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ERROR ESTIMATES FOR PHYSICS INFORMED NEURAL

NETWORKS APPROXIMATING THE NAVIER-STOKES

EQUATIONS

T. DE RYCK, A. D. JAGTAP, AND S. MISHRA

Abstract. We prove rigorous bounds on the errors resulting from the approx-
imation of the incompressible Navier-Stokes equations with (extended) physics

informed neural networks. We show that the underlying PDE residual can be
made arbitrarily small for tanh neural networks with two hidden layers. More-

over, the total error can be estimated in terms of the training error, network
size and number of quadrature points. The theory is illustrated with numerical
experiments.

1. Introduction

Deep learning has been very successfully deployed in a variety of fields includ-
ing computer vision, natural language processing, game intelligence, robotics, aug-
mented reality and autonomous systems [22] and references therein. In recent years,
deep learning is being increasingly used in various contexts in scientific computing
such as protein folding and controlled nuclear fusion.

As deep neural networks are universal function approximators, it is also natural
to use them as ansatz spaces for the solutions of (partial) differential equations
(PDEs). In fact, the literature on the use of deep learning for numerical approxi-
mation of PDEs has witnessed exponential growth in the last 2-3 years. Prominent
examples for the use of deep learning in PDEs include the deep neural network
approximation of high-dimensional semi-linear parabolic PDEs [9], linear elliptic
PDEs [37, 18] and nonlinear hyperbolic PDEs [25, 26] and references therein. More
recently, DNN-inspired architectures such as DeepONets [5, 24, 21] and Fourier neu-
ral operators [23, 17] have been shown to even learn infinite-dimensional operators,
associated with underlying PDEs, efficiently.

Another extremely popular avenue for the use of machine learning in numer-
ical approximation of PDEs is in the area of physics informed neural networks
(PINNs). First proposed in slightly different forms in the 90s [8, 20, 19], PINNs
were resurrected recently in [34, 35] as a practical and computationally efficient
paradigm for solving both forward and inverse problems for PDEs. Since then,
there has been an explosive growth in designing and applying PINNs for a vari-
ety of applications involving PDEs. A very incomplete list of references includes
[36, 28, 33, 45, 12, 13, 14, 16, 29, 30, 31, 2, 40, 15, 11, 41] and references therein.

On the other hand and in stark contrast to the widespread applications of PINNs,
there has been a pronounced scarcity of papers that rigorously justify why PINNs
work. Notable exceptions include [38] where the authors show consistency of PINNs
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(S. Mishra) Seminar for Applied Mathematics, D- MATH, and ETH AI Center, ETH
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2 PINNS FOR NAVIER-STOKES

with the underlying linear elliptic and parabolic PDE under stringent assumptions
and in [39] where similar estimates are derived for linear advection equations. In
[29, 30], the authors proposed a strategy for deriving error estimates for PINNs. To
describe this strategy and highlight the underlying theoretical issues, it is imperative
to introduce PINNs and we do so in an informal manner here (see section 2 for the
formal definitions). To this end, we consider the following very general form of an
abstract PDE,

(1.1)
D[u](x, t) = 0, Bu(y, t) = ψ(y, t),

u(x, 0) = ϕ(x), for x ∈ D, y ∈ ∂D, t ∈ [0, T ].

Here, D ⊂ R
d is compact and D,B are the differential and boundary operators,

u : D× [0, T ] → R
m is the solution of the PDE, ψ : ∂D× [0, T ] → R

m specifies the
(spatial) boundary condition and ϕ : D → R

m is the initial condition.
We seek deep neural networks uθ : D × [0, T ] → R

m (see (2.5) for a definition),
parameterized by θ ∈ Θ, constituting the weights and biases, that approximate the
solution u of (1.1). The key idea behind PINNs is to consider pointwise residuals,
defined for any sufficiently smooth function f : D × [0, T ] → R

m as,

(1.2)
Ri[f ](x, t) = D[f ](x, t), Rs[f ](y, t) = Bf(y, t)− ψ(y, t),

Rt[f ](x) = f(x, 0)− ϕ(x), x ∈ D, y ∈ ∂D, t ∈ [0, T ]

for x ∈ D, y ∈ ∂D, t ∈ [0, T ]. Using these residuals, one measures how well a
function f satisfies resp. the PDE, the boundary condition and the initial condition
of (1.1). Note that for the exact solution Ri[u] = Rs[u] = Rt[u] = 0.

Hence, within the PINNs algorithm, one seeks to find a neural network uθ, for
which all residuals are simultaneously minimized, e.g. by minimizing the quantity,

(1.3)

EG(θ)2 =

ˆ

D×[0,T ]

∣∣Ri[uθ](x, t)
∣∣2dxdt+

ˆ

∂D×[0,T ]

∣∣Rs[uθ](x, t)
∣∣2ds(x)dt

+

ˆ

D

∣∣Rt[uθ](x)
∣∣2dx.

However, the quantity EG(θ), often referred to as the population risk or generaliza-
tion error [29] of the neural network uθ involves integrals and can therefore not be
directly minimized in practice. Instead, the integrals in (1.3) are approximated by
a suitable numerical quadrature (see section 2.3 for details), resulting in,

(1.4)

E i
T (θ,Si)

2 =

Ni∑

n=1

wn
i

∣∣Ri[uθ](x
n
i , t

n
i )
∣∣2,

Es
T (θ,Ss)

2 =

Ns∑

n=1

wn
s

∣∣Rs[uθ](x
n
s , t

n
s )
∣∣2, Et

T (θ,St)
2 =

Nt∑

n=1

wn
t

∣∣Rt[uθ](x
t
i)
∣∣2,

ET (θ,S)2 = E i
T (θ,Si)

2 + Es
T (θ,Ss)

2 + Et
T (θ,St)

2,

with quadrature points in space-time constituting data sets Si = {(xni , tni )}Ni

n=1,

Ss = {(xns , tns )}Ns

n=1 and St = {xnt }Nt

n=1, and w
n
q are suitable quadrature weights for

q = i, t, s.
Thus, the underlying essence of PINNs is to minimize the training error ET (θ,S)2

over the neural network parameters θ. This procedure immediately raises the fol-
lowing key theoretical questions (see also [7]) starting with

[Q1. ] Given a tolerance ε > 0, do there exist neural networks û = uθ̂, ũ = uθ̃,

parametrized by θ̂, θ̃ ∈ Θ such that the corresponding generalization EG(θ̂)
(1.3) and training ET (θ̃,Ss)(1.4) errors are small i.e., EG(θ̂), ET (θ̃,Ss) < ε?
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As the aim in the PINNs algorithm is to minimize the training error (and indi-
rectly the generalization error), an affirmative answer to this question is of vital
importance as it ensures that the loss (PDE residual) being minimized can be made
small. However, minimizing the PDE residual does not necessarily imply that the
overall error (difference between the exact solution of the PDE (1.1) and its PINN
approximation) is small. This leads to the second key question,

[Q2. ] Given a PINN û with small generalization error, is the corresponding total
error ‖u− û‖ small, i.e., is ‖u− û‖ < δ(ε), for some δ(ε) ∼ O(ε), for some
suitable norm ‖ · ‖, and with u being the solution of the PDE (1.1)?

An affirmative answer to Q2 (and Q1) certifies that, in principle, there exists a

(physics informed) neural network, corresponding to the parameter θ̂, such that
the PDE residual and consequently, the overall error in approximating the solution
of the PDE (1.1), are small. However, in practice, we minimize the training error
ET (1.4) and this leads to another key question,

[Q3. ] Given a small training error ET (θ∗) and a sufficiently large training set S,
is the corresponding generalization error EG(θ∗) also proportionately small?

An affirmative answer to question Q3, together with question Q2, will imply that the
trained PINN uθ∗ is an accurate approximation of the solution u of the underlying
PDE (1.1). Thus, answering the above three questions affirmatively will constitute
a comprehensive theoretical investigation of PINNs and provide a rationale for their
very successful empirical performance.

Given this context, we examine how far the literature has come in answering
these key questions on the theory for PINNs. In [29, 30], the authors leverage
the stability of solutions of the underlying PDE (1.1) to bound the total error in
terms of the generalization error (question Q2). Similarly, they use the accuracy
of quadrature rules to bound the generalization error in terms of the training error
(question Q3). This approach is implemented for forward problems corresponding
to a variety of PDEs such as the semi-linear and quasi-linear parabolic equations and
the incompressible Euler and the Navier-Stokes equations [29], radiative transfer
equations [31], nonlinear dispersive PDEs such as the KdV equations [2] and for
the unique continuation (data assimilation) inverse problem for many linear elliptic,
parabolic and hyperbolic PDEs [30]. However, Q1 was not answered in these papers.
Moreover, the authors imposed rather stringent assumptions on the weights and
biases of the trained PINN, which may not hold in practice.

In [7], the authors answered the key questions Q1, Q2 and Q3 in the case of a
large class of linear parabolic PDEs, namely the Kolmogorov PDEs, which include
the heat equation and the Black-Scholes equation of option pricing as special ex-
amples. Thus, they provided a rigorous and comprehensive error analysis of PINNs
for these PDEs. Moreover, they also showed that PINNs overcome the curse of
dimensionality in the context of very high-dimensional Kolmogorov equations.

The authors of [7] utilized the linearity of the underlying Kolmogorov heavily
in their analysis. It is natural to ask if analogous error estimates can be shown
for PINN approximations of nonlinear PDEs. This consideration sets the stage for
the current paper where we carry out a thorough error analysis for PINNs approx-
imating a prototypical nonlinear PDE and answer Q1, Q2 and Q3 affirmatively.
The nonlinear PDE that we consider is the incompressible Navier-Stokes equation,
which is the fundamental mathematical model governing the flow of incompressible
Newtonian fluids [42].

We are going to show the following results on the PINN approximation of the
incompressible Navier-Stokes equations,
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• We show that there exist neural networks that approximate the classical
solutions of Navier-Stokes equations such that the PINN generalization
error (1.3) and the PINN training error (1.4) can be made arbitrarily small.
Moreover, we provide explicit bounds on the number of neurons as well as
the weights of the network in terms of error tolerance and Sobolev norms of
the underlying Navier-Stokes equations. This analysis is also extended for
the XPINN approximation [12] of the Navier-Stokes equations, answering
Q1 affirmatively for both PINNs and XPINNs.

• We bound the total error of the PINN (and XPINN) approximation of the
Navier-Stokes equations in terms of the PDE residual (generalization error
(1.3)). Consequently, a small PDE residual implies a small total error,
answering Q2 affirmatively.

• We bound the generalization error (1.3) in terms of the training error (1.4)
and the number of quadrature points using a midpoint quadrature rule.
This affirmatively answers question Q3 and establishes the fact that a small
training error and sufficient number of quadrature points suffice to yield a
small total error for the PINN (and XPINN) approximation of the Navier-
Stokes equations.

• We present numerical experiments to illustrate our theoretical results.

The rest of our paper is organized as follows: In section 2, we collect preliminary
information on the Navier-Stokes equations and neural networks and present the
PINN and XPINN algorithms. The error analysis is carried out in section 3 and
numerical experiments are presented in section 4.

2. Preliminaries

In this section, we collect preliminary information on concepts used in rest of
the paper. We start with the form of the Navier-Stokes equations.

2.1. The incompressible Navier-Stokes equations. We consider the well-known
incompressible Navier-Stokes equations [42] and references therein,

(2.1)





ut + u · ∇u+∇p = ν∆u in D × [0, T ],

div (u) = 0 in D × [0, T ],

u(t = 0) = u0 in D.

Here, u : D × [0, T ] → R
d is the fluid velocity, p : D → R is the pressure and

u0 : D → R
d is the initial fluid velocity. The viscosity is denoted by ν ≥ 0.

For the rest of the paper, we consider the Navier-Stokes equations (2.1) on the
d-dimensional torus D = T

d = [0, 1)d with periodic boundary conditions.
The existence and regularity of the solution to (2.1) depends on the regularity

of u0, as is stated by the following well-known theorem [27, Theorem 3.4]. Other
regularity results with different boundary conditions can be found in e.g. [42].

Theorem 2.1. If u0 ∈ Hr(Td) with r > d
2 + 2 and div (u0) = 0, then there

exist T > 0 and a classical solution u to the Navier-Stokes equation such that
u(t = 0) = u0 and u ∈ C([0, T ];Hr(Td)) ∩ C1([0, T ];Hr−2(Td)).

Based on this result, we prove that u is Sobolev regular i.e., that u ∈ Hk(D ×
[0, T ]) for some k ∈ N, provided that r is large enough.

Corollary 2.2. If k ∈ N and u0 ∈ Hr(Td) with r > d
2 + 2k and div (u0) = 0, then

there exist T > 0 and a classical solution u to the Navier-Stokes equation such that
u ∈ Hk(Td × [0, T ]), ∇p ∈ Hk−1(Td × [0, T ]) and u(t = 0) = u0.
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Proof. The corollary follows directly from Theorem 2.1 for k = 1. Therefore, let
k ≥ 2 be arbitary and assume that r > d

2 + 2k and u0 ∈ Hr(Td) and div (u0) = 0.
By Theorem 2.1 there exists T > 0 and a classical solution u to the Navier-Stokes
equation such that u(t = 0) = u0 and u ∈ C([0, T ];Hr(Td))∩C1([0, T ];Hr−2(Td)).
Following [27, Section 1.8], we find that the pressure p satisfies the equation

(2.2) −∆p = Trace((∇u)2) =
∑

i,j

uixj
ujxi

.

As r > d
2 + 1, Hr−1(Td) is a Banach algebra (see Lemma A.1), it holds that

∆p ∈ C([0, T ];Hr−1(Td)) and accordingly ∇p ∈ C([0, T ];Hr(Td)). Since u ∈
C1([0, T ];Hr−2), we can take the time derivative of equation (2.2) to find that
∆pt ∈ C([0, T ];Hr−3), since the conditions for Hr−3(Td) to be a Banach algebra
are met. As a result we find that ∇pt ∈ C([0, T ];Hr−2). Taking the time de-
rivative of the Navier-Stokes equations (2.1), we find that utt ∈ C([0, T ];Hr−4)
and therefore u ∈ C2([0, T ];Hr−4). Repeating these steps, one can prove that
u ∈ ∩k

ℓ=0C
ℓ([0, T ];Hr−2ℓ(Td)). The statement of the corollary then follows from

this observation since ℓ+ r − 2ℓ ≥ k for all 0 ≤ ℓ ≤ k if r > d
2 + 2k. Similarly, one

can prove that ∇p ∈ ∩k−1
ℓ=0C

ℓ([0, T ];Hr−2ℓ(Td)). �

2.2. Neural networks. As our objective is to approximate the solution of the
incompressible Navier-Stokes equations (2.1) with neural networks, here we formally
introduce our definition of a neural network and the related terminology.

Definition 2.3. Let R ∈ (0,∞], L,W ∈ N and l0, . . . , lL ∈ N. Let σ : R → R be a
twice differentiable activation function and define

(2.3) Θ = ΘL,W,R :=
⋃

L′∈N,L′≤L

⋃

l0,...,lL∈{1,...,W}

L′

×
k=1

(
[−R,R]lk×lk−1 × [−R,R]lk

)
.

For θ ∈ ΘL,W,R, we define θk := (Wk, bk) and Ak : Rlk−1 → R
lk : x 7→ Wkx + bk

for 1 ≤ k ≤ L and and we define fθk : Rlk−1 → R
lk by

(2.4) fθk (z) =

{
Aθ

L(z) k = L,

(σ ◦ Aθ
k)(z) 1 ≤ k < L.

We denote by uθ : Rl0 → R
lL the function that satisfies for all z ∈ R

l0 that

(2.5) uθ(z) =
(
fθL ◦ fθL−1 ◦ · · · ◦ fθ1

)
(z),

where in the setting of approximating the Navier-Stokes equation (2.1) we set l0 =
d + 1 and z = (x, t). We refer to uθ as the realization of the neural network
associated to the parameter θ with L layers and widths (l0, l1, . . . , lL). We refer to
the first L−1 layers as hidden layers. For 1 ≤ k ≤ L, we say that layer k has width
lk and we refer to Wk and bk as the weights and biases corresponding to layer k.
The width of uθ is defined as max(l0, . . . , lL). If L = 2, we say that uθ is a shallow
neural network; if L ≥ 3, we say that uθ is a deep neural network.

2.3. Quadrature rules. In the following sections, we will need to approximate
integrals of functions. For this reason, we introduce some notation and recall well-
known results on numerical quadrature rules.

Given Λ ⊂ R
d and f ∈ L1(Λ), we will be interested in approximating

´

Λ
f(y)dy,

with dy denoting the d-dimensional Lebesgue measure. A numerical quadrature
rule provides such an approximation by choosing some quadrature points ym ∈ Λ
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for 1 ≤ m ≤ M , and quadrature weights wm > 0 for 1 ≤ m ≤ M , and considers
the approximation

(2.6)
1

M

M∑

m=1

wmf(ym) ≈
ˆ

Λ

f(y)dy.

The accuracy of this approximation depends on the chosen quadrature rule, the
number of quadrature points M and the regularity of f . Whereas in very high
dimensions, random training points or low-discrepancy training points [32] are
needed, the relatively low-dimensional setting of the Navier-Stokes equations i.e.,
d ≤ 4, allows the use of standard deterministic numerical quadrature points. In
order to obtain explicit rates, we will focus on the midpoint rule, but our analysis
will also hold for general deterministic numerical quadrature rules.

We briefly recall the midpoint rule. For N ∈ N, we partition Λ into M ∼ Nd

cubes of edge length 1/N and we denote by {ym}Mm=1 the midpoints of these cubes.
The formula and accuracy of the midpoint rule QΛ

M are then given by,

(2.7) QΛ
M [f ] :=

1

M

M∑

m=1

f(ym),

∣∣∣∣
ˆ

Λ

f(y)dy −QΛ
M [f ]

∣∣∣∣ ≤ CfM
−2/d,

where Cf . ‖f‖C2 .

2.4. Physics informed neural networks (PINNs). We seek deep neural net-
works uθ : D× [0, T ] → R

d and pθ : D× [0, T ] → R (cf. Definition 2.3), parameter-
ized by θ ∈ Θ, constituting the weights and biases, that approximate the solution
u of (2.1). To this end, the key idea behind PINNs is to consider pointwise resid-
uals, defined in the setting of the Navier-Stokes equations (2.1) for any sufficiently
smooth v : D × [0, T ] → R

d and q : D × [0, T ] → R as,

RPDE[(v, q)](x, t) = (vt + v · ∇v +∇q − ν∆v)(x, t),

Rdiv[v](x, t) = div (v) (x, t)

Rs[v](y, t) = Bv(y, t)− ψ(y, t),

Rt[v](x) = v(x, 0)− ϕ(x)

(2.8)

for x ∈ D, y ∈ ∂D, t ∈ [0, T ]. In the above, B is the boundary operator, ψ :
∂D × [0, T ] → R

d specifies the (spatial) boundary condition and ϕ : D → R
d is

the initial condition. Using these residuals, one measures how well a function f
satisfies resp. the PDE, the boundary condition and the initial condition of (2.1).
Note that for the exact solution to the Navier-Stokes equations (2.1) it holds that
RPDE[(u, p)] = Rdiv[u] = Rs[u] = Rt[u] = 0.

Hence, within the PINNs algorithm, one seeks to find a neural network (uθ, pθ),
for which all residuals are simultaneously minimized, e.g. by minimizing the quan-
tity,

EG(θ)2 =

ˆ

D×[0,T ]

∥∥RPDE[(uθ, pθ)](x, t)
∥∥2
Rddxdt+

ˆ

D×[0,T ]

∣∣Rdiv[uθ](x, t)
∣∣2dxdt

+

ˆ

∂D×[0,T ]

∥∥Rs[uθ](x, t)
∥∥2
Rdds(x)dt+

ˆ

D

∥∥Rt[uθ](x)
∥∥2
Rddx.

(2.9)

The different terms of (2.9) are often rescaled using some weights. For simplicity, we
set all these weights to one. The quantity EG(θ), often referred to as the population
risk or generalization error of the neural network uθ, involves integrals and can
therefore not be directly minimized in practice. Instead, the integrals in (2.9) are
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approximated by a numerical quadrature, as introduced in Section 2.3. As a result,
we define the (squared) training loss for PINNs θ 7→ ET (θ,S)2 as follows,
(2.10)
ET (θ,S)2 = EPDE

T (θ,Sint)
2 + Ediv

T (θ,Sint)
2 + Es

T (θ,Ss)
2 + Et

T (θ,St)
2

=

Nint∑

n=1

wn
int

∥∥RPDE[(uθ, pθ)](t
n
int, x

n
int)
∥∥2
Rd +

Nint∑

n=1

wn
int

∣∣Rdiv[uθ](t
n
int, x

n
int)
∣∣2

+

Ns∑

n=1

wn
s

∥∥Rs[uθ](t
n
s , x

n
s )
∥∥2
Rd +

Nt∑

n=1

wn
t

∥∥Rt[uθ](x
n
t )
∥∥2
Rd ,

where the training data set S = (Sint,Ss,St) is chosen as quadrature points with
respect to the relevant domain (resp. D× [0, T ], ∂D× [0, T ] and D) and where the
wn

∗ are corresponding quadrature weights.
A trained PINN u∗ = uθ∗ is then defined as a (local) minimum of the optimiza-

tion problem,

(2.11) θ∗(S) = argmin
θ∈Θ

ET (θ,S)2,

with loss function (2.10) (possibly with additional data and weight regularization
terms), found by a (stochastic) gradient descent algorithm such as ADAM or L-
BFGS.

2.5. Extended physics informed neural networks (XPINNs). In many ap-
plications, it happens that the computational domain has a very complicated shape
or that the PDE solution shows localized features. In such cases, it is beneficial
to decompose the computational domain into non-overlapping regions and deploy
different neural networks to approximate the PDE solution in different sub-regions.
This idea was first presented in [12], where the authors proposed to decompose the
domain in N closed subdomains with non-overlapping interior and deploy PINNs
uθq to approximate the exact solution u in each of those subdomains Ωq. Patch-
ing together the PINNs for all the subnetworks yields the final approximation uθ,
termed extended physics informed neural network (XPINN), defined as,

(2.12) uθ(z) =

N∑

q=1

χq(z)uθq (z),

for z = (x, t) and where the weight function χq is given by,

(2.13) χq(z) =

{
0 z 6∈ Ωq,

1
#{n : z∈Ωn} z ∈ Ωq,

where #{n : z ∈ Ωn} represents the number of subdomains z belongs to. Hence∑
q χq(z) = 1 for all z. One can define neural networks pθ and pθq in an analogous

way. It is clear that mimimizing the standard PINN loss (2.10) for an XPINN (2.12)
would not be a suitable approach. It is necessary that additional terms in the form
of interface conditions should be added to the loss function. For this purpose, we
define for every q the following residuals in addition to the standard PINN residuals
(2.8),

Ru[f ](y, t) = f(y, t)− uθ(y, t),(2.14)
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where y ∈ ∂Ωq \ ∂D and t ∈ [0, T ]. The squared generalization error of an XPINN
uθ is then given by

EG(θ)2 =

ˆ

D×[0,T ]

∥∥RPDE[(uθ, pθ)](x, t)
∥∥2
Rddxdt+

ˆ

D×[0,T ]

∣∣Rdiv[uθ](x, t)
∣∣2dxdt

+

ˆ

∂D×[0,T ]

∥∥Rs[uθ](x, t)
∥∥2
Rdds(x)dt+

ˆ

D

∥∥Rt[uθ](x)
∥∥2
Rddx

+

N∑

q=1

ˆ

(∂Ωq\∂D)×[0,T ]

∥∥Ru[uθq ](x, t)
∥∥2
Rdds(x)dt

+

N∑

q=1

ˆ

(∂Ωq\∂D)×[0,T ]

∥∥RPDE[(uθq , pθq )](x, t)−RPDE[uθ](x, t)
∥∥2
Rdds(x)dt.

(2.15)

The interface conditions on the two last lines of (2.15) enforce the continuity and
possibly even higher regularity of the XPINN at the interface of neighbouring sub-
domains.

The XPINN training loss can then be defined by replacing the integrals in (2.15)
by numerical quadratures, in the same way the standard PINN training loss (2.10)
was derived from (2.9).

3. Error analysis

In this section, we will obtain rigorous on the PINN and XPINN approxima-
tions of the solutions of the incompressible Navier-Stokes equations. We start with
bounds on PINN residuals below.

3.1. Bound on the PINN residuals. From the definition of the interior PINN
residuals (2.8), it is clear that if we can find a neural network û such that ‖u− û‖H2(D×[0,T ])

is small, then the interior PINN residual will be small as well. The approximation
(in Sobolev norm) of Sobolev regular functions by tanh neural networks is discussed
in Appendix B. The main ingredients are a piecewise polynomial approximation,
the existence of which is guaranteed by the Bramble-Hilbert lemma, and the ability
of tanh neural networks to efficiently approximate polynomials, the multiplication
operator and an approximate partition of unity. The main result of Appendix B is
Theorem B.7, which is a variant of [6, Theorem 5.1]. It proves that a tanh neural
network with two hidden layers suffices to make ‖u− û‖H2(D×[0,T ]) arbitrarily small

and provides explicit bounds on the needed network width. Using this theorem, we
can prove the following upper bound on the PINN residual.

Theorem 3.1. Let d, r, k ∈ N, with k ≥ 3, and let u0 ∈ Hr(Td) with r > d
2 + 2k

and div (u0) = 0. It holds that:

• there exist T > 0 and a classical solution u to the Navier-Stokes equations
such that u ∈ Hk(Ω), ∇p ∈ Hk−1(Ω), Ω = T

d × [0, T ], and u(t = 0) = u0,
• for every N ∈ N, there exist tanh neural networks ûj, 1 ≤ j ≤ d, and

p̂, each with two hidden layers, of widths 3
⌈
k
2

⌉ (
d+k−1

d

)
+ ⌈TN⌉+ dN and

3d
(
2d+1

d

)
⌈TN⌉Nd, such that for every 1 ≤ j ≤ d,

∥∥(ûj)t + û · ∇ûj + (∇p̂)j − ν∆ûj
∥∥
L2(Ω)

≤ C1 ln
2(βN)N−k+2,(3.1)

∥∥div (û)
∥∥
L2(Ω)

≤ C2 ln(βN)N−k+1,(3.2)
∥∥(u0)j − ûj(t = 0)

∥∥
L2(Td)

≤ C3 ln(βN)N−k+1,(3.3)
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where the constants β,C1, C2, C3 are explicitly defined in the proof and can
depend on k, d, T , u and p but not on N . The weights of the networks can

be bounded by O(N (d+k)2).

Proof. Let N > 5. By Corollary 2.2 it holds that u ∈ Hk(Td × [0, T ]) and ∇p ∈
Hk−1(Td × [0, T ]), hence also p ∈ Hk−1(Td × [0, T ]). As a result of Theorem B.7,
there then exists for every 1 ≤ j ≤ d a tanh neural network ûj := ûNj with two

hidden layers and widths 3
⌈
k
2

⌉ (
d+k−1

d

)
+ ⌈TN⌉+ dN and 3d

(
2d+1

d

)
⌈TN⌉Nd such

that for every 0 ≤ ℓ ≤ 2,

(3.4)
∥∥uj − ûj

∥∥
Hℓ(Ω)

≤ Cℓ,k,d+1,uj
λℓ(N)N−k+ℓ,

where λℓ(N) = 2ℓ+13d (1 + δ) lnℓ
(
βℓ,d+1,uj

Nd+k+2
)
, δ = 1

100 , and the definition of
the other constants can be found in Theorem B.7. The weights can be bounded

by O(N (d+k)2). We write û = (û1, . . . , ûd). Moreover, by Theorem B.7, there also
exists a tanh neural network p̂ := p̂N with two hidden layers and the same widths
as before such that

(3.5)
∥∥(∇p)j − (∇p̂)j

∥∥
L2(Ω)

≤ ‖p− p̂‖H1(Ω) ≤ C1,k−1,d+1,pλ1(N)N−k+2.

It is now straightforward to bound the PINN residual.

(3.6)
∥∥(uj)t − (ûj)t

∥∥
L2(Ω)

≤
∣∣uj − ûj

∣∣
H1(Ω)

.

By the Sobolev embedding theorem (Lemma A.2) it follows from u ∈ C1([0, T ], Hr−2(Td))
that u ∈ C1(Ω), and hence

∥∥u · ∇uj − û · ∇ûj
∥∥
L2(Ω)

≤
∥∥u · ∇uj − û · ∇uj

∥∥
L2(Ω)

+
∥∥û · ∇uj − û · ∇ûj

∥∥
L2(Ω)

≤
√
d
∥∥uj
∥∥
C1 max

i
‖ui − ûi‖L2(Ω) +

√
dmax

i
‖ûi‖C0

∣∣uj − ûj
∣∣
H1(Ω)

(3.7)

and finally also
∥∥∆uj −∆ûj

∥∥
L2(Ω)

≤
√
d
∥∥uj − ûj

∥∥
H2(Ω)

(3.8)
∥∥div (u)− div (û)

∥∥
L2(Ω)

≤
√
dmax

i
|ui − ûi|H1(Ω).(3.9)

Hence, we find that for 1 ≤ j ≤ d,
∥∥(ûj)t + û · ∇ûj + (∇p̂)j − ν∆ûj

∥∥
L2(Ω)

≤ C1,k−1,d+1,pλ1(N)N−k+2

+ C1,k,d+1,uj
λ1(N)(1 +

√
dmax

i
‖ûi‖C0)N

−k+1

+
√
dλ0(N)

∥∥uj
∥∥
C1C0,k,d+1,uj

N−k + ν
√
dC2,k,d+1,uj

λ2(N)N−k+2

(3.10)

and also

(3.11)
∥∥div (û)

∥∥
L2(Ω)

≤
√
dC1,k,d+1,u1

λ1(N)N−k+1.

Finally, we find from the multiplicative trace theorem (Lemma A.3) that
∥∥(u0)j − ûj(t = 0)

∥∥
L2(Td)

≤
∥∥uj − ûj

∥∥
L2(∂Ω)

≤
√

2max {2hΩ, d+ 1}
ρΩ

∥∥uj − ûj
∥∥
H1(Ω)

≤
√

2max {2hΩ, d+ 1}
ρΩ

C1,k,d+1,u1
λ1(N)N−k+1,

(3.12)

where hΩ is the diameter of Ω and ρΩ is the radius of the largest (d+1)-dimensional
ball that can be inscribed into Ω. This concludes the proof. �
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Figure 1. Needed neural network size according to Theorem 3.1
such that (3.1), (3.2) and (3.3) are all smaller than 1% for varying
regularity r of the initial condition i.e., u0 ∈ Hr(Td).

Thus, the bounds (3.1), (3.2) and (3.3) clearly show that by choosing N suffi-
ciently large, we can make the PINN residuals (2.8) and consequently the general-
ization error arbitrarily small. This affirmatively answers Q1 in the introduction.

To further illustrate the bounds of Theorem 3.1, we look for a suitable neural
network such that (3.1), (3.2) and (3.3) are all smaller than 1%. Using the notation
of the proof, we set T = 1 and ν = 1

1000 and make the simplification that ‖u‖Hk(Ω) =

1 for all k. The results are shown for d = 2, 3 in Figure 1 for varying regularity
r of the initial condition i.e., u0 ∈ Hr(Td). In particular, for d = 2 we find that
the minimal network size of every sub-network ûj is 54 · 103 neurons. Although it
is certainly possible to reach this level of accuracy with smaller networks, see e.g.
[16], the networks that follow from Theorem 3.1 are not unreasonably large, even
in three space dimensions.

Remark 3.2. One can easily prove that the XPINN loss of the network constructed
in the proof of Theorem 3.1 will be small as well.

3.2. Bound on the total error. Next, we will show that neural networks for
which the (X)PINN residuals are small, will provide a good L2-approximation of
the true solution u : Ω = D × [0, T ] → R

d, p : Ω → R of the Navier-Stokes
equation (2.1) on the torus D = T

d = [0, 1)d with periodic boundary conditions.
Our analysis can be readily extended to other boundary conditions, such as no-slip
boundary condition i.e., u(x, t) = 0 for all (x, t) ∈ ∂D × [0, T ], and no-penetration
boundary conditions i.e., u(x, t) · n̂D = 0 for all (x, t) ∈ ∂D × [0, T ].

For neural networks (uθ, pθ), we define the following PINN-related residuals,

RPDE = ∂tuθ + (uθ · ∇)uθ +∇pθ − ν∆uθ, Rdiv = div (uθ) ,

Rs,u(x) = uθ(x)− uθ(x+ 1), Rs,p(x) = pθ(x)− pθ(x+ 1),

Rs,∇u(x) = ∇uθ(x)−∇uθ(x+ 1), Rs = (Rs,u,Rs,p,Rs,∇u),

Rt = uθ(t = 0)− u(t = 0),

(3.13)

where we drop the θ-dependence in the definition of the residuals for notational
convenience.
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Figure 2. Visualization of the set-up for the XPINN framework
with two subdomains.

We will also extend our analysis to the XPINN framework for two subdomains
(the extension to more subdomains is straightforward). For this reason, we assume
that D = Da ∪ Db, where Da and Db are closed with non-overlapping interior
D̊a ∩ D̊b = ∅ and common boundary Γ = Da ∩Db, which we assume to be suitably
smooth. We define n̂Γ to point outwards of Da. Figure 2 provides a visualization
of this set-up.

Following (2.12), the XPINN solution is then defined as

(3.14) uθ =





uaθ in Da \ Γ,
ubθ in Db \ Γ,
1
2 (u

a
θ + ubθ) in Γ,

pθ =





paθ in Da \ Γ,
pbθ in Db \ Γ,
1
2 (p

a
θ + pbθ) in Γ,

where uaθ , u
b
θ, p

a
θ , p

b
θ are neural networks. In addition to the PINN-related residuals,

the following XPINN-related residuals need to be defined,

Ru = max
j

∣∣∣(uaθ)j − (ubθ)j

∣∣∣, R∇u = max
i,j

∣∣∣∂i(uaθ)j − ∂i(u
b
θ)j

∣∣∣,

Rp = max
i,j

∣∣∣paθ − pbθ

∣∣∣.
(3.15)

The following theorem then bounds the L2-error of the (X)PINN in terms of the
residuals defined above, see also [29, 3] for versions of the stability argument used
below. We write |∂D|, |Γ| for the (d− 1)-dimensional Lebesgue measure of ∂D and
Γ, respectively, and |D| for the d-dimensional Lebesgue measure of D.

Theorem 3.3. Let d ∈ N, D = T
d and u ∈ C1(D×[0, T ]) be the classical solution of

the Navier-Stokes equation (2.1). Let (uθ, pθ) be a PINN/XPINN with parameters
θ, then the resulting L2-error is bounded as follows,

ˆ

Ω

∥∥u(x, t)− uθ(x, t)
∥∥2
2
dxdt ≤ CT exp

(
T (2d2‖∇u‖L∞(Ω) + 1)

)
,(3.16)

where the constant C is defined as,

C = ‖Rt‖2L2(D) + ‖RPDE‖2L2(Ω) + C1

√
T

[√
|D|‖Rdiv‖L2(Ω) + (1 + ν)

√
|∂D|‖Rs‖L2(∂D×[0,T ])

+
√
|Γ|
(
(1 + ν)‖Ru‖L2(Γ×[0,T ]) + ν‖R∇u‖L2(Γ×[0,T ]) +

∥∥Rp

∥∥
L2(Γ×[0,T ])

)]
,

(3.17)

and C1 = C1

(
‖u‖C1 , ‖û‖C1 , ‖p‖C0 , ‖p̂‖C0

)
< ∞. For PINNs, it holds that Ru =

R∇u = Rp = 0.

Proof. Let û = uθ − u and p̂ = pθ − p denote the difference between the solution
of the Navier-Stokes equations and a PINN with parameter vector θ. Using the
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Navier-Stokes equations (2.1) and the definitions of the different residuals, we find
after a straightforward calculation that,

RPDE = ût + (û · ∇)û+ (u · ∇)û+ (û · ∇)u+∇p̂− ν∆û,

Rdiv = div (û) , Rs(x) = uθ(x)− uθ(x+ 1), Rt = û(t = 0),

Ru = max
j

∣∣∣(uaθ)j − (ubθ)j

∣∣∣, R∇u = max
i,j

∣∣∣∂i(uaθ)j − ∂i(u
b
θ)j

∣∣∣, Rp = max
i,j

∣∣∣paθ − pbθ

∣∣∣.

(3.18)

Next, we recall the following vector equalities,

(3.19) û·ût =
1

2
∂t‖u‖22, û·((û·∇)û) =

1

2
(û·∇)‖û‖22, û·((u·∇)û) =

1

2
(u·∇)‖û‖22.

We take the inner product of the first equation in (2.1) and û, and use the previous
vector inequalities to obtain,
(3.20)
1

2
∂t‖û‖22+

1

2
(û ·∇)‖û‖22+

1

2
(u ·∇)‖û‖22+ û · ((û ·∇)u)+(û ·∇)p̂−νû ·∆û = û ·RPDE

Now let Λ ⊂ D be such that ∂Λ is piecewise smooth with outward normal vector
n̂Λ. Denote by TΛ the corresponding trace operator. Integrating (3.20) over Λ and
integrating by parts yields,

d

dt

ˆ

Λ

‖û‖22dx =

ˆ

Λ

Rdiv(‖û‖22 + 2p̂)dx−
ˆ

∂Λ

TΛ(û) · n̂Λ(‖û‖22 + 2p̂)ds(x)

− 2

ˆ

Λ

û · ((û · ∇)u)dx− 2ν

d∑

j=1

ˆ

Λ

∥∥∇ûj
∥∥2
2
dx

+ 2ν
d∑

j=1

ˆ

∂Λ

TΛ(ûj)(n̂Λ · TΛ(∇ûj))ds(x) + 2

ˆ

Λ

û · RPDE dx.

(3.21)

The use of the trace operator TΛ is necessary since the trace of û on ∂Λ might not
agree with the actual definition of û as in (3.14). We then find

b∑

i=a

ˆ

∂Di

TDi
(ûi) · n̂Di

(
∥∥∥ûi
∥∥∥
2

2
+ 2p̂i)ds(x)−

ˆ

∂D

û · n̂D(‖û‖22 + 2p̂)ds(x)

=

ˆ

Γ

ûa · n̂Γ(‖ûa‖22 + 2p̂a)ds(x)−
ˆ

Γ

ûb · n̂Γ(
∥∥∥ûb
∥∥∥
2

2
+ 2p̂b)ds(x)

=

ˆ

Γ

(uaθ − ubθ) · n̂Γ(‖ûa‖22 + 2p̂a)ds(x) +

ˆ

Γ

ûb · n̂Γ(‖ûa‖22 −
∥∥∥ûb
∥∥∥
2

2
+ 2(paθ − pbθ))ds(x)

(3.22)

And similarly,

b∑

i=a

ˆ

∂Di

TDi
(ûij)(n̂Di

· TDi
(∇ûij))ds(x)−

ˆ

∂D

ûj(n̂D · ∇ûj)ds(x)

=

ˆ

Γ

ûaj (n̂Λ · ∇ûaj )ds(x)−
ˆ

Γ

ûbj(n̂Λ · ∇ûbj)ds(x)

=

ˆ

Γ

((uaθ)j − (ubθ)j)(n̂Λ · ∇ûaj )ds(x)−
ˆ

Γ

ûbj(n̂Λ · ∇((uaθ)j − (ubθ)j))ds(x)

(3.23)
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Moreover, we calculate that for a constant C1

(
‖u‖C1 , ‖û‖C1 , ‖p‖C0 , ‖p̂‖C0

)
it holds

that,

−
ˆ

D

û · ((û · ∇)u)dx ≤ d2‖∇u‖L∞(Ω)

ˆ

D

‖û‖22dx,
∣∣∣∣
ˆ

∂D

û · n̂D(‖û‖22 + 2p̂)ds(x)

∣∣∣∣ ≤ C1

(∥∥Rs,u

∥∥
L1(∂D)

+
∥∥Rs,p

∥∥
L1(∂D)

)
,

ˆ

∂D

ûj(n̂D · ∇ûj)ds(x) ≤ C1

(∥∥Rs,u

∥∥
L1(∂D)

+
∥∥Rs,∇u

∥∥
L1(∂D)

)
,

(3.24)

where Ω = D × [0, T ]. Now, summing (3.20) over the different Λ = Di, integrating
over the interval [0, τ ] ⊂ [0, T ] and using (3.21), (3.22), (3.23) we find that,

ˆ

D

∥∥û(x, τ)
∥∥2
2
dx ≤ ‖Rt‖2L2(D) + C1

√
T |D|‖Rdiv‖L2(Ω) + C1(1 + ν)

√
T |∂D|‖Rs‖L2(∂D×[0,T ])

+ C1(1 + ν)
√
T |Γ|max

j

∥∥∥(uaθ)j − (ubθ)j

∥∥∥
L2(Γ×[0,T ])

+ C1

√
T |Γ|

∥∥∥paθ − pbθ

∥∥∥
L2(Γ×[0,T ])

+ 2d2‖∇u‖L∞(Ω)

ˆ

D×[0,τ ]

∥∥û(x, t)
∥∥2
2
dxdt

+ C1ν
√
T |Γ|max

i,j

∥∥∥∂i(uaθ)j − ∂i(u
b
θ)j

∥∥∥
L2(Γ×[0,T ])

+ ‖RPDE‖2L2(Ω) +

ˆ

D×[0,τ ]

∥∥û(x, t)
∥∥2
2
dxdt,

(3.25)

where Rs = (Rs,u,Rs,p,Rs,∇u) as in (3.13). Using Grönwall’s inequality and inte-
grating over [0, T ], we find that,

ˆ

Ω

∥∥û(x, t)
∥∥2
2
dxdt ≤ CT exp

(
T (2d2‖∇u‖L∞(Ω) + 1)

)
,(3.26)

where the constant C is defined as,

C = ‖Rt‖2L2(D) + ‖RPDE‖2L2(Ω) + C1

√
T

[√
|D|‖Rdiv‖L2(Ω) + (1 + ν)

√
|∂D|‖Rs‖L2(∂D×[0,T ])

+
√
|Γ|
(
(1 + ν)‖Ru‖L2(Γ×[0,T ]) + ν‖R∇u‖L2(Γ×[0,T ]) +

∥∥Rp

∥∥
L2(Γ×[0,T ])

)]
.

(3.27)

�

Remark 3.4. Although the existence of a C1 solution of the Navier-Stokes solution
is guaranteed by Theorem 2.1, it is still possible that ‖∇u‖L∞(Ω) becomes very large,

e.g. for complicated solutions characterized by strong vorticity [29]. In such a case,
Theorem 3.3 indicates that the generalization error might be large.

Remark 3.5. For PINNs, the L2-error is bounded uniquely in terms of residu-
als that are a part of the PINN generalization error (2.9). This implies that for
neural networks with a small PINN loss the corresponding L2-error will be small
as well, provided that the C1-norm of the network does not blow up. This affir-
matively answers question Q2. For XPINNs, we can see that the XPINN-specific
residuals Ru and Rp (as defined in (3.15)) are equivalent with the Ru residual in
the XPINN generalization error (2.15). The residual R∇u however does not show
up in the original XPINN framework, and should therefore be added to the XPINN
loss function (2.15) to theoretically guarantee a small L2-error.
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Remark 3.6. Variants of Theorem 3.3 for different kinds of boundary conditions
can be proven in the same way as above. For example, the statement from Theorem
3.3 still holds for no-slip boundary conditions i.e., u(x, t) = 0 for all (x, t) ∈ ∂D ×
[0, T ], if one defined the spatial boundary residual as Rs = uθ.

Remark 3.7. Although the focus in this paper lies on solving the Navier-Stokes
equations for the velocity, we want to note that one can also prove a stability result
for ‖p− pθ‖L2(Ω) in a similar spirit to Theorem 3.3. The main steps consists of

taking the divergence of the Navier-Stokes equations, using the identity (2.2) and
rewriting the result in terms of the different residuals.

The existence of a PINN (XPINN) with an arbitrarily small L2-error is a simple
byproduct of the proof of Theorem 3.1. For completeness, we show that one can
also use Theorem 3.3 to obtain a quantitative convergence result on the L2-error
of the PINN approximation of the solution of the Navier-Stokes equation in terms
of the number of neurons of the neural network.

Corollary 3.8. Let d, r, k ∈ N, where k ≥ 3 and let u0 ∈ Hr(Td) with r > d
2 + 2k

and div (u0) = 0. It holds that:

• there exist T > 0 and a classical solution u to the Navier-Stokes equations
such that u ∈ Hk(Ω), ∇p ∈ Hk−1(Ω), Ω = T

d × [0, T ], and u(t = 0) = u0,
• there exist constants C, β > 0 such that for every N ∈ N, there exist tanh
neural networks ûj, 1 ≤ j ≤ d, and p̂, each with two hidden layers, of

widths 3
⌈
k
2

⌉ (
d+k−1

d

)
+ ⌈TN⌉ + dN and 3d

(
2d+1

d

)
⌈TN⌉Nd, such that for

every 1 ≤ j ≤ d,

(3.28) ‖u− û‖L2(Ω) ≤ C lnκ(βN)N
−k+1

2 .

The value of C > 0 follows from the proof, β > 0 is as in Theorem 3.1 and
κ = 2 for k = 3 and κ = 1

2 for k ≥ 4.

Proof. The corollary is a direct consequence of Theorem 3.3 and Theorem 3.1 and
its proof. �

3.3. Bounds on the total error in terms of training error. Next, we answer
the question Q3, raised in the introduction, by providing a bound of the general-
ization error in terms of the training error and the size of the training set S, where
uθ∗(S) is the PINN that minimizes the training loss. Combined with Theorem 3.3,

it will enable us to bound the total error (the L2-mismatch between the exact so-
lution of (2.1) and the trained PINN) in terms of the training error and size of the
training set.

As already announced in Section 2.3, we will focus on training sets obtained
using the midpoint rule QM for simplicity. For f ∈ {R2

PDE,R2
div} and Λ = Ω =

D × [0, T ] we obtain the quadrature Qint
M , for f = R2

t and Λ = D we obtain the
quadrature Qt

M and for f = R2
s and Λ = ∂D× [0, T ] we obtain the quadrature Qs

M .
For XPINNs, one additionally needs to consider the quadrature QΓ

M obtained for
f ∈ {R2

u,R2
∇u,R2

p} and Λ = Γ.
This notation allows us to write the PINN loss (2.10) in a compact manner,

(3.29)
ET (S) = EPDE

T (θ,Sint)
2 + Ediv

T (Sint)
2 + Es

T (Ss)
2 + Et

T (St)
2,

= Qint
Mint

[R2
PDE] +Qint

Mint
[R2

div] +Qs
Ms

[R2
s] +Qt

Mt
[R2

t ],

where all residuals are evaluated in the trained PINN uθ∗(S). Using this notation
and Theorem 3.3 from the previous section, we obtain the following theorem that
bounds the L2-error of the PINN in terms of the training loss and the number of
training points.
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Theorem 3.9. Let T > 0, d ∈ N, let (u, p) ∈ C4(Td×[0, T ]) be the classical solution
of the Navier-Stokes equation (2.1) and let (uθ, pθ) be a PINN with parameters
θ ∈ ΘL,W,R (cf. Definition 2.3). Then the following error bound holds,

(3.30)

ˆ

Ω

∥∥u(x, t)− uθ(x, t)
∥∥2
2
dxdt ≤ C(M)T exp

(
T (2d2‖∇u‖L∞(Ω) + 1)

)

= O
(
ET (S) +M

− 2
d

t +M
− 1

d+1

int +M
− 1

d
s

)
.

In the above formula, the constant C(M) is defined as,

C(M) = Et
T (St)

2 + CtM
− 2

d

t + EPDE
T (θ,Sint)

2 + CPDEM
− 2

d+1

int

+ C1T
1
2

[
Ediv
T (Sint) + CdivM

− 1
d+1

int + (1 + ν)
(
Es
T (Ss) + CsM

− 1
d

s

)]
,

(3.31)

and where,

C1 . ‖u‖C1 + ‖p‖C0 + ‖û‖C1 + ‖p̂‖C0

. ‖u‖C1 + ‖p‖C0 + (d+ 1)2
(
16e2W 3R‖σ‖C1

)L
,

Ct . ‖u‖2C2 + ‖û‖2C2 . ‖u‖2C2 +
(
e226W 3R2‖σ‖C2

)2L
,

CPDE .
∥∥ûj
∥∥2
C4 .

(
2e244W 3R4‖σ‖C4

)4L
,

Cdiv, Cs .
∥∥ûj
∥∥
C3 .

(
4e234W 3R3‖σ‖C3

)3L/2

.

(3.32)

Proof. The main error estimate of the theorem follows directly from combining
Theorem 3.3 with the quadrature error formula (2.7). The complexity of C1 follows
from Theorem 3.3 and Lemma C.1, which states that

(3.33)
∥∥ûj
∥∥
Cn ≤ 16L(d+ 1)2n

(
e2n4W 3Rn‖σ‖Cn

)nL

for n ∈ N, all j and similarly for p̂. The complexities of the other constants then
follow from this formula and the observation that for every residual Rq it holds

that
∥∥∥R2

q

∥∥∥
Cn

≤ 2n
∥∥Rq

∥∥2
Cn (from the general Leibniz rule). For instance, we obtain

in this way that

(3.34) Ct .
∥∥∥R2

t

∥∥∥
C2

. ‖u‖2C2 + ‖û‖2C2 . ‖u‖2C2 +
(
e226W 3R2‖σ‖C2

)2L
.

In a similar way, one can calculate that

(3.35) CPDE .
∥∥∥R2

PDE

∥∥∥
C2

. ‖û‖2C4 .
(
2e244W 3R4‖σ‖C4

)4L
.

Finally, we find that

(3.36) C2
s , C

2
div .

∥∥∥R2
s

∥∥∥
C2
,
∥∥∥R2

div

∥∥∥
C2

. ‖û‖2C3 .
(
4e234W 3R3‖σ‖C3

)3L
.

�

Remark 3.10. For XPINNs, an entirely analogous result can be proven using the
same approach.

Remark 3.11. Note that the upper bounds on the constants in (3.32) depend poly-
nomially on the network width W but exponentially on the network depth L. These
bounds seem to suggest that one might expect a smaller L2-error for a rather shallow
(but wide) network than for a very deep network. In Theorem 3.1, we have already
proven explicit error bounds for a neural network with only two hidden layers.
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Remark 3.12. If we assume that the optimization algorithm used to minimize the
training loss i.e., to solve (2.11), finds a global minimum, then one can prove that
the training error in Theorem 3.9 is small if the training set and hypothesis space
is large enough. To see this, first fix an error tolerance ǫ and observe that for
the network û that was constructed in Theorem 3.1 it holds that all relevant PINN
residuals and therefore also the generalization error EG(θû) (2.9) are of order O(ε).

If one then constructs the training set such that Mint ∼ ǫ−
d+1

2 and Mt ∼Ms ∼ ǫ−
d
2

then it holds that Eq
T (θΨ) ≤ ǫ+Eq

G(θΨ) for q ∈ {s, t, div,PDE} and as a consequence
that ET (θû,S) = O(ǫ). If the optimization algorithm reaches a global minimum, the
training loss of uθ∗(S) will be upper bounded by that of û. Therefore it also holds
that ET (S) = O(ǫ).

4. Numerical experiments

In this section, we seek to illustrate the bounds on error of the PINN and XPINN
approximations of the Navier-Stokes equations (2.1), empirically with a numerical
experiment.

To this end, we consider the Navier-Stokes equations in two space dimensions
and initial data that corresponds to the Taylor-Green vortex test case, which is an
unsteady flow of decaying vortices. The exact closed form solutions of Taylor-Green
vortex problem are given by

u(t, x, y) = − cos(πx) sin(πy)exp(−2π2νt)

v(t, x, y) = sin(πx) cos(πy)exp(−2π2νt)

p(t, x, y) = −ρ
4

[
cos(2πx) + cos(2πy)

]
exp(−4π2νt)

The spatio-temporal domain is x, y ∈ [0.5, 4.5]2 and t ∈ [0, 1].
The Taylor-Green vortex serves two key requirements in our context. First, it

provides an analytical solution of the Navier-Stokes equations and enables us to
evaluate L2-errors with respect to this exact solution and without having to con-
sider further (numerical) approximations. Second, the underlying solution is clearly
smooth enough to fit the regularity criteria of all our error estimates, presented in
the previous section.

We will approximate the Taylor-Green vortex with PINNs and XPINNs. In case
of XPINNs, we decompose the domain into two subdomains along x-axis (x ≥ 2.5
and x < 2.5) where separate neural networks are employed. On the common
interface we used 300 points for stitching these two subdomains together. The
value of density is set at ρ = 1. An ensemble training procedure is performed
to find the correlation between the total error (E) and the training error (ET ) for
different values of ν. For the neural network training we used full batch with Adam
optimizer for the first 20000 number of iterations, followed by L-BFGS optimizer
[4] for another 60000 iterations or till convergence. The number of layers in both
PINN and XPINN are 2 (as suggested by the theory) with 80 neurons in each
layer, and the quadrature points are 27K, which are obtained using mid-point rule.
The learning rate is 8e-4, and the activation function is hyperbolic tangent in both
cases. We train the networks 80 times with different set of initialization to weights
and biases. Figure 3 shows the log of training error vs. log of total error for
each parameter configuration during ensemble training with three different values
of viscosity ν. As seen from this figure, total error E = ‖u−u∗‖L2 and the training
error ET (3.29) are very tightly correlated (along the diagonal in Figure 3). In
particular and consistent with the estimates in Theorem 3.9, a small training error
implies a small total error. Moreover, we see from Figure 3 that the total error E
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Figure 3. Log of training error vs. log of total error for each pa-
rameter (weights and biases) configuration during ensemble train-
ing. We used ν = 0, 0.01 and 0.1.

approximately scales as the square root of training error i.e., E .
√ET , which is

also consistent with the bounds in Theorem 3.9.
Next, we investigate the behavior of the total and training errors by varying

the number of quadrature points. To this end, we train both PINNs and XPINNs
20 times with different parameter initializations and plot the mean and standard
deviation of the errors as shown in Figure 4. All results are of a neural network
architecture with 2 hidden layers, with 80 neurons in each layer and the hyperbolic
tangent activation function. Moreover, the learning rate is the same as before.

We see from Figure 4 that both the training as well as total errors decay with
respect to the number of quadrature points till they are saturated around 27K
quadrature points and do not decay any further. To further illustrate the error
estimates derived in the previous section, we revisit the error estimate (3.30). Given
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Figure 4. Training and total errors for different number of quad-
rature points (residual points).

the elaboration of the appearing constants in (3.32) and the fact that we have access
to the exact solution for the Taylor-Green vortex as well as to the (derivatives of)
the PINN, we can explicitly compute a theoretical bound on the total error in
(3.30). This error depends on the number of quadrature points as well as on the
particular weights of the trained PINN. This theoretical bound is also depicted
in Figure 4. We see from this figure that the computed theoretical bound closely
tracks the qualitative as well as quantitative behavior of the total error for all
cases considered here. The rates of decay of both the error and the bound are very
similar. However the bound is not quantitatively sharp as there is an approximately
one order of magnitude difference in its amplitude vis a vis the total error. Such
non-sharp bounds on the error are common in theoretical machine learning, see [1]
for instance. Even in the case of PINNs, they were already seen in [29] where the
authors observed at least two to three orders of magnitude discrepancy between
their theoretical bounds and the realized total error. Given this context, an order
of magnitude discrepancy between the bound in (3.30) and the observed total error
is quite satisfactory.

Finally, we study the behavior of the error as the number of neurons is in-
creased. Given our theoretical considerations, where the relevant error estimates
where shown for tanh neural networks with two hidden layers, we restrict ourselves
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Figure 5. Training and total errors for different number of neurons.

to this setting by only varying the network width and keep the number of hidden
layers fixed at two. We again train the PINN and XPINNs networks 20 times with
different parameter initializations. The learning rate has the same value as in the
previous numerical experiments and the number of quadrature points is fixed at
64 K. The resulting training and total errors are presented in Figure 5 and show
that the total error decreases with the number of neurons in each layer till it gets
saturated. Moreover, the computable upper bound (3.30) is also depicted and we
see from this figure, that the bound (3.30) follows the same decaying trend, till
saturation, as the total as well as training errors in this particular example.

5. Discussion

Physics informed neural networks have been very successful in the numerical
approximation of the solutions of forward as well as inverse problems for various
classes of PDEs. However, there is a significant paucity of theoretical results on
the resulting errors. Following the framework of a recent paper [7], we revisit the
key theoretical questions Q1 (on the smallness of the PDE residual in the class
of neural networks), Q2 (a small residual implying a small total error) and Q3
(small training errors imply small total errors for sufficient number of quadrature
points), raised in the introduction. We have answered these questions affirmatively
for the incompressible Navier-Stokes equations in this paper. The incompressible
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Navier-Stokes equations constitute a very important example for nonlinear PDEs
and PINNs have already been used in approximating them before [16] but without
much theoretical justification.

Summarizing our theoretical results, we have shown in this paper that

• For sufficiently smooth (Sobolev regular) initial data, there exists neural
networks, with the tanh activation function and with two hidden layers,
such that the resulting PDE residuals can be arbitrarily small. Moreover
in Theorem 3.1, we obtain very precise quantitative estimates on the sizes
of resulting neural networks, in terms of regularity of the underlying clas-
sical solution. The proof of this approximation result relies heavily on the
smoothness of the solutions of Navier-Stokes and on the approximation of
smooth functions by neural networks in sufficiently high Sobolev norms.

• In Theorem 3.3, we show that the total L2 error of the PINN (and XPINN)
approximations is bounded by the PDE residuals for the incompressible
Navier-Stokes equations. Moreover, the underlying constants in the bound
are clearly quantified in terms of the underlying classical solution as well
as the approximating neural networks. This result leverages the stability
(or rather coercivity) of classical solutions of the Navier-Stokes equations.
Thus, we answer question Q2 affirmatively by showing a small PDE residual
implies a small total error.

• In Theorem 3.9, we answer question Q3 by proving a bound (3.30) on the to-
tal error in terms of the training error and the number of quadrature points.
Thus, if one reaches a global minimum of the underlying optimization prob-
lem (2.11), one can show that the training error, and consequently the total
error, can be made as small as possible if sufficient number of quadrature
points are considered.

Taken together, the above theorems constitute the first comprehensive theoretical
analysis of PINNs (and XPINNs) for a prototypical nonlinear PDE, the Navier-
Stokes equations. We also illustrate the bounds in a simple numerical experiment
demonstrating a qualitative as well as quantitative agreement between the rigorous
bounds and the empirical results.

Given this account of the strengths of our results, it is also fair to point out
possible limitations and highlight avenues for future investigation. These include

• Our estimates do not estimate the training error ET , except under the as-
sumption that one finds a global minimum for the optimization problem
(2.11). In practice, it is well known that (stochastic) gradient descent al-
gorithms converge to local minima. In such cases, there is no guarantee on
the smallness of the training error. Thus, one needs to find new techniques
to estimate training errors for PINNs. On the other hand, our and other
numerical results, see [16] for instance, indicate that the training error can
be made small. Then a bound like (3.30) clearly indicates that the overall
error will be small. This is indeed borne out in numerical experiments (see
Figure 5).

• Our estimates rely heavily on the regularity of the underlying solutions
of Navier-Stokes equations (2.1). There are two caveats in this context.
First, in two space dimensions, one knows that the underlying solution will
be sufficiently regular if the corresponding initial data is regular enough
[42]. However, in three space dimensions, such results are a part of the
millennium prize problems and are incredibly hard to obtain. On the more
practical level, it is clear from Theorems 3.3 and 3.9 that the errors will
grow if the C1 norms of the underlying exact solutions are large. This
is clearly the case, particularly in three space dimensions, where solution
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gradients grow as vortices are stretched. Hence, one can expect the PINN
errors to grow too and this is indeed seen in practice (see section 5 of
[29] for instance). However, traditional numerical methods such as finite
element methods and spectral viscosity methods also suffer from the same
issue and it is not expected to be different for PINNs. In this context, it
would be interesting to investigate if the approaches which are based on
weak formulations of PDE residuals might lead to better estimates and
numerical results.

Finally, only the forward problem is considered here. It would be interesting to
extend the theoretical tools and bounds in the paper to inverse problems for the
Navier-Stokes equations (see [36]) as well as physics informed operator learning [44].

References

[1] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang. Stronger generalization bounds for deep nets
via a compression approach. In Proceedings of the 35th International Conference on Machine

Learning, ICML, volume 80 of Proceedings of Machine Learning Research, pages 254–263,
2018.

[2] G. Bai, U. Koley, S. Mishra, and R. Molinaro. Physics informed neural networks (PINNs) for
approximating nonlinear dispersive PDEs. arXiv preprint arXiv:2104.05584, 2021.

[3] A. Biswas, J. Tian, and S. Ulusoy. Error estimates for deep learning methods in fluid dynam-
ics. arXiv preprint arXiv:2008.02844v1, 2020.

[4] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on scientific computing, 16(5):1190–1208, 1995.

[5] T. Chen and H. Chen. Universal approximation to nonlinear operators by neural networks

with arbitrary activation functions and its application to dynamical systems. IEEE Transac-

tions on Neural Networks, 6(4):911–917, 1995.

[6] T. De Ryck, S. Lanthaler, and S. Mishra. On the approximation of functions by tanh neural
networks. Neural Networks, 143:732–750, 2021.

[7] T. De Ryck and S. Mishra. Error analysis for physics informed neural networks (PINNs)
approximating Kolmogorov PDEs. Preprint, available from arXiv:2106:14473, 2021.

[8] M. Dissanayake and N. Phan-Thien. Neural-network-based approximations for solving partial
differential equations. Communications in Numerical Methods in Engineering, 1994.

[9] W. E, J. Han, and A. Jentzen. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Com-

munications in Mathematics and Statistics, 5(4):349–380, 2017.
[10] R. Hiptmair and C. Schwab. Numerical Methods for Elliptic and Parabolic Boundary Value

Problems. ETH Zürich, 2008.
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Appendix A. Notation and auxiliary results

This section provides an overview of the notation used in the paper and recalls
some basic results on Sobolev spaces.

A.1. Multi-index notation. For d ∈ N, we call a d-tuple of non-negative integers

α ∈ N
d
0 a multi-index. We write |α| =∑d

i=1 αi, α! =
∏d

i=1 αi! and, for x ∈ R
d, we

denote by xα =
∏d

i=1 x
αi

i the corresponding multinomial. Given two multi-indices
α, β ∈ N

d
0, we say that α ≤ β if, and only if, αi ≤ βi for all i = 1, . . . , d. For a

multi-index α, we define the following multinomial coefficient

(A.1)

(|α|
α

)
=

|α|!
α!

,

and, given α ≤ β, we define a corresponding multinomial coefficient by

(A.2)

(
β

α

)
=

d∏

i=1

(
βi
αi

)
=

β!

α!(β − α)!
.

For Ω ⊆ R
d and a function f : Ω → R we denote by

(A.3) Dαf =
∂|α|f

∂xα1

1 · · · ∂xαd

d

the classical or distributional (i.e. weak) derivative of f .
We will also encounter the set Pn,d = {α ∈ N

d
0 : |α| = n}, for which it holds that∣∣Pn,d

∣∣ =
(
n+d−1

n

)
.

A.2. Sobolev spaces. Let d ∈ N, k ∈ N0, 1 ≤ p ≤ ∞ and let Ω ⊆ R
d be open.

We denote by Lp(Ω) the usual Lebesgue space and for we define the Sobolev space
W k,p(Ω) as

(A.4) W k,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ N
d
0 with |α| ≤ k}.

For p <∞, we define the following seminorms on W k,p(Ω),

(A.5) |f |Wm,p(Ω) =


 ∑

|α|=m

‖Dαf‖pLp(Ω)




1/p

for m = 0, . . . , k,

and for p = ∞ we define

(A.6) |f |Wm,∞(Ω) = max
|α|=m

‖Dαf‖L∞(Ω) for m = 0, . . . , k.

Based on these seminorms, we can define the following norm for p <∞,

(A.7) ‖f‖Wk,p(Ω) =




k∑

m=0

|f |pWm,p(Ω)




1/p

,

and for p = ∞ we define the norm

(A.8) ‖f‖Wk,∞(Ω) = max
0≤m≤k

|f |Wm,∞(Ω).

The space W k,p(Ω) equipped with the norm ‖·‖Wk,p(Ω) is a Banach space.

We denote by Ck(Ω) the space of functions that are k times continuously differ-
entiable and equip this space with the norm ‖f‖Ck(Ω) = ‖f‖Wk,∞(Ω).

We define the Hilbertian Sobolev spaces for k ∈ N0 as Hk(Ω) = W k,2(Ω) with
corresponding norms ‖·‖Hk(Ω) = ‖·‖Wk,2(Ω) and seminorms |·|Hm(Ω) = |·|Wm,2(Ω)

for integers m with 0 ≤ m ≤ k. If k is large enough, the space Hk(Ω) is a
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Banach algebra. We also recall a version of the Sobolev embedding theorem and a
multiplicative trace inequality.

Lemma A.1. For d, k ∈ N with k > d
2 , H

k(Ω) is a Banach algebra i.e., there
exists ck > 0 such that

(A.9) ∀u, v ∈ Hk(Ω) : ‖uv‖Hk(Ω) ≤ ck‖u‖Hk(Ω)‖v‖Hk(Ω).

Lemma A.2. Let d ∈ N, k, ℓ ∈ N0 with k > ℓ+ d
2 and Ω ⊂ R

d an open set. Every

function f ∈ Hk(Ω) has a continuous representative belonging to Cℓ(Ω).

Lemma A.3 (Multiplicative trace inequality, e.g. Theorem 3.10.1 in [10]). Let
d ≥ 2, Ω ⊂ R

d be a Lipschitz domain and let γ0 : H1(Ω) → L2(∂Ω) : u 7→ u|∂Ω
be the trace operator. Denote by hΩ the diameter of Ω and by ρΩ the radius of the
largest d-dimensional ball that can be inscribed into Ω. Then it holds that

(A.10) ‖γ0u‖L2(∂Ω) ≤
√

2max {2hΩ, d}
ρΩ

‖u‖H1(Ω)

Next, we recall the Bramble-Hilbert lemma, which quantifies the accuracy of
polynomial approximations of functions in Sobolev spaces. We present a variant of
the Bramble-Hilbert lemma for Hilbertian Sobolev spaces proven in [43].

Lemma A.4. Let Ω be a bounded convex open domain R
d, d ≥ 2, with diameter

h. For every f ∈ Hm(Ω) there exists a polynomial p of degree at most m− 1 such
that for all 0 ≤ j ≤ m− 1 it holds that

(A.11) |f − p|Hj(Ω) ≤ cm,jh
m−j |f |Hm(Ω)

where

(A.12) cm,j = πj−m

(
d+ j − 1

j

)1/2
((m− j)!)1/2
(⌈

m−j
d

⌉
!

)d/2
.

We proceed by stating a corollary of the general Leibniz rule for Sobolev regular
functions.

Lemma A.5. Let d ∈ N, k ∈ N0, Ω ⊂ R
d and f ∈ Hk(Ω) and g ∈ W k,∞(Ω).

Then it holds that

(A.13) ‖fg‖Hk ≤ 2k‖f‖Hk‖g‖Wk,∞ .

Finally, we present a result on the Sobolev norm of the composition of two n
times continuously differentiable functions [6, Lemma A.7].

Lemma A.6. Let d,m, n ∈ N, Ω1 ⊂ R
d, Ω2 ⊂ R

m, f ∈ Cn(Ω1; Ω2) and g ∈
Cn(Ω2;R). Then it holds that

(A.14) ‖g ◦ f‖Wn,∞(Ω1)
≤ 16(e2n4md2)n‖g‖Wn,∞(Ω2)

max
1≤i≤m

∥∥(f)i
∥∥n
Wn,∞(Ω1)

.

Appendix B. Function approximation by tanh neural networks

In this section, we prove that for every f ∈ Hm(Ω), m ≥ 3, there exists a tanh

neural network f̂ with two hidden layers such that
∥∥∥f − f̂

∥∥∥
H2(Ω)

≤ ǫ for some

ǫ > 0. In particular, the width of f̂ in terms of ǫ will explicitly be calculated. We
will prove this result following the approach of [6]. First, we divide the domain
Ω into cubes of edge length 1/N , with N ∈ N large enough. On each of these
cubes, f can be approximated in Sobolev norm by a polynomial, by virtue of
the Bramble-Hilbert lemma. A global approximation can then be constructed by
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multiplying each polynomial with the indicator function of the corresponding cubes
and summing over all cubes. We then prove that replacing these polynomials,
multiplications and indicator functions with suitable tanh neural networks results
in a new approximation that has approximately the same accuracy. We first list
some auxiliary results.

Lemma B.1 (Approximation of multivariate monomials, Corollary 3.6 in [6]). Let
d, s ∈ N, k ∈ N0 and M > 0. Then for every ǫ > 0, there exist a shallow tanh

neural network Φs,d : [−M,M ]d → R
|Ps,d+1| of width 3

⌈
s+1
2

⌉ ∣∣Ps,d+1

∣∣ such that

(B.1) max
β∈Ps,d+1

∥∥∥xβ − (Φs,d(x))ι(β)

∥∥∥
W 2,∞([−M,M ]d)

≤ ǫ,

where ι : Ps,d+1 → {1, . . .
∣∣Ps,d+1

∣∣} is a bijection. Furthermore, the weights of the

network scale as O
(
ǫ−s/2

)
for small ǫ.

Lemma B.2 (Shallow approximation of multiplication of d numbers, Corollary 3.7
in [6]). Let d ∈ N, k ∈ N0 and M > 0. Then for every ǫ > 0, there exist a shallow

tanh neural network ×̂ǫ

d : [−M,M ]d → R of width 3
⌈
d+1
2

⌉ ∣∣Pd,d

∣∣ such that

(B.2)

∥∥∥∥∥∥
×̂ǫ

d(x)−
d∏

i=1

xi

∥∥∥∥∥∥
Wk,∞

≤ ǫ.

Furthermore, the weights of the network scale as O(ǫ−d/2) for small ǫ.

Lemma B.3. It holds that max{
∣∣σ(x)

∣∣,
∣∣σ′(x)

∣∣,
∣∣σ′′(x)

∣∣} ≤ 1 for all x ∈ R.

Next, we summarize the construction of an approximate partition of unity of a

domain Ω =
∏d

i=1[0, bi], as in [6, Section 4]. We divide the domain into cubes of
edge length 1/N and denote the corresponding index set by

(B.3) NN = {j ∈ N
d : ji ≤ Nbi for all 1 ≤ i ≤ d}.

We can then define the cubes for every j ∈ NN as,

(B.4) INj =
d×

i=1

(
(ji − 1)/N, ji/N

)
.

Observe that
∣∣σ′∣∣ and

∣∣σ′′∣∣ are monotonously decreasing on [1,∞). Given ǫ > 0,
we first find an α = α(N, ǫ) large enough such that

α/N ≥ 1, 1− σ(α/N) ≤ ǫ, αm
∣∣∣σ(m)(α/N)

∣∣∣ ≤ ǫ for m = 1, 2.(B.5)

A suitable choice of α is given by the following lemma.

Lemma B.4. The conditions stated in (B.5) for 0 < ǫ < 1 are satisfied if

(B.6) α = N ln

(
4N2

e2ǫ

)
.

Proof. This is an adaptation of Lemma A.5 in [6] for k = 2. The proof is as in [6],
except that one can use Lemma B.3 instead of [6, Lemma A.4]. �
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For y ∈ R, we then define

ρN1 (y) =
1

2
− 1

2
σ

(
α

(
y − 1

N

))
,

ρNj (y) =
1

2
σ

(
α

(
y − j − 1

N

))
− 1

2
σ

(
α

(
y − j

N

))
for 2 ≤ j ≤ N − 1,

ρNN (y) =
1

2
σ

(
α

(
y − N − 1

N

))
+

1

2
.

(B.7)

Finally, we define for D ≤ d the functions

(B.8) ΦN,D
j (x) =

D∏

i=1

ρNi

ji
(xi)

and the sets VD = {v ∈ Z
d : max1≤i≤D |vi| ≤ 1 and vD+1 = · · · = vd = 0}. The

functions ΦN,d
j approximate a partition of unity in the sense that for every j it

holds on INj that,

(B.9)
∑

v∈Vd

ΦN,d
j+v ≈ 1 and

∑

v 6∈Vd,

j+v∈{1,...,N}d

ΦN,d
j+v ≈ 0.

This is made exact in the following lemmas.

Lemma B.5 (Lemma 4.1 in [6]). If k ∈ N0 and 0 < ǫ < 1/4, then

(B.10)

∥∥∥∥∥∥

∑

v∈Vd

ΦN,d
j+v − 1

∥∥∥∥∥∥
Wk,∞(IN

j
)

≤ 2kddǫ.

Lemma B.6. Let k ∈ {0, 1, 2} and v ∈ Z
d with ‖v‖∞ ≥ 2. Then it holds that

(B.11)
∥∥∥ΦN,d

j+v

∥∥∥
Wk,∞(IN

j
)
≤ αkǫ.

Proof. This is an adaptation of Lemma 4.2 in [6] for k ≤ 2. The proof is as in [6],
except that one can use Lemma B.3 instead of [6, Lemma A.4]. �

Theorem B.7. Let d ≥ 2, m ≥ 3, δ > 0, ai, bi ∈ Z with ai < bi for 1 ≤ i ≤ d, Ω =∏d
i=1[ai, bi] and f ∈ Hm(Ω). Then for every N ∈ N with N > 5 there exists a tanh

neural network f̂N with two hidden layers, one of width at most 3
⌈
m
2

⌉ ∣∣Pm−1,d+1

∣∣+
∑d

i=1(bi−ai)(N−1) and another of width at most 3
⌈
d+2
2

⌉ ∣∣Pd+1,d+1

∣∣Nd
∏d

i=1(bi−
ai), such that for k ∈ {0, 1, 2} it holds that,

(B.12)
∥∥∥f − f̂N

∥∥∥
Hk(Ω)

≤ 2k3dCk,m,d,f (1 + δ) lnk
(
βk,δ,d,fN

d+m+2
)
N−m+k,

and where we define

βk,δ,d,f =
5 · 2kd max{∏d

i=1(bi − ai), d}max{‖f‖Wk,∞(Ω), 1}
3dδmin{1, Ck,m,d,f}

,(B.13)

Ck,m,d,f = max
0≤ℓ≤k

(
d+ ℓ− 1

ℓ

)1/2
((m− ℓ)!)1/2
(⌈

m−ℓ
d

⌉
!

)d/2

(
3
√
d

π

)m−ℓ

|f |Hm .(B.14)

Moreover, the weights of f̂N scale as O(Nγ) with γ = max{m2/2, d(1+m/2+d/2)}.
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Proof. Step 1: construction of the approximation. We divide the domain
Ω into cubes of edge length 1/N and denote the corresponding index set by

(B.15) NN = {j ∈ N
d : ji ≤ N(bi − ai) for all 1 ≤ i ≤ d}.

Furthermore we write T =
∏d

i=1(bi−ai). As a result,
∣∣NN

∣∣ = TNd. Let us denote

JN
j =×d

i=1

(
(ji − 2)/N, (ji + 1)/N

)
. We calculate that diam(JN

j ) = 3
√
d

N . As a
consequence, the Bramble-Hilbert lemma (Lemma A.4) ensures the existence of a
polynomial pNj of degree at most m−1 such that for all 0 ≤ ℓ ≤ m−1 it holds that

∣∣∣f − pNj

∣∣∣
Hℓ(JN

j
)
≤
(
d+ ℓ− 1

ℓ

)1/2
((m− ℓ)!)1/2
(⌈

m−ℓ
d

⌉
!

)d/2

(
3
√
d

πN

)m−ℓ

|f |Hm =:
C∗
ℓ

Nm−ℓ
.

(B.16)

To simplify notation, we also define Ck := max0≤ℓ≤k C∗
ℓ and pN =

∑
j p

N
j χj , where

χj denotes the indicator function on INj . Next, let qNj be a tanh neural network as
in Lemma B.1 such that

(B.17)
∥∥∥qNj − pNj

∥∥∥
Wk,∞(Ω)

≤ η and
∥∥∥qNj − pNj

∥∥∥
Hk(Ω)

≤ η.

In addition, we define

(B.18) qNj (x)×̂ΦN,d
j (x) := ×̂h

d+1(q
N
j (x), φN,d

j1
(x1), . . . , φ

N,d
jd

(xd)),

where ×̂ := ×̂h

d+1 is the network from Corollary B.2 and h = h(N) will be defined
in the remainder of the proof. We then define our approximation as

(B.19) f̂N (x) =
∑

j∈NN

qNj (x)×̂ΦN,d
j (x).

Step 2: estimating the error of the approximation. The triangle inequal-
ity gives us

∥∥∥f − f̂N
∥∥∥
Hk(Ω)

≤

∥∥∥∥∥∥
f −

∑

j∈NN

f · ΦN,d
j

∥∥∥∥∥∥
Hk(Ω)

+

∥∥∥∥∥∥

∑

j∈NN

(f − qNj ) · ΦN,d
j

∥∥∥∥∥∥
Hk(Ω)

+

∥∥∥∥∥∥

∑

j∈NN

(qNj · ΦN,d
j − qNj ×̂ΦN,d

j )

∥∥∥∥∥∥
Hk(Ω)

(B.20)

We proceed by bounding each term of the right hand side separately.



28 PINNS FOR NAVIER-STOKES

Step 2a: First term of (B.20). Let i ∈ NN be arbitrary. Recalling that Vd =
{v ∈ Z

d : ‖v‖∞ ≤ 1}, we observe that for k ∈ {0, 1, 2},
∥∥∥∥∥∥
f −

∑

j∈NN

f · ΦN,d
j

∥∥∥∥∥∥
Hk(IN

i
)

≤ 2k‖f‖Hk(IN
i
)

∥∥∥∥∥∥
1−

∑

v∈Vd

ΦN,d
i+v

∥∥∥∥∥∥
Wk,∞(IN

i
)

+ 2k‖f‖Hk(IN
i
)

∥∥∥∥∥∥∥∥∥

∑

j∈NN

j−i 6∈Vd

ΦN,d
j

∥∥∥∥∥∥∥∥∥
Wk,∞(IN

i
)

≤ 2k‖f‖Hk(IN
i
)(2

kddǫ+
∣∣∣NN

∣∣∣αkǫ)

≤ 2k(1+d)‖f‖Hk(IN
i
)dǫ

+ 2k‖f‖Hk(IN
i
)

∣∣∣NN
∣∣∣Nk lnk

(
4N2

e2ǫ

)
ǫ

≤ 2k3d
δ

4
lnk

(
4N2

e2ǫ

)
Ck

Nm−k
,

(B.21)

where we used Lemma A.5 with k = 2, Lemma B.5, Lemma B.6 and Lemma B.4,
as well as a suitable definition of ǫ, e.g. satisfying

ǫ ≤ 3dδCk
23+k+kd max{T, d}Nd+m‖f‖Hk(Ω)

,(B.22)

where we used that N > 5.
Step 2b: Second term of (B.20). Let β ∈ N

d
0 be such that |β| ≤ k. Then as a

consequence of the general Leibniz rule we find that
(B.23)∥∥∥∥∥∥
Dβ


∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v



∥∥∥∥∥∥
L2(IN

i
)

≤
∑

β′≤β

(
β

β′

) ∑

v∈Vd

∥∥∥Dβ′

(f − qNi+v)
∥∥∥
L2(IN

i
)

∥∥∥Dβ−β′

ΦN,d
i+v

∥∥∥
L∞(IN

i
)
.

For every v ∈ Vd and β′ ≤ β with ℓ :=
∣∣β − β′∣∣, we can then use the bounds

(B.24)
∥∥∥Dβ′

(f − qNi+v)
∥∥∥
L2(IN

i
)
≤
∥∥∥f − qNi+v

∥∥∥
Hk−ℓ(IN

i
)
≤ Ck
Nm−k+ℓ

+ η,

which follows from (B.16) and (B.17), and,

(B.25)
∥∥∥Dβ−β′

ΦN,d
i+v

∥∥∥
L∞(IN

i
)
≤ N ℓ lnℓ

(
4N2

e2ǫ

)
,

which follows from Lemma B.3 and Lemma B.4. As
∑

β′≤β

(
β
β′

)
≤ 2k (as a conse-

quence of the multi-binomial theorem), we find that

∥∥∥∥∥∥

∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

∥∥∥∥∥∥
Wk,∞(IN

i
)

≤ 2k3d
( Ck
Nm−k

+ ηNk

)
lnk

(
4N2

e2ǫ

)
.(B.26)
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Combining this result with the triangle inequality, Lemma B.4, Lemma A.5, (B.16),
(B.17), Lemma B.6 and the fact that ln(x) ≤ √

x for x > 0, we find that

∥∥∥∥∥∥

∑

j∈NN

(f − qNj ) · ΦN,d
j

∥∥∥∥∥∥
Hk(IN

i
)

≤

∥∥∥∥∥∥

∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

∥∥∥∥∥∥
Hk(IN

i
)

+
∑

j∈NN

j−i 6∈Vd

∥∥∥(f − qNj )ΦN,d
j

∥∥∥
Hk(IN

i
)

≤

∥∥∥∥∥∥

∑

v∈Vd

(f − qNi+v)Φ
N,d
i+v

∥∥∥∥∥∥
Hk(IN

i
)

+
∑

j∈NN

j−i 6∈Vd

2k
∥∥∥(f − qNj )

∥∥∥
Hk(IN

i
)

∥∥∥ΦN,d
j

∥∥∥
Wk,∞(IN

i
)

≤ 2k3d
( Ck
Nm−2

+ ηNk

)
lnk

(
4N2

e2ǫ

)
+ 2k

∣∣∣NN
∣∣∣ (Ck + η)Nk lnk

(
4N2

e2ǫ

)
ǫ

≤ 2k3d
(
1 +

δ

4

)
lnk

(
4N2

e2ǫ

)
Ck

Nm−k
,

(B.27)

where we obtain the last inequality by making a suitable choice of η and ǫ, satisfying

(B.28) η ≤ δCk
8Nm

and ǫ ≤ 3dδ

4TNd+m
.

Step 2d: Third term of (B.20). Finally, using the triangle inequality, Lemma
A.6, Lemma B.1 and Lemma B.3 we obtain that for some C > 0 depending only
on k and d,

∥∥∥∥∥∥

∑

j∈NN

(qNj · ΦN,d
j − qNj ×̂ΦN,d

j )

∥∥∥∥∥∥
Hk(IN

i
)

≤
√
µ(Ω)

∥∥∥∥∥∥

∑

j∈NN

(qNj · ΦN,d
j − qNj ×̂ΦN,d

j )

∥∥∥∥∥∥
Wk,∞(IN

i
)

≤
√
µ(Ω)

∣∣∣NN
∣∣∣C ·

∥∥∥∥∥∥
×̂h

d+1−
d+1∏

i=1

xi

∥∥∥∥∥∥
Wk,∞

(∥∥∥qNj
∥∥∥
Wk,∞(Ω)

+
∥∥∥ρNi

∥∥∥
Wk,∞(Ω)

)k

≤
√
µ(Ω)

∣∣∣NN
∣∣∣C · h

(∥∥∥qNj
∥∥∥
Wk,∞(Ω)

+ αk

)k

≤ 2k3d
δ

4
lnk

(
4N2

e2ǫ

)
Ck

Nm−k
,

(B.29)

where we obtain the last inequality by making a suitable choice of h, satisfying

(B.30) h ≤ 3dδCk

4
√
µ(Ω)TNd+m−kC

(∥∥∥qNj
∥∥∥
Wk,∞(Ω)

+ αk

)k
.

Step 2e: Final error bound. From (B.22) and (B.28) we find that a suitable
definition of ǫ is given by

(B.31) ǫ =
3dδmin{1, Ck}

23+kdNm+d max{T, d}max{‖f‖Wk,∞(Ω), 1}
.
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Combining this observation with all previous steps of the proof then leads to the
error bound

(B.32)
∥∥∥f − f̂N

∥∥∥
Wk,∞(Ω)

≤ 2k3d (1 + δ) lnk
(
βNd+m+2

) Ck
Nm−k

,

where k = 2 and where we define

(B.33) β =
5 · 2kd max{T, d}max{‖f‖Wk,∞(Ω), 1}

3dδmin{1, Ck}
,

where we used that 25/e2 ≤ 5.
Step 3: Estimating the network and weights sizes. The first hidden layer

requires 3
⌈
s
2

⌉ ∣∣Ps−1,d+1

∣∣ neurons for the computation of all multivariate monomials

(cf. Lemma B.1). For the computation of all ρNj (xi) another
∑d

i=1(bi − ai)(N − 1)
neurons are needed in the first hidden layer. The second hidden layer needs at

most 3
⌈
d+2
2

⌉ ∣∣Pd+1,d+1

∣∣ neurons for realizing ×̂h

d+1, which needs to be performed

Nd
∏d

i=1(bi − ai) times.
In the proof we achieved the wanted accuracy by making suitable choices of

η, ǫ, h. From equation (B.31) and Lemma B.4, it follows that α = O
(
N ln(N)

)
.

For the approximate multiplication, (B.30) requires that h−1 = O(Nd+m+2).

Corollary B.2 then proves that the weights of ×̂h

d+1 grow as O(Nd(1+m/2+d/2)).
Finally, the condition η−1 = O(Nm) from (B.28) corresponds to weights growing

as O
(
Nm2/2

)
as a consequence of Corollary B.1. This concludes the proof. �

Appendix C. Bounds on the derivative of a neural network

Lemma C.1. Let d, n, L,W ∈ N and let uθ : Rd+1 → R
d+1 be a neural network

with θ ∈ ΘL,W,R for L ≥ 2, R,W ≥ 1, cf. Definition 2.3. Assume that ‖σ‖Cn ≥ 1.
Then it holds for 1 ≤ j ≤ d+ 1 that

(C.1)
∥∥(uθ)j

∥∥
Cn ≤ 16L(d+ 1)2n

(
e2n4W 3Rn‖σ‖Cn

)nL

Proof. Using the notation of Definition 2.3, we define the functions Fk = R
lk−1 → R

for every 1 ≤ k ≤ L as,

(C.2) Fk = fθL ◦ fθL−1 ◦ · · · ◦ fθk ,
and note that F1 = uθ and FL = fθL. An application of [6, Lemma A.7] then brings
us that

(C.3) ‖Fk‖Cn ≤ 16(e2n4lkl
2
k−1)

n max
1≤i≤lk

∥∥∥(fθk )i
∥∥∥
n

Cn
‖Fk+1‖Cn .

For R ≥ 1 and 1 ≤ k < L we find that
∥∥(fθk )i

∥∥
Cn ≤ Rn‖σ‖Cn for every i and for

k = L we find that
∥∥(fθL)i

∥∥
Cn ≤ R(W‖σ‖C0 + 1). Combining these inequalities

recursively gives us

‖F1‖Cn ≤ ‖FL‖Cn

L−1∏

k=1

[
16(e2n4lkl

2
k−1)

n max
1≤i≤lk

∥∥∥(fθk )i
∥∥∥
n

Cn

]

≤ R(W‖σ‖C0 + 1)
[
16(e2n4W 3Rn‖σ‖Cn)

n
]L−1

(d+ 1)2n

≤ 16L(d+ 1)2n
(
e2n4W 3Rn‖σ‖Cn

)nL
.

(C.4)

This concludes the proof of the lemma as F1 = uθ. �
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