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TRACES FOR HILBERT COMPLEXES

RALF HIPTMAIR, DIRK PAULY, AND ERICK SCHULZ

Abstract. We study a new notion of trace operators and trace spaces for abstract Hilbert
complexes. We introduce trace spaces as quotient spaces/annihilators. We characterize the
kernels and images of the related trace operators and discuss duality relationships between trace
spaces. We elaborate that many properties of the classical boundary traces associated with the
Euclidean de Rham complex on bounded Lipschitz domains are rooted in the general structure
of Hilbert complexes. We arrive at abstract trace Hilbert complexes that can be formulated
using quotient spaces/annihilators. We show that, if a Hilbert complex admits stable “regular
decompositions” with compact lifting operators, then the associated trace Hilbert complex is

Fredholm. Incarnations of abstract concepts and results in the concrete case of the de Rham
complex in three-dimensional Euclidean space will be discussed throughout.

1. Introduction

1.1. Starting point: the de Rham complex. In vector-analytic notation, the L2 de Rham
complex in a bounded domain Ω ⊂ R

3 reads1

(1.1) R L2(Ω) L2(Ω) L2(Ω) L2(Ω) {0}.
ıR grad curl div π{0}

It involves unbounded first-order differential operators inducing the domain Hilbert complex

(1.2) R H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω) {0},
ıR grad curl div π{0}

where customary notation for Sobolev spaces equipped with graph inner products was adopted2.
Taking the closure of compactly supported functions in these Sobolev spaces and tagging the
resulting closed subspaces with ‘ ◦ ’ on top, we obtain a subcomplex

(1.3) {0} H̊1(Ω) H̊(curl,Ω) H̊(div,Ω) L2(Ω) {0},
ı grad curl div 0

giving rise to the following structure:

(1.4)

H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)

∪ ∪ ∪ ∪

H̊1(Ω) H̊(curl,Ω) H̊(div,Ω) L2(Ω).

grad curl div

grad curl div

1.2. The de Rham complex and trace operators. The focus of this work is on trace operators.
For the de Rham complex above, those are usually introduced as linear mappings of functions in Ω
to functions on Γ = ∂Ω. The classical traces are obtained by extending the restriction operators3

γu := u
∣∣
Γ

(pointwise trace),(1.5a)

γtu := n× (u
∣∣
Γ
× n) (pointwise tangential component trace),(1.5b)

γnu := u
∣∣
Γ
· n (pointwise normal component trace),(1.5c)

1Throughout, we use special arrows to indicate properties of mappings: ‘։’ for surjectivity, ‘→֒’ for injectivity
and ‘99K’ for isometry.

2For instance, the spaces H1(Ω), H(curl,Ω) and H(div,Ω) are discussed in [22]. They are equipped with the
obvious graph norms making the operators involved in the domain Hilbert complex trivially bounded. In the
Euclidean setting, we distinguish vector quantities from scalars by using a bold font.

3We denote by n ∈ L
∞(Γ) the exterior unit normal vector-field on the boundary Γ.
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to continuous and surjective mappings from the Sobolev spaces involved in the domain de Rham
complex to so-called trace spaces whose characterization is the main assertion of the standard
trace theorems for a Lipschitz domain Ω:

γ : H1(Ω)→ H1/2(Γ) [26, Thm. 4.2.1],(1.6a)

γt : H(curl,Ω)→ H−1/2(curlΓ,Γ) [15, Thm. 4.1],(1.6b)

γn : H(div,Ω)→ H−1/2(Γ) [22, Thm. 2.5, Cor. 2.8].(1.6c)

The classical trace spaces can be defined based on the vector-valued rotated surface gradient
curlΓ and the scalar-valued surface rotation curlΓ as

H1/2(Γ) :=
{
φ ∈ H−1/2(Γ) | curlΓ φ ∈ H

−1/2
t (Γ)

}
,(1.7a)

H−1/2(curlΓ,Γ) :=
{
φ ∈ H

−1/2
t (Γ) | curlΓ φ ∈ H−1/2(Γ)

}
,(1.7b)

where H
−1/2
t (Γ) is defined as the dual of the range of the tangential trace applied to H1(Ω). The

mathematical theory of the pointwise trace γ is well established, cf. [29, Chap. 3]. That for the
normal component trace γn is carefully developed in [22, Chap. 1]. Regarding the tangential trace
γt in (1.6b) and the trace space (1.7b), we recommend the comprehensive and profound analysis
of [15], based on the earlier works [1, 13, 14].

These important results were generalized to arbitrary dimensions by Weck in [46] using the
framework of differential forms, where pullback by the boundary’s inclusion map provides a unified
description and generalization of the traces (1.6). A similar characterization of the range of the
boundary restriction operator for Lipschitz subdomains of compact manifolds is given in [30],
where a boundary de Rham complex involving surface operators is also studied.

One may wonder whether the structures shining through in (1.7a) and (1.7b) hint at a more
general pattern governing the structure of trace spaces. Thus, in this article, we are going to
elaborate this structure in the abstract framework of Hilbert complexes, of which the de Rham
complex is the best-known representative. Since there is no notion of “boundary” in that abstract
framework, we have to detach the concept of a trace space from the idea of a function space on a
boundary. This can be accomplished by adopting a quotient-space view of traces.

Let us sketch this idea for the Euclidean de Rham complex. Since the kernels of the classical
trace operators (1.6a)-(1.6c) are4

N (γ) = H̊1(Ω) := C∞
0 (Ω)

H1(Ω)
[29, Thm. 3.40],(1.8a)

N (γt) = H̊(curl,Ω) := C∞
0 (Ω)3

H(curl,Ω)
[31, Thm. 3.33],(1.8b)

N (γn) = H̊(div,Ω) := C∞
0 (Ω)3

H(div,Ω)
[31, Thm. 3.25],(1.8c)

we immediately conclude that these trace operators induce isomorphisms between the classical
trace spaces and the quotient spaces:

H1(Ω)/H̊1(Ω) ∼= H1/2(Γ),(1.9a)

H(curl,Ω)/H̊(curl,Ω) ∼= H−1/2(curlΓ,Γ),(1.9b)

H(div,Ω)/H̊(div,Ω) ∼= H−1/2(Γ).(1.9c)

This paves the way for an alternative characterization of trace spaces independent of the notion
of “function space on Γ”. We remark that the quotient space approach to the definition of trace
spaces has also proved successful for the de Rham complex in order to define traces on sets more
complicated than boundaries of Lipschitz domains [17, 18].

Classical theory of trace spaces for H1(Ω), H(curl,Ω) and H(div,Ω) also addresses duality
between trace spaces:

• The L2(Γ) inner product induces a duality between H1/2(Γ) and H−1/2(Γ); cf. [26, Chap.
4.2] and [29, Chap. 3].

4We write N (T) and R(T) for the kernel/nullspace and range/image space, respectively, of a linear operator T.
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• The skew-symmetric pairing5

(1.10) 〈u,v〉× :=

∫

Γ

(u× n) · v dσ

can be extended from L2(Γ) × L2(Γ) to H−1/2(curlΓ,Γ) ×H−1/2(curlΓ,Γ), allowing the
identification of H−1/2(curlΓ,Γ) with its own dual space; cf. [15, 16, 31].

The possibility to put trace spaces for the 3D de Rham complex into duality seems to follow
general rules:

(1.11)

H1(Ω) H(curl,Ω) H(div,Ω)

H1/2(Γ) H−1/2(curlΓ,Γ) H−1/2(Γ)

grad

γ

curl

γt γn

L2-duality

L2-self duality

1.3. Goals, outline, and main results. There are obvious parallels in the definitions of the
different trace spaces and their duality relations. One may wonder if this kind of resemblance
between the trace spaces arise only for the de Rham complex or whether it is already manifest in
a more basic/general setting, of which the de Rham complex is just a prominent specimen. That
setting is the framework of Hilbert complexes6, first introduced in [12]. Therefore, the guiding
question behind this work is:

To what extent can results about traces for the de Rham domain complex be trans-
ferred to abstract Hilbert complexes?

Of course, abstract Hilbert complexes know neither domains nor boundaries. Therefore, as already
mentioned above, we cannot expect to arrive at a characterization of trace spaces as function spaces
on a boundary. Yet, a theory based on the quotient space view of trace spaces is feasible. Its
development will be pursued in Section 3. There, we first propose trace operators induced by
“generalized integration by parts formulas” and mapping into dual spaces, and then generalize
(1.9) to a quotient-space understanding of trace spaces.

Next, in Section 4, we shed light on duality relationships between trace spaces and find that
the observation made in (1.11) is a generic pattern; see Theorem 4.8. This even holds in a
setting simpler than Hilbert complexes. “Minimal Hilbert complexes” will only enter the stage
in Section 5 in order to define so-called “surface operators”, which are abstract counterparts of
the classical surface differential operators such as gradΓ and curlΓ. The full structure of Hilbert
complexes is exploited starting from Section 6. Augmenting it by assumptions about the existence
of so-called stable regular decompositions (Assumptions B and C), we obtain characterizations of
traces spaces, in Theorem 6.8 and Theorem 6.9, which reveal that the definitions (1.7a) and (1.7b)
of classical trace spaces reflect a more general pattern. This paves the way for the key insight
expressed in Theorem 7.1 that trace spaces and surface operators are the building blocks of what
we call a trace Hilbert complex, a full-fledged Hilbert complex of unbounded, densely defined, and
closed operators.

Parallel to its development, we will apply our new abstract theory to the de Rham complex
in three-dimensional Euclidean space. We hope that this will motivate some of the assumptions
made on the abstract spaces. The discussion will take the form of an ongoing specialization of the
definitions and results, set apart from the main line of reasoning.

3D de Rham setting I: Traces and integration by parts. The key trace operators and trace spaces
associated with the Euclidean de Rham complex in three space dimensions have already been introduced

5We denote by σ the surface measure on the boundary.
6For the functional analytic foundations, we refer to parts of the FA-ToolBox from [35, Sec. 2], which is a

compilation of useful functional analysis results that grew from its use in previous works, cf. [33, Sec. 4.1], [34, Sec.
2], [36, Sec. 2.1], [38, Sec. 2.1], [39, 2.2], [35, Sec. 2] and [32, App. 3]. We find the introduction in [6, Chap. 4] to
be an accessible resource for readers unacquainted with Hilbert complexes, because it reviews in detail the material
more concisely presented in [7, Sec. 3], cf. [8, Sec. 2] and [12].
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in (1.5) and (1.6). We just want to add the well-known fact that the trace operators (1.6a)-(1.6c) have a
close link with Green’s formulas

〈γu, γnv〉Γ =

∫

Ω

gradu · v + u div(v) dx ∀u ∈ H1(Ω), ∀v ∈ H(div,Ω),(1.12a)

〈γtu, γtv〉× =

∫

Ω

curl u · v − u · curl vdx ∀u,v ∈ H(curl,Ω).(1.12b)

On the left, we denoted the duality pairing between H1/2(Γ) and H−1/2(Γ) by 〈·, ·〉Γ, but wrote 〈·, ·〉× for

the skew-symmetric self-duality pairing on H−1/2(curlΓ,Γ), cf. [15, Lem. 5.6].

Finally, we stress that we could have demonstrated the specialization of our results also in the
setting of general exterior calculus, but refrained from it in the interest of readability.

List of symbols

Ak =̂ closed densely defined unbounded operators Section 2.2, (2.5a)
A
∗
k =̂ Hilbert space adjoint of Ak Section 2.2, (2.5b)

Åk =̂ closed densely defined unbounded operator Åk ⊂ Ak Section 2.3, (2.8a)

A
⊤
k =̂ Hilbert space adjoint of Åk Section 2.3, (2.8b)

RD(A⊤
k
)=̂ Riesz isomorphism D(A⊤

k )→ D(A
⊤
k )

′ Section 3.3, (3.11)

Tt
k =̂ primal Hilbert trace D(Ak)→ D(A

⊤
k )

′ Section 3.1, (3.3)

Tn
k =̂ dual Hilbert trace D(A⊤

k )→ D(Ak)
′ Section 4.1, (4.2)

T (Ak) =̂ quotient space D(Ak)/D(Åk) Section 3.2, (3.22)

T (A⊤
k )=̂ quotient space D(A⊤

k )/D(A
∗
k) Section 4.1, (4.8)

Itk =̂ isometric isomorphism D(Ak)→ R(T
t
k) Section 3.2, (3.38)

Ink =̂ isometric isomorphism D(A⊤
k )→ R(T

n
k ) Section 4.1, (4.19)

〈〈·, ·〉〉k =̂ duality pairing Section 4.2, (4.24b)
Kk =̂ isometric isomorphism induced by 〈·, ·〉k Section 4.2, (4.26)

Pt
k =̂ orthogonal projection D(Ak)→ D(Å)

⊥ Section 3.1, (3.27)

Pn
k =̂ orthogonal projection D(A⊤

k )→ D(A
∗
k)

⊥ Section 4.1, (4.12)
πt
k =̂ canonical quotient map D(Ak)→ T (Ak) Section 3.1, (3.27)

πn
k =̂ canonical quotient map D(A⊤

k )→ T (A
⊤
k ) Section 3.1, (4.12)

W+
k =̂ dense inclusion W+

k →֒ D(Ak) and/or W
+
k →֒ D(A

⊤
k−1) Section 6.1, (6.1)

W−
k =̂ dual space (W+

k )
′ Section 6.1, (6.7)

W̊
n,+
k =̂ intersection space D(A∗

k−1) ∩W+
k = N (Tn

k−1) ∩W+
k Section 6.3, (6.32)

W̊
t,+
k =̂ intersection space D(Åk) ∩W+

k = N (Tt
k) ∩W+

k Section 6.3, (6.32)

T
n,+
k =̂ quotient space W+

k /W̊
n,+ Section 6.4, (6.41b)

T
t,+
k =̂ quotient space W+

k /W̊
t,+ Section 6.4, (6.41a)

T
n,−
k =̂ dual space (Tn,+

k )′ Section 6.4, (6.41b)

T
t,−
k =̂ dual space (Tt,+

k )′ Section 6.4, (6.41a)

Dt
k =̂ surface operator (A⊤

k+1)
′ : D(A⊤

k )
′ → D(A⊤

k+1)
′ Section 5.1, (5.4a)

Dn
k =̂ surface operator A′

k−1 : D(Ak)
′ → D(Ak−1)

′ Section 5.1, (5.4b)
Stk =̂ surface operator Ak : T (Ak)→ T (Ak+1) Section 5.2, (5.23)

Stk =̂ surface operator A⊤
k : T (A⊤

k )→ T (A
⊤
k−1) Section 5.2, (5.23)

Ŝtk =̂ surface operator Ak : Tt,+
k+1 → T (Ak+1) Section 6.4 (6.44)

Ŝnk =̂ surface operator A⊤
k : Tn,+

k+1 → T (A
⊤
k−1) Section 6.4, (6.44)

D̂t
k =̂ surface operator (Ŝnk+1)

′ : T (A⊤
k )

′ → T
n,−
k+2 Section 6.4, (6.46)

D̂n
k =̂ surface operator (Ŝtk)

′ : T (Ak+1)
′ → T

t,−
k Section 6.4, (6.46)
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2. Hilbert Complexes

2.1. Operators on Hilbert spaces. In this article, both bounded and unbounded linear operators
take center stage7. We distinguish them using the following notation. Let X and Y be two Hilbert
spaces equipped with the inner products (·, ·)X and (·, ·)Y, respectively. We will consistently write
A : D(A) ⊂ X → Y to indicate that A is regarded as an unbounded linear operator from X to Y

with domain D(A), whereas we mean by A : X→ Y that A is viewed as a bounded operator from
X to Y defined on the whole space X.

Recall that the difference between A : D(A) ⊂ X→ Y and A : D(A)→ Y comes from whether
the topology of the subspace D(A) ⊂ X is given by the norm of X or the graph norm induced by
the inner product (x1,x2)D(A) := (x1,x2)X + (Ax1,Ax2)Y ∀x1,x2 ∈ D(A).

An unbounded operator A : D(A) ⊂ X→ Y is said to be closed if and only if its domain D(A)
is a Hilbert space when endowed with the graph norm, cf. [6, Prop. 3.1]. It is densely defined if
D(A) is a dense subset of X. The kernel and range of A, whether it is bounded or not, will be
denoted N (A) and R(A), respectively.

Topological dual spaces will be tagged with prime, e.g. X′. We use angle brackets for duality
pairings, e.g. 〈φ,x〉X′ , φ ∈ X′, x ∈ X. Accordingly, the operator dual to a bounded linear
operator A : X→ Y is a bounded operator A′ : Y′ → X′.

The Hilbert space adjoint of A : D(A) ⊂ X → Y is written A
∗ : D(A∗) ⊂ Y → X. Recall that

it is the unbounded linear operator satisfying

(A∗ y,x)X = (y,Ax)Y ∀y ∈ D(A∗), ∀x ∈ D(A),(2.1)

whose domain D(A∗) consists of all y ∈ Y for which the linear functional D(A) → R defined
by x 7→ (y,Ax)Y is continuous in the X norm, i.e. for every y ∈ D(A∗), ∃Cy > 0 such that
|(y,Ax)Y| ≤ Cy‖x‖X, ∀x ∈ D(A). If A is closed and densely defined, then A

∗ is also closed and
densely defined [6, Prop. 3.3]—in which case A

∗∗ = A.

We write Å ⊂ A and say that an unbounded linear operator A : D(A) ⊂ X→ Y is an extension

of another unbounded linear operator Å : D(Å) ⊂ X → Y when D(Å) ⊂ D(A) and Ax◦ = Åx◦

for all x◦ ∈ D(Å).

3D de Rham setting II: Differential operators. We refer to [6, Chap. 3] for the following mappings
properties. The linear differential operators

grad :H1(Ω) ⊂ L2(Ω) → L
2(Ω),(2.2a)

curl :H(curl,Ω) ⊂ L
2(Ω) → L

2(Ω),(2.2b)

div :H(div,Ω) ⊂ L
2(Ω) → L2(Ω),(2.2c)

are densely defined and closed unbounded linear operators. They are extensions of

˚grad : H̊1(Ω) ⊂ L2(Ω) → L
2(Ω),(2.3a)

˚curl : H̊(curl,Ω) ⊂ L
2(Ω) → L

2(Ω),(2.3b)

d̊iv : H̊(div,Ω) ⊂ L
2(Ω) → L2(Ω).(2.3c)

The L2 Hilbert space adjoints of (2.2a)-(2.2c) are

grad
∗ = −d̊iv : H̊(div,Ω) ⊂ L

2(Ω) → L2(Ω),(2.4a)

curl
∗ = ˚curl : H̊(curl,Ω) ⊂ L

2(Ω) → L
2(Ω),(2.4b)

div∗ = − ˚grad : H̊1(Ω) ⊂ L2(Ω) → L
2(Ω),(2.4c)

respectively. Then, the adjoint operators of (2.3a)-(2.3c) are obtained using the fact that A∗∗ = A for all
densely defined and closed unbounded linear operators between Hilbert spaces.

By abuse of notation, we generally write grad = ˚grad, curl = ˚curl and div = d̊iv.

7Standard references concerning bounded and unbounded linear operators are [27, Chap. 3] and [47, Chap. 7].
We also particularly recommend [6, Chap. 3], [11, Chap. 1-6] and [43, Chap. 6-8].
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2.2. Definition. A Hilbert complex is a sequence of Hilbert spaces Wk, k ∈ Z, together with a
sequence of closed and densely defined unbounded linear operators Ak : D(Ak) ⊂ Wk → Wk+1

such that R(Ak) ⊂ N (Ak+1), i.e. Ak+1 ◦Ak ≡ 0 for all k ∈ Z. It can be written as

(2.5a) · · · D(Ak−1) ⊂Wk−1 D(Ak) ⊂Wk D(Ak+1) ⊂Wk+1 · · · ,
Ak−2 Ak−1 Ak Ak+1

cf. [6, Def. 4.1]. The associated sequence of adjoint operators spawns the so-called dual Hilbert
complex

(2.5b) · · · D(A∗
k−2) ⊂Wk−1 D(A∗

k−1) ⊂Wk D(A∗
k) ⊂Wk+1 · · · ,

A
∗
k−2 A

∗
k−1 A

∗
k A

∗
k+1

which by (2.1) is itself a Hilbert complex, because A
∗
k−1 ◦A

∗
k ≡ 0 for all k ∈ Z. “Finite” Hilbert

complexes can be embedded into (2.5a) by setting Wk = {0} for all k /∈ {0, 1, ..., N}.
Notice that since R(Ak) ⊂ D(Ak+1) and R(A

∗
k+1) ⊂ D(A

∗
k), the sequences of bounded operators

Ak : D(Ak)→Wk+1 and A
∗
k : D(A∗

k)→Wk also induce Hilbert complexes themselves:

(2.6a) · · · D(Ak−1) D(Ak) D(Ak+1) · · · ,
Ak−2 Ak−1 Ak Ak+1

(2.6b) · · · D(A∗
k−2) D(A∗

k−1) D(A∗
k) · · · .

A
∗
k−2 A

∗
k−1 A

∗
k A

∗
k+1

These are examples of bounded Hilbert complexes in which every operator is continuous. We refer
to (2.6a) and (2.6a) as the domain complexes of (2.5a) and (2.5b).

If the range R(Ak) is a closed subset of Wk+1 for all k, we say that the Hilbert complex (2.5a)
is closed. If this is the case, then R(A∗

k) is also closed in Wk by the closed range theorem [6, Thm.
3.7], making the dual complex (2.5b) a closed Hilbert complex too. Furthermore, (2.5a) is said to
be Fredholm if the codimension of R(Ak) is finite in N (Ak+1)—in which case it is also closed by [6,
Thm. 3.8]. Equivalently, a Hilbert complex is Fredholm if the quotient spaces N (Ak+1)/R(Ak)
and N (A∗

k)/R(A
∗
k+1) are finite dimensional, in other words, if the cohomology spaces of (2.5a)

and (2.5b) have finite dimension. It is a sufficient condition for a Hilbert complex to be Fredholm
to satisfy the compactness property, that is, the embedding D(Ak) ∩ D(A

∗
k−1) →֒Wk is compact

for all k ∈ Z.

3D de Rham setting III: The L2 de Rham complex in R
3. The L2 de Rham complex (1.1) is a

standard example of a Hilbert complex, where Ak ≡ 0 and Wk = {0} is set for k ∈ Z\{0, 1, 2, 3}. Its dual
complex is represented by the sequence
(2.7)

{0} L2(Ω) H̊(div,Ω) ⊂ L2(Ω) H̊(curl,Ω) ⊂ L2(Ω) H̊1(Ω) ⊂ L2(Ω) {0},
0 −div curl −grad ı

cf. [6, Sec. 3.4] and [6, Sec. 4.3], and its embedding into our abstract framework is summarized in the
following table:

k Wk Ak D(Ak) A
∗

k D(A∗

k) D(Ak) ∩ D(A∗

k−1)

0 L2(Ω) grad H1(Ω) − div H̊(div,Ω) H1(Ω)

1 L2(Ω) curl H(curl,Ω) curl H̊(curl,Ω) H(curl,Ω) ∩ H̊(div,Ω)

2 L2(Ω) div H(div,Ω) −grad H̊1(Ω) H(div,Ω) ∩ H̊(curl,Ω)

3 L2(Ω) 0 L2(Ω) Id {0} H̊1(Ω)

The de Rham complex satisfies the compactness property, and thus it is Fredholm. Indeed, recall that

Rellich’s compact embedding theorem states that the inclusion of H1(Ω) and H̊1(Ω) in L2(Ω) is compact.

We refer to [42] for a proof thatH(curl,Ω)∩H̊(div,Ω) andH(div,Ω)∩H̊(curl,Ω) are compactly embedded

in L2(Ω).
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2.3. Basic setting. Now, let a Hilbert complex as in (2.5a) be given and suppose that the un-
bounded linear operators of a second Hilbert complex

(2.8a) · · · D(Åk−1) ⊂Wk−1 D(Åk) ⊂Wk D(Åk+1) ⊂Wk+1 · · ·
Åk−2 Åk−1 Åk Åk+1

are such that Åk ⊂ Ak, i.e. D(Åk) ⊂ D(Ak) and Ak |D(̊Ak)
= Åk. In other words, for all k ∈ Z, Ak is

an extension of Åk. It is easy to verify that the adjoint operators A⊤
k := Å

∗

k : D(Å
∗

k) ⊂Wk+1 →Wk

involved in the dual complex

(2.8b) · · · D(A⊤
k−2) ⊂Wk−1 D(A⊤

k−1) ⊂Wk D(A⊤
k ) ⊂Wk+1 · · ·

A
⊤
k−2 A

⊤
k−1 A

⊤
k A

⊤
k+1

are such that A∗
k ⊂ A

⊤
k . In particular, the bounded domain complexes

(2.9a) · · · D(Åk−1) D(Åk) D(Åk+1) · · · ,
Åk−2 Åk−1 Åk Åk+1

(2.9b) · · · D(A∗
k−2) D(A∗

k−1) D(A∗
k) · · · ,

A
∗
k−2 A

∗
k−1 A

∗
k A

∗
k+1

are examples of Hilbert subcomplexes of the domain Hilbert complexes (2.6a) and (2.6b).
For reference, this basic setting is summarized in the following assumption.

Assumption A. For all k ∈ Z let Wk be real Hilbert spaces, and suppose that Ak : D(Ak) ⊂

Wk → Wk+1 and Åk : D(Åk) ⊂ Wk → Wk+1 are densely defined and closed unbounded linear

operators such that R(Ak) ⊂ N (Ak+1), R(Åk) ⊂ N (Åk+1), and Ak is an extension of Åk, i.e.

D(Åk) ⊂ D(Ak) and Ak x◦ = Åk x◦ for all x◦ ∈ D(Åk).

3D de Rham setting IV: Boundary conditions. The Hilbert complex
(2.10a)

{0} H1
0 (Ω) ⊂ L2(Ω) H̊(curl,Ω) ⊂ L2(Ω) H̊(div,Ω) ⊂ L2(Ω) L2(Ω) {0}

ı grad curl div 0

fulfills the hypothesis on (2.8a) for the L2 de Rham complex (1.1). Owing to (2.4a)-(2.4c), its dual complex
is written
(2.10b)

{0} L2(Ω) H(div,Ω) ⊂ L2(Ω) H(curl,Ω) ⊂ L2(Ω) H1 ⊂ L2(Ω) {0}.
0 −div curl −grad ı

Summing up, the various operators and spaces have the following incarnations for the de Rham complex
in three-dimensional Euclidean space:

k Wk Åk D(Åk) A
⊤

k D(A⊤

k ) D(Åk) ∩ D(A⊤

k−1)

0 L2(Ω) grad H̊1(Ω) − div H(div,Ω) H̊1(Ω)

1 L2(Ω) curl H̊(curl,Ω) curl H(curl,Ω) H̊(curl,Ω) ∩H(div,Ω)

2 L2(Ω) div H̊(div,Ω) −grad H1(Ω) H̊(div,Ω) ∩H(curl,Ω)

3 L2(Ω) 0 L2(Ω) Id {0} H1(Ω)

3. Trace Operators

The following sections lay the foundations of a general quotient-based abstract theory for traces
in Hilbert spaces. To that end, we do not require the full structure of Hilbert complexes, but it
suffices to focus on the following snippet of the Hilbert complexes (2.5a) and (2.8a):

· · · D(Ak−1) ⊂Wk−1 D(Ak) ⊂Wk D(Ak+1) ⊂Wk+1 · · · ,

∪ ∪ ∪

· · · D(Åk−1) ⊂Wk−1 D(Åk) ⊂Wk D(Åk+1) ⊂Wk+1 · · · .

Ak−2 Ak−1 Ak Ak+1

Åk−2 Åk−1 Åk Åk+1
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In the sequel, we fix k ∈ Z and take for granted Assumption A.

3.1. Hilbert traces. Using the shorthand A
⊤
k := Å

∗

k : D(A⊤
k ) ⊂ Wk+1 → Wk, it follows from

the estimate

|(Ak x,y)Wk+1
− (x,A⊤

k y)Wk
| ≤ ‖Ak x‖Wk+1

‖y‖Wk+1
+ ‖x‖Wk

‖A⊤
k y‖Wk

≤ ‖x‖D(Ak)‖y‖D(A⊤
k
)

(3.1)

that the following definition of a particular notion of a trace makes sense.

Definition 3.1. In the setting of Assumption A, the bounded linear operator

(3.2) T
t
k : D(Ak)→ D(A

⊤
k )

′

defined for all x ∈ D(Ak) and y ∈ D(A⊤
k ) by

〈Tt
kx,y〉D(A⊤

k
)′ := (Ak x,y)Wk+1

− (x,A⊤
k y)Wk

(3.3)

is called the (primal) Hilbert trace associated with the pair of operators Ak and Åk.

It also follows from (3.1) that

(3.4) ‖Tt
k‖ = 1,

where ‖ · ‖ is the operator norm.
We point out that defining a trace operator as a mapping into a dual space has precedents in

the theory of Friedrichs operators, has been pursued in [21, Sect. 2.2] and [20, Sect. 56.3.2], and is
also discussed in [3–5]. In these works, the authors have dubbed “boundary operators” what we
have decided to call “Hilbert traces”.

Let us motivate the above notion of trace with classical examples.

3D de Rham setting V: Hilbert traces. Applying Definition 3.1 in the 3D de Rham setting II, we
obtain the Hilbert traces

T
t
0 = T

t
grad : H1(Ω) → H(div,Ω)′,(3.5a)

T
t
1 = T

t
curl : H(curl,Ω) → H(curl,Ω)′,(3.5b)

T
t
2 = T

t
div : H(div,Ω) → H1(Ω)′,(3.5c)

defined by

〈Tt
grad v,u〉H(div,Ω)′ := (gradv,u)L2(Ω) + (v, divu)L2(Ω),(3.6a)

〈Tt
curlz,w〉H(curl,Ω)′ := (curl z,w)L2(Ω) − (z, curlw)L2(Ω),(3.6b)

〈Tt
divu, v〉H1(Ω)′ := (divu, v)L2(Ω) + (u,grad v)L2(Ω),(3.6c)

for all v ∈ H1, u ∈ H(div,Ω) and z,w ∈ H(curl,Ω).
We recognize on the right hand sides of (3.6a)-(3.6c) the continuous bilinear forms occurring in Green’s

formulas (1.12a) and (1.12b). Introducing the operators

γ′

n : H1/2(Γ) → H(div,Ω)′, γ′

t : H
−1/2(curlΓ,Γ) → H(curl,Ω)′, γ′ : H−1/2 → H1(Ω)′,(3.7)

dual to the classical traces, where we have identified H−1/2(Γ) with (H1/2(Γ))′ through the L2(Γ)-pairing

on the boundary and H−1/2(curlΓ,Γ) with its own dual through the skew-symmetric pairing defined in
(1.10), we obtain

T
t
grad = γ′

n ◦ γ, T
t
curl = γ′

t ◦ γt, T
t
div = γ′ ◦ γn.(3.8)

Observe that

(3.9) (Tt
grad)

′ = T
t
div.

The appeal of definitions (3.6a)-(3.6c) is that they do not explicitly depend on Γ. In fact, notice that

they are well-defined for general bounded open sets Ω without any assumption on the regularity of their

boundary Γ := ∂Ω.

Proposition 3.2. Under Assumption A,

(3.10) N (Tt
k) = D(Åk).
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Proof. On the one hand, for any x◦ ∈ D(Åk), it follows from Åk ⊂ Ak and (2.1) that

〈Tt
kx◦,y〉D(A⊤

k
)′ = (Ak x◦,y)Wk+1

− (x◦,A
⊤
k y)Wk

= (Åk x◦,y)Wk+1
− (x◦,A

⊤
k y)Wk

= (x◦,A
⊤
k y)Wk+1

− (x◦,A
⊤
k y)Wk

= 0
(3.11)

for all y ∈ D(A⊤
k ). This shows that D(Åk) ⊂ N (Tt

k).
On the other hand, if x ∈ D(Ak) is such that x ∈ N (Tt

k), then

0 = 〈Tt
kx,y〉D(A⊤

k
)′ = (Ak x,y)Wk+1

− (x,A⊤
k y)Wk

∀y ∈ D(A⊤
k ).(3.12)

If we set Cx := ‖x‖D(Ak), we see that

|(x,A⊤
k y)Wk

| = |(Ak x,y)Wk+1
| ≤ ‖Ak x‖Wk+1

‖y‖Wk+1
≤ Cx‖y‖Wk+1

∀y ∈ D(A⊤
k ).(3.13)

As explained in Section 2.2, this means that x ∈ D((A⊤
k )

∗) = D(Å
∗∗

k ) = D(Åk). �

3D de Rham setting VI: Kernels of classical Hilbert traces. Comparing Proposition 3.2 with
(1.8a)-(1.8c), we verify that

N (Tt
grad) = N (γ), N (Tt

curl) = N (γt), N (Tt
div) = N (γn).(3.14)

Remark 3.3. Intuitively, we think of a trace operator as a means of imposing “boundary con-
ditions”. The idea behind Definition 3.1 is to impose these boundary conditions on the operator
itself, which is a common strategy in the analysis of variational problems and related operator

equations. In this work, Ak is the operator of interest. We regard Åk as the operator on which
boundary conditions are imposed. From that perspective, the operator A

⊤
k does not feature bound-

ary conditions. The right hand side of (3.3) plays a role akin to the bilinear form involved in
classical integration by parts formulas.

3.2. Trace spaces. Recall that by hypothesis, D(A∗
k) ⊂ D(A

⊤
k ). The next proposition involves

the annihilator of D(A∗
k) in D(A

⊤
k )

′:

(3.15) D(A∗
k)

◦ :=
{
φ ∈ D(A⊤

k )
′ | 〈φ,y〉D(A⊤

k
)′ = 0 ∀y ∈ D(A∗

k)
}
⊂ D(A⊤

k )
′.

Proposition 3.4. Under Assumption A, we find for the ranges of the Hilbert traces

(3.16) R(Tt
k) = D(A

∗
k)

◦.

Proof. Suppose that φ ∈ D(A∗
k)

◦ and let w ∈ D(A⊤
k ) be its Riesz representative in D(A⊤

k ), that is

〈φ,y〉D(A⊤
k
)′ = (w,y)D(A⊤

k
) ∀y ∈ D(A⊤

k ).(3.17)

We claim that x := −A
⊤
k w ∈ D(Ak). Indeed, (3.17) implies that for all y∗ ∈ D(A

∗
k), we have

(3.18) 0 = (w,y∗)D(A⊤
k
) = (w,y∗)Wk+1

+ (A⊤
k w,A⊤

k y∗)Wk
= (w,y∗)Wk+1

+ (A⊤
k w,A∗

k y∗)Wk
.

This means (w,y∗)Wk+1
= (x,A∗

k y∗)Wk
. Therefore, if we set Cx := ‖w‖Wk+1

, we find the
estimate

|(x,A∗
k y∗)Wk

| = |(w,y∗)Wk+1
| ≤ ‖w‖Wk+1

‖y∗‖Wk+1
= Cx‖y∗‖Wk+1

∀y∗ ∈ D(A
∗
k),(3.19)

which as explained in Section 2.1 implies that x ∈ D(A∗∗
k ) = D(Ak).

In particular, according to (2.1), it also follows from (3.18) that Ak x = w. Hence, the inclusion

R(Tt
k) ⊃ D(A

∗
k)

◦ is verified by observing that for all y ∈ D(A⊤
k ),

〈Tt
kx,y〉D(A⊤

k
)′ = (Ak x,y)Wk+1

− (x,A⊤
k y)Wk

= (w,y)Wk+1
+ (A⊤

k w,A⊤
k y)Wk

= (w,y)D(A⊤
k
) = 〈φ,y〉D(A⊤

k
)′ ,

(3.20)

i.e. Tt
kx = φ.
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To show that R(Tt
k) ⊂ D(A

∗
k)

◦, let φ = Tt
kx for some x ∈ D(Ak). Then, since A

∗
k ⊂ A

⊤
k , we

obtain by (2.1) that for all y∗ ∈ D(A
∗
k)

〈φ,y∗〉D(A⊤
k
)′ = (Ak x,y∗)Wk+1

− (x,A⊤
k y∗)Wk

= (x,A∗
k y∗)Wk+1

− (x,A∗
k y∗)Wk

= 0,(3.21)

i.e. φ ∈ D(A∗
k)

◦. �

Since D(Åk) is a Hilbert subspace of D(Ak), it is closed and we can proceed with the next
definition.

Definition 3.5. In the setting of Definition 3.1, we call trace spaces the quotient spaces

(3.22) T (Ak) := D(Ak)/D(Åk),

equipped with the quotient norm

‖[x]‖T (Ak) := inf
z̊∈D(̊Ak)

‖x− z̊‖D(Ak) ∀x ∈ D(Ak).(3.23)

Remark 3.6. Notice that due to Proposition 3.2,

(3.24) T (Ak) = D(Ak)/N (Tt
k).

In Definition 3.5, the equivalence class in T (Ak) of x ∈ D(Ak) is denoted [x] = {x + z̊ | z̊ ∈

D(Åk)}. Write πt
Ak

: D(Ak)→ T (Ak) for the canonical projection (also frequently called quotient

map), i.e. πt
Ak
(x) = [x]. It is an application of a classical theorem of functional analysis that

there exists a bounded orthogonal projection Pt
k : D(Ak)→ D(Åk)

⊥ onto the complement space

(3.25) D(Åk)
⊥ :=

{
x ∈ D(Ak) | (x, z̊)D(Ak) = 0 ∀̊z ∈ D(Åk)

}
⊂ D(Ak)

such that

‖Pt
kx‖D(A) = ‖[x]‖T (Ak) ∀x ∈ D(Ak),(3.26)

cf. [47, Chap. 3.1] and [11, Chap. 5]. Write ıtk : D(Åk)
⊥ →֒ D(Ak) for canonical inclusion maps.

Since N (Pt
k) = D(Åk) by (3.26) , the bounded linear map Gt

k : T (Ak) → D(Åk)
⊥ defined by

Gt
k[x] := Pt

kx and involved in the commutative diagram

(3.27)

D(Ak) D(Åk)
⊥

D(Ak)/N (Pt
k) = T (Ak)

P
t
k

π
t
k G

t
k

as provided by the first isomorphism theorem for modules is a well-defined isometric isomorphism,

cf. [19, Chap. 10.2, Thm. 4]. Since D(Åk)
⊥ is closed [47, Chap. 3.1, Thm. 1], it is a Hilbert

space, and therefore so is T (Ak). The quotient norm is induced by the inner product

([x], [z])T (Ak) := (Pt
kx,P

t
kz)D(Ak) ∀[x], [z] ∈ T (Ak).(3.28)

Remark 3.7. Notice that N (Pt
k) = D(Åk) = N (Tt

k).

That the projection Pt
k is orthogonal means that (x − Pt

kx, z⊥)D(Ak) = 0 for all x ∈ D(Ak)

and z⊥ ∈ D(Åk)
⊥. In other words, (Id−Pt

k)x ∈ D(Åk) for all x ∈ D(Ak). Hence, the simple
observation that Id = Pt

k + (Id−Pt
k) shows that any element x ∈ D(Ak) can be decomposed as

(3.29) x = x⊥ + x◦

where x⊥ ∈ D(Åk)
⊥ and x◦ ∈ D(Åk). It is easy to see that the decomposition (3.29) is unique.

3D de Rham setting VII: Trace spaces. In the 3D de Rham setting V, applying Definition 3.5 leads
to

T (A0) = T (grad) = H1(Ω)/H̊1(Ω),(3.30a)

T (A1) = T (curl) = H(curl,Ω)/H̊(curl,Ω),(3.30b)
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T (A2) = T (div) = H(div,Ω)/H̊(div,Ω).(3.30c)

Based on Example 3.3, the linear mappings

Xgrad :H1(Ω)/H̊1(Ω) → H1/2(Γ),(3.31a)

Xcurl :H(curl,Ω)/H̊(curl,Ω) → H
−1/2(curlΓ,Γ),(3.31b)

Xdiv :H(div,Ω)/H̊(div,Ω) → H−1/2(Γ)(3.31c)

defined by

Xgrad[u] = γu ∀u ∈ H1(Ω),(3.32a)

Xcurl[u] = γtu ∀u ∈ H(curl,Ω),(3.32b)

Xdiv[v] = γnv ∀v ∈ H(div,Ω),(3.32c)

are the Hilbert space isomorphisms induced by the canonical projections involved in the following com-
mutative diagrams:

H1(Ω) H1/2(Γ) H(curl,Ω) H−1/2(curlΓ,Γ) H(curl,Ω) H−1/2(Γ)

T (grad) T (curl) T (div)

γ

π
t
grad

γt

π
t
curl

γn

π
t
div

Xgrad Xcurl Xcurl

The trace spaces H1/2(Γ), H−1/2(curlΓ,Γ) and H−1/2(Γ) can therefore be identified with the quotient

spaces T (grad), T (curl) and T (div), respectively, as we have already observed in (1.9). Under these iden-

tifications, the bounded inverse theorem guarantees that the quotient spaces are equipped with equivalent

norms. Moreover, due to the Lipschitz regularity of Γ and Sobolev extension theorems, the definitions of

T (grad), T (curl) and T (div) are intrinsic, in the sense that the quotient spaces H1(R3\Ω)/H̊1(R3\Ω),

H(curl,R3\Ω)/H̊(curl,R3\Ω) and H(div,R3\Ω)/H̊(div,R3\Ω) are also Hilbert spaces with equivalent

norms [17].

Lemma 3.8. Under Assumption A, if x⊥ ∈ D(Åk)
⊥, then Ak x⊥ ∈ D(A

⊤
k ) and

(3.33) (A⊤
k Ak + Id)x⊥ = 0.

Proof. Suppose that x⊥ ∈ D(Åk)
⊥. Since Åk ⊂ Ak, we have by definition that

0 = (x⊥, z◦)D(Ak) = (x⊥, z◦)Wk
+ (Ak x⊥,Ak z◦)Wk+1

= (x⊥, z◦)Wk
+ (Ak x⊥, Åk z◦)Wk+1

(3.34)

for all z◦ ∈ D(Åk), which means

(Ak x⊥, Åk z◦)Wk
= −(x⊥, z◦)Wk

∀z◦ ∈ D(Åk).(3.35)

So by setting Cx⊥
:= ‖x⊥‖Wk

, we conclude from the estimate

|(Ak x⊥, Åk z◦)Wk+1
| = |(x⊥, z◦)Wk

| ≤ ‖x⊥‖Wk
‖z◦‖Wk

= Cx⊥
‖z◦‖Wk

∀z◦ ∈ D(Åk),(3.36)

that Ak x⊥ ∈ D(Å
∗

k) = D(A
⊤
k ). Then as in (2.1), the identity (3.33) follows from (3.35). �

Corollary 3.9. Under Assumption A, the linear map Ak : D(Åk)
⊥ → D(A⊤

k ) is an isometry.

Proof. Suppose that x⊥ ∈ D(Åk)
⊥. Then, by Lemma 3.8,

(3.37)

‖Ak x⊥‖
2
D(A⊤

k
) = ‖Ak x⊥‖

2
Wk+1

+ ‖A⊤
k Ak x⊥‖

2
Wk

= ‖Ak x⊥‖
2
Wk+1

+ ‖x⊥‖
2
Wk

= ‖x⊥‖
2
D(Ak)

.

�

Theorem 3.10. Under Assumption A, the linear map

(3.38) I
t
k :

{
T (Ak)→ R(T

t
k)

[x] 7→ Tt
kx

is a well-defined isometric isomorphism.
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Proof. Since D(Åk) = N (Tt) by Proposition 3.2, notice that Itk : T (Ak) → R(Ak) is simply the
well-defined induced isomorphism of modules involved in the commutative diagram

D(Ak) R(Tt
k)

D(Ak)/N (Tt
k) = T (Ak)

T
t
k

π
t
Ak

I
t
Ak

provided by the first isomorphism theorem [19, Chap. 10.2, Thm. 4]. It only remains to show
that it is an isometry.

Let x ∈ D(Ak). By Proposition 3.2,

(3.39) ‖ Itk[x] ‖D(A⊤
k
)′ = ‖T

t
kx‖D(A⊤

k
)′ = ‖T

t
k(x⊥ + x◦)‖D(A⊤

k
)′ = ‖T

t
kx⊥‖D(A⊤

k
)′ .

Using that A⊤
k Ak x⊥ = −x⊥ by Lemma 3.8, we can choose y = Ak x⊥ ∈ D(A⊤

k ) to obtain

‖Tt
kx⊥‖D(A⊤

k
)′ = sup

0 6=y∈D(A⊤
k
)

|〈Tt
kx⊥,y〉|

‖y‖D(A⊤
k
)

≥
|〈Tt

kx⊥,Ak x⊥〉|

‖Ak x⊥‖D(A⊤
k
)

=
|(Ak x⊥,Ak x⊥)Wk+1

− (x⊥,A
⊤
k Ak x⊥)Wk

|

‖Ak x⊥‖D(A⊤
k
)

=
‖x⊥‖

2
D(Ak)

‖Ak x⊥‖D(A⊤
k
)

.

(3.40)

Recalling that ‖Ak x⊥‖D(A⊤
k
) = ‖x⊥‖D(Ak) by Corollary 3.9, we arrive at the inequality

(3.41) ‖Tt
kx⊥‖D(A⊤

k
)′ ≥

‖x⊥‖
2
D(Ak)

‖x⊥‖D(Ak)
= ‖x⊥‖D(Ak).

Therefore, on the one hand, ‖ Itk[x] ‖D(A⊤
k
)′ ≥ ‖x⊥‖D(Ak) = ‖[x]‖T (Ak) by (3.26).

On the other hand, inserting (3.4) in (3.39) leads to the estimate

(3.42) ‖ Itk[x] ‖D(A⊤
k
)′ = ‖T

t
kx⊥‖D(A⊤

k
) ≤ ‖T

t
k‖‖x⊥‖D(Ak) = ‖x⊥‖D(Ak) = ‖[x]‖T (Ak),

which concludes the proof. �

It is natural to think of a trace operator as a bounded linear operator from a domain to a trace
space. Therefore, based on the identification provided by Theorem 3.10, we introduce the following
perspective: in the setting of Definition 3.1, we call quotient trace the canonical projection

(3.43) πt
k :

{
D(Ak)→ T (Ak)

x 7→ [x]
.

Notice that because Itk is an isomorphism, it follows from Itk(I
t
k)

−1Tt
kx = Tt

kx = Itk[x] that

(3.44) πt
kx = (Itk)

−1
T
t
kx.

3.3. Riesz representatives. Let RD(A⊤
k ) : D(A

⊤
k )→ D(A

⊤
k )

′ be the Riesz isomorphism defined by

RD(A⊤
k )y = (y, ·)D(A⊤

k
) for all y ∈ D(A⊤

k ), cf. [11, Thm. 5.5]. Notice that in the first part of the

proof of Proposition 3.4, we have shown that the following result holds with A
⊤
k R

−1
D(A⊤

k )
φ ∈ D(Ak).

Lemma 3.11. Under Assumption A, if φ ∈ D(A∗
k)

◦, then A
⊤
k R

−1
D(A⊤

k )
φ ∈ D(Åk)

⊥ with

(Ak A
⊤
k + Id)R−1

D(A⊤
k )
φ = 0 and T

t
Ak
(A⊤

k R
−1
D(A⊤

k )
φ) = −φ.(3.45)

Proof. It only remains to show that in particular A
⊤
k R

−1
D(A⊤

k )
φ ∈ D(Åk)

⊥. Recall that A
⊤
k := Å

∗

k.

Since A
∗
k ⊂ A

⊤
k , we find, using (Ak A

⊤
k + Id)R−1

D(A⊤
k )
φ = 0, that for all x◦ ∈ D(Åk),

(A⊤
k R

−1
D(A⊤

k )
φ,x◦)D(Ak) = (A⊤

k R
−1
D(A⊤

k )
φ,x◦)Wk

+ (Ak A
⊤
k R

−1
D(A⊤

k )
φ,Ak x◦)Wk+1

= (R−1
D(A⊤

k )
φ, Åk x◦)Wk+1

− (R−1
D(A⊤

k )
φ, Åk x◦)Wk+1

= 0.
(3.46)

�
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Applying (Itk)
−1 on both sides of the second identity in Lemma 3.11, we find using (3.44) a

slightly more explicit expression of the inverse (Itk)
−1.

Lemma 3.12. Under Assumption A, we have

(Itk)
−1φ = −πt

Ak
(A⊤

k R
−1
D(A⊤

k )
φ) ∀φ ∈ D(A∗

k)
◦ = R(Tt

k).(3.47)

Remark 3.13. The operators A
⊤
k R

−1
D(A⊤

k )
: R(Tt

k) → D(Åk)
⊥ ⊂ D(Ak) could be called D(Ak)-

harmonic extension operators.

In summary, we have shown so far in Section 3 that the following diagram is commutative:

D(A∗
k)

◦ = R(Tt
k)

D(Ak) D(Åk)
⊥

T (Ak) = D(Ak)/D(Åk)

−A
⊤
k R

−1

D(A⊤
k

)

(Itk)
−1

P
t
k

T
t
k

π
t
k

ıtk

T
t
k

π
t
k

G
t
k

I
t
k

4. Duality

In this section, we maintain the setting of Assumption A, and we focus on the following snippet
of the dual Hilbert complex (cf. Sections 2.2 and 2.3):

· · · D(A⊤
k−2) ⊂Wk−1 D(A⊤

k−1) ⊂Wk D(A⊤
k ) ⊂Wk+1 · · ·

∪ ∪ ∪

· · · D(A∗
k−2) ⊂Wk−1 D(A∗

k−1) ⊂Wk D(A∗
k) ⊂Wk+1 · · ·

A
⊤
k−2 A

⊤
k−1 A

⊤
k A

⊤
k+1

A
∗
k−2 A

∗
k−1 A

∗
k A

∗
k+1

Recall the simple though important observation that because (A⊤
k )

∗ = Å
∗∗

k = Åk, then we have

Åk ⊂ Ak ⇐⇒ A
∗
k ⊂ A

⊤
k . Given two operators Ak : D(Ak) ⊂ Wk → Wk+1 and Åk : D(Åk) ⊂

Wk →Wk+1 satisfying Assumption A, the Hilbert space adjoints A
⊤
k : D(A⊤

k ) ⊂Wk+1 →Wk

and A
∗
k : D(A∗

k) ⊂ Wk+1 → Wk thus also satisfy Assumption A, but with the roles of Wk

and Wk+1 swapped. Indeed, both A
⊤
k and A

∗
k are densely defined and closed unbounded linear

operators between the Hilbert spaces and A
⊤
k is an extension of A∗

k, i.e. D(A
∗
k) ⊂ D(A

⊤
k ) and

A
∗
k y∗ = A

⊤
k y∗ for all y∗ ∈ D(A

∗
k).

In Section 4.1, the dual Hilbert trace Tn
k will be nothing more than the primal Hilbert trace

from Definition 3.1 but associated with the pair of operators A
⊤
k and A

∗
k. Nevertheless, we state

its properties for completeness and to set up notation, because it will be used for the important
duality results of Section 4.2.

4.1. Dual traces. As before, it follows from (3.1) that the following operator is well-defined.

Definition 4.1. Under Assumption A, we call dual Hilbert trace the bounded operator

(4.1) T
n
k : D(A⊤

k )→ D(Ak)
′,

defined for all y ∈ D(A⊤
k ) and x ∈ D(Ak) by

〈Tn
ky,x〉D(A⊤

k
)′ := (A⊤

k y,x)Wk
− (y,Ak x)Wk+1

.(4.2)

As in (3.4), we have ‖Tn
k‖ = 1, where ‖ · ‖ is the operator norm. Note that for all x ∈ D(Ak)

and y ∈ D(A⊤
k ),

(4.3) 〈Tt
kx,y〉D(Ak)′ = −〈x,T

n
ky〉D(A⊤

k
)′ .
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In other words

(Tt
k)

′ = −Tn
k and (Tn

k )
′ = −Tt

k.(4.4)

The results of Section 3 can be mirrored by interchanging the roles of Ak and A
⊤
k (and the roles

of Åk and A
∗
k accordingly). We translate a few of them without proof.

Proposition 4.2 (cf. Proposition 3.2). Under Assumption A, we have

(4.5) N (Tn
k ) = D(A

∗
k).

The next proposition involves the annihilator of D(Åk) in D(Ak)
′:

(4.6) D(Åk)
◦ := {φ ∈ D(Ak)

′ | 〈φ,x◦〉 = 0, ∀x◦ ∈ D(Åk) }.

Proposition 4.3 (cf. Proposition 3.4). Under Assumption A, we have

(4.7) R(Tn
k ) = D(Åk)

◦.

Definition 4.4 (cf. Definition 3.5). We call dual trace spaces the quotient spaces

(4.8) T (A⊤
k ) := D(A

⊤
k )/D(A

∗
k),

equipped with the quotient norm

‖[y]‖T (A⊤
k
) := inf

z∗∈D(A∗
k
)
‖y − z∗‖D(A⊤

k
) ∀y ∈ D(A⊤

k ).(4.9)

Remark 4.5. Just as in Remark 3.6, notice that due to Proposition 4.2,

(4.10) T (A⊤
k ) = D(A

⊤
k )/N (Tn

Ak
).

In (4.9), we used square brackets to denote the equivalence class in T (A⊤
k ) of y ∈ D(A

⊤
k ), i.e.

[y] = {y + z∗ | z∗ ∈ D(A
∗
k)}. We will write πn

k : D(A⊤
k ) → T (A

⊤
k ) for the associated canonical

projection (quotient map), i.e. πn
k (y) = [y]. Then, as previously detailed in Section 3.2, there

exists a bounded orthogonal projection Pn
k : D(A⊤

k )→ D(A
∗
k)

⊥ onto the complement space

(4.11) D(A∗
k)

⊥ :=
{
y ∈ D(A⊤

k ) | (y, z∗)D(A⊤
k
) = 0, ∀z∗ ∈ D(A

∗
k)
}

satisfying ‖Pn
ky‖D(A⊤

k
) = ‖[y]‖T (A⊤

k
) for all y ∈ D(A

⊤
k ). We denote by ınk : D(A∗

k)
⊥ →֒ D(A⊤

k ) the

canonical inclusion maps.
The induced operator Gn

k : T (A⊤
k )→ D(A

∗
k)

⊥ involved in the commutative diagram

(4.12)

D(A⊤
k ) D(A∗

k)
⊥

D(A⊤
k )/N (Pn

k ) = T (A
⊤
k )

P
n
k

π
n
k G

n
k

is an isometric isomorphism. Accordingly, any y ∈ D(A⊤
k ) can be uniquely decomposed as

y = P
n
ky + y∗, y∗ := (Id−Pn

k )y ∈ N (Pn
k ) = D(A

∗
k).(4.13)

3D de Rham setting VIII: Classical dual traces. Using (4.4), we find for the de Rham complex
that

T
n
grad = −γ′ ◦ γn, T

n
curl = γ′

t ◦ γt, T
n
div = −γ′

n ◦ γ.(4.14)

Recalling (1.8a) to (1.8c), we see from the table of the 3D de Rham setting IV that based on Proposi-
tion 4.2,

N (Tn
grad) = N (γn), N (Tn

curl) = N (γt), N (Tn
div) = N (γ).(4.15)

The trace spaces provided by Definition 4.4 in this setting are

T (grad⊤) = T (div) = H(div,Ω)/H̊(div,Ω),(4.16a)

T (curl⊤) = T (curl) = H(curl,Ω)/H̊(curl,Ω),(4.16b)
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T (div⊤) = T (grad) = H1(Ω)/H̊1(Ω).(4.16c)

Notice that from (3.9), we also

(Tt
div)

′ = T
t
grad = −T

n
div = −(Tn

grad)
′ and (Tt

grad)
′ = T

t
div = −T

n
grad = −(Tn

div)
′.(4.17)

Moreover, we see that the skew-symmetry behind (1.10) is rooted in the fact that the identity A1 = curl =
A

⊤
1 leads to skew-symmetry of the pairing

(4.18) (x,y) 7→ (curl x,y)L2(Ω) − (x, curl y)L2(Ω).

This is reflected in the observation that (γ′
t ◦ γt)

′ = (Tt
1)

′ = −T
n
1 = −γ′

t ◦ γt, which indeed occurs when

duality is taken with respect to the skew-symmetric pairing (1.10).

Theorem 4.6 (cf. Theorem 3.10). Under Assumption A, the linear map

(4.19) I
n
k :

{
T (A⊤

k )→ R(T
n)

[y] 7→ Tn
Ak
y

is a well-defined isometric isomorphism.

We call dual quotient trace the canonical projection (cf. (3.43))

(4.20) πn
k :

{
D(A⊤

k )→ T (A
⊤
k )

y 7→ [y]
.

Similarly as before, notice that (cf. (3.44))

(4.21) πn
ky = (Ink )

−1
T
n
ky,

and the following diagram is commutative:

D(Åk)
◦

D(A⊤
k ) D(A∗

k)
⊥

T (A⊤
k )

−Ak R
−1

D(Ak)

(Ink )
−1

P
n
k

T
n
k

π
n
k

ınk

T
n
k

π
n
k

G
n
k

I
n
k

4.2. Duality of trace spaces. In this section, we show that the trace spaces T (Ak) and T (A
⊤
k )

can be put in duality through an isometry. In fact, this follows immediately from a classical result
in functional analysis. Indeed, according to [44, Thm. 4.9], we have the isometric isomorphisms

D(A∗
k)

◦ ∼=
(
D(A⊤

k )/D(A
∗
k)
)′

and D(Åk)
◦ ∼=

(
D(Ak)/D(Åk)

)′
.(4.22)

Combining these results with propositions 3.4 and 4.3, along with theorems 3.10 and 4.6,

T (Ak) ∼= R(T
t
k) = D(A

∗
k)

◦ ∼=
(
D(A⊤

k )/D(A
∗
k)
)′

= (T (A⊤
k ))

′,(4.23a)

T (A⊤
k )
∼= R(Tn

k ) = D(Åk)
◦ ∼=

(
D(Ak)/D(Åk)

)′
= (T (Ak))

′.(4.23b)

Nevertheless, we provide a detailed proof below, not only for convenience and completeness,
but also because the exercise is illuminating. We proceed with the definition of a continuous
bilinear form on T (Ak) × T (A

⊤
k ) and prove that the associated induced linear operator is an

isometry. This pairing will be at the heart of sections 7.2 and 7, where it will be used to prove
that Hilbert complexes affording so-called compact regular decompositions spawn Fredholm trace
Hilbert complexes.
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Lemma 4.7. Under Assumption A, the bilinear form

(4.24a) 〈〈·, ·〉〉k : T (Ak)× T (A
⊤
k )→ R,

defined by

〈〈[x], [y]〉〉k := (Ak x,y)Wk+1
− (x,A⊤

k y)Wk
∀[x] ∈ T (Ak), ∀[y] ∈ T (A

⊤
k ),(4.24b)

is well-defined and continuous with norm ≤ 1.

Proof. Since 〈〈[u], [v]〉〉k = 〈Tt
kx,y〉D(Ak)′ , it is well-defined thanks to Proposition 3.2 and Propo-

sition 3.4. By the same propositions, the orthogonal decompositions (3.29) and (4.13) yield the
estimate

|〈Tt
kx,y〉D(Ak)′ | = |〈T

t
kP

t
kx,P

n
ky〉D(Ak)′ |

= |(Ak P
t
kx,P

n
ky)Wk+1

− (Pt
kx,A

⊤
k P

n
ky)Wk

|

≤ ‖Ak P
t
kx‖Wk+1

‖Pn
ky‖Wk+1

+ ‖Pt
kx‖Wk

‖A⊤
k P

n
ky‖Wk

≤ ‖Pt
kx‖D(Ak)‖P

n
ky‖D(A⊤

k
)

= ‖[x]‖T (Ak)‖[y]‖T (A⊤
k
),

(4.25)

showing that the bilinear form is continuous with norm ≤ 1. �

The next result shows in particular that T (Ak) and T (A
⊤
k ) can be put in duality through the

bilinear form 〈〈·, ·〉〉k.

Theorem 4.8. Under Assumption A, the bounded linear operator

(4.26) Kk :

{
T (Ak)→ T (A

⊤
k )

′

[x] 7→ 〈〈[x], ·〉〉k

induced by the bilinear form defined in Lemma 4.7 is an isometric isomorphism.

Proof. The key to the proof is that (4.24b) permits us to appeal to Theorem 3.10.
Notice that since R(Tt

k) = D(A
∗
k)

◦, it follows from the orthogonal decomposition (4.13) that Kk

is the pullback by Gn
k of Itk, i.e. Kk[x]([y]) = Itk[x](G

n
k [y]). We first show that it is an isomorphism.

If Kk[x] = Kk[z], then since Gn
k is an isomorphism onto D(A∗

k)
⊥, it then follows from Propo-

sition 3.4 and decomposition (4.13) that Itk[x](y) = Itk[z](y) for all y ∈ D(A⊤
k ). But Itk is also an

isomorphism, so Itk[x] = Itk[z] implies that x = z and we conclude that Kk is injective.

Suppose that φ ∈ T (A⊤
k )

′. Then the pullback of φ by the canonical quotient map πn
k : D(A⊤

k )→

T (A⊤
k ) is a bounded linear functional on D(A⊤

k ), i.e. φ ◦ π
n
k ∈ D(A

⊤
k )

′. Indeed, this simply holds
because

|φ(πn
ky)| = ‖φ‖‖π

n
ky‖T (A⊤

k
) ≤ ‖φ‖‖π

n
k ‖‖y‖D(A⊤

k
) ∀y ∈ D(A⊤

k ).(4.27)

Moreover, since N (πn
k ) = D(A

∗
k), we find in particular that φ ◦ πn

k ∈ D(A
∗
k)

◦ = R(Tt
k). But Itk is

an isomorphism onto R(Tt
k), so there exists [x] ∈ T (Ak) such that Itk[x] = φ ◦ π

n
k . Evaluating

(4.28) Kk[x] = I
t
k[x] ◦ G

n
k = φ ◦ πn

k ◦ G
n
k = φ

shows that Kk is surjective.
We now prove that Kk is an isometry. Using similar arguments as above, we estimate

(4.29) ‖Kk[x]‖ = sup
[y]∈T (A⊤

k ),
‖[y]‖

T (A⊤
k

)
=1

|Kk[x]([y])| = sup
y⊥∈D(A∗

k)
⊥,

‖y⊥‖
D(A⊤

k
)
=1

|Itk[x](y⊥)| = ‖I
t
k[x]‖ = ‖[x]‖T (Ak).

�

We have arrived at an integration by parts formula involving the traces from Section 3.1 and
Section 4.1: for all x ∈ D(Ak) and y ∈ D(A⊤

k ),

(4.30) (Ak x,y)Wk+1
− (x,A⊤

k y)Wk
= 〈〈πt

kx,π
n
ky〉〉Ak

.
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Theorem 4.8, in combination with (1.12a) and (1.12b), reveals the abstract version of the duality
observed for the de Rham complex in Section 1.

5. Operators on Trace Spaces

Starting from this section, we start exploiting more of the structure of Hilbert complexes by
introducing the minimal Hilbert complex setting required to define what we will call surface
operators. We “zoom in” on short snippets of (2.5a) and (2.8a) of the form

(5.1)

· · · D(Ak) ⊂Wk D(Ak+1) ⊂Wk+1 D(Ak+2) ⊂Wk+2 · · ·

∪ ∪

· · · D(Åk) ⊂Wk D(Åk+1) ⊂Wk+1 D(Åk+2) ⊂Wk+2 · · ·

Ak−1 Ak Ak+1 Ak+2

Åk−1 Åk Åk+1 Åk+2

We may call the highlighted sequences “minimal Hilbert complexes”. The index k should be
considered arbitrary but fixed in this section.

3D de Rham setting IX: Minimal Hilbert complexes. Based on the 3D de Rham setting III and
IV, we obtain two minimal complexes such as (5.1). For k = 0, we have

(5.2)
H1(Ω) ⊂ L2(Ω) H(curl,Ω) ⊂ L2(Ω) L2(Ω),

H̊1(Ω) ⊂ L2(Ω) H̊(curl,Ω) ⊂ L2(Ω) L2(Ω).

grad curl

grad curl

For k = 1, we get

(5.3)
H(curl,Ω) ⊂ L2(Ω) H(div,Ω) ⊂ L2(Ω) ⊂ L2(Ω),

H̊(curl,Ω) ⊂ L2(Ω) H̊(div,Ω) ⊂ L2(Ω) L2(Ω).

curl div

curl div

5.1. Surface operators in domains. Notice that due to the complex property, we have in
particular that R(Ak) ⊂ D(Ak+1) and R(A⊤

k+1) ⊂ D(A
⊤
k ). The following key operators are thus

well-defined.

Definition 5.1. We call surface operators the bounded linear maps

D
t
k := (A⊤

k+1)
′ : D(A⊤

k )
′ → D(A⊤

k+1)
′,(5.4a)

D
n
k+1 := A

′
k : D(Ak+1)

′ → D(Ak)
′,(5.4b)

dual to A
⊤
k+1 : D(A⊤

k+1)→ D(A
⊤
k ) and Ak : D(Ak)→ D(Ak+1), respectively. Equivalently,

〈Dt
kφ, z〉D(A⊤

k+1)
′ = 〈φ,A⊤

k+1 z〉D(A⊤
k
)′ , ∀φ ∈ D(A⊤

k )
′, ∀z ∈ D(A⊤

k+1) ⊂Wk+2,(5.5a)

〈Dn
k+1ψ,y〉D(Ak)′ = 〈ψ,Ak x〉D(Ak+1)′ , ∀ψ ∈ D(Ak+1)

′, ∀x ∈ D(Ak) ⊂Wk.(5.5b)

Remark 5.2. Recall the distinction made in Section 2.1 between the notation for bounded and
unbounded linear operators. We point out that in Definition 5.1, the operators A

⊤
k+1 : D(A⊤

k+1)→

D(A⊤
k ) and Ak : D(Ak)→ D(Ak+1) are bounded.

Remark 5.3. The name ‘surface operators’ was chosen by analogy with standard surface operators
on the boundary of a domain, despite the fact that there is no boundary involved in the above
definition. The relation between Definition 5.1 and standard surface operators is made more
explicit in the 3D de Rham settings X and XI.

3D de Rham setting X: Surface operators in domains. In the 3D de Rham setting IX, we find
the surface operators

D
t
0 := curl

′ : H(div,Ω)′ → H(curl,Ω)′,(5.6a)

D
t
1 := (−grad)′ : H(curl,Ω)′ → H̃−1(Ω),(5.6b)
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dual to the bounded operators

curl : H(curl,Ω) → H(div,Ω) and −grad : H1(Ω) → H(curl,Ω),(5.7)

where we have written H̃−1(Ω) := H1(Ω)′. In other words,

〈Dt
0φ,v〉H(curl,Ω)′ = 〈φ, curl v〉H(div,Ω)′ , ∀φ ∈ H(div,Ω)′∀v ∈ H(curl,Ω),(5.8a)

〈Dt
1φ,u〉H̃−1(Ω) = 〈ψ,−gradu〉H(curl,Ω)′ ∀φ ∈ H(curl,Ω)′, ∀u ∈ H1(Ω).(5.8b)

In the adjoint perspective, the bounded linear operators

D
n
1 := grad

′ : H(curl,Ω)′ → H̃−1(Ω)(5.9a)

D
n
2 := curl

′ : H(div,Ω)′ → H(curl,Ω)′(5.9b)

are dual to the bounded linear operators

grad : H1(Ω) → H(curl,Ω) and curl : H(curl,Ω) → H(div,Ω).(5.10)

That is,

〈Dn
1φ, u〉H̃−1(Ω) = 〈φ,gradu〉H(curl,Ω)′ ∀φ ∈ H(curl,Ω)′, ∀u ∈ H1(Ω),(5.11a)

〈Dn
2ψ,v〉H(curl,Ω)′ = 〈ψ, curl v〉H(div,Ω)′ ∀ψ ∈ H(div,Ω)′, ∀v ∈ H(curl,Ω).(5.11b)

Since

R(Ak) ⊂ D(Ak+1) = D(T
t
k+1), R(Tt

k) ⊂ D(A
⊤
k )

′ = D(Dt
k),(5.12a)

R(A⊤
k+1) ⊂ D(A

⊤
k ) = D(T

n
k ), R(Tn

k+1) ⊂ D(Ak+1)
′ = D(Dn

k+1),(5.12b)

the linear operators

D
t
k ◦ T

t
k : D(Ak)→ D(A

⊤
k+1)

′, T
t
k+1 ◦ Ak : D(Ak)→ D(A

⊤
k+1)

′,(5.13a)

D
n
k+1 ◦ T

n
k+1 : D(A⊤

k+1)→ D(Ak)
′, T

n
k ◦ A

⊤
k+1 : D(A⊤

k+1)→ D(Ak)
′,(5.13b)

are also well-defined and bounded.

Lemma 5.4. Assumption A implies the following commuting relations:

−Dt
k ◦ T

t
k = T

t
k+1 ◦ Ak and −Dn

k+1 ◦ T
n
k+1 = T

n
k ◦ A

⊤
k+1 .(5.14)

Proof. By symmetry, we need to verify only one relation. Recall that because of the complex
property Ak+1 ◦Ak = 0, we also have A

⊤
k ◦A

⊤
k+1 = 0. Therefore, for all x ∈ D(Ak) ⊂ Wk and

z ∈ D(A⊤
k+1) ⊂Wk+2, we have on the one hand that

〈Dt
kT

t
kx, z〉D(A⊤

k+1)
′ = 〈Tt

kx,A
⊤
k+1 z〉D(A⊤

k
)′ = (Ak x,A

⊤
k+1 z)Wk+1

− (u,A⊤
k A

⊤
k+1 z)Wk

= (Ak x,A
⊤
k+1 z)Wk+1

.
(5.15)

On the other hand, we also evaluate

〈Tt
k+1 Ak x, z〉D(A⊤

k+1)
′ = (Ak+1 Ak x, z)Wk+2

− (Ak x,A
⊤
k+1 z)Wk+1

= −(Ak x,A
⊤
k+1 z)Wk+1

.
(5.16)

�

Remark 5.5. Consistent with (4.4), (Dt
k ◦ T

t
k)

′ = Dn
k+1 ◦ T

n
k+1 and Dt

k ◦ T
t
k = (Dn

k+1 ◦ T
n
k+1)

′.

Lemma 5.4 states that the following diagrams commute:

(5.17)

D(Ak) D(Ak+1) D(A⊤
k+1) D(A⊤

k )

R(Tt
k) R(Tt

k+1) R(Tn
k+1) R(Tn

k )

Ak
A
⊤
k+1

T
t
k

−D
t
k

T
t
k+1 T

n
k+1

−D
n
k+1

T
n
k
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An important consequence of this result is that

(5.18) D
t
k(R(T

t
k)) ⊂ R(T

t
k+1) = D(A

∗
k+1)

◦,

an observation that is key to the introduction of trace Hilbert complexes in later sections.

3D de Rham setting XI: Commutative relations. In the 3D de Rham setting, it follows from
(4.17) that the four relations obtained from Lemma 5.4 boil down to the single identity

(5.19) grad
′γ′

t ◦ γt = γ′ ◦ γncurl.

In particular, (5.19) states that for all u ∈ H(curl,Ω) and v ∈ H1(Ω),

(5.20)

∫

Γ

v n · curl u dσ =

∫

Γ

n× (u× n) · (grad v × n) dσ.

Recall that n · curl = curlΓ ◦ γt on H(curl,Ω), while the L2(Γ)-dual operator curlΓ = curl′Γ is such
that grad · ×n = curlΓ ◦ γ on H1(Ω). Therefore, (5.20) expresses that

∫

Γ

u curlΓu dσ =

∫

Γ

curlΓu · u dσ ∀u ∈ H1/2(Γ), u ∈ H
−1/2(curlΓ,Γ).(5.21)

We conclude that the duality between the surface operators and their surface vector calculus counterparts
in classical trace spaces is indeed captured by the duality in Section 4.2 and Lemma 5.4.

We point out that if one works with the L2(Γ)-pairing instead of the skew-symmetric pairing (1.10) from
the start, then the two isometrically isomorphic perspectives of tangential and “rotated” tangential traces
from [15] are also captured by the abstract theory. Indeed, by introducing the trace γτ : · 7→ · × n, one
obtains Tt

curl = γ′
t ◦ γτ and T

n
curl = −γ′

τ ◦ γτ , which also satisfy (4.4). With these definitions, Lemma 5.4
leads to two identities corresponding to (5.21) and

∫

Γ

v divΓv dσ = −

∫

Γ

gradΓv · vdσ ∀v ∈ H1/2(Γ), v ∈ H
−1/2(divΓ,Γ),(5.22)

which is a “rotated” version of (5.21), where γncurl = divΓγτ on H(curl,Ω) and H−1/2(divΓ,Γ) is defined

by analogy with (1.7b).

5.2. Surface operators in quotient spaces. Let us investigate the properties of the linear
operators between trace spaces induced by the surface operators defined in Section 5.1.

Definition 5.6. We call quotient surface operators the bounded linear maps

S
t
k :

{
T (Ak)→ T (Ak+1)

[x] 7→ πt
k+1 Ak x

and S
n
k+1 :

{
T (A⊤

k+1)→ T (A
⊤
k )

[z] 7→ πn
k A

⊤
k+1 z

.(5.23)

We verify that Stk is well-defined. The analogous result holds for Snk+1 by duality. Suppose that

x◦ ∈ D(Åk). By the complex property, we evaluate

〈〈πt
k+1 Ak x◦, [z]〉〉Ak+1

= (Ak+1 Ak x◦, z)Wk+2
− (Ak x◦,A

⊤
k+1 z)Wk+1

= −(Åk x◦, Å
∗

k+1 z)Wk+1

= −(Åk+1 Åk x◦, z)Wk+1
= 0

(5.24)

for all z ∈ D(A⊤
k+1) ⊂Wk+2. By Section 4.2, we conclude that πt

k+1 Ak x̊ = 0.

From the above, we also find that for all x ∈ D(Ak) ⊂Wk and z ∈ D(A⊤
k+1) ⊂Wk+2,

〈〈Stk ◦ π
t
k x,π

n
k+1 z〉〉k+1 = −(Ak x,A

⊤
k+1 z)Wk+1

= −〈〈πt
k x, S

n
k+1 ◦ π

n
k+1 z〉〉k.(5.25)

We can view the identity

〈〈Stk[x], [z]〉〉k+1 = −〈〈[x], Snk+1[z]〉〉k ∀[x] ∈ T (Ak), ∀[z] ∈ T (A
⊤
k+1),(5.26)

as an integration by parts formula in (quotient) trace spaces.
Recalling Section 4.2, we can rewrite (5.26) as

(5.27) Kk+1 ◦ S
t
k = −(Snk+1)

′ ◦ Kk,
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which gives rise to the commutative diagram

(5.28)

T (A⊤
k )

′ T (A⊤
k+1)

′

T (Ak) T (Ak+1)

−(Sn
k+1)

′

S
t
k

Kk Kk+1

We end this section by putting the results of the subsections 5.1 and 5.2 together into a single
diagram. On the one hand, for all x ∈ D(Ak) and z ∈ D(A⊤

k+1), we find from the proof of
Lemma 5.4 that

〈Dt
k ◦ T

t
k x, z〉D(A⊤

k+1)
′ = 〈Dn

k+1 ◦ T
n
k+1z,x〉D(Ak)′

= 〈〈πt
k x, S

n
k+1 ◦ π

n
k+1 z〉〉k

= −〈〈Stk ◦ π
t
k x,π

n
k+1 z〉〉k+1.

(5.29)

On the other hand, we have by definition

S
t
kπ

t
k x = πt

k+1 Ak x and S
n
k+1π

n
k+1 z = πn

k A
⊤
k+1 z.(5.30)

Also recall (3.44) and (4.21). In summary, the following diagrams are commutative:
(5.31)

T (Ak) T (Ak+1) T (A⊤
k+1) T (A⊤

k )

D(Ak) D(Ak+1) D(A⊤
k+1) D(A⊤

k )

R(Tt
k) R(Tt

k+1) R(Tn
k+1) R(Tn

k )

S
t
k

I
t
k

I
t
k+1

S
n
k+1

I
n
k+1 I

n
k

π
t
k

Ak

π
t
k+1

π
n
k+1

A
⊤
k+1

π
n
k

T
t
k

−D
t
k

T
t
k+1 T

n
k+1

−D
n
k+1

T
n
k

6. Trace spaces: Characterization by Regular Subspaces

6.1. Bounded regular decompositions. In this section, we augment Assumption A. We first
detail results in the setting of Definition 3.1 for primal Hilbert traces, then formulate their analogs
in the dual setting of Definition 4.1. By symmetry, the primal and dual settings are evidently two
faces of the same coin. From an abstract point of view, they are identical. Nevertheless, the dual
setting is presented for convenience. The two settings are covered independently to avoid loosing
sight of the core considerations.

6.1.1. Primal decomposition. Now, we aim at a more detailed characterization of the spaceD(A⊤
k )

′.

Recall that by the complex property, R(A⊤
k+1) ⊂ D(A

⊤
k ).

We refer to [35, Def. 2.12] for the next assumption, which introduces additional structure.

Assumption B. For all k ∈ Z, Assumption A holds along with the following hypotheses:

I The Hilbert spaces W+
k ⊂ Wk are such that the inclusion maps spawn continuous and

dense embeddings

W+
k →֒ D(A

⊤
k−1).(6.1)

II There exist bounded operators

L
t
k+1 : D(A⊤

k )→W+
k+1 and V

t
k+1 : D(A⊤

k )→W+
k+2(6.2)

such that

y = (Ltk+1 + A
⊤
k+1 V

t
k+1)y ∀y ∈ D(A⊤

k ).(6.3)
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III The Hilbert spaces

(6.4) W+
k+2(A

⊤
k+1) :=

{
z ∈W+

k+2 | A
⊤
k+1 z ∈W+

k+1

}
,

equipped with the graph inner product defined for all z1, zz ∈W+
k+2(A

⊤
k+1) by

(6.5) (z1, z2)W+
k+2(A

⊤
k+1)

:= (z1, z2)W+
k+2

+ (A⊤
k+1 z1,A

⊤
k+1 z2)W+

k+1
,

are such that the inclusions W+
k+2 ⊂Wk+2 induce continuous and dense embeddings

W+
k+2(A

⊤
k+1) →֒ D(A

⊤
k−1).(6.6)

We adopt a shorter notation for the dual spaces:

W−
k := (W+

k )
′, k ∈ Z.(6.7)

Remark 6.1. In Hypothesis II, (6.3) is a stable regular decomposition of the form

(6.8) D(A⊤
k ) = W+

k+1 + A
⊤
k+1 W

+
k+2, k ∈ Z.

By stable, we mean that the lifting and potential operators in (6.2) are bounded. We call it regular
due to Hypothesis I, based on which we can imagine the W+

k s as subspaces of “extra regularity”.

Remark 6.2. The decomposition in (6.3)/ (6.8) need not be direct.

Remark 6.3. Assumption B is stated for all k ∈ Z. Strictly speaking, in the setting of a minimal
complex with k ∈ Z fixed, to which we adhere in this section, only one stable regular decomposition
(the one written in (6.3) and involving the regular spaces W+

k+1 and W+
k+2) is necessary for the

characterization of D(A⊤
k )

′ and R(Tt
k).

Lemma 6.4. Under Assumption B, the surface operator Dt
k : D(A⊤

k )
′ → D(A⊤

k+1)
′ defined in

(5.4a) can be extended to a continuous mapping

(6.9) D
t
k :

{
W−

k+1 →W+
k+2(A

⊤
k+1)

′

φ 7→ 〈φ,A⊤
k+1 · 〉W−

k+1

,

still designated by the same notation.

Proof. For all φ ∈W−
k+1, it follows by definition that ∀z ∈W+

k+2(A
⊤
k+1),

|〈φ,A⊤
k+1 z〉W−

k+1
| ≤ ‖φ‖

W
−
k+1
‖A⊤

k+1 z‖W+
k+1
≤ ‖φ‖

W
−
k+1
‖z‖

W
+
k+2(A

⊤
k+1)

.(6.10)

�

6.1.2. Dual decomposition. We may also adopt the adjoint perspective. It goes without saying
that the development is completely symmetric to Section 6.1.1. We present it for completeness.

Assumption C. (cf. Assumption B) For all k ∈ Z, beside Assumption A we stipulate the
following:

I The Hilbert spaces W+
k ⊂ Wk are such that the inclusion maps spawn continuous and

dense embeddings

W+
k →֒ D(Ak).(6.11)

II There exist bounded operators

L
n
k+1 : D(Ak+1)→W+

k+1 and V
n
k+1 : D(Ak+1)→W+

k(6.12)

such that

y = (Lnk+1 + Ak V
n
k+1)y ∀y ∈ D(Ak+1).(6.13)
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III The Hilbert spaces

(6.14) W+
k (A

⊤
k ) :=

{
x ∈W+

k | Ak x ∈W+
k+1

}
,

equipped with the graph inner product defined for all x1,xz ∈W+
k (Ak) by

(6.15) (x1,x2)W+
k
(Ak)

:= (x1,x2)W+
k
+ (Ak x1,A

⊤
k+1 x2)W+

k+1
,

are such that the inclusions W+
k ⊂Wk induce continuous and dense embeddings

W+
k (Ak) →֒ D(Ak).(6.16)

Lemma 6.5. Under Assumption C, the surface operator Dn
k+1 can be extended to a continuous

mapping

(6.17) D
n
k :

{
W−

k+1 →W+
k (Ak)

′

ψ 7→ 〈ψ,Ak · 〉W−
k+1

.

Proof. Parallel to the proof of Lemma 6.4, it follows by definition that given ψ ∈W−
k+1,

|〈ψ,Ak x〉W−
k+1
| ≤ ‖ψ‖

W
−
k+1
‖Ak x‖W+

k+1
≤ ‖ψ‖

W
−
k+1
‖x‖

W
+
k
(Ak)

∀x ∈W+
k (Ak).(6.18)

�

It is not excluded that both assumptions B and C hold, in which case the inclusion

(6.19) W+
k+1 →֒ D(A

⊤
k ) ∩ D(Ak+1)

is assumed to be a dense embedding.

3D de Rham setting XII: Stable regular decompositions. There is some freedom in choosing
the spaces W+

k , k ∈ Z. For the de Rham complex though, there are obvious candidates satisfying (6.19)

that also satisfy both assumptions B and C: functions in the Sobolev space H1(Ω) and vector-fields with
components in H1(Ω), which by Rellich’s lemma are compactly embedded in the spaces L2(Ω) and L2(Ω),
respectively.

k 0 1 2 3

Wk L2(Ω) L2(Ω) L2(Ω) L2(Ω)

W+
k H1(Ω) H1(Ω) H1(Ω) H1(Ω)

D(Ak) H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)

D(A⊤

k ) H(div,Ω) H(curl,Ω) H1(Ω) {0}

It is well-known (cf. [24, Sec.2], [23, Lem. 2.4] and [25, Sec. 3]) that the graph spaces D(Ak) and D(A⊤

k )
given in the above table admit the stable decompositions

D(A2) = D(A⊤

0 ) = H(div,Ω) = H
1(Ω) + curlH

1(Ω),(6.20a)

D(A1) = D(A⊤

1 ) = H(curl,Ω) = H
1(Ω) + gradH1(Ω)(6.20b)

These satisfy assumptions B and C. Moreover, you may recall that

H
1(Ω) →֒ H(curl,Ω) ∩H(div,Ω)(6.21)

is a dense embedding [2, Prop. 2.3].
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6.2. Characterization of dual spaces. In light of Lemma 6.4, the Hilbert space

(6.22) W−
k+1(D

t
k) :=

{
φ ∈W−

k+1 | D
t
kφ ∈W−

k+2

}
,

equipped with the graph norm ‖ · ‖2
W

−
k+1(D

t
k
)
:= ‖ · ‖2

W
−
k+1

+ ‖Dt
k · ‖

2
W

−
k+2

, is well-defined under

Assumption B. In this setting, observe that, if φ ∈W−
k+1(D

t
k), then based on the decomposition

(6.3), the evaluation

(6.23) φ(y) = φ(Ltk+1y) + φ(A
⊤
k+1 V

t
k+1y) = φ(L

t
k+1y) + D

t
kφ(V

t
k+1y)

is well-defined for all y ∈ D(A⊤
k ) thanks to the hypothesis that guarantees R(Ltk+1) ⊂W+

k+1 and

R(Vt
k+1) ⊂W+

k+2.

Theorem 6.6. Assumption B guarantees the following isomorphism of normed vector spaces,

(6.24) D(A⊤
k )

′ ∼= W−
k+1(D

t
k).

Proof. Due to (6.1) from Hypothesis I of Assumption B, the restriction of functionals D(A⊤
k+1)

′ →֒

W−
k+2 is a continuous embedding, so the inclusion D(A⊤

k )
′ ⊂W−

k+1(D
t
k) is immediate from Defi-

nition 5.1.
Moreover, for all φ ∈W−

k+1(D
t
k), we estimate using (6.23) that

|φ(y)| ≤ ‖φ‖
W

−
k+1
‖Ltk+1y‖W+

k+1
+ ‖Dt

kφ‖W−
k+2
‖Vt

k+1y‖W+
k+2

≤ C(‖φ‖
W

−
k+1

+ ‖Dt
kφ‖W−

k+2
)‖y‖D(A⊤

k
)

(6.25)

for all y ∈ D(A⊤
k ), where C > 0 is a constant of continuity related to the boundedness of the

potential and lifting operators in hypothesis II of Assumption B. We conclude that

W−
k+1(D

t
k) ⊂ D(A

⊤
k )

′.(6.26)

Notice that it also follows from (6.25) that

(6.27) ‖φ‖D(A⊤
k
)′ = sup

0 6=y∈D(A⊤)

|φ(y)|

‖y‖D(A⊤
k
)

≤ C(‖φ‖
W

−
k+1

+ ‖Dt
kφ‖W−

k+2
) = C‖φ‖

W
−
k+1(D

t
k
)

for all φ ∈W−
k+1(D

t
k). In other words, the identity map is continuous as a mapping

W−
k+1(D

t
k) →֒ D(A

⊤
k )

′.(6.28)

Appealing to the bounded inverse theorem verifies the equivalence of norms. �

Similarly, under Assumption C, Lemma 6.5 ensures that the Hilbert space

(6.29) W−
k+1(D

n
k+1) :=

{
ψ ∈W−

k+1 | D
n
k+1ψ ∈W−

k

}
,

equipped with the graph norm ‖ · ‖
W

−
k+1(D

n
k+1)

:= ‖ · ‖
W

−
k+1

+ ‖Dn
k+1 · ‖W−

k
, is well-defined. We

obtain the following analogous result.

Theorem 6.7 (cf. Theorem 6.6). Under Assumption C, we conclude the isomorphism of normed
vector spaces

(6.30) D(Ak+1)
′ ∼= W−

k+1(D
n
k+1).

3D de Rham setting XIII: Characterization of dual spaces. Now, we specialize the theoretical
results of Section 6.2 to the 3D de Rham setting using the table in example XII. We obtain the following
characterization of the dual spaces:

H(curl,Ω)′ = D(A1)
′ = D(A⊤

1 )
′ ∼=

{
φ ∈ H̃

−1(Ω) | grad′
φ ∈ H̃−1(Ω)

}
,(6.31a)

H(div,Ω)′ = D(A2)
′ = D(A⊤

0 )
′ ∼=

{
φ ∈ H̃

−1(Ω) | curl′ φ ∈ H̃
−1(Ω)

}
.(6.31b)

Note that these characterizations are interesting in their own right. They do not depend on the theory

of traces developed in the previous sections. The take-home message from the de Rham settings XII and

XIII is that via the decompositions (6.20a) and (6.20b), the dual spaces of H(curl,Ω) and H(div,Ω) can

be characterized using more regular spaces such as H1(Ω) and H1(Ω).
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6.3. Characterization of trace spaces. We have almost reached characterizations of the ranges
of the Hilbert traces R(Tt

k) and R(Tn
k ) in terms of the spaces of “extra regularity” provided by

Assumptions B and C. To achieve these new characterizations, we introduce the following spaces
for all k ∈ Z:

W̊
n,+
k := W+

k ∩ D(A
∗
k−1), and W̊

t,+
k := W+

k ∩ D(Åk).(6.32)

Notice that by propositions 4.2 and 3.2, we have

W̊
n,+
k = W+

k ∩N (Tn
k−1), and W̊

t,+
k = W+

k ∩N (Tt
k),(6.33)

respectively.

Assumption D. Suppose that Assumption B holds. For all k ∈ Z, we make the hypothesis that
the inclusion map W+

k ⊂ D(A
⊤
k−1) spawns a continuous and dense embedding

W̊
n,+
k →֒ D(A∗

k−1).(6.34)

The next result involves the annihilator

(6.35) (W̊n,+
k+1)

◦ :=
{
φ ∈W−

k+1 | 〈φ,y〉W−
k+1

= 0, ∀y ∈ W̊
n,+
k+1

}
.

Theorem 6.8. Taking for granted Assumption D we obtain the characterization

(6.36) R(Tt
k) = W−

k+1(D
t
k) ∩ (W̊n,+

k+1)
◦ =

{
ψ ∈ (W̊n,+

k+1)
◦ | Dt

kψ ∈ (W̊n,+
k+2)

◦
}
,

in the sense of equality of functionals in W−
k+1 and with equivalent norms.

Proof. We already know by Proposition 3.4 that R(Tt
k) = D(A

∗
k)

◦. To verify the equality on the
right, recall that Dt

k(R(T
t
k)) ⊂ R(T

t
k+1) = D(A

∗
k+1)

◦.

“⊂”: On the one hand, since D(A∗
k)

◦ ⊂ D(A⊤
k )

′, it follows immediately from Theorem 6.6 and

(6.34) that R(Tt
k) ⊂W−

k+1(D
t
k). Moreover, as W̊n,+

k+1 ⊂ D(A
∗
k), any functional in the annihilator

of D(A∗
k) will, in particular, vanish on W̊

n,+
k+1, which implies D(A∗

k)
◦ ⊂ (W̊n,+

k+1)
◦.

Thanks to the continuous embedding of Assumption BI and (5.5a) from the definition of the

operator Dt
k, we find for every ϕ ∈ D(A⊤

k )
′:

‖ϕ‖
W

−
k+1

+ ‖Dt
kϕ‖W−

k+2
= sup

w∈W
+
k+1

|ϕ(w)|

‖w‖
W

+
k+1

+ sup
w∈W

+
k+2

|ϕ(A⊤
k+1 w)|

‖w‖
W

+
k+2

≤ C sup
w∈D(A⊤

k
)

|ϕ(w)|

‖w‖D(A⊤
k
)

+ sup
w∈D(A⊤

k+1)

|ϕ(A⊤
k+1 w)|

‖w‖D(A⊤
k+1)

≤ 2C‖ϕ‖D(A⊤
k
)′ ,

for some constant C > 0 independent of ϕ.
“⊃”: On the other hand, it also follows by Theorem 6.6 that any φ ∈W−

k+1(D
t
k) ∩ (W̊n,+

k+1)
◦

is a continuous functional in D(A⊤
k )

′ vanishing on W̊
n,+
k+1. By Assumption D W̊

n,+
k+1 is densely

embedded in D(A∗
k). Thus, φ must also vanish on D(A∗

k) by continuity. We conclude that the

inclusion W−
k+1(D

t
k) ∩ (W̊n,+

k+1)
◦ ⊂ R(Tt

k) = D(A
∗
k)

◦ holds.
Finally, the estimate (6.25) gives us

‖φ‖D(A⊤
k
)′ ≤ C(‖φ‖

W
−
k+1

+ ‖Dt
kφ‖W−

k+2
)

with C > 0 independent of φ. �

Of course, there is a symmetric statement on the dual side.

Assumption E. (cf. Assumption D) Suppose that Assumption C holds. For all k ∈ Z, we make
the hypothesis that the inclusion map W+

k ⊂ D(Ak) spawns a continuous and dense embedding

W̊
t,+
k →֒ D(Åk).(6.37)
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Theorem 6.9 (cf. Theorem 6.8). Under Assumption E we have equality in W−
k+1 with equiv-

alent norms,

(6.38) R(Tn
k+1) = W−

k+1(D
n
k+1) ∩ (W̊t,+

k+1)
◦ =

{
ψ ∈ (W̊t,+

k+1)
◦ | Dn

k+1ψ ∈ (W̊t,+
k )◦

}
.

3D de Rham setting XIV: Characterization of trace spaces. We specialize the theoretical results
of Section 6.3 to the 3D de Rham setting.

k 0 1 2 3

Wk L2(Ω) L2(Ω) L2(Ω) L2(Ω)

W+
k H1(Ω) H1(Ω) H1(Ω) H1(Ω)

W̊
t,+
k H̊1(Ω) H1(Ω) ∩ H̊(curl,Ω) H1(Ω) ∩ H̊(div,Ω) H̊1(Ω)

W̊
n,+
k H̊1(Ω) H1(Ω) ∩ H̊(div,Ω) H1(Ω) ∩ H̊(curl,Ω) H̊1(Ω)

Loosely speaking, theorems 6.8 and 6.9 state that the range of the Hilbert trace is a subspace of
functionals in the dual of a regular space W+

k whose image under the corresponding surface operator also

lies in the dual of W+
k+1. Linear functionals in that subspace vanish on a dense subset of the dual trace’s

kernel:

R(Tt
curl) = R(Tn

curl) =
{
φ ∈ H̃

−1(Ω) ∩ H̊(curl,Ω)◦ | grad′
φ ∈ H̃−1(Ω) ∩ H̊1(Ω)◦

}
,(6.39a)

R(Tt
grad) = R(Tn

div) =
{
φ ∈ H̃

−1(Ω) ∩ H̊(div,Ω)◦ | curl′ φ ∈ H̃
−1(Ω) ∩ H̊(curl,Ω)◦

}
.(6.39b)

One thing immediately apparent is that R(Tn
curl) = R(Tt

curl) and R(Tn
div) = R(Tt

grad), which is
expected because we already know from previous sections that

R(Tn
curl) = D(Å1)

◦ = H̊(curl,Ω)′ = D(A∗

1)
◦ = R(Tt

curl),(6.40a)

R(Tn
div) = D(Å2)

◦ = H̊(div,Ω)′ = D(A∗

1) = R(Tt
grad).(6.40b)

Before we compare these characterizations with (1.7a) and (1.7b), we want to reformulate them in

terms of quotient spaces in the next section.

6.4. Characterization of trace spaces in quotient spaces. We can reformulate the charac-
terizations of Section 6.3 in terms of quotient spaces. To proceed, let us set

T
t,+
k := W+

k /W̊
t,+
k , T

t,−
k :=

(
T

t,+
k

)′
,(6.41a)

T
n,+
k := W+

k /W̊
n,+
k , T

n,−
k :=

(
T

n,+
k

)′
.(6.41b)

Under Assumption D (resp. E), it follows by definition of the space W̊
n,+
k (resp. W̊

t,+
k ) that

the dense embedding W+
k →֒ D(A

⊤
k−1) (resp. W+

k →֒ D(Ak)) induces a well-defined and dense
embedding

{
T

n,+
k →֒ T (A⊤

k−1)

[x] 7→ πn
k−1x

(
resp.

{
T

t,+
k →֒ T (Ak)

[x] 7→ πt
kx

)
(6.42)

on the quotient spaces. Accordingly, the associated restriction of functionals
{
T (A⊤

k−1)
′ →֒ T

n,−
k

ψ 7→
{
[x] 7→ ψ(πn

k−1x)
}

(
resp.

{
T (Ak)

′ →֒ T
t,−
k

φ 7→ { [x] 7→ φ(πt
kx) }

)
(6.43)

is also well-defined and gives rise to dense embeddings.
In the next lemma, we make explicit the mappings induced on the quotient spaces by restricting

the operators A⊤
k−1 and Ak to W+

k . Those are the restrictions of the surface operators Snk−1 and

Stk to T
n,+
k and T

t,+
k , respectively; cf. Definition 5.6.
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Lemma 6.10. Assumptions D and E imply that the mappings

Ŝ
n
k+1 :

{
T

n,+
k+2 → T (A

⊤
k )

[z] 7→ πn
k A

⊤
k+1 z

and Ŝ
t
k :

{
T

t,+
k → T (Ak+1)

[x] 7→ πt
k+1 Ak x

,(6.44)

respectively, are well-defined and continuous.

Proof. Consider the mapping on the left. We know from the complex property for A⊤
k in Assump-

tion A that A⊤
k+1 z ∈ D(A

⊤
k ) for all z ∈W+

k+1. We only need to verify that A⊤
k+1 z◦ ∈ D(A

∗
k) for

all z◦ ∈ W̊
n,+
k+2 = W+

k+2 ∩ D(A
∗
k+1), but this immediately follows from the complex property for

A
∗
k+1, also provided by Assumption A. The proof is similar for Ŝtk. �

Using the same strategy as in lemmas 6.4 and 6.5, the mappings

D̂
t
k := (Ŝnk+1)

′ : T (A⊤
k )

′ → T
n,−
k+2 and D̂

n
k := (Ŝtk)

′ : T (Ak+1)
′ → T

t,−
k ,(6.45)

defined as the bounded operators dual to Ŝnk+1 and Ŝtk, can be extended, using (6.43), to the
continuous mappings

D̂
t
k : Tn,−

k+1 → T
n,+
k+2(Ŝ

n
k+1)

′ and D̂
n
k : Tt,−

k+1 → T
t,+
k (Ŝtk)

′,(6.46)

involving the dual spaces of the Hilbert spaces

T
n,+
k+2(Ŝ

n
k+1) :=

{
[z] ∈ T

n,+
k+2 | Ŝ

n
k+1[z] ∈ T

n,+
k+1

}
,(6.47a)

T
t,+
k (Ŝtk) :=

{
[x] ∈ T

t,+
k | Ŝtk[x] ∈ T

t,+
k+1

}
,(6.47b)

equipped with the natural graph inner products.
With the operators (6.46), we can reformulate theorems 6.8 and 6.9 using the isometric isomor-

phisms

(W+
k /W̊

t,+
k )′ ∼= (W̊t,+

k )◦ and W+
k /W̊

n,+
k
∼= (W̊n,+

k )◦(6.48)

provided by [44, Thm. 4.9].

Theorem 6.11. Under assumptions D and E we have the isomorphisms of Hilbert spaces

R(Tt
k)
∼=
{
φ ∈ T

n,−
k+1 | D̂

t
kφ ∈ T

n,−
k+2

}
and R(Tn

k )
∼=
{
φ ∈ T

t,−
k | D̂n

kφ ∈ T
t,−
k−1

}
,(6.49a)

respectively.

3D de Rham setting XV: Characterization of trace spaces by quotient spaces. Recall from

(1.8b) and (1.8c) that N (γt) = H̊(curl,Ω) and N (γn) = H̊(div,Ω). So let us denote the spaces of
H1-regular vector fields with vanishing tangential and normal traces by

H
1
t (Ω) := N (γt

∣∣
H1(Ω)

) = H
1(Ω) ∩ H̊(curl,Ω)(6.50a)

H
1
n(Ω) := N (γn

∣∣
H1(Ω)

) = H
1(Ω) ∩ H̊(div,Ω),(6.50b)

respectively.

k 0 1 2 3

Wk L2(Ω) L2(Ω) L2(Ω) L2(Ω)

W+
k H1(Ω) H1(Ω) H1(Ω) H1(Ω)

T
t,+
k H1(Ω)/H̊1(Ω) H1(Ω)/H1

t (Ω) H1(Ω)/H1
n(Ω) H1(Ω)/H̊1(Ω)

T
n,+
k H1(Ω)/H̊1(Ω) H1(Ω)/H1

n(Ω) H1(Ω)/H1
t (Ω) H1(Ω)/H̊1(Ω)

Reformulating (6.39a) and (6.39b), we obtain

R(Tt
curl) = R(Tn

curl) ∼=
{
φ ∈

(
H

1(Ω)/H1
t (Ω)

)′

| grad′
φ ∈

(
H1(Ω)/H̊1(Ω)

)′}
,(6.51a)

R(Tt
grad) = R(Tn

div) ∼=
{
φ ∈

(
H

1(Ω)/H1
n(Ω)

)′

| curl′ φ ∈
(
H

1(Ω)/H1
t (Ω)

)′}
.(6.51b)
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These characterizations are to be compared with

H
−1/2(curlΓ,Γ) =

{
φ ∈ H

−1/2
t (Γ) | curlΓ φ ∈ H−1/2(Γ)

}
= R(γt),(6.52a)

H1/2(Γ) =
{
φ ∈ H−1/2(Γ) | curlΓ φ ∈ H

−1/2
t (Γ)

}
= R(γ),(6.52b)

where as before the two spaces

H−1/2(Γ) =
(
H1/2(Γ)

)′

=
(
γH1(Ω)

)′
(6.53a)

H
−1/2
t (Γ) =

(
H

1/2
t (Γ)

)′

=
(
γtH

1(Ω)
)′

(6.53b)

are dual to the more regular spaces γ H1(Ω) and γt H
1(Ω), respectively.

In the classical trace spaces, the quotient spaces involved in (6.51a) and (6.51b) are featured implicitly,
because as previously stated in (6.50a) and (6.50b), H1

t (Ω) and H1
n(Ω) are kernels which vanish under

application of the traces. In fact, since γ : H1(Ω) → H1/2(Γ) and γt : H1(Ω) → H
1/2
t (Γ) are surjective,

it follows from (6.50a) and (6.50b) that the same argument as in the 3D de Rham setting VII shows that
the traces induce the isomorphisms

H
1/2
t (Γ) ∼= H

1(Ω)/H1
t (Ω) and H1/2(Γ) ∼= H1(Ω)/H̊1(Ω),(6.54)

which in turn imply isomorphisms between the dual spaces.
We would like to draw the reader’s attention to the fact that it is an annihilator related to the kernel

of the dual trace that is used to characterize the range of the primal trace and vice-versa. This is in
agreement with the characterizations provided in [15], where the range of γt is characterized using the
dual space (γτH

1(Ω))′, involving the rotated tangential trace γτ discussed in the 3D de Rham setting XI.
As in [15], recall that if the skew-symmetric pairing (1.10) is replaced with the L2(Γ)-pairing, the dual
trace T

n
curl, corresponding with the rotated tangential trace (roughly speaking), arises in the abstract

setting of Section 4.1 as dual to T
t
curl, which corresponds to γt.

Finally, notice that the surface operators curlΓ and curlΓ are dual to the domain operators on which
the relevant traces are applied, which is in line with (6.51a) and (6.51b), i.e. (cf. [15])

curlΓ ◦ γ = (γt ◦ ∇)′ and curlΓ ◦ γt = (γn ◦ curl)′.(6.55)

7. Trace Hilbert Complexes

From now on, we make use of the full setting of Hilbert complexes as presented in Section 2.2.
Both Assumptions D and E are not required for the mere characterization of the trace Hilbert com-
plexes in Section 7.1: each one of these hypotheses suffices for the corresponding characterization.
However, we do rely on both decompositions for the upcoming compactness result in Section 7.2,
where we must take (6.19) for granted.

7.1. Complexes of quotient spaces. It is easy to verify that Dt
k+1 ◦ D

t
k = 0, Dn

k ◦ D
n
k+1 = 0,

Stk+1 ◦ S
t
k = 0 and Snk ◦ S

n
k+1 = 0. Therefore, we have already seen from (5.31) that Hilbert

complexes give rise to Hilbert complexes in trace spaces. The bounded complexes

(7.1a) · · · R(Tt
k) R(Tt

k+1) R(Tt
k+2) · · · ,

D
t
k D

t
k

D
t
k+1 Dk+2

and

(7.1b) · · · R(Tn
Ak
) R(Tn

Ak+1
) R(Tn

Ak+2
) · · · ,

Dk D
n
k+1 D

n
k+2 Dk+3

are isometrically isomorphic to the bounded complexes of quotient spaces

(7.2a) · · · T (Ak) T (Ak+1) T (Ak+2) · · · ,
S
t
k S

t
k

S
t
k+1 S

t
k+2

and

(7.2b) · · · T (A⊤
k ) T (A⊤

k+1) T (A⊤
k+2) · · · .

S
n
k S

n
k+1 S

n
k+2 S

n
k+3
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While the bounded domain complexes are interesting in their own right, the rich structure of
Hilbert complexes reveals itself when closed densely defined unbounded operators are introduced.
As stated in [6, Chap. 4], the complex produced by the latter contains more information than the
associated domain complexes. It turns out that the characterizations provided in Section 6 shed
more light on the structure of (7.1a)-(7.2b). The next theorem provides a first characterization of
what we call trace Hilbert complexes.

Theorem 7.1. Under assumptions D and E respectively, the sequences of unbounded operators

· · ·
D

t
k−1

−−−−→ R(Tt
k) ⊂ (W̊n,+

k+1)
◦ D

t
k−−−−→ R(Tt

k+1) ⊂ (W̊n,+
k+2)

◦
D

t
k+2

−−−−→ · · ·(7.3)

and

· · · ←−−−−
Dn

k

R(Tn
k ) ⊂ (W̊t,+

k )◦ ←−−−−
Dn

k+1

R(Tn
k+1) ⊂ (W̊t,+

k+1)
◦ ←−−−−

Dn
k+2

· · ·(7.4)

are Hilbert complexes as defined in Section 2.2.

Proof. By symmetry, it is sufficient to verify the claim for (7.3). In light for (7.1a) and Theorem 6.8,

we simply need to show that Dt
k : R(Tt

k) ⊂ (W̊n,+
k+1)

◦ → (W̊n,+
k+2)

◦ is a densely defined and closed

unbounded linear operator. In fact, since R(Tt
k) = D(A∗

k) ⊂ D(ATk)
′ is a Hilbert space by

Proposition 3.4, we already know that such an operator must be closed, and we only need to
confirm that R(Tt

k) is dense in (W̊n,+
k+1)

◦.
We need two key mappings:

• Recall that since W+
k+1 is a Hilbert space and Hilbert spaces are reflexive (cf. [44, Sec.

4.5], [11, Thm. 5.5]), the map

(7.5) ρ :





W+
k+1 −→ (W−

k+1)
′

y 7→

{
W−

k+1 → R

φ 7→ ρy(φ) = φ(y)

is an isometric isomorphism. Substituting ρ−1(φ̃) for y in the definition (ρy)(φ) = φ(y),
we find a useful formula involving the inverse:

(7.6) ψ̃(φ) = φ(ρ−1ψ̃)

for all φ ∈W−
k+1 and ψ̃ ∈ (W−

k+1)
′.

• Since the inclusion W+
k+1 →֒ D(A

⊤
k ) is continuous and dense by Assumption B, the re-

striction of functionals J : D(A⊤
k )

′ →W−
k+1 is also a continuous and dense embedding. In

particular, because R(Tt
k) = D(A

∗)◦ by Proposition 3.4 and W̊
n,+
k+1 ⊂ D(A

∗
k) by definition,

it satisfies the important property that J(R(Tt
k)) ⊂ (W̊n,+

k+1)
◦.

To prove density, we show that an arbitrary functional φ̃◦ ∈ ((W̊n,+
k+1)

◦)′ such that φ̃◦(Jξ) = 0

for all ξ ∈ R(Tt
k) vanish in ((W̊n,+

k+1)
◦)′. We proceed in three short steps.

1) First, we use the Hahn–Banach theorem to extend φ̃◦ to a functional φ̃ ∈ (W−
k+1)

′. By
definition,

φ̃(Jξ) = 0 ∀ξ ∈ R(Tt
k).(7.7)

2) Secondly, we set y := ρ−1φ̃ ∈W+
k+1 ⊂ D(A

⊤
k ). Based on (7.6), it follows from (7.7) that

ξ(y) = Jξ(y) = Jξ(ρ−1φ̃) = φ̃(Jξ) = 0 ∀ξ ∈ R(Tt
k) = D(A

∗
k)

◦.(7.8)

In particular, we obtain from (7.8) that y ∈ D(A∗
k). Thus, under the choice made in (6.32),

y ∈ D(A∗
k) ∩W+

k+1 = W̊
n,+
k .

3) Finally, the previous step implies that

φ̃(φ◦) = ρy(φ◦) = φ◦(y) = 0 ∀φ◦ ∈ (W̊n,+
k+1)

◦.(7.9)

Therefore, φ̃◦ = φ̃
∣∣
(W̊n,+

k+1)
◦ = 0, which concludes the proof. �
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Now, rewriting the trace Hilbert complexes (7.3) and (7.4) in terms of the isometrically isomor-
phic characterizations given in Theorem 6.11, we obtain the Hilbert complexes

(7.10a) · · · T
n,−
k+1(D̂

t
k) ⊂ T

n,−
k+1 T

n,−
k+2(D̂

t
k+1) ⊂ T

n,−
k+2 · · ·

D̂
t
k−1 D̂

t
k

D̂
t
k+1

and

(7.10b) · · · T
t,−
k (D̂n

k ) ⊂ T
t,−
k T

t,−
k+1(D̂

n
k+1) ⊂ T

t,−
k+1 · · · .

D̂
n
k D̂

n
k+1 D̂

n
k+2

7.2. Compactness property. It is well-known that compact embeddings of the regular spaces
W+

k ⊂Wk in the stable decompositions (6.3) and (6.13) lead to the Hilbert complexes (2.5a) and
(2.8b) being Fredholm. For convenience, we review this result in the next lemma.

Assumption F. Suppose that the dense inclusions ı+k : W+
k →֒Wk are compact for all k ∈ Z.

Lemma 7.2. Under Assumption F, Assumptions B and C guarantee compactness of the inclusions

D(A⊤
k ) ∩ D(Åk+1) →֒Wk+1 and D(Ak+1) ∩ D(A

∗
k) →֒Wk+1,(7.11)

respectively.

Proof. By symmetry, it is sufficient to prove that, under Assumption F, it follows from Assumption
C that the dense inclusion D(Ak+1) ∩ D(A

∗
k) →֒ Wk is a compact operator. In particular, let

(yℓ)ℓ∈Z ⊂ D(Ak+1) ∩ D(A
∗
k) be an arbitrary sequence that is bounded in D(Ak+1) ∩ D(A

∗
k). We

only need to show that there exists a subsequence (yℓρ)ρ∈Z that is Cauchy in Wk.

By Assumption C, for all ℓ ∈ Z, there exist p+
ℓ ∈W+

k+1 and x+
ℓ ∈W+

k such that

yℓ = p+
ℓ + Ak x

+
ℓ

(
in particular, p+

ℓ := L
n
k+1yℓ and x+

ℓ := V
n
k+1yℓ

)
.(7.12)

The norm in D(Ak+1)∩D(A
∗
k) is stronger than the norm in D(Ak+1), so since the decomposition is

stable by hypothesis II from Assumption C, the sequences (p+
ℓ )ℓ and (x+

ℓ )ℓ are bounded in W+
k+1

and W+
k , respectively. Under Assumption F, we can thus find subsequences (p+

ℓρ
)ρ and (x+

ℓρ
)ρ

that are Cauchy in Wk+1 and Wk, respectively. Evaluating

‖yℓn − yℓm‖
2
Wk+1

=
(
p+
ℓn
− p+

ℓn
,yℓn − yℓn

)
Wk+1

+
(
Ak

(
x+
ℓn
− x+

ℓn

)
,yℓn − yℓn

)
Wk+1

≤ ‖p+
ℓn
− p+

ℓn
‖Wk+1

‖yℓn − yℓn‖Wk+1
+
(
x+
ℓn
− x+

ℓn
,A∗

k (yℓn − yℓn)
)
Wk+1

≤ ‖p+
ℓn
− p+

ℓn
‖Wk+1︸ ︷︷ ︸

→0 as n,m→0

‖yℓn − yℓn‖Wk+1
+ ‖x+

ℓn
− x+

ℓn
‖Wk︸ ︷︷ ︸

→0 as n,m→0

‖A∗
k (yℓn − yℓn) ‖Wk+1

,

we arrive at the conclusion once noticing that ‖yℓn − yℓn‖Wk+1
and ‖A∗

k (yℓn − yℓn) ‖Wk+1
are

also bounded by hypothesis. �

In other words, under Assumption F, the stable decompositions of Section 6.1 imply complex
properties, which as stated in Section 2.2, guarantee that the associated Hilbert complexes are
Fredholm. The goal of this section is to show that this carries over to the trace spaces. Ultimately,
this is because what is essential for Lemma 7.2 to go through is not compactness of the spaces,
but rather that the potential and lifting operators are compact operators.

In order to obtain the complex properties for the trace Hilbert complexes, we find it most
convenient to work with the characterizations provided in Theorem 7.1, because it allows us to
harness the theory developed in Section 3.3. By symmetry, we may focus on (7.3).

For any x ∈ D(Ak), it follows from Assumption C and the commuting relations of Lemma 5.4
that

(7.13) T
t
kx = T

t
kL

n
kx+ T

t
k Ak−1 V

n
kx = T

t
kL

n
kx− D

t
k−1T

t
k−1V

n
kx.
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Recall from Lemma 3.11 that the D(Ak)-harmonic extension operators −A
⊤
k R

−1
D(A⊤

k )
: R(Tt

k) →

D(Ak) satisfy Tt
Ak
(−A

⊤
k R

−1
D(A⊤

k )
φ) = φ for all φ ∈ R(Tt

k). Inserting this identity in (7.13) yields

the decomposition

(7.14) φ = −Tt
kL

n
k A

⊤
k R

−1
D(A⊤

k )
φ+ D

t
k−1T

t
k−1V

n
k A

⊤
k R

−1
D(A⊤

k )
φ

for all φ ∈ R(Tt
k).

Compare (7.14) with the regular decompositions provided in (6.3) and (6.13). In (7.14), the
bounded maps

−Tt
kL

n
k A

⊤
k R

−1
D(A⊤

k )
: R(Tt

k)→ T
t
k(W

+
k ) ⊂ R(T

t
k)(7.15)

and

T
t
k−1V

n
k A

⊤
k R

−1
D(A⊤

k )
: R(Tt

k)→ T
t
k−1(W

+
k−1) ⊂ R(T

t
k−1)(7.16)

play the roles of lifting and potential operators. Compactness of these operators as mappings
R(Tt

k)→ (W̊n,+
k+1)

◦ and R(Tt
k)→ (W̊n,+

k )◦ follows upon observing that under Assumption F, the
map

(7.17) T
t
k : W+

k → (W̊n,+
k )◦

is a compact operator, because the product of two bounded linear operators between normed
spaces is compact if any one of the operand is [28, Thm. 2.16]. To confirm that (7.17) is compact,
it is sufficient to recall from Definition 3.1 that it is the operator associated with the compact
bilinear form (cf. [45, Chap. 3])

(7.18)

{
W+

k ×W+
k+1 → R

(x,y) 7→ (Ak x, ı
+
k+1y)Wk+1

− (ı+k x,A
⊤
k y)Wk

where we have introduced for clarity the compact inclusions supplied by Assumption F.
In the next theorem, the unbounded linear operators

(Dt
k)

∗ : D
(
(Dt

k)
∗
)
⊂ (W̊n,+

k+2)
◦ → (W̊n,+

k+1)
◦,(7.19a)

(Dn
k )

∗ : D ((Dn
k )

∗) ⊂ (W̊t,+
k−1)

◦ → (W̊t,+
k )◦,(7.19b)

are the Hilbert space adjoints of the closed densely defined unbounded operators

D
t
k : R(Tt

k) ⊂ (Wn,+
k+1)

◦ → (Wn,+
k+2)

◦ and D
n
k : R(Tn

k ) ⊂ (W̊t,+
k )◦ → (W̊t,+

k−1)
◦,(7.20)

respectively.

Theorem 7.3. Under assumptions D, E and F, the inclusions

R(Tt
k) ∩ D

(
(Dt

k−1)
∗
)
→֒ (Wt,+

k+1)
◦ and R(Tn

k ) ∩ D
(
(Dn

k+1)
∗
)
→֒ (Wn,+

k )◦(7.21)

are compact.

Proof. We follow the arguments in the proof of Lemma 7.2. Let (φℓ)ℓ∈Z ⊂ R(T
t
k) ∩ D ((Dt

k)
∗) be

a bounded sequence in R(Tt
k) ∩ D ((Dt

k)
∗).

The goal is to find a subsequence (φℓρ)ρ∈Z that is Cauchy in (Wt,+
k+1)

◦. Similarly to (7.12), we
use the stable decomposition in trace spaces (7.14):

(7.22) φℓ = ξ
+
ℓ + D

t
k−1ζ

+
ℓ

for all ℓ ∈ Z, where ξ+ℓ := −Tt
kL

n
k A

⊤
k R

−1
D(A⊤

k )
φℓ and ζℓ := Tt

k−1V
n
k A

⊤
k R

−1
D(A⊤

k )
φℓ. Since the norm in

R(Tt
k) ∩ D ((Dt

k)
∗) is stronger than the norm in R(Tt

k), the sequence (φℓ)ℓ∈Z is bounded in the

norm of R(Tt
k). Hence, by compactness of the operators −Tt

kL
n
k A

⊤
k R

−1
D(A⊤

k )
: R(Tt

k) → (Wt,+
k+1)

◦

and Tt
k−1V

n
k A

⊤
k R

−1
D(A⊤

k )
: R(Tt

k) → (Wt,+
k )◦, there exist subsequences (ξ+ℓρ)ρ∈Z and (ζ+ℓρ)ρ∈Z that

are Cauchy in (Wt,+
k+1)

◦ and (Wt,+
k )◦, respectively.
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Now, we verify that (φℓρ)ρ∈Z is indeed Cauchy in (Wt,+
k+1)

◦. We evaluate directly

‖φℓn − φℓn‖(Wt,+
k+1)

◦

= (ξℓn − ξℓn ,φℓn − φℓn)(Wt,+
k+1)

◦ +
(
D

t
k−1 (ζℓn − ζℓn) ,φℓn − φℓn

)
(Wt,+

k+1)
◦

≤ ‖ξℓn − ξℓn‖(Wt,+
k+1)

◦‖φℓn − φℓn‖(Wt,+
k+1)

◦ +
(
ζℓn − ζℓn , (D

t
k−1)

∗ (φℓn − φℓn)
)
(Wt,+

k
)◦
,

from which we conclude that

‖φℓn − φℓn‖(Wt,+
k+1)

◦ ≤‖ξℓn − ξℓn‖(Wt,+
k+1)

◦

︸ ︷︷ ︸
→0 as m,n→0

‖φℓn − φℓn‖(Wt,+
k+1)

◦

+ ‖ξℓn − ξℓn‖(Wt,+
k

)◦︸ ︷︷ ︸
→0 as m,n→0

‖(Dt
k−1)

∗ (φℓn − φℓn) ‖(Wt,+
k

)◦ .

The desired result thus follows because ‖φℓn−φℓn‖(Wt,+
k+1)

◦ and ‖(Dt
k−1)

∗ (φℓn − φℓn) ‖(Wt,+
k

)◦ are

bounded by hypothesis. �

Corollary 7.4. Under assumptions D, E and F, the trace Hilbert complexes introduced in Theo-
rem 7.1 are Fredholm.

It is particularly interesting that while only one decomposition was sufficient to obtain Lemma 7.2,
we needed both decompositions (assumptions B and C) to achieve a proof of the compactness
property for the trace Hilbert complex: one for the space characterization and the other for the
decomposition formula itself. The question whether it is necessary to have both remains open.

3D de Rham setting XVI: Trace de Rham complexes. Trace Hilbert complexes for the de Rham
complex in 3D arise from the results of XV:

(7.23)

{0} {0}

D(curl′) ⊂ H̃−1(Ω) ∩ H̊(div,Ω)◦ D(curl′) ⊂
(
H1(Ω)/H1

n(Ω)
)′

D(grad′) ⊂ H̃−1(Ω) ∩ H̊(curl,Ω)◦ D(grad) ⊂
(
H1(Ω)/H1

t (Ω)
)′

H̃−1(Ω) ∩ H̊1(Ω)◦
(
H1(Ω)/H̊1(Ω)

)′

{0} {0}

ı ı

curl′ curl′

grad′
grad′

0 0

In light of the de Rham setting XV, they correspond to

(7.24) {0} H1/2(Γ) ⊂ H−1/2(Γ) H−1/2(curlΓ,Γ) ⊂ H
−1/2
t H−1/2(Γ) {0}

ı curlΓ curlΓ 0

or its rotated version.

Since by Rellich’s lemma the embeddings H1(Ω) →֒ L2(Ω) and H1(Ω) →֒ L2(Ω) are compact, the de

Rham complexes in (1.4) satisfy Assumption F with the regular decompositions presented in the de Rham

setting XII. Therefore, the associated trace de Rham complexes are Fredholm. As a consequence, their

cohomology spaces are finite-dimensional.

8. Conclusion

As we have demonstrated in the present article, it takes only a pair of Hilbert complexes linked
by the sub-complex relationship of their domain complexes to recover essential aspects of the
structures inherent in the trace operators and trace spaces for the de Rham complex. Relying on
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notions of trace spaces as dual spaces or quotient spaces, we could establish detailed characteriza-
tions merely assuming the existence of stable regular decompositions induced by bounded lifting
operators. These developments culminated in the discovery of associated trace Hilbert complexes,
which are Fredholm under the mild additional assumption that the lifting operators are compact.

Hilbert complexes have recently moved into the focus of applied mathematicians, since they
underlie a host of PDE-based mathematical models in areas as diverse as linear elasticity, gravity,
and fluid dynamics. The related complexes are known as the elasticity complex, [10, Sect. 11]
and [40], conformal complex, or Stokes complex [9, Sect. 4.4]. These and many more complexes
[37,41] arise from the de Rham complex through the powerful Bernstein-Gelfand-Gelfand (BGG)
construction, as has been shown in [9]. Most likely, many more Hilbert complexes relevant for
mathematical modeling still await discovery.

This backdrop lends relevance to our present work. Once the Hilbert complex structure is
established, trace operators and trace spaces become available, which can serve as stepping stones
towards the study of boundary value problems and the development of integral representations.
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[12] J. Brüning and M. Lesch. Hilbert complexes. J. Funct. Anal., 108(1):88–132, 1992.
[13] A. Buffa and P. Ciarlet. On traces for functional spaces related to Maxwell’s equations. Part I: An integration

by parts formula in Lipschitz polyhedra. Math. Meth. Appl. Sci., 24(1):9–30, 2001.
[14] A. Buffa and P. Ciarlet. On traces for functional spaces related to Maxwell’s equations. Part II: Hodge de-

compositions on the boundary of Lipschitz polyhedra and applications. Math. Meth. Appl. Sci., 24(1):31–48,
2001.

[15] A. Buffa, M. Costabel, and D. Sheen. On traces for H(curl,Ω) in Lipschitz domains. J. Math. Anal. Appl.,
276(2):845–867, 2002.

[16] A. Buffa and R. Hiptmair. Galerkin boundary element methods for electromagnetic scattering. In Topics in
computational wave propagation, volume 31 of Lect. Notes Comput. Sci. Eng., pages 83–124. Springer, Berlin,
2003.

[17] X. Claeys and R. Hiptmair. Integral equations on multi-screens. Integral Equations Operator Theory, 77(2):167–
197, 2013.

[18] X. Claeys and R. Hiptmair. Integral equations for electromagnetic scattering at multi-screens. Integral Equa-
tions Operator Theory, 84(1):33–68, 2016.

[19] D. S. Dummit and R. M. Foote. Abstract algebra. John Wiley & Sons, Inc., Hoboken, NJ, third edition, 2004.
[20] A. Ern and J.-L. Guermond. Finite elements III—first-order and time-dependent PDEs, volume 74 of Texts

in Applied Mathematics. Springer, Cham, [2021] c©2021.
[21] A. Ern, J.-L. Guermond, and G. Caplain. An intrinsic criterion for the bijectivity of Hilbert operators related

to Friedrichs’ systems. Comm. Partial Differential Equations, 32(1-3):317–341, 2007.

[22] V. Girault and P.-A. Raviart. Finite element approximation of the Navier-Stokes equations, volume 749 of
Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1979.

[23] R. Hiptmair. Finite elements in computational electromagnetism. Acta Numer., 11:237–339, 2002.



TRACES FOR HILBERT COMPLEXES 33

[24] R. Hiptmair and C. Pechstein. Discrete regular decompositions of tetrahedral discrete 1-forms. In U. Langer,
D. Pauly, and S. Repin, editors, Maxwell’s Equations: Analysis and Numerics, volume 24 of Radon Series on
Computational and Applied Mathematics, chapter 7, pages 199–258. De Gruyter, Stuttgart, Germany, 2019.

[25] R. Hiptmair and J. Xu. Nodal auxiliary space preconditioning in H(curl) and H(div) spaces. SIAM J. Numer.
Anal., 45(6):2483–2509, 2007.

[26] George C. Hsiao and Wolfgang L. Wendland. Boundary integral equations, volume 164 of Applied Mathematical

Sciences. Springer-Verlag, Berlin, 2008.
[27] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag, Berlin, 1995.

Reprint of the 1980 edition.
[28] R. Kress. Linear integral equations, volume 82 of Applied Mathematical Sciences. Springer-Verlag, New York,

second edition, 1999.

[29] W. McLean. Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cam-
bridge, 2000.

[30] M. Mitrea, D.and Mitrea and M.-C. Shaw. Traces of differential forms on Lipschitz domains, the boundary de
Rham complex, and Hodge decompositions. Indiana Univ. Math. J., 57(5):2061–2095, 2008.

[31] P. Monk. Finite element methods for Maxwell’s equations. Numerical Mathematics and Scientific Computation.
Oxford University Press, New York, 2003.

[32] D. Pauly. On the Maxwell constants in 3D. Math. Methods Appl. Sci., 40(2):435–447, 2017.
[33] D. Pauly. A global div-curl-lemma for mixed boundary conditions in weak Lipschitz domains and a correspond-

ing generalized A∗
0-A1-lemma in Hilbert spaces. Analysis (Berlin), 39:33–58, 2019.

[34] D. Pauly. Solution theory, variational formulations, and functional a posteriori error estimates for general first
order systems with applications to electro-magneto-statics and more. Numer. Funct. Anal. Optim., 41(1):16–

112, 2020.
[35] D. Pauly and M. Schomburg. Hilbert complexes with mixed boundary conditions – Part 1: De Rham complex.

arXiv, https://arxiv.org/abs/2106.03448, 2021.
[36] D. Pauly and W. Zulehner. On closed and exact Grad-grad- and div-Div-complexes, corresponding compact

embeddings for tensor rotations, and a related decomposition result for biharmonic problems in 3D. arXiv,
https://arxiv.org/abs/1609.05873, 2016.

[37] D. Pauly and W. Zulehner. On closed and exact grad-grad- and div-div-complexes, corresponding compact
embeddings for tensor rotations, and a related decomposition result for biharmonic problems in 3d, 2017.

[38] D. Pauly and W. Zulehner. The divDiv-complex and applications to biharmonic equations. Appl. Anal.,

99(9):1579–1630, 2020.
[39] D. Pauly and W. Zulehner. The elasticity complex: Compact embeddings and regular decompositions. arXiv,

https://arxiv.org/abs/2001.11007, 2020.
[40] D. Pauly and W. Zulehner. The elasticity complex: Compact embeddings and regular decompositions. Preprint

arXiv:2001.11007v3 [math.AP], arXiv, 2020.
[41] W. Pauly, D.and Zulehner. The divDiv-complex and applications to biharmonic equations. Appl. Anal.,

99(9):1579–1630, 2020.
[42] R. Picard. An elementary proof for a compact imbedding result in generalized electromagnetic theory. Math.

Z., 187(2):151–164, 1984.
[43] M. Reed and B. Simon. Methods of modern mathematical physics. I. Academic Press, Inc. [Harcourt Brace

Jovanovich, Publishers], New York, second edition, 1980. Functional analysis.
[44] W. Rudin. Functional analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc.,

New York, second edition, 1991.
[45] O. Steinbach. Numerical approximation methods for elliptic boundary value problems. Springer, New York,

2008. Finite and boundary elements, Translated from the 2003 German original.
[46] N. Weck. Traces of differential forms on Lipschitz boundaries. Analysis (Munich), 24(2):147–169, 2004.
[47] K. Yosida. Functional analysis. Die Grundlehren der mathematischen Wissenschaften, Band 123. Springer-

Verlag, New York-Heidelberg, fourth edition, 1974.

SAM - Seminar for Applied Mathematics, ETH Zürich, Switzerland
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