
Graph-Coupled Oscillator Networks

T. K. Rusch and B. P. Chamberlain and J. Rowbottom and S. Mishra and

M. M. Bronstein

Research Report No. 2022-04

February 2022

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

__

Funding ERC: 770880 COMANFLO

Graph-Coupled Oscillator Networks

T. Konstantin Rusch ∗ Benjamin P. Chamberlain † James Rowbottom †

Siddhartha Mishra ∗‡ Michael M. Bronstein §†

Abstract

We propose Graph-Coupled Oscillator Networks (GraphCON), a novel framework for deep learning
on graphs. It is based on discretizations of a second-order system of ordinary differential equations
(ODEs), which model a network of nonlinear forced and damped oscillators, coupled via the adjacency
structure of the underlying graph. The flexibility of our framework permits any basic GNN layer
(e.g. convolutional or attentional) as the coupling function, from which a multi-layer deep neural
network is built up via the dynamics of the proposed ODEs. We relate the oversmoothing problem,
commonly encountered in GNNs, to the stability of steady states of the underlying ODE and show
that zero-Dirichlet energy steady states are not stable for our proposed ODEs. This demonstrates that
the proposed framework mitigates the oversmoothing problem. Finally, we show that our approach
offers competitive performance with respect to the state-of-the-art on a variety of graph-based learning
tasks.

1 Introduction

Graph Neural Networks (GNNs) Sperduti (1994); Goller & Kuchler (1996); Sperduti & Starita (1997);
Frasconi et al. (1998); Gori et al. (2005); Scarselli et al. (2008); Bruna et al. (2014); Defferrard et al.
(2016); Kipf & Welling (2017); Monti et al. (2017); Gilmer et al. (2017) are a widely-used class of models
for learning on relations and interaction data. These models have recently been successfully applied in a
variety of tasks such as computer vision and graphics Monti et al. (2017), recommender systems Ying
et al. (2018), transportation Derrow-Pinion et al. (2021), computational chemistry (Gilmer et al., 2017),
drug discovery Gaudelet et al. (2021), physics (Shlomi et al., 2020), and analysis of social networks (see
Zhou et al. (2019); Bronstein et al. (2021) for additional applications).

Several recent works proposed Graph ML models based on differential equations coming from physics
Avelar et al. (2019); Poli et al. (2019b); Zhuang et al. (2020); Xhonneux et al. (2020b), including diffusion
Chamberlain et al. (2021b) and wave Eliasof et al. (2021) equations and geometric equations such as
Beltrami Chamberlain et al. (2021a) and Ricci Topping et al. (2021) flows. Such approaches allow not
only to recover popular GNN models as discretization schemes for the underling differential equations,
but also, in some cases, can address problems encountered in traditional GNNs such as oversmoothing Nt
& Maehara (2019); Oono & Suzuki (2020) and bottlenecks Alon & Yahav (2021).

In this paper, we propose a novel physically-inspired approach to learning on graphs. Our framework,
termed GraphCON (Graph-Coupled Oscillator Network) builds upon suitable time-discretizations of a
specific class of ordinary differential equations (ODEs) that model the dyanmics of a network of non-linear
forced and damped oscillators, which are coupled via the adjacency structure of the underlying graph.
Graph-coupled oscillators are often encountered in mechanical, electronic, and biological systems, and
have been studied extensively Strogatz (2015), with a prominent example being functional circuits in the
brain such as cortical columns Stiefel & Ermentrout (2016). In these circuits, each neuron oscillates with
periodic firing and spiking of the action potential. The network of neurons is coupled in the form of a
graph, with neurons representing nodes and edges corresponding to synapses linking neurons.

∗Seminar for Applied Mathematics (SAM), D-MATH, ETH Zürich, Switzerland
†Twitter Inc., London, UK
‡ETH AI Center, ETH Zürich
§Department of Computer Science, University of Oxford, UK

1

Main Contributions. In the subsequent sections, we will demonstrate the following features of Graph-
CON:

• GraphCON is flexible enough to accommodate any standard GNN layer (such as GAT or GCN) as
its coupling function. As timesteps of our discretized ODE can be interpreted as layers of a deep
neural network Chen et al. (2018); Haber & Ruthotto (2018); Chamberlain et al. (2021b), one can
view GraphCON as a wrapper around any underlying basic GNN layer allowing to build deep GNNs.
Moreover, we will show that standard GNNs can be recovered as steady states of the underlying
class of ODEs, whereas GraphCON utilizes their dynamic behavior to sample a richer set of states,
which could lead to better expressive power.

• We mathematically formulate the frequently encountered oversmoothing problem for GNNs Nt &
Maehara (2019); Oono & Suzuki (2020) in terms of the stability of zero-Dirichlet energy steady
states of the underlying equations. By a careful analysis of the dynamics of the proposed ODEs, we
demonstrate that any zero-Dirichlet energy steady states are not (exponentially) stable. Consequently,
we show that the oversmoothing problem for GraphCON is mitigated by construction.

• We provide an extensive empirical evaluation of GraphCON on a wide variety of graph learning
tasks such as transductive and inductive node classification and graph regression and classification,
demonstrating that GraphCON achieves competitive performance.

2 GraphCON

Let G = (V, E ⊆ V) be an undirected graph with |V| = v nodes and |E| = e edges consisting of unordered
pairs of nodes {i, j} and denoted i ∼ j. We will label nodes by the index i ∈ V = {1, 2, . . . , v}. For any
i ∈ V, we denote its 1-neighborhood as Ni = {j ∈ V : i ∼ j}. Furthermore, let X ∈ R

v×m be given by
X = {Xi} for i ∈ V, denoting the m-dimensional feature vector at each node i.

Central to our framework is a graph dynamical system represented by the following nonlinear system
of ODEs:

X′′ = σ(Fθ(X, t) + XW + b) − γX− αX′. (1)

Here, X(t) denotes the time-dependent v ×m-matrix of node features, σ is the activation function, Fθ is
a general learnable (possibly time-dependent) 1-neighborhood coupling function of the form

(Fθ(X, t))i = Fθ (Xi(t),Xj(t), t) ∀i ∼ j, (2)

parametrized with a set of learnable parameters θ. W ∈ R
m×m, b ∈ R

m are learnable weights and biases
that act as a residual connection.

By introducing the auxiliary velocity variable Y(t) = X′(t) ∈ R
v×m, we can rewrite the second-order

ODEs (1) as a first-order system:

Y′ = σ(Fθ(X, t) + XW + b) − γX− αY,

X′ = Y.
(3)

The key idea of our framework is, given the input node features X(0) as an initial condition, to use the
solution X(T) at some time T as the output (more generally, one can also apply (linear) transformations
(embeddings) to X(0) and X(T)). As will be shown in the following section, the space of solutions of our
system is a rich class of functions that can solve many learning tasks on a graph.

The system (3) must be solved by an iterative numerical solver using a suitable time-discretization. It
is highly desirable for a time-discretization to preserve the structure of the underlying ODEs (3) Hairer
et al. (1987). In this paper, we use the following IMEX (implicit-explicit) time-stepping scheme, which
extends the symplectic Euler method Hairer et al. (1987) to systems with an additional damping term,

Yn = Yn−1 + ∆t[σ(Fθ(Xn−1, tn−1) + Xn−1W + b) − γXn−1 − αYn−1],

Xn = Xn−1 + ∆tYn,
(4)

for n = 1, . . . , N , where ∆t > 0 is a fixed time-step and Yn,Xn denote the hidden node features at time
tn = n∆t. The iterative scheme (4) can be interpreted as an N -layer graph neural network (with potential

2

additional linear input and readout layers, omitted here for simplicity), which we refer to as GraphCON

(see section 3 for the motivation of this nomenclature). The coupling function Fθ plays the role of a
message passing mechanism (Gilmer et al. (2017), also referred to, in various contexts, as ‘diffusion’ or
‘neighborhood aggregation’) in traditional GNNs.

Choice of the coupling function Fθ. Our framework allows for any learnable 1-neighborhood coupling
to be used as Fθ, including instances of message passing mechanisms commonly used in the Graph ML
literature such as GraphSAGE (Hamilton et al., 2017), Graph Attention Velickovic et al. (2018), Graph
Convolution Defferrard et al. (2016); Kipf & Welling (2017), SplineCNN (Fey et al., 2018), or MoNet
(Monti et al., 2017)). In this paper, we focus on two particularly popular choices: Attentional message
passing of Velickovic et al. (2018):

Fθ(Xn, tn) = An(Xn)XnWn,

with learnable weight matrices Wn ∈ R
m×m and attention matrices An ∈ R

n×n following the adjacency
structure of the graph G, i.e., (An(Xn))ij = 0 if j /∈ Ni and

(An(Xn))ij =
exp(LeakyReLU(a⊤[WnXn

i ||W
nXn

j]))
∑

k∈Ni

exp(LeakyReLU(a⊤[WnXn
i ||W

nXn
k]))

,

otherwise (here Xn
i denotes the i-th row of Xn and a ∈ R

2m).
We refer to (4) based on this attentional 1-neighborhood coupling as GraphCON-GAT.
Graph convolution operator of Kipf & Welling (2017):

Fθ(Xn, tn) = D̂− 1

2 ÂD̂− 1

2XnWn, (5)

with Â = A + I denoting the adjacency matrix of G with inserted self-loops, diagonal degree matrix
D = diag(

∑n

l=1 Âkl), and Wn
i ∈ R

m×m being learnable weight matrices. We refer to (4) based on this
convolutional 1-neighborhood coupling as GraphCON-GCN.

Steady States of GraphCON and relation to GNNs. It is straightforward to see that the steady
states X∗,Y∗ of the GraphCON dynamical system (4) with an autonomous coupling function Fθ = Fθ(X)
(as in GraphCON-GAT or GraphCON-GCN) are given by Y∗ ≡ 0 and

X∗ =
∆t

γ
σ(Fθ(X∗)). (6)

Using a simple fixed point iteration to find the steady states (6) yields a multi-layer GNN of the form;

Xn =
∆t

γ
σ(Fθ(Xn−1)), for n = 1, 2, . . . , N. (7)

We observe that (up to a rescaling by the factor ∆t/γ) equation (7) corresponds to the update formula
for any standard N -layer message-passing GNN Gilmer et al. (2017), including such popular variants as
GAT Velickovic et al. (2018) or GCN Kipf & Welling (2017).

Thus, this interpretation of GraphCON (4) clearly brings out its relationship with standard GNNs.
Unlike in standard multi-layer GNNs of the generic form (7) that can be thought of as steady states of the
underlying ODEs (3), GraphCON evolves the underlying node features dynamically in time. Interpreting
the multiple GNN layers as iterations at times tn = n∆t in (4), we observe that the node features
in GraphCON follow the trajectories of the corresponding dynamical system and can explore a richer
sampling of the underlying latent feature space, leading to possibly greater expressive power than standard
GNNs (7), which might remain in the vicinity of steady states.

Moreover, this interpretation also reveals that, in principle, any GNN of the form (7) can be used
within the GraphCON framework, offering a very flexible and broad class of architectures. Hence, one can
think of GraphCON as an additional wrapper on top of any basic GNN layer allowing for a principled and
stable design of deep multi-layered GNNs. In the following Section 3, we show that such an approach has
several key advantages over standard GNNs.

3

3 Properties of GraphCON

To gain some insight into the functioning of GraphCON (4), we start by assuming no residual connections
(i.e., W = 0, b = 0), setting the hyperparameter γ = 1 and assuming that the 1-neighborhood coupling
Fθ is given by either the GAT or GCN type coupling functions. In this case, the underlying ODEs (3)
takes the following node-wise form,

X′
i = Yi,

Y′
i = σ

∑

j∈Ni

AijXj

−Xi − αYi,
(8)

for all nodes i ∈ V , with Aij = A (Xi(t),Xj(t)) ∈ R stemming from the attention or convolution operators.
Furthermore, the matrices are right stochastic i.e., the entries satisfy,

0 ≤ Aij ≤ 1, ∀j ∈ Ni, ∀i ∈ V,
∑

j∈Ni

Aij = 1, ∀i ∈ V. (9)

Uncoupled case. The simplest case of (8), corresponds to setting σ ≡ 0 and α = 0. In this case, all
nodes are uncoupled from each other and the solutions of the resulting ODEs are of the form,

Xi(t) = Xi(0) cos(t) + Yi(0) sin(t). (10)

Thus, the dynamics of the ODEs (3) in this special case correspond to a system of uncoupled oscillators,
with each node oscillating at unit frequency.

Coupled linear case. Next, we introduce coupling between the nodes that are adjacent on the
underlying graph G and assume identity activation function σ(x) = x. In this case, (8) is a coupled linear
system and an exact closed form solution, such as (10) may not be possible. However, we can describe the
dynamics of (8) in the form of the following proposition (proved in SM C.1),

Proposition 3.1. Let the node features X,Y evolve according to the ODEs (8) with activation function
σ = id and time-independent matrix A (e.g. Aij = A(Xi(0),Xj(0)) using the initial features). Further
assume that A is symmetric and α = 0. Then

∑

i∈V

‖Yi(t)‖
2 +

∑

i∈V

∑

j∈Ni

Aij‖Xi(t) −Xj(t)‖
2

=
∑

i∈V

‖Yi(0)‖2 +
∑

i∈V

∑

j∈Ni

Aij‖Xi(0) −Xj(0)‖2,
(11)

holds for all t > 0.

Thus, in this case, we have shown that the dynamics of the underlying ODEs (8) preserves the energy,

E (t) :=
∑

i∈V

‖Yi(t)‖
2 +

∑

i∈V

∑

j∈Ni

Aij‖Xi(t) −Xj(t)‖
2, (12)

and the trajectories of (8) are constrained to lie on a manifold of the node feature space, defined by the
level sets of the energy. In particular, energy (12) is not produced or destroyed but simply redistributed
among the nodes of the underlying graph G. Thus, the dynamics of (3) in this setting amounts to the
motion of a linear system of coupled oscillators.

General nonlinear case. In the general case, we have (i) a nonlinear activation function σ; (ii)
time-dependent non-linear coefficients Aij = A(Xi(t),Xj(t)); and (iii) possible unsymmetrical entries
Aij 6= Aji. All these factors destroy the energy conservation property (11) and can possibly lead to
unbounded growth of the energy. Hence, we need to add some damping to the system. To this end,

4

the damping term in (8) is activated by setting α > 0. Moreover, the residual terms corresponding to
non-zero weights W and biases b in (3) can be interpreted as forcing or impulse terms. Similarly, γ 6= 1
corresponds to controlling frequencies of the nodes. Thus, the overall dynamics of the underlying ODEs
(3) amounts to the motion of a nonlinear system of coupled, controlled, damped, and forced oscillators
with the coupling structure being that of the underlying graph. This explains our choice of the name,
Graph-Coupled Oscillatory Neural Network or ‘GraphCON’ for short.

We illustrate the dynamics of GraphCON in Fig. 1, where the model is applied to the graph of a
molecule from the ZINC database Irwin et al. (2012), with features X denoting the position of the nodes
and they are propagated in time through the action of GraphCON (4). The oscillatory behavior of the
node features, as well as their dependence on the adjacency structure of the underlying graph can be
clearly observed in this figure.

time

Figure 1: Illustration of GraphCON dynamics on a ZINC molecular graph. The initial positions of
GraphCON (X0 in (4)) are represented by the 2-dimensional positions of the nodes, while the initial
velocities (Y0 in (4)) are set to the initial positions. The positions are propagated forward in time (‘layers’)
using GraphCON-GCN with random weights. The molecular graph is plotted at initial time t = 0 as well
as at t = 20.

Oversmoothing and GraphCON. One of the common plights of GNN models such as GAT Velickovic
et al. (2018), GCN Kipf & Welling (2017) and their variants is oversmoothing Nt & Maehara (2019); Oono
& Suzuki (2020), a phenomenon where all node features in a deep GNN converge to the same constant
value as the number of hidden layers is increased. Consequently, one often must resort to shallow GNNs
at the expense of expressive power Nt & Maehara (2019); Oono & Suzuki (2020). Many attempts have
been made in recent years to mitigate the oversmoothing problem for GNNs, including regularization
procedures such as DropEdge Rong et al. (2020), using intermediate representations Xu et al. (2018b), or
adding residual connections Chen et al. (2020).

We will show that GraphCON allows to mitigate this problem by construction, and set off by formulating
this problem in precise mathematical terms and to this end, we recall the Dirichlet energy, defined on the
node features X of an undirected graph G as,

E(X) =
1

v

∑

i∈V

∑

j∈Ni

‖Xi −Xj‖
2. (13)

Next, we define oversmoothing as follows:

Definition 3.2. Let Xn denote the hidden features of the nth layer of an N -layer GNN, with n = 0, . . . , N .
We define oversmoothing as the exponential convergence to zero of the layer-wise Dirichlet energy as a
function of n, i.e.,

E(Xn) ≤ C1e
−C2n, (14)

with some constants C1, C2 > 0.

5

In other words, oversmoothing happens when the graph gradients vanish quickly (see for instance
the illustration in Fig. 2) in the number of hidden layers of the GNN. As a result, the feature vectors
across all nodes rapidly (exponentially) converge to the same constant value. This behavior is commonly
observed in GNNs and is identified as one of the reasons for the difficulty in designing deep GNNs.

GraphCON behaves rather differently and allows to mitigate the oversmoothing problem in the sense
of definition 3.2. To see this, we focus on the underlying ODEs (3). It is trivial to extend the definition of
oversmoothing from the discrete case to the continuous one by requiring that oversmoothing happens for
the ODEs (3) if the Dirichlet energy behaves as,

E(X(t)) ≤ C1e
−C2t, ∀t > 0, (15)

for some C1,2 > 0.
We have the following simple proposition (proved in SM C.2) that characterizes the oversmoothing

problem for the underlying ODEs in the standard terminology of dynamical systems Wiggins (2003),

Proposition 3.3. The oversmoothing problem occurs for the ODEs (3) if and only if the hidden states
(X∗,Y∗) = (c,0) are exponentially stable steady states (fixed points) of the ODE (3), for some c ∈ R

m

and 0 being the m-dimensional vector with zeroes for all its entries.

In other words, all the trajectories of the ODE (3), that start within the corresponding basin of
attraction, have to converge exponentially fast in time (satisfy (15)) to the corresponding steady state
(c,0) for the oversmoothing problem to occur for this system. Note that the basins of attraction will be
different for different values of c.

Given this characterization, the key questions are a) whether (c,0) are fixed points for the ODE (3),
and b) whether these fixed points are exponentially stable. We answer these questions for the ODEs (8)
in the following

Proposition 3.4. Assume that the activation function σ in the ODEs (8) is ReLU. Then, for any c ∈ R
m

such that each entry of the vector cℓ ≥ 0, for all 1 ≤ ℓ ≤ m, the hidden state (c,0) is a steady state for the
ODEs (8). However under the additional assumption of α ≥ 1

2 , this fixed point is not exponentially stable.

The fact that (c,0) is a steady state of (8), for any positive c is straightforward to see from the
structure of (8) and the definition of the ReLU activation function. We can already observe from the energy
identity (11) for the simplified symmetric linear system that the energy (12) for the small perturbations
around the steady state (c,0) is conserved in time. Hence, these small perturbations do not decay at all,
let alone, exponentially fast in time. Thus, these steady states are not exponentially stable.

An extension of this analysis to the nonlinear time-dependent, possibly non-symmetric system (8)
is more subtle and the proof relies on the identity (21) (expressed in Proposition C.1 in SM C.3) that
describes how a suitably defined energy of the general system (8) evolves around small perturbations of
the steady state (c,0). A careful analysis of this identity reveals that these small perturbations can grow
polynomially in time (at least for short time periods) and do not decay exponentially. Consequently, the
fixed point (c,0) is not stable. This shows that the oversmoothing problem, in the sense of definition 3.2,
is mitigated for the ODEs (3) and structure preserving time-discretizations of it such as (4), from which,
in simple words it follows that GraphCON mitigates oversmoothing by construction.

This analysis also illustrates the rich dynamics of (3) as we show that even if the trajectories reach
a steady state of the form (c,0), very small perturbations will grow and the trajectory will veer away
from this steady state, possibly towards other constant steady states which are also not stable. Thus, the
trajectories can sample large parts of the latent space, contributing to the expressive power of the model.

4 Related Work

Differential equations have historically played a role in designing and interpreting various algorithms in
machine learning, including non-linear dimensionality reduction methods Belkin & Niyogi (2003); Coifman
& Lafon (2006) and ranking Page et al. (1999); Chakrabarti (2007) (all of which are related to closed-form
solutions of diffusion PDEs). In the context of Deep Learning, differential equations have been used to
derive various types of neural networks including Neural ODEs and their variants, that have been used

6

to design and interpret residual Chen et al. (2018) and convolutional Haber & Ruthotto (2018) neural
networks. These approaches have recently gained traction in Graph ML, e.g. with ODE-based models for
learning on graphs Avelar et al. (2019); Poli et al. (2019b); Zhuang et al. (2020); Xhonneux et al. (2020b).

Chamberlain et al. (2021b) used parabolic diffusion-type PDEs to design GNNs using graph gradient
and divergence operators as the spatial differential operator, a transformer type-attention as a learnable
diffusivity function (‘1-neighborhood coupling’ in our terminology), and a variety of time stepping schemes
to discretize the temporal dimension in this framework. Chamberlain et al. (2021a) applied a non-euclidean
diffusion equation (‘Beltrami flow’) to a joint positional-feature space, yielding a scheme with adaptive
spatial derivatives (‘graph rewiring’), and Topping et al. (2021) studied a discrete geometric PDE similar
to Ricci flow to improve information propagation in GNNs. We can see the contrast between the diffusion-
based methods of Chamberlain et al. (2021b,a) and GraphCON in the simple case of identity activation
σ(x) = x and no residual connection (W = 0 and b = 0). Then, under the further assumption that the
second-order time derivative X′′ is removed from (1) and α = γ = 1, we recover the graph diffusion-PDEs
of Chamberlain et al. (2021b). Hence, the presence of the temporal second-order derivative distinguishes
this approach from diffusion-based PDEs.

Eliasof et al. (2021) proposed a GNN framework arising from a mixture of parabolic (diffusion) and
hyperbolic (wave) PDEs on graphs with convolutional coupling operators, which describe dissipative wave
propagation. We point out that a particular instance of their model (damped wave equation, also called as
the Telegrapher’s equation) can be obtained as a special case of our model (1) with the identity activation
function and no residual connection. This is not surprising as the zero grid-size limit of oscillators on a
regular grid yields a wave equation. However, given that we use a nonlinear activation function and the
specific placement of the activation layer in (3), a local PDE interpretation of the general form of our
underlying ODEs (1) does not appear to be feasible.

Finally, the explicit use of networks of coupled, controlled oscillators to design machine learning models
was proposed in context of recurrent neural networks (RNNs) by Rusch & Mishra (2021a,b).

5 Experimental results

We present a detailed experimental evaluation of the proposed framework on a variety of graph learn-
ing tasks. We test two settings of GraphCON: GraphCON-GCN (using graph convolution as the
1-neighborhood coupling in (4)) and GraphCON-GAT (using the attentional coupling). Since in most
experiments, these two configurations already outperform the state-of-the-art (SOTA), we only apply
GraphCON with a more involved coupling functions if neither GraphCON-GCN nor GraphCON-GAT
outperforms the current SOTA.

5.1 Evolution of Dirichlet Energy.

We start by illustrating the dynamics of the Dirichlet energy (13) of GraphCON for an undirected graph
representing a 2-dimensional 10 × 10 regular grid with 4-neighbor connectivity. The node features X are
randomly sampled from U([0, 1]) and then propagated through 100-layer GNNs (with random weights):
GAT, GCN, and their GraphCON-stacked versions (GraphCON-GAT and GraphCON-GCN) for two
different values of the damping parameter α = 0, 0.5 in (4) and with fixed γ = 1. In Fig. 2, we plot the
(logarithm of) Dirichlet energy of each layer’s output with respect to (logarithm) of the layer number. It
can clearly be seen that GAT and GCN suffer from the oversmoothing problem as the Dirichlet energy
converges exponentially fast to zero, indicating that the node features become constant, while GraphCON
is devoid of this behavior. This holds true even for non-zero value of the damping parameter α, where the
Dirichlet energy stabilizes after an initial decay.

5.2 Transductive node classification

We evaluate GraphCON on both homophilic and heterophilic datasets, where high homophily implies
that the features in a node are similar to those of its neighbors. The homophily level reported in Table 1
and Table 2 is the measure proposed by Pei et al. (2020).

7

1 10 100
Layer n

10−39

10−30

10−21

10−12

10−3

E
(X

n
)

GAT

GCN

GraphCON-GAT (α = 0)

GraphCON-GAT (α = 0.5)

GraphCON-GCN (α = 0)

GraphCON-GCN (α = 0.5)

Figure 2: Dirichlet energy E(Xn) of layer-wise node features Xn propagated through a GAT and GCN as
well as their GraphCON-stacked versions (GraphCon-GAT and GraphCON-GCN) for two different values
of α = 0, 0.5 in (4) and fixed γ = 1.

Homophilic datasets. We consider three widely used node classification tasks, based on the citation
networks Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008) and Pubmed (Namata et al., 2012). We
follow the evaluation protocols and training, validation, and test splits of Shchur et al. (2018); Chamberlain
et al. (2021b), using only on the largest connected component in each network.

Table 1 compares GraphCON with standard GNN baselines: GCN (Kipf & Welling, 2017), GAT
(Velickovic et al., 2018), MoNet (Monti et al., 2017), GraphSAGE (GS) (Hamilton et al., 2017), CGNN
(Xhonneux et al., 2020a), GDE (Poli et al., 2019a), and GRAND Chamberlain et al. (2021b). We observe
that GraphCON-GCN and GraphCON-GAT outperform pure GCN and GAT consistently. We also
provide results for GraphCON based on the propagation layer used in GRAND i.e., transformer Vaswani
et al. (2017) based graph attention, referred to as GraphCON-Tran, which also outperforms the basic
underlying model. Overall, GraphCON models show the best performance on all these datasets.

Table 1: Transductive node classification test accuracy (MAP in %) on homophilic datasets. Mean and
standard deviation are obtained using 20 random initializations on 5 random splits each. The three best
performing methods are highlighted in red (First), blue (Second), and violet (Third).

Cora Citeseer Pubmed

Homophily level 0.81 0.74 0.80

GAT-ppr 81.6 ± 0.3 68.5 ± 0.2 76.7 ± 0.3
MoNet 81.3 ± 1.3 71.2 ± 2.0 78.6 ± 2.3
GraphSage-mean 79.2 ± 7.7 71.6 ± 1.9 77.4 ± 2.2
GraphSage-maxpool 76.6 ± 1.9 67.5 ± 2.3 76.1 ± 2.3
CGNN 81.4 ± 1.6 66.9 ± 1.8 66.6 ± 4.4
GDE 78.7 ± 2.2 71.8 ± 1.1 73.9 ± 3.7

GCN 81.5 ± 1.3 71.9 ± 1.9 77.8 ± 2.9
GraphCON-GCN 81.9 ± 1.7 72.9 ± 2.1 78.8± 2.6

GAT 81.8 ± 1.3 71.4 ± 1.9 78.7 ± 2.3
GraphCON-GAT 83.2± 1.4 73.2± 1.8 79.5± 1.8

GRAND 83.6± 1.0 73.4± 0.5 78.8± 1.7
GraphCON-Tran 84.2± 1.3 74.2± 1.7 79.4± 1.3

8

Heterophilic datasets. We also evaluate GraphCON on the heterophilic graphs; Cornell, Texas and
Wisconsin from the WebKB dataset1. Here, the assumption on neighbor feature similarity does not
hold. Many GNN models were shown to struggle in this settings as can be seen by the poor performance
of baseline GCN and GAT in Table 2. On the other hand, we see from Table 2 that not only do
GraphCON-GCN and GraphCON-GAT dramatically outperform the underlying GCN and GAT models
(e.g. for the most heterophilic Texas graph, GraphCON-GCN and GraphCON-GAT have mean accuracies
of 85.4% and 82.2%, compared to accuracies of 55.1% and 52.2% for GCN and GAT), the GraphCON
models also provide the best performance, outperforming recent baselines that are specifically designed
for heterophilic graphs.

Table 2: Transductive node classification test accuracy (MAP in %) on heterophilic datasets. All results
represent the average performance of the respective model over 10 fixed train/val/test splits, which are
taken from Pei et al. (2020).

Texas Wisconsin Cornell

Homophily level 0.11 0.21 0.30

GPRGNN 78.4 ± 4.4 82.9 ± 4.2 80.3 ± 8.1
H2GCN 84.9± 7.2 87.7± 5.0 82.7± 5.3
GCNII 77.6 ± 3.8 80.4 ± 3.4 77.9 ± 3.8
Geom-GCN 66.8 ± 2.7 64.5 ± 3.7 60.5 ± 3.7
PairNorm 60.3 ± 4.3 48.4 ± 6.1 58.9 ± 3.2
GraphSAGE 82.4± 6.1 81.2 ± 5.6 76.0 ± 5.0
MLP 80.8 ± 4.8 85.3 ± 3.3 81.9 ± 6.4

GAT 52.2 ± 6.6 49.4 ± 4.1 61.9 ± 5.1
GraphCON-GAT 82.2 ± 4.7 85.7± 3.6 83.2± 7.0

GCN 55.1 ± 5.2 51.8 ± 3.1 60.5 ± 5.3
GraphCON-GCN 85.4± 4.2 87.8± 3.3 84.3± 4.8

5.3 Inductive node classification

In this experiment, we consider the Protein-Protein-Interaction (PPI) dataset of Zitnik & Leskovec (2017),
using the protocol of Hamilton et al. (2017). Table 3 shows the test performance (micro-average F1) of
GraphCON and several standard GNN baselines. We can see that GraphCON significantly improves the
performance of the underling models (GAT from 97.4% to 99.4% and GCN from 98.5% to 99.6%, which is
the top result on this benchmark).

5.4 Molecular graph property regression

We reproduce the benchmark proposed in Dwivedi et al. (2020), regressing the constrained solubulity of
12K molecular graphs from the ZINC dataset (Irwin et al., 2012). We follow verbatim the settings of
Dwivedi et al. (2020); Beani et al. (2021): make no use of edge features and constrain the network sizes to
∼100K parameters. Table 4 summarizes the performance of GraphCON and standard GNN baselines.
Both GraphCON-GAT and GraphCON-GCN outperform GAT and GCN respectively, by a factor of 2.
Moreover, the performance of GraphCON-GCN is on par with the recent state-of-the-art method DGN
(Beani et al., 2021) with significantly lower standard deviation. Given these results, it is instructive to ask
why GraphCON models outperform their underlying base GNN models such as GCN. A part of the answer
can be seen from SM Table 6, where the MAE for GCN and GraphCON-GCN for this task is shown
for increasing number of layers. We observe from this table that while the MAE with GCN increases
with the number of layers, the MAE for GraphCON-GCN decreases monotonically with increasing layers,
allowing for the use of very deep GraphCON models with increased expressive power.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

9

Table 3: Test micro-averaged F1 score on Protein-Protein Interactions (PPI) data set.

Model Micro-averaged F1

VR-GCN (Chen et al., 2017) 97.8
GraphSAGE (Hamilton et al., 2017) 61.2
PDE-GCN (Eliasof et al., 2021) 99.2
GCNII (Chen et al., 2020) 99.5
Cluster-GCN (Chiang et al., 2019) 99.4
GeniePath Liu et al. (2019) 98.5
JKNet (Xu et al., 2018b) 97.6

GAT (Velickovic et al., 2018) 97.3
GraphCON-GAT 99.4

GCN (Kipf & Welling, 2017) 98.5
GraphCON-GCN 99.6

Table 4: Test mean absolute error (MAE, averaged over 4 runs on different initializations) on ZINC
(without edge features, small 12k version) restricted to small network sizes of ∼ 100k parameters.
Baseline results are taken from Beani et al. (2021).

Model Test MAE

GIN (Xu et al., 2018a) 0.41 ± 0.008
GatedGCN (Bresson & Laurent, 2017) 0.42 ± 0.006
GraphSAGE Hamilton et al. (2017) 0.41 ± 0.005
MoNet (Monti et al., 2017) 0.41 ± 0.007
PNA (Corso et al., 2020) 0.32± 0.032
DGN (Beani et al., 2021) 0.22± 0.010

GCN (Kipf & Welling, 2017) 0.47 ± 0.002
GraphCON-GCN 0.22± 0.004

GAT (Velickovic et al., 2018) 0.46 ± 0.002
GraphCON-GAT 0.23± 0.004

5.5 MNIST Superpixel graph classification

This experiment, first suggested by Monti et al. (2017), is based on the MNIST dataset (LeCun et al.,
1998), where the grey-scale images are transformed into irregular graphs, as follows: the vertices in
the graphs represent superpixels (large blobs of similar color), while the edges represent their spatial
adjacency. Each graph has a fixed number of 75 superpixels (vertices). We use the standard splitting of
using 55K-5K-10K for training, validation, and testing.

Table 5 shows that GraphCON-GCN dramatically improves the performance of a pure GCN (test
accuracy of 88.89% vs 98.70%). We stress that both models share the parameters over all layers, i.e.
GraphCON-GCN does not have more parameters despite being a deeper model. Thus, the better
performance of GraphCON-GCN over GCN can be attributed to the use of more ‘layers’ (iterations) and
not to a higher number of parameters (see SM Table 7 for accuracy vs. number of layers for this testcase).
Finally, Table 5 also shows that GraphCON-GAT outperforms all other methods, including the recently
proposed PNCNN Finzi et al. (2021), reaching a nearly-perfect test accuracy of 98.91%.

10

Table 5: Test accuracy in % on MNIST Superpixel 75.

Model Test accuracy

ChebNet (Defferrard et al., 2016) 75.62
MoNet (Monti et al., 2017) 91.11
PNCNN (Finzi et al., 2021) 98.76
GatedGCN (Bresson & Laurent, 2017) 97.95
SplineCNN (Fey et al., 2018) 95.22

GCN (Kipf & Welling, 2017) 88.89
GraphCON-GCN 98.68

GAT (Velickovic et al., 2018) 96.19
GraphCON-GAT 98.91

6 Conclusions

In conclusion, we proposed a novel framework for designing deep Graph Neural Networks called GraphCON,
based on suitable time discretizations of ODEs (1) that model the dynamics of a network of forced and
damped oscillators. The coupling between the nodes is conditioned on the structure of the underlying
graph.

One can readily interpret GraphCON as a framework to propagate information through multiple layers
of a deep GNN, where each hidden layer has the same structure as standard GNNs such as GAT, GCN
etc. Unlike in canonical constructions of deep GNNs, which stack hidden layers in a straightforward
iterative fashion (7), GraphCON stacks them in a more involved manner using the dynamics of the ODE
(3). Hence, in principle, any GNN hidden layer can serve as the coupling function Fθ in GraphCON (4),
offering it as an attractive framework for constructing very deep GNNs.

The well-known oversmoothing problem for GNNs was described mathematically in terms of the
stability of zero Dirichlet energy steady states of the underlying ODE (3). We showed that such zero
Dirichlet energy steady states of (3), which lead to constant node features, are not (exponentially) stable.
Even if a trajectory reaches a feature vector that is constant across all nodes, very small perturbations
will nudge it away and the resulting node features will deviate from each other. Thus, by construction, we
demonstrated that the oversmoothing problem, in the sense of definition 3.2, is mitigated for GraphCON.

Finally, we extensively test GraphCON on a variety of node- and graph-classification and regression
tasks, including heterophilic datasets known to be challenging for standard GNN models. From these
experiments, we observed that (i) GraphCON models significantly outperform the underlying base GNN
such as GCN or GAT and (ii) GraphCON models are either on par with or outperform state-of-the-art
models on these tasks. This shows that ours is a novel, flexible, easy to use framework for constructing
deep GNNs with theoretical guarantees and solid empirical performance.

Limitations and Future work. The presented approach can be extended in various directions. First,
the richer dynamics of the ODEs (3) underlying our model points to a potentially higher expressive power,
as also corroborated by experimental results. A future detailed theoretical investigation of the expressivity
of GraphCON will entail studying subtle questions of optimal control, in particular the controllability
Sontag (1998); Lions (1988) of the underlying ODEs (3), as one has to prove that the trainable parameters
in GraphCON can be adjusted such that the resulting trajectories of (3) could be steered to reach any
target state in a rich enough hypothesis class. Relating such results to traditional approaches classifying
the expressive power of GNNs by analogy to the Weisfeiler-Lehman hierarchy could be another interesting
direction.

Second, we focused primarily on the widely-used GNNs such as GAT and GCN to define the 1-
neighborhood coupling in GraphCON. Given the inherent flexibility of GraphCON, it would be interesting
to deploy more sophisticated GNNs as the 1-neighborhood coupling to see if the expressivity of GraphCON
is increased further for larger sized benchmarks, as it was in the case of transductive node classification

11

with a Transformer-type attention.
Third, GraphCON can also serve as a foundation for designing other physics-based GNNs such as

models that possess a Hamiltonian structure. Finally, high-order discretizations of the underlying ODEs
(3), such as the structure preserving Stormer-Verlet algorithm and high-order Runge-Kutta methods, can
be considered as variants of GraphCON.

Acknowledgements.

The research of TKR and SM was performed under a project that has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(Grant Agreement No. 770880). MB and JR are supported in part by ERC Grant No. 724228 (LEMAN).

References

Alon, U. and Yahav, E. On the bottleneck of graph neural networks and its practical implications. In
ICML, 2021.

Avelar, P. H. C., Tavares, A. R., , Gori, M., and Lamb, L. C. Discrete and continuous deep residual
learning over graphs. arXiv preprint, 2019.

Beani, D., Passaro, S., Létourneau, V., Hamilton, W., Corso, G., and Liò, P. Directional graph networks.
In ICML. PMLR, 2021.

Belkin, M. and Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 15(6):1373–1396, 2003.

Bresson, X. and Laurent, T. Residual gated graph convnets. arXiv:1711.07553, 2017.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. Geometric deep learning: Grids, groups,
graphs, geodesics, and gauges. arXiv:2104.13478, 2021.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spectral networks and locally connected networks on
graphs. In 2nd International Conference on Learning Representations, ICLR 2014, 2014.

Chakrabarti, S. Dynamic personalized pagerank in entity-relation graphs. In WWW, 2007.

Chamberlain, B., Rowbottom, J., Eynard, D., Di Giovanni, F., Dong, X., and Bronstein, M. Beltrami
flow and neural diffusion on graphs. In NeurIPS, 2021a.

Chamberlain, B., Rowbottom, J., Gorinova, M. I., Bronstein, M. M., Webb, S., and Rossi, E. GRAND:
graph neural diffusion. In Proceedings of the 38th International Conference on Machine Learning, ICML,
volume 139 of Proceedings of Machine Learning Research, pp. 1407–1418. PMLR, 2021b.

Chen, J., Zhu, J., and Song, L. Stochastic training of graph convolutional networks with variance reduction.
arXiv:1710.10568, 2017.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. Simple and deep graph convolutional networks. In
ICML. PMLR, 2020.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential equations.
In NeurIPS, 2018.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. Cluster-gcn: An efficient algorithm for
training deep and large graph convolutional networks. In KDD, 2019.

Coifman, R. R. and Lafon, S. Diffusion maps. Applied and computational harmonic analysis, 21(1):5–30,
2006.

12

Corso, G., Cavalleri, L., Beaini, D., Liò, P., and Veličković, P. Principal neighbourhood aggregation for
graph nets. arXiv:2004.05718, 2020.

Defferrard, M., Bresson, X., and Vandergheynst, P. Convolutional neural networks on graphs with fast
localized spectral filtering. Advances in neural information processing systems, 29:3844–3852, 2016.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T., Perez, L., Nunkesser, M., Lee, S., Guo, X.,
Battaglia, P. W., Gupta, V., Li, A., Xu, Z., Sanchez-Gonzalez, A., Li, Y., and Veličković, P. Traffic
Prediction with Graph Neural Networks in Google Maps. 2021.

Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., and Bresson, X. Benchmarking graph neural
networks. arXiv:2003.00982, 2020.

Eliasof, M., Haber, E., and Treister, E. Pde-gcn: Novel architectures for graph neural networks motivated
by partial differential equations. In NeurIPS, 2021.

Fey, M., Lenssen, J. E., Weichert, F., and Müller, H. Splinecnn: Fast geometric deep learning with
continuous b-spline kernels. In CVPR, 2018.

Finzi, M. A., Bondesan, R., and Welling, M. Probabilistic numeric convolutional neural networks. In 9th
International Conference on Learning Representations, ICLR, 2021.

Frasconi, P., Gori, M., and Sperduti, A. A general framework for adaptive processing of data structures.
IEEE Trans. Neural Networks, 9(5):768–786, 1998.

Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep, C., Liu, G., Hayter, J. B., Vickers, R., Roberts,
C., Tang, J., et al. Utilizing graph machine learning within drug discovery and development. Briefings
in Bioinformatics, 22(6), 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing for
quantum chemistry. In ICML, 2017.

Goller, C. and Kuchler, A. Learning task-dependent distributed representations by backpropagation
through structure. In ICNN, 1996.

Gori, M., Monfardini, G., and Scarselli, F. A new model for learning in graph domains. In IJCNN, 2005.

Haber, E. and Ruthotto, L. Stable architectures for deep neural networks. Inverse Problems, 34, 2018.

Hairer, E., Norsett, S. P., and Wanner, G. Solving ordinary differential equations I. Springer, 1987.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive representation learning on large graphs. In NeurIPS,
2017.

Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., and Coleman, R. G. Zinc: a free tool to discover
chemistry for biology. Journal of chemical information and modeling, 52(7):1757–1768, 2012.

Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In ICLR,
2017.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document
recognition. Proc. IEEE, 86(11):2278–2324, 1998.

Lions, J.-L. Exact controllability, stabilization and perturbations for distributed systems. SIAM Review,
30, 1988.

Liu, Z., Chen, C., Li, L., Zhou, J., Li, X., Song, L., and Qi, Y. Geniepath: Graph neural networks with
adaptive receptive paths. In AAAI, 2019.

McCallum, A. K., Nigam, K., Rennie, J., and Seymore, K. Automating the construction of internet
portals with machine learning. Information Retrieval, 3(2):127–163, 2000.

13

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., and Bronstein, M. M. Geometric deep learning
on graphs and manifolds using mixture model cnns. In CVPR, 2017.

Namata, G., London, B., Getoor, L., Huang, B., and EDU, U. Query-driven active surveying for collective
classification. In 10th International Workshop on Mining and Learning with Graphs, volume 8, pp. 1,
2012.

Nt, H. and Maehara, T. Revisiting graph neural networks: all we have is low pass filters.
arXiv:1812.08434v4, 2019.

Oono, K. and Suzuki, T. Graph neural networks exponentially lose expressive power for node classification.
In ICLR, 2020.

Page, L., Brin, S., Motwani, R., and Winograd, T. The pagerank citation ranking: Bringing order to the
web. Technical report, 1999.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B. Geom-gcn: Geometric graph convolutional
networks. arXiv:2002.05287, 2020.

Poli, M., Massaroli, S., Park, J., Yamashita, A., Asama, H., and Park, J. Graph neural ordinary differential
equations. arXiv:1911.07532, 2019a.

Poli, M., Massaroli, S., Park, J., Yamashita, A., Asama, H., and Park, J. Graph neural ordinary differential
equations. pp. 6571–6583, 2019b.

Rong, Y., Huang, W., Xu, T., and Huang, J. Towards deep graph convolutional networks on node
classification. In ICLR, 2020.

Rusch, T. K. and Mishra, S. Coupled oscillatory recurrent neural network (cornn): An accurate and
(gradient) stable architecture for learning long time dependencies. In ICLR, 2021a.

Rusch, T. K. and Mishra, S. Unicornn: A recurrent model for learning very long time dependencies. In
ICML, 2021b.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. The graph neural network
model. IEEE Trans. Neural Networks, 20(1):61–80, 2008.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. Collective classification in
network data. AI Magazine, 29(3):93–93, 2008.

Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. Pitfalls of graph neural network evaluation.
arXiv:1811.05868, 2018.

Shlomi, J., Battaglia, P., and Vlimant, J.-R. Graph neural networks in particle physics. Machine Learning:
Science and Technology, 2(2):021001, 2020.

Sontag, E. D. Mathematical Control Theory. Springer, 1998.

Sperduti, A. Encoding labeled graphs by labeling RAAM. In NIPS, 1994.

Sperduti, A. and Starita, A. Supervised neural networks for the classification of structures. IEEE Trans.
Neural Networks, 8(3):714–735, 1997.

Stiefel, K. M. and Ermentrout, G. B. Neurons as oscillators. Journal of Neurophysiology, 116:2950–2960,
2016.

Strogatz, S. Nonlinear Dynamics and Chaos. Westview, Boulder CO, 2015.

Topping, J., Di Giovanni, F., Chamberlain, B. P., Dong, X., and Bronstein, M. M. Understanding
over-squashing and bottlenecks on graphs via curvature. arXiv:2111.14522, 2021.

14

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin,
I. Attention is all you need. In NeurIPS, 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. Graph attention networks.
In 6th International Conference on Learning Representations, ICLR, 2018.

Wiggins, S. Introduction to nonlinear dynamical systems and chaos. Springer, 2003.

Xhonneux, L.-P., Qu, M., and Tang, J. Continuous graph neural networks. In ICML. PMLR, 2020a.

Xhonneux, L.-p. A. C., Qu, M., and Tang, J. Continuous graph neural networks. In ICML, 2020b.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? arXiv:1810.00826,
2018a.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i., and Jegelka, S. Representation learning on
graphs with jumping knowledge networks. In ICML. PMLR, 2018b.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J. Graph convolutional
neural networks for web-scale recommender systems. In KDD, 2018.

Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., , Li, C., and Sun, M. Graph neural networks: a
review of methods and applications. arXiv:1812.08434v4, 2019.

Zhuang, J., Dvornek, N., Li, X., and Duncan, J. S. Ordinary differential equations on graph networks.
Technical Report, 2020.

Zitnik, M. and Leskovec, J. Predicting multicellular function through multi-layer tissue networks.
Bioinformatics, 33(14):i190–i198, 2017.

15

Supplementary Material for:

Graph-Coupled Oscillator Networks

A Further experimental results

A.1 Performance of GraphCON with respect to number of layers

As we have argued in the main text, GraphCON is designed to be a deep GNN architecture with many
layers. Depth could enhance the expressive power of GraphCON and we investigate this issue in two
of the datasets, presented in Section 5 of the main text. In both experiments, we will focus on the
GraphCON-GCN model and compare and contrast its performance, with respect to increasing depth,
with the baseline GCN model.

We start with the molecular graph property regression example for the ZINC dataset of Irwin et al.
(2012). In Table 6, we present the mean absolute error (MAE) of the model on the test set with respect
to increasing number of layers (up to 20 layers) of the respective GNNs. As observed from this table, the
MAE with standard GCN increases with depth. On the other hand, the MAE with GraphCON decreases
as more layers are added.

Table 6: Test mean absolute errors of GraphCON-GCN as well as its baseline model GCN on the ZINC
task for different number of layers N = 5, 10, 15, 20.

Model
Layers

5 10 15 20

GraphCON-GCN 0.241 0.233 0.228 0.214
GCN 0.442 0.463 0.478 0.489

Next, we consider the MNIST Superpixel graph classification task and present the test accuracy with
increasing depth (number of layers) for both GCN and GraphCON-GCN. As in the previous example,
we observe that increasing depth leads to worsening of the test accuracy for GCN. On the other hand,
the test accuracy for GraphCON-GCN increases as more layers (up to 32 layers) are added to the model.
Thus, both experiments demonstrate that GraphCON leverages more depth to improve performance.

Table 7: Test accuracies in % of GraphCON-GCN as well as its baseline model GCN on the MNIST
Superpixel 75 task for different number of layers N = 4, 8, 16, 32.

Model
Layers

4 8 16 32

GraphCON-GCN 97.78 98.51 98.55 98.68
GCN 88.09 87.26 86.78 85.67

A.2 Sensitivity of performance of GraphCON to hyperparameters α and γ

We recall that GraphCON, (4) of the main text, has two additional hyperparameters, namely the damping
parameter α ≥ 0 and the frequency control parameter γ > 0. In Table 8, we present the values of α, γ
that led to the best performance of the resulting GraphCON models. It is natural to ask how sensitive
the performance of GraphCON is to the variation of these hyperparameters. To this end, we choose
the MNIST Superpixel graph classification task and perform a sensitivity study of the GraphCON-GCN
model with respect to these hyperparameters. First, we fix a value of γ = 0.76 (corresponding to the best

16

results in Table 8) and vary α in the range of α ∈ [0, 2]. The results are plotted in Fig. 3 and show that
the accuracy is extremely robust to a very large parameter range in α. Only for large values α > 1.6, we
see that the accuracy deteriorates when the damping is too high.

Next for this model and task, we fix α = 1 (which provides the best performance as reported in Table
8) and vary γ ∈ [0, 2]. Again, for a large range of values corresponding to γ ∈ [0.2, 2], the accuracy is very
robust. However, for very small values of γ, the accuracy falls significantly. This is to be expected as the
model loses its interpretation as system of oscillators for γ ≈ 0.

Thus, these sensitivity results demonstrate that GraphCON performs very robustly with respect to
variations of the parameters α, γ, within a reasonable range.

0.0 0.5 1.0 1.5 2.0
Varying value of α or γ

20

40

60

80

100

T
es
t
ac
cu
ra
cy

in
%

Fixed α = 1.0

Fixed γ = 0.76

Figure 3: Sensitivity (measured as test accuracy) plot for α and γ hyperparameters of GraphCON-GCN
(with 32 layers) trained on MNIST superpixel 75 experiment. First, α = 1.0 is fixed and γ is varied in
[0, 2]. Second, γ = 0.76 is fixed and α is varied in [0, 2]. The fixed α, γ are taken from the best performing
GraphCON-GCN on the MNIST superpixel 75 task (Table 8)

B Training details

All experiments were run on NVIDIA GeForce GTX 1080 Ti, RTX 2080 Ti as well as RTX 2080 Ti GPUs.
The tuning of the hyperparameters was done using a standard random search algorithm. We fix the
time-step ∆t in (4) to 1 in all experiments. The damping parameter α as well as the frequency control
parameter γ are set to 1 for all Cora, Citeseer and Pubmed experiments, while we set them to 0 for all
experiments based on the Texas, Cornell and Wisconsin network graphs. For all other experiments we
include α and γ to the hyperparameter search-space. The tuned values can be found in Table 8.

C Mathematical details for Section 3 of main text

In this section, we provide details for the mathematical results in section 3 of the main text. We start
with,

17

Table 8: Hyperparameters α and γ of GraphCON (4) for each best performing GraphCON model (based
on a validation set).

Model Experiment α γ

GraphCON-GCN
PPI

0.242 1.0
GraphCON-GAT 0.785 1.0

GraphCON-GCN
ZINC

0.215 1.115
GraphCON-GAT 1.475 1.324

GraphCON-GCN
MNIST (superpixel)

1.0 0.76
GraphCON-GAT 0.76 0.105

C.1 Proof of Proposition 3.1

Proof. We multiply Y⊤
i to the second equation of (8) and obtain,

Y⊤
i

dYi

dt
=
∑

j∈Ni

AijY
⊤
i (Xj −Xi) ,

as
∑

j∈Ni

Aij = 1

Summing over i ∈ G and using the symmetry condition Aij = Aji in the above expression yields,

d

dt

∑

i∈G

‖Yi‖
2

2
= −

∑

i∈G

∑

j∈Ni

Aij (Yj −Yi)
⊤

(Xj −Xi) ,

= −
∑

i∈G

∑

j∈Ni

Aij

(

d(Xj −Xi)

dt

)⊤

(Xj −Xi)

⇒
1

2

d

dt

∑

i∈G

‖Yi‖
2

2
+
∑

i∈G

∑

j∈Ni

Aij‖Xj −Xi‖
2

 = 0.

Integrating the last line in the above expression over time [0, t] yields the desired identity (11)

C.2 Proof of Proposition 3.3

Proof. By the definition of the Dirichlet energy (13), (15) implies that,

lim
t→∞

Xi(t) ≡ c, ∀i ∈ V, (16)

for some c ∈ R
m. In other words, all the hidden node features converge to the same feature vector c as

time increases. Moreover, by (15), this convergence is exponentially fast.
Plugging in (16) in to the first equation of the ODE (3), we obtain that,

lim
t→∞

Yi(t) ≡ 0, ∀i ∈ G, (17)

with 0 being the m vector with zeroes for all its entries. Thus, oversmoothing in the sense of definition
3.2, amounts to (c,0) being an exponentially stable fixed point (steady state) for the dynamics of (8)

On the other hand, if (c,0) is an exponentially stable steady state of (8), then the trajectories converge
to this state exponentially fast satisfying (15). Consequently, by the definition of the Dirichlet energy
(13), we readily observe that the oversmoothing problem, in the sense of definition 3.2, occurs in this case.

18

C.3 Proof of Proposition 3.4

The main aim of the section is to show that steady states of (8), of the form (c,0) are not exponentially
stable.

To this end, we fix c and start by considering small perturbations around the fixed point (c,0). We
define,

X̂i = Xi − c, Ŷi = Yi,

and evolve these perturbations by the linearized ODE,

X̂′
i = Ŷi,

Ŷi

′
= σ′(c)

∑

j∈Ni

Âi,jX̂j − X̂i − αŶi,
(18)

As σ(x) = max(x, 0) and c ≥ 0, we have that σ′(c) = ID and linearized system (19) reduces to,

X̂′
i = Ŷi,

Ŷi

′
=
∑

j∈Ni

ÂijX̂j − X̂i − αŶi,
(19)

with
Âij = Aij(c, c), ∀j ∈ Ni, ∀i ∈ G,

0 ≤ Âij ≤ 1,
∑

j∈Ni

Âij = 1. (20)

We have the following proposition on the dynamics of linearized system (19) with respect to perturbations
of the fixed point (c,0),

Proposition C.1. Perturbations X̂(t), Ŷ(t) of the fixed point (c,0), which evolve according to (19) satisfy
the following identity,

1

v

∑

i∈V

‖ ˆYi(t)‖
2 +

∑

i∈V

∑

j∈Ni

Âij + Âji

2

(

‖X̂j(t) − X̂i(t)‖
2
)

 = T1(t) + T2(t) + T3(t),

T1(t) =
1

v

∑

i∈V

(

‖ ˆYi(0)‖2
)

e−2αt +
1

v

∑

i∈V

∑

j∈Ni

Âij + Âji

2

(

‖X̂j(0) − X̂i(0)‖2
)

e−2αt

T2(t) =
2α

v

∑

i∈V

∑

j∈Ni

Âij + Âji

2

t
∫

0

‖X̂j(s) − X̂i(s)‖
2e2α(s−t)ds

T3(t) =
1

v

∑

i∈V

∑

j∈Ni

(

Âij − Âji

)

t
∫

0

(

Ŷi(s) + Ŷj(s)

2

)⊤
(

X̂j(s) − X̂i(s)
)

e2α(s−t)ds

(21)

Proof. Multiplying the second equation in (19) with Ŷ⊤
i and using the fact that

∑

j∈Ni

Âij = 1, we obtain,

d

dt

‖Ŷi‖
2

2
+ α‖Ŷi‖

2 =
∑

j∈Ni

ÂijŶ
⊤
i

(

X̂j − X̂i

)

,

=
∑

j∈Ni

Âij

(

Ŷi + Ŷj

)⊤

2

(

X̂j − X̂i

)

−
∑

j∈Ni

Âij

(

Ŷj − Ŷi

)⊤

2

(

X̂j − X̂i

)

,

=
∑

j∈Ni

Âij

(

Ŷi + Ŷj

)⊤

2

(

X̂j − X̂i

)

−
∑

j∈Ni

Âij

2

d

dt

(

X̂j − X̂i

)⊤ (

X̂j − X̂i

)

,

(22)

19

where we have used the first equation of (19) in the last line of (22). Consequently, we have for all i ∈ V ,

d

dt

‖Ŷi‖
2

2
+ α‖Ŷi‖

2 +
d

dt

∑

j∈Ni

Âij

2

‖X̂j − X̂i‖
2

2

=
∑

j∈Ni

Âij

(

Ŷi + Ŷj

)⊤

2

(

X̂j − X̂i

)

(23)

Summing (23) over all nodes i ∈ V yields,

d

dt

∑

i∈V

‖Ŷi‖
2

2
+ α

∑

i∈V

‖Ŷi‖
2 +

d

dt

∑

i∈G

∑

j∈Ni

Âij + Âji

2

‖X̂j − X̂i‖
2

2

=
∑

i∈V

∑

j∈Ni

Âij − Âji

2

(

Ŷi + Ŷj

)⊤ (

X̂j − X̂i

)

(24)

Multiplying e2αt to both sides of (24) and using the chain rule, we readily obtain,

d

dt

∑

i∈V

e2αt

‖Ŷi‖
2

2
+
∑

j∈Ni

Âij + Âji

2

‖X̂j − X̂i‖
2

2

= αe2αt
∑

i∈V

∑

j∈Ni

Âij + Âji

2
‖X̂j − X̂i‖

2

+ e2αt
∑

i∈V

∑

j∈Ni

Âij − Âji

2

(

Ŷi + Ŷj

)⊤ (

X̂j − X̂i

)

(25)

Integrating (25) over the time interval [0, t] yields,

∑

i∈V

(

‖ ˆYi(t)‖
2

2

)

e2αt +
∑

i∈V

∑

j∈Ni

Âij + Âji

2

(

‖X̂j(t) − X̂i(t)‖
2

2

)

e2αt

=
∑

i∈V

(

‖ ˆYi(0)‖2

2

)

+
∑

i∈V

∑

j∈Ni

Âij + Âji

2

(

‖X̂j(0) − X̂i(0)‖2

2

)

+ α
∑

i∈V

∑

j∈Ni

Âij + Âji

2

t
∫

0

‖X̂j(s) − X̂i(s)‖
2e2αsds

+
∑

i∈V

∑

j∈Ni

Âij − Âji

2

t
∫

0

(

Ŷi(s) + Ŷj(s)
)⊤ (

X̂j(s) − X̂i(s)
)

e2αsds

(26)

We readily obtain the desired identity (21) from (26).

Next, we observe that the right-hand side of the nonlinear ODEs (8) is globally Lipschitz. Therefore,
solutions exist for all time t > 0, are unique and depend continuously on the data.

We assume that the initial perturbations around the steady state (c,0) are small i.e., they satisfy

‖X̂i(0) − X̂j(0)‖ ≤ ǫ, ∀j ∈ Ni, ∀i ∈ G,

‖Ŷi(0)‖ ≤ ǫ, ∀i ∈ G,

for some 0 < ǫ << 1.
Hence, there exists a small time τ > 0 such that the time-evolution of these perturbations can be

approximated to arbitrary accuracy by solutions of the linearized system (19).

20

Next, we see from the identity (21) that the evolution of the perturbations X̂, Ŷ from the fixed point
(c,0) for the linearized system (19) is balanced by three terms T1,2,3. The term T1 is clearly a dissipative
term and says that the initial perturbations are damped exponentially fast in time.

On the other hand, the term T2, which has a positive sign, is a production term and says that the
initial perturbations will grow with time t. Given the continuous dependence of the dynamics evolved by
the ODE (19), there exists a time, still called τ by choosing it even smaller than the τ encountered before,
such that

‖X̂i(t) − X̂j(t)‖ ∼ O(ǫ), ∀j ∈ Ni, ∀i ∈ G, ∀t ∈ [0, τ],

‖Ŷi(t)‖ ∼ O(ǫ), ∀i ∈ G, ∀t ∈ [0, τ].
(27)

Plugging the above expression into the term T2 in (21) and using the right-stochatisticity of the matrix

Â, we obtain that,
T2(t) ∼ O(ǫ2)

(

1 − e−2αt
)

, ∀t ≤ τ (28)

Thus, the leading term is T2 grows algebraically with respect to the initial perturbations.
Next we turn our attention to the term T3 in (21). This term is proportional to the asymmetry in the

graph-coupling matrix Â = A(c, c). If this matrix were symmetric, then T3 vanishes. On the other hand,

for many 1-neighborhood couplings considered in this article, the matrix Â is not symmetric. In fact, one
can explicitly compute that for the GAT and Transformers attention and GCN-couplings, we have,

Âij =
1

deg(i)
, ∀j ∈ Ni, ∀i ∈ V. (29)

Here, deg is refers to the degree of the node, with possibly inserted self-loops.
As the ordering of nodes of the graph G is arbitrary, we can order them in such a manner that

Âij > Âji. Even with this ordering, as long as the matrix Â is not symmetric, the term T3 is of indefinite
sign. If it is positive, then we have additional growth with respect to time in (21). On the other hand, if
T3 is negative, it will have a dissipative effect. The rate of this dissipation can be readily calculated for a
short time t ≤ τ under the assumption (27) to be,

|T3(t)| ∼
D −D

DD

(

1 − e−2αt

2α

)

O(ǫ2). (30)

Here, we define,
D = max

i∈V
deg(i), D = min

i∈V
deg(i) (31)

Thus by combining (28) with (30), we obtain,

T2 + T3 ∼

(

1 −
D −D

2αDD

)

(

1 − e−2αt
)

O(ǫ2) (32)

In particular for α ≥ 1/2, we see from (32), that the overall balance (21) leads to an algebraic growth,
rather than exponential decay, of the initial perturbations of the fixed point (c,0). Thus, we have shown
that this steady state is not exponentially stable and small perturbations will take the trajectories of the
ODE (19) away from this fixed point, completing the proof of Proposition 3.4.

Remark C.2. We see from the above proof, the condition α ≥ 1
2 is only a sufficient condition for the

proof of Proposition 3.4, we can readily replace it by,

α ≥
D −D

2DD

21

	Introduction
	GraphCON
	Properties of GraphCON
	Related Work
	Experimental results
	Evolution of Dirichlet Energy.
	Transductive node classification
	Inductive node classification
	Molecular graph property regression
	MNIST Superpixel graph classification

	Conclusions
	Further experimental results
	Performance of GraphCON with respect to number of layers
	Sensitivity of performance of GraphCON to hyperparameters and

	Training details
	Mathematical details for Section 3 of main text
	Proof of Proposition 3.1
	Proof of Proposition 3.3
	Proof of Proposition 3.4

