

h := {(xi1 , xi2)| i1, i2 ∈ {0, . . . , n}} ⊂ T2. Let

φi(x) := max

{
0, 1−

|xi − h|

h

}
, x ∈ R, i ∈ {0, . . . , n}

be the one-dimensional hat function basis at the nodes in Ξh. Then, the space of bilinear finite
elements corresponding to Ξ2

h resp. Kh is given by

Vh := spanR{φi1 ⊗ φi2 , i1, i2 ∈ {1, . . . , n− 1}}.
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The dyads in the tensor product basis coincide with the pointwise products

φi1 ⊗ φi2(x) := φi1(x1)φi2(x2), x ∈ R2.

Note that dim(Vh) = (n − 1)2 due to the homogeneous Dirichlet boundary conditions. Now let
i, j ∈ {1, . . . , (n − 1)2} be indices such that vi = φi1 ⊗ φi2 ∈ Vh and vj = φj1 ⊗ φj2 ∈ Vh. The
entries of the associated stiffness matrix A ∈ R(n−1)×(n−1) are given by

Ai,j :=

∫

T2

aN (ω, x)∇(φi1 ⊗ φi2)(x) · ∇(φj1 ⊗ φj2)(x)dx. (73)

We approximate the entries of A by midpoint quadrature on each square in Kh, which may be
realized by replacing a in (73) by a suitable piecewise constant interpolation at the midpoints as
in Appendix B.1. Let the midpoint of each square K = [xi1 , xi1+1]× [xi2 , xi2+1] ∈ Kh be given by
xmK = xmi1,i2 := (xi1 +

h
2 , xi2 +

h
2 ) for i1, i2 ∈ {0, . . . , n− 1} and define

aN (ω, x) := aN (ω, xmi1,i2), x ∈ [xi1 , xi1+1]× [xi2 , xi2+1].

With indices i, j as above this yields

Ai,j =

∫

T2

aN (ω)∇(φi1 ⊗ φi2)(x) · ∇(φj1 ⊗ φj2)(x)dx

≈

∫

T2

aN (ω)∇(φi1 ⊗ φi2)(x) · ∇(φj1 ⊗ φj2)(x)dx

=

∫ xi1+1

xi1−1

∫ xi2+1

xi2−1

aN (ω)∇(φi1 ⊗ φi2)(x) · ∇(φj1 ⊗ φj2)(x)dx

= aN (ω, xmi1−1,i2−1)

[∫ xi1

xi1−1

φ′i1φ
′
j1dx1

∫ xi2

xi2−1

φi2φj2dx2 +

∫ xi1

xi1−1

φi1φj1dx1

∫ xi2

xi2−1

φ′i2φ
′
j2dx2

]

+ aN (ω, xmi1,i2−1)

[∫ xi1+1

xi1

φ′i1φ
′
j1dx1

∫ xi2

xi2−1

φi2φj2dx2 +

∫ xi1+1

xi1

φi1φj1dx1

∫ xi2

xi2−1

φ′i2φ
′
j2dx2

]

+ aN (ω, xmi1−1,i2)

[∫ xi1

xi1−1

φ′i1φ
′
j1dx1

∫ xi2+1

xi2

φi2φj2dx2 +

∫ xi1

xi1−1

φi1φj1dx1

∫ xi2+1

xi2

φ′i2φ
′
j2dx2

]

+ aN (ω, xmi1,i2)

[∫ xi1+1

xi1

φ′i1φ
′
j1dx1

∫ xi2+1

xi2

φi2φj2dx2 +

∫ xi1+1

xi1

φi1φj1dx1

∫ xi2+1

xi2

φ′i2φ
′
j2dx2

]
.

We define the matrices S and M via

Si1,j1 :=

∫ xi1

xi1−1

φ′i1φ
′
j1dx1 =





1
h , i1 = j1,

− 1
h , i1 = j1 + 1,

0, else,

Mi1,j1 :=

∫ xi1

xi1−1

φi1φj1dx1,=





h
3 , i1 = j1,
h
6 , i1 = j1 + 1,

0, else.

for i1, j1 ∈ {1, . . . , n− 1}, and observe that

S⊤
i1,j1 = Sj1,i1 =

∫ xi1+1

xi1

φ′i1φ
′
j1dx1, M⊤

i1,j1 = Mj1,i1 =

∫ xi1+1

xi1

φi1φj1dx1.

This yields

Ai,j = aN (ω, xmi1−1,i2−1)(Si1,j1Mi2,j2 +Mi1,j1Si2,j2)

+ aN (ω, xmi1,i2−1)(S
⊤
i1,j1Mi2,j2 +M⊤

i1,j1Si2,j2)

+ aN (ω, xmi1−1,i2)(Si1,j1M
⊤
i2,j2 +Mi1,j1S

⊤
i2,j2)

+ aN (ω, xmi1,i2)(S
⊤
i1,j1M

⊤
i2,j2 +M⊤

i1,j1S
⊤
i2,j2),

(74)
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and we only obtain a contribution to Ai,j if |i1 − j1|, |i2 − j2| ≤ 1. Hence, the representation
in (74) may be used for an efficiently assembly of A.

B.3 Evaluation of aN

To assemble A via (74) it still remains to evaluate aN (ω) = exp(bN (ω)) at the quadrature points
in Ξ2

h, or, more generally, at the d-dimensional grid Ξd
h := ⊗d

i=1Ξh ⊂ [0, 1]d. We recall that

bT,N (ω) =
∑

(j,k,l)∈IT (ω)
j≤N

ηjX
l
j,k(ω)ψ

l
j,k, ω ∈ Ω.

The tensor-product representation of ψl
j,k ∈ L2(T2) given in (5) and (4) then shows

bT,N (ω, x) =
∑

(j,k,l)∈IT (ω)
j≤N

ηjX
l
j,k(ω)2

dj
2

d⊗

i=1

ψj+w,ki,l(i)(x)

=
∑

(j,k,l)∈IT (ω)
j≤N

ηjX
l
j,k(ω)2

dj
2

d∏

i=1

ψj+w,ki,l(i)(xi), x ∈ Td.

We define the vectors ψj,ki,l(i) := 2
j
2ψj+w,ki,l(i)(x)|x∈Ξ ∈ Rn and finally obtain

bT,N (ω, x)
∣∣
x∈Ξ2

h

=
∑

(j,k,l)∈IT (ω)
j≤N

ηjX
l
j,k(ω)

d∏

i=1

ψj,ki,l(i) ∈ Rdn.

Therefore, it is sufficient to evaluate the scaled and shifted functions ψj,k,l(i) on the one-dimensional

grid Ξh, the values of bN , resp. aN , at the d-dimensional grid Ξd
h are then obtained by tensorization.

Evaluating ψj,k,l(i) eventually requires to approximate the fractal functions φ and ψ at a discrete
set of points. This is feasible to arbitrary precision with the iterative Cascade algorithm, see, e.g.,
[11, Chapter 6.5]. Using J ∈ N iterations in the Cascade algorithm yields approximate values of
φ, ψ at 2J dyadic grid points, which are then interpolated to obtain piece-wise linear or constant
approximation of continuous φ and ψ interpolation. The resulting error is of order O(2−Jα) if
φ, ψ ∈ Cα(R) with α ∈ (0, 1]. Consequently, we use Jℓ := ⌈Nℓt

α ⌉ on each level in the MLMC
algorithm to match the midpoint quadrature error in Lemma B.1. The cost of sampling bT,N on
a uniform, dyadic grid is quantified in the following.

Lemma B.2. Let hℓ = 2−(ℓ+1) for ℓ ∈ N0, let Ξ
d
hℓ

:= ⊗d
i=1Ξhℓ

⊂ [0, 1]d for d ∈ N, and let Csample

denote the random cost (in terms of work and memory required) of sampling bT,N with respect to
the grid Ξd

hℓ
. Then, there is a constant C > 0, independent of hℓ and N , such that

E(Csample) ≤ C

{
h−d
ℓ (N + 1) if β = 1, and

h−d
ℓ if β ∈ (0, 1).

Proof. Given that ψ and φ are evaluated at the 2ℓ+1 ∈ N grid points in Ξhℓ
, we need to calculate

2d − 1 tensor products of scaled and translated vectors ψj,ki,l(i) ∈ R2ℓ+1

. Recall from the MRA

in Subsection 2.1.2 that tensorization yields 2jd one-periodic wavelet functions ψl
j,k on each scale

j ∈ N0. Moreover, the support of ψl
j+w,k has diameter bounded by 2−d(j+1−w) in Td for fixed

index (j, k, l) ∈ IΨ, where w ∈ N is a scaling factor that only depends on the choice of φ and ψ.
Hence, the number of grid points lying in the support of ψl

j,k is given by

|supp(ψl
j+w,k) ∩ Ξd

hℓ
| ≤ 2−d(j+1−w)2d(l+1) = 2d(l−j+w). (75)
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Now we also fix a realization (T (ω), X(ω)) of the random tree T and the coefficients X. If
(j, k, l) ∈ IT (ω), we multiply the corresponding 2d(l−j+w) grid points with the coefficient X l

j,k(ω).
Otherwise, if (j, k, l) /∈ IT (ω), there is no contribution to bT,N (ω) from this index. Summing over
all non-zero contributions and grid points thus requires computational cost of

Csample ≤ 2
∑

(j,k,l)∈IT (ω)
j≤N

2d(l−j+w) = 2
∑

(j,k,l)∈IΨ

j≤N

1{(j,k,l)∈IT (ω)}2
d(l−j+w).

Since P = Bin(2d, β), it readily follows that P ((j, k, l) ∈ IT (ω)) = βj , which in turn shows

E(Csample) = 2

N∑

j=0

2dj(2d − 1)βj2d(l−j+w) ≤

{
2dw+1(2d − 1)h−d

ℓ (N + 1) if β = 1, and
2dw+1(2d−1)

1−β h−d
ℓ if β ∈ (0, 1).

Remark B.3. Lemma B.2 shows that for given β ∈ (0, 1), the expected cost of sampling bN,T

is bounded by Ch−d
ℓ uniformly with respect to N ∈ N. Thus, the condition that a sample of

uNℓ,hℓ
may be realized with (expected) work O(h−d

ℓ ) from Assumption 5.5 is indeed justified. On
the other hand, we note that C = C(d, β) → ∞ as β → 1, resulting in a possibly large hidden
constant within the asymptotic costs in Theorem 5.8. However, if we choose the error balancing
N ∝ | log(hℓ)| according to (54), we still recover the only slightly worse complexity bound of
O(h−d

ℓ | log(hℓ)|) per sample in the limit β = 1.
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