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Abstract

It is well-known that the resolution of traditional optical imaging system is limited

by the so-called Rayleigh resolution or diffraction limit, which is of several hundreds of

nanometers. By employing fluorescence techniques, modern microscopic methods can

resolve point scatterers separated by a distance much lower than the Rayleigh resolution

limit. Localization-based fluorescence subwavelength imaging techniques such as PALM

and STORM can achieve spatial resolution of several tens of nanometers. However,

these techniques have limited temporal resolution as they require tens of thousands

of exposures. Employing sparsity-based models and recovery algorithms is a natural

way to reduce the number of exposures, and hence obtain high temporal resolution.

Nevertheless, to date fluorescence techniques suffer from the trade-off between spatial

and temporal resolutions.

In [34], a newly multi-illumination imaging technique called Brownian Excitation Ampli-

tude Modulation microscopy (BEAM) is introduced. BEAM achieves a threefold resolution

improvement by applying a compressive sensing recovery algorithm over only few frames.

Motivated by BEAM, our aim in this paper is to pioneer the mathematical foundation

for sparsity-based multi-illumination super-resolution. More precisely, we consider sev-

eral diffraction-limited images from sample exposed to different illumination patterns

and recover the source by considering the sparsest solution. We estimate the minimum

separation distance between point scatterers so that they could be stably recovered. By

this estimation of the resolution of the sparsity recovery, we reveal the dependence of

the resolution on the cut-off frequency of the imaging system, the signal-to-noise ra-

tio, the sparsity of point scatterers, and the incoherence of illumination patterns. Our

theory particularly highlights the importance of the high incoherence of illumination

patterns in enhancing the resolution. It also demonstrates that super-resolution can be
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achieved using sparsity-based multi-illumination imaging with very few frames, whereby

the spatio-temporal super-resolution becomes possible. BEAM can be viewed as the first

experimental realization of our theory, which is demonstrated to hold in both the one-

and two-dimensional cases.
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Keywords: spatio-temporal sparsity-based super-resolution, Brownian Excitation Amplitude
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1. INTRODUCTION

Super-resolution fluorescent microscopy has transformed many domains of biology. To date

there are two far-field classes of techniques that lead to fluorescence-based microscopy with a

resolution far beyond the Rayleigh diffraction limit [19]. The first class is generically referred to

as super-resolved ensemble fluorophore microscopy and the second as super-resolved single

fluorophore microscopy.

The first class of techniques can be implemented either by stimulated emission depletion

(STED) of fluorescence from all molecules in a sample except those in a small region of the

imaged biological sample or by structured illumination microscopy (SIM). STED builds on

the deterministic transitions that either switch fluorescence on or off to reduce the emission

volume [17, 18, 20, 43]. In SIM, interference patterns used in sample illumination lead to a

twofold gain in resolution [15, 16, 35].

The second class of techniques is based on the a prior knowledge that the measurements

at a given time are from single fluorescent molecules that are separated from each other by

distances larger than the Rayleigh diffraction limit. This information is used to super-localize

single molecules in an image, which means finding the position of each molecule to a precision

better than the Rayleigh diffraction limit. Super-resolved single fluorophore microscopy relies

on the stochastic switching of fluorophores in a time sequence to localize single molecules. It

can be implemented either by photo-activated localization microscopy (PALM) [5, 21] or by

stochastic optical reconstruction microscopy (STORM) [6, 33].

A major disadvantage of these two classes of techniques is that they suffer from the trade-off

between the spatial and temporal resolutions, which makes live cell imaging quite challenging.

On one hand, super-resolved single fluorophore microscopy techniques require hundreds of

thousands of exposures. This is because in every frame, the diffraction-limited image of each

emitter must be well separated from its neighbours, to enable the identification of its exact

position. This inevitably leads to a long acquisition cycle, typically on the order of several

minutes. Consequently, fast dynamics cannot be captured by these techniques. On the other

hand, SIM techniques require only tens of frames (thus they are with high temporal resolution).

But, their spatial resolution enhancement is limited by a factor of two.

Most previous works on enhancing the temporal resolution focused on improving the local-

ization accuracy in PALM/STORM. Some of them (such as CS-STORM [44] and SPARCOM [39])

used compressive sensing (CS) recovery algorithms to reduce the number of measurements,

but any PALM/STORM-based techniques inevitably suffers from the trade-off challenge. The

trade-off originates from the fact that stochastic single molecule switching activates only a

small part of the solution in each frame.

To better explain this, let us describe the mathematical problem for PALM/STORM. We

activate the fluorescent solution by stochastic switching with T number of frames. Denote by

ρ1,ρ2, · · · ,ρT the sparse distribution of the activated fluorescent molecules (point scatterers).

Then we collect the corresponding measured images Y1,Y2, · · · ,YT . Hence we have

Sρt := h⊛ρt = Yt , t = 1,2, · · · ,T,
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where h is a blurring kernel and ⊛ is the convolution product. In CS-STORM, we apply

compressive sensing to the following deconvolution problem for reconstructing the unknown

ρt :

min
ρt

‖ρt‖1 subject to ρt ≥ 0 and ‖Sρt −Yt‖2 ≤σ, (1.1)

where σ is the noise level. Then the super-resolved image can be obtained by

ρ =
T
∑

t=1

ρt .

When the density of activated molecules in each single frame is small, then in average the point

scatterers are well separated. Then it is easy to localize them by deconvolution procedure.

But the lower the density of molecules, the higher the number of frames T . This is the spatio-

temporal resolution trade-off of PALM/STORM-based approaches.

In [34], a novel imaging modality called Brownian Excitation Amplitude Modulation mi-

croscopy (BEAM) is introduced, which is based on speckle imaging and compressive sensing.

On one hand, it reduces significantly the number of exposures by exposing the most part of

the solution at each frame to the illumination pattern. On the other hand, it involves multiple

incoherent illuminations of the biological sample and achieves super-resolution microscopy

across both space and time from a sequence of diffraction-limited images and can capture

fast dynamics of biological samples. Hence, BEAM outperforms the PALM/STORM-based

techniques. Their two key ingredients are spatial sparsity and temporal incoherence. BEAM

combines the sparsity of the point scatterers and the incoherence between the illumination

patterns in different frames.

There are some related works to BEAM. The Blind-SIM [31] and RIM [26] use random speckle

modulations but compressive sensing was not exploited there and so the spatial resolution

enhancement is limited by a factor of two (they also require a large number of measurements).

The Joint Sparse Recovery approach in [27] uses both random speckles and compressive

sensing. But their inverse problem is formulated in MMV (multiple measurement vectors)

form whose sensing matrix has no incoherence, which is not optimal for CS, and hence

requires a large number of measurements.

Let us now briefly describe the inverse problem in BEAM. Suppose we have multiple speckle

patterns I1, I2, · · · , IT illuminating the sparse fluorescent solution and then collect the corre-

sponding measured images Y1,Y2, · · · ,YT . Then we have

Atρ := h⊛ (Itρ) = Yt , t = 1,2, · · · ,T,

where, as before, h is a blurring kernel. We apply compressive sensing to reconstruct the

unknown ρ with estimated speckle patterns It [7, 12, 14, 29, 30]:

min
ρ

‖ρ‖1 subject to ρ ≥ 0 and ‖Aρ−Y ‖2 ≤σ, (1.2)

where σ is the noise level, A = (At )t=1,...,T is the sensing matrix, and Y = (Y1, . . . ,YT )⊤ (with

⊤ denoting the transpose). Notice that the columns of A have a high degree of incoherence

coming from the Brownian motion of the speckle patterns It . This incoherence in the sensing
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matrix is an optimal feature for compressive sensing to work properly. The sparsity prior in

BEAM enhances the spatial resolution (beyond SIM’s two-fold enhancement), and at the same

time, the required number of measurements stays small since our sensing matrix satisfies

CS requirement (incoherence). To the best of our knowledge, BEAM is the first compressive

imaging approach satisfying the incoherence requirement, which is the key to overcome the

trade-off barrier between the spatial and temporal resolutions.

BEAM can be then seen as the first experimental realization of spatio-temporal sparsity-

based super-resolved imaging, where threefold resolution enhancement can be achieved by

applying compressive sensing over only few frames. Motivated by BEAM, our aim in this paper

is to pioneer the mathematical foundation of spatio-temporal sparsity-based super-resolution.

We consider mathematical models similar to (1.2) but tackle instead the sparsest solution

(l0 pseudo-norm minimizer) under the measurement constraints. The sparsest solution

is usually the one targeted in sparsity-based imaging and also in the general compressive

sensing theory (using tractable convex l1-minimization). Moreover, we consider that the

values of the illumination patterns may not be known. Our main results (Theorems 2.1 and

3.1) consist in deriving lower bounds for the resolution enhancement in both the one- and

two-dimensional cases. More precisely, we estimate the minimal separation distance for stable

recovery of point scatterers from multi-illumination incoherent data. Our estimations reveal

the dependence of the resolution enhancement on the cut-off frequency of the imaging system,

the signal-to-noise ratio, the sparsity of the point scatterers, and more importantly on the

incoherence of the illumination patterns. Our theory highlights the importance of incoherence

in the illumination patterns and theoretically demonstrates the possibility of achieving super-

resolution for sparsity-based multi-illumination imaging using very few frames.

It is worth emphasizing that there are many mathematical theories for estimating the

stability of super-resolution in the single measurement case. To our knowledge, the first work

was by Donoho [13]. He considered a grid setting where a discrete measure is supported on

a lattice (spacing by ∆) and regularized by a so-called "Rayleigh index" d . He demonstrated

that the minimax error for the recovery of the strength of the scatterer is bounded by SRFασ

(2d − 1 ≤ α ≤ 2d + 1) with σ being the noise level and the super-resolution factor SRF =
1/(Ω∆). Here, Ω is the cut-off frequency. Donoho’s results emphasized the importance of

sparsity (encoded in the Rayleigh index) in the super-resolution problem. In [10], the authors

considered n-sparse scatterers supported on a grid and obtained sharper bounds (α= 2n −1)

using an estimate of the minimum singular value for the measurement matrix. The case of

multi-clumps was considered in [3, 22] and similar minimax error estimations were derived.

See also other related works for the understanding of resolution limit from the perceptive of

sample complexity [8, 28]. In [1, 4], the authors considered the minimax error for recovering

off-the-grid point scatterers. Based on an analysis of the "prony-type system", they derived

bounds for both strength and location reconstructions of the point scatterers. More precisely,

they showed that for σ/ (SRF )−2p+1 where p is the number of point scatterers in a cluster, the

minimax error for the strength and the location recoveries scale respectively as (SRF )2p−1σ,

(SRF )2p−2σ/Ω. Moreover, for the isolated non-cluster point scatterer, the corresponding

minimax error for the strength and the location recoveries scale respectively as σ and σ/Ω.

Due to the popularity of sparse modeling and compressive sensing, many sparsity-promoting

algorithms were proposed to address the super-resolution problem. In the groundbreaking
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work of Candès and Fernandez-Granda [7], it was demonstrated that off-the-grid sources

can be exactly recovered from their low-pass Fourier coefficients by total variation minimiza-

tion under a minimum separation condition. Other sparsity promoting methods include the

BLASSO algorithm [2, 14, 32] and the atomic norm minimization method [41, 42]. These two

algorithms were proved to be able to stably recover the sources under a minimum separa-

tion condition or a non-degeneracy condition. The resolution of these convex algorithms

are limited by a distance of the order of the Rayleigh diffraction limit [9, 40] for recovering

general signed point scatterers. But for the case of positive sources [12, 29, 30], there is no such

limitation on the resolution and the performance of these algorithms could be nearly optimal.

More recently, to analyze the resolution for recovering multiple point scatterers, in [23–25]

the authors defined "computational resolution limits" which characterize the minimum

required distance between point scatterers so that their number and locations can be stably

resolved under certain noise level. By developing a non-linear approximation theory in

a so-called Vandermonde space, they derived bounds for computational resolution limits

for a deconvolution problem [25] and a line spectral problem [24] (equivalent to the super-

resolution problem considered here). In particular, they showed in [24] that the computational

resolution limit for number and location recovery should be respectively
Cnum

Ω
( σ

mmin
)

1
2n−2 and

Csupp

Ω
( σ

mmin
)

1
2n−1 where Cnum,Csupp are constants and mmin is the minimum strength of the

point scatterers. Their results demonstrate that when the point scatterers are separated

larger than
Csupp

Ω
( σ

mmin
)

1
2n−1 , we can stably recover the scatterer locations. Conversely, when

the point scatterers are separated by a distance less than O(
Csupp

Ω
( σ

mmin
)

1
2n−1 ), stably recovering

the scatterer locations is impossible in the worst case. This resolution limit indicates that

super-resolution is possible for the single measurement case but requires very high signal-

to-noise ratio (according to the exponent 1
2n−1

). This explains why it is so hard to achieve

super-resolution by single illumination. Therefore, we have to resort to multiple illuminations

in order to super-resolve point scatterers.

As we have seen, the mathematics behind resolution limit for single illumination imaging is

towards to be fully understood. Nevertheless, the multiple illumination case still lacks or even

is without any mathematical foundation. Thus, our paper serves as a first step towards under-

standing the resolution limit (or performance) of multi-illumination imaging. We consider

both the one- and two-dimensional cases. Our results demonstrate that the resolution for the

multiple illumination imaging problem in the one-dimensional case is less than

2.2eπ

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
n

,

where σ∞,min(I ) is defined by (2.8). In two dimensions, the resolution limit is multiplied by

(n +1)(n +2) when the n point scatterers are assumed to be in a disk of radius nπ/Ω.

Our paper is organized in the following way. Section 2.1 formulates the minimization

problem for recovering point scatterers from multi-illumination data. Sections 2 and 3 present

the main results on the spatio-temporal super-resolution in respectively the one- and two-

dimensional case and a detailed discussion on their significance. Section 4 introduces the

main technique (namely the approximation theory in Vandermonde space) that is used to

show the main results of this paper. In Section 5, Theorem 2.1 is proved. Section 6 is devoted
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to the proof of Theorem 3.1. Finally, the appendix provides some lemmas and inequalities that

are used in the paper.

2. RESOLUTION IN THE ONE-DIMENSIONAL CASE

2.1. PROBLEM SETTING

Let Ω> 0 be the cut-off frequency. For a smooth function f supported in [−Ω,Ω], let

|| f ||2 =
1

2Ω

∫

Ω

−Ω
| f (ω)|2dω and || f ||∞ = max

ω∈[−Ω,Ω]
| f (ω)|.

For Λ> 0, we define the warped-around distance for x, y ∈R by

∣

∣

∣x − y
∣

∣

∣

Λ
= min

k∈Z

∣

∣

∣x − y −kΛ
∣

∣

∣. (2.1)

Let µ=
n
∑

j=1

a jδy j
be a discrete measure, where y j ∈R, j = 1, · · · ,n, represent the locations of

the point scatterers and a j ∈C, j = 1, · · · ,n, their strengths. We set

mmin = min
j=1,··· ,n

|a j |, dmin = min
p 6= j

|yp − y j |. (2.2)

We assume that the point scatterers are illuminated by some illumination pattern It for each

time step t ∈N,1 ≤ t ≤ T , where T is the total number of frames. Then Itµ is given by

Itµ=
n
∑

j=1

It (y j )a jδy j
, t = 1, · · · ,T.

The available measurements are the noisy Fourier data of Itµ in a bounded interval. More

precisely, they are given by

Yt (ω) =F [Itµ](ω)+Wt (ω) =
n
∑

j=1

It (y j )a j e i y jω+Wt (ω), 1 ≤ t ≤ T, ω ∈ [−Ω,Ω], (2.3)

where F [Itµ] denotes the Fourier transform of Itµ and Wt (ω) is the noise. We assume that

||Wt ||2 <σ with σ being the noise level. Recall that π/Ω is the Rayleigh resolution limit.

The inverse problem we are concerned with is to recover the sparsest measure that could

generate these diffraction-limited images Yt ’s under certain illuminations. In modern imaging

techniques, there are three different cases of interest:

• The illumination patterns are exactly known, such as in SIM and STORM;

• The illumination patterns are unknown but can be approximated, such as in BEAM;

• The illumination patterns are completely unknown.
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In this paper, we consider reconstructing the point scatterers as the sparsest solution under

the measurement constraint for all these three cases. More specifically, when the illumination

patterns are exactly known, we consider the following l0-minimization problem:

min
ρ

||ρ||0 subject to ||F [Itρ]−Yt ||2 <σ, 1 ≤ t ≤ T, (2.4)

where ||ρ||0 is the number of Dirac masses representing the discrete measure ρ. When the

illumination patterns are not exactly known but could be approximated, we consider the

l0-minimization problem:

min
ρ

||ρ||0 subject to ||F [Îtρ]−Yt ||2 <σ, 1 ≤ t ≤ T, (2.5)

where Ît is an approximation of each It so that the feasible set contains some discrete measures

with n supports. When the illumination patterns are completely unknown, we consider the

following l0-minimization problem:

min
ρ

||ρ||0 subject to the existence of Ît ’s such that ||F [Îtρ]−Yt ||2 <σ, 1 ≤ t ≤ T. (2.6)

Our main result in the next section gives an estimation of the resolution of these sparsity

recovery problems in the one-dimensional case.

2.2. MAIN RESULTS FOR THE STABILITY OF PROBLEM (2.4)

We first introduce the illumination matrix as

I =







I1(y1) · · · I1(yn)
...

...
...

IT (y1) · · · IT (yn)






. (2.7)

Then we define, for a m ×k matrix A, σ∞,min(A) by

σ∞,min(A) = min
x∈Ck ,||x||∞≥1

||Ax||∞. (2.8)

It is easy to see that σ∞,min(A) characterizes the correlation between the columns of A.

We have the following result on the stability of problems (2.4), (2.5), and (2.6). Its proof is

given in Section 5.

Theorem 2.1. Suppose that µ=
∑n

j=1
a jδy j

and the following separation condition holds:

dmin := min
p 6= j

∣

∣

∣yp − y j

∣

∣

∣

nπ
Ω

≥
2.2eπ

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
n

, (2.9)

with 1
σ∞,min(I )

σ
mmin

≤ 1. Here, mmin is defined in (2.2) and σ
mmin

is the noise-to-signal ratio.

Then any solution to (2.4), (2.5), or (2.6) contains exactly n point scatterers. Moreover, for

ρ =
∑n

j=1
â jδŷ j

being the corresponding solution, after reordering the ŷ j ’s, we have

∣

∣

∣ŷ j − y j

∣

∣

∣

nπ
Ω

<
dmin

2
, (2.10)
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and
∣

∣

∣ŷ j − y j

∣

∣

∣

nπ
Ω

<
C (n)

Ω
SRF n−1 1

σ∞,min(I )

σ

mmin
, 1 ≤ j ≤ n, (2.11)

where C (n) = 2
p

2πnen and SRF = π
Ωdmin

is the super-resolution factor.

Remark 2.1. In this paper, for simplicity, we assume that the measurements are for all ω ∈
[−Ω,Ω]. Nevertheless, our results can be easily extended to the discrete sampling case, for

example, when the measurements are taken at M evenly spaced points ωl ∈ [−Ω,Ω] with M ≥ n.

The minimum number of sampling points at each single frame is only n, which shows that the

sparsity recovery can reduce significantly the number of measurements. Moreover, if we consider

that the point scatterers (as well as the solution of (2.4)) are supported in an interval of length

of several Rayleigh resolution limits, then the warped-around distance in Theorem 2.1 can be

replaced by the Euclidean distance (with only a slight modification of the results). Under this

scenario, by utilizing the projection trick introduced in [23], our results can also be extended to

multi-dimensional spaces.

Remark 2.2. For the case when n = 2, the minimal separation distance in Theorem 2.1

2.2eπ

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
2

,

applies for any k-dimensional spaces. It means that for multi-illumination imaging in general

k-dimensional space, the two-point resolution [8,11,36–38] of sparsity recoveries like (2.4), (2.5),

or (2.6) is less than 2.2eπ
Ω

(

1
σ∞,min(I )

σ
mmin

) 1
2

.

Remark 2.3. Note that the stability result in Theorem 2.1 holds for any algorithm that can

recover the sparsest solution (solution with n point scatterers). Thus it also helps to understand

the performance of other sparsity-promoting algorithms, such as the l1-minimization that is

frequently used in the sparsity-based super-resolution. Also, our results can be generalized to

the multi-clump case, where the resolution is related to the sparsity of the point scatterers in

each clump rather than the total number of point scatterers. This can explain the fact that we

can achieve super-resolution imaging even in the case where we have tens or hundreds of point

scatterers.

Remark 2.4. Note also that our results can be extended to other kinds of imaging systems with

different point spread functions. For example, let the point spread function be f . In the presence

of an additive noise w(t ), the measurement in the time-domain is

f ⊛µ(t )+w(t ) =
n
∑

j=1

a j f (t − y j )+w(t ).

By taking the Fourier transform, we obtain

F y(ω) =F f (ω)Fµ(ω)+F w(ω) =F f (ω)
(

n
∑

j=1

a j e i y jω
)

+F w(ω).

Suppose that |F f (ω)| > 0 at the sampling points. Then our results can be easily extended to the

case when the point spread function is f .
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Theorem 2.1 demonstrates that when the point scatterers are separated by the distance dmin

in (2.9), we can stably recover the scatterer locations. Under the minimal separation condition,

each of the recovered locations is in a neighborhood of the ground truth and the deviation of

them from the ground truth is also estimated. Thus the resolution of our sparsity-promoting

algorithms for the multi-illumination data is less than

2.2eπ

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
n

.

Based on this formula of the resolution limit, we demonstrate that the incoherence (encoded

in σ∞,min(I )) between the illumination patterns (or columns in illumination matrix (2.7))

is crucial to the sparsity-based spatio-temporal super-resolution. More precisely, applying

any sparsity-promoting algorithm for images from illumination patterns with high degree

of incoherence can achieve desired super-resolution, even when only a small number of

frames are provided, which yields high spatio-temporal resolution. This is the most important

contribution of our paper.

We remark that our result can even serve as a way to estimate explicitly the resolution

for the multi-illumination imaging when we could know or estimate the incoherence of

the illumination patterns and the signal-to-noise ratio. We present a simple example as

follows that calculates explicitly the resolution limit of our sparsity recovery problem by the

estimation (2.9). We leave the other detailed discussions on Theorem 2.1 to the following three

subsections.

Example 2.1. We consider two point scatterers that are illuminated by two illumination pat-

terns. Suppose for instance that the illumination matrix is given by

I =
(

1 0.7

0.7 1

)

.

Suppose also that the noise level is σ = 10−3 and the noise-to-signal ratio is σ
mmin

= 10−3. By

Lemma C.3, σ∞,min(I ), defined in (2.8), is equal to 0.3. Hence, by Theorem 2.1, the resolution

limit dmin in solving problem (2.4) (2.5), or (2.6) is smaller than

2.2eπ

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
n ≈ 0.34

π

Ω
,

where π
Ω

, as said before, is the classical Rayleigh resolution limit. This shows that even with only

two illuminations with mild degree of incoherence, there is a threefold resolution improvement.

2.3. DISCUSSION OF σ∞,min(I ) AND THE EFFECT OF MULTIPLE ILLUMINATION

2.3.1. ADDING THE SAME ILLUMINATION PATTERN WILL NOT ENHANCE THE RESOLUTION

Let

I =













I1(y1) · · · I1(yn)
...

...
...

IT−1(y1) · · · IT−1(yn)

IT (y1) · · · IT (yn)













, Î =













I1(y1) · · · I1(yn)
...

...
...

IT (y1) · · · IT (yn)

IT+1(y1) · · · IT+1(yn)












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with IT+1 = IT . By the definition of σ∞,min, it is clear that σ∞,min(Î ) =σ∞,min(I ). Thus, adding

the same illumination pattern can not increase the resolution in Theorem 2.1. This is con-

sistent with our observation that multiple illuminations with different patterns are key for

spatio-temporal super-resolution.

2.3.2. THE INCOHERENCE BETWEEN THE ILLUMINATION PATTERNS IS CRUCIAL

The value of σ∞,min(I ) is related to the correlation between the columns of the illumination

matrix I . In particular, we have the following rough estimation of σ∞,min(I ):

σ∞,min(I ) ≥
σmin(I )
p

T
, (2.12)

where σmin(I ) is the minimum singular value of I . This clearly illustrates that the correlation

between the columns of I is crucial to σ∞,min(I ). The correlation between columns of I is

related to the incoherence of the illumination patterns. Thus, we should employ illumination

patterns with high degree of incoherence in order to increase σ∞,min(I ), and consequently,

obtain a significant resolution enhancement.

2.4. COMPARISON WITH THE SINGLE ILLUMINATION CASE

In this subsection, we compare the resolution in the single illumination case (i.e., the single

measurement case) with that in the multiple illumination case, whereby we illustrate the effect

of multiple illuminations in enhancing the resolution.

In [24], the authors estimate the so-called computational resolution limit for the line spectral

estimation problem of the single measurement case. The line spectral estimation problem is to

estimate the locations of some line spectra from the Fourier data (in a bounded domain) of one

of their linear combination. So the line spectral problem is equivalent to the super-resolution

problem considered here. The results in [24] show that, for the single measurement case, when

the point scatterers are separated by

τ=
c0

Ω
(

σ

mmin
)

1
2n−1 ,

for some positive constant c0, there exists a discrete measure µ =
∑n

j=1
a jδy j

with n point

scatterers located at {−τ,−2τ,−nτ} and another discrete measure µ̂=
∑n

j=1
â jδŷ j

with n point

scatterers located at {0,τ, · · · , (n −1)τ} such that

||F [µ̂]−F [µ]||∞ <σ,

and either min1≤ j≤n |a j | = mmin or min1≤ j≤n |â j | = mmin.

By the definition of || · ||∞ and || · ||2, we also have

||F [µ̂]−F [µ]||2 <σ.

This result demonstrates that when the point scatterers are separated by
c0

Ω
( σ

mmin
)

1
2n−1 , the

solution of the l0-minimization problem in the single measurement case

min
ρ

||ρ||0 subject to ||F [ρ]−Y ||2 <σ, (2.13)

11



is not stable. In particular, the recovered point scatterers by (2.13) may be located in an interval

completely disjoint from that of the ground truth.

Therefore, for the single measurement case, when the scatterers are separated by O(
( σ

mmin
)

1
2n−1

Ω
),

the l0-minimization may be unstable. However, for the multiple illumination case, when the

point scatterers are separated by O(
( 1
σ∞,min(I )

σ
mmin

)
1
n

Ω
), the l0-minimization (2.4) is still stable.

Suppose we have illumination patterns such that 1
σ∞,min(I )

is of constant order, the resolution

now is of order O(
( σ

mmin
)

1
n

Ω
). Compared with the resolution in the single measurement case, say

of order O(
( σ

mmin
)

1
2n−1

Ω
), this clearly shows a significant enhancement and illustrates the effect of

multiple illuminations in improving the resolution.

2.5. LOWER BOUND FOR THE RESOLUTION OF MULTI-ILLUMINATION IMAGING

By Theorem 2.1, when we have desired illumination patterns with high degree of incoherence

so that σ∞,min(I ) is of order one, the resolution of the sparsity recovery is expected to be less

than
c0

Ω
( σ

mmin
)

1
n for some positive constant c0. We next demonstrate that this resolution order

is the best we can obtain if the illumination patterns are unknown. More precisely, we have

the following proposition whose proof is given in Appendix B.

Proposition 2.1. Given n ≥ 2, σ,mmin with σ
mmin

≤ 1, and unknown illumination pattern It

with |It (y)| ≤ 1, y ∈R,1 ≤ t ≤ T , let τ be given by

τ=
0.043

Ω

( σ

mmin

) 1
n

. (2.14)

Then there existµ=
∑n

j=1
a jδy j

with n supports at
{

−τ,−2τ, . . . ,−nτ
}

and |a j | = mmin,1 ≤ j ≤ n,

and ρ =
∑n−1

j=1
â jδŷ j

with n supports at
{

0,τ, · · · , (n −1)τ
}

, such that

there exist Ît ’s so that ||F [Îtρ]−F [Itµ]||2 <σ, t = 1, · · · ,T.

3. RESOLUTION IN THE TWO-DIMENSIONAL CASE

3.1. PROBLEM SETTING

Let Ω> 0 be the cut-off frequency. For a smooth function f : R2 →R supported on ||ω||2 ≤Ω,

let

|| f ||∞ = max
||ω||2≤Ω

| f (ω)|.

Let µ=
n
∑

j=1

a jδy j
be a discrete measure, where y j ∈R

2, j = 1, · · · ,n, represent the locations of

the point scatterers and a j ∈C, j = 1, · · · ,n, their strengths. We set

mmin = min
j=1,··· ,n

|a j |, dmin = min
p 6= j

||yp −y j ||2. (3.1)

12



Again, we assume that the point scatterers are illuminated by some illumination pattern It for

each time step t ∈N,1 ≤ t ≤ T , where T is the total number of illumination patterns. Then Itµ

is

Itµ=
n
∑

j=1

It (y j )a jδy j
, t = 1, · · · ,T.

In the time-domain, the measurements are

Atµ := h⊛ (Itµ), t = 1,2, · · · ,T,

where h is a blurring kernel in R
2. Thus, in the Fourier-domain, the available measurements

are given by

Yt (ω) =F [Itµ](ω)+Wt (ω) =
n
∑

j=1

It (y j )a j e i y j ·ω+Wt (ω), 1 ≤ t ≤ T, ||ω||2 ≤Ω, (3.2)

where F [Itµ] denotes the Fourier transform of Itµ and Wt (ω) is the noise. We assume that

||Wt ||∞ <σ with σ being the noise level.

We consider reconstructing the point scatterers as the sparsest solution (solution to the l0-

minimization problem) under the measurement constraints for the three cases of illumination

patterns that are discussed in Section 2.1. With a slight abuse of notation, we also denote by

F [ρ] the function F [ρ](ω), ||ω||2 ≤Ω. In this section, we suppose that the point scatterers

are located in a disk O with radius of several Rayleigh resolution limits. Then we consider

the following optimization problems. When the illumination patterns are exactly known, we

consider the following l0-minimization problem:

min
ρ supported in O

||ρ||0 subject to ||F [Itρ]−Yt ||∞ <σ, 1 ≤ t ≤ T, (3.3)

where ||ρ||0 is the number of Dirac masses representing the discrete measure ρ. When the

illumination patterns are not exactly known but could be approximated, we consider the

l0-minimization problem

min
ρ supported in O

||ρ||0 subject to ||F [Îtρ]−Yt ||∞ <σ, 1 ≤ t ≤ T, (3.4)

where Ît is an approximation of each It so that the feasible set contains some measures with n

supports. When the illumination patterns are completely unknown, we consider the following

l0-minimization problem:

min
ρ supported in O

||ρ||0 subject to the existence of Ît ’s such that ||F [Îtρ]−Yt ||∞ <σ, 1 ≤ t ≤ T.

(3.5)

Our main result in the following subsection gives an estimation of the resolution of these

two-dimensional sparsity recovery problems.
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3.2. MAIN RESULTS FOR THE STABILITY OF SPARSITY RECOVERIES IN TWO DIMENSIONS

The illumination matrix in the two-dimensional case is

I =







I1(y1) · · · I1(yn)
...

...
...

IT (y1) · · · IT (yn)






. (3.6)

We have the following theorem on the stability of problems (3.3), (3.4), and (3.5). Its proof is

given in Section 6.

Theorem 3.1. Let n ≥ 2 and let the disk O be of radius
c0nπ
Ω

with c0 ≥ 1. Let Yt ’s be the measure-

ments that are generated by an n-sparse measure µ=
∑n

j=1
a jδy j

,y j ∈O in the two-dimensional

space. Assume that

dmin := min
p 6= j

∣

∣

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

∣

∣

2
≥

2.2c0eπ(n +2)(n +1)

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
n

. (3.7)

Here, I is the matrix in (3.6), mmin is defined in (3.1) and σ
mmin

is the noise-to-signal ratio.

Then any solution to (3.3), (3.4), and (3.5) contains exactly n point scatterers. Moreover, for

ρ =
∑n

j=1
â jδŷ j

being the corresponding solution, after reordering the ŷ j ’s, we have

∣

∣

∣

∣

∣

∣ŷ j −y j

∣

∣

∣

∣

∣

∣

2
<

dmin

2
, (3.8)

and
∣

∣

∣

∣

∣

∣ŷ j −y j

∣

∣

∣

∣

∣

∣

2
<

C (n)

Ω
SRF n−1 1

σ∞,min(I )

σ

mmin
, 1 ≤ j ≤ n, (3.9)

where C (n) = (n +1)n(n +2)n
p

2πncn−1
0 en and SRF = π

Ωdmin
is the super-resolution factor.

Theorem 3.1 is the two-dimensional analogue of Theorem 2.1. It reveals the dependence of

the resolution of two-dimensional sparsity recoveries on the cut-off frequency of the imaging

system, the signal-to-noise ratio, the sparsity of point scatters, and the incoherence of illu-

mination patterns. It highlights the importance of multiple illumination patterns with high

degree of incoherence in achieving two-dimensional spatio-temporal super-resolution.

4. NON-LINEAR APPROXIMATION THEORY IN VANDERMONDE SPACE

In this section, we present the main technique that is used in the proofs of the main results

of the paper, namely the approximation theory in Vandermonde space. This theory was first

introduced in [24, 25]. Instead of considering the non-linear approximation problem there, we

consider a different approximation problem, which is relevant to the stability analysis of (2.4).

More specifically, for s ∈N, s ≥ 1, and z ∈C, we define the complex Vandermonde-vector

φs(z) = (1, z, · · · , zs)⊤. (4.1)

Throughout this paper, for a complex matrix A, we denote A⊤ its transpose and A∗ its

conjugate transpose.
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We consider the following non-linear problem:

min
θ̂ j∈R, j=1,··· ,k

max
t=1,··· ,T

min
â j ,t∈C, j=1,··· ,k

∣

∣

∣

∣

∣

∣

k
∑

j=1

â j ,tφs(e i θ̂ j )− vt

∣

∣

∣

∣

∣

∣

2
, (4.2)

where vt =
∑k+1

j=1
a j ,tφs(e iθ j ) is given with θ j ’s being real numbers. We shall derive a lower

bound for the optimal value of the minimization problem for the case when s = k. The main

results are presented in Section 4.2.

4.1. NOTATION AND PRELIMINARIES

We first introduce some notation and preliminaries. We denote for k ∈N,k ≥ 1,

ζ(k) =
{

( k−1
2

!)2, k is odd,

( k
2

)!( k−2
2

)!, k is even,
ξ(k) =















1/2, k = 1,
( k−1

2
)!( k−3

2
)!

4
, k is odd, k ≥ 3,

( k−2
2

!)2

4
, k is even.

(4.3)

We also define for p, q ∈N, p, q ≥ 1, and z1, · · · , zp , ẑ1, · · · , ẑq ∈C, the following vector in R
p :

ηp,q (z1, · · · , zp , ẑ1, · · · , ẑq ) =













|(z1 − ẑ1)| · · · |(z1 − ẑq )|
|(z2 − ẑ1)| · · · |(z2 − ẑq )|

...

|(zp − ẑ1)| · · · |(zp − ẑq )|













. (4.4)

We present two auxiliary lemmas that are helpful for deriving our main results. These

lemmas are slightly different from the ones in [24, Section III]. Thus, we employ different

techniques for proving them. Their proofs are presented in Appendix A.

Lemma 4.1. For θ j ∈ R, j = 1, · · · ,k +1, assume that minp 6= j |θp −θ j |2π = θmin. Then, for any

θ̂1, · · · , θ̂k ∈R, we have the following estimate:

||ηk+1,k (e iθ1 , · · · ,e iθk+1 ,e i θ̂1 , · · · ,e i θ̂k )||∞ ≥ ξ(k)(
2θmin

π
)k .

Lemma 4.2. Let ǫ> 0. For θ j , θ̂ j ∈R, j = 1, · · · ,k, assume that

||ηk,k (e iθ1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂k )||∞ < (
2

π
)kǫ, (4.5)

where ηk,k is defined as in (4.4), and that

θmin = min
q 6= j

|θq −θ j |2π ≥
( 4ǫ

λ(k)

) 1
k

, (4.6)

where

λ(k) =
{

1, k = 2,

ξ(k −2), k ≥ 3.
(4.7)
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Then, after reordering the θ̂ j ’s, we have

|θ̂ j −θ j |2π <
θmin

2
, j = 1, · · · ,k, (4.8)

and moreover,

|θ̂ j −θ j |2π <
2k−1ǫ

(k −2)!(θmin)k−1
, j = 1, · · · ,k. (4.9)

4.2. MAIN RESULTS ON THE APPROXIMATION THEORY IN VANDERMONDE SPACE

Before presenting a lower bound for problem (4.2), we introduce a basic approximation result

in Vandermonde space. This result was first derived in [24].

Theorem 4.1. Let k ≥ 1. For fixed θ̂1, · · · , θ̂k ∈R, denote Â =
(

φk (e i θ̂1 ), · · · ,φk (e i θ̂k )
)

, where the

φk (e i θ̂ j )’s are defined as in (4.1). Let V be the k-dimensional complex space spanned by the

column vectors of Â and let V ⊥ be the one-dimensional orthogonal complement of V in C
k+1.

Denote by PV ⊥ the orthogonal projection onto V ⊥ in C
k+1. Then, we have

min
â∈Ck

||Ââ −φk (e iθ)||2 = ||PV ⊥
(

φk (e iθ)
)

||2 = |v∗φk (e iθ)| ≥
1

2k
|Πk

j=1(e iθ−e i θ̂ j )|,

where v is a unit vector in V ⊥ and v∗ is its conjugate transpose.

We then have the following result for non-linear approximation (4.2) in Vandermonde space.

Theorem 4.2. Let k ≥ 1 and θ j ∈R,1 ≤ j ≤ k+1, be k+1 distinct points with θmin = minp 6= j |θp−
θ j |2π > 0. For q ≤ k, let α̂t (q) = (â1,t , · · · , âq,t )⊤, αt = (a1,t , · · · , ak+1,t )⊤ and

Â(q) =
(

φk (e i θ̂1 ), · · · ,φk (e i θ̂q )
)

, A =
(

φk (e iθ1 ), · · · ,φk (e iθk+1 )
)

,

where φk (z) is defined as in (4.1). Then, for any θ̂1, · · · , θ̂q ∈R,

max
t=1,··· ,T

min
α̂t (q)∈Cq

||Â(q)α̂t (q)− Aαt ||2 ≥
σ∞,min(B)ξ(k)(θmin)k

πk
,

where

B =







a1,1 a2,1 · · · ak+1,1

...
...

...
...

a1,T a2,T · · · ak+1,T






. (4.10)

Proof. Step 1. Note that, for any θ̂1, · · · , θ̂q , · · · , θ̂k ∈R, if q < k, then

min
ât (q)∈Cq

||Â(q)α̂t (q)− Aαt ||2 ≥ min
α̂t (k)∈Ck

||Â(k)α̂t (k)− Aαt ||2, 1 ≤ t ≤ T.

So, we only need to consider the case when q = k. We shall verify that, for any k distinct points

θ̂1, · · · , θ̂k ∈R, we have

max
t=1,··· ,T

min
α̂t∈Ck

||Â(k)α̂t (k)− Aαt ||2 ≥
σ∞,min(B)ξ(k)(θmin)k

πk
. (4.11)
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Let us then fix (θ̂1, · · · , θ̂k ) in our subsequent arguments.

Step 2. Let V be the complex space spanned by the column vectors of Â(k) and let V ⊥ be

the orthogonal complement of V in C
k+1. It is clear that V ⊥ is a one-dimensional complex

space. We let v be a unit vector in V ⊥ and denote by PV ⊥ the orthogonal projection onto V ⊥

in C
k+1. Note that ‖PV ⊥u‖2 = |v∗u| for u ∈C

k+1, where v∗ is the conjugate transpose of v . We

have

min
α̂t∈Ck

||Â(k)α̂t − Aαt ||2 = ||PV ⊥(Aαt )||2 = |v∗Aαt | = |
k+1
∑

j=1

a j ,t v∗φk (e iθ j )| = |βt |, (4.12)

where βt =
∑k+1

j=1
a j ,t v∗φk (e iθ j ), t = 1, · · · ,T . Denote by β = (β1,β2, · · · ,βT )⊤. Thus, we only

need to estimate the lower bound of ||β||∞. By (4.12), we have β = B η̂, where B is given by

(4.10) and η̂ = (v∗φk (e iθ1 ), v∗φk (e iθ2 ), · · · , v∗φk (e iθk+1 ))⊤. By the definition of σ∞,min(B), we

have

||β||∞ ≥σ∞,min(B)||η̂||∞.

On the other hand, by Theorem 4.1, we obtain that

||η̂||∞ ≥
1

2k
||ηk+1,k (e iθ1 , · · · ,e iθk+1 ,e i θ̂1 , · · · ,e i θ̂k )||∞,

where ηk+1,k is defined by (4.4). Combining this with Lemma 4.1, we get

||η̂||∞ ≥
1

2k
ξ(k)(

2θmin

π
)k .

It then follows that

||β||∞ ≥
σ∞,min(B)ξ(k)(θmin)k

πk
,

which proves (4.11) and hence the theorem.

Theorem 4.3. Let k ≥ 2 and θ j ∈R, j = 1, · · · ,k, be k different points with

θmin = min
p 6= j

|θp −θ j |2π > 0.

Assume that there are k distinct points θ̂1, · · · , θ̂k ∈R satisfying

max
t=1,··· ,T

||Âα̂t − Aαt ||2 <σ,

where α̂t = (â1,t , · · · , âk,t )⊤, αt = (a1,t , · · · , ak,t )⊤ and

Â =
(

φk (e i θ̂1 ), · · · ,φk (e i θ̂k )
)

, A =
(

φk (e iθ1 ), · · · ,φk (e iθk )
)

.

17



Then

||ηk,k (e iθ1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂k )||∞ <
2k

σ∞,min(B)
σ,

where

B =







a1,1 a2,1 · · · ak,1

...
...

...
...

a1,T a2,T · · · ak,T






. (4.13)

Proof. Let V be the complex space spanned by the column vectors of Â and let V ⊥ be the

orthogonal complement of V in C
k+1. Let v be a unit vector in V ⊥ and denote by PV ⊥ the

orthogonal projection onto V ⊥ in C
k+1. Similarly to Step 2 in the proof of Theorem 4.2, we

obtain that

min
α̂t∈Ck

||Âα̂t − Aαt ||2 = ||PV ⊥(Aαt )||2 = |v∗Aαt | = |
k
∑

j=1

a j ,t v∗φk (e iθ j )| = |βt |, (4.14)

where βt =
∑k

j=1
a j ,t v∗φk (e iθ j ), t = 1, · · · ,T . Denote by β= (β1,β2, · · · ,βT )⊤, we have β= B η̂,

where B is given by (4.13) and η̂= (v∗φk (e iθ1 ), v∗φk (e iθ2 ), · · · , v∗φk (e iθk ))⊤. By the definition

of σ∞,min(B), we arrive at

||β||∞ ≥σ∞,min(B)||η̂||∞.

On the other hand, by Theorem 4.1, we get

||η̂||∞ ≥
1

2k
||ηk,k (e iθ1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂k )||∞,

and hence the theorem is proved.

5. PROOF OF THEOREM 2.1

The proof of Theorem 2.1 is divided into four steps.

Step 1. We only prove the theorem for problem (2.4) and the other two cases can be

proved in the same manner. We first prove that the solution to (2.4) is a discrete measure

corresponding to at least n point scatterers. For ρ =
∑k

j=1
â jδŷ j

and µ =
∑n

j=1
a jδy j

, we set

µ̂t = Itρ =
∑k

j=1
â j ,tδŷ j

and µt =
∑n

j=1
It (y j )a jδy j

. We shall prove that if k < n, then for any

ŷ j ∈R, â j ,t ∈C, j = 1, · · · ,k, t = 1, · · · ,T ,

max
t=1,··· ,T

||F [µ̂t ]−F [µt ]||2 > 2σ. (5.1)

For ease of presentation, we fix ŷ j , â j ,t ’s in the subsequent arguments. In view of ||Wt ||2 <σ,

from (5.1) we further have

max
t=1,··· ,T

||F [µ̂t ]−Yt ||2 >σ, (5.2)
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whereby any solution corresponding to only k < n point scatterers cannot be a solution to

(2.4). We now begin our proof. Let h = 2Ω
n

and g (ω) =F [µ̂t ](ω)−F [µt ](ω) for each t , we have

1

2Ω

∫

Ω

−Ω
|g (ω)|2dω=

1

2Ω

n
∑

j=1

∫−Ω+ j h

−Ω+( j−1)h
|g (ω)|2dω

=
1

2Ω

∫h

0

n
∑

j=1

|g (ω+ ( j −1)h −Ω)|2dω.

With this decomposition in hand, in order to prove (5.1) we shall prove in the following steps

that for all ω in [0,h],

max
t=1,··· ,T

1

n

n
∑

j=1

|F [µ̂t ](ω+ ( j −1)h −Ω)−F [µt ](ω+ ( j −1)h −Ω)|2 > 4σ2. (5.3)

Without loss of generality, we only show (5.3) for ω= 0. For k < n, we consider

(

F [µ̂t ](ω1),F [µ̂t ](ω2), · · · ,F [µ̂t ](ωn−1)
)⊤−

(

F [µt ](ω1),F [µt ](ω2), · · · ,F [µt ](ωn−1)
)⊤

, (5.4)

where ω j = ( j −1)h −Ω, j = 1, · · · ,n −1. We write (5.4) as

Φ̂α̂t −Φαt ,

where α̂t = (â1,t , · · · , âk,t )⊤, αt = (It (y1)a1, · · · , It (yn)an)⊤ and

Φ̂=













e i ŷ1ω1 · · · e i ŷkω1

e i ŷ1ω2 · · · e i ŷkω2

...
...

...

e i ŷ1ωn−1 · · · e i ŷkωn−1













, Φ=













e i y1ω1 · · · e i ynω1

e i y1ω2 · · · e i ynω2

...
...

...

e i y1ωn−1 · · · e i ynωn−1













.

We shall prove that the following estimate holds:

max
t=1,··· ,T

1
p

n
||Φ̂α̂t −Φαt ||2 > 2σ, (5.5)

and consequently arrive at (5.3).

Step 2. We let θ j = y j
2Ω
n

, j = 1, · · · ,n and θ̂ j = ŷ j
2Ω
n

. From the following decompositions:

Φ̂=
(

φn−1(e i θ̂1 ), · · · ,φn−1(e i θ̂k )
)

diag(e−i ŷ1Ω, · · · ,e−i ŷkΩ),

Φ=
(

φn−1(e iθ1 ), · · · ,φn−1(e iθn )
)

diag(e−i y1Ω, · · · ,e−i ynΩ),
(5.6)

where φ(·) is defined as in (4.1), we readily obtain that

max
t=1,··· ,T

||Φ̂α̂t −Φαt ||2 = max
t=1,··· ,T

||D̂γ̂t −Dγ̃t ||2, (5.7)

where γ̂t = (â1,t e−i ŷ1Ω, · · · , âk,t e−i ŷkΩ)⊤,γt = (It (y1)a1e−i y1Ω, · · · , It (yn)ane−i ynΩ)⊤,

D̂ =
(

φn−1(e i θ̂1 ), · · · ,φn−1(e i θ̂k )
)

and D =
(

φn−1(e iθ1 ), · · · ,φn−1(e iθn )
)

. We consider I in (2.7)

and denote B = I diag(a1e−i y1Ω, · · · , ane−i ynΩ). Applying Theorem 4.2, we get

max
t=1,··· ,T

||D̂γ̂t −Dγt ||2 ≥
σ∞,min(B)ξ(n −1)(θmin)n−1

πn−1
,

19



where θmin = min j 6=p |θ j −θp |2π. On the other hand, by the definition of σ∞,min, we have

σ∞,min(I )mmin = min
||α||∞≥mmin

||Iα||∞

≤ min
||α||∞≥1

||I diag(a1e−i y1Ω, · · · , ane−i ynΩ)α||∞ (by mmin = min
1≤ j≤n

|a j |)

=σ∞,min(B).

(5.8)

Thus,

max
t=1,··· ,T

||D̂γ̂t −Dγt ||2 ≥
mminσ∞,min(I )ξ(n −1)(θmin)n−1

πn−1
.

By (5.7), it follows that

max
t=1,··· ,T

||Φ̂α̂t −Φαt ||2 ≥
mminσ∞,min(I )ξ(n −1)(θmin)n−1

πn−1
.

On the other hand, recall that dmin = min j 6=p |y j − yp | nπ
Ω

. Using the relation θ j = y j
2Ω
n

, we have

θmin = 2Ω
n

dmin. Then the separation condition (2.9) and 1
σ∞,min(I ) σ

mmin

≤ 1 imply that

θmin ≥
4.4eπ

n

( 1

σ∞,min(I )

σ

mmin

) 1
n ≥

4.4eπ

n

( 1

σ∞,min(I )

σ

mmin

) 1
n−1 >π

( 2
p

n

ξ(n −1)σ∞,min(I )

σ

mmin

) 1
n−1

,

where here we have used Lemma C.1 for deriving the last inequality. Therefore,

max
t=1,··· ,T

||Φ̂α̂t −Φαt ||2 > 2
p

nσ,

whence (5.5) is proved.

Step 3. By the above results, the solution of (2.4) corresponds exactly to n point scatterers.

Suppose that the solution is ρ =
∑n

j=1
â jδŷ j

and µ̂t = Itρ =
∑n

j=1
â j ,tδŷ j

. We now prove the

stability of the location recovery. Similarly to Step 1, using the constraints in (2.4)

||F [µ̂t ]−Yt ||2 <σ, 1 ≤ t ≤ T,

we can derive that

1

2Ω

∫h

0
max

t=1,··· ,T

n
∑

j=1

|F [µ̂t ](ω+ ( j −1)h −Ω)−F [µt ](ω+ ( j −1)h −Ω)|2dω< 4σ2.

Hence, there exists ω0 ∈ [0,h] (h = 2Ω
n

) such that

max
t=1,··· ,T

1

n

n
∑

j=1

|F [µ̂t ](ω0 + ( j −1)h −Ω)−F [µt ](ω0 + ( j −1)h −Ω)|2 < 4σ2. (5.9)

Without loss of generality, we suppose that ω0 = 0 and consider

(

F [µ̂t ](ω1),F [µ̂t ](ω2), · · · ,F [µ̂t ](ωn)
)⊤−

(

F [µt ](ω1),F [µt ](ω2), · · · ,F [µt ](ωn)
)⊤ = Φ̂α̂t−Φαt ,
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where ω j = ( j −1)h −Ω, α̂t = (â1,t , · · · , ân,t )⊤, αt = (It (y1)a1, · · · , It (yn)an)⊤ and

Φ̂=













e i ŷ1ω1 · · · e i ŷnω1

e i ŷ1ω2 · · · e i ŷnω2

...
...

...

e i ŷ1ωn · · · e i ŷnωn













, Φ=













e i y1ω1 · · · e i ynω1

e i y1ω2 · · · e i ynω2

...
...

...

e i y1ωn · · · e i ynωn













.

By (5.9), it is clear that

max
t=1,··· ,T

||Φ̂α̂t −Φαt ||2 < 2
p

nσ.

Note that

max
t=1,··· ,T

||Φ̂α̂t −Φαt ||2 = max
t=1,··· ,T

||D̂γ̂t −Dγt ||2, (5.10)

where γ̂t = (â1,t e−i ŷ1Ω, · · · , ân,t e−i ŷnΩ)⊤,γt = (I1(y1)a1e−i y1Ω, · · · , In(yn)ane−i ynΩ)⊤,

D̂ =
(

φn(e i θ̂1 ), · · · ,φn(e i θ̂n )
)

and D =
(

φn(e iθ1 ), · · · ,φn(e iθn )
)

. Thus,

max
t=1,··· ,T

||D̂γ̂t −Dγt ||2 < 2
p

nσ. (5.11)

We can apply Theorem 4.3 to get

||ηn,n(e iθ1 , · · · ,e iθn ,e i θ̂1 , · · · ,e i θ̂n )||∞ <
2n+1pnσ

σ∞,min(B)
, (5.12)

where ηn,n is defined by (4.4) and B = I diag(a1e−i y1Ω, · · · , ane−i ynΩ). By (5.8), it follows that

σ∞,min(I )mmin ≤σ∞,min(B).

Thus, we have

||ηn,n(e iθ1 , · · · ,e iθn ,e i θ̂1 , · · · ,e i θ̂n )||∞ <
2n+1

σ∞,min(I )

σ

mmin
. (5.13)

Step 4. We apply Lemma 4.2 to estimate |θ̂ j −θ j |2π’s. For this purpose, let ǫ= 2
p

nπn

σ∞,min(I )
σ

mmin
.

It is clear that ||ηn,n ||∞ < ( 2
π )nǫ and we only need to check the following condition:

θmin ≥
( 4ǫ

λ(n)

) 1
n

, or equivalently (θmin)n ≥
4ǫ

λ(n)
. (5.14)

Indeed, by θmin = 2Ω
n

dmin and the separation condition (2.9),

θmin ≥
4.4πe

n

( 1

σ∞,min(I )

σ

mmin

) 1
n ≥

(8
p

nπn

λ(n)

1

σ∞,min(I )

σ

mmin

) 1
n

. (5.15)

Here, we have used Lemma C.2 for deriving the last inequality. Then, we get (5.14). Therefore,

we can apply Lemma 4.2 to get that, after reordering θ̂ j ’s,

∣

∣

∣θ̂ j −θ j

∣

∣

∣

2π
<

θmin

2
, and

∣

∣

∣θ̂ j −θ j

∣

∣

∣

2π
<

2npnπn

(n −2)!(θmin)n−1

1

σ∞,min(I )

σ

mmin
, j = 1, · · · ,n. (5.16)
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Finally, we estimate |ŷ j − y j | nπ
Ω

. Since |θ̂ j −θ j |2π < θmin

2
, we have after reordering the ŷ ′

j
s,

|ŷ j − y j | nπ
Ω

<
dmin

2
.

On the other hand,
∣

∣

∣ŷ j − y j

∣

∣

∣

nπ
Ω

= n
2Ω

∣

∣

∣θ̂ j −θ j

∣

∣

∣

2π
. Combining (5.16) and (C.1), a direct calculation

shows that

∣

∣

∣ŷ j − y j

∣

∣

∣

nπ
Ω

<
C (n)

Ω
(

π

Ωdmin
)n−1 1

σ∞,min(I )

σ

mmin
,

where C (n) = 2
p

2nenpπ.

6. PROOF OF THEOREM 3.1

6.1. NUMBER AND LOCATION RECOVERIES IN ONE-DIMENSIONAL CASE

We first introduce some results for the number and location recoveries of the one-dimensional

case, which will help us to derive the stability results for two-dimensional super-resolution.

Unlike Theorem 2.1, the stability results here consider Euclidean distance between point

scatterers.

For source µ=
∑n

j=1
a jδy j

and illumination patterns It ’s, the measurements are

Yt (ω) =F [Itµ](ω)+Wt (ω) =
n
∑

j=1

It (y j )a j e i y jω+Wt (ω), 1 ≤ t ≤ T, ω ∈ [−Ω,Ω], (6.1)

where F [Itµ] denotes the Fourier transform of Itµ and Wt (ω) is the noise with ||Wt ||∞ <σ.

Theorem 6.1. Suppose the measurements Yt ’s in (6.1) are generated from µ=
∑n

j=1
a jδy j

, y j ∈R

where y j ’s are in an interval O of length
c0nπ
Ω

with c0 ≥ 1 and satisfy

dmin := min
p 6= j

∣

∣

∣yp − y j

∣

∣

∣≥
4.4c0eπ

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
n

(6.2)

with 1
σ∞,min(I )

σ
mmin

≤ 1. Then there is no k < n locations ŷ j ∈R, j = 1, · · · ,k such that there exists

µ̂t =
∑k

j=1
â j ,tδŷ j

’s so that

||F [µ̂t ]−Yt ||∞ <σ, t = 1, · · · ,T.

Proof. Let µt =
∑n

j=1
a j It (y j )δy j

. Similar to Step 1 and Step 2 in the proof of Theorem 2.1, we

only need to prove that if k < n, then for any ŷ j ∈R, â j ,t ∈C, j = 1, · · · ,k, t = 1, · · · ,T ,

max
t=1,··· ,T

||F [µ̂t ]−F [µt ]||∞ > 2σ. (6.3)

Specifically, for k < n, we consider

(

F [µ̂t ](ω1),F [µ̂t ](ω2), · · · ,F [µ̂t ](ωn−1)
)⊤−

(

F [µt ](ω1),F [µt ](ω2), · · · ,F [µt ](ωn−1)
)⊤

, (6.4)
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where ω j = ( j −1)h −Ω, j = 1, · · · ,n −1 with h = Ω

c0n
. We write (6.4) as

Φ̂α̂t −Φαt ,

where α̂t = (â1,t , · · · , âk,t )⊤, αt = (It (y1)a1, · · · , It (yn)an)⊤ and

Φ̂=













e i ŷ1ω1 · · · e i ŷkω1

e i ŷ1ω2 · · · e i ŷkω2

...
...

...

e i ŷ1ωn−1 · · · e i ŷkωn−1













, Φ=













e i y1ω1 · · · e i ynω1

e i y1ω2 · · · e i ynω2

...
...

...

e i y1ωn−1 · · · e i ynωn−1













.

We shall prove that the following estimate holds:

max
t=1,··· ,T

1
p

n
||Φ̂α̂t −Φαt ||2 > 2σ, (6.5)

and consequently it yields (6.3). Let θ j = y j h = y j
Ω

c0n
and θ̂ j = ŷ j h = ŷ j

Ω

c0n
. Similar to Step 2

in the proof of Theorem 2.1, we can have

max
t=1,··· ,T

||Φ̂α̂t −Φαt ||2 ≥
mminσ∞,min(I )ξ(n −1)(θmin)n−1

πn−1
,

where θmin = minp 6= j |θ j − θp |2π. Because y j ’s are in an interval of length
c0nπ
Ω

, by θ j =
y j h we have θmin = minp 6= j |θ j −θp |2π = dmin

Ω

c0n
. Then the separation condition (6.2) and

1
σ∞,min(I ) σ

mmin

≤ 1 imply that

θmin ≥
4.4eπ

n

( 1

σ∞,min(I )

σ

mmin

) 1
n ≥

4.4eπ

n

( 1

σ∞,min(I )

σ

mmin

) 1
n−1 >π

( 2
p

n

ξ(n −1)σ∞,min(I )

σ

mmin

) 1
n−1

,

where here we have used Lemma C.1 for deriving the last inequality. Therefore,

max
t=1,··· ,T

||Φ̂α̂t −Φαt ||2 > 2
p

nσ,

whence we prove (6.5).

Theorem 6.2. Suppose that the measurements Yt ’s in (6.1) are generated fromµ=
∑n

j=1
a jδy j

, y j ∈
R, where y j ’s are in an interval O of length

c0nπ
Ω

with c0 ≥ 1 and satisfy

dmin := min
p 6= j

∣

∣

∣yp − y j

∣

∣

∣≥
4.4c0eπ

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
n

(6.6)

with 1
σ∞,min(I )

σ
mmin

≤ 1. Moreover, for µ̂t =
∑n

j=1
â j ,tδŷ j

, ŷ j ∈O satisfying ||F [µ̂t ]−Yt ||∞ <σ, t =
1, · · · ,T , after reordering the ŷ j ’s, we have

∣

∣

∣ŷ j − y j

∣

∣

∣<
dmin

2
, (6.7)

and
∣

∣

∣ŷ j − y j

∣

∣

∣<
C (n)

Ω
SRF n−1 1

σ∞,min(I )

σ

mmin
, 1 ≤ j ≤ n, (6.8)

where C (n) = 2n
p

2πncn−1
0 en and SRF = π

Ωdmin
is the super-resolution factor.
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Proof. Let µt =
∑n

j=1
a j It (y j )δy j

. Similar to the proof of Theorem 2.1, we consider

(

F [µ̂t ](ω1),F [µ̂t ](ω2), · · · ,F [µ̂t ](ωn)
)⊤−

(

F [µt ](ω1),F [µt ](ω2), · · · ,F [µt ](ωn)
)⊤ = Φ̂α̂t−Φαt ,

where ω j = ( j −1)h −Ω with h = Ω

c0n
, α̂t = (â1,t , · · · , ân,t )⊤, αt = (It (y1)a1, · · · , It (yn)an)⊤ and

Φ̂=













e i ŷ1ω1 · · · e i ŷnω1

e i ŷ1ω2 · · · e i ŷnω2

...
...

...

e i ŷ1ωn · · · e i ŷnωn













, Φ=













e i y1ω1 · · · e i ynω1

e i y1ω2 · · · e i ynω2

...
...

...

e i y1ωn · · · e i ynωn













.

By the constraint on the noise, it is clear that

max
t=1,··· ,T

||Φ̂α̂t −Φαt ||2 < 2
p

nσ.

Let θ j = y j h and θ̂ j = ŷ j h. Similar to the proof of Theorem 2.1, we can prove that, after

reordering θ̂ j ’s,

∣

∣

∣θ̂ j −θ j

∣

∣

∣

2π
<

θmin

2
, and

∣

∣

∣θ̂ j −θ j

∣

∣

∣

2π
<

2npnπn

(n −2)!(θmin)n−1

1

σ∞,min(I )

σ

mmin
, j = 1, · · · ,n. (6.9)

Finally, we estimate |ŷ j − y j |. Since |θ̂ j −θ j |2π < θmin

2
and ŷ j ’s, y j ’s are in O , we have after

reordering the ŷ j ’s,

|ŷ j − y j | <
dmin

2
.

On the other hand,
∣

∣

∣ŷ j − y j

∣

∣

∣= nc0

Ω

∣

∣

∣θ̂ j −θ j

∣

∣

∣

2π
. Combining (6.9) and (C.1), a direct calculation

shows that

∣

∣

∣ŷ j − y j

∣

∣

∣<
C (n)

Ω
(

π

Ωdmin
)n−1 1

σ∞,min(I )

σ

mmin
,

where C (n) = 2n
p

2πncn−1
0 en .

6.2. PROJECTION LEMMAS

Next we introduce two auxiliary lemmas whose ideas are from [23]. We introduce some

notation. For 0 < θ ≤ π
2

and N = ⌊πθ ⌋, we denote the unit vectors in R
2 by

v(τθ) =
(

cos(τθ),sin(τθ)
)T

, 1 ≤ τ≤ N . (6.10)

It is obvious that there are N different unit vectors of the form (6.10).

For a vector v ∈R
2, we denote Pv the projection to the one-dimensional space spanned by v.

We have the following lemmas.
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Lemma 6.1. Let n ≥ 2 and y1, · · · ,yn be n different points in R
2. Let dmin = minp 6= j ||yp −y j ||2

and ∆ = π
(n+2)(n+1)

. Then there exist n +1 unit vectors vq ’s such that 0 ≤ vp ·v j ≤ cos(2∆) for

p 6= j and

min
p 6= j ,1≤p, j≤n

||Pvq
(yp )−Pvq

(y j )||2 ≥
2∆dmin

π
, q = 1, · · · ,n +1. (6.11)

Proof. Note that there are at most n(n−1)
2

different vectors of the form up j = yp −y j , p < j . For

each up j , consider the set N (up j ,∆) =
{

v
∣

∣

∣||v||2 = 1,v ∈R
2, |v ·u| < ||u||2 sin∆

}

. Let θ = 2∆ and

introduce the vectors v(τθ) as in (6.10). It is clear that 0 ≤ v(τ1θ) ·v(τ2θ) ≤ cos(θ) for τ1 6= τ2.

Thus if |v(τ1θ) ·u| < ||u||2 sin∆, then, for other τ2 6= τ1, we have |v(τ2θ) ·u| ≥ ||u||2 sin∆. We

can derive that each set N (up j ,∆) contains at most one of the vectors v(τθ)’s. As a result,

∪p< j ,1≤ j ,p≤n N (up j ,∆) contains at most n(n−1)
2

vectors of the form v(τθ).

Next recall that there are N different vectors of the form in (6.10), where N = ⌊πθ ⌋. Since

θ = 2∆=
2π

(n +2)(n +1)
,

we have

N ≥ ⌊
π

θ
⌋ =

(n +2)(n +1)

2
>

(n +1)2

2
.

Note that (n+1)2

2
− n(n−1)

2
= n + 1, we can find n + 1 vectors of the form v(τθ) that are not

contained in the set ∪p< j ,1≤ j ,p≤n N (up j ,∆). That is, we can find n +1 unit vectors, say, vq ,

1 ≤ q ≤ n +1, which satisfy (6.11).

Lemma 6.2. For a vector u ∈R
2, and two unit vectors v1,v2 ∈R

2 satisfying 0 ≤ v1 ·v2 ≤ cos(θ),

we have

|v1 ·u|2 +|v2 ·u|2 ≥ (1−cos(θ))||u||22. (6.12)

Proof. For u ∈R
2, and two unit vectors v1,v2 ∈R

2 satisfying 0 ≤ v1 ·v2 ≤ cosθ, we have

∣

∣

∣

∣

∣

∣(v1 ·u, v2 ·u)T
∣

∣

∣

∣

∣

∣

2

2
=

∣

∣

∣

∣

∣

∣

(

vT
1

vT
2

)

·u
∣

∣

∣

∣

∣

∣

2

2
≥σ2

min(

(

vT
1

vT
2

)

)||u||22 ≥ (1−cosθ)||u||22, (6.13)

where the last inequality follows from calculating σmin(

(

vT
1

vT
2

)

).

6.3. PROOF OF THEOREM 3.1

Proof. We only prove the theorem for problem (3.3). The other cases can be proved in a

similar manner. Let the measurements Yt ’s be generated by µ=
∑n

j=1
a jδy j

,y j ∈O satisfying

the minimum separation condition

d (2)
min

:= min
p 6= j ,1≤p, j≤n

∣

∣

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

∣

∣

2
≥

2.2c0eπ(n +2)(n +1)

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
n

. (6.14)
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Let ∆= π
(n+2)(n+1)

. By Lemma 6.1, there exist n +1 unit vectors vq ’s so that

0 ≤ vp ·v j ≤ cos2∆,1 ≤ p < j ≤ n,

and for each q ,

min
p 6= j

∣

∣

∣

∣

∣

∣Pvq
(yp )−Pvq

(y j )
∣

∣

∣

∣

∣

∣

2
≥ d (1)

min
, (6.15)

where

d (1)
min

= min
p 6= j

∣

∣

∣

∣

∣

∣yp −y j

∣

∣

∣

∣

∣

∣

2

2∆

π
=

2d (2)
min

(n +2)(n +1)
≥

4.4c0eπ

Ω

( 1

σ∞,min(I )

σ

mmin

) 1
n

. (6.16)

Because the projected point scatterers in these one-dimensional subspaces are separated by a

distance beyond (6.16), by the constraints on the measurements and Theorem 6.1, any solution

to (3.3) must contain n point scatterers. Assume that ρ =
∑n

j=1
â jδŷ j

, ŷ j ∈ O is a solution to

(3.3). Then we consider

µt = Itµ=
n
∑

j=1

a j It (y j )δy j
, µ̂t = Itρ =

n
∑

j=1

â j ,tδŷ j
,

and the projected measures

n
∑

j=1

a j It (y j )δPvq (y j ),
n
∑

j=1

a j ,tδPvq (ŷ j )

in the one-dimensional subspace spanned by vq . We also consider the corresponding mea-

surements Yt (ω), ω in the subspace spanned by vq . It is clear that for each q , Pvq
(y j )’s are in

an interval (i.e., in a one-dimensional subspace) of length
c0nπ
Ω

and the separation condition

(6.16) is satisfied. On the other hand, the measurement constraints in (3.3) still hold for the

measurements Yt (ω) in that subspace. By Theorem 6.2, we can conclude that for each q , we

have a permutation τq of
{

1, · · · ,n
}

so that

∣

∣

∣

∣

∣

∣Pvq
(ŷτq ( j ))−Pvq

(y j )
∣

∣

∣

∣

∣

∣

2
<

C (n)

Ω

( π

d (1)
min

Ω

)n−1 1

σ∞,min(I )

σ

mmin
, 1 ≤ j ≤ n, (6.17)

where C (n) = 2n
p

2πncn−1
0 en .

Note that, for fixed j in (6.17), we have (n +1) different τq ( j )’s, while ŷp ’s take at most n

values. Therefore, by the pigeonhole principle, for each fixed y j , we can find two different q ’s,

say, q1 and q2, such that ŷτq1
( j ) = ŷτq2

( j ) = ŷp j
for some p j . Since 0 ≤ vq1

·vq2
≤ cos2∆, we can

apply Lemma 6.2 to get

∣

∣

∣

∣

∣

∣ŷp j
−y j

∣

∣

∣

∣

∣

∣

2
<

p
2

p
1−cos(2∆)

C (n)

Ω

( π

d (1)
min

Ω

)n−1 1

σ∞,min(I )

σ

mmin
, 1 ≤ j ≤ n.

Using the inequality

1−cos2∆≥
8

π2
∆

2 ≥
8

(n +2)2(n +1)2
,
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we further obtain

∣

∣

∣

∣

∣

∣ŷp j
−y j

∣

∣

∣

∣

∣

∣

2
<

(n +2)(n +1)C (n)

2Ω

( π

d (1)
min

Ω

)n−1 1

σ∞,min(I )

σ

mmin
, 1 ≤ j ≤ n. (6.18)

Combining together (6.14) and (6.16), we can verify by a direct calculation that

∣

∣

∣

∣

∣

∣ŷp j
−y j

∣

∣

∣

∣

∣

∣

2
<

1

2
d (2)

min
, j = 1, · · · ,n.

Thus we can reorder the ŷ j ’s so that

∣

∣

∣

∣

∣

∣ŷ j −y j

∣

∣

∣

∣

∣

∣

2
<

1

2
d (2)

min
, j = 1, · · · ,n.

By (6.18), we obtain that

∣

∣

∣

∣

∣

∣ŷ j −y j

∣

∣

∣

∣

∣

∣

2
<

((n +2)(n +1)/2)nC (n)

Ω

( π

d (2)
min

Ω

)n−1 1

σ∞,min(I )

σ

mmin
, 1 ≤ j ≤ n,

which follows from (6.18) and the fact that d (1)
min

= 2d (2)
min

(n+2)(n+1)
.

A. PROOFS OF LEMMAS 4.1 AND 4.2

A.1. AUXILIARY LEMMA

The following result is useful for proving Lemmas 4.1 and 4.2.

Lemma A.1. For 0 < p ≤ q < min{p +π,2π} and sufficiently small ∆> 0, we have

|(1−e i p−i∆)(1−e i q+i∆)|− |(1−e i p )(1−e i q )| < 0. (A.1)

Proof. We only prove (A.1) in the case when p ≤π. When p >π, proving (A.1) is equivalent to

showing

|(1−e i (2π−q)−i∆)(1−e i (2π−p)+i∆)|− |(1−e i (2π−q))(1−e i (2π−p))| < 0.

Thus, the case when p >π can be reduced to the case p <π. We first prove the result for p 6= q .

Introduce the function g (∆) = |(1− e i p−i∆)(1− e i q+i∆)|− |(1− e i p )(1− e i q )|. We only need to

show that
d g (∆)

d∆

∣

∣

∣

∆=0
< 0, for 0 < p <π, p < q < p +π.

We calculate that

d g (∆)

d∆

∣

∣

∣

∆=0
=

d |(1−e i (p−∆))(1−e i (q+∆))|
d∆

∣

∣

∣

∆=0
=

d |1−e i (p−∆) −e i (q+∆) +e i (p+q)|
d∆

∣

∣

∣

∆=0
=

d
√

g1(∆)

d∆

∣

∣

∣

∆=0
,

where

g1(∆) =
[

1+cos(p +q)−cos(p −∆)−cos(q +∆)
]2

+
[

sin(p +q)− sin(p −∆)− sin(q +∆)
]2

.
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Thus, we have

d g (∆)

d∆

∣

∣

∣

∆=0
=

g
′

1(0)

2
√

g1(0)

=

[

(1+cos(p +q)−cos(p)−cos(q))(−sin(p)+ sin(q))+ (sin(p +q)− sin(p)− sin(q))(cos(p)−cos(q))
]

√

g1(0)

=
(1+cos(p +q))(sin(q)− sin(p))+ sin(p +q)(cos(p)−cos(q))+2sin(p −q)

√

g1(0)

=
2sin(p −q)+2sin(q)−2sin(p)

√

g1(0)
= 2

sin(p −q)+ sin(q −p)cos(p)+cos(q −p)sin(p)− sin(p)
√

g1(0)

=2
sin(q −p)(cos(p)−1)+ sin(p)(cos(q −p)−1)

√

g1(0)

<0 (when 0 < p ≤π and p < q < p +π).

This proves the lemma for p 6= q . When p = q ,
d g (∆)

d∆

∣

∣

∣

∆=0
= 0, and we shall show

d 2g (∆)

d∆2

∣

∣

∣

∆=0
< 0, for 0 < p < 2π,

which proves (A.1) for p = q . We calculate that

d g (∆)

d∆

∣

∣

∣

∆=0
=

d |(1−e i (p−∆))(1−e i (p+∆))|
d∆

∣

∣

∣

∆=0
=

d |1−e i (p−∆) −e i (p+∆) +e i (2p)|
d∆

∣

∣

∣

∆=0
=

d
√

g2(∆)

d∆

∣

∣

∣

∆=0
,

where

g2(∆) =
[

1+cos(2p)−cos(p −∆)−cos(p +∆)
]2

+
[

sin(2p)− sin(p −∆)− sin(p +∆)
]2

.

Thus, we obtain that

d 2g (∆)

d∆2

∣

∣

∣

∆=0
=

d
g ′

2(∆)

2
p

g2(∆)

d∆

∣

∣

∣

∆=0
=

2g
′′

2(0)g2(0)− [g
′

2(0)]2

4g2(0)
3
2

=
g

′′

2(0)g2(0)

2g2(0)
3
2

=
g

′′

2(0)

2g2(0)
1
2

and

g ′′
2 (0)

2
=

[

2cos(p)(1+cos(2p)−2cos(p))+2sin(p)(sin(2p)−2sin(p))
]

=2[cos(p)(1+cos(2p))+ sin(p)sin(2p)−2]

=2(2cos(p)−2) < 0.

This completes the proof.
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A.2. PROOF OF LEMMA 4.1

The proof of Lemma 4.1 is divided into two steps.

Proof. We only need to consider θ j , θ̂p ∈ [0,2π),1 ≤ j ≤ k +1,1 ≤ p ≤ k. We can also suppose

that θ1 < θ2 < ·· · < θk+1 and θ̂1 ≤ θ̂2 ≤ ·· · ≤ θ̂k .

Step 1. Define

η j (θ̂1, · · · , θ̂k ) =Π
k
q=1(e iθ j −e i θ̂q ), j = 1, · · · ,k +1.

Hence, ||ηk+1,k (e iθ1 , · · · ,e iθk+1 ,e i θ̂1 , · · · ,e i θ̂k )||∞ = max1≤ j≤k+1 |η j (θ̂1, · · · , θ̂k )|. We only need to

show that

min
θ̂ j ,1≤ j≤k

max
j=1,··· ,k+1

|η j (θ̂1, · · · , θ̂k )| ≥ ξ(k)d k
min. (A.2)

It is easy to verify this result for k = 1. For k ≥ 2, we argue as follows. It is clear that a

minimizer of (A.2) does exist (but may not be unique). Let (θ̂1, · · · , θ̂k ) be a minimizer of (A.2)

with θ̂1 ≤ θ̂2 · · · ≤ θ̂k . Because
{

θ1, · · · ,θk+1

}

can separate k +1 disjoint regions of [0,2π), say

In1 = [θ1,θ2), · · · , In2 = [θk ,θk+1), Ink+1 = [θk ,2π)∪ [0,θ1), but
{

θ̂1, · · · , θ̂k

}

only has k points,

there is at least one region Inp so that Inp ∩
{

θ̂1, · · · , θ̂k

}

=;. Without loss of generality, we

suppose that Ink+1∩
{

θ̂1, · · · , θ̂k

}

=; (otherwise we can realize this by rotating the e iθ j ’s). Thus,

θ̂1, · · · , θ̂k ∈ [θ1,θk ]. We then have the following claim.

Claim. Each interval [θ j ,θ j+1) contains only one θ̂q in
{

θ̂1, · · · , θ̂k

}

.

We prove the claim by considering the following cases.

Case 1: There exists j0, p such that θ̂ j0
, θ̂ j0+1 ∈ (θp ,θp+1).

Denote j1 the number in
{

1, · · · ,k +1
}

such that

max
j=1,··· ,k+1

|η j (θ̂1, · · · , θ̂k )| = |η j1
(θ̂1, · · · , θ̂k )| > 0. (A.3)

Let ∆> 0 be sufficiently small. Then, for j1 ∈
{

1, · · · , p
}

,

|η j1
(θ̂1, · · · , θ̂ j0

−∆, θ̂ j0+1 +∆, θ̂ j0+2, · · · , θ̂k )|− |η j1
(θ̂1, · · · , θ̂k )|

=
[

|(e iθ j1 −e i θ̂ j0
−i∆)(e iθ j1 −e i θ̂ j0+1+i∆)|− |(e iθ j1 −e i θ̂ j0 )(e iθ j1 −e i θ̂ j0+1 )|

]

Π
k
q=1,q 6= j0, j0+1|(e iθ j1 −e i θ̂q )|

=
[

|(1−e i θ̂ j0
−iθ j1

−i∆)(1−e i θ̂ j0+1−iθ j1
+i∆)|− |(1−e i θ̂ j0

−iθ j1 )(1−e i θ̂ j0+1−iθ j1 )|
]

Π
k
q=1,q 6= j0, j0+1|(e iθ j1 −e i θ̂q )|

<0 (for sufficiently small ∆, by (A.3) and Lemma A.1).

For j1 ∈
{

p +1, · · · ,k +1
}

, we similarly have

|η j1
(θ̂1, · · · , θ̂ j0

−∆, θ̂ j0+1 +∆, θ̂ j0+2, · · · , θ̂k )|− |η j1
(θ̂1, · · · , θ̂k )|

=
[

|(e iθ j1 −e i θ̂ j0
−i∆)(e iθ j1 −e i θ̂ j0+1+i∆)|− |(e iθ j1 −e i θ̂ j0 )(e iθ j1 −e i θ̂ j0+1 )|

]

Π
k
q=1,q 6= j0, j0+1|(e iθ j1 −e i θ̂q )|

=
[

|(1−e i θ̂ j1
−iθ j0

+i∆)(1−e i θ̂ j1
−iθ j0+1−i∆)|− |(1−e i θ̂ j1

−iθ j0 )(1−e i θ̂ j1
−iθ j0+1 )|

]

Π
k
q=1,q 6= j0, j0+1|(e iθ j1 −e i θ̂q )|

<0 (for sufficiently small ∆, by (A.3) and Lemma A.1).
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Thus, choosing sufficiently small ∆> 0, we can make

max
1≤ j≤k+1

|η j (θ̂1, · · · , θ̂ j0
−∆, θ̂ j0+1 +∆, θ̂ j0+2, · · · , θ̂k )| < max

1≤ j≤k+1
|η j (θ̂1, · · · , θ̂k )|,

which contradicts the fact that (θ̂1, · · · , θ̂k ) is a minimizer of (A.2). This means that Case 1 will

not occur for (θ̂1, · · · , θ̂k ).

Case 2: There exists j0, p such that θ̂ j0
= θp ,θ j0+1 ∈ (θp ,θp+1).

We still denote j1 the number in
{

1, · · · ,k +1
}

such that

max
j=1,··· ,k+1

|η j (θ̂1, · · · , θ̂k )| = |η j1
(θ̂1, · · · , d̂k )| > 0.

Since θ̂ j0
= θp , ηp (θ̂1, · · · , θ̂k ) = 0, we only need to consider j1 ∈

{

1, · · · , p −1
}

and j1 ∈
{

p +
1, · · · ,k +1

}

. For j1 = 1, · · · , p −1 and j1 = p +1, · · · ,k +1, similarly to the analysis in Case 1, we

have

|η j1
(θ̂1, · · · , θ̂ j0

−∆, θ̂ j0+1 +∆, θ̂ j0+2, · · · , θ̂k )| < |η j1
(θ̂1, · · · , θ̂k )|,

for sufficiently small ∆> 0. Thus, choosing sufficiently small ∆> 0, we can make

max
1≤ j≤k+1

|η j (θ̂1, · · · , θ̂ j0
−∆, θ̂ j0+1 +∆, θ̂ j0+2, · · · , θ̂k )| < max

1≤ j≤k+1
|η j (θ̂1, · · · , θ̂k )|,

which contradicts the fact that (θ̂1, · · · , θ̂k ) is a minimizer of (A.2). This means that Case 2 will

not occur for (θ̂1, · · · , θ̂k ).

Case 3: There exists j0, p such that θ̂ j0
= θ̂ j0+1 = θp .

Denote j1 the number in
{

1, · · · ,k +1
}

such that

max
j=1,··· ,k+1

|η j (θ̂1, · · · , θ̂k )| = |η j1
(θ̂1, · · · , d̂k )| > 0. (A.4)

Since ηp (θ̂1, · · · , θ̂k ) = 0, we only consider j1 ∈
{

1, · · · , p −1
}

and j1 ∈
{

p +1, · · · ,k +1
}

. Let ∆> 0,

for j1 ∈
{

1, · · · , p −1
}

, we have

|η j1
(θ̂1, · · · ,θ(d̂ j0−1), θ̂ j0

−∆, θ̂ j0+1 +∆, · · · , θ̂k )|− |η j1
(θ̂1, · · · , θ̂k )|

=
[

|(e iθ j1 −e i θ̂ j0
−i∆)(e iθ j1 −e i θ̂ j0+1+i∆)|− |(e iθ j1 −e i θ̂ j0 )(e iθ j1 −e i θ̂ j0+1 )|

]

Π
k
q=1,q 6= j0, j0+1|(e iθ j1 −e i θ̂q )|

=
[

|(e iθ j1 −e iθp−i∆)(e iθ j1 −e iθp+i∆)|− |(e iθ j1 −e iθp )(e iθ j1 −e iθp )|
]

Π
k
q=1,q 6= j0, j0+1|(e iθ j1 −e i θ̂q )|

=
[

|(1−e iθp−iθ j1
−i∆)(1−e iθp−iθ j1

+i∆)|− |(1−e iθp−θ j1 )(1−e iθp−iθ j1 )|
]

Π
k
q=1,q 6= j0, j0+1|(e iθ j1 −e i θ̂q )|

<0 (for sufficiently small ∆, by (A.4) and Lemma A.1).

For j1 ∈
{

p + 1, · · · ,k
}

, we have the same result in exactly the same way. Thus, choosing

sufficiently small ∆> 0, we can make

max
1≤ j≤k+1

|η j (θ̂1, · · · , θ̂ j0
−∆, θ̂ j0+1 +∆, θ̂ j0+2, · · · , θ̂k )| < max

1≤ j≤k+1
|η j (θ̂1, · · · , θ̂k )|,

which contradicts the fact that (θ̂1, · · · , θ̂k ) is a minimizer of (A.2). This means that Case 3 will

not occur for (θ̂1, · · · , θ̂k ). Combining these results, we proved the claim.
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Step 2. By the claim in Step 1, the minimizer (θ̂1, · · · , θ̂k ) and (θ1, · · · ,dk+1) satisfy the inter-

lacing relation

0 ≤ θ1 ≤ θ̂1 < θ2 ≤ θ̂2 < ·· · < θk ≤ θ̂k ≤ θk+1 < 2π. (A.5)

Note that because min j 6=q |θ j −θq |2π = θmin, if |θ j − θ̂ j |2π ≤ θmin

2
, then |θ j+1 − θ̂ j |2π > θmin

2
. It is

clear that by the interlacing relation (A.5), there must be some 1 ≤ j ≤ k such that |θ̂ j −θ j |2π >
θmin

2
(Case 1) or |θk+1 − θ̂k |2π > θmin

2
(Case 2). In what follows, we only prove this statement in

Case 1. Case 2 can be handled in the same manner. Let θ̂ j0
be the first point (starting from

θ̂1, θ̂2, · · · ) such that

|θ̂ j0
−θ j0

|2π >
θmin

2
. (A.6)

Without loss of generality, we suppose that θ j0
>π. Then, we decompose the rest of the θ j ’s into

two sets: set1 =
{

θ j−1
, · · · ,θ j−p

}

contains all the θ j ’s in [θ j0
−π,θ j0

) and set2 =
{

θ j1
, · · · ,θ jk−1−p

}

contains the rest of the θ j ’s except θ1. Note that by this decomposition,
{

e iθ j−1 , · · · ,e iθ j−p
}

contains points in the same half circle of the unit circle and
{

e iθ j1 , · · · ,e
iθ jk−1−p

}

contains points

in the other half circle. We remark that we just ignore θ1 when considering set1, set2 under the

setting that θ j0
> π. For the other cases, the results can be proved in the same manner. The

points in the two sets are arranged in such a way that, for q = 1,2, · · · ,

|e iθ j−(q+1) −e iθ j0 | > |e iθ j−q −e iθ j0 |, |e iθ jq+1 −e iθ j0 | > |e iθ jq −e iθ j0 |. (A.7)

We also denote the corresponding point θ̂ j in [θ j−(q+1)
,θ j−q

), for q = 1,2, · · · , as θ̂ j−(q+1)
(respec-

tively, θ̂ j in [θ jq
,θ jq+1

), for q = 1,2, · · · , as θ̂ jq
). Now, the following estimate holds:

|Πk
q=1(e iθ j0 −e i θ̂q )| = |e iθ j0 −e i θ̂ j0 ||Πp

q=1(e iθ j0 −e i θ̂ j−q )||Πk−1−p
s=1 (e iθ j0 −e i θ̂ js )|

>
θmin

π
|Πp

q=1(e iθ j0 −e i θ̂ j−q )||Πk−1−p
s=1 (e iθ j0 −e i θ̂ js )|.

Here, we have obtained the last inequality by (A.6) and used that, for x, y ∈R,

|e i x −e i y | ≥
2

π
|x − y |2π. (A.8)

Moreover, since by assumption θ̂ j0
is the first point satisfying (A.6), we get |θ j−1

− θ̂ j−1
|2π ≤ θmin

2

and thus, |θ j0
− θ̂ j−1

|2π > θmin

2
. Hence, by (A.6) and (A.8), we have

|Πk
q=1(e iθ j0 −e i θ̂q )| > (

θmin

π
)2|Πp

q=2(e iθ j0 −e i θ̂ j−q )||Πk−1−p
s=1 (e iθ j0 −e i θ̂ js )|.

On the other hand, by the interlacing relation (A.5), for q ≥ 2 we have

|θ j0
− θ̂−q |2π > |θ j0

−θ−q+1|2π

and for s ≥ 1, |θ j0
− θ̂s |2π > |θ j0

−θs |2π. Thus, we obtain the following estimate:

|Πk
q=1(e iθ j0 −e i θ̂q )| > (

θmin

π
)2|Πp

q=2(e iθ j0 −e
iθ j−q+1 )||Πk−1−p

s=1 (e iθ j0 −e iθ js )|.
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Note that by min j 6=q |θ j −θq |2π = θmin,

|e iθ j0 −e iθ j−q | >
2q

π
θmin, q = 1,2, · · · and |e iθ j0 −e iθ js | >

2s

π
θmin, s = 1,2, · · · .

Therefore, we obtain that

|Πk
q=1(e iθ j0 −e i θ̂q )| > (p −1)!(k −1−p)!(

2θmin

π
)k−2(

θmin

π
)2.

Minimizing (p −1)!(k −1−p)! over p = 1, · · · ,k −1 gives

min
p=1,··· ,k

(p −1)!(k −1−p)! ≥
{

( k−1
2

)!( k−3
2

)! k is odd,

( k−2
2

!)2 k is even.
(A.9)

Thus, for k ≥ 2, ||ηk+1,k ||∞ ≥ ξ(k)( 2θmin

π )k .

A.3. PROOF OF LEMMA 4.2

The proof of Lemma 4.2 is divided into three steps.

Proof. We only prove the lemma for k ≥ 3. The case k = 2 can be deduced in a similar manner.

Moreover, we only need to consider θ j , θ̂ j ∈ [0,2π), j = 1, · · · ,k.

Step 1. We claim that for each θ̂p ,1 ≤ p ≤ k, there exists one θ j such that |θ̂p −θ j |2π < θmin

2
.

By contradiction, suppose there exists p0 such that |θ j − θ̂p0
|2π ≥ θmin

2
for all 1 ≤ j ≤ k. Observe

that

ηk,k (e iθ1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂k )

=diag
(

|e iθ1 −e i θ̂p0 |, · · · , |e iθk −e i θ̂p0 |
)

ηk,k−1(e iθ1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂p0−1 ,

e i θ̂p0+1 , · · · ,e i θ̂k ).

Combining Lemma 4.1 and (A.8), we obtain that

||ηk,k ||∞ ≥
θmin

π
||ηk,k−1||∞ ≥

ξ(k −1)

2
(

2θmin

π
)k .

By the formula of ξ(k) in (4.3), we can verify directly that
ξ(k−1)

2
≥ ξ(k−2)

4
. Therefore,

||ηk,k ||∞ ≥
ξ(k −2)

4
(

2θmin

π
)k ≥ ǫ,

where we have used (4.6) in the inequality above. This is in contradiction with (4.5) and hence

the claim is proved.

Step 2. We claim that for each θ j ,1 ≤ j ≤ k, there exists one and only one θ̂p such that

|θ j − θ̂p |2π < θmin

2
. It suffices to show that for each θ j ,1 ≤ j ≤ k, there is only one θ̂p such that

|θ j − θ̂p |2π < θmin

2
. By contradiction, suppose there exist p1, p2, and j0 such that

|θ j0
− θ̂p1

|2π <
θmin

2
, |θ j0

− θ̂p2
|2π <

θmin

2
.
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Then, for all j 6= j0, we have

|θ j − θ̂p1
|2π|θ j − θ̂p2

|2π ≥
θ2

min

4
, and |(e iθ j −e i θ̂p1 )(e iθ j −e i θ̂p2 )| ≥

θ2
min

π2
. (A.10)

Similarly to the argument in Step 1, we separate the factors involving θ̂p1
, θ̂p2

,θ j0
from ηk,k

and consider the decomposition

ηk,k (e iθ1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂k )

=diag
(

|e iθ1 −e i θ̂p1 ||e iθ1 −e i θ̂p2 |, · · · , |e iθk −e i θ̂p1 ||e iθk −e i θ̂p2 |
)

ηk−1,k−2,

where

ηk−1,k−2 =ηk−1,k−2(e iθ1 , · · · ,e iθ j0−1 ,e iθ j0+1 , · · · ,e iθk ,e i θ̂1 , · · · ,e i θ̂p1−1 ,

e i θ̂p1+1 , · · · ,e i θ̂p2−1 ,e i θ̂p2+1 , · · · ,e i θ̂k ).

Note that the components of ηk−1,k−2 differ from those of ηk,k only by the factors |(e iθ j −
e i θ̂p1 )(e iθ j −e i θ̂p2 )| for j = 1, · · · , j0 −1, j0 +1, · · · ,k. We can show that

||ηk,k ||∞ ≥
θ2

min

π2
||ηk−1,k−2||∞.

Using Lemma 4.1 and (4.6), we further get

||ηk,k ||∞ ≥
ξ(k −2)

4
(θmin)k ≥ ǫ,

which contradicts (4.5). This contradiction proves our claim.

Step 3. By the result in Step 2, we can reorder the θ̂ j ’s to get

|θ̂ j −θ j |2π <
θmin

2
, j = 1, · · · ,k. (A.11)

We now prove (4.9). For each j0 ∈
{

1, · · · ,k
}

,θ j0
> π, we decompose the rest of the θ j ’s into

two sets: set1 =
{

θ j−1
, · · · ,θ j−p

}

contains all the θ j ’s in [θ j0
−π,θ j0

) and set2 =
{

θ j1
, · · · ,θ jk−1−p

}

contains the rest of the θ j ’s. For θ j0
≤π, we can prove (4.9) in the same manner. The points in

the two sets are arranged to satisfy that for q = 1,2, · · · ,

|e iθ j−(q+1) −e iθ j0 | > |e iθ j−q −e iθ j0 |, |e iθ jq+1 −e iθ j0 | > |e iθ jq −e iθ j0 |.

By (A.11) and (A.8), it is clear that

|e iθ j0 −e i θ̂ jq | ≥







(−q− 1
2

)2θmin

π , q ≤−1,

(q− 1
2

)2θmin

π , q ≥ 1.
(A.12)

33



Thus,

|(e iθ j0 −e i θ̂ j0 )(e iθ j0 −e i θ̂ j−1 ) · · · (e iθ j0 −e i θ̂ j−p )(e iθ j0 −e i θ̂ j1 · · · (e iθ j0 −e
i θ̂ jk−1−p ))|

≥|e iθ j0 −e i θ̂ j0 |
(

Π1≤q≤p
2q −1

2

2θmin

π

)(

Π1≤q≤k−1−p
2q −1

2

2θmin

π

) (

by (A.12)
)

=|e iθ j0 −e i θ̂ j0 |(
θmin

π
)k−1(2p −1)!!(2(k −1−p)−1)!!

≥|e iθ j0 −e i θ̂ j0 |(
θmin

π
)k−1(k −2)!

(

by (2p −1)!!(2(k −1−p)−1)!! ≥ (k −2)!
)

.

This together with (4.5) yields

|e i θ̂ j −e iθ j |(
θmin

2
)k−1(k −2)! <

2

π
ǫ, j = 1,2, · · · ,k.

Thus (4.9) follows and the proof of the lemma is complete.

B. PROOF OF PROPOSITION 2.1

We first introduce an auxiliary lemma that was derived in [24].

Lemma B.1. Let t1, · · · , tk be k different real numbers and let t be a real number. We have

(

Dk (k −1)−1φk−1(t )
)

j =Π1≤q≤k,q 6= j

t − tq

t j − tq
,

where Dk (k −1) :=
(

φk−1(t1), · · · ,φk−1(tk )
)

and φk−1(·) is defined by (4.1).

The proof of Proposition 2.1 is divided into two steps.

Proof. Step 1. Let τ be the one in (2.14), y1 = −τ, y2 = −2τ, · · · , yn = −nτ and ŷ1 = 0, ŷ2 =
τ, · · · , ŷn = (n −1)τ. For any measure µ=

∑n
j=1

a jδy j
, the corresponding illuminated measure

is

Itµ=
n
∑

j=1

It (y j )a jδy j
,

where It is the t-th illumination pattern. Denoting Îtρ = ρt =
∑n

j=1
â j ,tδŷ j

, by the definition of

|| · ||2 we have

||F [Îtρ]−F [Itµ]||2 ≤ max
x∈[−1,1]

|F [Îtρ− Itµ](Ωx)|, x ∈ [−1,1]. (B.1)

Thus we next estimate |F [Îtρ− Itµ](Ωx)| to prove the proposition. By Taylor expansion,

F [Îtρ− Itµ](Ωx) =
∞
∑

k=0

(

Qk (Îtρ)−Qk (Itµ)
) (i x)k

k !
, (B.2)
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where Qk (Itµ) =
∑n

j=1
It (y j )a j (Ωy j )k , Qk (Îtρ) =

∑n
j=1

â j ,t (Ωŷ j )k . Note that Qk (Îtρ) =Qk (Itµ),k =
1, · · · ,n −1, is a linear system that can be rewritten as

(

φn−1(Ωŷ1), · · · ,φn−1(Ωŷn)
)

α̂t =
(

φn−1(Ωy1), · · · ,φn−1(Ωyn)
)

αt , (B.3)

where α̂t = (â1,t , · · · , ân,t )T and αt = (It (y1)a1, · · · , It (yn)an)T . Since φn−1(Ωŷ j ),1 ≤ j ≤ n, are

linearly independent, for each t , we can find some â j ,t ’s (i.e., some Ît ’s) so that Qk (Îtρ) =
Qk (Itµ),k = 0, · · · ,n −1. We next estimate Qk (Îtρ) and Qk (Itµ).

Step 2. Under the scenario of Step 1, we obtain

α̂t =
(

φn−1(Ωŷ1), · · · ,φn−1(Ωŷn)
)−1(

φn−1(Ωy1), · · · ,φn−1(Ωyn)
)

αt , 1 ≤ t ≤ T.

By Lemma B.1, we arrive at

max
p=1,··· ,n

∣

∣

∣âp,t

∣

∣

∣≤ max
p=1,··· ,n

n
∑

j=1

∣

∣

∣Π
n
q=1,q 6=p

y j − ŷq

ŷp − ŷq
It (y j )a j

∣

∣

∣≤ max
p, j=1,··· ,n

∣

∣

∣Π
n
q=1,q 6=p

y j − ŷq

ŷp − ŷq

∣

∣

∣nmmin

≤
(n +1)(n +2) · · · (2n −1)

ζ(n)
nmmin =

(2n −1)!

n!ζ(n)
nmmin

(

ζ(·) is defined in (4.3)
)

≤
e23n− 1

2

π
3
2 (n −1)

nmmin (using inequality (C.1)).

We have
∑n

j=1
|â j ,t | ≤ e23n− 1

2

π
3
2 (n−1)

n2mmin,1 ≤ t ≤ T . Therefore, we have

∣

∣

∣ max
x∈[−1,1]

F [Îtρ− Itµ](Ωx)
∣

∣

∣≤
∑

k≥n

|Qk (Itµ)|+ |Qk (Îtρ)|
k !

≤
∑

k≥n

(
n
∑

j=1

|It (y j )a j |+ |â j ,t |)
(nΩτ)k

k !

≤
( e23n− 1

2

π
3
2 (n −1)

n2 +n
)

mmin
(nΩτ)n

n!

∑

k≥n

(nΩτ)k−nn!

k !

<1.06
( e23n− 1

2

π
3
2 (n −1)

n2 +n
)

mmin
(nΩτ)n

n!

(

by (2.14) we have Ωτ< 0.05
)

<1.06
( e23n− 1

2

π
3
2 (n −1)

n2 +n
)

mmin
en

p
2πn

(Ωτ)n
(

by (C.1)
)

<σ (by (2.14)).

Together with (B.1), this completes the proof.

C. SOME ESTIMATIONS

In this section, we present some estimations that are used in this paper. We first recall the

following Stirling approximation of factorial

p
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n . (C.1)

Then, we state the following results.
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Lemma C.1. Let ξ(n −1) be defined as in (4.3). For n ≥ 2, we have

(2
p

nnn−1

ξ(n −1)

) 1
n−1 < 4.4e.

Proof. For n = 2,3,4,5, it is easy to check that the above inequality holds. Using (C.1), we have

for odd n ≥ 7,

(2
p

nnn−1

ξ(n −1)

) 1
n−1 =

(2
p

nnn−1

( n−3
2

!)2

4

) 1
n−1 ≤

( 8
p

nnn−1

π( n−3
2

)n−2e−(n−3)

) 1
n−1

=
( 8

p
n

π( n−3
2

)−1e2

) 1
n−1 2en

n −3

<4.4e,

and for even n ≥ 6,

(2
p

nnn−1

ξ(n −1)

) 1
n−1 =

(2
p

nnn−1

( n−2
2

)!( n−4
2

)!

4

) 1
n−1 ≤

( 8
p

nnn−1

π( n−2
2

)
n−1

2 ( n−4
2

)
n−3

2 e−(n−3)

) 1
n−1

=
( 8

p
n

π( n−4
2

)−1e2

) 1
n−1 2en

p
n −2

p
n −4

<4.4e.

This completes the proof.

Lemma C.2. Let λ(n) be defined as in (4.7). For n ≥ 2, we have

(8
p

nnn

λ(n)

) 1
n < 4.4e.

Proof. For n = 2,3, · · · ,14, it is easy to check that the above inequality holds. Using (C.1), we

have for even n ≥ 16,

( 8
p

nnn

ξ(n −2)

) 1
n =

( 8
p

nnn

( n−4
2

!)2/4

) 1
n ≤

( 32
p

nnn

π( n−4
2

)n−3e−(n−4)

) 1
n

=
( 32

p
n

π( n−4
2

)−3e4

) 1
n 2en

n −4

<4.4e,

and for odd n ≥ 15,

( 8
p

nnn

ξ(n −2)

) 1
n =

( 8
p

nnn

( n−3
2

)!( n−5
2

)!

4

) 1
n ≤

( 32
p

nnn

π( n−3
2

)
n−2

2 ( n−5
2

)
n−4

2 e−(n−4)

) 1
n

=
( 32

p
n

π( n−3
2

)−1( n−5
2

)−2e4

) 1
n 2en
p

n −3
p

n −5

<4.4e.

This completes the proof.

36



Lemma C.3. Let 0 ≤ s, s1, s2 ≤ 1,

A =
(

1 s

s 1

)

,

then σ∞,min(A) = 1− s.

Proof. By definition of σ∞,min(A), it follows that

σ∞,min(A) = min
x,y∈C,max(|x|,|y |)≥1

max(|x + s y |, |sx + y |)

= min
|y |≤1,y∈C

max(|1+ s y |, |s + y |)

= min
0≤r≤1,θ∈[0,2π)

√

max((1+ sr cosθ)2 + s2r 2 sin2θ, (s + r cosθ)2 + r 2 sin2θ)

= min
0≤r≤1,θ∈[0,2π)

√

max(1+ s2r 2 +2sr cosθ, s2 + r 2 +2sr cosθ)

= min
0≤r≤1

√

max(1+ s2r 2 −2sr, s2 + r 2 −2sr )

= min
0≤r≤1

max(1− sr, |s − r |)

=1− s.
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