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Abstract

On general regular simplicial partitions T of bounded polytopal domains Ω ⊂ R
d,

d ∈ {2, 3}, we construct exact neural network (NN) emulations of all lowest order finite
element spaces in the discrete de Rham complex. These include the spaces of piecewise
constant functions, continuous piecewise linear (CPwL) functions, the classical “Raviart-
Thomas element”, and the “Nédélec edge element”. For all but the CPwL case, our network
architectures employ both ReLU (rectified linear unit) and BiSU (binary step unit) activa-
tions to capture discontinuities. In the important case of CPwL functions, we prove that it
suffices to work with pure ReLU nets. Our construction and DNN architecture generalizes
previous results in that no geometric restrictions on the regular simplicial partitions T of
Ω are required for DNN emulation. In addition, for CPwL functions our DNN construction
is valid in any dimension d ≥ 2. Our “FE-Nets” are required in the variationally correct,
structure-preserving approximation of boundary value problems of electromagnetism in
nonconvex polyhedra Ω ⊂ R

3. They are thus an essential ingredient in the application
of e.g., the methodology of “physics-informed NNs” or “deep Ritz methods” to electro-
magnetic field simulation via deep learning techniques. We indicate generalizations of our
constructions to higher-order compatible spaces and other, non-compatible classes of dis-
cretizations, in particular the “Crouzeix-Raviart” elements and Hybridized, Higher Order
(HHO) methods.
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3.3 Nédélec elements N0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 CPwL elements S11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 ReLU NN emulation of CPwL shape functions 17
4.1 Regular, simplicial partitions T with convex patches . . . . . . . . . . . . . . . . 17
4.2 Regular, simplicial partitions T including non-convex patches . . . . . . . . . . . 18

5 NN emulation of lowest order conforming FE spaces. Approximation rates. 20

6 Neural emulation of trace spaces 23

7 Extensions and conclusions 26
7.1 Higher order polynomial spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Crouzeix-Raviart elements CR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 Domains of general topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Proofs 30
A.1 Proofs from Section 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.2 Proofs from Section 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.3 Proofs from Section 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1 Introduction

Recent years have seen the emergence of Deep Neural Network (DNN) based methods for the
numerical approximation of solutions to partial differential equations (PDEs for short). In one
class of proposed methods, DNNs serve as approximation architectures in a suitable, weak form
of the PDE of interest. In [17], for elliptic, self-adjoint PDEs the variational principle associated
to the PDE is computationally minimized over suitable DNNs, so that the energy functional of
the physical system of interest gives rise to a consistent loss function for the training of the DNN.
Numerical solutions obtained from training the approximating DNN in this way correspond to
approximate variational solutions of the PDE under consideration.

The recently promoted “physics-informed NNs” (PiNNs), e.g. [28, 32] and references there,
insert DNN approximations with suitably smooth activations (e.g. softmax or tanh) as approx-
imation architecture into the strong form of the governing PDE. Approximate solutions are
obtained by numerical minimization of loss functions obtained by discretely enforcing smallness
of the residual at collocation points in the spatio-temporal domain. While empirically successful
in a large number of test cases, also DNN based approximations are subject to the fundamental
paradigm that “stability and consistency implies convergence”. A key factor of recent success-
ful DNN deployment in numerical PDE solution is their excellent approximation properties, in
particular on high-dimensional state- and parameter-spaces, e.g. [27, 25, 30] and the references
there. High smoothness of DNNs with smooth activations may, however, preclude convergence
of so-called “deep Ritz” approaches where loss functions in DNN training are derived from
energies in variational principles [17], even for linear, deterministic and well posed PDEs.
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To leverage the methodology of PiNNs and e.g., the variational Ritz method for com-
putational electromagnetics, computational magneto-hydrodynamics etc., structure-preserving
DNNs must be adopted. We provide here, therefore, de Rham complex compatible DNN emu-
lations of the standard, lowest order finite element spaces on regular, simplicial triangulations
of polytopal domains Ω ⊂ R

d, d = 2, 3. These spaces satisfy exact (de Rham) sequence proper-
ties, and also spawn discrete boundary complexes on ∂Ω that satisfy exact sequence properties
for the surface divergence and curl operators div∂Ω and curl∂Ω. These in turn enable “neural
boundary elements” for computational electromagnetism, recently proposed in [5].

1.1 Previous work

The connection between DNNs with Rectified Linear Unit (ReLU for short) activation and
continuous, piecewise linear (CPwL) spline approximation spaces has been known for some
time: nodal discretizations based on CPwL finite element methods (FEM) can be emulated by
ReLU NNs (e.g. as introduced in [4] and [21]).

When CPwL finite elements are applied to, for example, weak formulations of the time-
harmonic Maxwell equations, they are known to converge to the correct solution, generally,
only for convex polygons or polyhedra: if Ω has re-entrant corners or edges, then with1

XN (Ω) := H0(div,Ω) ∩H0(curl,Ω) ∩ {u : u× n = 0 on ∂Ω},

where n is a unit normal vector to the boundary ∂Ω of Ω, the vector fields [H1(Ω)]3 ∩XN (Ω)
are closed in XN (Ω) without being dense, see, e.g., [12, 14]. For such nonconvex polyhedra, the
weak solution to the time-harmonic Maxwell’s equations is generally not contained in [H1(Ω)]3.

Since any discrete conforming space based on a standard nodal finite element method is
contained in [H1(Ω)]3, nodal FEM in this situation converges to a wrong solution (in [H1(Ω)]3)
as the meshwidth tends to zero (respectively as the width of the corresponding NN tends to
infinity) [13]. Similar issues will arise for PiNN numerical approximations of low-regularity
solutions for H0(curl,Ω)-based PDEs such as the time-harmonic Maxwell equations. They will
persist also for DNN surrogates with more regular activation functions such as ReLUk for k ∈ N

and sigmoidal or softmax activations. On bounded sets, such NNs realize Lipschitz continuous
functions, which are in [H1(Ω)]3 and therefore may converge to an incorrect solution.

A second broad class of variational models, where continuous nodal FEM may cause prob-
lems, are “deep Ritz” type approaches such as in [17], which attempt to minimize energy
functionals. For certain nonlinear problems the so-called “Lavrentiev gap” incurred by CPwL
approximation architectures is known to be a fundamental obstruction to obtain convergent
families of discrete minimizers, see e.g., [24, 34, 7]. Again, relaxing continuity below H1-
conformity is known to remedy this issue; see, e.g. [6] and the discussion and references there.
Accordingly, in Section 7.2 of the present paper we present CR-Net, a DNN emulation of the
Crouzeix-Raviart element with BiSU and ReLU activations, on general regular, simplicial par-
titions of polytopal domains Ω ⊂ R

d, d ≥ 2, which, when used in a deep Ritz method style
approach for variational problems, affords convergent sequences of DNN approximations of min-
imizers. CR-Net will also afford advantages in variational image segmentation (e.g. [10] and
the references there).

Structure preservation in scientific machine learning is also the topic of [31]. For machine
learning models on graphs, a data driven exterior calculus is introduced which strongly enforces
physical laws, e.g. those in the de Rham complex, while allowing for additional information to
be learned from data.

1 Definitions of the (standard) spaces H1(Ω), H0(div,Ω) and H0(curl,Ω) are recalled in Section 1.4.2.
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1.2 Contributions

The purpose of the present paper is the design of DNNs which emulate exactly, on arbitrary reg-
ular, simplicial partitions T of polytopal domains Ω ⊂ R

d, d = 2, 3, the FE spaces S11(T ,Ω) (con-
tinuous, piecewise linear functions), N0(T ,Ω) (the Nédélec element), RT0(T ,Ω) (the Raviart-
Thomas element) and S00(T ,Ω) (the piecewise constant functions). The precise definitions of
these spaces will be given in Section 1.4.

We provide constructions of DNNs based on a combination of ReLU (2.1) and BiSU (Binary
Step Unit) (2.2) activations, which emulate these classical, lowest-order FE spaces in the de
Rham complex on a regular, simplicial partition T of Ω. We underline that our construction of
NNs which emulate, in particular, the classical “Courant Finite Elements” S11(T ,Ω), as well as
S00(T ,Ω) and RT0(T ,Ω), applies to polytopal domains Ω of any dimension d ≥ 2. For the prac-
tically relevant space S11(T ,Ω), the so-called “continuous, piecewise linear (CPwL) functions”,
we provide DNN constructions based on ReLU activation only, which work in arbitrary, finite
dimension d ≥ 2 (the univariate case d = 1 being trivial).

Our constructions accommodate general, regular simplicial partitions T of Ω. In particular,
apart from regularity of the simplicial partition T of the polytopal domain Ω, no further con-
straints of geometric nature are imposed on T , in arbitrary dimension d ≥ 2. Our results on
ReLU NN emulation of CPwL functions in Section 4 therefore unify and quantitatively improve
earlier ones such as, e.g., [21, Section 3], which covered only CPwL FE spaces on particular
triangulations of Ω. Our main results, Propositions 5.1 and 5.7 and Theorem 5.5 in Section 5,
provide mathematically exact DNN realizations of the lowest order FE spaces in the exact se-
quence (1.2) on general regular, simplicial partitions of the contractible, polytopal domain Ω.
In our main results using ReLU and BiSU activations, the network size scales linearly with the
cardinality |T | of T . For the ReLU NN emulation of CPwL functions, the network size is in
general of the order |T | log(|T |), which can be improved to order |T | for shape regular meshes.

1.3 Layout

The structure of this paper is as follows. In Section 1.4 we introduce the de Rham complex.
In Section 2, we recapitulate notation and basic definitions for the NNs which we consider.
We also review a basic NN calculus that shall be used subsequently in order to derive several
properties of the proposed NN architectures.

Sections 3 and 4 contain the core material of the paper: in Section 3, using ReLU and
BiSU activations, we provide explicit emulations for bases of all the FE spaces considered in
this paper, without geometric conditions on the regular triangulations T of Ω. In Section 4 we
show that for the special case of the emulation of CPwL functions, the same can be achieved
employing solely ReLU activations. In both sections, we show that the network size depends
only moderately on the space dimension d and the shape regularity of the partition.

In Section 5 we combine NN emulations of basis functions from Sections 3 and 4 to provide
emulations of the FE spaces and discuss the implications of our results for function approx-
imation by NNs in the respective Sobolev spaces. Section 6 provides a construction of NN
emulations for compatible spaces on the boundary Γ = ∂Ω of the polytopal domains. These
spaces are required in the deep neural network approximation of boundary integral equations
in electromagnetics, among others, as discussed in [9, 8] and the references there. Finally, in
Section 7 we present conclusions and explain how our analysis may be extended to higher order
polynomial spaces and to certain Finite Element families which are non-compatible with (1.1).

1.4 Notation and Finite Element spaces

We recall definitions of the de Rham complex and corresponding lowest order FE spaces.
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1.4.1 Meshes

The term “mesh” shall denote certain simplicial partitions of polyhedral domains Ω ⊆ R
d for

some d ∈ N = {1, 2, . . .}. To specify these, for k ∈ {0, . . . , d} we define a k-simplex T by
T = conv({a0, . . . , ak}) ⊂ R

d, for some a0, . . . , ak ∈ R
d which do not all lie in one affine

subspace of dimension k − 1, and where

conv(Y ) :=



x =

∑

y∈Y

λyy : λy > 0 and
∑

y∈Y

λy = 1





denotes the open convex hull. By |T | we will denote the k-dimensional Lebesgue measure
of a k-simplex. We consider a simplicial mesh T on Ω of d-simplices, i.e. T satisfies that
Ω =

⋃
T∈T T and T ∩ T ′ = ∅, for all T 6= T ′. We assume that T is a regular partition,

i.e. for all distinct T, T ′ ∈ T it holds that T ∩ T ′ is the closure of a k-subsimplex of T for
some k ∈ {0, . . . , d − 1}, i.e. there exist a0, . . . , ad ∈ Ω such that T = conv({a0, . . . , ad})
and T ∩ T ′ = conv({a0, . . . , ak}). The shape-regularity constant Csh := Csh(T ) of a simplicial
partition T of Ω is Csh := maxT∈T

hT

rT
> 0. Here hT := diam(T ) and rT is the radius of the

largest ball contained in T . Let V be the set of vertices of T . We also let F , E be the sets of
(d− 1)- and 1-subsimplices of T , whose elements are called faces and edges, respectively, that
is

F := {f ⊂ Ω : ∃T = conv({a0, . . . , ad}) ∈ T , ∃i ∈ {0, . . . , d} with f = conv({a0, . . . , ad}\{ai})},

E := {e ⊂ Ω : ∃T = conv({a0, . . . , ad}) ∈ T , ∃i, j ∈ {0, . . . , d}, i 6= j, with e = conv({ai, aj})}.

We denote the boundary of Ω by ∂Ω and the skeleton of T by ∂T :=
⋃

T∈T ∂T .

1.4.2 De Rham complex

We write H1(Ω), H0(div,Ω), H0(curl,Ω) to indicate the following Sobolev spaces

H1(Ω) := {v ∈ L2(Ω): ∇v ∈ [L2(Ω)]d},

H0(curl,Ω) := {v ∈ [L2(Ω)]d : curl v ∈ [L2(Ω)]d} for d = 2, 3,

H0(div,Ω) := {v ∈ [L2(Ω)]d : div v ∈ L2(Ω)},

where the two-dimensional curl is defined as curl v = (−∂1v2, ∂2v1). These are Hilbert spaces.
Specifically, let us assume that Ω ⊂ R

3 is a contractible Lipschitz2 domain with connected
boundary ∂Ω. Then, it is well-known that the following de Rham complex is an exact sequence
(e.g. [19, Proposition 16.14] and the references there):

R
i

// H1(Ω)
grad

// H0(curl,Ω)
curl

// H0(div,Ω)
div

// L2(Ω)
o

// {0}. (1.1)

Here, i denotes an injection and o denotes the zero operator.

1.4.3 First order discrete de Rham complex

Finite dimensional subspaces preserving this structure are usually required to fit into a discrete
de Rham complex (e.g. [19, Proposition 16.15])

R
i

// S11(T ,Ω)
grad

// N0(T ,Ω)
curl

// RT0(T ,Ω)
div

// S00(T ,Ω)
o

// {0}. (1.2)

2That is with boundary parametrized locally by Lipschitz continuous maps [19, Definition 3.2].
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We next define these spaces.
Throughout, denote by Pk the set of polynomials of degree at most k ∈ N∪{0}. For a given

regular triangulation T of a domain Ω, S11(T ,Ω) is the class of continuous, piecewise linear
(CPwL) functions on T , i.e.

S11(T ,Ω) := {v ∈ H
1(Ω) : v|T ∈ P1, ∀T ∈ T } ⊂ H

1(Ω). (1.3)

Moreover, S00(T ,Ω) is the class of piecewise constant functions on the partition T

S00(T ,Ω) := {v ∈ L
2(Ω) : v|T ≡ cT ∈ R, ∀T ∈ T } ⊂ L2(Ω). (1.4)

Next, we recall RT0(T ,Ω), the lowest order Raviart-Thomas space. Define the vector-valued
polynomial space RT0 = (P0)

d⊕xP0 and, for all f ∈ F , let nf denote a unit normal to the face
f . Denote by [v · nf ]f the jump of the normal component of a vector field across f , that is

[v · nf ]f (x0) = lim
ǫց0

(v(x0 + ǫnf )− v(x0 − ǫnf )) · nf for all x0 ∈ f.

The Raviart-Thomas finite element space of lowest order is (e.g. [19, Section 14.1])

RT0(T ,Ω) := {v ∈ (L1(Ω))d : v|T ∈ RT0 ∀T ∈ T and [v · nf ]f = 0 ∀f ∈ F , f ⊂ Ω}. (1.5)

This space has one degree of freedom per face f ∈ F and it satisfies RT0(T ,Ω) ⊂ H
0(div,Ω).

To define the lowest order Nédélec space N0(T ,Ω), for d = 2 define NE0 = (P0)
d ⊕

P0(−x2, x1), and for d = 3 define NE0 = (P0)
d ⊕ x × (P0)

d. Let [v × nf ]f denote the jump of
the tangential component of a vector field across f , that is

[v × nf ]f (x0) = lim
ǫց0

(v(x0 + ǫnf )− v(x0 − ǫnf ))× nf for all x0 ∈ f.

Then the Nédélec finite element space of lowest order [19, Section 15.1] reads

N0(T ,Ω) := {v ∈ (L1(Ω))d : v|T ∈ NE0 ∀T ∈ T and [v × nf ]f = 0 ∀f ∈ F , f ⊂ Ω}. (1.6)

This space has one degree of freedom per edge e ∈ E and it satisfies N0(T ,Ω) ⊂ H
0(curl,Ω). For

d = 2, N0(T ,Ω) is closely related to RT0(T ,Ω) (see (3.13)). For each of the spaces in (1.2), we
state in Section 3 a basis of the space. The FE spaces from (1.2) have the advantage of being
conforming, i.e., they are finite dimensional spaces, each strictly contained in the respective
Sobolev space in (1.1). Furthermore, the (T -dependent) projections ΠS1

1
,ΠN0

,ΠRT0
,ΠS0

0
on

these subspaces introduced in [19, Sec. 19.3] commute with the differential operators as shown
in the following diagram [19, Lemma 19.6]:

H1(Ω)
grad

//

Π
S11

��

H0(curl,Ω)
curl

//

ΠN0

��

H0(div,Ω)
div

//

ΠRT0

��

L2(Ω)

Π
S00

��

S11(T ,Ω)
grad

// N0(T ,Ω)
curl

// RT0(T ,Ω)
div

// S00(T ,Ω)

For these reasons we say that these spaces are de Rham compatible.
These spaces also appear in the Helmholtz decomposition of vector fields in bounded, con-

tractible polyhedral domains Ω ⊂ R
3. For every vector field v ∈ [L2(Ω)]3 there exist ϕ ∈ H1(Ω)

and ψ ∈ H0(curl,Ω) ∩H0(div,Ω) such that v = gradϕ+ curlψ, see e.g. [2, Section 3.5].
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2 Neural networks

To accommodate for both continuous components and discontinuous components in the func-
tions we want to emulate, we consider neural networks where several different activation func-
tions are used throughout the network. We define neural networks as a collection of parameters
and for each position in the network (also called neuron or unit) we specify the activation func-
tion used. Associated to such a neural network is a function, called realization, which is the
iterated composition of affine transformations defined in terms of the parameters and non-linear
activation functions.

2.1 Feedforward NNs

For d, L ∈ N, a neural network Φ with input dimension d ≥ 1 and number of layers L ≥ 1,
comprises a finite collection of activation functions ̺ = {̺ℓ}

L
ℓ=1 and a finite sequence of matrix-

vector tuples, i.e.

Φ = ((A1, b1, ̺1), (A2, b2, ̺2), . . . , (AL, bL, ̺L)).

For N0 := d and numbers of neurons N1, . . . , NL ∈ N per layer, for all ℓ = 1, . . . , L it holds
that Aℓ ∈ R

Nℓ×Nℓ−1 and bℓ ∈ R
Nℓ , and that ̺ℓ is a list of length Nℓ of activation functions

(̺ℓ)i : R→ R, i = 1, . . . , Nℓ, acting on node i in layer ℓ.
The realization of Φ : RN0 → R

NL as a map is the function

R(Φ) : Rd → R
NL : x→ xL,

where

x0 := x,

xℓ := ̺ℓ(Aℓxℓ−1 + bℓ), for ℓ = 1, . . . , L− 1,

xL := ALxL−1 + bL.

Here, for ℓ = 1, . . . , L− 1, the list of activation functions ̺ℓ of length Nℓ is effected componen-
twise: for y = (y1, . . . , yNℓ

) ∈ R
Nℓ we denote ̺ℓ(y) = ((̺ℓ)1(y1), . . . , (̺ℓ)Nℓ

(yNℓ
)). I.e., (̺ℓ)i is

the activation function applied in position i of layer ℓ.
We call the layers indexed by ℓ = 1, . . . , L − 1 hidden layers, in those layers activation

functions are applied. No activation is applied in the last layer of the NN. For consistency of
notation, we define ̺L := Id

R
NL .

We refer to L(Φ) := L as the depth of Φ. For ℓ = 1, . . . , L we denote by Mℓ(Φ) :=
‖Aℓ‖0 + ‖bℓ‖0 the size of layer ℓ, which is the number of nonzero components in the weight

matrix Aℓ and the bias vector bℓ, and callM(Φ) :=
∑L

ℓ=1Mℓ(Φ) the size of Φ. Furthermore, we
call d and NL the input dimension and the output dimension, and denote by Min(Φ) :=M1(Φ)
and Mout(Φ) :=ML(Φ) the size of the first and the last layer, respectively.

Our networks will use two different activation functions. Firstly, we use the Rectified Linear
Unit (ReLU ) activation

ρ(x) = max{0, x}. (2.1)

We will often use the elementary identities ρ(x) + ρ(−x) = |x|, ρ(x) − ρ(−x) = x to con-
struct composite functions. Networks which only contain ReLU activations realize continuous,
piecewise linear functions. By ReLU NNs we refer to NNs which only have ReLU activations,
including networks of depth 1, which do not have hidden layers and realize affine transforma-
tions. Secondly, for the emulation of discontinuous functions, we additionally use the Binary
Step Unit (BiSU ) activation

σ(x) =

{
0 if x ≤ 0,

1 if x > 0,
(2.2)
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which is also called Heaviside function. Alternatively, the BiSU can be defined to equal 1
2 in

x = 0. That function, which we denote by σ̃, can be expressed in terms of σ via 2σ̃(x) =
σ(x) + 1− σ(−x) for all x ∈ R. Hence, for every NN with σ̃ as activation function, there exists
a network with σ-activations instead, with proportional depth and size.

2.2 Operations on NNs

In the following sections, we will construct NNs from smaller networks using a ReLU-based
calculus of NNs, which we now recall from [27].

Proposition 2.1 (Parallelization of NNs [27, Definition 2.7]) For d, L ∈ N let Φ1 =(
(A

(1)
1 , b

(1)
1 , ̺

(1)
1 ), . . . , (A

(1)
L , b

(1)
L , ̺

(1)
L )
)
and Φ2 =

(
(A

(2)
1 , b

(2)
1 , ̺

(2)
1 ), . . . , (A

(2)
L , b

(2)
L , ̺

(2)
L )
)
be two

NNs with input dimension d and depth L. Let the parallelization P(Φ1,Φ2) of Φ1 and Φ2 be
defined by

P(Φ1,Φ2) := ((A1, b1, ̺1), . . . , (AL, bL, ̺L)),

A1 =

(
A

(1)
1

A
(2)
1

)
, Aℓ =

(
A

(1)
ℓ 0

0 A
(2)
ℓ

)
, for ℓ = 2, . . . L,

bℓ =

(
b
(1)
ℓ

b
(2)
ℓ

)
, ̺ℓ =

(
̺
(1)
ℓ

̺
(2)
ℓ

)
, for ℓ = 1, . . . L.

Then,

R(P(Φ1,Φ2))(x) = (R(Φ1)(x),R(Φ2)(x)), for all x ∈ R
d,

L(P(Φ1,Φ2)) = L, M(P(Φ1,Φ2)) =M(Φ1) +M(Φ2).

The parallelization of more than two NNs is done by repeated application of Proposition
2.1.

Proposition 2.2 (Sum of NNs) For d,N,L ∈ N let Φ1 =
(
(A

(1)
1 , b

(1)
1 , ̺

(1)
1 ), . . . , (A

(1)
L , b

(1)
L , ̺

(1)
L )
)

and Φ2 =
(
(A

(2)
1 , b

(2)
1 , ̺

(2)
1 ), . . . , (A

(2)
L , b

(2)
L , ̺

(2)
L )
)
be two NNs with input dimension d, output di-

mension N and depth L. Let the sum Φ1 +Φ2 of Φ1 and Φ2 be defined by

Φ1 +Φ2 := ((A1, b1, ̺1), . . . , (AL, bL, ̺L)),

A1 =

(
A

(1)
1

A
(2)
1

)
, b1 =

(
b
(1)
1

b
(2)
1

)
, ̺1 =

(
̺
(1)
1

̺
(2)
1

)
,

Aℓ =

(
A

(1)
ℓ 0

0 A
(2)
ℓ

)
, bℓ =

(
b
(1)
ℓ

b
(2)
ℓ

)
, ̺ℓ =

(
̺
(1)
ℓ

̺
(2)
ℓ

)
, for ℓ = 2, . . . L− 1.

AL =
(
A

(1)
L A

(2)
L

)
, bL = b

(1)
L + b

(2)
L , ̺L = IdRN .

Then,

R(Φ1 +Φ2)(x) =R(Φ1)(x) + R(Φ2)(x), for all x ∈ R
d,

L(Φ1 +Φ2) =L, M(Φ1 +Φ2) ≤M(Φ1) +M(Φ2).

Next, we define the sparse concatenation of two NNs, which realizes exactly the composition
of the realizations of the two networks using the fact that we allow the ReLU activation. See
Figure 2.1 for a sketch of the NN structure. The sparse concatenation is a construction which
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...

R(Φ2)

−R(Φ2)

...

︸ ︷︷ ︸
Φ2

︸ ︷︷ ︸
Φ1

Figure 2.1: Illustration of Proposition 2.3. In blue, the additional ReLU layer that evaluates
the positive and negative parts of R(Φ2).

allows to bound the size of the concatenation as 2 times the sum of the sizes of the individual
networks. This bound does not hold if we combine the affine transformation of the output layer
of Φ2 with the affine transformation of the input layer of Φ1.

Proposition 2.3 (Sparse Concatenation of NNs [27, Remark 2.6]) For L(1), L(2) ∈ N,

let Φ1 =
(
(A

(1)
1 , b

(1)
1 , ̺

(1)
1 ), . . . , (A

(1)

L(1) , b
(1)

L(1) , ̺
(1)

L(1))
)
and Φ2 =

(
(A

(2)
1 , b

(2)
1 , ̺

(2)
1 ), . . . , (A

(2)

L(2) , b
(2)

L(2) , ̺
(2)

L(2))
)

be two NNs with depths L(1) and L(2), respectively, such that N
(2)

L(2) = N
(1)
0 , i.e. the output di-

mension of Φ2 equals the input dimension of Φ1. Let the sparse concatenation Φ1 ⊙ Φ2 of Φ1

and Φ2 be a NN of depth L := L(1) + L(2) defined by

Φ1 ⊙ Φ2 := ((A1, b1, ̺1), . . . , (AL, bL, ̺L)),

(Aℓ, bℓ, ̺ℓ) = (A
(2)
ℓ , b

(2)
ℓ , ̺

(2)
ℓ ), for ℓ = 1, . . . , L(2) − 1,

AL(2) =

(
A

(2)

L(2)

−A
(2)

L(2)

)
, bL(2) =

(
b
(2)

L(2)

−b
(2)

L(2)

)
, ̺L(2) =



ρ
...
ρ


 ,

AL(2)+1 =
(
A

(1)
1 −A

(1)
1

)
, bL(2)+1 = b

(1)
1 , ̺L(2)+1 = ̺

(1)
1 ,

(Aℓ, bℓ, ̺ℓ) = (A
(1)

ℓ−L(2) , b
(1)

ℓ−L(2) , ̺
(1)

ℓ−L(2)), for ℓ = L(2) + 2, . . . , L(1) + L(2).

Then, it holds that

R(Φ1 ⊙ Φ2) =R(Φ1) ◦ R(Φ2), L(Φ1 ⊙ Φ2) = L(1) + L(2),

M(Φ1 ⊙ Φ2) ≤M(Φ1) +Min(Φ
1) +Mout(Φ

2) +M(Φ2) ≤ 2M(Φ1) + 2M(Φ2).

Proposition 2.1 only applies to networks of equal depth. To parallelize two networks of
unequal depth, the shallowest can be concatenated with a network that emulates the identity
using Proposition 2.3. One example of ReLU NNs that emulate the identity is provided by the
following proposition.

Proposition 2.4 (ReLU NN emulation of IdRd [27, Remark 2.4]) For all d, L ∈ N, there
exists a ReLU NN ΦId

d,L with input dimension d, output dimension d and depth L which satisfies

R(ΦId
d,L) = IdRd , L(ΦId

d,L) = L and M(ΦId
d,L) ≤ 2dL.
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2.3 Expression of specific functions

In the following, we will need ReLU NNs which emulate the minimum or maximum of d ∈ N

inputs. These are provided in Lemma 2.5. We also need to multiply values from a bounded
interval [−κ, κ] for κ > 0 by values from the discrete set {0, 1}, which is the range of the BiSU
defined in (2.2). A ReLU NN which emulates such multiplications exactly is constructed in the
proof of Proposition 2.8 below.

Lemma 2.5 (ReLU NN emulation of min and max, [21, Proof Theorem 3.1]) For all
d ∈ N, there exist ReLU NNs Φmax

d and Φmin
d which satisfy

R(Φmax
d )(x) = max{x1, . . . , xd}, for all x ∈ R

d,

R(Φmin
d )(x) = min{x1, . . . , xd}, for all x ∈ R

d,

L(Φmax
d ) =L(Φmin

d ) ≤ 2 + log2(d), M(Φmax
d ) = M(Φmin

d ) ≤ Cd.

Here, the constant C > 0 is independent of d and of the NN sizes and depths.

In space dimension d = 1, we may take Φmin
1 := Φmax

1 := ΦId
1,2.

Remark 2.6 The network Φmax
d is obtained by repeated applications of Φmax

2 , which itself can
for instance be constructed as

Φmax
2 :=







1 −1
0 1
0 −1


 ,



0
0
0


 ,



ρ
ρ
ρ




 ,
((
1 1 −1

)
, 0, IdR

)

 .

We point out that this construction of Φmax
2 leads to a slightly more efficient representation of

Φmax
d than the one given in [21, Theorem 3.1], as it requires less neurons, weights and biases.

However, this will merely improve the constant C in Lemma 2.5, but not the stated asymptotic
d-dependence of L(Φmax

2 ) and M(Φmax
2 ). The remark applies verbatim to min networks.

Remark 2.7 (min/max with recurrent nets) The d-dependence can be completely avoided
by admitting recurrent neural nets (RNNs), i.e., RNNs can express the maximum of d inputs
with a network of size, depth and width O(1). We briefly sketch the idea: An RNN allows for
information to flow backwards, i.e., we can take the output of Φmax

2 in time step t as one of its
inputs at time step t+ 1. With the initialization x̃0 := x1, this leads to the iteration

x̃t = Φmax
2 (x̃t−1, xt),

where the network receives in step t the input xt. Then the network’s output x̃n in step n equals
max{x1, . . . , xn}. The remark applies verbatim to min networks.

The following proposition provides the exact ReLU NN emulation of products of elements
from a bounded interval [−κ, κ] for κ > 0 by elements from the discrete set {0, 1}. The network
depth and size are independent of κ.

Proposition 2.8 For all d ∈ N and κ > 0 there exists a ReLU NN Φ×
d,κ

R(Φ×
d,κ)(x1, . . . , xd, y) =xy = (x1y, . . . , xdy)

⊤, for all x ∈ [−κ, κ]d and y ∈ {0, 1},

L(Φ×
d,κ) ≤ 2, M(Φ×

d,κ) ≤ 12d.

A proof of Proposition 2.8 is given in the appendix.
The exact BiSU emulation of indicator functions is the topic of the following lemma. An

illustration of the network defined in the lemma is given in Figure 2.2.
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A1x+ b1 = 0

A2x+ b2 > 0

A3x+ b3 > 0

−1

−1

1

1

1

Figure 2.2: Illustration of Lemma 2.9 for d = 2, n = 1, N = 3. In blue, the neurons corre-
sponding to one hyperplane (i = 1), in green the half-spaces (i = 2, 3).

Lemma 2.9 (Emulation of indicator functions) For d,N ∈ N and n ∈ {0, . . . , N}, let
A1, . . . , AN ∈ R

1×d and b1, . . . , bN ∈ R
1 be such that

Ω :=
⋂

i=1,...,n

{x ∈ R
d : Aix+ bi = 0} ∩

⋂

i=n+1,...,N

{x ∈ R
d : Aix+ bi > 0} 6= ∅.

Let the NN Φ✶

Ω with layer sizes N0 = d, N1 = N + n and N2 = 1 = N3 be defined as

Φ✶

Ω :=










A1

−A1

...
An

−An

An+1

...
AN




,




b1
−b1
...
bn
−bn
bn+1

...
bN




,




σ
σ
...
σ
σ
σ
...
σ







, (A, b, ̺), (1, 0, IdR)




,

A :=
(
−1 · · · −1 1 · · · 1

)
∈ R

1×(N+n), b := −(N − n− 1
4 ) ∈ R

1, ̺ := σ,

where the first 2n elements of A equal −1 and the last N − n equal 1.
Then, for all x ∈ R

d

R(Φ✶

Ω)(x) =

{
1 if x ∈ Ω,

0 otherwise,
L(Φ✶

Ω) = 3, M(Φ✶

Ω) ≤ (d+ 2)(N + n) + 2.

A proof of Lemma 2.9 is provided in the appendix.

3 NN emulation of lowest order conforming Finite Ele-

ment shape functions

Consider a bounded polytopal domain Ω ⊂ R
d, d ∈ N\{1}, and a regular simplicial partition T

of Ω.
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In Sections 3.1–3.4, we will present neural network emulations of the lowest order conforming
FEM spaces for H1(Ω), H0(curl,Ω), H0(div,Ω) and L2(Ω).3 These finite-dimensional spaces
appear naturally in structure-preserving discretizations of the de Rham complex. They are a
key ingredient for variationally consistent DNN emulations of differential operators appearing
in the de Rham complex. For each type of shape function, we explicitly define a network
which emulates that shape function exactly. Global approximations can be obtained by taking
a linear combination of these shape functions using Proposition 2.2 (scalar multiples of shape
functions are obtained by scaling all weights and biases of the output layer). We will detail this
in Proposition 5.1.

For shape functions which are discontinuous after extending them to Ω by the value zero
outside their domain of definition, we use Lemma 2.9 based on BiSU activation to emulate
indicator functions of (parts of) their domain of definition. We then use Proposition 2.8 based
on ReLU activation to multiply a continuous, piecewise linear function, which is equal to the
shape function on part of Ω, by the indicator function of that part of the domain.

The following lemma provides NN emulations of possibly discontinuous, piecewise linear
functions, and will be used repeatedly in Sections 3.1–3.4. A sketch of the NN structure is
given in Figure 3.1.

Lemma 3.1 (Emulation of piecewise linear functions) For d, s, µ ∈ N let Ω ⊂ R
d be a

bounded polytope and T be a regular, simplicial partition of Ω with s = |T | elements, T =
{Ti}i=1,...,s. Let u : Ω → R

µ be a function which for all i = 1, . . . , s satisfies u|Ti
∈ [P1]

µ and
u|Ti

(x) = A(i)x+ b(i), x ∈ Ti.
Then, for any

κ ≥ max
i=1,...,s

sup
x∈Ti

‖A(i)x+ b(i)‖∞, (3.1)

ΦPwL
u :=

s∑

i=1

Φ×
µ,κ ⊙ P

(
ΦId

µ,2 ⊙
((
A(i), b(i), IdRµ

))
,Φ✶

Ti

)
(3.2)

satisfies u(x) = R
(
ΦPwL

u

)
(x) for all x ∈ ∪si=1Ti and R

(
ΦPwL

u

)
(x) = 0 for all x ∈ R

d \ ∪si=1Ti.

Furthermore, if ‖A(i)‖0 + ‖b
(i)‖0 ≤ m for all i = 1, . . . , s, then there exists C > 0 independent

of d and T such that

L(ΦPwL
u ) = 5 , M(ΦPwL

u ) ≤Cs(µ+m+ d2).

Proof. Firstly, we observe that indeed u(x) = R
(
ΦPwL

u

)
(x) for all x ∈ ∪si=1Ti and R

(
ΦPwL

u

)
(x) =

0 for all x ∈ R
d \ ∪si=1Ti.

Secondly, we estimate

L(ΦPwL
u ) =L(Φ×

µ,κ) + L(Φ✶

Ti
) = 5,

M(ΦPwL
u ) ≤ s

(
2M

(
Φ×

µ,κ

)
+ 2M

(
P
(
ΦId

µ,2 ⊙
((
A(i), b(i), IdRµ

))
,Φ✶

Ti

)))

≤ s
(
2M

(
Φ×

µ,κ

)
+ 4M(ΦId

µ,2) + 4M
(((

A(i), b(i), IdRµ

)))
+ 2M

(
Φ✶

Ti

))

≤ s(Cµ+ Cµ+ Cm+ Cd2) ≤ Cs(µ+m+ d2),

where we applied in the last line Lemma 2.9 with N = d+ 1, n = 0. ✷

3Throughout this section, we will regularly refer to [19], where only Lipschitz domains are considered. We
stress that the finite element spaces S0

0
(T ,Ω), N0(T ,Ω), RT0(T ,Ω) and S1

1
(T ,Ω) can be defined on regular,

simplicial triangulations T of all bounded, polytopal domains Ω and that our NN emulation results from this
section apply to all such Ω.
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...d

u|T1
µ ΦId

µ,2

Φ✶

T1

Φ×
µ,κ

u|T2
µ ΦId

µ,2

Φ✶

T2

Φ×
µ,κ

... µ

Figure 3.1: Illustration of Lemma 3.1 for s = 2. Solid lines indicate sparse concatenation,
dashed lines visualize layers integrated in the blocks. Each of the blue groups represents a
parallelization from Proposition 2.1. The elementwise assembly is done in the output layer
(green).

3.1 Piecewise constants S0
0

The lowest order approximation space for L2(Ω) is the finite dimensional subspace S00(T ,Ω)

from (1.4). A basis is given by {θ
S0
0

T }T∈T , whose elements are indicator functions θ
S0
0

T := ✶T .
They can be expressed by applying Lemma 2.9 with N = d + 1 and n = 0: for all T =
conv({a0, . . . , ad}) ∈ T , we define (Ai, bi) ∈ R

1×(d+1), i = 1, . . . , d+ 1 by the relations

(Ai, bi)




(a0)1 (ad)1
. . .

(a0)d (ad)d
1 · · · 1


 = e

⊤
i , for all i = 1, . . . , d+ 1, (3.3)

where (ei)j = δij , so that T =
⋂

i=1,...,d+1{x ∈ R
d : Aix + bi > 0}. Then there exists C > 0

independent of d and T such that for all T ∈ T the NN Φ
S0
0

T := Φ✶

T satisfies

θ
S0
0

T = R(Φ
S0
0

T ), L(Φ
S0
0

T ) = 3, M(Φ
S0
0

T ) ≤ (d+ 2)(d+ 1) + 2 ≤ Cd2. (3.4)

3.2 Raviart-Thomas elements RT0

We introduce a basis of RT0(T ,Ω) from (1.5), and provide a NN emulation of those basis

functions. For f ⊂ ∂Ω, we define s(f) = 1 and θRT0

f (x) := |f |
d|T1|

(x − a1)✶T1 , where f ⊂ T1,

T1 ∈ T and a1 is the only vertex of T1 that does not belong to f .4 For interior faces f ⊂ Ω
we define s(f) = 2 and construct θRT0

f by assembling local shape functions of the neighboring

4 We use a different normalization of the shape functions than in [19, Section 14.1]. This is inconsequential
for the ensuing analysis.
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simplices T1, T2 with f = T1 ∩ T2, [19, Equation (14.3)]

θRT0

f (x) :=





|f |
d|T1|

(x− a1) if x ∈ T1,

− |f |
d|T2|

(x− a2) if x ∈ T2,

0 if x /∈ T1 ∪ T2,

(3.5)

where a1, a2 are the the only vertices of T1, T2, respectively, not belonging to f . The functions
{θRT0

f }f∈F form a basis of RT0(T ,Ω) (see, e.g., [19, Proposition 14.1]).

Proposition 3.2 Given f ∈ F , let {Ti}
s(f)
i=1 be the simplices adjacent to f and let ai := (V ∩

Ti) \ f ∈ R
d, i = 1, . . . , s(f). Then

ΦRT0

f :=

s(f)∑

i=1

(−1)i−1Φ×
d,κ ⊙ P

(
ΦId

d,2 ⊙
((

|f |
d|Ti|

Idd×d,−
|f |

d|Ti|
ai, IdRd

))
,Φ✶

Ti

)
(3.6)

satisfies θRT0

f (x) = R(ΦRT0

f )(x) for a.e. x ∈ Ω, for any

κ ≥ max
i=1,...,s(f)

sup
x∈Ti

|f |
d|Ti|
‖x− ai‖∞. (3.7)

In addition, there exists an absolute constant C > 0 independent of d and T such that for all
f ∈ F

L(ΦRT0

f ) = 5, M(ΦRT0

f ) ≤ Cd2s(f) ≤ 2Cd2.

Remark 3.3 We note that the right-hand side of (3.7) is bounded from above by a constant
which only depends on d and the shape regularity constant Csh.

Proof of Proposition 3.2. Firstly, we observe that indeed θRT0

f (x) = R
(
ΦRT0

f

)
(x) for all

x ∈ Ω \ ∂T , where ∂T :=
⋃

T∈T ∂T .
Secondly, we apply Lemma 3.1 with µ = d, m = 2d and s = s(f). ✷

Alternatively, we can build the same shape functions by enforcing strongly, via ReLU ac-
tivation, continuity of the component normal to f , as imposed in (1.5). We select the unit
normal vector nf to f pointing towards T2 and an orthonormal system {t1, . . . , td−1} spanning
the hyperplane tangent to f . Then, we decompose

θRT0

f (x) = (θRT0

f (x) · nf )nf +

d−1∑

j=1

(θRT0

f (x) · tj)tj . (3.8)

Thus, it suffices to compute separately θRT0

f (x) · nf and θRT0

f (x) · tj and to take the linear
combination (3.8) in the last layer. The proof of the next proposition will be given in the
appendix.

Proposition 3.4 Given f ∈ F , let {Ti}
s(f)
i=1 be the simplices adjacent to f . Then there exist

A
(i)
nf ∈ R

1×d, b
(i)
nf ∈ R, i = 1, . . . , s(f) such that

ΦRT0,⊥
f := Φ×

1,1 ⊙ P


Φmin

s(f) ⊙










A
(1)
nf

...

A
(s(f))
nf


 ,




b
(1)
nf

...

b
(s(f))
nf


 , IdRs(f)





 ,

s(f)∑

i=1

Φ✶

Ti
+Φ✶

f


 (3.9)
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satisfies θRT0

f (x) · nf = R
(
ΦRT0,⊥

f

)
(x) for a.e. x ∈ Ω and every x ∈ f . There also exist

A
(i)
tj ∈ R

1×d, b
(i)
tj ∈ R, i = 1, . . . , s(f), j = 1, . . . , d− 1 such that

Φ
RT0,tj
f :=

s(f)∑

i=1

Φ×
1,κ ⊙ P

(
ΦId

1,2 ⊙
(
(A

(i)
tj , b

(i)
tj , IdR)

)
,Φ✶

Ti

)
(3.10)

satisfies θRT0

f (x) · tj = R
(
Φ

RT0,tj
f

)
(x) for a.e. x ∈ Ω, where

κ ≥ max
i=1,...,s(f)
j=1,...,d−1

sup
x∈Ti

∣∣∣A(i)
tj x+ b

(i)
tj

∣∣∣ . (3.11)

In addition, there exists a constant C > 0 that is independent of d and T such that for all
f ∈ F

L(ΦRT0,⊥
f ) = 5, L(Φ

RT0,tj
f ) = 5,

M(ΦRT0,⊥
f ) ≤Cd2s(f) ≤ 2Cd2, M(Φ

RT0,tj
f ) ≤Cd2s(f) ≤ 2Cd2.

Remark 3.5 The right-hand side of Equation (3.11) is bounded from above by a constant which
only depends on d and the shape regularity constant Csh of the mesh T .

Corollary 3.6 For all f ∈ F , the NN

ΦRT0,∗
f := ((nf , 0, IdRd))⊙ ΦRT0,⊥

f +

d−1∑

j=1

((tj , 0, IdRd))⊙ Φ
RT0,tj
f (3.12)

satisfies θRT0

f (x) = R
(
ΦRT0,∗

f

)
(x) for a.e. x ∈ Ω and (θRT0

f (x) ·nf )nf = R
(
ΦRT0,∗

f

)
(x) for all

x ∈ f . In addition, there exists C > 0 independent of d and T such that for all f ∈ F

L(ΦRT0,∗
f ) = 6, M(ΦRT0,∗

f ) ≤ Cd3.

Proof. We estimate the network size and depth as follows:

L(ΦRT0,∗
f ) = 6,

M(ΦRT0,∗
f ) ≤ 2M (((nf , 0, IdRd))) + 2M(ΦRT0,⊥

f )

+

d−1∑

j=1

(
2M (((tj , 0, IdRd))) + 2M(Φ

RT0,tj
f )

)
≤ Cd3.

✷

3.3 Nédélec elements N0

In this section we restrict ourselves to the space dimension d ∈ {2, 3}. For d = 2, we can relate
the Nédélec basis functions to the Raviart-Thomas basis. In fact, one can verify that, for an
edge f ∈ E = F (which is also a face), the finite element basis {θN0

f }f∈F for N0 satisfies

θN0

f · tf = θRT0

f · nf , and θN0

f · nf = −θRT0

f · tf , (3.13)

where nf := ((nf )1, (nf )2) is a unit normal vector to f as in (3.8) and tf = (−(nf )2, (nf )1) is

a unit vector tangent to f . Hence, a NN emulation for θN0

f can be derived from Proposition 3.2
or Corollary 3.6.
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We now focus on the case d = 3. A basis {θN0
e }e∈E for N0(T ,Ω) can be constructed by

assembling local shape functions of all simplices T1 . . . , Ts(e), s(e) ∈ N sharing an edge e. We
fix e ∈ E and a unit vector te tangent to e, and denote the midpoint of e by me. We denote
by ẽ(i) the only edge of Ti that does not share a vertex with e, and let tẽ(i) be a unit vector
tangent to ẽ(i), directed in such a way that te · [(me −mẽ(i))× tẽ(i)] > 0.

Then,

θN0
e (x) :=





(x−mẽ(i))× tẽ(i)
te · [(me −mẽ(i))× tẽ(i)]

if x ∈ Ti, i = 1, . . . , s(e),

0 if x /∈
⋃

i=1...,s(e) Ti.

(3.14)

Note that
s(E) := max

e∈E
s(e) (3.15)

is bounded from above by a constant only dependent on the shape regularity constant Csh of
T . See [19, Remark 11.5 and Proposition 11.6].

Proposition 3.7 Given e ∈ E, let A
(i)
e ∈ R

3×3, b
(i)
e ∈ R

3 be such that for i = 1, . . . , s(e)

A(i)
e x :=

x× tẽ(i)
te · [(me −mẽ(i))× tẽ(i)]

∀x ∈ R
3, b(i)e := −

mẽ(i) × tẽ(i)
te · [(me −mẽ(i))× tẽ(i)]

.

Then

ΦN0
e :=

s(e)∑

i=1

Φ×
3,κ ⊙ P

(
ΦId

3,2 ⊙
((
A(i)

e , b(i)e , IdR3

))
,Φ✶

Ti

)
(3.16)

satisfies θN0
e (x) = R

(
ΦN0

e

)
(x) for a.e. x ∈ Ω, for any κ such that

κ ≥ max
i=1,...,s(e)

sup
x∈Ti

‖(x−mẽ(i))× tẽ(i)‖∞

te · [(me −mẽ(i))× tẽ(i)]
. (3.17)

Furthermore, there exists C > 0 independent of T such that for all e ∈ E

L(ΦN0
e ) = 5, M(ΦN0

e ) ≤ Cs(e) ≤ Cs(E).

Proof. Firstly, we observe that indeed θN0
e (x) = R

(
ΦN0

e

)
(x) for all x ∈ Ω \ ∂T . Secondly, we

use Lemma 3.1 with µ = d = 3, m = d2 + d = 12 and s = s(e). ✷

3.4 CPwL elements S1
1

In this section, we provide a construction based on element-by-element assembly of the shape
functions, similar to that in the previous sections, using both ReLU and BiSU activations. A

basis {θ
S1
1

p }p∈V of S11(T ,Ω) is uniquely defined by the relations θ
S1
1

pi (pj) = δij , for pi, pj ∈ V.
Define s(p) := |{T ∈ T : p ∈ T}| ∈ N. Note that

s(V) := max
p∈V

s(p) (3.18)

is bounded from above by a constant only dependent on d and the shape regularity constant
Csh of T . See [19, Remark 11.5 and Proposition 11.6], which generalize to space dimension
d > 3. The following proposition is analogous to Propositions 3.2 and 3.7.
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Proposition 3.8 Given p ∈ V, let T1, . . . Ts(p) ∈ T , s(p) ∈ N denote the simplices adjacent to

p. Let A
(i)
p ∈ R

1×d, b
(i)
p ∈ R

1 for i = 1, . . . , s(p) be such that

(A(i)
p , b(i)p )




p1 (ai,1)1 (ai,d)1
...

. . .

pd (ai,1)d (ai,d)d
1 1 · · · 1


 = (1, 0, . . . , 0),

where the points ai,j ∈ R
d are such that Ti = conv(p, ai,1, . . . , ai,d). Then

Φ
S1
1

p :=

s(p)∑

i=1

Φ×
1,1 ⊙ P

(
ΦId

1,2 ⊙
(
A(i)

p , b(i)p , IdR

)
,Φ✶

Ti

)
(3.19)

satisfies θ
S1
1

p (x) = R(Φ
S1
1

p )(x) for a.e. x ∈ Ω. Furthermore, there exists C > 0 independent of T
such that for all p ∈ V

L(Φ
S1
1

p ) = 5, M(Φ
S1
1

p ) ≤ Cs(p)d2 ≤ Cs(V)d2.

Proof. Observing that θ
S1
1

p (x) = R(Φ
S1
1

p )(x) for all x ∈ Ω \ ∂T , we use Lemma 3.1 with µ = 1,
m = d+ 1 and s = s(p) to estimate the NN size. ✷

4 ReLU NN emulation of CPwL shape functions

For continuous shape functions which vanish on the boundary of their support, one can construct
NN emulations using the ReLU activation function alone, as shown in [21, Section 3] for regular,
simplicial meshes with convex patches. The purpose of this section is to extend these results to
arbitrary regular, simplicial partitions T of polytopal domains Ω ⊂ R

d, in any space dimension
d ≥ 2, using only ReLU activations, significantly improving the network size bounds from [21,
Theorem 5.2]. In the sequel, for a vertex p ∈ V we write

ω(p) :=
⋃

i=1...,s(p)

T i, (4.1)

where T1, . . . Ts(p) ∈ T denote the simplices adjacent to p. We call ω(p) a patch. One key
assumption in [21, Section 3] was that ω(p) is convex for all vertices p ∈ V.

Removing this assumption is the main topic of the Section 4.2. We remark that the con-
struction given in Section 3.4 also does not require convexity of the patches and, since no
minimum is computed, the depth of the network is independent of the input dimension d and
the maximum number of elements meeting in one point n(V). In this section we avoid the use
of BiSU activations, which could be considered not natural for the emulation of continuous
functions in S11(T ,Ω).

4.1 Regular, simplicial partitions T with convex patches

Under the assumption of convexity of patches, the hat basis functions {θ
S1
1

p }p∈V ⊂ S11(T ,Ω)
satisfy [21, Lemma 3.1]

θ
S1
1

p (x) = max

{
0, min

i=1,...,s(p)
A(i)

p x+ b(i)p

}
, (4.2)

with A
(i)
p ∈ R

1×d, b
(i)
p ∈ R

1 such that A
(i)
p x+ b

(i)
p = θ

S1
1

p |Ti
(x) for all Ti ⊂ ω(p), i = 1, . . . , s(p).

We now recall the emulation of the shape functions from [21], and show the dependence of
the constants on d. We remark that the explicit d-dependence was not studied in [21].
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Proposition 4.1 ([21, Theorem 3.1]) Consider p ∈ V for which ω(p) is convex and let

T1, . . . Ts(p) ∈ T , s(p) ∈ N be the simplices adjacent to p. Let (A
(i)
p , b

(i)
p ) ∈ R

(d+1)×1, i =
1, . . . , s(p) be as in (4.2).

Then

ΦCPwL
p :=

(
(1, 0, ρ) , (1, 0, IdR)

)
⊙ Φmin

s(p) ⊙










A
(1)
p

...

A
(s(p))
p


 ,




b
(1)
p

...

b
(s(p))
p


 , IdRs(p)







satisfies R(ΦCPwL
p )(x) = θ

S1
1

p (x) for all x ∈ Ω and there exists C > 0 independent of d and T
such that for all p ∈ V

L(ΦCPwL
p ) ≤ 5 + log2(s(p)), M(ΦCPwL

p ) ≤ Cs(p)d.

The depth only depends on T through s(p).

Proof. The network depth and size can be bounded as

L(ΦCPwL
p ) =L

((
(1, 0, ρ) , (1, 0, IdR)

))
+ L(Φmin

s(p))

+ L













A
(1)
p

...

A
(s(p))
p


 ,




b
(1)
p

...

b
(s(p))
p


 , IdRs(p)










=2 + L(Φmin
s(p)) + 1 ≤ 3 + (2 + log2(s(p))) = 5 + log2(s(p)),

M(ΦCPwL
p ) ≤CM

((
(1, 0, ρ) , (1, 0, IdR)

))
+ CM(Φmin

s(p))

+ CM













A
(1)
p

...

A
(s(p))
p


 ,




b
(1)
p

...

b
(s(p))
p


 , IdRs(p)










≤C(2 + s(p) + s(p)(d+ 1)) ≤ Cs(p)d.

✷

The preceding result can be used to construct emulations of shape functions on non-convex
patches which only use the ReLU activation.

4.2 Regular, simplicial partitions T including non-convex patches

We now extend Section 4.1 to non-convex patches, i.e. we show that ReLU NNs can emulate
CPwL functions on arbitrary regular, simplicial meshes in d ∈ N dimensions. To present this
result in Theorem 4.3 below, we introduce some notation.

Given p ∈ V , let T1, . . . Ts(p) ∈ T denote the simplices adjacent to p. For all j = 1, . . . , s(p),

let a0 := p and a1, . . . , ad ∈ R
d be such that Tj = conv({a0, . . . , ad}) and let qj := p +

δj
∑d

i=1(p− ai) for some sufficiently small δj > 0. Then we define

T̃ij :=

{
conv({qj , a0, . . . , ad} \ {ai}) if i ∈ {1, . . . , d},

Tj if i = 0.
(4.3)

Furthermore, set

ω̃j(p) :=

d⋃

i=0

T̃ij . (4.4)
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p

Tj

(a) ω(p)

p

Tj

qj

(b) ω̃j(p)

Figure 4.1: The patches ω(p) and (shaded) ω̃j(p) ⊂ ω(p).

We build basis functions for S11(T ,Ω) starting from the hat functions θ̃
S1
1

p,j ∈ C0(Ω) for j =
1, . . . , s(p) defined by

θ̃
S1
1

p,j(p) = 1 and θ̃
S1
1

p,j(q) = 0 for all other vertices q of ω̃j(p),

θ̃
S1
1

p,j |T̃ij
∈ P1 for all i = 0, . . . , d,

θ̃
S1
1

p,j |Ω\ω̃j(p) = 0.

(4.5)

In Theorem 4.2 we show that CPwL basis functions with nonconvex support ω(p) can be
computed as the maximum of s(p) many CPwL basis functions with convex support, whose
ReLU NN emulation was given in Section 4.1. This maximum can be emulated exactly by a
ReLU NN using the constructions in Section 2, as shown in Theorem 4.3. We obtain the same
bound on the ReLU NN size as the bound on the NN size in Proposition 3.8. The proofs of
these results are postponed to Appendix A.

Theorem 4.2 For all p ∈ V, let T1, . . . Ts(p) ∈ T , s(p) ∈ N be the simplices adjacent to p.
Then, for all p ∈ V and all x ∈ ω(p)

θ
S1
1

p (x) = max
j=1,...,s(p)

θ̃
S1
1

p,j(x) = max
j=1,...,s(p)

max
{
0, min

i∈{0,...,d}
Ã(i,j)

p x+ b̃(i,j)p

}
, (4.6)

where each x 7→ Ã
(i,j)
p x+b̃

(i,j)
p is a globally linear function fulfilling (Ã

(i,j)
p x+b̃

(i,j)
p )|T̃ij

= θ̃
S1
1

p,j |T̃ij
.

Theorem 4.3 For all p ∈ V let T1, . . . Ts(p) ∈ T , s(p) ∈ N be the simplices adjacent to p. For

θ̃
S1
1

p,j, j = 1, . . . , s(p) defined in (4.5), let Φ̃CPwL
p,j , j = 1, . . . , s(p) be the NNs from Proposition

4.1 satisfying R(Φ̃CPwL
p,j ) = θ̃

S1
1

p,j on Ω.
Then

ΦCPwL
p := Φmax

s(p) ⊙ P(Φ̃CPwL
p,1 , . . . , Φ̃CPwL

p,s(p) ) (4.7)

satisfies R(ΦCPwL
p )(x) = θ

S1
1

p (x) for all x ∈ Ω and

L(ΦCPwL
p ) ≤ 7 + log2(s(p)) + log2(d+ 1), M(ΦCPwL

p ) ≤ Cd2s(p).
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5 NN emulation of lowest order conforming FE spaces.

Approximation rates.

Having defined explicit constructions of NN emulations of shape functions for all finite elements
in the discrete de Rham complex of the lowest polynomial order (1.2), we are now in position to
formulate and prove our main results: exact NN emulations of each of the lowest order FE spaces
in the de Rham complex, on regular, simplicial partitions T of polytopal domains Ω ⊂ R

d. For
� ∈ {S11,N0,RT0, S

0
0}, we obtain a vector space of NNs NN (�; T ,Ω) = {Φ�,v : v ∈ �(T ,Ω)}

such that the realization of each NN Φ�,v equals v a.e. in Ω.
With the networks NN (�; T ,Ω) at hand, we may lift known approximation results for finite

elements to obtain constructive NN approximations of arbitrary functions in the Sobolev spaces
belonging to the de Rham complex (1.1).

Accordingly, we first construct NN emulations of the FE spaces in Proposition 5.1, from
which the approximation results are derived in Theorem 5.5. To present the next statement,
we define s(F) := maxf∈F s(f) ≤ 2, s(T ) := 1 and s(T ) := 1 for all T ∈ T .

Proposition 5.1 Let Ω ⊂ R
d, d ≥ 2, be a bounded, polytopal domain. For every regular,

simplicial triangulation T of Ω and every � ∈ {S11,N0,RT0, S
0
0} (with the Nédélec space � = N0

excluded if d > 3), there exists a NN Φ� := Φ�(T ,Ω) with ReLU and BiSU activations, which
in parallel emulates the shape functions {θ�i }i∈I for I ∈ {V , E ,F , T }, respectively, that is
R(Φ�) : Ω→ R

|I| satisfies

R(Φ�)(x)i = θ�i (x) for a.e. x ∈ Ω and all i ∈ I.

There exists C > 0 independent of d and T such that

L(Φ�) =

{
5 if � ∈ {S11,N0,RT0},

3 if � = S00,

M(Φ�) ≤Cd2
∑

i∈I

s(i) ≤ Cd2s(I) dim(�(T ,Ω)).

For � ∈ {S11,N0,RT0, S
0
0} and for every FE function v =

∑
i∈I viθ

�
i ∈ �(T ,Ω), there exists

a NN Φ�,v := Φ�(T ,Ω),v with ReLU and BiSU activations, such that for a constant C > 0
independent of d and T

R(Φ�,v)(x) = v(x) for a.e. x ∈ Ω,

L(Φ�,v) =

{
5 if � ∈ {S11,N0,RT0},

3 if � = S00,

M(Φ�,v) ≤Cd2
∑

i∈I

s(i) ≤ Cd2s(I) dim(�(T ,Ω)).

The layer dimensions and the lists of activation functions of Φ� and Φ�,v are independent
of v and only depend on T through {s(i)}i∈I and |I| = dim(�(T ,Ω)).

For each � ∈ {S11,N0,RT0, S
0
0}, the set

NN (�; T ,Ω) := {Φ�,v : v ∈ �(T ,Ω)} , (5.1)

together with the linear operation

Φ�,v+̂λΦ�,w :=Φ�,v+λw, for all v, w ∈ �(T ,Ω) and λ ∈ R (5.2)

is a vector space, and the map R(·) : NN (�; T ,Ω)→ �(T ,Ω) is a linear isomorphism.
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Remark 5.2 Note that
∑

i∈I s(i) ≤ c(I, d)|T |, where c(V, d) = d+1 is the number of vertices
of a d-simplex, c(E , d) the number of edges of a d-simplex, c(F , d) the number of faces of a
d-simplex and C(T , d) = 1. We obtain this inequality by observing that each element T ∈ T
contributes +1 to c(I, d) terms s(i). Therefore, we also have the boundM(Φ�) ≤ Cd2c(I, d)|T |,
independent of the shape regularity constant Csh of T . The same bound holds for M(Φ�,v).

Definition 5.3 For a given polytopal domain Ω ⊂ R
d, d ≥ 2 and a regular, simplicial triangu-

lation T on Ω, we call the network Φ� defined in Proposition 5.1 a �-basis net.

Proof of Proposition 5.1. We define Φ�(T ,Ω) as the parallelization of networks from Propo-
sitions 3.8, 3.7, 3.2 or Equation (3.4), namely Φ�(T ,Ω) := P({Φ�

i }i∈I), from which the formula
for the realization, the formula for the NN depth and the bound on the NN size of Φ�(T ,Ω)

directly follow with Proposition 2.1.
The NN Φ�(T ,Ω),v is defined as the sum Φ�(T ,Ω),v :=

∑
i∈I viΦ

�
i , where the sum of NNs is

as defined in Proposition 2.2, and where the NNs viΦ
�
i are obtained from those in Propositions

3.8, 3.7, 3.2 and Equation (3.4) by scaling all weights and biases in the last layer by vi. The
formula for the realization, the formula for the depth and the bound on the NN size follow with
Proposition 2.2.

By comparing the definition of the parallelization in Proposition 2.1 and the sum in Proposi-
tion 2.2, we observe that their hidden layers are equal. Therefore, the hidden layers of Φ�(T ,Ω),v

and of Φ�(T ,Ω) coincide.
By definition of Φ�(T ,Ω),v as linear combination of the basis NNs {Φ�

i }i∈I , which are the
same for all v, the NN Φ�(T ,Ω),v is determined uniquely by the coefficients {vi}i∈I . Therefore,
R(·) : NN (�; T ,Ω) → �(T ,Ω) is a bijection. With the linear operations defined in (5.2), this
map is linear by definition, thus a linear isomorphism. ✷

Remark 5.4 For all v =
∑

i∈I viθ
�
i ∈ �(T ,Ω), for v = (vi)i∈I ∈ R

|I| , the network Φ�,v can be

obtained from Φ� as follows. Denoting the last layer weight matrix and bias vector of Φ�
i by A(i)

and b(i), those of Φ� are given by A = diag(A(i1), . . . , A(i|I| )) and b = ((b(i1))⊤, . . . , (b(i|I| ))⊤)⊤,
and those of Φ�,v are given by (vi1A

(i1), . . . , vi|I|
A(i|I| )) and

∑
i∈I vib

(i) for an enumeration
i1, . . . i|I| of I.

Note that the sum defined in (5.2) differs from the sum of neural networks from Proposition
2.2. In (5.2), the hidden layers of Φ�,v+λw are independent of v, w and λ and depend only on
�(T ,Ω). These hidden layers coincide with those of Φ�, which emulates a basis of �(T ,Ω).

For all v ∈ �(T ,Ω) there exists a unique NN Φ�,v ∈ NN (�; T ,Ω) which realizes v. How-
ever, there exist many other NNs, not in NN (�; T ,Ω), with the same realization.

We apply the previous results to quasi-uniform, shape-regular families of meshes {Th}h>0

in dimension d = 2, 3. For V = H1(Ω), H0(curl,Ω) for d = 3, H0(div,Ω) or L2(Ω), define the
template for the respective smoothness space V • ⊂ V as follows

V = H1(Ω)←→ V • = H2(Ω),

for d = 3 : V = H0(curl,Ω)←→ V • = H1(curl,Ω) := {v ∈ [H1(Ω)]d : curl v ∈ [H1(Ω)]d},

V = H0(div,Ω)←→ V • = H1(div,Ω) := {v ∈ [H1(Ω)]d : div v ∈ H1(Ω)},

V = L2(Ω)←→ V • = H1(Ω).

(5.3)

We arrive at the following result.

Theorem 5.5 Given a bounded, contractible polytopal Lipschitz domain Ω ⊂ R
d, d = 2, 3,

assume that (V,�) ∈ {(H1(Ω), S11), (H
0(curl,Ω),N0), (H

0(div,Ω),RT0), (L
2(Ω), S00)}, that the

regularity space V • ⊂ V is as in (5.3) and that d = 3 if V = H0(curl,Ω).
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Assume given a family {Th}h>0 of regular, simplicial partitions of the polytopal domain Ω
which are uniformly shape-regular and quasi-uniform with respect to the mesh-size parameter
h.

Then there exists a constant C > 0 (depending only on the shape regularity parameter Csh

of the family {Th}h and on d) such that for all h > 0 and for every v ∈ V •, there exists
Φh ∈ NN (�; Th,Ω) such that

‖v − R(Φh)‖V ≤ Ch‖v‖V •

and

L(Φh) =

{
5 if � ∈ {S11,N0,RT0},

3 if � = S00,
M(Φh) ≤ Ch

−d.

Proof. Let Vh = �(Th,Ω) denote the lowest order FE space corresponding to V . By Proposi-
tion 5.1, for all vh ∈ Vh there exists a NN Φh := Φ�,vh ∈ NN (�; Th,Ω) such that R(Φh)(x) =
vh(x) for a.e. x ∈ Ω. In particular, for all vh ∈ Vh and all v ∈ V •

‖v − R(Φh)‖V = ‖v − vh‖V .

We can then apply the approximation results e.g. [19, Theorem 11.13] for V = H1(Ω), [1,
Equations (5.7) and (5.8)] for V = H0(curl,Ω) in case d = 3, [19, Theorem 16.4] for V =
H0(div,Ω) and Poincaré’s inequality for V = L2(Ω). More precisely, for a constant C only
dependent on Csh and on d, for all v ∈ V • there exists vh ∈ Vh for which

‖v − vh‖V ≤ Ch‖v‖V • . (5.4)

The formula for L(Φh) follows from Proposition 5.1. In addition, the bound on the NN size
follows from Proposition 5.1, together with dim(Vh) ∼ h−d as h ↓ 0 and the fact that s(I),
I ∈ {V , E ,F , T } is bounded from above by a constant depending only on Csh. ✷

Remark 5.6 In (5.4) in the proof of the theorem, the choice of vh (depending on v, given in the
cited references) is made to have the approximation property (5.4). However, other choices of
vh ∈ Vh based on interpolation or quasi-interpolation can equally be emulated with NNs. In [18,
Corollary 5.3], the authors give a particular definition of quasi-interpolants in Vh = �(Th,Ω)
for � ∈ {S11,N0,RT0}, requiring minimal regularity of the function v. This gives existence of
a constant C > 0 that is independent of v, h such that for all v ∈ [W r,p(Ω)]dL there exists a
Φh ∈ NN (�; Th,Ω) satisfying, for any p ∈ [1,∞], r ∈ {0, 1} or any p ∈ [1,∞), r ∈ (0, 1)

‖v − R(Φh)‖[Lp(Ω)]dL ≤ Ch
r|v|[W r,p(Ω)]dL . (5.5)

Here dL = d if Vh = RT0(Th,Ω) or Vh = N0(Th,Ω) and dL = 1 otherwise. See e.g. [19, Section
2.2] for a definition of the Sobolev space W r,p(Ω) in which this result is stated.

The following analogue of Proposition 5.1 for ReLU emulation of S11 also holds.

Proposition 5.7 Let Ω ⊂ R
d, d ≥ 2, be a bounded, polytopal domain. For every regular,

simplicial triangulation T of Ω, there exists a NN ΦCPwL := ΦCPwL(T ,Ω) with only ReLU

activations, which in parallel emulates the shape functions {θ
S1
1

i }i∈I for I = V. That is,
R(ΦCPwL) : Ω→ R

|I| satisfies

R(ΦCPwL)(x)i = θ
S1
1

i (x) for all x ∈ Ω and all i ∈ I.

There exists C > 0 independent of d and T such that

L(ΦCPwL) ≤ 8 + log2(s(I)) + log2(d+ 1),

M(ΦCPwL) ≤C|I| log2(s(I)) + Cd2
∑

i∈I

s(i) ≤ Cd2s(I) dim(S11(T ,Ω)).

22



For all v =
∑

i∈I viθ
S1
1

i ∈ S11(T ,Ω), there exists a NN ΦCPwL,v := ΦCPwL(T ,Ω),v with only
ReLU activations, such that for a constant C > 0 independent of d and T

R(ΦCPwL,v)(x) = v(x) for all x ∈ Ω,

L(ΦCPwL,v) ≤ 8 + log2(s(I)) + log2(d+ 1),

M(ΦCPwL,v) ≤C|I| log2(s(I)) + Cd2
∑

i∈I

s(i) ≤ Cd2s(I) dim(S11(T ,Ω)).

The layer dimensions and the lists of activation functions of ΦCPwL and ΦCPwL,v are in-
dependent of v and only depend on T through {s(i)}i∈I and |I| = dim(S11(T ,Ω)).

The set NN (CPwL; T ,Ω) := {ΦCPwL,v : v ∈ S11(T ,Ω)} together with the linear operation
ΦCPwL,v+̂λΦCPwL,w := ΦCPwL,v+λw for all v, w ∈ S11(T ,Ω) and all λ ∈ R is a vector space.

The realization map R(·) : NN (CPwL; T ,Ω)→ S11(T ,Ω) is a linear isomorphism.

Proof. We define ΦCPwL(T ,Ω) as the parallelization of networks from Theorem 4.3, namely
ΦCPwL(T ,Ω) := P({ΦId

1,Li
⊙ ΦCPwL

i }i∈I) for Li = 1 + maxj∈I L(Φ
CPwL
j ) − L(ΦCPwL

i ), such
that all components of the parallelization have equal depth. For the depth and size of the
components, we obtain with Theorem 4.3

L(ΦId
1,Li
⊙ ΦCPwL

i ) ≤ 1 + (7 + log2(s(I)) + log2(d+ 1)),

M(ΦId
1,Li
⊙ ΦCPwL

i ) ≤CM(ΦId
1,Li

) + CM(ΦCPwL
i ) ≤ C(8 + log2(s(I)) + log2(d+ 1)) + Cd2s(i),

from which the stated results follow with Proposition 2.1 by the same arguments as in the proof
of Proposition 5.1.

The NN ΦCPwL(T ,Ω),v is defined as the sum ΦCPwL(T ,Ω),v :=
∑

i∈I viΦ
Id
1,Li
⊙ ΦCPwL

i . The
results now follow from Proposition 2.2 as in the proof of Proposition 5.1. ✷

Definition 5.3 and Remark 5.4 apply, with CPwL instead of �, S11(T ,Ω) instead of �(T ,Ω)
and ΦId

1,Li
⊙ΦCPwL

i instead of Φ�
i . In addition, a result analogous to Theorem 5.5 follows from

Proposition 5.7, with the formula for the depth replaced by L(Φh) ≤ C for a constant C > 0
only dependent on Csh and d.

6 Neural emulation of trace spaces

In the previous sections, we have developed ReLU NN emulations of the lowest order, de
Rham compatible Finite Elements on cellular complexes in the bounded Lipschitz polyhedral
domains Ω ⊂ R

3. In certain applications, however, corresponding boundary complexes are
required; we mention only variational boundary integral equations which arise in computational
electromagnetism (e.g. [9, 8] and the references there). We approximate traces on the boundary
Γ = ∂Ω, which is a finite union of plane sides, with the network constructions developed in
Section 5 for d = 2. As has been emphasized e.g. in [8], trace spaces of the spaces occurring in
the de Rham complex satisfy exact sequence properties derived from the compatibility of the
corresponding sequences in Ω. We refer to [9, 8] and the references there for a definition and
basic properties of these spaces. We recall the trace operators (e.g. from [8, Definition 2.1]):

γ0 : H1(Ω)→ H1/2(Γ) : γ0(u)(x0) = lim
x→x0

u(x), (6.1a)

γ̆0 : H0(curl,Ω)→ H−1/2(curlΓ,Γ) : γ̆0(u)(x0) = lim
x→x0

u(x)− (u(x) · nx0)nx0 , (6.1b)

γt : H
0(curl,Ω)→ H

−1/2
× (divΓ,Γ) : γt(u)(x0) = lim

x→x0

u(x)× nx0
, (6.1c)

γn : H0(div,Ω)→ H−1/2(Γ) : γn(u)(x0) = lim
x→x0

u(x) · nx0
, (6.1d)
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for almost all x0 ∈ Γ, where we use x to denote points in Ω, and where nx0
denotes the outward

unit normal to Γ in x0. These trace operators render the diagram in Figure 6.1 commutative
(e.g. [8, Figure 2]). The trace operators in (6.1) are surjective (e.g. [8, Theorem 1]), thus the
fractional Sobolev spaces on Γ in (6.1) comprise precisely all traces of elements of the respective
function spaces on Ω. In addition, the trace operators in (6.1) are continuous with respect to
the norms defined in [8, Section 2], see [8, Theorem 1].

H1(Ω)

γ0

��

grad
// H0(curl,Ω)

γ̆0

��

curl
//

γt

!!

H0(div,Ω)

γn

��

H−1/2(curlΓ,Γ)

·×n

��

curlΓ

**
H1/2(Γ)

gradΓ

55

curlΓ

))

H−1/2(Γ)

H
−1/2
× (divΓ,Γ)

divΓ

55

Figure 6.1: Boundary complex

Given a regular simplicial partition T of Ω, for each face f of Ω, the set Tf = {int(f ∩ T ) :
T ∈ T } is a regular, simplicial triangulation of f (where the interior int(. . .) is defined with
respect to the subspace topology on the face f). Discretizations of the trace spaces can be
defined as the traces in the sense of (6.1) of the finite element spaces on Ω (see [20, Section
1.6]). The corresponding diagram for the lowest order conforming FEM spaces also commutes
(Figure 6.2).

S11(T ,Ω)

γ0|f

��

grad
// N0(T ,Ω)

γ̆0|f

��

curl
//

γt|f

""

RT0(T ,Ω)

γn|f

��

N0(Tf , f)

·×n

��

curlΓ

))

S11(Tf , f)

gradΓ

55

curlΓ

))

S00(Tf , f)

RT0(Tf , f)

divΓ

55

Figure 6.2: Discrete boundary complex

Upon parametrizing each face of Ω by a polygon in R
2, we can construct NN approximations

of the traces on f . We parametrize each face f by an affine bijection Ff : Df → f for some
polygon Df ⊂ R

2, which can be partitioned by TDf
:= {F−1

f (T ) : T ∈ Tf}. Functions in

S11(Tf , f), RT0(Tf , f) and S00(Tf , f) can be pulled back to Df . In particular,

{u ◦ Ff : u ∈ S11(Tf , f)} = S11(TDf
, Df ), {u ◦ Ff : u ∈ S00(Tf , f)} = S00(TDf

, Df ).
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NN emulations of these spaces have already been provided in Propositions 5.1 and 5.7. The
spaces RT0(Tf , f) and RT0(TDf

, Df ) are related by the Piola transform. For J denoting the
Jacobian of Ff ,

{det(J)J−1(u ◦ Ff ) : u ∈ RT0(Tf , f)} = RT0(TDf
, Df ).

Thus, for u ∈ RT0(Tf , f), a network that emulates u◦Ff : Df → R
3 is given by det(J−1)JΦ, for

a NN Φ ∈ NN (RT0; TDf
, Df ) from Proposition 5.1 emulating det(J)J−1(u◦Ff ) ∈ RT0(TDf

, Df ).
Here, ReLU activations imply that the affine transformation det(J−1)J can be emulated exactly
either by applying this transformation to the weights and biases of the output layer of Φ, or by
concatenating Φ with a ReLU NN of depth one. In both cases, the network size is increased by
at most Cd2 (with C > 0 independent of d and T ), and the network depth is increased by 0
respectively 1.

The shape functions of N0(Tf , f) equal those of RT0(Tf , f) up to a rotation. As explained
in Section 3.3, we can use results from Section 3.2 for the NN emulation of the N0(TDf

, Df )
shape functions. Therefore, for u ∈ N0(Tf , f), a network that emulates u ◦ Ff : Df → R

3

is given by det(J−1)JΦ, for a NN Φ ∈ NN (N0; TDf
, Df ) from Proposition 5.1 emulating

det(J)J−1(u ◦ Ff ) ∈ N0(TDf
, Df ).

The preceding discussion in this section can be summarized as follows:

Proposition 6.1 Assume given a bounded polytopal domain Ω ⊂ R
3 with boundary Γ = ∂Ω

consisting of a finite union of plane, polygonal faces f . For a regular, simplicial partition T of Ω,
and for a face f ⊂ Γ of Ω, consider the regular, simplicial partition Tf = {int(f ∩ T ) : T ∈ T }
of f with edges Ef = {e : e ⊂ f} and vertices Vf = {v : v ∈ f} (i.e., obtained as “trace” of
T on f ⊂ Γ). Let Ff : Df → f be a bijective affine parametrization of f for some polygonal
parameter domain Df ⊂ R

2 partitioned by TDf
:= {F−1

f (T ) : T ∈ Tf}. In the following, C
only depends on the shape regularity constant of the simplicial partition Tf . Then we have the
following.

(i) For all � ∈ {S11,N0,RT0, S
0
0} there exists a NN Φ�,Ff := Φ�(Tf ,f),Ff with ReLU and

BiSU activations, which in parallel emulates {θ�i ◦ Ff}i∈I for I ∈ {Vf , Ef , Ef , Tf}, i.e.
R(Φ�,Ff ) : Df → R

|I| satisfies

R(Φ�,Ff )(x)i = θ�i ◦ Ff (x) for a.e. x ∈ Df and all i ∈ I.

(ii) There exists C > 0 independent of T such that

L(Φ�,Ff ) =

{
5 if � ∈ {S11,N0,RT0},

3 if � = S00,
M(Φ�,Ff ) ≤ C dim(�(Tf , f)).

(iii) For all v ∈ �(Tf , f), there exists a DNN Φ�,v,Ff := Φ�(Tf ,f),v,Ff with BiSU and ReLU
activations, satisfying the same depth and size bounds as Φ�,Ff , such that R(Φ�,v,Ff ) =
v ◦Ff a.e. in Df . The set NN (�; Tf , f ;Ff ) := {Φ

�,v,Ff : v ∈ �(Tf , f)} together with the
linear operation Φ�,v,Ff +̂λΦ�,w,Ff := Φ�,v+λw,Ff for all v, w ∈ �(Tf , f) and all λ ∈ R is
a vector space.

(iv) There also exists a DNN ΦCPwL,Ff := ΦCPwL(Tf ,f),Ff of depth C and size at most
C dim(S11(Tf , f)), with only ReLU activations, such that

R(ΦCPwL,Ff )(x)i = θ
S1
1

i ◦ Ff (x) for all x ∈ Df and all i ∈ I.

(v) For every v ∈ S11(Tf , f) there exists a DNN ΦCPwL,v,Ff := ΦCPwL(Tf ,f),v,Ff with only
ReLU activations, which satisfies the same depth and size bounds as ΦCPwL,Ff , and
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R(ΦCPwL,v,Ff ) = v◦Ff everywhere in Df . The set NN (CPwL; Tf , f ;Ff ) := {Φ
CPwL,v,Ff :

v ∈ S11(Tf , f)} together with the linear operation

ΦCPwL,v,Ff +̂λΦCPwL,w,Ff := ΦCPwL,v+λw,Ff for all v, w ∈ S11(Tf , f) and all λ ∈ R

is a vector space.

7 Extensions and conclusions

We conclude this paper by indicating some extensions of the main results, as well as further
possible directions of research.

7.1 Higher order polynomial spaces

For polynomial degree k ∈ N and space dimension d ≥ 2 denote in the following by Pk :=
span{

∏d
j=1 x

νj

j :
∑d

j=1 νj ≤ k} the space of d - variate polynomials of total degree at most k.

As observed in [22], networks employing the “ReLUr”5 activation

ρr(x) := ρ(x)r = max{0, x}r

for some fixed integer r ≥ 2, can be used to express multivariate polynomials in Pk exactly.
We use here a formulation of this result from [26]6, extended to vector-valued polynomials by
parallelization:

Proposition 7.1 ([26, Proposition 2.14]) Fix d, µ ∈ N, r ∈ N, r ≥ 2 and a polynomial
degree k ∈ N.

Then there exists a constant C > 0 independent of d, µ and k but depending on r such
that for any multivariate polynomial w ∈ [Pk]

µ there is a NN Φw, employing ReLUr activation,
such that R(Φw)(x) = w(x), for all x ∈ R

d and such that M(Φw) ≤ Cµ(k + 1)d and L(Φw) ≤
Cd log2(k + 1).

Combining Proposition 7.1 with Proposition 2.8 and Lemma 2.9, by a similar argument as
in Lemma 3.1 we obtain a generalization of this result to piecewise polynomial functions on
regular, simplicial partitions for all interelement-conformities which arise from compatibility
with the complex (1.1).

Lemma 7.2 (Emulation of piecewise higher order polynomial elements) Let r ∈ N,
r ≥ 2. For d, s, µ, k ∈ N let Ω ⊂ R

d be a bounded polytope with boundary ∂Ω being a finite
union of plane, polytopal faces and let T be a regular, simplicial partition of Ω with s = |T |
elements, T = {Ti}i=1,...,s. Let u : Ω → R

µ be a function that for all i = 1, . . . , s satisfies
u|Ti
∈ [Pk]

µ.
Then there exists a NN ΦPwP

u employing ReLU, ReLUr and BiSU activations and satisfies
u(x) = R

(
ΦPwP

u

)
(x) for all x ∈ ∪si=1Ti and R

(
ΦPwP

u

)
(x) = 0 for all x ∈ R

d \ ∪si=1Ti.
Furthermore,

L(ΦPwP
u ) ≤ Cd log2(k + 1) , M(ΦPwP

u ) ≤Csµ(k + 1)d.

Here the constant C is independent of T , d, s, µ and of k but depends on r.

5Also referred to as “rectified power unit” (RePU).
6We apply this result here with the multiindex set Λ := {(ν1, . . . , νd) ∈ N

d
0

:
∑d

j=1
νj ≤ k}, which has

cardinality bounded by (k + 1)d. Here, we denoted N0 = {0, 1, . . .}.
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Our results thus straightforwardly extend to piecewise polynomial spaces of arbitrarily high
order, covering all de Rham compatible element families on simplicial partitions on polytopes
as described in [20]. Importantly, as in the case of low-order finite elements, the network size
only scales linearly in the number s = |T | of simplices of the triangulation T . Similarly, also
the results of Section 6 extend to higher order polynomials.

We now state the corresponding generalization of Proposition 5.1 for three types of higher
order finite elements. For arbitrary polynomial degree k ∈ N we recall the Lagrange FE space

S1k(T ,Ω) := {v ∈ H
1(Ω) : v|T ∈ Pk, ∀T ∈ T } ⊂ H

1(Ω) (7.1)

from [19, Section 7.4]. For all k ∈ N0 we recall RTk = (Pk)
d⊕x span{xα : α ∈ N

d
0, |α| = k} and

the Raviart-Thomas FE space

RTk(T ,Ω) := {v ∈ (L1(Ω))d : v|T ∈ RTk ∀T ∈ T and [v · nf ]f = 0 ∀f ⊂ Ω} ⊂ H0(div,Ω)
(7.2)

from [19, Sections 14.2 and 14.3], and let for all k ∈ N0

S0k(T ,Ω) := {v ∈ L
1(Ω) : v|T ∈ Pk ∀T ∈ T } ⊂ L

2(Ω). (7.3)

For all k ∈ N and � ∈ {S1k,RTk−1, S
0
k} and for a suitable index set I we will denote by {θ�i }i∈I

any collection of shape functions of �(T ,Ω), each of which is supported on s(i) ≤ s(I) elements
of T .

Proposition 7.3 Let Ω ⊂ R
d, d ≥ 2, be a bounded, polytopal domain and let r ∈ N, r ≥ 2 be

the power in the ReLUr activation, and let k ≥ 1 denote the element degree.
Then we have the following.

(i) For every regular, simplicial triangulation T of Ω, every k ∈ N and every � ∈ {S1k,RTk−1, S
0
k}

there exists a NN Φ� := Φ�(T ,Ω) with ReLU, ReLUr and BiSU activations, which in par-
allel emulates the basis functions {θ�i }i∈I , that is R(Φ�) : Ω→ R

|I| satisfies

R(Φ�)(x)i = θ�i (x) for a.e. x ∈ Ω and all i ∈ I.

(ii) There exists C > 0 independent of d, k and T , but depending on r, such that with µ = 1
if � ∈ {S1k, S

0
k} and µ = d if � = RTk−1,

L(Φ�) ≤Cd log(k + 1), M(Φ�) ≤ Cµ(k + 1)d
∑

i∈I

s(i).

(iii) For every FE function v =
∑

i∈I viθ
�
i ∈ �(T ,Ω), exists a NN Φ�,v := Φ�(T ,Ω),v with

ReLU, ReLUr and BiSU activations, such that for a constant C > 0 independent of d, k
and T , but depending on r,

R(Φ�,v)(x) = v(x) for a.e. x ∈ Ω,

L(Φ�,v) ≤Cd log(k + 1), M(Φ�,v) ≤ Cµ(k + 1)d
∑

i∈I

s(i).

The layer dimensions and the lists of activation functions of Φ� and Φ�,v are independent
of v and only depend on T through {s(i)}i∈I and |I| = dim(�(T ,Ω)).

(iv) For each � ∈ {S1k,RTk−1, S
0
k},

NN (�; T ,Ω) := {Φ�,v : v ∈ �(T ,Ω)} , (7.4)

together with the linear operation Φ�,v+̂λΦ�,w := Φ�,v+λw for all v, w ∈ �(T ,Ω) and λ ∈
R is a vector space, and the map R(·) : NN (�; T ,Ω)→ �(T ,Ω) is a linear isomorphism.
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Proof. For all i ∈ I let Φ�
i be the NN approximation of θ�i from Lemma 7.2. Possibly after

concatenating each Φ�
i with ΦId

µ,2, which only affects the constant C in the bounds on depth and

size from Lemma 7.2, we may assume that L(Φ�
i ) ≥ 3 = L(Φ✶

Ti
). From the proof of Proposition

7.1, where Φw is the µ-fold parallelization of a ReLUr network from [26, Proposition 2.14] ap-

plied with Λ = {ν ∈ N
d
0 :
∑d

j=1 νj ≤ k}, we see that the depth and the layer dimensions depend
on d, µ and r, but not on w. The same holds for the network in Lemma 7.2, by an argument
similar to that in the proof of Lemma 3.1. We can therefore define Φ�(T ,Ω) := P

(
{Φ�

i }i∈I

)
and

the sum Φ�(T ,Ω),v :=
∑

i∈I viΦ
�
i and obtain the linear structure of NN (�; T ,Ω) by the same

arguments as in the proof of Proposition 5.1.
It remains to prove the formula for the realization and to estimate the NN depth and size.

Firstly, we observe that indeed θ�i (x) = R
(
Φ�
)
(x)i for all x ∈ Ω \ ∂T , where ∂T :=

⋃
T∈T ∂T ,

and R
(
Φ�
)
(x)i = 0 else.

Secondly, we apply Lemma 7.2 with s = s(i) and µ = 1 if � ∈ {S1k, S
0
k} and µ = d if

� = RTk−1. We obtain that

L(Φ�) ≤Cµ log2(k + 1), M(Φ�) ≤

s(i)∑

i=1

M(Φ�
i ) ≤

∑

i∈I

Cs(i)µ(k + 1)d,

and the same bounds hold for the depth and size of Φ�,v. ✷

Definition 5.3 applies, and also Remark 5.4.

Remark 7.4 ReLU NNs (and thus also ReLU+BiSU NNs) are known to be efficient at ap-
proximating multivariate polynomials, see e.g. [23, 33, 26]. Thus, also ReLU+BiSU (rather
than ReLU+ReLUr+BiSU) networks could be employed to extend our results to higher order
polynomial spaces, however only in an approximate sense.

The resulting PwL NN realizations may violate the discrete exact sequence property however.

7.2 Crouzeix-Raviart elements CR0

While this work focused on conformal discretization of functions in the compatible spaces in
(1.1), the result of Lemma 3.1 is more general and includes the non-conformal Crouzeix-Raviart
elements (e.g. [19, Section 7.5]) of lowest order for d ≥ 2. Due to the importance and widespread
use of the Crouzeix-Raviart elements (e.g. [15, 10, 6] and the references there), we state a NN
emulation result of these elements. For d ≥ 2 and a polytopal domain Ω ⊂ R

d, let T be a
regular, simplicial triangulation of Ω as in Section 3. The lowest order Crouzeix-Raviart FE
space is defined as

CR0(T ,Ω) := {v ∈ L
1(Ω) : v|T ∈ P1 ∀T ∈ T and

∫

f

[v]f = 0 ∀f ∈ F , f ⊂ Ω}, (7.5)

where [v]f denotes the jump of a function across f , that is, given a unit normal vector nf to f ,
[v]f (x0) = limǫց0(v(x0+ ǫnf )−v(x0− ǫnf )) for all x0 ∈ f . Analogously to the case of Raviart-
Thomas FE, the space CR0(T ,Ω) has one degree of freedom per face f ∈ F . The corresponding

shape functions are, for f ⊂ ∂Ω and thus s(f) = 1, θCR0

f (x) := d( 1d − (1 −
|f |(x−a1)·nf

d|T1|
))✶T1 ,

where f ⊂ T1, T1 ∈ T and a1 is the only vertex of T1 that does not belong to f . For interior
faces f ⊂ Ω and thus s(f) = 2, we construct θCR0

f by assembling local shape functions of the

neighboring simplices T1, T2 with f = T1 ∩ T2,

θCR0

f (x) :=





d( 1d − (1−
|f |(x−a1)·nf

d|T1|
)) if x ∈ T1,

d( 1d − (1 +
|f |(x−a2)·nf

d|T2|
)) if x ∈ T2,

0 if x /∈ T1 ∪ T2,

(7.6)
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where a1, a2 are the the only vertices of T1, T2, respectively, not belonging to f . The following
proposition allows us to apply Proposition 5.1, Definition 5.3 and Remark 5.4 with � = CR0.

Proposition 7.5 Given f ∈ F , let {Ti}
s(f)
i=1 be the simplices adjacent to f and let ai := (V ∩

Ti)\f ∈ R
d, i = 1, . . . , s(f). Then, there exist Af,Ti

∈ R
1×d, bf,Ti

∈ R, i = 1, . . . , s(f) such that

ΦCR0

f :=

s(f)∑

i=1

Φ×
1,κ ⊙ P

(
ΦId

1,2 ⊙ ((Af,Ti
, bf,Ti

, IdR)) ,Φ
✶

Ti

)
(7.7)

satisfies θCR0

f (x) = R(ΦCR0

f )(x) for a.e. x ∈ Ω, for any

κ ≥ d− 1. (7.8)

In addition, there exists a constant C > 0 that is independent of d and T such that for all
f ∈ F

L(ΦCR0

f ) = 5, M(ΦCR0

f ) ≤ Cd2s(f) ≤ 2Cd2.

Proof. The values of Af,Ti
, bf,Ti

can be read from (7.6). Similar to Proposition 3.2, θCR0

f (x) =

R(ΦCR0

f )(x) for all x ∈ Ω \ ∂T , where ∂T :=
⋃

T∈T ∂T .
We conclude applying Lemma 3.1 with µ = 1, m = d+ 1 and s = s(f). ✷

The same idea carries over to higher order Crouzeix-Raviart elements and canonical hybrid
elements [19, Section 7.6], along the lines of Section 7.1.

7.3 Domains of general topology

In our discussion of the de Rham complex (see Section 1.4.2) we assumed throughout that the
physical domain Ω is contractible. This renders the topology of Ω trivial: its Betti-numbers
are b0 = 1, b1 = b2 = b3 = 0. As is well-known, for polytopal domains Ω with a non-trivial
topology (e.g. domains Ω ⊂ R

3 with voids) in (1.1) the cohomology spaces

H0 := Ker grad/Im i H1 := Ker curl/Im grad
H2 := Ker div /Im curl H3 := L2(Ω)/Im div

are nontrivial. Our neural network emulation results are given without topological restrictions
on the bounded polytopal domain Ω. Therefore, the presently proposed DNN emulations of de
Rham compatible FE spaces on simplicial partitions preserve these cohomology spaces provided
that the corresponding discrete homology spaces Hi(T ) for the FE spaces in Ω are isomorphic
to Hi. This property has been verified for several large classes of FE spaces (see, e.g., [16] and
the references there).

7.4 Conclusions

The present construction of deep NN emulations of de Rham compatible Finite Element spaces
was given for the lowest order Finite Element families on regular, simplicial partitions T of
Ω. Generalizing recent work [21], we provided exact emulation of continuous piecewise linear
functions (“Courant” Finite Elements) on arbitrary, regular simplicial partitions in any space
dimension by ReLU networks. As shown, for uniformly shape regular partitions the network
size in this construction merely scales linearly with the number of elements.

As is well known (e.g. [20] and the reference there) the presently emulated, lowest order ele-
ment families are embedded in hierarchies of higher-order Finite Element families for arbitrary
polynomial order. We argued that admitting higher order, so-called ReLUr activations with
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r ∈ N, r ≥ 2 allows to exactly emulate the higher order element families from [20] along the
lines of the present constructions.

Compatible constructions similar to the ones developed here are also possible on affine
partitions T (comprising elements that are affine images of reference elements) which contain
other element shapes, in particular quadrilaterals (d = 2) and hexahedral elements (d = 3). We
refer to [20, Sec. 4 and 6] for details on the shape functions.

The present results, in particular Proposition 6.1, can be the basis to extend the recently
proposed frameworks of “PiNN” [28] and “deep Ritz” [17] for DNN discretization of PDEs to
larger classes of PDEs, and to corresponding boundary integral formulations (see, e.g., [29] for
such methods, and [5] for a realization of this approach for a model problem). While in this
paper we mainly concentrated on the de Rham formalism, our ideas and proofs naturally extend
also to compatible discretizations of more general structures, as occur in the so-called Finite
Element Exterior Calculus (FEEC) (e.g. [3] and the references there).

Similarly, with Lemma 7.2 other nonconforming FEM such as Hybridized, High Order
(“HHO”) FEM can be emulated with appropriate functionals which account for element in-
terface unknowns and reduced interelement conformity, see, e.g. [11, Prop. 1.8].

A Proofs

A.1 Proofs from Section 2

Proof of Proposition 2.8. This proof is in two steps. In Step 1, we define a function of
x, y that computes the desired output for d = 1. In Step 2, we construct a NN which exactly
emulates that function d times and estimate its depth and size.

Step 1. For x, y ∈ R let

f(x, y) := 1
2 (ρ(x+ y) + ρ(−x− y)− ρ(x− y)− ρ(−x+ y)) .

Note that for all x ∈ [−1, 1] and y ∈ [0, 1] such that |x| ≤ y ≤ 1 it holds that f(x, y) =
1
2ρ(x + y) + 0 − 0 − 1

2ρ(−x + y) = x and that for all x ∈ [−1, 1] it holds that f(x, 0) =
1
2ρ(x) +

1
2ρ(−x)−

1
2ρ(−x)−

1
2ρ(x) = 0. Hence, f satisfies

f(x, y) =xy, for all x ∈ [−1, 1] and y ∈ {0, 1},

and thus for all x ∈ [−κ, κ] and y ∈ {0, 1} it follows that

κf(xκ , y) = xy.

Step 2. For d = 1, let

Φ×
1,κ :=










1
κ 1
− 1

κ −1
1
κ −1
− 1

κ 1


 ,




0
0
0
0


 ,




ρ
ρ
ρ
ρ





 ,
((

κ
2

κ
2 −κ

2 −κ
2

)
, 0, IdR

)

 ,

which satisfies

R(Φ×
1,κ)(x, y) =κf(xκ , y) for all (x, y) ∈ R

2,

L(Φ×
1,κ) = 2, M(Φ×

1,κ) = 8 + 4 = 12.

Similarly, with u1 := ( 1κ ,−
1
κ ,

1
κ ,−

1
κ )

⊤, u2 := (1,−1,−1, 1)⊤ and u3 := (κ2 ,
κ
2 ,−

κ
2 ,−

κ
2 ), we

define for d > 1 the following network with layer sizes N0 = d+ 1, N1 = 4d and N2 = d:

Φ×
d,κ :=









u1 u2

. . .
...

u1 u2


 ,



0
...
0


 ,



ρ
...
ρ





 ,






u3

. . .

u3


 ,



0
...
0


 ,



IdR
...

IdR








 ,
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which satisfies

R(Φ×
d,κ)(x1, . . . , xd, y) = (κf(x1

κ , y), . . . , κf(
xd

κ , y))
⊤ ∈ R

d, for all (x, y) ∈ R
d × R,

L(Φ×
d,κ) = 2, M(Φ×

d,κ) = 12d.

✷

Proof of Lemma 2.9. From

1− σ(y)− σ(−y) =

{
1 if y = 0,

0 otherwise,
for all y ∈ R,

it follows that for all x ∈ R
d

R(Φ✶

Ω)(x) =σ

(
n∑

i=1

(1− σ(Aix+ bi)− σ(−Aix− bi)) +
N∑

i=n+1

σ(Aix+ bi)− (N − 1
4 )

)

=

{
1 if x ∈ Ω,

0 otherwise,

L(Φ✶

Ω) = 3, M(Φ✶

Ω) ≤ ((N + n)d+ (N + n)) + ((N + n) + 1) + 1 = (d+ 2)(N + n) + 2.

✷

A.2 Proofs from Section 3

Proof of Proposition 3.4. Below, we prove the result for f ⊂ Ω, i.e. s(f) = 2. The case
f ⊂ ∂Ω, i.e. s(f) = 1, follows analogously.

Observe that we can write Ti = conv({ai, p1, . . . , pd}) where {p1, . . . , pd} := V ∩ f . The
point values θRT0

f (pj) · nf = 1, ∀j = 1, . . . , d are well-defined by continuity of θRT0

f · nf across

f . Therefore, we can take A
(i)
nf ∈ R

1×d, b
(i)
nf ∈ R, i = 1, 2 to be the matrices and vectors solving

(A(i)
nf
, b(i)nf

)




(ai)1 (p1)1 (pd)1
...

. . .

(ai)d (p1)d (pd)d
1 1 · · · 1


 = (0, 1, . . . , 1), (A.1)

where (0, 1, . . . , 1) = (−1)i−1 |f |
d|Ti|

(0, (p1 − ai) · nf , . . . , (pd − ai) · nf ). With this choice, since

(θRT0

f (x)·nf ) ∈ [0, 1] for x ∈ T1∪T2∪f , it holds that θ
RT0

f (x)·nf = R
(
ΦRT0,⊥

f

)
(x) for a.e. x ∈ Ω

and every x ∈ f . On the other hand, the discontinuous tangential component can be assembled

element by element, as in Proposition 3.2: matrices and vectors (A
(i)
tj , b

(i)
tj ) ∈ R

1×(d+1), i = 1, 2
and j = 1, . . . , d − 1 which only depend on Ti and tj can be computed as in (A.1), but with

different right-hand sides, namely (−1)i−1 |f |
d|Ti|

(0, (p1 − ai) · tj , . . . , (pd − ai) · tj) ∈ R
1×(d+1).

Finally, we estimate the network depth and size. For d = 2, as in Remark 2.6 let

Φmin
2 :=







−1 1
0 1
0 −1


 ,



0
0
0


 ,



ρ
ρ
ρ




 ,
((
−1 1 −1

)
, 0, IdR

)

 ,

L(Φmin
2 ) = 2, M(Φmin

2 ) = 7.

In particular, we use that L(Φmin
2 )+ 1 = L(Φ✶

T1
+Φ✶

f +Φ✶

T2
) = 3, i.e. in (3.9) both components

in the parallelization have equal depth. Also, because the networks for s(f) = 1 have smaller
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sizes than those for s(f) = 2, we will only estimate the sizes of the latter. In the bound on
the size of Φ✶

T1
+ Φ✶

f + Φ✶

T2
in (3.9), we use for T1, T2 Lemma 2.9 with N = d + 1 and n = 0,

whereas for f we use Lemma 2.9 with N = d+ 1 and n = 1. The size of the network in (3.10)
is estimated using Lemma 3.1 with µ = 1, m = d+ 1 and s = 2.

L(ΦRT0,⊥
f ) =L(Φ×

1,1) + L(Φ✶

T1
+Φ✶

f +Φ✶

T2
) = 5,

M(ΦRT0,⊥
f ) ≤ 2M(Φ×

1,1) + 2M

(
P

(
Φmin

2 ⊙

(((
A

(1)
nf

A
(2)
nf

)
,

(
b
(1)
nf

b
(2)
nf

)
, IdR2

))
,Φ✶

T1
+Φ✶

f +Φ✶

T2

))

≤ 2M(Φ×
1,1) + 4M(Φmin

2 ) + 4M

((((
A

(1)
nf

A
(2)
nf

)
,

(
b
(1)
nf

b
(2)
nf

)
, IdR2

)))

+ 2M(Φ✶

T1
) + 2M(Φ✶

f ) + 2M(Φ✶

T2
)

≤C(C + C + Cd+ Cd2 + Cd2 + Cd2) ≤ Cd2.

✷

A.3 Proofs from Section 4

In this section we give proofs of Theorems 4.2 and 4.3. Our proof strategy is to write a non-
convex patch as a suitable union of convex ones, and thereby reduce the problem to the convex
case.

Lemma A.1 For d ∈ N, let T = conv({a0, . . . , ad}) be a simplex and δ > 0. Define q :=

a0 + δ
∑d

i=1(a0 − ai). Then Tδ := conv({q, a1, . . . , ad}) is a simplex and a0 ∈ Tδ.

Proof. Without loss of generality, a0 = 0. To show that Tδ is a simplex, it suffices to verify
a0 = 0 ∈ Tδ, as it then follows that T ⊂ Tδ, i.e. Tδ has nonempty interior and is thus a simplex.
By definition,

Tδ =

{
α0

(
δ

d∑

i=1

−ai

)
+

d∑

i=1

αiai :

d∑

i=0

αi = 1 and αi > 0

}
.

Therefore, a0 ∈ Tδ is equivalent to

α0δ

d∑

i=1

ai =

d∑

i=1

αiai,

which holds if and only if α0δ = αi for all i = 1, . . . , d. A viable choice satisfying
∑d

i=0 αi = 1
and αi > 0 is α0 = (1 + dδ)−1 and αi = δ(1 + dδ)−1 for all i = 1, . . . , d, and thus a0 ∈ Tδ. ✷

Proposition A.2 Given a simplex T = conv({a0, . . . , ad}) and a point p ∈ T , let

Ti := conv({p, a0, . . . , ad} \ {ai}) for all i ∈ {0, . . . , d}.

Then ⋃

i∈{0,...,d}

Ti = T (A.2)

and this is a patch, and {Ti : i ∈ {0, . . . , d}} is a regular simplicial partition of T .
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Proof. Let p ∈ T , i.e.

p =

d∑

i=0

αiai, αi > 0 and
d∑

i=0

αi = 1.

First we show that T0 is a simplex, which by symmetry implies that Ti is a simplex for all
i ∈ {0, . . . , d}. It suffices to check that p − a1 /∈ span{a2 − a1, . . . , ad − a1}, since then {p −
a1, a2−a1, . . . , ad−a1} is a set of linearly independent vectors. This is true since {a0−a1, a2−
a1, . . . , ad − a1} are linearly independent vectors, α1 = 1−

∑
i 6=1 αi and thus

p− a1 =
∑

i 6=1

αi(ai − a1),

with α0 > 0 does not belong to span{a2 − a1, . . . , ad − a1}. Furthermore,
⋃

i∈{0,...,d} Ti ⊂ T

follows by the fact that p ∈ T implies Ti ⊂ T for all i ∈ {0, . . . , d}.

Next we show
⋃

i∈{0,...,d} Ti ⊃ T . Fix p̄ :=
∑d

j=0 γjaj with γj ≥ 0 satisfying
∑d

j=0 γj = 1,

i.e. p̄ is an arbitrary point in T . We wish to show that p̄ ∈ T i for some i ∈ {0, . . . , d}, i.e.

d∑

j=0

γjaj =

d∑

j 6=i

βjaj + βi

d∑

j=0

αjaj for some βj ≥ 0,

d∑

j=0

βj = 1.

This is equivalent to
d∑

j=0

(γj − βiαj)aj =

d∑

j 6=i

βjaj . (A.3)

We now show that there exist (βj)
d
j=0 for which this holds. Let

i ∈ argmin
j∈{0,...,d}

γj
αj
, (A.4)

which is well-defined because γj ≥ 0 and αj > 0 for all j ∈ {0, . . . , d}. Since
∑d

j=0 αj =

1 =
∑d

j=0 γj , for i in (A.4) it must hold γi

αi
≤ 1. Equation (A.3) holds if γi − βiαi = 0 and

γj−βiαj = βj for all j 6= i. The former is satisfied for βi =
γi

αi
∈ [0, 1] and the latter is satisfied

if βj = γj − βiαj , which implies βj = αj(
γj

αj
− γi

αi
) ≥ 0 and βj = αj(

γj

αj
− γi

αi
) ≤ γj ≤ 1. It is

left to show that
∑d

j=0 βj = 1. We have

d∑

j 6=i

βj + βi =

d∑

j 6=i

αj(
γj

αj
− γi

αi
) + γi

αi
=

d∑

j 6=i

γj +
γi

αi


1−

d∑

j 6=i

αj


 =

d∑

j 6=i

γj +
γi

αi
αi = 1.

We found i ∈ {0, . . . , d} and (βj)
d
j=0 for which (A.3) holds. Thus p̄ ∈ Ti, and

⋃
i∈{0,...,d} Ti ⊃ T .

It is left to show that for all m 6= n ∈ {0, . . . , d} the intersection of Tm and Tn is the closure
of a sub-simplex of both. Consider

Tm =





d∑

j 6=m

βjaj + βmp :

d∑

j=0

βj = 1 and βj ≥ 0



 ,

Tn =





d∑

j 6=n

βjaj + βnp :

d∑

j=0

βj = 1 and βj ≥ 0



 .
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Then

Tm ∩ Tn =





d∑

j 6=m,n

βjaj + βp : β +

d∑

j 6=m,n

βj = 1 and β, βj ≥ 0



 ,

which, by definition, is the closure of a sub-simplex of both Tm and Tn. ✷

For a set S ⊂ R
d, in the following we call x ∈ S a star point of S iff for all y ∈ S \ {x} holds

conv({x, y}) ⊂ S.

Lemma A.3 Let p ∈ V ∩ intΩ and let T1, . . . Ts(p) ∈ T be the simplices adjacent to p. For each
j = 1, . . . , s(p), we denote by PTj

the hyperplane passing through all vertices of Tj except p.
Then, any x ∈ intω(p) that is on the same side of the hyperplane PTj

as p for all j = 1, . . . , s(p)
is a star point for the patch ω(p).

Proof. We divide the proof of the claim in three steps:

Step 1. We claim that ∂ω(p) ⊂
⋃s(p)

j=1 PTj
for all p ∈ V ∩ intΩ. To prove this, we define a

regular partition T ′ of Rd that extends T , i.e. such that T ⊂ T ′. For every point z on ∂ω(p),
z is on the boundary of an element T ⊂ ω(p) and of an element T ′ ⊂ R

d \ ω(p), T, T ′ ∈ T ′.
By regularity of T ′, T ∩ T ′ is the closure of a subsimplex f of both T and T ′. Because T is
a simplex with p as one of its vertices, if z is not in PT , then f touches p, which implies that
T ′ ⊂ ω(p) and gives a contradiction.

Step 2. We show that any star point x of intω(p) is a star point of ω(p). Given q ∈ ω(p),
define a sequence {qn} ⊆ intω(p) such that qn → q, then for all t ∈ [0, 1] we obtain intω(p) ∋
xt+ qn(1− t)→ xt+ q(1− t) ∈ ω(p), as ω(p) is closed.

Step 3. Assume that x ∈ intω(p) is not a star point of ω(p). By Step 2, there exists
q ∈ intω(p) and t ∈ [0, 1] such that tx + (1 − t)q /∈ intω(p). Therefore, there exist t, t̄ ∈ (0, 1)
satisfying t < t̄, and T ∈ T , T ⊂ ω(p), such that, using Step 1, t̄x + (1 − t̄)q ∈ PT and
sx + (1 − s)q ∈ T , ∀s ∈ (t, t̄). Since p and T lie on the same side of PT , sx + (1 − s)q lies on
the other side of PT than p for all s ∈ (t̄, 1]. For s = 1, this implies that x is on the other side
of the hyperplane PT than p. Thus if x ∈ intω(p) is not a star point, it lies on the other side
of at least one hyperplane PTj

than p. Therefore, if a point x ∈ intω(p) is on the same side of
PTj

as p for all j = 1, . . . , s(p), then x is a star point for ω(p), by contradiction. ✷

Remark A.4 The converse implication of Lemma A.3 holds as well: the set of all star points

of the patch ω(p) coincides with the intersection
⋂s(p)

j=1Hj of all closed half-spaces Hj, where

Hj ⊂ R
d is defined as the set of all points that lie on the same side of PTj

as p.

In the following, denote by Bǫ(p) ⊂ R
d the ball of radius ǫ > 0 centered at p ∈ R

d, with
respect to the Euclidean norm.

Lemma A.5 For all p ∈ V ∩ intΩ, there exists ǫ > 0 such that Bǫ(p) ⊂ ω(p) and such that
every x ∈ Bǫ(p) is a star point of ω(p).

Proof. For j = 1, . . . , s(p) denote by Hj ⊂ R
d the open half-space containing all points that

lie on the same side of PTj
as p. Then

⋂s(p)
j=1Hj is open, contains p and is a subset of the set of

all star-points of ω(p) by Lemma A.3. ✷

For interior vertices we obtain the following result. Recall the definitions of T̃ij and ω̃j(p)
given in (4.3) and (4.4), respectively.

Lemma A.6 Given p ∈ V ∩ intΩ, let T1, . . . Ts(p) ∈ T be the simplices adjacent to p. For

all j = 1, . . . , s(p), let a0 := p and a1, . . . , ad ∈ R
d be such that Tj = conv({a0, . . . , ad}) and

let qj := p + δj
∑d

i=1(p − ai) for some sufficiently small δj > 0. Then ω̃j(p) is convex and

Tj ⊂ ω̃j(p) ⊂ ω(p). The sets {T̃ij}i=0,...,d form a regular partition of ω̃j(p).
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Proof. For ǫ > 0 as in Lemma A.5, let δj > 0 in the definition of qj be such that ‖qj−p‖2 = ǫ
2 .

Then qj ∈ Bǫ(p) ⊂ ω(p) is a star point of ω(p) by Lemma A.5. Therefore, T̃ij ⊂ ω(p) for all

i = 1, . . . , d, and thus ω̃j(p) ⊂ ω(p). It also holds that Tj = T̃ 0j ⊂ ω̃j(p). After observing that
int ω̃j(p) = (Tj)δj in the notation of Lemma A.1, Lemma A.1 shows that ω̃j(p) is a simplex

and thus convex. The sets {T̃ij}i=0,...,d form a regular partition of ω̃j(p) by Proposition A.2
(qj , a1, . . . , ad, p in the notation of this proof correspond to a0, . . . , ad, p in the notation of the
lemma). ✷

Corollary A.7 Let ω̃j(p) be as in Lemma A.6, then

ω(p) =

s(p)⋃

j=1

ω̃j(p).

Proof. Using Tj ⊂ ω̃j(p) ⊂ ω(p) for all j = 1, . . . , s(p) we have

ω(p) =

s(p)⋃

j=1

Tj ⊂

s(p)⋃

j=1

ω̃j(p) ⊂ ω(p).

✷

Corollary A.8 In the notation of Lemma A.6, for p ∈ V ∩ intΩ and j = 1, . . . , s(p), let θ̃
S1
1

p,j ∈

C0(Ω) be the hat function on ω̃j(p) defined in (4.5). For all p ∈ V ∩ intΩ and j = 1, . . . , s(p),
these functions can be written as

θ̃
S1
1

p,j(x) = max

{
0, min

i=0,...,d
Ã(i,j)

p x+ b̃(i,j)p

}
, x ∈ Ω,

where each x 7→ Ã
(i,j)
p x+b̃

(i,j)
p is a globally linear function fulfilling (Ã

(i,j)
p x+b̃

(i,j)
p )|T̃ij

= θ̃
S1
1

p,j |T̃ij
.

Proof. Since ω̃j(p) is a convex patch, the statement follows by Prop. 4.1 (which corresponds

to [21, Theorem 3.1]). The function x 7→ Ã
(i,j)
p x + b̃

(i,j)
p in our notation corresponds to gk in

the notation of [21], and θ̃
S1
1

p,j corresponds to φi. ✷

Lemma A.9 For all p ∈ V, j, k = 1, . . . , s(p) and i = 0, . . . , d, let x 7→ Ã
(i,j)
p x + b̃

(i,j)
p be as

defined in Corollary A.8 and let x 7→ A
(k)
p x+ b

(k)
p be the function defined by (A

(k)
p x+ b

(k)
p )|Tk

=

θ
S1
1

p |Tk
. Then,

0 ≤ Ã(i,j)
p x+ b̃(i,j)p ≤ A(k)

p x+ b(k)p , ∀x ∈ Tk ∩ T̃ij ,

for all j, k = 1, . . . , s(p) and i = 0, . . . , d.

Proof. First consider p ∈ V ∩ intΩ, such that p ∈ intω(p). For all j, k ∈ {1, . . . , s(p)} and

i ∈ {0, . . . , d}, we first note that Ã
(i,j)
p p+ b̃

(i,j)
p = A

(k)
p p+ b

(k)
p = 1 as well as Ã

(i,j)
p y + b̃

(i,j)
p = 0

for all y on the face of T̃ij opposite to p. Similarly, A
(k)
p y + b

(k)
p = 0 for all y on the face of Tk

opposite to p. Next, let x ∈ Tk ∩ T̃ij in case this set is nonempty. Let L be the halfline starting
in p through x. Note that p ∈ int ω̃j(p) ⊂ intω(p) is a star point of both ω̃j(p) and ω(p). It
follows from ω̃j(p) ⊂ ω(p) that the intersection point y1 ∈ L ∩ ∂ω̃j(p) is closer to p than (or

equal to) the intersection point y2 ∈ L∩∂ω(p). Because y 7→ Ã
(i,j)
p y+ b̃

(i,j)
p linearly interpolates

between the value 1 in p and 0 in y1, and y 7→ A
(k)
p y + b

(k)
p linearly interpolates between 1 in

p and 0 in y2, it follows that Ã
(i,j)
p y + b̃

(i,j)
p ≤ A

(k)
p y + b

(k)
p for all points y between p and y1,

which includes x. Finally, the first inequality in the lemma follows from Corollary A.8.
For p ∈ V ∩ ∂Ω, we can apply the argument above after extending T to a regular, simplicial

partition of all of Rd, of which only the elements touching p are relevant. ✷
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Proof of Theorem 4.2. For all j = 1, . . . , s(p), applying Lemma A.9 for all i = 0, . . . , d and

all k = 1, . . . , s(p) shows that 0 ≤ θ̃
S1
1

p,j(x) ≤ θ
S1
1

p (x) for all x ∈ ω̃j(p). Together with θ̃
S1
1

p,j(x) = 0

for all x ∈ Ω\ω̃j(p), this shows that 0 ≤ θ̃
S1
1

p,j(x) ≤ θ
S1
1

p (x) for all x ∈ Ω. To finish the proof,
recall that for all j = 1, . . . , s(p) and x ∈ Tj

θ
S1
1

p (x) = A(j)
p x+ b(j)p = Ã(0,j)

p x+ b̃(0,j)p = θ̃
S1
1

p,j(x).

The first and the last equality hold by definition, and the second holds because both functions
are linear and equal the value 1 in p and 0 in the other vertices of Tj . ✷

Proof of Theorem 4.3. Because ω̃j(p) = ∪di=0T̃ ij is a regular partition of the convex set
ω̃j(p) by Lemma A.6, we can apply Proposition 4.1 and it follows that for all j = 1, . . . , s(p)

L(Φ̃CPwL
p,j ) ≤ 5 + log2(d+ 1), M(Φ̃CPwL

p,j ) ≤ Cd(d+ 1) ≤ Cd2

and that all NNs {Φ̃CPwL
p,j }

s(p)
j=1 have equal depth, see Proposition 4.1. The fact that R(ΦCPwL

p )(x) =

θ
S1
1

p (x) for all x ∈ Ω follows from Theorem 4.2, and the network depth and size are bounded as
follows:

L(ΦCPwL
p ) =L(Φmax

s(p)) + L(Φ̃CPwL
p,1 ) ≤ 2 + log2(s(p)) + 5 + log2(d+ 1),

M(ΦCPwL
p ) ≤ 2M(Φmax

s(p)) + 2

s(p)∑

j=1

M(Φ̃CPwL
p,j ) ≤ Cs(p) + s(p)Cd2 ≤ Cd2s(p).

✷
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