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Abstract. We introduce Neural Network (NN for short) approximation architectures for the numerical
solution of Boundary Integral Equations (BIEs for short). We exemplify the proposed NN approach
for the boundary reduction of the potential problem in two spatial dimensions. We adopt a Galerkin
formulation-based method, in polygonal domains with a finite number of straight sides. Trial spaces
used in the Galerkin discretization of the BIEs are built by using NNs that, in turn, employ the so-
called Rectified Linear Units (ReLU) as the underlying activation function. The ReLU-NNs used to
approximate the solutions to the BIEs depend nonlinearly on the parameters characterizing the NNs

themselves. Consequently, the computation of a numerical solution to a BIE by means of ReLU-NNs
boils down to a fine tuning of these parameters, in network training.

We argue that ReLU-NNs of fixed depth and with a variable width allow us to recover well-known
approximation rate results for the standard Galerkin Boundary Element Method (BEM). This observa-
tion hinges on existing well-known properties concerning the regularity of the solution of the BIEs on
Lipschitz, polygonal boundaries, i.e. accounting for the effect of corner singularities, and the expressive
power of ReLU-NNs over different classes of functions. We prove that shallow ReLU-NNs, i.e. net-
works having a fixed, moderate depth but with increasing width, can achieve optimal order algebraic
convergence rates.

We propose novel loss functions for NN training which are obtained using computable, local residual
a posteriori error estimators with ReLU-NNs for the numerical approximation of BIEs. We find that

weighted residual estimators, which are reliable without further assumptions on the quasi-uniformity of
the underlying mesh, can be employed for the construction of computationally efficient loss functions

for ReLU-NN training. The proposed framework allows us to leverage on state-of-the-art computa-
tional deep learning technologies such as TENSORFLOW and TPUs for the numerical solution of BIEs
using ReLU-NNs. Exploratory numerical experiments validate our theoretical findings and indicate the
viability of the proposed ReLU-NN Galerkin BEM approach.
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1. Introduction

Following fundamental mathematical developments in the 90’s that established density (resp. “uni-
versal approximation capacity”) of shallow NNs (see, e.g., the surveys [28] and the references therein),
Deep Neural Networks (DNNs for short) based computations have seen, during the past five to ten years,
an increasing development driven by the advent of data science and deep learning techniques. In these
developments, in particular the quantitative advantages in expressive power furnished by deep NNs has
moved into the focus of interest.

Mounting computational and theoretical evidence points to significant advantages of the expressive
power of DNNs when furnished by possibly large NN depth. We mention only [36, 29] for the use of
DNNs in the numerical solution of PDEs, and the recent works [27, 32] that indicate a scope for the
efficacy of DNNs in the approximation of maps between high-dimensional spaces.

In the present work, we propose the use of NNs for the approximation of variational BIEs, in particular
of the first kind. We focus on NNs with ReLU activation, of fixed depth. As we shall show, mathe-
matically and computationally, these ReLU-NNs allow for optimal convergence rates of the Galerkin
BEM in polygons. We also comment in passing on advantages afforded by NNs with large depth. Here,
approximation theory indicates that exponential convergence is possible, in principle.

Contributions. We consider the Laplace equation with appropriate boundary conditions on R2 \ Γ,
where Γ corresponds to a one dimensional open arc, and on a polygonal Lipschitz domain D, and consider
their boundary reduction by means of BIOs as described, for example, in [31]. We prove that by using
shallow ReLU-NNs as trial spaces in the Galerkin discretization of the resulting BIEs one can recover
well-known algebraic convergence rate bounds of the BEM, which are in turn traditionally obtained by
means of other methods, such as graded meshes or the adaptive BEM [15, 9] (ABEM). Even though not
thoroughly studied in the present work, we remark that by using Deep ReLU-NNs (and working under
the assumption of analytic regularity hypotheses on the data) one can recover exponential convergence
rates usually obtained using the so-called hp Galerkin BEM. This can be obtained by recalling recently
obtained ReLU-NN emulation results from [27] together with analytic regularity results of the solution to
BIEs in polygonal Lipschitz domain D, with a finite number of straight sides, in weighted function spaces
[3]. However, we hasten to add that the main goal of the present work is to study the approximation of
the solution to BIEs by means of shallow ReLU-NNs.

The insight behind the results present herein is the interpretation that shallow ReLU-NNs realize
approximations in linear subspaces, whose basis elements are realized by the so-called “hidden layers” of
the ReLU-NN and are, therefore, subject to optimization during ReLU-NN training. In the present paper,
we partially leverage this flexibility and the ability of the hidden layers of ReLU-NNs to express: (a) low
order boundary element spaces with “free-knots” (in the terminology of spline approximation), i.e., to
adapt the partitions of the boundary to the structure of the unknown solution (which is reminiscent of
adaptive meshing strategies in Galerkin BEM), and (b) to leverage adaptive mesh refinement methods
in BEM for a rational procedure to “enlarge” the ReLU-NN through the insertion of nodes.

We propose two different algorithms to, computationally, perform the construction of the ReLU-NNs
(thus, two different paths to train the network.) The first one is based in the observation that the solution
of symmetric, coercive problems, such as the ones arising from the boundary reduction of the Laplace
problem, can be written as the minimization of a suitable energy functional.

The second algorithm makes use of the well-known a posteriori error estimates, which are commonly
used in the ABEM. The definition of an efficiently computable loss function which is based on computable,
reliable a-posteriori error estimators for Galerkin discretizations differs from other widely established
methods, and is not limited to Galerkin BEM. Numerical experiments show the computational feasibility
of these algorithms and a detailed convergence analysis shows that shallow ReLU-NN Galerkin BEM can
attain the optimal algebraic convergence rates. NN training can, in particular, compensate for reduced
convergence rates due to, e.g., corner singularities of the physical domain.

Outline. This work is structured as follows. In Section 2 we briefly review the boundary reduction
of potential problems in two space dimensions. We also present a short recap of the direct method of
boundary reduction and the strong ellipticity of boundary integral operators of the first-kind in fractional
order Sobolev spaces. Additionally, we recall results concerning the regularity of the solution to BIEs
both in Lipschitz polygons and on open arcs, which will be used ahead to obtain convergence rates for
the ReLU-NN approximation of BIEs.

We begin Section 3 by introducing rigorous definitions of DNNs and describing, in detail, the con-
nection existing between P1-spline boundary element spaces and ReLU-NNs. A key observation in our
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analysis is that the low-order BEM spaces with adaptive mesh refinement is shown to admit a repre-
sentation through ReLU-NNs architectures. This property, together with the regularity results of the
solutions to BIEs, allows us to establish convergence results with optimal rates in the approximation of
the described BIEs by means of ReLU-NNs. These theoretical results provide a benchmark to asses the
performance of the different training algorithms proposed ahead in Section 4.

In Section 4, we propose two concrete training algorithms for the construction of ReLU-NNs approx-
imating the solution of the analyzed BIEs. The first one leverages on the coercivity properties of the
BIEs for the potential problem and the interpretation of its solution as the minimizer of a suitable energy
functional. By performing a combination of the optimization of hidden parameters of the ReLU-NN and
computation of the output layer by solving the corresponding Galerkin linear system, the proposed algo-
rithm attains the (theoretically proven) optimal convergence rates for different numerical test cases. The
second algorithm proposed in Section 4 hinges on a posteriori error estimates which, in turn, provide a
computable upper bound for the error between the exact solution to the BIE and the ReLU-NN. Con-
sequently, we can use this property to guide the training of the ReLU-NNs at each step of the iterative
process. We mention that the proposed numerical methodology does not rely on automatic differentia-
tion of the loss function with respect to the DNN parameters. Section 5 then presents concrete numerical
experiments and is followed by Section 6, which recapitulates our principal findings and indicates several
lines of investigation for their extension and possible further mathematical results.

2. Preliminaries

2.1. Sobolev Spaces in Bounded Domains. Let D ⊂ R2 be a bounded, connected Lipschitz domain
with boundary ∂D. For s ∈ R, we denote by Hs(D) the standard Sobolev spaces of order s defined in
D equipped with the norm ∥·∥Hs(D). As it is customary, we identify H0(D) with L2(D). Sobolev spaces

on the boundary Γ := ∂D are denoted by Hs(Γ), where the range of s ∈ R is restricted in accordance to
the regularity of the domain D (cf. [26, Sections 3.8 and 3.11]). For Lipschitz domains, for example, the
space Hs(Γ) is well-defined for s ∈ [−1, 1]. Furthermore, we shall denote by Hs(D)/R (resp. Hs(Γ)/R)

the quotient space of Hs(D) (resp. Hs(Γ)) by the subspace span{1}. We denote by γ0 : H1(D)→ H
1
2 (Γ)

and γ1 : H1(∆,D) → H− 1
2 (Γ) the Dirichlet and Neumann trace operators on Γ, respectively, with

H1(∆,D) := {u ∈ H1(D) : ∆u ∈ L2(D)}. The duality between Hs(Γ) and H−s(Γ) is denoted by ⟨ψ, ϕ⟩Γ
for ψ ∈ H−s(Γ) and ϕ ∈ Hs(Γ).

2.2. Sobolev Spaces on Open Arcs. Let Λ ⊂ R2 be a Jordan arc (in the sense of [30, Definition 2.4.2]).
For s ∈ (−1, 1), we denote by Hs(Λ) the standard Sobolev space on Λ and, furthermore, introduce the

spaces H̃s(Λ) as in [26, Section 3.6]. Moreover, the following relations hold (cf. [26, Section 3.11])

H̃−s(Λ) ≡ (Hs(Λ))
′

and H−s(Λ) ≡
(
H̃s(Λ)

)′

,

where, for a general Banach space X, X ′ denotes its dual space. The duality between Hs(Λ) and H̃−s(Λ)

is denoted by ⟨ϕ, ψ⟩Λ for ψ ∈ H̃−s(Λ) and ϕ ∈ Hs(Λ).

2.3. Boundary Integral Operators in Lipschitz Domains. Again, let D ⊂ R2 be a bounded Lips-
chitz domain with boundary Γ := ∂D. In the following, we introduce the main concepts concerning BIOs
and BIEs to be used throughout this manuscript. As we will only discuss boundary value problems in
R2, we limit our presentation of the aforementioned tools to the two dimensional case. Let G(x,y) be
the fundamental solution of the Laplacian in R2 (cf. [34, Chapter 5] or [31, Section 3.1]), given by

G(x,y) = −
1

2π
log ∥x− y∥ , x,y ∈ R2, x ̸= y.

Let N : H̃−1(D)→ H1(D) denote the Newton potential, defined for φ ∈ C∞
0 (D) as

(Nφ) (x) :=

∫

D

G(x,y)φ(y)dy, x ∈ D.

We define the single and double layer potentials, respectively, as follows:

S := N ◦ γ′0 and D := N ◦ γ′1. (2.1)

The operators S : H− 1
2 (Γ) → H1(D) and D : H

1
2 (Γ) → H1(D) define continuous mappings (cf. [31,

Theorem 3.1.12 & Theorem 3.1.16]). Equipped with these definitions, we introduce the boundary integral
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operators (BIOs) on Γ as:

V := γ0S, K :=
1

2
Id+ γ0D, K

′ := −
1

2
Id+ γ1S, W := −γ1D, (2.2)

referred to as the single layer, double layer, adjoint double layer and hypersingular BIOs, respectively,
where Id signifies the identity operator. The mapping properties of the BIOs in (2.2) are stated in the
following result.

Proposition 2.1 ([10, Theorem 1]). Let D ⊂ R2 be a bounded Lipschitz domain with boundary Γ := ∂D.
For each σ ∈ (− 1

2 ,
1
2 ), the BIOs introduced in (2.2) define continuous maps according to:

V : H− 1
2+σ(Γ)→ H

1
2+σ(Γ), K : H

1
2+σ(Γ)→ H

1
2+σ(Γ),

K
′ : H− 1

2+σ(Γ)→ H− 1
2+σ(Γ), W : H

1
2+σ(Γ)→ H− 1

2+σ(Γ).

Moreover, the single layer and hypersingular BIOs are coercive.

Proposition 2.2 ([34, Theorems 6.23 & Corollary 6.25]). Let D ⊂ R2 be a bounded Lipschitz domain
with boundary Γ := ∂D. There exists cW > 0 such that

⟨Wϕ, ϕ⟩Γ ≥ cW ∥ϕ∥
2

H
1
2 (Γ)

, ∀ϕ ∈ H
1
2 (Γ)/R.

Assume that diam(D) < 1, then there exists cV > 0 such that

⟨Vψ,ψ⟩Γ ≥ cV ∥ψ∥
2

H−
1
2 (Γ)

, ∀ψ ∈ H− 1
2 (Γ).

Remark 1. Let us define the bilinear form ǎ : H
1
2 (Γ)×H

1
2 (Γ)→ R as

ǎ(ϕ, ψ) := ⟨Wϕ, ψ⟩Γ + ⟨ϕ, 1⟩Γ ⟨ψ, 1⟩Γ , ∀ϕ, ψ ∈ H
1
2 (Γ). (2.3)

One can also prove (see, e.g., [37, Section 2] and the references therein) that there exists a constant α > 0
such that

ǎ(ϕ, ϕ) ≥ α ∥ϕ∥2
H

1
2 (Γ)

, ∀ϕ ∈ H
1
2 (Γ).

Lemma 2.3 (Maue’s formula, [20, Lemma 1.2.2] & [34, Theorem 6.15]). Let D ⊂ R2 be a bounded
Lipschitz polygon with boundary Γ := ∂D. Then, for all φ ∈ C 0(Γ) with continuous derivative on each
smooth segment of Γ it holds that

Wφ = −
d

ds
V
d

ds
φ in H− 1

2 (Γ), (2.4)

where d
ds denotes the arc-length derivative. The relation (2.4) remains valid for φ ∈ H

1
2 (Γ).

2.3.1. Direct Boundary Integral Formulation of the interior Dirichlet BVP. We consider the interior
Laplace problem equipped with Dirichlet boundary conditions in a bounded Lipschitz domain D ⊂ R2

with boundary Γ := ∂D.

Problem 2.4 (Dirichlet Boundary Value Problem). Let f ∈ H
1
2 (Γ) be given. We seek u ∈ H1(D)

satisfying

−∆u = 0 in D and γ0u = f on Γ.

As is customary, one may recast Problem 2.4 as an equivalent BIE using the BIOs introduced in
(2.2). The starting point is the so-called integral representation formula: we express the weak solution
u ∈ H1(D) to Problem 2.4, using the layer potentials introduced in (2.1) as follows:

u = S(γ1u)−D(γ0u) in D. (2.6)

By applying the Dirichlet trace operator γ0 : H1(D) → H
1
2 (Γ) to (2.6) and using the boundary

condition on Γ stated in Problem 2.4, one obtains the following BIE for the unknown datum γ1u ∈
H− 1

2 (Γ).

Problem 2.5 (Boundary Integral Formulation of Problem 2.4). Let f ∈ H
1
2 (Γ) be given. We seek

ψ := γ1u ∈ H
− 1

2 (Γ) such that

Vψ =

(
1

2
Id+ K

)
f.

The well-posedness of the BIE in Problem 2.5 follows from the mapping properties of the BIOs in
Proposition 2.1, the ellipticity of the single layer BIO V : H− 1

2 (Γ)→ H
1
2 (Γ) in Proposition 2.2, and the

Lax-Milgram lemma.
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2.3.2. Direct Boundary Integral Formulation of the Interior Neumann BVP. We consider the interior
Laplace problem equipped with nonhomogeneous Neumann boundary conditions in a bounded, simply
connected Lipschitz domain D ⊂ R2 with boundary Γ := ∂D, thus rendering the boundary Γ connected
itself.

Problem 2.6 (Neumann BVP in D). Let g ∈ H− 1
2 (Γ) be given. We seek u ∈ H1(D) satisfying

∆u = 0 in D and γ1u = g on Γ.

It is well-established that there exists a unique u ∈ H1(D)/R solution to Problem 2.6 provided that

one further imposes g ∈ H− 1
2 (Γ)/R (see, e.g., [34, Theorem 4.9]). We reduce the boundary value

problem stated in Problem 2.6 to an equivalent BIE using the BIOs introduced in (2.2) and the integral

representation formula (2.6). The application of the Neumann trace operator γ1 : H1(∆,D)→ H− 1
2 (Γ)

to (2.6) together with boundary condition stated in Problem 2.6 yields the following boundary integral
formulation of Problem 2.6.

Problem 2.7 (Boundary Integral Formulation of Problem 2.6). Let g ∈ H− 1
2 (Γ)/R be given. We seek

ϕ := γ0u ∈ H
1
2 (Γ)/R such that

Wϕ =

(
1

2
Id− K

′

)
g.

The well-posedness of Problem 2.7 follows from the mapping properties of the BIOs stated in Propo-
sition 2.1, Proposition 2.2, the fact that K′ preserves integral mean value zero for densities defined over
Γ and from the Lax-Milgram lemma, as it is thoroughly explained in [34, Section 7.2].

2.4. Regularity of the solution to the BIEs in Lipschitz Polygons. We recapitulate results
concerning the regularity of solutions to the BIEs stated in Problems 2.5 and 2.7. In the following, we
assume that D ⊂ R2 is a bounded Lipschitz polygon with boundary Γ := ∂D characterized by a finite
number J ≥ 3 of vertices {xj}

J
j=1 ⊂ R2. We enumerate cyclically mod J , i.e., xJ+1 = x1. We denote

Γj = conv(xj ,xj+1), for j = 1, . . . , J , (with the convention Γ0 = ΓJ) and let ωj ∈ (0, 2π) be the internal
angle at xj , i.e., that of the wedge formed by the edges Γj−1 and Γj , j = 1 . . . , J .

Let {χj}
J
j=1 be a partition of unity of Γ, where each function χj , j = 1, . . . , J , is constructed by

considering the restriction of a function in C 2
0 (R

2) to the boundary Γ such that χj = 1 in a neighborhood
of xj and supp{χj} ⊂ Γj−1 ∪ {xj} ∪ Γj . Let φ : Γ→ R be a function defined on the boundary Γ. Using
the previously described partition of unity, we may write

φ =
J∑

j=1

(φ−, φ+)χj on Γ,

where by (φ−, φ+) we denote the restriction of φ : Γ → R to Γj−1 ∪ {xj} ∪ Γj with φ− := φ|Γj−1
and

φ+ := φ|Γj
, for j = 1, . . . , J .

The following result (from [16]) describes the regularity of the solution to Problems 2.5 and 2.7.

Proposition 2.8 ([16, Proposition 2.1]). Set αjk := k π
ωj
, for k ∈ N and j = 1, . . . , J . Let t ≥ 1/2 and

n ∈ N be such that n+ 1 ≥ ωj

π

(
t− 1

2

)
≥ n for all j = 1, . . . , J .

(i) Assume that f ∈ H
1
2 (Γ) in Problem 2.5 is additionally piecewise analytic. Then, there exists ψ0

satisfying ψ0|Γj
∈ Ht−1(Γj) for all j = 1, . . . , J , such that the solution ψ ∈ H− 1

2 (Γ) to Problem

2.5 admits the following representation:

ψ =

J∑

j=1

n∑

k=1

((ψjk)−, (ψjk)+)χj + ψ0. (2.7)

In (2.7), if αj,k /∈ Z

(ψjk)± = c±jk ∥x− xj∥
αjk−1

,

and if αj,k ∈ Z

(ψjk)± = c±jk ∥x− xj∥
αjk−1

+ d±jk ∥x− xj∥
αjk−1

log ∥x− xj∥ ,

where c±jk, d
±
jk ∈ R, for j = 1, . . . , J and k = 1, . . . , n.
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(ii) Assume that g ∈ H− 1
2 (Γ)/R in Problem 2.7 is additionally piecewise analytic. Then, there exists

ϕ0 such that ϕ0|Γj
∈ Ht(Γj), for all j = 1, . . . , J , such that the solution ϕ ∈ H

1
2 (Γ) to Problem

2.7 admits the following representation:

ϕ =
J∑

j=1

n∑

k=1

((ϕjk)−, (ϕjk)+)χj + ϕ0. (2.8)

In (2.8), if αj,k /∈ Z

(ϕjk)± = c±jk ∥x− xj∥
αjk ,

and if αj,k ∈ Z

(ϕjk)± = c±jk ∥x− xj∥
αjk + d±jk ∥x− xj∥

αjk log ∥x− xj∥ ,

where c±jk, d
±
jk ∈ R, for j = 1, . . . , J and k = 1, . . . , n.

2.5. Boundary Integral Operators on Open Arcs. We proceed to extend the definitions and results
introduced in Section 2.3 for BIOs in Lipschitz domains D with closed boundary Γ = ∂D, i.e., ∂Γ = ∅,
to open arcs Λ in R2 (in the sense of [30, Definition 2.4.2]), for which ∂Λ ̸= ∅. To this end, we consider
a bounded Lipschitz D ⊂ R2 with boundary Γ := ∂D and assume that Λ ⊂ R2 is a connected open arc
of Γ with positive measure and endpoints x1 and x2 in Γ. By [10, Theorem 1], the potentials in (2.1)
are well defined as elements on local Sobolev spaces over the unbounded domain Λc := R2 \ Λ, so that
the layer potentials

S : H̃− 1
2 (Λ)→ H1

loc(R
2) and D : H̃

1
2 (Λ)→ H1

loc(Λ
c),

define continuous operators. The continuity properties of the layer potentials and trace operators [26,
Theorem 3.38] together with the jump properties of the layer potentials [10, Lemma 4.1] allow us to
define the BIOs on Λ as before:

V := γ0S and W := −γ1D.

We recall key properties of the single layer and hypersingular BIOs on a open arc Λ.

Proposition 2.9 ([9, Lemmas 1 & 3]). Let Λ ⊊ Γ be an open Jordan arc. For |σ| ≤ 1
2 , the maps

V : H̃− 1
2+σ(Λ)→ H

1
2+σ(Λ) and W : H̃

1
2+σ(Λ)→ H− 1

2+σ(Λ)

are continuous.

Theorem 2.10 ([9, Section 2] and [35, Theorem 1.5]). Let Λ ⊊ Γ be a Jordan arc. Then, there exist

positive constants µ, η (depending upon Λ) such that for all ψ ∈ H̃− 1
2 (Λ) and for all ϕ ∈ H̃

1
2 (Λ) it holds

⟨Vψ,ψ⟩Λ ≥ η ∥ψ∥
2

H̃−
1
2 (Λ)

, ⟨Wϕ, ϕ⟩Λ ≥ µ ∥ϕ∥
2

H̃
1
2 (Λ)

.

Problem 2.11 (Weakly singular BIE on Λ). Let f ∈ H
1
2 (Λ) be given. We seek u ∈ H̃− 1

2 (Λ) satisfying

⟨Vu, v⟩Λ = ⟨f, v⟩Λ , ∀ v ∈ H̃− 1
2 (Λ).

Problem 2.12 (Hypersingular BIE on Λ). Let g ∈ H− 1
2 (Λ) be given. We seek ϕ ∈ H̃

1
2 (Λ) satisfying

⟨Wϕ, v⟩Λ = ⟨g, v⟩Λ , ∀ v ∈ H̃
1
2 (Λ).

As with Problems 2.5 and 2.7, the well-posedness of Problems 2.11 and 2.12 follows from Proposition

2.9, Theorem 2.10 and the Lax-Milgram lemma. Moreover, the respective solutions ψ ∈ H̃− 1
2 (Λ) and

φ ∈ H̃
1
2 (Λ) satisfy

∥ψ∥
H−

1
2 (Λ)

≤
1

η
∥f∥

H
1
2 (Λ)

and ∥φ∥
H

1
2 (Λ)

≤
1

µ
∥g∥

H−
1
2 (Λ)

,

with µ > 0 as in Theorem 2.10.
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2.6. Regularity of the solution to the BIEs on open Arcs. For the ensuing analysis of lower-order
BEM, in particular on open arcs, we shall invoke a decomposition of solutions into regular and singular
parts, from [38, 16]. For i = 1, 2, let ϱi denote the Euclidean distance between x ∈ Λ and the endpoint
xi ∈ R2 of Λ and let ξi be a C∞ cut-off function on Λ with 0 ≤ ξi ≤ 1, ξi = 1 near xi and ξ = 0 at the

opposite end. For α1, α2 ∈ R and ψ0 ∈ H̃
s(Λ) for any s < 2, we set

ψ :=
2∑

j=1

αjϱ
1
2
j ξj + ψ0 (2.9)

and define

∥ψ∥
T s(Λ) :=

{ ∑2
j=1 |αj |+ ∥ψ0∥H̃s(Λ) s ∈ [1, 2)

∥ψ∥H̃s(Λ) s < 1,

T
s(Λ) := R2 × H̃s(Λ).

Proposition 2.13 ([38, Theorem 1.8]). For σ ∈ (− 1
2 ,

1
2 ) the operator W : T

3
2+σ(Λ)→ H

1
2+σ(Λ)

{α1, α2, ψ0} 7→W




2∑

j=1

αjϱ
1
2
j ξj + ψ0


 = g,

is bijective and continuous and there exists C > 0 such that

∥ψ∥
T s(Λ) ≤ C ∥g∥H

1
2
+σ(Λ)

,

where ψ is as in (2.9).

2.7. Galerkin Boundary Element Discretization. We proceed to detail the Galerkin discretization
of Problems 2.5, 2.7, 2.11 and 2.12. We remark that other forms of numerical discretizations, such as
collocation or Petrov-Galerkin formulations, may be considered as well.

In what follows, we assume that D ⊂ R2 is a bounded, Lipschitz polygon with boundary Γ := ∂D. As
is customary in the h-Galerkin BEM, we decompose the boundary Γ into N ∈ N straight, disjoint line
segments Γj , for j = 1, . . . , N , from now onwards referred to as elements. The vertices of the polygon Γ
must match the endpoints of some of the elements and the mesh TN := {Γi}

N
i=1 covers Γ itself. Equipped

with these definitions, we introduce the usual boundary element spaces of piecewise polynomial functions
on the mesh TN of Γ:

S0(Γ, TN ) :=
{
ψ ∈ L2(Γ) : ψ|Γj

∈ P0(Γj), j = 1, . . . , N
}
,

S1(Γ, TN ) :=
{
ψ ∈ H1(Γ) : ψ|Γj

∈ P1(Γj), j = 1, . . . , N
}
.

In the above, and for each j = 1, . . . , N , Pp(Γj) denotes the space of polynomials of degree p ∈ N ∪ {0}
on Γj .

Problem 2.14 (BEM for Problem 2.5). Let TN be a mesh of the boundary Γ and let f ∈ H
1
2 (Γ) be

given. We seek ψN ∈ S
0(Γ, TN ) satisfying

⟨VψN , φN ⟩Γ =

〈(
1

2
Id+ K

)
f, φN

〉

Γ

, ∀ φN ∈ S
0(Γ, TN ).

Problem 2.15 (BEM for Problem 2.7). Let TN be a partition of the boundary Γ and let g ∈ H− 1
2 (Γ) be

given. We seek ϕN ∈ S
1(Γ, TN ) satisfying

⟨WϕN , φN ⟩Γ + ⟨ϕN , 1⟩Γ ⟨φN , 1⟩Γ =

〈(
1

2
Id− K

′

)
g, φN

〉

Γ

, ∀ φN ∈ S
1(Γ, TN ).

Remark 2. The continuity and ellipticity of V and the bilinear form ǎ(·, ·) (recall its definition in Remark

1) in H− 1
2 (Γ) and H

1
2 (Γ), respectively, will ensure the existence and uniqueness of solutions to Problems

2.14 and 2.15.

Remark 3 (Weakly Singular Operator V). For Γ := ∂D a closed curve of arclength L = |Γ|, let r :
[0, L)→ Γ be its arclength parametrization and consider the map I given for ϕ ∈ C 0(Γ) by

(Iϕ)(x) :=

∫
r
−1(x)

0

ϕ ◦ r(σ) ds(σ)− ⟨ϕ, 1⟩Γ,
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for all x ∈ Γ. One verifies that the map I may be extended to I ∈ Liso(H
− 1

2 (Γ)/R, H
1
2 (Γ)). For

ψ ∈ H−1/2(Γ) define ψ̆ := ψ− 1
L ⟨ψ, 1⟩Γ ∈ H

−1/2(Γ)/R. Then Maue’s formula in Lemma 2.3 implies, for

every ψN , φN ∈ S
0(Γ, TN ), that

⟨VψN , φN ⟩Γ

=
〈
W(Iψ̆N ), Iφ̆N

〉

Γ
+

1

L

〈
V ⟨ψN , 1⟩Γ , ϕ̆N

〉

Γ
+

1

L

〈
Vψ̆N , ⟨ϕN , 1⟩Γ

〉

Γ
+

1

L2
⟨V ⟨ψN , 1⟩Γ , ⟨ϕN , 1⟩Γ⟩Γ .

We continue with the Galerkin discretization of Problems 2.11 and 2.12. Recall Λ ⊊ Γ to be a Jordan
arc and let T̃N := {Λi}

N
i=1 be a mesh on Λ consisting, as before, of straight, disjoint line segments Λj ,

for j = 1, . . . , N . We introduce the following spaces of piecewise polynomials:

S0(Λ, T̃N ) :=
{
ψ ∈ L2(Λ) : ψ|Λj

∈ P0(Λj), j = 1, . . . , N
}
,

S1(Λ, T̃N ) :=
{
ψ ∈ H̃1(Λ) : ψ|Λj

∈ P1(Λj), j = 1, . . . , N
}
.

Problem 2.16 (Boundary element discretization of Problem 2.11). Let T̃N be a mesh over the Jordan

arc Λ ⊊ Γ and let f ∈ H
1
2 (Λ) be given. We seek ψN ∈ S

0(Λ, T̃N ) satisfying

⟨VψN , ξN ⟩Λ = ⟨f, ξN ⟩Λ ∀ ξN ∈ S
0(Λ, T̃N ).

Problem 2.17 (Boundary element discretization of Problem 2.12). Let T̃N be a mesh over the Jordan

arc Λ ⊊ Γ and let g ∈ H− 1
2 (Λ) be given. We seek φN ∈ S

1(Λ, T̃N ) satisfying

⟨WϕN , φN ⟩Λ = ⟨g, φN ⟩Λ ∀ φN ∈ S
1(Λ, T̃N ).

3. ReLU Neural Networks

We introduce a key ingredient in the present paper, namely the so-called DNNs. Even though in
this work we use only the ReLU activation function, other (continuous) activation functions could be
considered in the analysis and numerical construction of DNNs, such as sigmoidal, or tanh activations.
However, the approximation results presented herein hold with the simpler, and computationally more
efficient, ReLU activation function.

Definition 3.1 (Deep Neural Network). Let L ≥ 2, N0, N1, . . . , NL ∈ N. A map Φ : RN0 → RNL given
by

Φ(x) = WL(ϱ(WL−1(ϱ(· · · ϱ(W1((x)))))), x ∈ RN0 (3.1)

with affine maps Wℓ : R
Nℓ−1 → RNℓ , Wℓ(x) = Aℓx + bℓ, 1 ≤ ℓ ≤ L, where Aℓ ∈ RNℓ×Nℓ−1 , bℓ ∈ RNℓ ,

and with activation function ϱ : R→ R (acting component-wise on vector inputs) is called Deep Neural
Network. In the above definition, N0 is the dimension of the input layer, NL denotes the dimension
of the output layer, L = L(Φ) denotes the number of layers (excluding the input layer), N1, . . . , NL

correspond to the widths of each of the L− 1 hidden layers, and M =M(Φ) := maxℓNℓ corresponds to
the width of the network. In addition, we denote by NN ϱ

L,M,N0,NL
the set of all DNNs Φ : RN0 → RNL

with input dimension N0, output dimension NL, a depth of at most L layers, maximum width M , and
activation function ϱ.

For any Φ ∈ NN ϱ
L,M,N0,NL

with L ≥ 2 as in (3.1), we introduce Φhid : RN0 → RNL−1 given by

Φhid(x) := ϱ(WL−1(ϱ(· · · ϱ(W1(x)))))),

ie., the subnetwork comprising all “responses from the hidden layers” of a DNN Φ ∈ NN ϱ
L,M,N0,NL

.

Moreover, we denote the space of all the responses from the hidden layers of DNN’s in NN ϱ
L,M,N0,NL

as

NN hid,ϱ
L,M,N0,NL

:=
{
Φhid : Φ ∈ NN ϱ

L,M,N0,NL

}
.

3.1. Structure of Galerkin Approximation Spaces generated by ReLU-NNs. It is an immediate
consequence from Definition 3.1 that functions generated by DNNs (understood in the sense that L ≥ 2
as opposed to shallow NNs, where L = 1) depend in a nonlinear fashion on the DNN parameters
characterizing the hidden layers, i.e., the weights Aℓ ∈ RNℓ×Nℓ−1 and biases bℓ ∈ RNℓ . However, by
setting the bias in the output layer of the DNN in Definition 3.1 to 0, i.e., bL = 0, we have that DNN
functions belong to the linear span of the space of functions generated by the “hidden layers” of the
corresponding DNN.
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Proposition 3.2. Assume given a DNN Φ ∈ NN ϱ
L,M,N0,NL

with L ≥ 2 and such that NL = 1, bL = 0.
Then, for any activation function ϱ : R→ R, it holds that

NN ϱ
L,M,N0,NL

= span
{
Φhid

i : Φhid ∈ NN hid,ϱ
L,M,N0,NL

, i ∈ {1, . . . , NL−1}
}
,

where Φhid
i denotes the i-th component of any Φhid ∈ NN hid,ϱ

L,M,N0,NL
.

We see from this proposition that DNNs: (i) span particular linear subspaces of dimension NL−1 and
(ii) span subspaces with basis elements that, in turn, can be chosen in a problem-adapted fashion by
adjusting the parameters in the hidden layers of the DNN.

It is clear from this (trivial) observation that shallow ReLU-NNs, which we will consider exclusively
in the remainder of this paper, can exactly reproduce spaces of continuous and piecewise linear functions
on Γ with a DNN of depth L = 2. Mesh refinement on Γ can be accounted for by adjusting the widths
of the hidden layers during training.

As was shown in [27, Sections 4 and 5], for L > 2, ReLU-DNNs can represent hp-boundary element
spaces on geometric partitions, which are known to afford exponential convergence rates for piecewise
analytic data. We hasten to add, however, that Proposition 3.2 has wider implications, e.g., training
NN hid,ϱ to emulate reduced bases by a greedy search, for example, will imply that the corresponding
Galerkin BEM (with subspaces corresponding to the DNN NN ϱ = span{Φhid ∈ NN hid,ϱ}) will deliver
performance corresponding to reduced bases BEM. This could be employed to accommodate, for example,
Galerkin BEM with basis sets that feature additional properties which are tailored to particular problem
classes.

3.2. P1-Spline Boundary Element Spaces as ReLU-NNs. Recall that N ∈ N corresponds to the

number of elements in the meshes on Γ and Λ (TN and T̃N , respectively), and let p ∈ N denote the

polynomial degree of the boundary element spaces Sp(Γ, TN ) and Sp(Λ, T̃N ) of piecewise polynomials of
degree p. Moreover, define I := (−1, 1) and let r : I→ R2 be a Lipschitz continuous and piecewise affine
parametrization of the closed curve Γ (where Γ is Lipschitz) satisfying r(−1) = r(1) and r′(t) ̸= 0 for
almost every t ∈ I. Define, for ϕ ∈ C 0(Γ), the so-called pullback operator as

τrϕ := ϕ ◦ r ∈ C
0
per(I),

where C 0
per(I) denotes the subspace of continuous, 2-periodic functions. This operator can be uniquely

extended in such a way that for s ∈ [−1, 1] the map τr : Hs(Γ) → Hs
per(I) defines a linear, continuous

operators that admits a bounded inverse, thus inducing an isomorphism between Hs(Γ) and Hs(I),
where, for s ≥ 0, Hs

per(I) denotes the Sobolev space of 2-periodic functions of order s and H−s
per(I)

signifies its dual in the L2(I) duality pairing. The following result addresses the representability of the
space S1(Γ, TN ) by means of ReLU-NNs.

Proposition 3.3. Let N ∈ N. For each ϕN ∈ S1(Γ, TN ) there is a ReLU neural network ΦN ∈
NN 2,N+1,1,1 such that (τrϕN )(t) ≡ ΦN (t) for all t ∈ I.

Proof. Recall the setting described in Section 2.7: Given N ∈ N we consider a mesh TN of Γ consisting
of N +1 points {xn}

N
n=0 ⊂ Γ and where x0 = xN (i.e. N distinct points). The set of nodes {xn}

N
n=0 ⊂ Γ

may be uniquely identified with {tj}
N
j=0 ⊂ I through r(tj) = xj , for j = 0, . . . , N , and we assume that

−1 = t0 < t1 < · · · < tN−1 < tN = 1 set Kj = (tj , tj+1) for j = 0, . . . , N − 1, and define

S1(I, T̂N ) :=
{
ϕ ∈ H1(I) : ϕ|Kj

∈ P1, j = 0, . . . , N − 1
}
,

where T̂N = ∪N−1
j=0 Kj is a partition of the interval I. Set hj = tj+1 − tj . Let us define the so-called “hat

functions”

ζj(t) :=





t−tj−1

hj−1
, t ∈ Kj−1,

1− t−tj
hj

, t ∈ Kj ,

0, t /∈ Kj−1 ∪Kj ,

, t ∈ I,

for j = 1, . . . , N − 1 and t ∈ I, together with

ζ0(t) :=

{
1− t−t0

h0
, t ∈ K0,

0, t /∈ K0,
and ζN (t) :=

{
t−tN−1

hN−1
, t ∈ KN−1,

0, t /∈ KN−1,
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Recall that span{ζ0, . . . , ζN} = S1(I, T̂ N ), whence for all ΦN ∈ S
1(I, T̂ N ) there are unique coefficients

c0(ΦN ), . . . , cN (ΦN ) ∈ R, such that

ΦN (t) =

N∑

j=0

cj(ΦN )ζj(t), t ∈ I. (3.2)

Each ζj can be represented (non-uniquely) using ReLU-NNs as follows

ζj(t) =
1

hj−1
ϱ(t− tj−1)−

(
1

hj−1
+

1

hj

)
ϱ(t− tj) +

1

hj
ϱ(t− tj+1), t ∈ I, (3.3)

for j = 1, . . . , N − 1, together with

ζ0(t) = 1−
1

h0
ϱ(t− t0) +

1

h0
ϱ(t− t1) and ζN (t) =

1

hN−1
ϱ(t− tN−1), t ∈ I

Using (3.3) we obtain


ζ0(t)
...

ζN (t)


 = A2ϱ (A1t+ b1) + b2,

where A1 := (1, . . . , 1)⊤ ∈ R(N+1)×1, b1 := (−t0, . . . ,−tN )⊤ ∈ RN+1, b2 := (1, 0, . . . , 0)⊤ ∈ RN+1 and
A2 ∈ R(N+1)×(N+1) is defined as follows

A2 :=



v1

H

v2




where v1 := (− 1
h0
, 1
h0
, 0, . . . , 0) ∈ R1×(N+1), v2 := (0, . . . , 0, 1

hN−1
, 0) ∈ R1×(N+1), andH ∈ R(N−1)×(N+1)

H[i, j] :=





1
hi−1

, if i = j,

−
(

1
hi−1

+ 1
hi

)
, if i+ 1 = j,

1
hi
, if i+ 2 = j,

0, otherwise,

for i = 1, . . . , N + 1, j = 1, . . . , N + 1. Finally, we construct the output layer by using (3.2). Let us
define C := (c0(ΦN ), . . . , cN (ΦN )) ∈ R1×(N+1). Then we have that

ΦN (t) = C



ζ1(t)
...

ζN (t)


 = C (A2ϱ (A1t+ b1) + b2) , t ∈ I. (3.4)

Observe that ΦN ∈ NN 2,N+1,1,1 and that, due to the construction (3.4), the weights of ΦN are bounded
in absolute value by max{1 + h1, ∥ϕN∥L∞(Γ) , 2 max

j=0,...,N−1

1
hj
}.

Now, set νj = τ−1
r
ζj , for j = 0, . . . , N . Therefore, for each ϕN ∈ S

1(Γ, TN ) we have that

ϕN (x) =
N∑

j=0

ϕN (xj)νj(x), x ∈ Γ. (3.5)

Observe that since ϕN (x0) = ϕN (xN ) we have ϕN ∈ S
1(Γ, TN ). The application of τr to (3.5) yields

(τrϕN ) (t) =
N∑

j=0

ϕN (xj)ζj(t), t ∈ I. (3.6)

Observe that the right-hand side of (3.6) defines an element of NN 2,N+1,1,1, thus concluding the proof.
□

Remark 4. As pointed out in the proof of Proposition 3.3, the representation of the “hat functions”
ζj ∈ ϕN ∈ S

1(I, TN ) is not unique. One may also write

ζj(t) = ϱ

(
1− ϱ

(
t− tj
hj

)
− ϱ

(
tj − t

hj+1

))
, t ∈ I

for j = 0, . . . , N and t ∈ I. Then, there exists a neural network Ψ̃j ∈ NN 4,2,1,1 such that Ψj(t) = ζj(t),

for all t ∈ I and j = 1, . . . , N . This representation leads to ReLU-NNs of width 2 and depth 3.



12 Version of January 23, 2023

3.3. Approximation Properties of ReLU-NNs: h-Galerkin BEM. Based on the result stated in
Proposition 3.3 (concerning the exact emulation of the standard P1-BEM spaces) one may conclude that
existing results on the convergence rates of Galerkin BEM are straightforwardly “transferred” to the
ReLU Galerkin-BEM framework. In this section, we provide a clear result establishing this connection.
Firstly, we recapitulate known approximation results of singular functions on graded partitions.

Proposition 3.4. Set I = (0, 1) and consider a function u ∈ H̃
1
2 (I) of the form

u(x) =
J∑

j=1

αjx
λj + u0(x) , where Re{λj} > 0, u0 ∈ H

2(I), αj ∈ C, x ∈ I.

Assume λ0 := min{Re{λj} : j = 1, ..., J} ≥ s for some 0 < s ≤ 1. For a grading parameter β ≥ 1,
denote by S1(I, TN,β) the space of continuous, piecewise linear functions in I = (0, 1) on the graded mesh

TN,β characterized by the nodes {xN,β
k := (k/N)β , k = 0, 1, ..., N} in I. Then, for every ε > 0 and s ≥ 0

such that s < λ0+1/2 and s ≤ 1, and with IβN : C 0(I)→ S1(I, TN,β) as the nodal interpolant, there holds
that

∥u− IβNu∥H̃s(I) ≲

{
N−(λ0−(s−1/2))β+ε if 1 ≤ β ≤ 2−s

λ0−(s−1/2) ,

N−(2−s) if β > 2−s
λ0−(s−1/2) ,

(3.7)

as N grows to infinity. In (3.7), the implied constant depends on β, {λj}j=1,...,J , αj, u0 and ε.

Proof. A proof of this result is provided, for the convenience of the reader, in Appendix A. □

We observe that Proposition 3.3 allows for arbitrary locations of the nodes characterizing the mesh TN
on Γ, while ensuring exact ReLU-NN emulation of the spaces S1(Γ, TN ). The preceding result, therefore,
also implies approximation rate bounds for ReLU-NNs. We describe these now.

Theorem 3.5 (Approximation of the Solution to BIEs by ReLU–NNs).

(i) Let ϕ ∈ H
1
2 (Γ) be the solution of Problem 2.7 on a bounded Lipschitz polygon with boundary

Γ characterized by a finite number J ≥ 3 of vertices. Assume that g ∈ H− 1
2 (Γ)/R in Problem

2.7 is additionally piecewise analytic and let r : I→ R2 be a Lipschitz continuous and piecewise
linear parametrization of Γ satisfying r(−1) = r(1) and r′(t) ̸= 0 for almost every t ∈ I.

Then, there exists C > 0 such that for each N ∈ N there exists φN ∈ NN 2,M,1,1 satisfying

∥τrϕ− φN∥
H

1
2 (I)
≤ CN− 3

2 , (3.8)

where τr : H
1
2 (Γ) → H

1
2 (I) denotes the pullback operator introduced in Section 3.2 and M =

O(N).

(ii) Let φ ∈ H̃
1
2 (Λ) be the solution of Problem 2.12 for g ∈ H1(Λ), and let r : I → R2 be a regular

parametrization, i.e. r′(t) ̸= 0 for t ∈ I, of the open arc Λ ⊂ R2.
Then, for every ε > 0 there exists C(ε) > 0 (depending on ε > 0) such that for each N ∈ N

there exists ϕN ∈ NN 2,N,1,1 satisfying

∥τrφ−ϕN∥
H̃

1
2 (I)
≤ C(ε)N− 3

2+ε, (3.9)

where τr : H̃
1
2 (Λ)→ H̃

1
2 (I) denotes the pullback operator introduced in Section 3.2.

Proof.

(i) Let r : I → Γ be a Lipschitz continuous and piecewise linear parametrization of Γ. Being Γ a
bounded Lipschitz polygon with straight sides and defined by J ≥ 3 vertices, there exist points
−1 = t0 < t1 < · · · < tJ := 1 satisfying r(tj) = xj , for j = 0, · · · , J , where we set x0 = xJ .
Throughout this proof, we use Ij := [tj , tj+1] ⊂ I. A parametrization of this polygon is, for
instance, given by

r(t) =
tj − t

tj − tj+1
xj +

t− tj+1

tj − tj+1
xj+1, t ∈ Ij , j = 0, ..., J − 1.

Additionally, for j = 0, . . . , J − 1, we define the extension by zero and restriction operators
Ej : C 0(Ij)→ C 0(I) and Rj : C 0(I)→ C 0(Ij) as

Ej(u)(t) =

{
u t ∈ Ij
0 t /∈ Ij

, a.e. t ∈ I, and Rj(v)(t) = v(t), a.e. t ∈ Ij

Equipped with this, and according to Proposition 2.8 item (ii), we have that

(τrϕ) (t) = ηj,1(t) + ηj,2(t) + (τrϕ0) (t), t ∈ Ij .
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with

ηj,1(t) := χj,1(t)

n∑

k=1

βj,k
∥xj+1 − xj∥

αjk

|tj+1 − tj |
αj,k

|t− tj |
αj,k , (3.10)

and

ηj,2(t) := χj,2(t)

n∑

k=1

βj+1,k
∥xj+1 − xj∥

αj+1,k

|tj+1 − tj |
αj+1,k

|t− tj+1|
αj+1,k , (3.11)

where χj,1, χj,2 : Ij → R are infinitely differentiable functions, which, furthermore, are identically
equal to 1 for |t−tj | < Lj/4 and |t−tj+1| < Lj/4 (with Lj := |tj+1−tj |), respectively. In addition,
χj,1 and χj,2 vanish for |t−tj | > Lj/2 and |t−tj+1| > Lj/2, respectively. In (3.10) and (3.11), for
each k ∈ N and j = 1, . . . , J , we have that 3

2
ωj

π − 1 ≤ n ≤ 3
2
ωj

π , αjk := k π
ωj
, Rj(τrϕ0) ∈ H

2(Ij)

and βj,k, βj+1,k ∈ R, as stated in Proposition 2.8. Observe that in (3.10) and (3.11) we have
singularities arising at t = tj and t = tj+1. The strength of these singularities is dictated by
the inner angles of the polygon at the corresponding vertices. It follows, from Proposition 3.4,

with s = 1
2 and βj > max

{
3

2αj,1
, 3
2αj+1,1

}
, that there exist ηj,1,N , ηj,2,N ∈ S

1(Ij , TN,βj
) and a

constant C > 0 independent of N such that

∥η1,j − η1,j,N∥
H̃

1
2 (Ij)

≤ CN− 3
2 , and ∥η2,j − η2,j,N∥

H̃
1
2 (Ij)

≤ CN− 3
2 ,

and, in addition, there exists ϕj,N ∈ S
1(Ij , TN,βj

) such that

∥Rj(τrϕ0)− ϕj,N∥
H̃

1
2 (Ij)

≤ CN− 3
2 .

Set φj,N := ηj,1,N + ηj,2,N + ϕj,N ∈ S
1(I, TN,βj

) and we have that

∥Rj(τrϕ)− φj,N∥
H̃

1
2 (Ij)

≤ CN− 3
2 (3.12)

for some positive constant C independent of N . At this point, we make the following observation:
It holds that Rj(τrϕ) = φj,N on ∂Ij , hence Ej(R(τrϕ)− φj,N ) ∈ H

1
2 (I) and

∥Ej(R(τrϕ)− φj,N )∥
H

1
2 (I)

= ∥R(τrϕ)− φj,N∥
H̃

1
2 (Ij)

.

Following Proposition 3.3, on each side of the polygon we have constructed a ReLU-NN belonging
to NN 3,N+2,1,1 that approximates Rj(τrϕ) according to (3.12). In addition, Proposition 3.4
implies that these ReLU-NNs interpolate exactly the value of the solution to Problem 2.7 at
the vertices of the polygon. Hence, by defining φN := φj,N in Ij , for j = 1, . . . , J , namely we
define φN to be equal to the previously constructed ReLU on each side of the polygon, we have
constructed a ReLU-NN satisfying (3.8). Indeed, we have that

∥τrϕ− φN∥
H

1
2 (I)
≤

J−1∑

j=0

∥(Ej ◦ Rj) (τrϕ− φN )∥
H

1
2 (I)

=

J−1∑

j=0

∥Ej (Rj(τrϕ)− φj,N )∥
H̃

1
2 (Ij)

This ReLU-NN in particular belongs to NN 3,J(N+1),1,1, thus concluding the proof of this
statement.

(ii) For the sake of simplicity and without loss of generality, we consider Λ := (−1, 1)×{0} ⊂ R2. It
follows from Proposition 2.13 that

(τrϕ) (t) := α1 |1 + t|
1
2 χ1(t) + α2 |1− t|

1
2 χ2(t) + v̌(t), t ∈ I,

where we have used the parametrization r(t) = (t, 0)⊤ of Λ ⊂ R2, α1, α2 ∈ R, χ1, χ2 ∈ C∞(I) are
fixed cut-off functions with χ1 = 1, χ2 = 1 in a neighborhood of t = −1 and t = 1, respectively,
and v̌ ∈ H

1
2+σ(I) for σ ∈

(
− 1

2 ,
1
2

)
. Set

η1(t) := α1 |1 + t|
1
2 χ1(t), η2(t) := α2 |1− t|

1
2 χ2(t), t ∈ I. (3.13)

Observe that [0, 1] ∋ t 7→ η1(2t−1) and [0, 1] ∋ t 7→ η1(−2t+1) defined in (3.13) fit the framework
of Proposition 3.4 with J = 1 and λ1 = 1

2 . It follows from Proposition 3.4 with s = 1
2 that for

β > 2−s
λ0−(s−1/2) = 3 that there exists η1,N , η2,N ∈ S

1(I, TN,β) and a constant C > 0 such that

∥η1 − η1,N∥
H̃

1
2 (I)
≤ CN− 3

2 , and ∥η2 − η2,N∥
H̃

1
2 (I)
≤ CN− 3

2 .



14 Version of January 23, 2023

In addition, since v̌ ∈ H
1
2+σ(I) for for σ ∈

(
− 1

2 ,
1
2

)
, for every ε > 0 there exists C(ε) > 0

(depending on ε > 0) such that for each N ∈ N there exists v̌N ∈ S
1(I, TN,β) satisfying

∥v̌ − v̌N∥
H̃

1
2 (I)
≤ C(ε)N− 3

2+ε.

Observe that by adding η1,N , η2,N , v̌N ∈ S1(I, TN,β) and recalling that S1(I, TN,β) is a vector
space, we conclude that ϕN := η1,N + η2,N + v̌N ∈ S1(I, TN,β) fulfills the estimate in (3.9).
According to Proposition 3.3, ϕN ∈ NN 2,N+1,1,1. However, recalling that ϕN (−1) = ϕN (1) =
0, we can discard the basis functions associated to the endpoints of the interval and conclude
that ϕN ∈ NN 3,N,1,1.

□

4. ReLU Neural Network Galerkin BEM

In this section, we propose two algorithms to construct the ReLU-NNs described in Section 3 for
the approximation of the solution to BIEs in polygons and arcs, introduced in Sections 2.3 and 2.5,
respectively. Following the representation of the lower-order boundary element spaces as ReLU-NNs
elaborated in Section 3, we focus only on shallow NNs. The first method, described herein in Section 4.1,
aims to construct a ReLU-NN by considering as a loss function the total energy of the problem. Indeed, it
is well-known that the solution to operators equations involving “elliptic” operators in Hilbert spaces may
be cast as minimization problems on Hilbert spaces. We rely on this observation to mathematically justify
this algorithm for the construction of the corresponding ReLU-NN. This approach has been previously
described for example in [19, Section 7.2] in the context of one-dimensional FEM for the Poisson problem
with non-homogeneous Dirichlet boundary conditions, and actually is the key ingredient of the so-called
Deep Ritz Method, described in [13, 24, 22, 14]. The second method proposed in this work consists in
the construction of a computable loss function based on a posteriori error estimators for BIEs of the
first kind. These tools come in different flavors, and we refer to [15] for an extensive review, including
their application to the Adaptive BEM. In particular, here we make use of the so-called weighted residual
estimators [7, 8, 9], which have been proven to be reliable, thus providing a computable upper bound for
the error of the Galerkin BEM. To date, these are the only ones shown to deliver optimal convergence
rates when used in the Adaptive BEM algorithm (ABEM for short). Finally, in Section 4.3, we describe
precise algorithms for the computations of the ReLU-NNs for the approximation of the solutions to the
hypersingular BIEs introduced in Problems 2.7 and 2.12.

4.1. Energy Minimization. Throughout this section, let X be a real Hilbert space equipped with the
inner product (·, ·)X and the induced norm ∥·∥X =

√
(·, ·)X . In addition, let X ′ denote the dual space

of X and let ⟨·, ·⟩X represent the duality pairing between X ′ and X. As it is customary, we endow X ′

with the dual norm

∥f∥X′ := sup
0 ̸=u∈X

|⟨f, u⟩X |

∥u∥X
, f ∈ X ′.

In addition, we say that operator A : X → X ′ is X-elliptic if there exists a constant Ca > 0 such that

⟨Av, v⟩X ≥ Ca ∥v∥
2
X , ∀ v ∈ X. (4.1)

In the following, we recall a well-established result on continuous, self-adjoint and positive semi-definite
operators. This property has been previously used in the construction of DNNs in the “Deep Ritz
Method” framework introduced in [14].

Lemma 4.1 ([34, Lemma 3.2]). Let A : X → X ′ be a continuous, self-adjoint and positive semi-definite
operator, i.e.

⟨Av, v⟩X ≥ 0, ∀ v ∈ X,

and let f ∈ X ′. Then, u ∈ X solves the variational problem

⟨Au, v⟩X = ⟨f, v⟩X , ∀ v ∈ X,

if and only if

u = argmin
v∈X

(
1

2
⟨Av, v⟩X − ⟨f, v⟩X

)
.
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Lemma 4.1 allows us to express Problems 2.7 and 2.12 (as well as their discrete counterparts) as
minimization problems over the corresponding Hilbert spaces. Let us define,

ℓΓ :H
1
2 (Γ)→ R : ϕ 7→

1

2
⟨Wϕ, ϕ⟩Γ + ⟨ϕ, 1⟩2Γ − ⟨gΓ, ϕ⟩Γ , (4.2)

ℓΛ :H̃
1
2 (Λ)→ R : φ 7→

1

2
⟨Wφ,φ⟩Λ − ⟨gΛ, φ⟩Λ , (4.3)

where gΓ ∈ H
− 1

2 (Γ) and gΛ ∈ H
− 1

2 (Λ) represent the right-hand sides of the variational BIEs.
For each N ∈ N, we aim to find ReLU-NNs φ⋆

Γ,N ∈ NN 2,N+1,1,1 and ϕ⋆
Λ,N ∈ NN 2,N,1,1 minimizing

the loss functions defined in (4.2) and (4.3), i.e.,

φ⋆
Γ,N := argmin

φ∈NN 2,N+1,1,1∩H
1
2
per(I)

ℓΓ(τ
−1
r

φ) and ϕ⋆
Λ,N := argmin

ϕ∈NN 2,N,1,1∩H̃
1
2 (I)

ℓΛ(τ
−1
r

ϕ). (4.4)

Remark 5. Observe that ϕ⋆
Λ,N must vanish at the boundary of Λ. Hence, the width of the family of ReLU-

NNs over which we search ϕ⋆
Λ,N in (4.4) is exactly N . In addition, recall that NN 2,N+1,2,1 ∩H

1
2
per(I) ⊂

C 0
per(I), thus enforcing periodicity of the corresponding of the ReLU-NN in the approximation of the

density over a closed curve Γ.

Remark 6. While the loss functions (4.2) and (4.3) are applied to the operator W, similar loss functions
can be derived for V. Consisting of piecewise constant discontinuous functions on Γ, the spaces S0(Γ, TN )
in the Galerkin BEM Problem 2.14 for Symm’s BIE can not be exactly realized via ReLU-NNs. However,
with Remark 3, the corresponding loss functions for the Galerkin BEM Problem 2.14 can be realized
also with ReLU-NNs on Γ. All results on convergence rates for W will have, via Remark 3, analogs for
V. For reasons of length, we develop the ReLU Galerkin BEM algorithms only for W and loss functions
introduced in (4.2) and (4.3).

The following result and accompanying corollaries motivate our choice of loss functions. We use this
result to address the construction of ReLU–NNs by solving the minimization problems listed in (4.4).

Lemma 4.2. Let A : X → X ′ be a continuous, self-adjoint and X–elliptic operator. Given f ∈ X ′, let
u ∈ X be the unique solution to the following variational problem:

⟨Au, v⟩X = ⟨f, v⟩X , ∀v ∈ X. (4.5)

Define ℓ : X → R as

ℓ(v) :=
1

2
⟨Av, v⟩X − ⟨f, v⟩X , v ∈ X.

Then, there exist positive constants C1 and C2, both independent of u ∈ X, such that

∀v ∈ X : C1 (⟨f, u⟩X + 2ℓ(v)) ≤ ∥u− v∥2X ≤ C2 (⟨f, u⟩X + 2ℓ(v)) . (4.6)

Proof. Due to the continuity and X-ellipticity of the operator A : X → X ′, we may define an equivalent
norm to ∥·∥X in X as follows:

∥v∥
A
:=

√
⟨Av, v⟩X , v ∈ X.

Indeed, if Cc > 0 denotes the continuity constant of A : X → X ′ and Ca > 0 is as in (4.1), for all v ∈ X
it holds

C
1
2
a ∥v∥X ≤ ∥v∥A ≤ C

1
2
c ∥v∥X .

Let u ∈ X be the unique solution to the variational problem (4.5). Then, for all v ∈ X, we have

∥u− v∥X ≤ C
− 1

2
a ∥u− v∥

A
and ∥u− v∥X ≥ C

− 1
2

c ∥u− v∥
A
. (4.7)

For v ∈ X, we calculate

∥u− v∥2
A
= ⟨A(u− v), u− v⟩X = ⟨f, u⟩X − 2 ⟨f, v⟩X + ⟨Av, v⟩X . (4.8)

In (4.8) we use (4.5) and the self-adjointness of the operator A : X → X ′. The bounds presented in
(4.6), follow from (4.8) and (4.7) with C1 = C−1

a > 0 and C2 = C−1
c > 0. □

The next results, relevant for DNN training, follow from Lemma 4.2 and Proposition 3.3.
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Corollary 4.3. Let ϕ ∈ H
1
2 (Γ) be the unique solution to Problem 2.7 with gΓ ∈ H

− 1
2 (Γ)/R. Then, there

exist positive constants C1 and C2 (independent of ϕ and g) such that for all N ∈ N such that N +1 > J
and for all φ ∈ NN 2,N+1,1,1, it holds

C1

(〈(
1

2
Id− K

′

)
gΓ, ϕ

〉

Γ

+ 2ℓΓ(τ
−1
r

φ)

)
≤ ∥τrϕ− φ∥2

H
1
2 (I)
≤ C2

(〈(
1

2
Id− K

′

)
gΓ, ϕ

〉

Γ

+ 2ℓΓ(τ
−1
r

φ)

)
,

where ℓΓ : H
1
2 (Γ) → R is as in (4.2), the ReLU-NN φ is identified with its restriction to I and τr :

H
1
2 (Γ)→ H

1
2 (I) denotes the pullback operator.

Corollary 4.4. Let φ ∈ H̃
1
2 (Λ) be the unique solution to Problem 2.12 with right hand side gΛ ∈

H− 1
2 (Λ). Then, there exist positive constants C1 and C2 independent of ϕ and g such that for all N ∈ N

and for all ϕ ∈ NN 3,N,1,1 ∩ H̃
1
2 (Λ), it holds

C1

(
⟨gΛ, φ⟩Λ + 2ℓΛ(τ

−1
r

ϕ)
)
≤ ∥τrφ−ϕ∥2

H̃
1
2 (I)
≤ C2

(
⟨gΛ, φ⟩Λ + 2ℓΛ(τ

−1
r

ϕ)
)
,

where ℓΛ : H̃
1
2 (Λ) → R is as in (4.3), the ReLU-NN ϕ is identified with its restriction to I and τr :

H̃
1
2 (Λ)→ H̃

1
2 (I) denotes the pullback operator.

4.2. Weighted Residual Estimators. We shortly recall the so-called weighted residual estimators for
the a-posteriori error estimation of the numerical solution to hypersingular BIEs in a bounded Lipchitz
polygon and in an open arc in R2, namely Problems 2.7 and 2.12, respectively. We proceed to recapitulate
the result of [7], in which reliable a-posteriori error estimates for first-kind integral equations are analyzed.

Proposition 4.5 ([7, Theorem 2]). Let Γ be a closed or open arc in R2. If f ∈ L2(Γ) is L2(Γ)–orthogonal
to S1(Γ, TN ), then for s ∈ [0, 1] it holds

∥f∥H−s(Γ) ≤ c(s, κ) ∥h
s
T f∥L2(Γ) ,

where

c(s, κ) :=

{
Cs if s ̸= 1

2

C 1
2
(log(1 + κ))

1
2 if s = 1

2 ,
, κ := max

{
hj
hk

: Γj is a neighbor of Γk

}
, (4.9)

Cs > 0 only depending on s ∈ [0, 1], and hT ∈ L∞(Γ) is the piece-wise constant function defined
element-wise as hT |Γj

= hj.

Corollary 4.6. Let D ⊂ R2 be a bounded Lipschitz polygon with boundary Γ := ∂D, and let Λ ⊂ R2 be
a Jordan arc. Let c(κ) > 0 denote the constant in (4.9) with s = 1

2 .

(i) Let ϕ ∈ H
1
2 (Γ) and ϕN ∈ S

1(Γ, TN ) be the solution to Problem 2.7 and Problem 2.17, respectively,
with gΓ ∈ L

2(Γ).

∥ϕ− ϕN∥
H

1
2 (Γ)
≤ c(κ)

∥∥∥h
1
2

T RN

∥∥∥
L2(Γ)

, RN := WϕN −

(
1

2
Id− K

′

)
gΓ.

(ii) Let φ ∈ H̃
1
2 (Λ) and φN ∈ S

1(Λ, TN ) be the solution to Problems 2.12 and Problem 2.15, respec-
tively, with gΛ ∈ L

2(Λ).

∥φ− φN∥
H̃

1
2 (Λ)

≤ c(κ)
∥∥∥h

1
2

T RN

∥∥∥
L2(Λ)

, RN := WφN .

Proof. We prove item (i). The Galerkin solution ϕN ∈ S
1(Γ, TN ) to Problem 2.15 satisfies

⟨WϕN , ψN ⟩Γ =

〈(
1

2
Id− K

′

)
gΓ, ψN

〉

Γ

, ∀ψN ∈ S
1(Γ, TN ), (4.10)

as by construction it holds ⟨ϕN , 1⟩Γ = 0. Recalling that for bounded Lipschitz polygons the maps
W : H1(Γ)→ L2(Γ) and K

′ : L2(Γ)→ L2(Γ) are continuous. Considering that gΛ ∈ L
2(Γ), we have that

the duality pairings appearing in (4.10) can be interpreted as L2(Γ)-inner products. Hence, we have that
(
WϕN −

(
1

2
Id− K

′

)
gΓ, ψN

)

L2(Γ)

= 0, ∀ψN ∈ S
1(Γ, TN ),

and we may conclude that the residual RN ∈ L
2(Γ) is orthogonal to S1(Γ, TN ). Recall the bilinear form

ǎ : H
1
2 (Γ)×H

1
2 (Γ)→ R defined in (2.3). There exists an operator W̌ : H

1
2 (Γ)→ H− 1

2 (Γ) such that

ǎ(ϕ, ψ) =
〈
W̌ϕ, ψ

〉
Γ
, for all ϕ, ψ ∈ H

1
2 (Γ).
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Next, using the continuity and H
1
2 (Γ)-ellipticity of the modified hypersingular BIO W̌ : H

1
2 (Γ) →

H− 1
2 (Γ), stated in Propositions 2.1 and 2.2, respectively, we conclude that there exists a constant C > 0

independent of TN such that

∥ϕ− ϕN∥
H

1
2 (Γ)
≤ C

∥∥W̌ϕ− W̌ϕN
∥∥
H−

1
2 (Γ)
≤ C

∥∥∥∥
(
1

2
Id− K

′

)
g − W̌ϕN

∥∥∥∥
H−

1
2 (Γ)

. (4.11)

In addition, ⟨ϕN , 1⟩Γ = 0 yields W̌ϕN = WϕN . In view of this, together with (4.11) and using Theorem

4.5 with f =
(
1
2 Id− K

′
)
g−WϕN , we get the desired result. The proof of item (ii) follows the exact same

steps of item (i), hence we omit it for the sake of simplicity. □

4.3. Training Algorithms. In this section, we describe two algorithms devised to construct ReLU-
NNs for the approximation of the solution to Problems 2.7 and 2.12. These two approaches rely on the
following observation: Each element space of piecewise linear polynomials defined on a suitable partition
of the boundary can be exactly represented by a ReLU-NN according to Proposition 3.3. Moreover,
the parameters of these ReLU-NNs, i.e. weights and biases, can be precisely described in terms of the
parameters of the partition, namely the position of the nodes over the boundary. Therefore, we can
replace the Galerkin solution to the discrete variational problem by a ReLU-NN as the ones described in
Proposition 3.3 and proceed to find its parameters by minimizing a suitable loss function. The algorithms
to be presented here are in the spirit of the “Deep Ritz Method” [14] and rely on the tools introduced
in Sections 4.1 and 4.2.

4.3.1. Training using minimization of the total enery. Corollaries 4.3 and 4.4 provide a justification to use
the loss functions ℓΓ(·) and ℓΛ(·) in the construction of the sought ReLU-NNs. Indeed, these quantities
can be used a surrogates of the exact error in the minimization process. Equipped with this observation,
we proceed to describe a two-step scheme to find a realization of ReLU-NN that approximates the solution
to Problems 2.7 and 2.12 using the aforementioned loss functions.

We begin by describing the algorithm for Problem 2.7 only. As per usual, we consider a bounded
Lipschitz polygon D ⊂ R2 with boundary Γ := ∂D characterized by a number J ∈ N (J ≥ 3) of vertices.
Let N ∈ N be fixed and such that N + 1 > J . We consider a mesh TN of Γ as described in Section 2.7,
with N+1 points {xn}

N
n=0 ⊂ Γ and where x0 = xN (i.e. N distinct points). Within the set {xn}

N
n=0 ⊂ Γ

one may identify two kinds of nodes: (i) there is a first subset consisting in the vertices of the polygon
Γ, which in the the following are referred to as fixed nodes, and (ii) there is a second set of mesh nodes
that are not vertices of the polygon, which in the following are referred to as free nodes. Moreover, with
a Lipschitz continuous and piecewise linear parametrization of Γ, r : I → Γ (as in Section 3.2), the set
of nodes {xn}

N
n=0 ⊂ Γ may be identified with a set of biases t := {tn}

N
n=0 ⊂ I such that r(tn) = xn for

each n = 0, . . . , N (see Proposition 3.3). We aim to find the position of the biases in an optimal fashion,
while keeping the biases associated with fixed nodes unaltered. Figure 1 illustrates this setting for an
open arc in R2.

Figure 1. Two sets of equispaced nodes for a straight open arc. Dots represent fixed
nodes, while dashes represent free nodes.

Let tF ∈ RN+1−J be a vector containing the elements of the biases {tn}
N
n=0 that are associated to the

free nodes only and let φN ∈ NN 3,N+2,1,1. In view of Proposition 3.3, there holds

φN (t) =
N∑

j=0

cjζj(t), t ∈ I, (4.12)

where c := (c0, . . . , cN )⊤ ∈ RN+1 and, for each n = 1, . . . , N , {ζn}
N
n=0 corresponds to the “hat” functions

introduced in Section 3.2. Then, in view of Proposition 3.3, the task of finding a ReLU-NN φN to
approximate the solution of Problem 2.7 may be stated in the following form:

(t⋆, c⋆) = argmin
tF∈R

N+2−J , c∈R
N+1,

φN (−1)=φN (1).

ℓΓ
(
τ−1
r

φN (t, c)
)
, (4.13)

where ℓΓ(·) has been introduced in (4.2) and by φN (t, c) we denote the dependence of φN upon the
biases t and the set of weights c. Note our slight abuse of notation by referring to both the vector of
coefficients of the BEM solution in (4.12) and to the ReLU-NN weights as c (see Proposition 3.3).
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In Algorithm 1, we propose a two-step scheme for the construction of optimal ReLU-NN in the
approximation of the solution to Problem 2.7. This algorithm is based on the following observation:
if we fix the free biases tF, the minimization of (4.13) for the computation of c⋆ ∈ RN boils down to
the solution of the Galerkin discretization of Problem 2.7, namely Problem 2.15. Hence, rather than
computing the gradient with respect to tF ∈ RN+2−J and c ∈ RN+1, and executing a step of the
gradient descent algorithm, we perform only a gradient descent step with respect to the vector of free
nodes tF ∈ RN+2−J while keeping that of the coefficients c ∈ RN+1 fixed. Then, in the second step of
this algorithm, we fix the biases and compute c⋆ ∈ RN+1 in (4.13) by solving the discretized boundary
integral equation in Problem 2.15.

Algorithm 1 Construction of ReLU-NN by minimizing the total energy

Input: Initial set of biases t ∈ RN+2; maximum number of iterations M ∈ N; tolerance ϵ > 0.
Output: Optimal solution (t⋆, c⋆).

1: procedure ReLU Optimization Total Energy(t,M ,ϵ)
2: Compute c ∈ RN by solving Problem 2.15 on the mesh associated with the biases t;
3: for {j = 1; j ≤M ; j ← j + 1} do
4: Find η > 0 by line search: t̃F ← tF − η∇tFℓΓ(φN (t, c));

5: if η ∥∇tFℓΓ(φN (t, c))∥2
RN+2−J < ϵ then

6: return t and c;
7: end if

8: tF ← t̃F;
9: Compute c ∈ RN by solving Problem 2.15 on the mesh associated with the biases t;

10: end for

11: return (t, c);
12: end procedure

For given initial set of biases (with a fixed number of biases), Algorithm 1 returns an optimal collection
of biases in Γ (with the same cardinality) upon which the loss function ℓΓ(·) is minimized. This, in turn
allows us to construct a ReLU–NN for the approximation of the solution to Problem 2.7 according to
Proposition 3.3. To construct a sequence of ReLU–NN with increasing width (corresponding to a sequence
of meshes with an increasing number of nodes according to Proposition 3.3) we propose Algorithm 2.
Therein, we widen the network by including neurons with (initial) biases given as the midpoints between
two contiguous biases, which are subsequently optimized through Algorithm 1.

Algorithm 2 Construction of a sequence of ReLU-NN minimizing the total energy

Input:

• Initial set of biases t ∈ RN+2;
• Maximum number of iterations K ∈ N;
• Maximum number of inner iterations M ∈ N;
• Tolerance ϵ > 0.

Output: Sequence of optimal network parameters {(t⋆j , cj
⋆)}Kj=1.

1: procedure Sequence ReLU Total Energy(t,K,M ,ϵ)
2: for {j = 1; j < K; j ← j + 1} do
3: (t⋆j , c

⋆
j )← ReLU Optimization Total Energy(t,M ,ϵ);

4: tF ← Increase the number of biases in t⋆F,j by including the middle points of contiguous biases.
5: end for

6: (t⋆K , c
⋆
K)← ReLU Optimization Total Energy(t,M ,ϵ);

7: return {(t⋆j , c
⋆
j )}

K
j=1;

8: end procedure

Through Algorithm 2 we construct a sequence of biases {t⋆i }i∈N from a given initial configuration t

such that the sequence {ℓΓ(Φ(t
⋆
i , ci))}i∈N is monotonically decreasing, where ci is obtained by solving

Problem 2.15 on the mesh T ⋆
Ni

associated with the biases t⋆i . Greedy algorithms aiming to construct
shallow networks for function approximation characterized by a variety of activation function, e.g. the so-
called ReLUk and sigmoidal activation function, are studied in [33]. Improved convergence rates for the
Orthogonal Greedy Algorithm (with respect to the well-known result presented in [4, 12]) depending on
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the smoothness properties of the activation function of choice are proven. Later in [18], these findings are
used for the NN approximation of the solution to elliptic boundary value problem. We mention, however,
that considering Algorithm 2 with a sufficiently high number of inner iterations M ∈ N (i.e. iterations
of Algorithm 1) yields, in our numerical examples, the same convergence rates proved in [18] and the
references there. Furthermore, Algorithms 1 and 2 may be modified to tackle the minimization of ℓΛ(·)
in (4.3) by simply replacing, in both algorithms, Γ by Λ.

4.3.2. Training Using Weighted Residual Estimators. The result presented in Corollary 4.6 justifies the
use of efficiently computable, weighted residual a-posteriori estimators in the construction of a suitable
loss function to be used in the numerical implementation of the ReLU–NN BEM algorithms described
herein. More precisely, the computable, local residual a-posteriori error estimates presented in Section
4.2 can be used as computable surrogates of the mismatch between the exact solution and its Galerkin
approximation, in the corresponding norm.

Unlike the approach presented in Section 4.3.1, here we do not aim to construct a ReLU-NN to
approximate the solution of the BIEs previously described by finding the optimal position of the mesh
nodes, which in turn is driven by the minimization of a computable loss function. In turn, the algorithm
presented herein aims to greedily select a set of basis functions to enrich the finite dimensional space
upon which an approximation of the solution to the BIEs is built. We remark in passing that this
approach is strongly related to the adaptive basis viewpoint elaborated in [11]. Due to Proposition 3.3,
this amounts to increasing the width of the underlying ReLU-NN every time a new neuron, i.e. basis
function, is added.

As in Section 4.2, we restrict our presentation to the case of a bounded Lipschitz polygon in R2 and,
again, point out that the extension to an open arc is straightforward. The technique to be presented here
is an adaptation of the orthogonal matching pursuit algorithm [6], and is also motivated by the recent
results in [1, 18], which strongly leverage the variational structure of the discretization scheme.

Let S ⊂ H
1
2 (Γ) denote a finite dimensional space of functions on Γ and let {ζn}

N
n=1 denote a basis

of S1(Γ, TN ). For each ξ ∈ S, span
(
{ζn}

N
n=1 ∪ {ξ}

)
is itself a valid finite dimensional space on which a

solution to Problem 2.15 may be sought. For given S ⊂ H
1
2 (Γ), we aim to determine the element ξ ∈ S

having the least angle with respect to the residual φ− φN . We aim at finding ϕ⋆ ∈ S such that

ϕ⋆ = argmax
ϕ∈S

∣∣∣(φ− φN , ϕ)
H

1
2 (Γ)

∣∣∣
∥ϕ∥

H
1
2 (Γ)

. (4.14)

However, in the computation of ϕ⋆ ∈ S in (4.14) we encounter the following difficulty: We can not

directly compute the residual φ− φN ∈ H
1
2 (Γ). In view of Corollary 4.6, we use

h
1
2

TN
(WφN − g) ∈ L

2(Γ), (4.15)

as a surrogate of the exact residual φ−φN in the H
1
2 (Γ)-norm. We proceed to find an element in S such

that its contribution to (4.15) has the least angle, in the L2(Γ)-inner product, with the residual (4.15)
itself, i.e., find ϕ⋆ ∈ S such that

ϕ⋆ = argmax
ϕ∈S

(
h

1
2

TN
(WφN − g) , h

1
2

TN
Wϕ

)

L2(Γ)∥∥∥h
1
2

TN
Wϕ

∥∥∥
L2(Γ)

. (4.16)

To properly state an algorithm that allows us to construct a ReLU-NN, it remains to define how the set S
is constructed at each step. As in Section 2.7, we consider a mesh TN of Γ withN+1 points {xn}

N
n=0 ⊂ R2,

and where x0 = xN (i.e. N distinct points). Let x′
n denote the midpoint between xn and xn+1 for each

n = 0, . . . , N − 1, and consider the set of N piecewise linear functions SN := {ξn}
N
n=0 ⊂ H

1
2 (Γ), defined

as

ξn(x) :=





1, x = x′
n,

0, x ̸= x′
k or x /∈ {xk}

N
k=0,

linear elsewhere,
(4.17)

for n = 0, . . . , N − 1. In this case, the set SN gathers the piecewise linear functions one would add to
S1(Γ, TN ) if a uniform refinement of the mesh TN of Γ were to be performed. We aim to select, among
the candidates in SN , a function according to (4.16). Furthermore, since the incorporation of a single
basis function of the set SN at each step may result in a needlessly expensive procedure, we allow for



20 Version of January 23, 2023

the incorporation of a subset of SN at each step in order to enhance the procedure (as in the ABEM
algorithm). We do so by computing

qn :=

(
h

1
2

TN
(WφN − g) , h

1
2

TN
Wξn

)

L2(Γ)∥∥∥h
1
2

TN
Wξn

∥∥∥
L2(Γ)

, n = 0, . . . , N − 1,

and then selecting a number of elements of SN having the largest values of qn. The number of elements
of SN incorporated at each iteration is controlled by an input a parameter θ ∈ (0, 1] specifying the
fraction of elements of SN to be included in our enhanced finite dimensional space at each iteration.
The procedure is presented in Algorithm 3 for the setting of Problem 2.15 (recall the notation t and
c denoting the biases and weights of the ReLU-NN). Note that Algorithm 3 may be implemented in
tandem with Algorithm 1, as presented in Algorithm 4.

Algorithm 3 Construction of a sequence of ReLU networks minimizing the weighted residual estimator

Input: Initial set of biases t ∈ RN ; cardinality parameter θ ∈ (0, 1] ; maximum number of
iterations K ∈ N.

Output: Optimal Numerical Approximation (t⋆F, c
⋆).

1: procedure Sequence ReLU Weighted Residual Estimators(t,θ,K)
2: for {j = 1, j ≤ K, j = j + 1} do
3: Compute c ∈ RN+1 and φ(t, c) by solving Problem 2.15 on the corresponding mesh of Γ;

4: q ←

{
1

∥Wξn∥L2(Γ)

(
h

1
2

TN

[
W(τ−1

r
φ(t, c))− g

]
,Wξn

)

L2(Γ)

}N−1

n=0

with ξn as in (4.17);

5: IN ← Set of the ⌈θN⌉ nodes {x̃′
n}

⌈θN⌉
n=1 ⊂ Γ associated with the highest values in q (where

ξn(x̃
′
n) = 1 as in (4.17));

6: t← include the biases {tn}
⌈θN⌉
n=1 ⊂ I associated with {x̃′

n}
⌈θN⌉
n=1 ⊂ Γ through r : I→ Γ;

7: N ← N + ⌈θN⌉;
8: t⋆j ← t;

9: Compute c⋆j ∈ RN by solving Problem 2.15 on the mesh associated with the biases t⋆j ;
10: end for

11: return {(t⋆j , c
⋆
j )}

K
j=1;

12: end procedure

Algorithm 4 Combination of Algorithms 1 and 3

Input: Initial set of biases t ∈ RN ; cardinality parameter θ ∈ (0, 1] ; maximum number of
iterations K ∈ N; maximum number of inner iterations M ∈ N; tolerance ϵ > 0.

Output: Sequence of optimal network parameters {(t⋆j , c
⋆
j )}

K
j=1.

1: procedure Sequence ReLU Combination(t,θ,K,M ,ϵ)
2: for {j = 1, j < K, j = j + 1} do
3: (t⋆j , c

⋆
j )← ReLU Optimization Total Energy(t,M, ϵ);

4: q ←

{
1

∥Wξn∥L2(Γ)

(
h

1
2

TN

[
W(τ−1

r
φ(t⋆j , c

⋆
j ))− g

]
,Wξn

)

L2(Γ)

}N−1

n=0

with ξn as in (4.17);

5: IN ← Set of the ⌈θN⌉ nodes {x̃′
n}

⌈θN⌉
n=1 ⊂ Γ associated with the highest values in q (where

ξn(x̃
′
n) = 1 as in (4.17));

6: t← t⋆j together with the biases {tn}
⌈θN⌉
n=1 ⊂ I associated with {x̃′

n}
⌈θN⌉
n=1 ⊂ Γ through r : I→ Γ;

7: N ← N + ⌈θN⌉;
8: end for

9: (t⋆K , c
⋆
K)← ReLU Optimization Total Energy(t,M, ϵ);

10: return {(t⋆j , c
⋆
j )}

K
j=1

11: end procedure

Finally, note that setting θ = 1 on Algorithm 4 results in Algorithm 2, while setting M = 0 on
Algorithm 4 results in Algorithm 3.
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5. Numerical Results

In this section we present numerical results obtained using the algorithms described in Section 4.

5.1. Setting. For the sake of simplicity, we provide results only for the setting described in Problem
2.12 on the so-called slit Λ := (−1, 1)×{0} ⊂ R2. For the numerical implementation of the BEM and the
evaluation of the weighted residual estimators we use the MATLAB based [25] BEM library HILBERT [2] and
custom Fortran codes. We remark that, in the numerical examples presented in Sections 5.2 and 5.3, we
also compare the performance of Algorithm 4 to the built-in adaptive strategies implemented in HILBERT.
These codes have been made available in https://gitlab.epfl.ch/fhenriqu/relugalerkinbem.

5.2. Example I. We consider Problem 2.12 with right-hand side g = 1 on Λ. The exact solution to this
problem in Λ is known and given by ϕ(x) = 2

√
1− x21, x = (x1, x2)

⊤ ∈ Λ (cf. [21, Section 4.2]). As a
consequence of Lemma 4.1, ℓΛ in (4.3) achieves its minimum at ϕ, with value

ℓ⋆Λ := ℓΛ(ϕ) = −
1

2

∫

Λ

g(x)ϕ(x)dsx = −
1

2

1∫

−1

√
1− x2dx = −

π

2
. (5.1)

We begin by considering Algorithm 1 on four different inital configurations of the biases t ∈ RN+2

corresponding to N ∈ {8, 32, 128, 512} equidistant free biases tF on I = [−1, 1]. Figure 2 portrays the

evolution of both the loss function ℓΛ and the error in the H̃
1
2 (Λ)–norm to the exact solution 2

√
1− x21

attained by the ReLU-NN generated by Algorithm 1 throughout M = 104 iterations. The decrease of

the loss function displayed in Figure 2 is accompanied by the decrease of the error in the H̃
1
2 (Λ)–norm

to the exact solution, as indicated by Lemma 4.2.
Then, we consider Algorithm 2 with an initial configuration of only one free bias (N0 = 1), located at

tF,1 = 0, and display the evolution of the loss function ℓΛ and the H̃
1
2 (Λ)–error attained by the NN on

Figure 3, where M = 104 inner iterations of Algorithm 1 are considered, together with a tolerance of ϵ =
10−15 and K = 8 outer iterations. The convergence of the loss function to its minimum value is compared
to that of Algorithm 2 with no optimization of the position of the biases (which is analogous to solving
Problem 2.17 on meshes with a uniform refinement), for which we expect a convergence rate O(N−1)

(the double of the expected convergence rate of the H̃
1
2 (Λ)–error, see Lemma 4.2). The convergence of

the H̃
1
2 (Λ)–error, on the other hand, is compared to that attained by the ABEM algorithm. The trained

NN displays convergence rates close to 3, for the loss function, and an EOC1 1.4 for the H̃
1
2 (Λ)–error

(with respect to the number of free biases).
The performance of Algorithm 3 is compared with that of the ABEM algorithm in Figure 4, through

the weighted residual estimator and H̃
1
2 (Λ)–error, for two different values of the parameter θ (0.25 and

0.5). The numerical results display a decay of the convergence rate for the value θ = 0.5, due to the
inclusion of suboptimal biases. For the value θ = 0.25, on the other hand, an optimal convergence rate
of 1.5 with respect to the free biases is observed.

Finally, Figure 5 portrays the convergence of the H̃
1
2 (Λ)–norm for the ReLU-NNs returned by Algo-

rithm 4, with θ ∈ {0.25, 0.5} and an initial configuration of one free bias, as before (N0 = 1). Algorithm
1 was called with M = 5000 and ϵ = 10−15 and, on most iterations, fewer than 1000 inner iterations of
Algorithm 1 were taken thanks to the stopping criterion. The results of Algorithm 4 are compared with
those of Algorithm 3, and display how the optimization of the free bias through Algorithm 1 enhances
the convergence rates obtained for θ = 0.5, for which the optimal convergence rate of 1.5 (with respect
to the number of free biases) is observed. The locations of the free biases generated by 8 iterations
of Algorithm 4 are shown in Figure 6, where an accumulation towards the boundary of I, in order to
accomodate to the singular behaviour of the solution, is discerned. In addition, in Figure 7 we show
the computed solution on the meshes generated by Algorithm 4 together with the exact solution of this
problem. Figures 7a 7b, 7c, and 7d portray the solution obtained on the meshes generated by Algorithm
4 with N = 2, 4, 7, 11, respectively.

5.3. Example II. Here, we consider Problem 2.12 but with the right-hand side

g(x) =

{
−1, x ∈ (−1, 0)× {0},
+1, x ∈ [0, 1)× {0},

, x ∈ Λ, (5.2)

and repeat the numerical experiments presented in Section 5.2. That is to say, Figures 8, 9, 10 and 11
correspond to our implementations of Algorithms 1, 2, 3 and 4 exactly as in Section 5.2, but considering

1Empirical Order of Convergence
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(b) Evolution of the error in the H̃
1
2 (Λ)-norm.

Figure 2. Values of the loss function ℓΛ and H̃
1
2 (Λ)–error throughout the training

process of Algorithm 1 for different values of N (i.e., number of degrees of freedom/free
biases). The initial mesh (i.e. the biases in the hidden layer) was uniform for all
instances. Excluding the mesh with 8 free nodes (which saturates before the 1000th
iteration), a decrease of the loss function is observed to parallel the descent of the

H̃
1
2 (Λ)–error of the solution of Problem 2.17 on each mesh.
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(a) Evolution of the loss function ℓΛ.
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(b) Evolution of the H̃
1
2 (Λ)-error.

Figure 3. Evolution of the loss function ℓΛ and of the H̃
1
2 (Λ)–error throughout the

training process of Algorithm 2 with respect to the number of free biases of each ReLU-
NN (degrees of freedom of the associated mesh, see Proposition 3.3). On subfigure 3a,
the difference between the loss function ℓΛ and its minimum value −π

2 (see (5.1) and
Lemma 4.1) is compared for the sequence of meshes resulting from Algorithm 2 and for
uniform mesh refinement. Substantially faster convergence of the training procedure to
the optimum is observed for Algorithm 2 than for a uniform mesh refinement. Figure

(3b) portrays the convergence in H̃
1
2 (Λ)–norm of the solutions to Problem 2.17 given

by Algorithm 2 and by the adaptive BEM algorithm. The adaptive BEM algorithm
achieves the optimal convergence rate of 1.5, while the sequence of meshes returned
by Algorithm 2 attains a convergence rate of, approximately, 1.38 with respect to the
number of degrees of freedom that are active in the ReLU-NN.

the right-hand side defined in (5.2). However, all initial configurations in this section require a fixed bias
at the origin to accommodate for the discontinuity of g at x = (0, 0). Figure 12 shows the locations of
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(b) Evolution of the H
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2 (Λ) error.

Figure 4. Evolution of the weighted residual estimator and H̃
1
2 (Λ)–error throughout

the training process of Algorithm 3 and by the ABEM algorithm. The ABEM algorithm

in the above figure corresponds to θ = 0.25, and achieves, for the H̃
1
2 (Λ)-error in Figure

4b, the optimal convergence rate of 1.5 with respect to the number of degrees of freedom.
On the other hand, Algorithm 3 achieves convergence rates of, approximately, 1.48 and
0.85 for θ = 0.25 and θ = 0.5, respectively. The convergence rates of the weighted
residual estimators in Figure 4a follow a similar behavior.
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(a) θ = 0.25.
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(b) θ = 0.5.

Figure 5. Convergence in H̃
1
2 (Λ)-norm of the solutions of Problem 2.17 generated by

Algorithms 3 and 4 for θ = 0.25 and θ = 0.5. The sequences of meshes returned by
Algorithm 4 both achieve the optimal convergence rate of 1.5, independent of θ (though
for θ = 0.25 Algorithm 3 had already achieved a convergence rate close to 1.5). The
figure displays how optimizing the positions of the free biases tF through Algorithm 1
in between successive refinements by Algorithm 3 helps to improve convergence.

the biases generated by 8 iterations of Algorithm 4, where an accumulation at 0 due to the discontinuity
of g, besides the expected accumulation at x = (−1, 0) and x = (1, 0), may be observed.

All errors and differences |ℓΛ−ℓ
⋆
Λ| displayed on the figures referenced on this section are computed with

respect to an overkill solution (implemented in HILBERT) with ℓ⋆Λ ≈ −0.63662, attained by Algorithm 4.
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Figure 6. First 8 meshes generated by Algorithm 4.

6. Concluding Remarks and Outlook

We recapitulate principal findings of the present paper, and indicate extensions and possible directions
for further research.

We developed a novel class of Galerkin boundary element methods, on polygonal domains D ⊂ R2.
They are based on trial spaces comprising deep neural networks with ReLU activation function.

Similar approaches are conceivable on boundaries of polyhedra D ⊂ R3, using the fact that also
surfaces, continuous first order Lagrangean boundary elements admit representations as ReLU NNs [19].

We investigated the approximation rates of corresponding BEM in dependence on the DNN architec-
ture. Essentially, the size and structure of the triangulation is encoded in the NN architecture, with the
location of the nodes being NN weights in the hidden layer of the NN.

We proved, also for singularities due to corners of ∂D, that optimal algebraic convergence rates can
be achieved with shallow ReLU DNN BEM, by suitable choice of NN weights and biases in the hidden
layer. Deep ReLU DNN trial spaces will facilitate exponential convergence of the corresponding deep
ReLU BEM, by emulating hp-boundary element methods. These can in principle achieve exponential
rates of convergence, see [27].

We proposed DNN training in the “natural” energy spaces being fractional, hilbertian Sobolev spaces
on the boundary Γ which underlie the variational theory of first kind BIEs. While NN based discretiza-
tions have been proposed recently for PDEs, the nonlocal nature of the boundary integral operators
renders efficient numerical evaluation of loss functions costly. We leveraged existing, computable local
residual a-posteriori error estimators to obtain novel, computationally efficient loss functions. They are
based on local, reliable a-posteriori residual discretization error estimators.

The present exposition was developed for plane, polygonal domains. However, the ReLU DNN ex-
pression results extend also to polyhedral domains D ⊂ R3 with boundaries comprising a finite number
of plane faces Γj . Here, again exact expression results of ReLU DNNs for continuous, piecewise affine
BEM spaces on Γ are available in [19]. Corresponding approximation results on corner- and edge-graded
meshes on Γ (see, e.g., [17]) will hold.

The general principle described in the present work, namely that ReLU DNNs are capable of emulating
a wide range of spline-based approximation spaces with, essentially, identical convergence rate bounds,
extends well beyond the presently considered setting.

The presently proposed formulation of boundary integral equations with DNN - based approximation
spaces can serve as a vehicle to leverage powerful machine learning methodologies for the numerical
treatment of boundary integral equations. Here, one single, unifying ReLU DNN based construction of
approximation spaces on Γ will allow to achieve performance of adaptive mesh refinements and expo-
nential convergence of hp-BEM without any revision of implementations.

For more general BIEs arising, for example, in BIEs on polyhedral surfaces resulting from the boundary
reduction of the time-harmonic Maxwell equations, it is well-known that Galerkin discretizations must
be based on certain compatible subspaces. See, e.g., [5], and [20]. Also in these cases, DNNs which
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Figure 7. Exact solution to Problem 2.12 with right-hand side g = 1 on the slit
Λ = (−1, 1) × {0} together with the solution obtained with the mesh produced by
Algorithm 4 for N = 2, 4, 7, 11 in Figures 7a 7b, 7c, and 7d, respectively.

are structure preserving can be constructed. We refer to [23] for a development of DNNs for De Rham
compatible Finite Element spaces. Development of details for BIEs of, e.g., electromagnetic scattering
is beyond the scope of the present work.
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Figure 11. Convergence in the H̃
1
2 (Λ)–norm of the solutions of Problem 2.17 on the
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and, on most meshes, fewer than 103 iterations were required thanks to the stopping
criterion.
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Appendix A. Proof of Proposition 3.4

We only prove the second case in (3.7) which gives the maximum rate of convergence. We consider
separately the regular part u0 and the singularities xλj . As in the statement of Proposition 3.4, we assume

β ≥ 1, 0 < s ≤ 1 (we will mainly need the case s = 1/2). We write xk in place of xN,β
k = (k/N)β ∈ [0, 1]

for k = 0, 1, ..., N . The assumptions of Proposition 3.4 imply that u ∈ C (I). Hence the linear interpolant

IβN of u on TN,β is well-defined and nodally exact: (u − IβNu)(xk) = 0 for k = 0, 1, ..., N . Recall that
u0 ∈ H

2(I), and that 0 ≤ s ≤ 1. On each Ik = (xk−1, xk) ∈ TN,β ,

∥v0 − S0∥H̃s(Ik)
≤ Ch2−s

k ∥v′′0∥L2(Ik) .

Here, ∥ · ∥H̃s(Ik)
is the interpolation norm between L2(Ik) and H

1
0 (Ik), and C > 0 depends on s ∈ [0, 1],

but not on hk. For s = 0, 1, we get

∥u0 − I
β
Nu0∥

2
H̃s(I)

≤ C
N∑

k=1

∥u0 − I
β
Nu0∥

2
H̃s(Ik)

≤ C
N∑

k=1

h4−2s
k ∥u′′0∥

2
L2(Ik)

≤ max
k=1,..,N

{hk}
4−2s

N∑

k=1

∥u′′0∥
2
L2(Ik)

≤ Ch2(2−s)∥u′′0∥
2
L2(I) ,

and the general case (s ∈ [0, 1]) follows by interpolation.
Consider now a singularity, i.e., f(x) = xλ with λ ∈ {λj} and take γ̃ ∈ R such that 1− 1/β ≤ γ̃ ≤ 1.

Assume, first, k ≥ 2, so that dist(0, Ik) > 0. Then, we have that f ∈ H2(Ik) ⊂ C(Ik) and, therefore, the

linear nodal interpolant of f on Ik is well-defined and f − IβNf ∈ H
1
0 (Ik). Furthermore,

N∑

k=2

∥f − IβNf∥
2
H̃s(Ik)

≤ C
N∑

k=2

h4−2s
k ∥f ′′∥2L2(Ik)

≲

N∑

k=2

h(1−γ̃)β(4−2s)x
γ̃(4−2s)
k ∥f ′′∥2L2(Ik)

,

since, for k = 1, . . . , N , it holds that

hk ≤ βh
βkβ−1 = βxγ̃kh

(1−γ̃)β−1 ≤ βh(1−γ̃)xγ̃k .

For k ≥ 2, and for any x ∈ Ik = (xk−1, xk), we have that

xk = (kh)β =

(
k

k − 1

)β

xk−1 ≤ 2βxk−1 ≤ 2βx .

Therefore
N∑

k=2

∥f − IβNf∥
2
H̃s(Ik)

≤ Ch(1−γ̃)β(4−2s)
N∑

k=2

∥f ′′(x)x(2−s)γ̃∥2L2(Ik)

≤ Ch(1−γ̃)β(4−2s)

∫ 1

x1

|f ′′(x)|
2
x2(2−s)γ̃dx

≤ Ch(1−γ̃)β(4−2s)

∫ 1

0

|f ′′(x)|
2
x2(2−s)γ̃dx .

Since f ′′(x) = λ(λ− 1)xλ−2, the latter integral exists if

2λ− 4 + 2(2− s)γ̃ > −1⇐⇒ 1− γ̃ <
λ− s+ 1/2

2− s
.

To bound the contribution from I1 = (0, x1) = (0, hβ), we use a scaling argument. Let 0 < h < 1 be
arbitrary. Then, for any g ∈ H1

0 (I) there holds that

∥g(x/x1)∥L2(I1) ≤ x
1/2
1 ∥g(x)∥L2(I), |g(x/h)|H1(I1) ≤ x

−1/2
1 |g|H1(I) .
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We interpolate (or directly estimate the fractional order seminorm) to obtain

∥g(x/x1)∥H̃s(I1)
≤ x

1/2−s
1 ∥g(x)∥H̃s(I).

Taking g(x) = (f − IβNf)(x1 · x), so that g(x/x1) := (f − IβNf)(x) on I1 = (0, x1), yields

∥(f − IβNf)(x)∥H̃s(I1)
≤ x

1/2−s
1 ∥(f − IβNf)(x1 · x)∥H̃s(I) ≤ x

1/2−s+λ
1 ∥f − f̃∥H̃s(0,1) ≤ C(λ, s)x

1/2−s+λ
1 ,

where f̃ is the linear interpolant of f on I, so that ∥f − f̃∥H̃s(I) is independent of x1. Inserting γ̃ =

1− 1/β ⇐⇒ 1− γ̃ = 1/β into the constraints implies

1/β = 1− γ̃ <
λ− s+ 1/2

2− s

which is the second case in (3.7). The first case is proved in the same fashion.


