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Abstract 

 Several important PDE systems, like magnetohydrodynamics and computational 

electrodynamics, are known to support involutions where the divergence of a vector field evolves 

in divergence-free or divergence constraint-preserving fashion. Recently, new classes of PDE 

systems have emerged for hyperelasticity, compressible multiphase flows, so-called first order 

reductions of the Einstein field equations, or a novel first order hyperbolic reformulation of 

Schrödinger’s equation, to name a few, where the involution in the PDE supports curl-free or curl 

constraint-preserving evolution of a vector field. We study the problem of curl constraint-

preserving reconstruction as it pertains to the design of mimetic finite volume (FV) WENO-like 

schemes for PDEs that support a curl-preserving involution. (Some insights into Discontinuous 

Galerkin (DG) schemes are also drawn, though that is not the prime focus of this paper.) This is 

done for two and three dimensional structured mesh problems where we deliver closed form 

expressions for the reconstruction. The importance of multidimensional Riemann solvers in 

facilitating the design of such schemes is also documented. In two dimensions, a von Neumann 

analysis of structure-preserving WENO-like schemes that mimetically satisfy the curl constraints, 

is also presented. It shows the tremendous value of higher order WENO-like schemes in 

minimizing dissipation and dispersion for this class of problems. Numerical results are also 

presented to show that the edge-centered curl-preserving (ECCP) schemes meet their design 

accuracy. This paper is the first paper that invents non-linearly hybridized curl-preserving 

reconstruction and integrates it with higher order Godunov philosophy. By its very design, this 

paper is therefore intended to be forward-looking and to set the stage for future work on curl 

involution-constrained PDEs. 
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I.1) Introduction 

 There has been a lot of emerging interest in mimetic scheme design. These are schemes 

that preserve structures in the solution that arise from involutions in the governing PDEs. In other 

words, the PDE itself has some extra symmetries that result in certain features of the solution 

remaining invariant; and we want the numerical scheme to mimic that. 

 The simplest example of such involution-constrained PDEs consists of the 

magnetohydrodynamic (MHD) equations, where Faraday’s law ensures divergence-free evolution 

of the magnetic induction vector field. Another prominent example consists of computational 

electrodynamics (CED) – the numerical solution of Maxwell’s equations – where the divergences 

of the magnetic induction vector field and the electric displacement vector field are held zero as 

long as radiation does not interact with a conductor. Numerous papers have been written on these 

topics, where it has been realized that the divergence-preserving reconstruction of vector fields is 

an important building block for scheme design and adaptive mesh refinement (AMR) (Balsara and 

Spicer [3], Balsara [5], [6], [8], Balsara and Dumbser [14], Xu et al. [57], Balsara and Käppeli 

[20], [24], Balsara et al. [10], [18], [22], [23], [25], [26] and Hazra et al. [41]). To get fully 

constraint-preserving, mimetic, time-evolution it was realized that certain update variables have to 

be collocated at certain favored locations on a mesh. A weighted essentially non-oscillatory, i.e. 

WENO-like, reconstruction strategy that preserves the divergence of the vector fields was found 

to be very valuable in extending these methods to high order. We call such methods WENO-like 

because they draw on many insights from WENO schemes, however these insights are applied at 

the faces of the mesh while a divergence constraint-preserving reconstruction is used to obtain the 

vector field within the volume of the mesh. (It should also be noted that two-dimensional WENO 

reconstruction is used in the faces as part of the three-dimensional divergence constraint-

preserving reconstruction, which is why we call the reconstruction WENO-like.) To update such 

variables in a properly upwinded fashion, it is also crucially important to invoke a 

multidimensional Riemann solver at the edges of the computational mesh (Balsara, [9], [10], [13], 

Balsara, Dumbser and Abgrall [12], Balsara and Dumbser [15], Balsara et al. [17], Balsara and 

Nkonga [21]). The multidimensional Riemann solver is, therefore, the other important building 

block of such divergence-constrained schemes. 
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 In obtaining highly accurate globally constraint-preserving Discontinuous Galerkin-like 

(DG-like) schemes for  MHD and CED, Balsara and Käppeli [20], [24] showed that both these 

building blocks were crucially important. They showed that if one attempts to bypass either of 

these building blocks, it will result in an unstable DG-like scheme. We call these schemes DG-like 

because they evolve all the face-based modes of the vector field so as to ensure globally divergence 

constraint-preserving evolution of the vector field; however, they are not like classical DG 

schemes because the modes are not defined on the volumes. We, therefore, see that a study of the 

involution-preserving reconstruction can provide substantial insights into scheme design. A review 

of globally divergence constraint-preserving DG schemes for CED is also available in Balsara and 

Simpson [27] which collects all the ideas together in an easily accessible format in one place. 

 While MHD and CED are relatively well-studied PDEs with a divergence constraint, a new 

class of PDEs has recently emerged and their involution constraints are equally interesting. We are 

referring to PDEs that support curl-free (or curl-preserving) evolution of vector fields. Indeed, the 

evolution is curl-free in these systems only as long the source terms in the governing equations are 

zero. Numerous PDEs of great practical interest fall in this category. Many of the hyperbolic 

systems resulting from the Godunov-Peshkov-Romenski (GPR) formulation for hyperelasticity 

and compressible multiphase flow with and without surface tension have such curl-preserving 

update equations (Godunov and Romenski [39], Romenski [47], Romenski et al. [48], Peshkov 

and Romenski [45], Dumbser et al. [33], [34], Schmidmayer et al. [49]). The equations of General 

Relativity when cast in the FO-CCZ4 formulation also have such a structure (Alic et al. [1], [2], 

2012, Brown et al. [31], Dumbser et al. [35], Dumbser, et al. [36]). Similarly, it has recently 

become possible to recast Schrödinger’s equation in first order hyperbolic form, and the time-

evolution of this very important equation also has curl-preserving constraints (Dhaouadi et al. 

[32]).  As with the divergence-preserving reconstruction, the curl-preserving reconstruction also 

plays an important role in guiding scheme design. The goal of this paper is to show how curl-

preserving reconstruction of vector fields can be carried out and why it is so important in the design 

of curl-constraint-preserving schemes. We restrict our focus to structured meshes, since the 

treatment of unstructured meshes will be the topic of another paper. 

 In this work we take on the task of designing a WENO-like globally curl constraint-

preserving reconstruction. This means that the curl of a vector field, evaluated over any closed 
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loop, is always either zero or equal to a specified divergence-free vector field. (As we shall see in 

Sections II and III, one-dimensional WENO reconstruction is indeed used in the edges of the mesh 

as part of the three-dimensional curl constraint-preserving reconstruction which is why we think 

it is appropriate the call the reconstruction WENO-like. Note though that the constrained 

reconstruction has many further attributes that go beyond the basic WENO reconstruction.)  It may 

even prove advantageous to refer to PDEs that keep the curl exactly zero as curl-free; whereas 

PDEs that only preserve the curl constraint in certain limits can be referred to as curl-preserving. 

Some families of involutionary PDEs, like the FO-CCZ4 formulation of the equations of general 

relativity, can guarantee that certain vector fields remain curl-free for all time. Other involutionary 

PDE systems, like the hyperbolic formulation of thermal conduction and viscosity and elastic-

plastic transition, have vector fields that are only curl-free when the source term is zero. But 

important interactions with matter, like the use of thermal conduction, or viscosity or elastic-plastic 

deformation require the operation of non-zero stiff source terms in those PDE systems.  

 Having a globally constraint-preserving reconstruction in hand is very useful for 

computational problems for a very important reason:- When coupled with a three-dimensional 

Riemann solver (see Balsara [16]) it enables us to define a curl-preserving scheme over a single 

control volume. In other words, the fluid variables can be zone-centered and the curl-free vector 

field can share that same control volume. The primal curl-constraint-preserving vector field 

variables of such a scheme reside in the edges of that control volume. Specifically, for a Cartesian 

mesh, the x-components of such a vector field are collocated at the x-edges; the y-components of 

such a vector field are collocated at the y-edges and the z-components of such a vector field are 

collocated at the z-edges. The three-dimensional Riemann solver, invoked at the vertices of the 

three-dimensional mesh, then yields the curl constraint-preserving update.  

 

I.2) Introduction to a Sample Curl-Preserving PDE and Motivation for Curl-Preserving 

Schemes 

 There are several PDE systems that have curl-free, and curl-preserving, vector fields that 

arise from involutions in the differential equations. In fact, the entropy-consistent GPR formulation 

seems to churn out such involutionary PDEs with amazing regularity. But numerical 

implementations of other valuable PDE systems, like the numerical solution of first order 
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reductions of the Einstein equations or the Schrödinger equation, also result in such constraints. 

Let us take a simple example involving a fluid with thermal conduction in the GPR formulation. 

Let us denote the density by ρ  , the fluid velocity by v  , the fluid pressure by “ P ” , the fluid 

temperature by “T ”, the internal thermal energy density by “ e ”, the total energy density by 

2 2E e ρ≡ + v , the thermal impulse by a vector J , the heat flux by a vector q  and the thermal 

stress by the second rank tensor σ  . The equations for a fluid with thermal conduction can be 

written as 

( ) 0
t

ρ ρ∂
+∇ ⋅ =

∂
v           (1.1a) 

( ) ( ) 0P
t

ρ
ρ

∂
+∇ ⋅ ⊗ + + =

∂
v

v v I σ         (1.1b) 

( )( ) 0
E

E P
t

∂
+∇ ⋅ + + ⋅ + =

∂
v v σ q         (1.1c) 

( ) ( )   
T

T
t

ρ
τ

∂
+∇ ⋅ + − × ∇× = −

∂
J

J v v J J         (1.1d) 

The identity matrix is denoted by I  in the above equations. The first three of the four equations in 

eqn. (1.1) above reveal themselves to be the equations for mass, momentum and energy 

conservation for a fluid, with additional contributions from the thermal conduction vector, q  , and 

the thermal stress tensor, σ  . The fourth equation in eqn. (1.1) is a novel contribution from the 

GPR formulation, see (Romenski [47]). We see that it will be strongly dependent on the magnitude 

of the relaxation time τ . When the relaxation term becomes stiff, i.e. the relaxation time is short, 

the heat conduction will behave asymptotically like the classical Fourier law for parabolic heat 

conduction. When the relaxation time is very large, the source term becomes irrelevant and the 

heat conduction will be described by purely hyperbolic heat waves or phonons, propagating with 

a characteristic speed that is called the second sound. The beauty of the above equations stems 

from the fact that they constitute a first order hyperbolic system with a source term that may indeed 

become stiff in certain limits. Therefore, all of the well-developed technologies that have been 

developed for solving hyperbolic PDE systems with stiff source terms can indeed be brought to 

bear on the numerical solution of the above PDE system. Furthermore, the solution method does 
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not require the treatment of a parabolic sub-system, which can be computationally expensive. As 

already stated before, a formal asymptotic analysis of eqn. (1.1) shows that the above equations 

retrieve the Navier Stokes equations with the traditional Fourier law of heat conduction in the stiff 

limit when the relaxation time τ  tends to zero. To complete our description of the above system, 

we also mention the constitutive relation for the thermal stress tensor 
2

ij h i jc J Jσ ρ=  and the other 

constitutive relation for the thermal conduction vector 2

i h iq Tc Jρ=  . Here hc  denotes the 

hyperbolic speed of heat waves, i.e. the second sound. 

 Now let us focus on the last equation in eqn. (1.1). Let us consider the limit where the 

relaxation time is very large, so that the source term is irrelevant. Since the vector field J  starts 

off curl-free, it is easy to see that it remains curl-free by considering the remaining two parts of 

that equation. The first part of the update equation, given by ( )T∇ ⋅ +J v , is just the gradient of a 

scalar. Since the curl of a gradient is zero, the first term will not contribute to the curl if none is 

present initially. The second part of the update equation, given by ( )× ∇×v J  , will also be zero if 

the vector J  is initially curl-free. We see, therefore, that the vector field J stays curl-free if it is 

initially curl-free in the limit of very large relaxation time. Of course, when the relaxation time 

cannot be ignored, the curl of the vector field does indeed evolve in response to the presence of 

the stiff source term  Tρ τ− J  . It is important to realize that if the fourth equation in eqn. (1.1) 

does not have a consistent discretization then the curl of the vector field J  will only be specified 

by the accuracy of the numerical method. As a result, even for regions of the flow that should have 

no thermal conduction, there will indeed continue to be some small amount of thermal conduction. 

This affects the fidelity of the method and its results. We, therefore, see the importance of a 

consistent, curl-preserving discretization and evolution strategy. Let us address that next. 

 The fourth equation in eqn. (1.1) contains the involution and therefore deserves further 

attention. Because the evolution of a curl-free vector field J  is only governed by the gradient term 

( )T∇ ⋅ +J v  we must pick a mimetic discretization that ensures this curl-free evolution. A good 

conceptual model for a curl is the altitude in a mountainous region. It does not matter which closed 

curve one takes in that mountainous region, as long as the curve is closed, the total change in 

elevation will be zero. This is the model that we keep at the back of our mind when studying this 

problem. The closed curve could be the edges of a rectangular mesh in 2D. For a 3D Cartesian 
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mesh, we have closed curves in all the faces of a cuboidal element. Along each of those faces, the 

circulation of the vector field J  must be zero in all the situations where the vector field is required 

to evolve in a curl-free fashion. This is only guaranteed if the components of J  are collocated at 

the edges of the mesh and ( )T⋅ +J v  is collocated at the corners of the mesh. But realize that we 

are solving a hyperbolic system, as a result ( )T⋅ +J v  will have to be obtained consistently with 

multidimensional upwinding at the corners of the mesh. There already exists a 3D Riemann solver 

that does this (Balsara [16]).  

 Let us now press on with our study of the last equation in eqn. (1.1). Let us focus on the 

term ( )× ∇×v J  . When the curl is zero, it is irrelevant. However, when the curl is non-zero, it 

does affect the time rate of change of the component of J  that is aligned with the edges of the 

mesh. How can we get the measure of the curl of a vector field? In three-dimensions, we can only 

do that by reconstructing the vector field in a three-dimensional fashion. (Likewise, of course, in 

two dimensions!) In other words, we need to start with the components of J in the edges that 

surround each volume element of the mesh and obtain from it a consistent value of J  within the 

volume element. This should be done in a way that reflects, in some appropriate fashion, the curl 

that is already present in the faces of that mesh element. This is the problem of reconstructing a 

vector field consistent with its constraints. We, therefore, see that we will have to pay special 

attention in this paper to curl-free and curl-preserving reconstruction of vector fields.  

 Let us now take the curl of the third equation in eqn. (1.1). Let us also make the definition 

≡ ∇×R J  , where the vector field R  is referred to as the Burger’s vector field. It is easy to see 

from its very definition that 0∇⋅ =R  ; i.e. the Burger’s vector is divergence-free. Now let us take 

the curl of the fourth equation in eqn. (1.1). We get (see Peshkov et al. [46]) 

( ) 0
T

t

ρ
τ

∂  −∇× × +∇× = ∂  
R

v R J          (1.2) 

We see immediately that eqn. (1.2) guarantees divergence-free time-evolution for the Burger’s 

vector field. (Those who are familiar with the induction equation for MHD will also see the great 

parallels between eqn (1.2), evaluated in the limit where τ →∞ ,  and the MHD induction equation. 

) 
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 Now notice that the fourth equation of the set of equations in eqn. (1.1) gives an 

evolutionary equation for the time-evolution of the curl of J  -- see eqn. (1.2)! To preserve the 

mimetic nature of the time-evolution, the components of the curl-constrained vector field should 

be collocated at the edges of the mesh. We realize from eqn. (1.2) that curl-preserving 

reconstruction of a vector field should always pay attention to the curl of the vector field. The curl 

of the reconstructed vector field should be divergence-free. Therefore, we see that when designing 

a DG-like scheme for curl constraint-preserving PDEs we will get an additional equation for the 

evolution of the curl of the vector field J  that is of interest. In keeping with the DG philosophy, 

the higher moments of the curl of this vector field should have its components collocated at the 

faces of the mesh and evolved in divergence-free fashion. For a finite volume (FV) WENO-like 

scheme, of course, we have to reconstruct the higher moments of the Burger’s vector field R  . 

Furthermore, these higher moments must guarantee that 0∇⋅ =R . The zeroth moment of the 

Burger’s vector does not need to be reconstructed because it is always given to us by a discrete 

application of the definition, ≡ ∇×R J , in the faces of the zone of interest. Therefore, for WENO-

like schemes we do not need to simultaneously evolve eqn. (1.2). 

 

I.3) Introduction : Plan of the Paper 

 The rest of the paper follows the ensuing plan. In Section II we show how the curl-

preserving reconstruction can be carried out at all locations of a two-dimensional Cartesian mesh; 

this will include second to fourth order reconstructions. Section III extends these ideas to three-

dimensional Cartesian meshes. Those two sections also have demonstrations that (when they are 

coupled to a multidimensional Riemann solver) the two-dimensional and three-dimensional 

schemes are multidimensionally upwinded and, therefore, stable. Section IV shows results of a 

von Neumann stability analysis of curl constraint-preserving WENO-like schemes. Section V 

shows some results from a couple of model problems where the lack of curl-preserving 

reconstruction is shown to have obvious deleterious effects. Section VI shows some applications 

of the GPR system in eqn. (1.1) to some further test problems. Section VII presents some 

conclusions. 
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II) Curl-Preserving Reconstruction on a Two-dimensional Cartesian Mesh 

 It is easiest to get introduced to this subject in two dimensions, especially on a structured 

mesh. We consider this problem in five easy Sub-sections. In Sub-section II.1 we present a first 

order accurate reconstruction of a curl-preserving vector field. In Sub-section II.2 we present a 

second order accurate reconstruction of a curl-preserving vector field. In Sub-sections II.3 and II.4 

we present third and fourth order extensions. Sub-section II.5 shows that the curl-free 

reconstruction, when combined with a two-dimensional Riemann solver, produces a properly 

upwinded numerical scheme. Each Sub-section is designed to give us a new and important insight. 

Place Fig. 1 here 

 

II.1) Curl-Preserving Reconstruction on a Two-dimensional Cartesian Mesh at First Order 

 Let us consider what is entailed in a first order reconstruction. In keeping with the spirit of 

a first order finite volume scheme for fluid flow, it means that each edge of a rectangular/square 

zone has a component of the vector field along the direction of the edge. In simplest form, and for 

a unit square zone with extent ( ) [ ] [ ], 1 2,1 2 1 2,1 2x y ∈ − × − , this is shown in Fig. 1. Any 

rectangular zone can be mapped to such a square zone, so our results are perfectly general. Fig. 1 

shows the collocation of vector components along the edges of a two-dimensional control volume. 

As evaluated over the edges of the square element, the discrete circulation is fully specified. (The 

mean value and its linear variation are shown along each edge in Fig. 1, in anticipation of a second 

order accurate reconstruction scheme. However, in this Sub-section we ignore the linear variation.) 

The reconstruction problem for a curl-free reconstruction consists of obtaining a polynomial-based 

vector field that is globally curl-free within this two-dimensional control volume. The 

reconstruction problem for a curl-preserving reconstruction consists of obtaining a polynomial-

based vector field that matches the specified mean circulation in the zone. 

 From Fig. 1 we see that the bottom and top x-edges have x-components of the vector field 

that are given by 1

xV  and 2

xV  respectively. Likewise, the left and right y-edges have y-components 

of the vector field that are given by 
1

yV  and 
2

yV  respectively. A polynomial that holds over the 

entire unit square and matches the specified values at the edges is given by 



10 

 

( ) ( )1 2 1 21 1 1 1
,     ;    ,

2 2 2 2

x y

x x y yV x y V y V y V x y V x V x
       = − + + = − + +       
       

   (2.1) 

By taking the curl of the above vector field, we get 

( ) 1 2 2 1
y x

x x y yz

V V
V V V V

x y

∂ ∂  ∇× = − = − + − ∂ ∂
V        (2.2) 

We see that the curl, evaluated as a differential expression, gives back the discrete circulation of 

the vector field over the unit square shown in Fig. 1. If the discrete circulation is curl-free then it 

will evaluate to zero and our vector field in eqn. (2.1) will also be curl-free – i.e. the curl evaluated 

at each local point in the unit square is exactly zero. If the discrete circulation is not curl-free then 

the differential form in eqn. (2.2) matches the exact value of the discrete circulation at all locations 

of the unit square, which is reasonable. Observe too that ( ),xV x y  only has linear variation in the 

y-direction while ( ),yV x y  only has linear variation in the x-direction in eqn. (2.1) with the result 

that the reconstruction in eqn. (2.1) is only first order accurate. 

 It is also worthwhile to observe that if any three of the four components given by 1

xV  , 2

xV  

, 
2

yV  and 
1

yV  are specified, and if we are told that the vector field is curl-free, then the fourth 

component is automatically satisfied. This is a small observation for now, but it will be expanded 

on in subsequent sections. 

 

II.2) Curl-Preserving Reconstruction on a Two-dimensional Cartesian Mesh at Second 

Order 

 Now let us consider second order extensions. In the spirit of van Leer [55] and Kolgan 

[43], this is tantamount to endowing each of the edges with a piecewise linear variation. From Fig. 

1 we see that the bottom and top x-edges have x-components of the vector field that are now 

endowed with undivided differences in the x-direction given by ( )1

x xV∆  and ( )2

x xV∆  respectively. 

In a finite volume setting, these undivided differences can be obtained by using a TVD or WENO 

scheme applied one-dimensionally along the x-edges. To retain second order accuracy, the one-

dimensional reconstruction of the first moments should be obtained from a WENO scheme that is 
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at least second order accurate. Similarly, from Fig. 1 we see that the left and right y-edges have y-

components of the vector field that are now endowed with undivided differences in the y-direction 

given by ( )1

y yV∆  and ( )2

y yV∆  respectively. In a finite volume setting, these undivided differences 

can be obtained by using a TVD or WENO scheme applied one-dimensionally along the y-edges. 

(For a second order DG scheme, these undivided differences will indeed become evolutionary 

modes.) Let us say that we follow exactly the same game-plan as in eqn. (2.1) and write 

( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1 1 2 2

1 1 2 2

1 1
,

2 2

1
,

  ;

1

2 2

x

x x x x x x

y

y y y y y y

V x y V V x y V V x y

V x y V V y x V V y x

   = + ∆ − + + ∆ +   
   
   = + ∆ − + + ∆ +   
   

     (2.3) 

To see the problem with eqn. (2.3), let us take its curl. We get 

( )

( ) ( ) ( ) ( )1 2 2 1 1 2 2 1

y x

z

x x y y x x x x y y y y

V V

x y

V V V V V V x V V y

∂ ∂
∇× = −

∂ ∂

    = − + − + ∆ − ∆ + ∆ − ∆     

V
    (2.4) 

We see that even if the original vector field had a discrete circulation that was zero over the square 

shown in Fig. 1, the resulting curl evaluated at all points within the square will not be zero. This 

is because in general ( ) ( )2 1

x x x xV V∆ ≠ ∆  and ( ) ( )2 1

y y y yV V∆ ≠ ∆ , so the linear variations in the x- and 

y-directions in eqn. (2.4) will not be zero. Therefore, eqn. (2.3) is not curl-preserving.  

 Having seen that a naïve attack on the problem yields nothing of value, let us renew our 

effort. We take inspiration from the divergence-free reconstruction of two-dimensional vector 

fields that was discussed in Sub-section III.1 of Balsara [5] and realize that when we are dealing 

with a constrained vector field, the components couple. In other words, the vector field is an entire 

entity and we cannot take the individual components as disjoint entities. Therefore, the x-

component of the vector field will couple to the y-component of the vector field so as to preserve 

the constraints. Since we have already realized that curl-free and curl-preserving reconstruction 

are just two sides of the same coin, we focus on the former problem first. Let us write our vector 

field as 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2 2

1 1 2 2 2

  
1 1

, 1 4
2 2

1 1
,

;

1 4
2 2

x

x x x x x x yy

y

y y y y y y xx

V x y V V x y V V x y a y

V x y V V y x V V y x b x

      = + ∆ − + + ∆ + + −         
      = + ∆ − + + ∆ + + −         

   (2.5) 

Notice that all the terms that are needed for obtaining second order accuracy are already present 

in eqn. (2.5). The ( )21 4yya y−  term is designed to go to zero at 1 2y = ±  , i.e. at the upper and 

lower x-edges of the mesh shown in Fig. 1. This ensures that at the abutting x-edges of a full two-

dimensional mesh we have one and the same value for ( ),xV x y  . Similarly, the ( )21 4xxb x−  term 

is designed to go to zero at 1 2x = ±  , i.e. at the right and left y-edges of the mesh shown in Fig. 

1. This ensures that the abutting y-edges of a full two-dimensional mesh have one and the same 

value of ( ),yV x y  . The above two sentences ensure that the reconstruction strategy is globally 

curl-free or curl-preserving. We can now express the curl of the above vector field as 

( )

( ) ( ) ( ) ( )1 2 2 1 1 2 2 18 8

y x

z

x x y y x x x x xx y y y y yy

V V

x y

V V V V V V b x V V a y

∂ ∂
∇× = −

∂ ∂

    = − + − + ∆ − ∆ − + ∆ − ∆ +     

V
   (2.6) 

We see that the first square bracket in the above equation still expresses the discrete circulation, 

which is exactly zero for a curl-free vector field. The second and third square brackets in the above 

equation can be made zero by setting  

( ) ( ) ( ) ( )1 2 1 21 1
      ;        

8 8
xx x x x x yy y y y yb V V a V V   = ∆ − ∆ = ∆ − ∆         (2.7) 

Notice that from a finite difference point of view, the coefficients yya  and xxb  are just higher order 

derivatives of the undivided differences, and as a result, the second order accuracy of eqn. (2.5) is 

not affected by the inclusion of these additional terms.  

 The analogies with divergence-free reconstruction in Balsara [5] are also worth drawing. 

In both cases, the first order term is an expression of the discrete constraint applied to the 

boundaries of the element. The inclusion of higher order terms requires additional coefficients to 

ensure that the differential form of the constraint is exactly satisfied at all locations within the 

element. 
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 Now that we have thoroughly discussed all the nuances of a curl-free reconstruction of a 

vector field, we are in a position to discuss how the idea goes over to a curl-preserving 

reconstruction. Recall that the fourth equation in eqn. (1.1) indeed has an evolutionary equation 

for the curl, see eqn. (1.2).  Notice that in a curl-preserving reconstruction, Fig. 1 shows us that the 

discrete circulation in the square zone is given by 1 2 2 1

x x y yV V V V − + −   . For a second order DG 

scheme, eqn. (1.2) would provide the time-evolving higher moments of the curl. For a FV scheme, 

we can reconstruct such a quantity for all zones of the two-dimensional mesh. Using neighboring 

elements, we can obtain a TVD-based or WENO-based piecewise linear, finite volume 

reconstruction of the circulation. Such a reconstruction should match the discrete circulation in the 

target zone. As a result, for the zone shown in Fig. 1, we can write the piecewise linear circulation 

as  

( ) ( ) ( )1 2 2 1,z z z

x x y y x yR x y V V V V R x R y = − + − + ∆ + ∆        (2.8) 

Matching eqns. (2.6) and (2.8) we get 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 21 1
      ;        

8 8

z z

xx x x x x x yy y y y y yb R V V a R V V   = − ∆ + ∆ − ∆ = ∆ + ∆ − ∆      (2.9) 

Comparing eqns. (2.7) and (2.9) we now observe an obvious correspondence between curl-free 

and curl-preserving reconstruction. Specifying one is tantamount to specifying the other. 

 It is also worth pointing out that eqns. (1.1) and (1.2) show us that the curl of the vector 

field explicitly participates in the time-update. Therefore, it is useful to provide explicit 

expressions not just for the vector field but also for its curl, as was done in eqn. (2.6). Such 

expressions prove to be quite valuable for making numerical implementations. 

 When a one-dimensional TVD or WENO reconstruction is used to obtain ( )1

x xV∆ , ( )2

x xV∆

, ( )1

y yV∆ and ( )2

y yV∆ in eqn. (2.5), we realize that we are automatically building in non-linear 

hybridization into the multidimensional curl-preserving reconstruction. It is for this reason that all 

the resulting schemes presented in this paper inherit all the good non-linear stabilization properties 

that are an integral part of higher order Godunov schemes. Consequently, by its very construction, 
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the non-linearly hybridized curl-preserving reconstruction developed here integrates very well 

with higher order Godunov philosophy. 

 

II.3) Curl-Preserving Reconstruction on a Two-dimensional Cartesian Mesh at Third Order 

 We extend the results from the previous Sub-section to the third order case here. In addition 

to being useful for scheme design, this is useful for analytic work on WENO-like or DG-like 

schemes, and their von Neumann stability analysis. Notice first off that ( ),xV x y  in eqn. (2.5) has 

constant, x, y, xy and y2 terms. Therefore, to become a truly third order reconstruction, it minimally 

needs an x2–dependent term, which will indeed be added along the x-edges. Similarly, ( ),yV x y  

in eqn. (2.5) has constant, x, y, xy and x2 terms. Therefore, to become a truly third order 

reconstruction, it minimally needs a y2–dependent term, which will indeed be added along the y-

edges. Such a way of thinking shows us how each reconstruction of the curl constraint-preserving 

vector field at a certain order illuminates the way to the reconstruction at the next higher order. At 

least on a structured mesh, where the polynomial terms can proliferate, this is the systematic 

strategy that one should pursue. 

 It is important to be emphatic about a point of detail that we develop in this paragraph. One 

may think that it is unreasonable to claim that the y2 mode is present in ( ),xV x y  in eqn. (2.5) 

because that mode comes purely from the constraint-satisfaction at second order. Similarly, one 

may think that it is unreasonable to claim that the x2 mode is present in ( ),yV x y  in eqn. (2.5) 

because that mode also comes from constraint-satisfaction at second order. However, indeed those 

modes are truly present because this is the very idea behind a constrained vector field. The 

constraint basically tells us that if a mode in ( ),xV x y  or ( ),yV x y  is needed in order to satisfy 

the curl-free (or curl-preserving) constraint, then it is indeed truly satisfied. It does not matter that 

it is satisfied by variation in the other vector component, because the curl-free (or curl-preserving) 

vector field is just a single entity. None of the components of the curl-free vector field are entire 

in themselves, they only exist as parts of a whole! An entirely analogous observation has been 

found to be true over and over again in divergence constraint-preserving reconstruction for MHD 

and CED (Balsara [5], [6], [8], Balsara et al. [22], [23]). 
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 Let us now extend the curl-free reconstruction to third order. At the bottom and top x-edges 

of the square shown in Fig. 1 we now add piecewise quadratic modes that we denote by ( )1

xx xV∆  

and ( )2

xx xV∆  respectively. In a finite volume setting, these quadratic modes can be obtained by 

using a WENO scheme applied one-dimensionally along the x-edges. The linear modes are also 

provided by the same WENO scheme. To retain third order accuracy, the one-dimensional 

reconstruction of the linear and quadratic modes should be obtained from a WENO scheme that is 

at least third order accurate.  Similarly, at the left and right y-edges of the square shown in Fig. 1 

we now add piecewise quadratic modes that we denote by ( )1

yy yV∆  and ( )2

yy yV∆  respectively. In 

a finite volume setting, these quadratic modes can be obtained by using a WENO scheme applied 

one-dimensionally along the y-edges; likewise for the linear modes. The linear modes are also 

provided by the same WENO scheme. We use a sequence of orthogonal Legendre polynomials 

because the higher order polynomials all average to zero and the polynomial sequence retains a 

nice orthogonality property. It is important to notice that the inclusion of a quadratic x2–dependent 

term along each of the x-edges in ( ),xV x y  will also trigger additional modes of the form x2y. 

Likewise, the inclusion of a quadratic y2-dependent term along each of the y-edges in ( ),yV x y  

will also trigger additional modes of the form y2x. To compensate for the effect of these terms on 

the curl, some higher order polynomial terms have to be added. We now have at third order 

( ) ( ) ( )( )

( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

1 1 1 2

2 2 2 2

2 2 2

1 1 1 2

1
, 1 12

2

1
              1 12

2

              1 4 1 4 1 4

1
, 1 12

2

              

  ;

x

x x x xx x

x x x xx x

yy yyy xyy

y

y y y yy y

V x y V V x V x y

V V x V x y

a y a y y a x y

V x y V V y V y x

  = + ∆ + ∆ − −    
  + + ∆ + ∆ − +    

+ − + − + −

  = + ∆ + ∆ − −    

( ) ( )( )

( ) ( ) ( )

2 2 2 2

2 2 2

1
1 12

2

              1 4 1 4 1 4

y y y yy y

xx xxx xxy

V V y V y x

b x b x x b y x

  + + ∆ + ∆ − +    

+ − + − + −

      (2.10) 
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The xyya  and xxyb  are not mandatory for order property preservation, but we shall show shortly 

that they are needed in the construction of a WENO-like or DG-like scheme for curl constraint-

preserving vector fields. We can now write out the curl of the above vector field as 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 2 1 1 2 2 1

1 2 2 1 2 2

8 8

12 1 12 12 1 12 8

y x

z

x x y y x x x x xx y y y y yy

xx x xx x xxx yy y yy y yyy xyy xxy

V V

x y

V V V V V V b x V V a y

V V b x V V a y a b xy

∂ ∂
∇× = −

∂ ∂

    = − + − + ∆ − ∆ − + ∆ − ∆ +     
   + ∆ − ∆ − − + − ∆ + ∆ + − + −   

V

 

            (2.11) 

As with eqn. (2.8), we can now reconstruct the discrete circulation up to and including quadratic 

variation over each zone, and write the result as 

( ) ( ) ( )
( )( ) ( )( ) ( )

1 2 2 1

2 2

,

              1 12 1 12

z z z

x x y y x y

z z z

xx yy xy

R x y V V V V R x R y

R x R y R xy

 = − + − + ∆ + ∆ 

+ ∆ − + ∆ − + ∆
     (2.12) 

Please note that for a WENO-like scheme, the higher moments in eqn. (2.12) are reconstructed; 

whereas for a DG-like scheme the higher moments in eqn. (2.12) are evolved. Equating like terms 

in eqns. (2.11) and (2.12) we get 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 2 1 2

1 2 1 2

1 1
      ;        

12 12

1 1
           ;       

 ;

   
8 8

;

1

16

z z

xxx xx xx x xx x yyy yy yy y yy y

z z

xx x x x x x yy y y y y y

z

xyy xxy xy

b R V V a R V V

b R V V a R V V

a b R

   = − ∆ + ∆ − ∆ = ∆ + ∆ − ∆   

   = − ∆ + ∆ − ∆ = ∆ + ∆ − ∆   

= − = ∆

 

            (2.13) 

This gives us the third order curl-free or curl-preserving reconstruction on a two-dimensional 

Cartesian mesh. To get a curl-free reconstruction, just set all the coefficients in eqn. (2.12) to zero. 

We can now also notice that a third order accurate DG-like scheme which evolves all the modes 

of the circulation in eqn. (2.12) will indeed evolve a value for ( )z

xy R∆  . As a result, the terms xyya  

and xxyb  in eqn. (2.10) were needed for matching all the modes of a third order accurate DG-like 

scheme which evolves the primal vector field in eqn. (2.10) as well as its curl in eqn. (2.12). If the 
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vector field in eqn. (2.10) can be guaranteed to be curl-free then the terms xyya  and xxyb  in eqn. 

(2.10) are not needed. 

 Now notice that the vector field in eqn. (2.10) only needs to be up to third order accurate, 

i.e. it only needs to retain all the quadratic terms that arise in a two-dimensional Taylor series 

expansion. Therefore, when dealing with a finite volume scheme, its curl only needs to be second 

order accurate. In other words, for a third order accurate FV scheme, if we had set the coefficients 

( )z

xxR∆  , ( )z

yy R∆  and ( )z

xy R∆  to zero, eqn. (2.12) would still have been second order accurate. 

Therefore, in a FV scheme, it would have been acceptable, and third order accurate, to have set 

0xyy xxya b= =  in eqn. (2.10). For a DG-like scheme, of course, all the modes in eqn. (2.12) are 

needed. Also notice that from a finite difference point of view, the coefficients yya , yyya  , xxb  and 

xxxb  in eqn. (2.13) are just higher order derivatives of the undivided differences, and as a result, 

the third order accuracy of eqn. (2.10) is not affected by the inclusion of these additional terms. 

 

II.4) Curl-Preserving Reconstruction on a Two-dimensional Cartesian Mesh at Fourth 

Order 

 Let us now make a fourth order extension. We use our idea of systematically thinking about 

the terms that are present in the third order reconstruction and using them to inform our choices at 

fourth order. Notice, first off, that ( ),xV x y  in eqn. (2.10) has constant, x, y, x2, xy, y2, y3 and x2y 

terms. To that, along each x-edge, we will indeed add an x3–dependent term. However, to have full 

fourth order accurate reconstruction, we will still need an xy2 term, which must indeed be added 

with a zone-centered collocation! In other words, by enriching the moments along each x-edge we 

simply cannot obtain a term with xy2 variation, so we have to include it at a location where all the 

moments have validity, namely at the zone center. Furthermore, notice that ( ),yV x y  in eqn. (2.10) 

has constant, x, y, x2, xy, y2, x3 and xy2 terms. To that, along each y-edge, we will indeed add a y3–

dependent term. However, to have full fourth order accurate reconstruction, we will still need an 

x2y term, which must indeed be added with a volume-centered collocation! As before, by enriching 

the moments along each y-edge we simply cannot obtain a term with  x2y  variation, so we have to 

include it at a location where all the moments have validity, namely at the zone center. We now 
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see the value of our systematic, order-by-order approach because it has highlighted for us the fourth 

order terms that are supplied by enriching the basis space along the edges and the additional modes 

that have to be supplied volumetrically. (A similar subdivision occurs in divergence-free 

reconstruction for CED and MHD where we already know that at fourth order and beyond, many 

of the modes are face-centered, but some are volume-centered. There too, we realized that we 

could not enrich the space of spatial modes to obtain all the terms that are needed in a fourth order 

accurate Taylor series expansion. As a result, some of the modes had to be volume-centered; see 

Balsara and Käppeli [24] and Hazra et al. [41].) 

 Let us now extend the curl-free reconstruction to fourth order. At the bottom and top x-

edges of the square shown in Fig. 1 we now add piecewise cubic modes that we denote by ( )1

xxx xV∆  

and ( )2

xxx xV∆  respectively. Similarly, at the left and right y-edges of the square shown in Fig. 1 we 

now add piecewise cubic modes that we denote by ( )1

yyy yV∆  and ( )2

yyy yV∆  respectively. We use a 

sequence of orthogonal Legendre polynomials, as before. The inclusion of a cubic x3–dependent 

term along each of the x-edges in ( ),xV x y  will also trigger additional modes of the form x3y. 

Likewise, the inclusion of a cubic y3-dependent term along each of the y-edges in ( ),yV x y  will 

also trigger additional modes of the form y3x. To compensate for the effect of these terms on the 

curl, some higher order polynomial terms have to be added. The analysis from the previous 

paragraph allows us to write the fourth order curl constraint-preserving vector field as 
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( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 1 1 2 1 3

2 2 2 2 2 3 2

2 2 2 2 2

1
, 1 12 3 20

2

1
             1 12 3 20 1 4

2

             1 4 1 4 1 4 1 4

x

x x x xx x xxx x

x x x xx x xxx x xyy

yy yyy yyyy xyyy xxyy

V x y V V x V x V x x y

V V x V x V x x y a x y

a y a y y a y y a xy y a

  = + ∆ + ∆ − + ∆ − −    
  + + ∆ + ∆ − + ∆ − + + −    

+ − + − + − + − + ( )( )
( )( ) ( )( )

( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

2 2

4 2 3 2

1 1 1 2 1 3

2 2 2 2 2 3

1 12 1 4

             3 14 3 560 1 70 3 20 1 4

1
, 1 12 3 20

2

1
          0

  ;

   1 12 3 2
2

xyyyy xxxyy

y

y y y yy y yyy y

y y y yy y yyy y xxy

x y

a x y y a x x y

V x y V V y V y V y y x

V V y V y V y y x b

− −

+ − + − + − −

  = + ∆ + ∆ − + ∆ − −    
  + + ∆ + ∆ − + ∆ − + +    

( )

( ) ( ) ( ) ( ) ( )( )
( )( ) ( )( )

2

2 2 2 2 2 2 2

4 2 3 2

1 4

             1 4 1 4 1 4 1 4 1 12 1 4

             3 14 3 560 1 70 3 20 1 4

xx xxx xxxx xxxy xxyy

xxxxy xxyyy

y x

b x b x x b x x b xy x b y x

b y x x b y y x

−

+ − + − + − + − + − −

+ − + − + − −

 

            (2.14) 

Note that the modes xyya  and xxyb  correspond to zone-centered modes that carry the 
2xy  and 

2x y  

variation. There are 16 coefficients in the above equations and we need a strategy for fixing them 

up. The curl now becomes 

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

1 2 2 1 1 2

2 1

1 2 2 1 2 2

8 2 5

8 2 5

12 1 12 12 1 12

8 6 35

y x

x x y y x x x x xx xxxxz

y y y y yy yyyy

xx x xx x xxx yy y yy y yyy

xyy xxy xyyyyy xxxxy

xxx

V V
V V V V V V b b x

x y

V V a a y

V V b x V V a y

a b a b xy

V

∂ ∂   ∇× = − = − + − + ∆ − ∆ − −   ∂ ∂

 + ∆ − ∆ + + 
   + ∆ − ∆ − − + − ∆ + ∆ + −   
 + − − − 

+ ∆

V

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )

1 2 3 1 2 3

2 2

3 3

16 3 20 16 3 20

8 12 1 12 8 12 1 12

8 4 3 20 8 4 3 20

x xxx x xxxx yyy y yyy y yyyy

xxyy xxxy xxyy xyyy

xxxyy xxxxy xxyyy xyyyy

V b x x V V a y y

a b y x b a x y

a b x x y b a y y x

   − ∆ − − + − ∆ + ∆ + −   
   + − − + − + −   
   + + − + − − −   

 

            (2.15) 

As with eqn. (2.12), we can now reconstruct the discrete circulation up to and including quadratic 

variation over each zone and including the minimal number of cubic modes that arise in eqn. 

(2.15), and write the result as 
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( ) ( ) ( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( ) ( )
( ) ( )

1 2 2 1

2 2

3 3 2

2

,

              1 12 1 12

               + 3 20 3 20 1 12

              1 12

z z z

x x y y x y

z z z

xx yy xy

z z z

xxx yyy xxy

z

xyy

R x y V V V V R x R y

R x R y R xy

R x x R y y R y x

R x y

 = − + − + ∆ + ∆ 

+ ∆ − + ∆ − + ∆

∆ − + ∆ − + ∆ −

+ ∆ −

  (2.16) 

Equating like terms in eqns. (2.15) and (2.16) gives us 11 equations. Therefore, we see that at 

fourth (and higher) orders the curl constraints, by themselves, do not give us sufficient information 

for uniquely fixing up the 16 coefficients in eqn. (2.14). However, we expect a solution which has 

5 free parameters that can be fixed by using some other logic, which we will describe shortly. The 

parametric solution can be written quite easily if we introduce a parameter “α ” defined by 

xxxyy xxyyya bα = + . We can then write the entire solution in terms of the 5 parameters xyya , xxyb , xxyya

, xxyyb and α as follows:- 

( ) ( )

( ) ( ) ( )1 2

1 1
12 280 280 35     ;    12 280 280 35     ;

24 24

2     ;    2     ;    

1 1
      ;     

16 16

z z

xxxyy xyy xxy xy xxyyy xyy xxy xy

xyyyy xxyyy xxxxy xxxyy

z

yyyy yyy yyy y yyy y xxxx

a a b R b a b R

a b b a

a R V V b

α α   = + − − ∆ = − + + ∆   

= − = −

 = ∆ + ∆ − ∆ =  ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

1 2

1 2 1 2

1

     ;

1 1
8       ;     8      ;

12 12

1 1
    ;          ;

12 12

1
40 40

320

z

xxx xxx x xxx x

z z

xyyy xxyy xyy xxxy xxyy xxy

z z

yyy yy yy y yy y xxx xx xx x xx x

yy y y

R V V

a b R b a R

a R V V b R V V

a V

 − ∆ + ∆ − ∆ 

   = + ∆ = − ∆   

   = ∆ + ∆ − ∆ = − ∆ + ∆ − ∆   

= ∆ − ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 1 2

1 2 1 2

40      ;

1
40 40 40

320

z z

y y yyy y yyy y y yyy

z z

xx x x x x xxx x xxx x x xxx

V V V R R

b V V V V R R

 ∆ − ∆ + ∆ + ∆ − ∆ 

 = ∆ − ∆ − ∆ + ∆ − ∆ + ∆ 

            (2.17) 

 Up to this point in the narrative, we have left the 5 parameters xyya , xxyb , xxyya , xxyyb and α  

undetermined. They will only be fixed after we make the following consideration. The vector field 

in eqn. (2.14) includes modes that reside on the edges of the mesh and modes that are zone-

centered. It is, therefore, interesting to ask how both kinds of modes (edge-centered and zone-

centered) can be accommodated seamlessly in a WENO-like or DG-like scheme? Indeed, we get 



21 

 

a valuable new insight by addressing this question. Realize that the vector field in eqn. (2.14) can 

also be decomposed in terms of orthogonal Legendre polynomials as follows:- 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )

1 2 1 2

1 2

1 2 1 2

1 2 2

1 2

1 2 1

, 2 12

2 24 70 3

30

2 3 2 1 12

112

40 40

x z

x x y y y y y

z

x x x x xy xyy xxy

z

x x yy yy y yy y

xxyy xx x xx x

z

yyy yyy y yyy y

y y y y yyy y y

V x y V V R V V

V V R a b x

V V R V V y

a V V x

R V V

V V V

α

 = + + ∆ + ∆ − ∆ 
 + ∆ + ∆ + ∆ + + + 
 + − + + ∆ + ∆ − ∆ 
 + + ∆ + ∆ − 

∆ + ∆ − ∆
+

− ∆ − ∆ − ∆ + ∆( ) ( ) ( )( )
( )

( ) ( ) ( )( )
( ) ( )( ) ( )( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( )

2

2

1 2

1 2 3

1 2 3

1 2 2 2

1 12
40 80

8 30

2 12 280 280 35 36 3 20

3 3 20

1 12 4

z z

yy y y yyy

z

x x x x xxyy xyy

z

xxx x xxx x xyy xxy xy

z

yy yy y yy y

xx x xx x xyy

y
V R R

V V b R xy

V V a b R x x

R V V y y

V V x y a y

α

 
  −
 + ∆ − ∆ 
 + − ∆ + ∆ + + ∆ 
 + ∆ + ∆ + + − − ∆ − 
 + − ∆ + ∆ − ∆ − 
   + − ∆ + ∆ − + −   ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( )( )

( )( ) ( )

1 2 4 2 1 2 3

3 2 2

4 2

1 12

4 3 14 3 560 3 20

8 3 3 20 4 1 12 1 12

12 280 280 35 12 3 14 3 560

12 280 280 3

z

yyy yyy y yyy y xxx x xxx x

z

xxyy xyy xxyy

z

xyy xxy xy

xyy xxy

x

R V V y y V V x x y

b R y y x a x y

a b R x y y

a b

α

α

−

   + − ∆ + ∆ − ∆ − + + − ∆ + ∆ −  
   + − + ∆ − + − − −  
 + − − + + ∆ − + 

+ − + − − ( )( ) ( )( )3 25 6 3 20 1 12z

xy R x x y ∆ − − 

 

            (2.18a) 
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )( ) ( ) ( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

1 2 1 2

1 2 1 2

1 2

1 2

1 2 1 2

, 2 12

30

2 24 70 3

122

40 40 40 80

y z

y y x x x x x

z

y y xx xx x xx x

z

y y y y xy xyy xxy

z

xxx xxx x xxx x

z z

x x x x xxx x xxx x x xxx

V x y V V R V V

V V R V V x

V V R a b y

R V V
x

V V V V R R

α

 = + + − ∆ + ∆ − ∆ 
 + − + + − ∆ + ∆ − ∆ 
 + ∆ + ∆ − ∆ + + + 
 − ∆ + ∆ − ∆
 +
 − ∆ − ∆ − ∆ + ∆ − ∆ + ∆ 

( )

( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )
( ) ( ) ( )

2

1 2 2 1 2

1 2 3

1 2 3

2 1 2

1 12

2 3 2 1 12 8 30

3 3 20

2 12 280 280 35 36 3 20

4 1 12

z

xxyy yy y yy y y y y y xxyy xxy

z

xx xx x xx x

z

yyy y yyy y xyy xxy xy

xxy yy y yy y

b V V y V V a R xy

R V V x x

V V a b R y y

b x y V V

α

−

   + + ∆ + ∆ − + − ∆ + ∆ + − ∆   
 + − − ∆ + ∆ − ∆ − 
 + ∆ + ∆ + − + + ∆ − 

 + − − + − ∆ + ∆   ( )
( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )
( )( ) ( )

2

1 2 4 2 3

1 2 3 2 2

4 2

1 12

4 3 14 3 560 8 3 3 20

3 20 4 1 12 1 12

12 280 280 35 12 3 14 3 560

12 280 280

z z

xxx xxx x xxx x xxyy xxy

yyy y yyy y xxyy

z

xyy xxy xy

xyy

y x

R V V x x a R x x y

V V y y x b x y

a b R y x x

a b

α

α

 −
   + − − ∆ + ∆ − ∆ − + + − − ∆ −   
   + − ∆ + ∆ − + − − −  
 + − + − − ∆ − + 

+ − − + ( )( ) ( )( )2 335 6 1 12 3 20z

xxy xy R x y y + ∆ − − 

 

            (2.18b) 

The above two equations give us all the modes that are present in the curl-preserving reconstruction 

of the vector field. Notice that the 2nd, 4th, 6th, 7th and 10th terms in ( ),xV x y as well as the 3rd, 5th, 

6th, 8th and 9th terms in ( ),yV x y  are only specified parametrically in terms of the 5 parameters 

xyya , xxyb , xxyya , xxyyb and α . In other words, the edge-centered vector field components do not fix 

those modes. Some additional information should be gleaned from the zone-centered formulation 

of the hyperbolic system. (Interestingly, this is also true for fourth and higher order divergence-

preserving reconstruction in CED.) 

 First, notice that even without specifying xyya , xxyb , xxyya , xxyyb and α we can still use eqn. 

(2.18) to write the zone-averaged values for the two vector components as:- 
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( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1 2 1 2

1 2 1 2

  

2

, 2 12

, 2 1

;x z

x x y y y y y

y z

y y x x x x x

V x y V V V V R

V x y V V V V R

= + + ∆ − ∆ + ∆

= + + ∆ − ∆ − ∆
     (2.19) 

Therefore, the zone-averages of the vector field are indeed fully specified by the edge values and 

the higher order moments in the edges. 

 Next, notice that the curl-constrained, edge-based vector components have not fully pinned 

down the 2nd, 4th, 6th, 7th and 10th terms in ( ),xV x y ; nor have they fully pinned down the 3rd, 5th, 

6th, 8th and 9th terms in ( ),yV x y . Therefore, owing to the mass matrix being diagonal for the 

expansion in eqns. (2.18a) and (2.18b), we can indeed use a traditional, finite-volume-based DG 

scheme to evolve the first 10 moments in those equations. Such a DG scheme would be evolved 

as an auxiliary scheme to the edge-based DG-like scheme and is intended to help pin down the 

moments that cannot be specified exclusively by the edge-based DG-like scheme. Let us denote 

those modes with a superscript of “FV”. Since we seek the maximum concordance between the 

zone-centered DG scheme and the edge-centered DG-like scheme. This is done by requiring that 

the following 10 linear equations should have their residuals minimized in a least squares sense:- 

( ) ( )( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )

( )
( )

1 2

1 2

1 2

1 2

1

  

4

2 24 70 3

2 3 2

8 30

2 12 280 280 3

;

  ;

  ;

  ;

  ;

35 6

z FV

x x x x xy xyy xxy x x

FV

xxyy xx x xx x xx x

z FV

x x x x xxyy xyy xy x

z FV

xxx x xxx x xyy xxy xy xxx x

FV

xyy xyy x

y y

V V R a b V

a V V V

V V b R V

V V a b R V

a V

V

α

α

∆ + ∆ + ∆ + + + = ∆

+ ∆ + ∆ = ∆

− ∆ + ∆ + + ∆ = ∆

∆ + ∆ + + − − ∆ = ∆

− = ∆

∆ + ∆( )( ) ( ) ( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )

( )

2

1 2

1 2

1 2

2 24 70 3

2 3 2

8 30

2

  ;

  ;

  ;

  ;

  

12 280 280 35 36

4

z FV

y y xy xyy xxy y y

FV

xxyy yy y yy y yy y

z FV

y y y y xxyy xxy xy y

z FV

yyy y yyy y xyy xxy xy yyy y

FV

xxy xxy y

V R a b V

b V V V

V V a R V

V V a b R V

b V

α

α

− ∆ + + + = ∆

+ ∆ + ∆ = ∆

− ∆ + ∆ + − ∆ = ∆

∆ + ∆ + − + + ∆ = ∆

− = ∆

  (2.20) 

We see that there are only 5 free parameters ( xyya , xxyb , xxyya , xxyyb and α ) in the above 10 

equations with the result that they cannot be satisfied exactly, therefore, the least squares 
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minimization is our best option. The least squares procedure is justified because any finite volume 

higher order reconstruction is already quite accurate, therefore it preserves the curl constraint 

reasonably closely, though not exactly. The least squares procedure just does the extra little bit to 

keep the curl constraint exactly satisfied while bringing all the moments in eqn. (2.18a,b) as close 

as possible to their finite volume counterparts. Section V shows that the use of the least squares 

procedure does not affect the accuracy of the final fourth order scheme. Since the equations are 

linear in the 5 free parameters, the optimal parameters can be written explicitly as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

 27811175 4799550 6945750 4799550 7357140

4799550 6

( 

         

   

9945750 479 550 7357140 9599100

 13891500 61378272      

x

V

z

xy x x xxx x y y yyy y

FV

x x xxx x y y yyy y x x

FV F

xxx x y

y

y x

y

x

R V V V V

V V V V V

V V

a = − − −

−

∆ ∆ ∆ ∆ ∆

∆

∆

+

− − + +

+

∆ ∆

∆−

∆ ∆

( ) ( )
( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1 1 1 1

2 2

 54022500  9599100

         14714280   /  474401888  ;

 27811175 4799550 7357140 4799550  6945750

 4799550 7357140 4799550

)

( 

        

FV FV

xxy y y y

FV

yyy y

z

xy x x xxx x y y yyyx y

x x xxx x

xy

V V

V

R V V

V V

b V V

− +

−

= − − + − −

+

∆ ∆

∆

∆

−

∆ ∆ ∆

∆ ∆−

∆

( ) ( ) ( )
( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

2 2

1 1 2 2

 6945750 9599100

14714280 5

(

4022500 61378272 9599100

13891500  /  

7

     

474401888  ;

2 5 60 7

 

5 0

  

 

6

        )

 

FV

y y yyy y x x

FV FV FV FV

xxx x xyy x xxy y y y

FV

yyy y

z

xxy xx x y y x yxxyy x x y

V V V

V V V V

V

R V Va V V

− +

− − − +

+

= − + − − +

∆ ∆ ∆

∆ ∆ ∆ ∆

∆

∆ ∆ ∆ ∆ ∆ ( )
( )
( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 1 1 2

          )

(

        

 

 )

(

150

60  /  116  ;

2 60 75 60 75  60

150   /  116  ;

105 54 1295 54 1295 54 1 295 

FV

xx x

FV

xy y

z FV

xyy x x yy y x x yy y xy x

FV

yy y

x x xxx x y y yyy y x x xxx x

xxyy Vb

V

V

R V V V V

V

V V V V V Vα

+

= − + − − − +

+

= +

∆

∆

∆ ∆ ∆ ∆ ∆ ∆

∆

∆ ∆− + + + ∆+∆ ∆ ∆ ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2

2 254 1295 108 2590 18

18 108 2590   /  181624

               

               )

FV FV FV

y y yyy y x x xxx x xyy x

FV FV FV

xxy y y y yyy y

V V V V V

V V V

+ + −∆ ∆ ∆ ∆

∆

− ∆

∆− −∆

−

−

            (2.21) 

Once eqn. (2.21) gives us the optimized parameters, they can be substituted in eqn. (2.17) to obtain 

all the coefficients in the reconstruction. This gives us a complete strategy for the vector field 

reconstruction in an edge-collocated, WENO-like or DG-like, curl-constraint preserving scheme. 

 The previous paragraph has shown us how we obtain an edge-collocated, DG-like, curl-

constraint preserving reconstruction. We now show that an edge-collocated, WENO-like, curl-
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constraint preserving reconstruction can also be designed. Realize that eqns. (2.19) can be used to 

obtain zone-averaged values for the vector field. Furthermore, these zone-averaged values can be 

obtained without regard to the 5 free parameters that are optimized via eqn. (2.20). The values 

from eqn. (2.19) can be used to carry out a conventional, finite-volume, fourth order accurate 

WENO reconstruction and such a reconstruction provides all the moments that are required in the 

right-hand sides of eqn. (2.20). Therefore, one does not need to evolve any auxiliary system when 

constructing a fourth order, curl-constraint preserving WENO-like scheme. In Section IV we show 

that a fourth order WENO-like curl-constraint preserving scheme that is based on this section does 

indeed meet its design accuracy. This completes our description of curl-preserving reconstruction 

at fourth order in two dimensions.  

 

II.5) Combining Curl-Free Reconstruction and the Two-Dimensional Riemann Solver to 

Obtain a Multidimensionally Upwinded, Globally Curl-Free Scheme 

 When studying one-dimensional advection, it is indeed a very instructive to realize that 

one-dimensional upwinding from a one-dimensional Riemann solver yields a stable parabolized 

scheme. The transition to a higher order scheme for advection is then easy to justify with the 

inclusion of TVD or WENO limiters, as was shown by van Leer [55], [56], Jiang and Shu [42], 

Balsara and Shu [4], Balsara, Garain and Shu [19]. As the order of accuracy of the reconstruction 

is increased, it is easy to see that the dissipative terms will become smaller. It is very desirable to 

show that an analogous plan exists for PDEs with a curl involution constraint on a vector field. 

Such a demonstration has to be multidimensional because the curl operator is only meaningful in 

two or more dimensions. 

 Let us begin by obtaining a very important insight from divergence-preserving vector 

fields. In their study of the induction equation for globally divergence-free MHD, Balsara and 

Käppeli [20] were able to show that multidimensional divergence-free reconstruction of the 

magnetic field at first order, coupled with a two-dimensional Riemann solver, also results in a 

stable scheme with the correct, multidimensionally parabolized, dissipation; see Section 4 of the 

above-mentioned paper. Because of the presence of these parabolic terms, the multidimensional 

Riemann solver always plays a stabilizing role in the induction equation. This showed us that the 

transition to higher order, by applying WENO-type or DG-type limiting, would indeed succeed 
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for the induction equation. Notice that Balsara and Käppeli [20] have made a non-trivial 

demonstration, because the components of a divergence-free vector field are collocated at the faces 

of the mesh, which is quite different from the zone-centered collocation that is used in DG schemes 

for conservation laws. 

 The previous paragraph has shown us that divergence-free evolution of vector fields has 

been developed to a point where it has a solid footing. It is very desirable to show that vector fields 

that evolve in a curl-free fashion have a similar assurance. This will again be a non-trivial 

demonstration because the components of a curl-free vector field are indeed collocated at the edges 

of the mesh. This is indeed different from the zone-centered collocation that is used for 

conservation laws as well as the face-centered collocation that is used for mimetic schemes that 

support globally divergence-free evolution. (Curl constraint-preserving evolution is then just a 

matter of adding source terms to the curl-free evolution equations; so we do not consider that in 

this Sub-section.) Let us consider the simplest two-dimensional equations that give us curl-free 

evolution. They can be written as 

( )

( )
0

  
v v

v 0

v v
v

;

x x y yx x y
y

x x y yy y x
x

J JJ J J

t x y x

J JJ J J

t y x y

∂ +  ∂ ∂ ∂
+ + − = ∂ ∂ ∂ ∂ 

∂ +  ∂ ∂ ∂
+ + − = ∂ ∂ ∂ ∂ 

       (2.22) 

Here, for the purposes of our theoretical study in this Sub-section, we will take the velocity 

components ( )v , vx y  to be constant. Let us view the update equations shown above in two space 

and one time direction. We also consider a uniform Cartesian mesh in the two spatial dimensions 

with zones of size x∆  and y∆  in the x- and y-directions. Let the timestep be of size t∆ . The first 

equation in eqn. (2.22) can be integrated along the x- and t-directions of the three-dimensional 

space-time mesh (2 space + 1 time dimensions). Since xJ is collocated at the x-edges of the mesh, 

the x-directional integration should, of course, coincide with the x-edges of the Cartesian mesh. 

As long as the curl is exactly zero, the ( )v y x yJ y J x∂ ∂ − ∂ ∂  term in that equation will be exactly 

zero; and the ( )v vx x y yJ J x∂ + ∂  term is just a gradient applied in the x-direction. Similarly, the 

second equation in eqn. (2.22) can be integrated along the y- and t-directions of a three-
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dimensional space-time mesh. Since yJ is collocated at the y-edges of the mesh, the y-directional 

integration should, of course, coincide with the y-edges of the two-dimensional Cartesian mesh. 

As long as the curl is exactly zero, the ( )vx y xJ x J y∂ ∂ − ∂ ∂  term in that equation will be exactly 

zero; and the ( )v vx x y yJ J y∂ + ∂  term is just a gradient applied in the y-direction. It is then easy 

to see that eqn. (2.22) ensures that if the same, properly upwinded, vertex-centered, values of the 

potential, defined in two dimensions by ( )v vx x y yJ Jφ ≡ + ,  are used at the corners of the mesh in 

order to update the x-edge centered 
xJ  and the y-edge centered 

yJ then the update will be globally 

curl-free. (This is very similar to globally divergence-free update of the induction equation in 

MHD which requires the same, properly upwinded, edge-centered, electric fields to be used for 

the update of the face-centered components of the magnetic induction vector.)  

Place Fig. 2 here 

 

 Let us now consider constant velocity components with v 0x >  and v 0y > , just to keep 

our initial discussion simple. Eqn. (2.22) becomes 

0

  v v 0

v

;

v

x x x
x y

y y y
x y

J J J

t x y

J J J

t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂

∂ ∂ ∂
+ + =

∂ ∂ ∂

          (2.23) 

We see, therefore, that “properly upwinded” in this context means that each zone in Fig. 2 will 

contribute its 
xJ  and 

yJ  values to its top right corner in Fig. 2. We require that the first order 

accurate curl-free reconstruction from eqn. (2.1) should be used in the zones ( ),i j  , ( )1,i j−  , 

( )1, 1i j− −  and ( ), 1i j −  in Fig. 2. Fig. 2 also catalogues the values of the potential 

( )v vx x y yJ Jφ ≡ + at all the vertices of zone ( ),i j  . We are interested in the time update of the 

components 
;

, 1/2

x n

i jJ −  and 
;

1/2,

y n

i jJ −  at the lower x-edge and lower y-edge of the zone ( ),i j  respectively. 

The subscripts in  
;

, 1/2

x n

i jJ −  and 
;

1/2,

y n

i jJ − indicate spatial collocation points on the mesh; the superscript 

of “n” denotes the nth timestep. The components of the vector field J are also indicated by “x” or 
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“y” in the superscripts. We can write the discretized, first order in space and time, update equations 

as 

; 1 ;

, 1/2 , 1/2 1/2, 1/2 1/2, 1/2

; 1 ;

1/2, 1/2, 1/2, 1/2 1/2, 1/2
0

  ;0

x n x n n n

i j i j i j i j

y n y n n n

i j i j i j i j

J J

t x

J J

t x

φ φ

φ φ

+
− − + − − −

+
− − − + − −

− −
+ =

∆ ∆
− −

+ =
∆ ∆

        (2.24) 

Recall that we assume a uniform Cartesian mesh with zone sizes x∆  and y∆  in the x- and y-

directions and a timestep of size t∆  . By substituting the upwinded potentials from Fig. 2, we get 

( ) ( )

( ) ( )

; ; ; ;; 1 ;
, 1/2 1/2, 1 1, 1/2 1/2, 1, 1/2 , 1/2

; ; ; ;; 1 ;
1, 1/2 1/2, 1, 1/2 1/2, 11/2, 1/2,

0

  
v v v v

0

v v v v

;

x x n y y n x x n y y nx n x n
i j i j i j i ji j i j

x x n y y n x x n y y ny n y n
i j i j i j i ji j i j

J J J JJ J

t x

J J J JJ J

t y

+
− + − − − − −− −

+
− + − − − − −− −

 + − +−  + =
∆ ∆

 + − +−  + =
∆ ∆

    (2.25) 

We now write the above equations in a format that allows us to see the velocity-dependence more 

clearly as follows 

( ) ( )

( ) ( )

; 1 ;

, 1/2 , 1/2 ; ; ; ;

, 1/2 1, 1/2 1/2, 1 1/2, 1

; 1 ;

1/2, 1/2, ; ; ; ;

1, 1/2 1, 1/2 1/2, 1/2, 1 0

  
v v

0

v v

;

x n x n x y
i j i j x n x n y n y n

i j i j i j i j

y n y n x y
i j i j x n x n y n y n

i j i j i j i j

J J
J J J J

t x x

J J
J J J J

t y y

+
− −

− − − + − − −

+
− −

− + − − − − −

−
+ − + − =

∆ ∆ ∆
−

+ − + − =
∆ ∆ ∆

    (2.26) 

The above equations still do not look like discretized versions of eqn. (2.23). As with the 

divergence-free evolution of vector fields, the concordance will only be established if the discrete 

circulations in the zones ( ), 1i j −  and ( )1,i j−  are used in the first and second equations of eqn. 

(2.26). If we utilize the fact that the discrete circulations in those two zones are indeed zero, we 

can make the transcriptions 

( ) ( )

( ) ( )

; ; ; ;

1/2, 1 1/2, 1 , 1/2 , 3/2

; ; ; ;

1, 1/2 1, 1/2 1/2, 3/2,

 
1

 
1

1

;

1

y n y n x n x n

i j i j i j i j

x n x n y n y n

i j i j i j i j

J J J J
x y

J J J J
y x

+ − − − − −

− + − − − −

− → −
∆ ∆

− → −
∆ ∆

       (2.27) 

Inserting the transcriptions from eqn. (2.27) into eqn. (2.26), we now get 
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( ) ( )

( ) ( )

; 1 ;

, 1/2 , 1/2 ; ; ; ;

, 1/2 1, 1/2 , 1/2 , 3/2

; 1 ;

1/2, 1/2, ; ; ; ;

1/2, 3/2, 1/2, 1/2, 1

  

0

;
v v

0

v v

x n x n x y
i j i j x n x n x n x n

i j i j i j i j

y n y n x y
i j i j y n y n y n y n

i j i j i j i j

J J
J J J J

t x y

J J
J J J J

t x y

+
− −

− − − − −

+
− −

− − − − −

−
+ − + − =

∆ ∆ ∆

−
+ − + − =

∆ ∆ ∆

     (2.28) 

It is now easy to see that the first equation in eqn. (2.28) is just a first order upwinded 

approximation for the time update of 
;

, 1/2

x n

i jJ −  . Please compare that equation to the first equation in 

eqn. (2.23). Also please envision it as an upwind scheme for 
;

, 1/2

x n

i jJ −  applied to the red control 

volume in Fig. 2. It is also easy to see that the second equation in eqn. (2.28) is just a first order 

upwinded approximation for the time update of 
;

1/2,

y n

i jJ −  . Please compare that equation to the second 

equation in eqn. (2.23). Also please envision it as an upwind scheme for 
;

1/2,

y n

i jJ −  applied to the blue 

control volume in Fig. 2. The curl-free reconstruction which couples all components of the vector 

J , along with the use of a unique upwinded potential φ  at the vertices of the mesh, makes the 

time-evolution curl-free. It is very important to understand the role of the curl-free reconstruction 

which couples all the edge-collocated components of the vector J . It is similarly very important 

to understand the role of the uniquely defined, multidimensionally upwinded, potential φ  at each 

of the vertices of the mesh which couples all the update equations for all the components of J . 

The two innovations work together to yield the globally curl-preserving scheme. We therefore see 

with the help of Fig. 2 that the curl-free reconstruction, along with multidimensional upwinding 

applied to the vertices of the mesh, gives us a globally curl-free update strategy for our model 

equations, i.e. eqn. (2.22). Realize too that the multidimensional Riemann solver is indeed 

designed to automate that multidimensional upwinding in the general case of a system of PDEs. 

Therefore, we realize that the curl-free reconstruction (and the edge-centered collocation of vector 

components that it entails), along with the application of a multidimensional Riemann solver, 

indeed gives us a stable, globally curl-free, mimetic update strategy for our curl-free model 

equations. 

 The discussion in the previous paragraph was restricted to first order accuracy. To keep the 

discussion extremely accessible, we also drew on our notional understanding of multidimensional 

upwinding, and we kept all the velocities positive. In general, we will want to use a full 

multidimensional Riemann solver which can accommodate to waves propagating in a general 
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hyperbolic system in any direction. Eqns. (12), (13) and (14) of Balsara [13] show how such a 

multidimensional Riemann solver can be designed for systems in the general case. The 

multidimensional Riemann solver from Balsara [13] works on Cartesian meshes. It was extended 

to unstructured meshes in Balsara and Dumbser [15]. For our model equations in eqn. (2.22), we 

do not have the support of a general underlying PDE system, however, we can design a 

multidimensional Riemann solver (using eqns. (12), (13) and (14) of Balsara [13]) in the locally 

Lax-Friedrichs (LLF) approximation. This enables us to write our potentials at the vertices of Fig. 

2 as a centered part as well as a multidimensionally dissipative part. We will then write discrete 

evolution equations and show that we get a centered update along with a parabolic contribution at 

first order. This makes it easier for us to understand that as the spatial order of accuracy of our 

curl-free reconstruction is improved, and as the accuracy of our time-update is improved, the 

dissipative parts will become progressively smaller. In other words, the same exercise that was 

presented in Section 4 of Balsara and Käppeli [20] for mimetic, globally divergence-free schemes 

is now replicated in the ensuing paragraphs for mimetic, globally curl-free schemes. 

 We still consider the case where the velocity components ( )v , vx y  are constant but now 

they can have any sign. We write the potential at the vertex ( )1/ 2, 1/ 2i j− −  as a centered term 

plus a diffusive term. We have 

( ) ( )

( ) ( )

; ; ; ;

1/2, 1/2 , 1/2 1, 1/2 , 1/2 1, 1/2

; ; ; ;

1/2, 1/2, 1 1/2, 1/2, 1

1 1
v v

2 2

1 1
              v v

2 2

n x x n x n x x n x n

i j i j i j i j i j

y y n y n y y n y n

i j i j i j i j

J J J J

J J J J

φ − − − − − − − −

− − − − − −

= + − −

+ + − −
     (2.29) 

Analogous expressions can be written for 1/2, 1/2

n

i jφ + −  and 1/2, 1/2

n

i jφ − +  by appropriate shifting of the 

indices. Making transcriptions that are analogous to the ones in eqn. (2.27) we obtain 
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( ) ( )

( )

; 1 ;

, 1/2 , 1/2 ; ; ; ;

1, 1/2 1, 1/2 , 1/2 , 3/2

; ; ; ; ; ;

1, 1/2 , 1/2 1, 1/2 , 1/2 , 1/2 , 3/2

v v

2 2

v v
                        2 2

2 2

x n x n x y
i j i j x n x n x n x n

i j i j i j i j

x y

x n x n x n x n x n x

i j i j i j i j i j i j

J J
J J J J

t x y

J J J J J J
x y

+
− −

+ − − − + −

+ − − − − + − −

−
+ − + − =

∆ ∆ ∆

− + + − +
∆ ∆

( )

( ) ( )

( )

; 1 ;

1/2, 1/2, ; ; ; ;

1/2, 3/2, 1/2, 1 1/2, 1

; ; ; ; ;

1/2, 1/2, 3/2, 1/2, 1 1/2, 1/2,

v v

2 2

v v
                        2

2 2

  ;

2

n

y n y n x y
i j i j y n y n y n y n

i j i j i j i j

x y

y n y n y n y n y n

i j i j i j i j i j i j

J J
J J J J

t x y

J J J J J J
x y

+
− −

+ − − + − −

+ − − − + − −

−
+ − + − =

∆ ∆ ∆

− + + − +
∆ ∆

( );

1

y n

−

  (2.30) 

The above equations clearly show us the centered terms and the dissipation terms in the first order 

scheme. We see that the dissipation terms have the correct scaling to perfectly stabilize the scheme. 

The use of higher order curl-free reconstruction and higher order time stepping, in conjunction 

with the multidimensional Riemann solver, will reduce the dissipation. We now have our assurance 

that higher order, mimetic, globally curl-free schemes will be stable. 

 

III) Curl-Preserving Reconstruction on a Three-dimensional Cartesian Mesh 

 The prior exercise at reconstructing curl-free or curl-preserving vector fields in two 

dimensions has left us with two very valuable insights. We list them below:- 

1) We see that one should start at the lowest order and systematically build up to higher orders. 

This is because the polynomial terms at each order give us insight into which modes are needed at 

the next higher order. 

2) We also obtained the insight that some additional polynomial contributions will be needed to 

ensure curl-free vector fields at all locations within a zone. Because of the nature of the curl 

operator, and our need to only use the lowest order additional polynomials so as to retain a 

modicum of stability, we found that one component of the vector field usually takes on 

contributions that help cancel extra terms that arise in another component of the vector field.  

Armed with these insights, we now extend our studies to three-dimensional Cartesian meshes. 

 Sub-section III.1 deals with the first order reconstruction on 3D Cartesian meshes. Sub-

section III.2 extends this to second order. Sub-section III.3 presents the third order case. Sub-
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section III.4 shows that the curl-free reconstruction, when combined with a three-dimensional 

Riemann solver, produces a properly upwinded numerical scheme. Sub-section III.5 gives a step-

by-step implementation strategy. 

 

III.1) Curl-Preserving Reconstruction on a Three-dimensional Cartesian Mesh at First 

Order 

 Fig. 3 shows the collocation of vector components along the edges of the control volume. 

Within each of the two x-faces, the two y-faces and the two z-faces, the discrete circulation 

(evaluated over those faces) is exactly zero if we are dealing with a curl-free PDE. If the PDE is 

only curl-preserving, the discrete circulation is easily evaluated at each face, as we soon show. The 

mean value of the vector field’s parallel component and its linear variation are shown along each 

edge, in anticipation of a second order accurate reconstruction scheme. The reconstruction problem 

consists of obtaining a polynomial that is globally curl-free/curl-preserving within this control 

volume. The discrete circulation within each of the six faces of the zone shown in Fig. 3 gives us 

the six conditions for the mean values. For simplicity, let us consider curl-free evolution in the 

next three equations. At the top and bottom x-faces we have 

3 4 4 2 1 3 2 10       ;        0y z y z y z y zV V V V V V V V+ − − = + − − =       (3.1) 

At the top and bottom y-faces we have 

3 4 4 2 1 3 2 10       ;        0z x z x z x z xV V V V V V V V+ − − = + − − =       (3.2) 

At the top and bottom z-faces we have 

3 4 4 2 1 3 2 10        ;        0x y x y x y x yV V V V V V V V+ − − = + − − =       (3.3) 

In general, the second and higher moments in Fig. 3 are only obtained with some level of 

approximation. So we cannot guarantee that an analogous set of equations hold for the slopes. 

Place Fig. 3 here 
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 It is very important to make one further observation about a curl-free vector field. The six 

discrete curl conditions in eqns. (3.1), (3.2) and (3.3) at the six faces of the mesh in Fig. 3 are not 

independent. The circulation condition at any one face can always be written in terms of the 

circulation conditions at the other five faces. Let us consider the z-faces and say that we know the 

condition 
3 2 1 1 0y x y xV V V V− − + =  at the bottom face. We wish to show that the condition at the top 

face can be obtained in terms of the condition at the bottom face and the use of eqns. (3.1) and 

(3.2). To that end, realize that 
3

yV  appears only in the first discrete circulation condition in eqn. 

(3.1) and can be written as 
3 4 4 2

y z y zV V V V= − + +  . Similarly, 
1

yV  appears only in the second discrete 

circulation condition in eqn. (3.1) and can be written as 
1 3 2 1

y z y zV V V V− = + − −  . Likewise, 2

xV  only 

appears in the first discrete circulation condition in eqn. (3.2) and can be written as 

2 4 4 3

x z x zV V V V− = − −  . Furthermore, 1

xV  only appears in the second discrete circulation condition in 

eqn. (3.2) and can be written as 1 2 3 1

x z x zV V V V= − + +  . Adding the above four equations immediately 

retrieves the first discrete circulation condition in eqn. (3.3). We have started with the second 

discrete circulation condition in eqn. (3.3) and shown that it immediately proves the first 

circulation condition in eqn. (3.3) if the four other circulation conditions in eqns. (3.1) and (3.2) 

can be assumed true. Therefore, on a mesh with six faces, only five of them are truly, mutually 

independent.  

 Consider the following reconstruction on the unit cube spanning [ ]31 2,1 2−  . We write 

the three components of the first order accurate curl-preserving vector field as 

( ) 1 2

3 4

1 1 1 1
, ,

2 2 2 2

1 1 1 1
                 

2 2 2 2

x

x x

x x

V x y z V y z V y z

V y z V y z

     = − − + + −     
     
     + − + + + +     
     

      (3.4) 

and 

( ) 1 2

3 4

1 1 1 1
, ,

2 2 2 2

1 1 1 1
                 

2 2 2 2

y

y y

y y

V x y z V z x V z x

V z x V z x

     = − − + + −     
     
     + − + + + +     
     

      (3.5) 
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and 

( ) 1 2

3 4

1 1 1 1
, ,

2 2 2 2

1 1 1 1
                 

2 2 2 2

z

z z

z z

V x y z V x y V x y

V x y V x y

     = − − + + −     
     
     + − + + + +     
     

      (3.6) 

In the above three equations, the polynomial space is so chosen that the edge values of the vector 

field components are exactly retrieved at the edges of the zone shown in Fig. 3. As a result, the 

vector field will be globally constraint-preserving. We evaluate the curl of the above vector field 

in the next paragraph. 

 Evaluating ( )
x

∇×V  we get 

( ) ( )

( )

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1

2

                                     

z y

y y y y z z z zx

y y y y z z z z

V V
V V V V V V V V

y z

V V V V V V V V x

∂ ∂
∇× = − = − + − − − + +

∂ ∂

+ − + + − + − − +

V
    (3.7) 

Set 1 2x = ±  in the above equation to see that it retrieves the discrete circulation equations in eqn. 

(3.1) at the top and bottom x-faces respectively. If the vector field is circulation-free then this 

guarantees that ( )
x

∇×V  is strictly zero in the above equation. Evaluating ( )
y

∇×V  we get 

( ) ( )
( )

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1

2

                                    

x z

z z z z x x x xy

z z z z x x x x

V V
V V V V V V V V

z x

V V V V V V V V y

∂ ∂
∇× = − = − + − − − + +

∂ ∂
+ − + + − + − − +

V
    (3.8) 

Set 1 2y = ±  in the above equation to see that it retrieves the discrete circulation equations in eqn. 

(3.2) at the top and bottom y-faces respectively. If the vector field is circulation-free then this 

guarantees that ( )
y

∇×V  is strictly zero in the above equation. Evaluating ( )
z

∇×V  we get 

( ) ( )

( )

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

1

2

                                      +

y x

x x x x y y y yz

x x x x y y y y

V V
V V V V V V V V

x y

V V V V V V V V z

∂ ∂
∇× = − = − + − − − + +

∂ ∂

− + + − + − − +

V
    (3.9) 
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Set 1 2z = ±  in the above equation to see that it retrieves the discrete circulation equations in eqn. 

(3.3) at the top and bottom z-faces respectively. If the vector field is circulation-free then this 

guarantees that ( )
z

∇×V  is strictly zero in the above equation.  

 From eqns. (3.7), (3.8) and (3.9) we also see that 

( ) ( ) ( ) ( ) 0x y zx y z
∇⋅ ∇× = ∂ ∇× + ∂ ∇× + ∂ ∇× =V V V V  . In other words, the discrete divergence 

of the discrete curl is also exactly zero. This also tells us that a good zone-centered approximation 

of ( )
x

∇×V  is given by the first term in eqn. (3.7). Likewise, a good zone-centered approximation 

of ( )
y

∇×V  is given by the first term in eqn. (3.8). Similarly, a good zone-centered approximation 

of ( )
z

∇×V  is given by the first term in eqn. (3.9). We will see in the next section that while these 

approximations are available, they are indeed sub-optimal because better approximations of the 

circulation are directly available in the faces of the mesh. 

 Now notice that eqns. (3.4), (3.5) and (3.6) are only first order accurate. This is because 

eqn. (3.4) lacks any linear variation in the x-direction; eqn. (3.5) lacks any linear variation in the 

y-direction and eqn. (3.6) lacks any linear variation in the z-direction. However, for the first order 

accurate case, the equations are exactly curl-free or curl-preserving. Besides, the first order curl-

free reconstruction reflects the six discrete circulations evaluated over the six faces of the control 

volume using the edges of the same control volume. (This mirrors the known fact that at first order, 

the discrete divergence-preserving reconstruction reflects the one discrete divergence evaluated 

over the control volume using the faces of the same control volume.) Notice too that while there 

is only one divergence condition evaluated over a 3D control volume in a divergence-preserving 

scheme, there are six curl conditions evaluated over a 3D control volume in a curl-preserving 

scheme. This makes curl-free reconstruction more complicated than divergence-free 

reconstruction, especially in three dimensions. 

 Eqns. (3.7), (3.8) and (3.9) give us yet another insight if we compare them to eqn. (2.2). 

Notice that eqn. (2.2) is a single equation for the discrete circulation. However, because of the 

linear variation in the x-direction, eqn. (3.7) is an expression of the discrete circulation at the top 

and bottom x-faces. Similarly, because of the linear variation in the y-direction, eqn. (3.8) is an 

expression of the discrete circulation at the top and bottom y-faces. Likewise, because of the linear 
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variation in the z-direction, eqn. (3.9) is an expression of the discrete circulation at the top and 

bottom z-faces. We, therefore, understand that three-dimensional curl-preserving reconstruction 

can be quite different from two-dimensional curl-preserving reconstruction. In three-dimensional 

curl-preserving reconstruction, even when we make a higher order reconstruction of the 

curl/circulation vector in the zone of interest, the two modes that are present in each of eqns. (3.7), 

(3.8) and (3.9) must be retained. 

 

III.2) Curl-Preserving Reconstruction on a Three-dimensional Cartesian Mesh at Second 

Order 

 Notice that eqn. (3.4) already has a constant part and y, z and yz variation. To attain full 

second order accuracy, we need to add a linear x-directional variation to ( ), ,xV x y z  . This would 

be added to the x-edges of the zone shown in Fig. 3. The inclusion of such an x-variation will also 

trigger xy, xz and xyz terms in ( ), ,xV x y z  . Similarly, notice that eqn. (3.5) already has a constant 

part and x, z and xz variation. To attain full second order accuracy, we need to add a linear y-

directional variation to ( ), ,yV x y z  . This would be added to the y-edges of the zone shown in Fig. 

3. The inclusion of such a y-variation will also trigger xy, yz and xyz terms in ( ), ,yV x y z  . 

Likewise, notice that eqn. (3.6) already has a constant part and x, y and xy variation. To attain full 

second order accuracy, we need to add a linear z-directional variation to ( ), ,zV x y z  . This would 

be added to the z-edges of the zone shown in Fig. 3. The inclusion of such a z-variation will also 

trigger xz, yz and xyz terms in ( ), ,zV x y z  . The inclusion of all these terms also causes the curl 

operator to acquire additional moments and to ensure curl-free reconstruction (or to make sure that 

the curl-preserving reconstruction has the appropriate moments) we need to add some 

complementing terms.  

 Notice that in the ensuing three equations, the polynomials are chosen with such factors 

that they do not affect the vector components, or their linear variation, in the edges. In other words, 

if the ensuing polynomial for ( ), ,xV x y z  is evaluated at any x-edge of Fig. 3, we indeed retrieve 

only the constant and linear variations in that x-edge, and nothing but that variation. Similarly, if 
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( ), ,yV x y z  is evaluated at any y-edge of Fig. 3, we indeed retrieve only the constant and linear 

variations in that y-edge, and nothing but that variation. Similarly, if ( ), ,zV x y z  is evaluated at 

any z-edge of Fig. 3, we indeed retrieve only the constant and linear variations in that z-edge, and 

nothing but that variation. We write the three components of the second order accurate curl-

preserving vector field as 

( ) ( ) ( )

( ) ( )

( ) ( )

1 1 2 2

3 3 4 4

2 2

1 1 1 1
, ,

2 2 2 2

1 1 1 1
                 

2 2 2 2

                 1 4 1 4

x

x x x x x x

x x x x x x

yy zz

V x y z V V x y z V V x y z

V V x y z V V x y z

a y a z

        = + ∆ − − + + ∆ + −             
        + + ∆ − + + + ∆ + +             

+ − + − + ( ) ( )2 2 1 4 1 4yyz yzza z y a y z− + −

  (3.10) 

and 

( ) ( ) ( )

( ) ( )

( )

1 1 2 2

3 3 4 4

2

1 1 1 1
, ,

2 2 2 2

1 1 1 1
                 

2 2 2 2

                  1 4  1 4

y

y y y y y y

y y y y y y

xx zz

V x y z V V y z x V V y z x

V V y z x V V y z x

b x b z

        = + ∆ − − + + ∆ + −             
        + + ∆ − + + + ∆ + +             

+ − + −( ) ( ) ( )2 2 2 1 4  1 4xxz xzzb z x b x z+ − + −

   (3.11) 

and 

( ) ( ) ( )

( ) ( )

( )

1 1 2 2

3 3 4 4

2

1 1 1 1
, ,

2 2 2 2

1 1 1 1
                 

2 2 2 2

                  1 4  1 4

z

z z z z z z

z z z z z z

xx yy

V x y z V V z x y V V z x y

V V z x y V V z x y

c x c y

        = + ∆ − − + + ∆ + −             
        + + ∆ − + + + ∆ + +             

+ − + −( ) ( ) ( )2 2 2 1 4  1 4xxy xyyc y x c x y+ − + −

   (3.12) 

Now let us study the curl-preserving constraints that are put on the above vector field. The object 

of this study is to derive insights that help us to fix up the 12 coefficients – , , ,yy zz yyz yzza a a a , 

, , ,xx zz xxz xzzb b b b , , , ,xx yy xxy xyyc c c c  – in  eqns. (3.10), (3.11) and (3.12) above. 

 From the Introduction, we have seen that every curl-preserving, edge-centered vector field 

has to be such that its curl matches a divergence-free vector field. This divergence-free vector field 

has components that are face-centered. Therefore, at the top and bottom x-faces of Fig. 3 we have 
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the mean circulations given by ( )3 4 4 2

y z y zV V V V+ − −  and ( )1 3 2 1

y z y zV V V V+ − −  respectively. Using 

two-dimensional, second order, finite-volume WENO reconstruction that is restricted to the x-

faces of the mesh, we can write the facial variation of the x-component of the circulation in the top 

and bottom x-faces as 

( ) ( )
( ) ( )

3 4 4 2

1 3 2 1

,      ;

,

x x x

y z y z y z

x x x

y z y z y z

R y z V V V V R y R z

R y z V V V V R y R z

+ + +

− − −

= + − − + +

= + − − + +
      (3.13a) 

Similarly, at the top and bottom y-faces of Fig. 3 we have the mean circulations given by 

( )3 4 4 2

z x z xV V V V+ − −  and ( )1 3 2 1

z x z xV V V V+ − −  respectively. Using two-dimensional, second order, 

finite-volume WENO reconstruction that is restricted to the y-faces of the mesh, we can write the 

facial variation of the y-component of the circulation in the top and bottom y-faces as 

( ) ( )
( ) ( )

3 4 4 2

1 3 2 1

,      ;

,

y y y

z x z x x z

y y y

z x z x x z

R x z V V V V R x R z

R x z V V V V R x R z

+ + +

− − −

= + − − + +

= + − − + +
      (3.13b) 

Likewise, at the top and bottom z-faces of Fig. 3 we have the mean circulations given by 

( )3 4 4 2

x y x yV V V V+ − −  and ( )1 3 2 1

x y x yV V V V+ − −  respectively. Using two-dimensional, second order, 

finite-volume WENO reconstruction that is restricted to the z-faces of the mesh, we can write the 

facial variation of the z-component of the circulation in the top and bottom z-faces as 

( ) ( )
( ) ( )

3 4 4 2

1 3 2 1

,      ;

,

z z z

x y x y x y

z z z

x y x y x y

R x y V V V V R x R y

R x y V V V V R x R y

+ + +

− − −

= + − − + +

= + − − + +
      (3.13c) 

Notice that WENO has given us the facial variations of the x-, y- and z-components of the 

circulations in the x-, y- and z-faces of the mesh. But we still do not have expressions for the 

circulation vector field over the volume of the zone that we are considering. 

 We can obtain expressions for the x-, y- and z-components of the circulation vector field 

by using the divergence-free reconstruction strategy catalogued in Balsara et al. [22] (see Section 

3 of that paper). The x-component of the volumetrically reconstructed circulation can be written 

as 
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( )2

0( , , ) 1 12  +x

x y z xx xy xzR x y z x y z x xy xzα α α α α α α= + + + + − +     (3.14a) 

The y-component of the volumetrically reconstructed circulation can be written as 

( ) ( )2

0, , 1 12y

x y z xy yy yzR x y z x y z xy y yzβ β β β β β β= + + + + + − +     (3.14b) 

The z-component of the volumetrically reconstructed circulation can be written as 

( ) ( )2

0, , 1 12z

x y z xz yz zzR x y z x y z xz yz zγ γ γ γ γ γ γ= + + + + + + −     (3.14c) 

Using the divergence-free constraint, Section 3 of Balsara et al. [22] gives us an explicit procedure 

for matching the 21 coefficients in eqns. (3.14a), (3.14b) and (3.14c) to the coefficients in eqns. 

(3.13a), (3.13b) and (3.13c). We do not repeat the procedure here because all the formulae have 

already been explicitly catalogued in the literature. Realize that we now have divergence-free 

expressions for the circulation vector field over the volume of the zone that we are considering.  

 With the divergence-free expressions for the circulation vector field in hand, we can now 

match the curl of eqns. (3.10), (3.11) and (3.12) to eqns. (3.14a), (3.14b) and (3.14c). 

Operationally, we write the three equations ( , , ) ( , , ) ( , , )z y x

y zV x y z V x y z R x y z∂ − ∂ = , 

( , , ) ( , , ) ( , , )x z y

z xV x y z V x y z R x y z∂ − ∂ =  and ( , , ) ( , , ) ( , , )y x z

x yV x y z V x y z R x y z∂ − ∂ =  . We then 

match all non-zero moments across the three previous equations. This gives us a sparse linear 

system which we can solve for the 12 free coefficients in eqns. (3.10), (3.11) and (3.12).  With a 

little ingenuity, the coefficients in eqn. (3.10) are found to be 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1
  ;

16

1
  ;

16

1
     ;

8

1

8

z z

yy y y y y y y y y y y

y y

zz z z z z z z z z z z

z z

yyz y y y y y y y y y y

y y

yzz z z z z z z z z z z

a R R V V V V

a R R V V V V

a R R V V V V

a R R V V V V

− +

− +

− +

− +

 = + + ∆ + ∆ − ∆ − ∆ 

 = − − + ∆ − ∆ + ∆ − ∆ 

 = − + − ∆ + ∆ + ∆ − ∆ 

 = − − ∆ + ∆ + ∆ − ∆ 

    (3.15) 

The coefficients in eqn. (3.11) are found to be 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1
   ;

16

1
  ;

16

1
  ;

8

1

8

z z

xx x x x x x x x x x x

x x

zz z z z z z z z z z z

z z

xxz x x x x x x x x x x

x x

xzz z z z z z z z z z z

b R R V V V V

b R R V V V V

b R R V V V V

b R R V V V V

− +

− +

− +

− +

 = − − + ∆ − ∆ + ∆ − ∆ 

 = + + ∆ + ∆ − ∆ − ∆ 

 = − − ∆ + ∆ + ∆ − ∆ 

 = − + − ∆ + ∆ + ∆ − ∆ 

    (3.16) 

The coefficients in eqn. (3.12) are found to be 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

  ;

  ;

  ;

1

16

1

16

1

8

1

8

y y

x x x x x x x x x x

x x

y y y y y y y y y y

y y

x x x x x

xx

yy

xxy

xy

x

y

x x x x

x x

y y y y y y y y y y

c R R V V V V

R R V V V V

R R V V V V

R R V

c

c

Vc V V

− +

− +

− +

− +

 =  

 =  



+ + ∆ + ∆ − ∆ − ∆

− − + ∆ − ∆ + ∆ − ∆

− + − ∆ + ∆ + ∆ − ∆

− − ∆ + ∆ + ∆ − ∆

 = 

 = 

    (3.17) 

 It is easy to see the finite difference-like structure in eqns. (3.15), (3.16) and (3.17). We 

see that they truly represent higher derivatives that can be derived from the arrangement of 

gradients at the edges of the control volume in Fig. 3. This also tells us that the effect of these 

higher derivative terms in eqns. (3.10), (3.11) and (3.12) is to slightly modify the higher moments 

in those equations so as to restore curl-free or curl-preserving behavior. It is also important to note 

that, in spite of this modification, the reconstructed vector field will indeed exactly match the mean 

values and the linear gradients of the vector field at the twelve edges of the zone shown in Fig. 3. 

As a result, the vector field will be globally constraint-preserving. Note too that the modifications 

will be slight owing to the fact that the modifying coefficients represent higher derivatives. 

Therefore, the reconstructed vector field in eqns. (3.10), (3.11) and (3.12) is suitable for the 

construction of globally curl constraint-preserving schemes.  

 Because the second order accurate vector field only has to be specified up to linear terms, 

its discrete curl only needs to be specified up to constant terms when we are considering a second 

order finite volume scheme. But realize from an examination of eqn. (1.2) and how it arises from 

the last equation in eqn. (1.1) that a second order DG scheme will also have an evolutionary 

equation for the curl of the original vector field; and the latter equation also needs to be evolved 
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with second order accuracy. (In two-dimensions, this consideration was immaterial; but in three 

dimensions it is a meaningful consideration.) This completes our study of curl constraint-

preserving reconstruction of vector fields at second order of accuracy. 

 

III.3) Curl-Preserving Reconstruction on a Three-dimensional Cartesian Mesh at Third 

Order 

 To understand the nuances that enter the reconstruction procedure at third order, it is 

helpful to divide our study into two stages in the following two paragraphs. In the first stage, it is 

helpful to study curl-free reconstruction of vector fields and the restrictions it places on the various 

terms in the reconstruction. Only in the second stage will we study curl constraint-preserving 

reconstruction of vector fields. This two-stage sub-division is also useful because several very 

useful PDE systems, like general relativity, only require a curl-free reconstruction of vector fields 

and do not need the computationally heavier details of a curl-preserving reconstruction of vector 

fields. 

 In this first stage of our study, let us begin by considering a curl-free vector field that is 

represented on a three-dimensional Cartesian mesh with third order of accuracy. The component 

( ), ,xV x y z  in eqn. (3.10) has the following modes:- It has a constant mode and it also has modes 

for 
2 2 2 2,  ,  ,  ,  ,  ,  ,  ,  ,  ,  x y z xy xz yz y z y z yz xyz . Notice that the only mode that is missing in 

( ), ,xV x y z  for obtaining full third order accuracy is the 2x  mode. This is good news, because it 

means that along the four x-edges of Fig. 3 we have to reconstruct/evolve the second moment of 

the x-component of the vector field along those edges. Let us label those four modes ( )1

xx xV∆  , 

( )2

xx xV∆  , ( )3

xx xV∆  and ( )4

xx xV∆  with an obvious extension of the notation. (This extension of 

notation also applies to the y- and z-directions. ) When an 2x  mode is added along each of the four 

x-edges, it also triggers the additional presence of 
2 2 2, ,x y x z x yz  variation in ( ), ,xV x y z . Similar 

considerations apply to the other directions so that we realize that along the four y-edges of Fig. 3 

we have to provide four 
2y -dependent modes to ( ), ,yV x y z ; this also triggers the additional 

presence of 
2 2 2, ,y x y z y xz  variation in ( ), ,yV x y z  . Furthermore, along the four z-edges of Fig. 3 
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we have to provide four 2z -dependent modes to ( ), ,zV x y z ; this also triggers the additional 

presence of 
2 2 2, ,z x z y z xy  variation in ( ), ,zV x y z . To balance all the terms that have to be added 

in the other two components, we have to add 
3 3 3 3, , ,y z y z z y  variations in ( ), ,xV x y z  . Symmetry 

considerations help us to realize that we will have to add 
3 3 3 3, , ,x z x z z x  variations in ( ), ,yV x y z  

. Similarly, we will have to add 
3 3 3 3, , ,x y x y y x  variations in ( ), ,zV x y z  . These additional terms 

are the minimum number of terms needed for ensuring the curl-free aspect of the vector field.  

 In this second stage of our study, we realize that the evolutionary equations for a curl-

preserving vector field will have a corresponding evolutionary equation for its curl vector. For 

instance, see eqn. (1.2) which results from taking the curl of the last equation in eqn. (1.1). Even 

with all the modes that we have argued for in the previous paragraph, an evaluation of the curl of 

the original vector field will not have all the terms that are needed for matching all the modes that 

are specified in the evolutionary equation for the curl. This is especially true for a third order 

accurate curl-preserving DG-like scheme. In the three equations that follow, such terms are 

denoted by a capital “A” in ( ), ,xV x y z ; they are denoted by a capital “B” in ( ), ,yV x y z ; and they 

are denoted by a capital “C” in ( ), ,zV x y z . 

 As in the second order case, the polynomials are chosen with such factors that they do not 

affect the vectors in the edges. This was deemed essential for globally curl-preserving 

reconstruction. In other words, if the ensuing polynomial for ( ), ,xV x y z  is evaluated at any x-edge 

of Fig. 3, we indeed retrieve only the constant, linear and quadratic variations in that x-edge, and 

nothing but that variation. Similarly, if ( ), ,yV x y z  is evaluated at any y-edge of Fig. 3, we indeed 

retrieve only the constant, linear and quadratic variations in that y-edge, and nothing but that 

variation. Similarly, if ( ), ,zV x y z  is evaluated at any z-edge of Fig. 3, we indeed retrieve only the 

constant, linear and quadratic variation in that z-edge, and nothing but that variation. We write 
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( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

1 1 1 2

2 2 2 2

3 3 3 2

1 1
, , 1 12

2 2

1 1
                 1 12

2 2

1 1
                 1 12

2 2

               

x

x x x xx x

x x x xx x

x x x xx x

V x y z V V x V x y z

V V x V x y z

V V x V x y z

   = + ∆ + ∆ − − −      
   + + ∆ + ∆ − + −      
   + + ∆ + ∆ − − +      

( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4 4 4 2

2 2 2 2

2 2 2 2

1 1
  1 12

2 2

                 1 4 1 4  1 4 1 4

                 1 4 1 4 1 4 1 4

                 1 4

x x x xx x

yy zz yyz yzz

yyy zzz yyyz yzzz

xyy

V V x V x y z

a y a z a z y a y z

a y y a z z a yz y a yz z

A x y

   + + ∆ + ∆ − + +      

+ − + − + − + −

+ − + − + − + −

+ −( ) ( ) ( ) ( )2 2 2 21 4 1 4 1 4xzz xyyz xyzzA x z A xz y A xy z+ − + − + −

   (3.18) 

and 

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

1 1 1 2

2 2 2 2

3 3 3 2

1 1
, , 1 12

2 2

1 1
                 1 12

2 2

1 1
                 1 12

2 2

               

y

y y y yy y

y y y yy y

y y y yy y

V x y z V V y V y z x

V V y V y z x

V V y V y z x

   = + ∆ + ∆ − − −      
   + + ∆ + ∆ − + −      
   + + ∆ + ∆ − − +      

( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4 4 4 2

2 2 2 2

2 2 2 2

1 1
  1 12

2 2

                  1 4  1 4  1 4  1 4

                 1 4 1 4 1 4 1 4

                 1

y y y yy y

xx zz xxz xzz

xxx zzz xxxz xzzz

xxy

V V y V y z x

b x b z b z x b x z

b x x b z z b xz x b xz z

B y

   + + ∆ + ∆ − + +      

+ − + − + − + −

+ − + − + − + −

+ ( ) ( ) ( ) ( )2 2 2 24 1 4 1 4 1 4yzz xxyz xyzzx B y z B yz x B xy z− + − + − + −

   (3.19) 

and 
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( ) ( ) ( )( )

( ) ( )( )

( ) ( )( )

1 1 1 2

2 2 2 2

3 3 3 2

1 1
, , 1 12

2 2

1 1
                 1 12

2 2

1 1
                 1 12

2 2

               

z

z z z zz z

z z z zz z

z z z zz z

V x y z V V z V z x y

V V z V z x y

V V z V z x y

   = + ∆ + ∆ − − −      
   + + ∆ + ∆ − + −      
   + + ∆ + ∆ − − +      

( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4 4 4 2

2 2 2 2

2 2 2 2

1 1
  1 12

2 2

                  1 4  1 4  1 4  1 4

                 1 4 1 4 1 4 1 4

                 1

z z z zz z

xx yy xxy xyy

xxx yyy xxxy xyyy

xxz

V V z V z x y

c x c y c y x c x y

c x x c y y c xy x c xy y

C z

   + + ∆ + ∆ − + +      

+ − + − + − + −

+ − + − + − + −

+ ( ) ( ) ( ) ( )2 2 2 24 1 4 1 4 1 4yyz xxyz xyyzx C z y C yz x C xz y− + − + − + −

   (3.20) 

Now let us study the curl-preserving constraints that are imposed on the above vector field. The 

object of this study is to derive insights that help us to fix up the 36 coefficients that are as yet 

unspecified in eqns. (3.18), (3.19) and (3.20) above. 

 From the Introduction, we have seen that every curl-preserving, edge-centered vector field 

has to be such that its curl matches a divergence-free vector field. This divergence-free vector field 

has components that are face-centered. Therefore, at the top and bottom x-faces of Fig. 3 we have 

the mean circulations given by ( )3 4 4 2

y z y zV V V V+ − −  and ( )1 3 2 1

y z y zV V V V+ − −  respectively. Using 

two-dimensional, third order, finite-volume WENO reconstruction that is restricted to the x-faces 

of the mesh, we can write the facial variation of the x-component of the circulation in the top and 

bottom x-faces as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 4 4 2 2 2

1 3 2 1 2 2

, 1 12 1 12  ;

, 1 12 1 12

x x x x x x

y z y z y z yy zz yz

x x x x x x

y z y z y z yy zz yz

R y z V V V V R y R z R y R z R yz

R y z V V V V R y R z R y R z R yz

+ + + + + +

− − − − − −

= + − − + + + − + − +

= + − − + + + − + − +
(3.21a) 

Similarly, at the top and bottom y-faces of Fig. 3 we have the mean circulations given by 

( )3 4 4 2

z x z xV V V V+ − −  and ( )1 3 2 1

z x z xV V V V+ − −  respectively. Using two-dimensional, third order, 

finite-volume WENO reconstruction that is restricted to the y-faces of the mesh, we can write the 

facial variation of the y-component of the circulation in the top and bottom y-faces as 



45 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 4 4 2 2 2

1 3 2 1 2 2

, 1 12 1 12  ;

, 1 12 1 12

y y y y y y

z x z x x z xx zz xz

y y y y y y

z x z x x z xx zz xz

R x z V V V V R x R z R x R z R xz

R x z V V V V R x R z R x R z R xz

+ + + + + +

− − − − − −

= + − − + + + − + − +

= + − − + + + − + − +
 (3.21b) 

Likewise, at the top and bottom z-faces of Fig. 3 we have the mean circulations given by 

( )3 4 4 2

x y x yV V V V+ − −  and ( )1 3 2 1

x y x yV V V V+ − −  respectively. Using two-dimensional, third order, 

finite-volume WENO reconstruction that is restricted to the z-faces of the mesh, we can write the 

facial variation of the z-component of the circulation in the top and bottom z-faces as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3 4 4 2 2 2

1 3 2 1 2 2

, 1 12 1 12  ;

, 1 12 1 12

z z z z z z

x y x y x y xx yy xy

z z z z z z

x y x y x y xx yy xy

R x y V V V V R x R y R x R y R xy

R x y V V V V R x R y R x R y R xy

+ + + + + +

− − − − − −

= + − − + + + − + − +

= + − − + + + − + − +
 (3.21c) 

Notice that WENO has given us the facial variations of the x-, y- and z-components of the 

circulations in the x-, y- and z-faces of the mesh. But we still do not have expressions for the 

circulation vector field over the volume of the zone that we are considering. 

 We can obtain expressions for the x-, y- and z-components of the circulation vector field 

by using the divergence-free reconstruction strategy catalogued in Balsara et al. [23] (see Section 

3 of that paper). The x-component of the volumetrically reconstructed circulation can be written 

as 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2 2 2

0

3 2 2

2 2

( , , ) 1 12 1 12 1 12

                + + 3 20 1 12 1 12

                1 12 1 12

x

x y z xx yy zz

xy yz xz xxx xxy xxz

xyy xzz xyz

R x y z x y z x y z

xy yz xz x x x y x z

x y x z xyz

α α α α α α α

α α α α α α

α α α

= + + + + − + − + −

+ + − + − + −

+ − + − +

 (3.22a) 

The y-component of the volumetrically reconstructed circulation can be written as 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2 2 2

0

3 2 2

2 2

, , 1 12 1 12 1 12

                 + 3 20 1 12 1 12

                 1 12 1 12

y

x y z xx yy zz

xy yz xz yyy xyy yyz

xxy yzz xyz

R x y z x y z x y z

xy yz xz y y x y y z

x y y z xyz

β β β β β β β

β β β β β β

β β β

= + + + + − + − + −

+ + + − + − + −

+ − + − +

 (3.22b) 

The z-component of the volumetrically reconstructed circulation can be written as 
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( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2 2 2

0

3 2 2

2 2

, , 1 12 1 12 1 12

                + 3 20 1 12 1 12

                1 12 1 12

z

x y z xx yy zz

xy yz xz zzz xzz yzz

xxz yyz xyz

R x y z x y z x y z

xy yz xz z z x z y z

x z y z xyz

γ γ γ γ γ γ γ

γ γ γ γ γ γ

γ γ γ

= + + + + − + − + −

+ + + − + − + −

+ − + − +

 (3.22c) 

Using the divergence-free constraint, Section 3 of Balsara et al. [23] gives us an explicit procedure 

for matching the 45 coefficients in eqns. (3.22a), (3.22b) and (3.22c) to the coefficients in eqns. 

(3.21a), (3.21b) and (3.21c). We do not repeat the procedure here because all the formulae have 

already been explicitly catalogued in the literature. Realize that we now have divergence-free 

expressions for the circulation vector field over the volume of the zone that we are considering. 

 With the divergence-free expressions for the circulation vector field in hand, we can now 

match the curl of eqns. (3.18), (3.19) and (3.20) to eqns. (3.22a), (3.22b) and (3.22c). This gives 

us a sparse linear system which we can solve for the 36 free coefficients in eqns. (3.18), (3.19) and 

(3.20).  With a little ingenuity, the coefficients in eqn. (3.18) are found to be 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1
  ;

16

1
  ;

16

1
  ;

24

1

24

z z

yy y y y y y y y y y y

y y

zz z z z z z z z z z z

z z

yyy yy yy yy y yy y yy y yy y

y y

zzz zz zz zz z zz z zz z zz z

a R R V V V V

a R R V V V V

a R R V V V V

a R R V V V V

− +

− +

− +

− +

 = + + ∆ + ∆ − ∆ − ∆ 

 = − − + ∆ − ∆ + ∆ − ∆ 

 = + + ∆ + ∆ − ∆ − ∆ 

 = − − + ∆ − ∆ + ∆ − ∆

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3 4

1 2 3 4

1 2 3

  ;

1
     ;

8

1
  ;

8

1 1
  ;    ;

32 32

1

12

z z

yyz y y y y y y y y y y

y y

yzz z z z z z z z z z z

y y z z

xzz xz xz xyy xy xy

z z

yyyz yy yy yy y yy y yy y

a R R V V V V

a R R V V V V

A R R A R R

a R R V V V

− +

− +

− + − +

− +



 = − + − ∆ + ∆ + ∆ − ∆ 

 = − − ∆ + ∆ + ∆ − ∆ 

   = − + = +   

= − + − ∆ + ∆ + ∆ − ( )

( ) ( ) ( ) ( )

4

1 2 3 4

  ;

1
  ;

12

1 1
  ;   

16 16

yy y

y y

yzzz zz zz zz z zz z zz z zz z

z z y y

xyyz xy xy xyzz xz xz

V

a R R V V V V

A R R A R R

− +

− + − +

 ∆ 

 = − − ∆ + ∆ + ∆ − ∆ 

   = − + = −   

    (3.23) 

The coefficients in eqn. (3.19) are found to be 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1
   ;

16

1
  ;

16

1
  ;

24

1

24

z z

xx x x x x x x x x x x

x x

zz z z z z z z z z z z

z z

xxx xx xx xx x xx x xx x xx x

x x

zzz zz zz zz z zz z zz z zz z

b R R V V V V

b R R V V V V

b R R V V V V

b R R V V V V

− +

− +

− +

− +

 = − − + ∆ − ∆ + ∆ − ∆ 

 = + + ∆ + ∆ − ∆ − ∆ 

 = − − + ∆ − ∆ + ∆ − ∆ 

= + + ∆ + ∆ − ∆ − ∆

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3 4

1 2 3 4

1 2 3

  ;

1
  ;

8

1
  ;

8

1 1
  ;    ;

32 32

1
 

12

z z

xxz x x x x x x x x x x

x x

xzz z z z z z z z z z z

x x z z

yzz yz yz xxy xy xy

z z

xxxz xx xx xx x xx x xx x x

b R R V V V V

b R R V V V V

B R R B R R

b R R V V V

− +

− +

− + − +

− +



 = − − ∆ + ∆ + ∆ − ∆ 

 = − + − ∆ + ∆ + ∆ − ∆ 

   = + = − +   

= − − ∆ + ∆ + ∆ − ∆( )

( ) ( ) ( ) ( )

4

1 2 3 4

  ;

1
  ;

12

1 1
  ;   

16 16

x x

x x

xzzz zz zz zz z zz z zz z zz z

z z x x

xxyz xy xy xyzz yz yz

V

b R R V V V V

B R R B R R

− +

− + − +

  

 = − + − ∆ + ∆ + ∆ − ∆ 

   = − = − +   

    (3.24) 

The coefficients in eqn. (3.20) are found to be 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1
  ;

16

1
  ;

16

1
  ;

24

1

24

y y

x x x x x x x x x x

x x

y y y y y y y y y y

y y

xx xx xx x xx x xx x x

x

xx

y

x x

x

yy yy yy y yy y yy y yy y

y

xxx

zzz

c R R V V V V

R R V V V V

R R V V V V

R R V V

c

c

c V V

− +

− +

− +

− + 

+ + ∆ + ∆ − ∆ − ∆

− − + ∆ − ∆ + ∆ − ∆

+ + ∆ + ∆ − ∆ − ∆

− − + ∆ − ∆

 =  

 =  

 =  

= + − ∆ ∆

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2 3 4

1 2 3 4

1 2 3

  ;

1
  ;

8

1
  ;

8

1 1
  ;    ;

3 32

2

2

1

1
x

xxy

xyy

y

y y

x x x x x x x x x x

x x

y y y y y y y y y y

x x y y

yz yz xz xz

y y

xxxy xx xx xx x xx x xx x x

yz xxz

R R V V V V

R R V V V V

R R R R

c R R V V V

c

c

C C

− +

− +

− + − +

− +



 =  



− + − ∆ + ∆ + ∆ − ∆

− − ∆ + ∆ +



∆ − ∆

+ +

= − + − ∆

=

+ ∆ + ∆

=  

  = −  

− ∆

 

( )

( ) ( ) ( ) ( )

4

1 2 3 41

12

1
 

  ;

 

1
   ;   

16 16

 ;

x

x x

xyyy yy yy yy y yy y yy y yy y

y y x x

xxyz xz xz xyyz yz yz

V

c R R V V V V

C R R C R R

− +

− + − +

  

 = − − ∆ + ∆ + ∆ − ∆ 

   = − + = −   

    (3.25) 

 As in the second order case, it is easy to see the finite difference-like structure in eqns. 

(3.23), (3.24) and (3.25). We see that they truly represent higher derivatives that can be derived 

from the arrangement of gradients (and higher moments) at the edges of the control volume in Fig. 

3. Because the third order accurate vector field only has to be specified up to quadratic terms, we 

might be able to get away with specifying its discrete curl only up to linear terms when we are 

considering a third order WENO-like scheme. But realize from an examination of eqn. (1.2) and 

how it arises from the last equation in eqn. (1.1) that a third order DG scheme will also have an 

evolutionary equation for the curl of the original vector field; and the latter equation also needs to 

be evolved with third order accuracy. This completes our study of curl constraint-preserving 

reconstruction of vector fields at third order of accuracy. 

 

III.4) Combining Curl-Free Reconstruction and the Three-Dimensional Riemann Solver to 

Obtain a Multidimensionally Upwinded, Globally Curl-Free Scheme 
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 By now it is very evident that curl-free reconstruction of vector fields requires a collocation 

of vector components at the edges of the mesh. This is true in two and three dimensions. In Sub-

section II.5 we showed that in two dimensions, the use of curl-free reconstruction, in conjunction 

with a two-dimensional Riemann solver that provides the two-dimensional upwinding, can indeed 

result in a properly upwinded, globally curl-free scheme. Since the curious reader might wonder 

whether there is an analogous extension to three dimensions, we provide such an extension here. 

To keep the discussion generally applicable to any possible time stepping strategy, we present it 

within the context of a semi-discrete formulation in time.  

 Let us focus on the model system that is the three dimensional extension of the one we 

studied in eqn. (2.22). We have 

( )

( )

( )

v v v
v v 0

v v v
v v 0

v v v
v v

  ;

  ;

x x y y z zx x y x z
y z

x x y y z zy y x y z
x z

x x y y z zz z x z y
x y

J J JJ J J J J

t x y x z x

J J JJ J J J J

t y x y z y

J J JJ J J J J

t z x z y z

∂ + +    ∂ ∂ ∂ ∂ ∂
+ + − + − =   ∂ ∂ ∂ ∂ ∂ ∂   

∂ + +    ∂ ∂ ∂ ∂ ∂
+ + − + − =   ∂ ∂ ∂ ∂ ∂ ∂   

∂ + +    ∂ ∂ ∂ ∂ ∂
+ + − + − =   ∂ ∂ ∂ ∂ ∂ ∂   

0

    (3.26) 

Analogous to the demonstration in Sub-section II.5, it is easy to show that if a curl-free vector field 

is initially provided, and if a curl-free reconstruction is used, then the semi-discrete form of the 

above equations ought to evolve the vector field in curl-free fashion. Additionally, we require that 

the potential be collocated at the vertices of the mesh. The above system is of great practical 

interest because it arises naturally as part of the first order CCZ4 hyperbolic system that has to be 

solved for numerical general relativity; in fact, in the general relativistic context the equations do 

not have source terms. As in Sub-section II.5, the emphasis in this Sub-section is on curl-free 

evolution of the three-dimensional vector field because the inclusion of source terms on the right 

hand sides of the above equations can easily turn them into curl-preserving equations. For the 

simple case where the velocity vector ( )v , v , vx y z   is a constant, eqn. (3.26) can be simplified to 

yield 
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v

  ;

  

;

v v v 0

v v v 0

v v  0

;

 

x x x x
x y z

y y y y
x y z

z z z z
x y z

J J J J

t x y z

J J J J

t x y z

J J J J

t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

        (3.27) 

While the above equations suggest that we are simply advecting a vector field in three dimensions, 

please note that eqn. (3.26) enjoins us to keep the vector field globally curl-free. This requires the 

edge-centered collocation of the components of the vector field. Eqn. (3.26) also tells us that the 

potentials “ v v vx x y y z zJ J J+ + ” should be uniquely specified at the vertices of the mesh in a 

multidimensionally upwinded fashion. To obtain stable advection, we need to show that the update 

methodology is also properly upwinded. We demonstrate all these facets within the context of a 

first order semi-discrete scheme. 

Place Fig. 4 here 

 

 Fig. 4 shows the collocation of curl-free vector components along the edges of a three-

dimensional zone. The zone center is indexed by (i,j,k) and the edges are indexed suitably, 

consistent with the zone center’s indexing. As in the two-dimensional case, the potentials are 

defined by v v vx x y y z zJ J Jφ ≡ + +  and they are collocated at the vertices of the mesh. As long as 

the same potential at a vertex is used for the update of all the vector components in all the edges 

that meet at that vertex, the update will be globally curl-free. To keep the discussion simple, we 

take all the velocity components to be constant and positive. All the zones of the Cartesian mesh 

are also taken to be uniform with mesh sizes x∆  , y∆  and z∆  in the x-, y- and z-directions. The 

upwinded potentials at two of the vertices of the mesh are also shown. The potentials at other 

vertices can be obtained by suitable shifts in the indexing. The purpose of this figure is to make it 

easy for us to understand how a curl-free reconstruction that is based on edge-centered vector 

components, in conjunction with a three dimensional Riemann solver, can give us a stable, globally 

curl-free scheme.  
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 In the ensuing discussion, we shall focus on only the first of the equations in eqns. (3.26) 

and (3.27) because manipulations that are identical to the ones shown below can be made for the 

other two components of the vector field J  . Since the vector field is curl-free, the terms 

( )v y x yJ y J x∂ ∂ − ∂ ∂  and ( )vz x zJ z J x∂ ∂ − ∂ ∂  do not contribute. As a result, the semi-discrete 

update for , 1/2, 1/2

x

i j kJ + +  in Fig. 4 becomes 

, 1/2, 1/2 1/2, 1/2, 1/2 1/2, 1/2, 1/2
0

x

i j k i j k i j kJ

t x

φ φ+ + + + + − + +∂ −
+ =

∂ ∆
       (3.28) 

Using the potentials 1/2, 1/2, 1/2 , 1/2, 1/2 1/2, , 1/2 1/2, 1/2,v v vx x y y z z

i j k i j k i j k i j kJ J Jφ + + + + + + + + += + +  and 

1/2, 1/2, 1/2 1, 1/2, 1/2 1/2, , 1/2 1/2, 1/2,v v vx x y y z z

i j k i j k i j k i j kJ J Jφ − + + − + + − + − += + +  from Fig. 4, we get 

( ) ( )

( )

, 1/2, 1/2

, 1/2, 1/2 1, 1/2, 1/2 1/2, , 1/2 1/2, , 1/2

1/2, 1/2, 1/2, 1/2,

v v

v
                                                                     0

x x y
i j k x x y y

i j k i j k i j k i j k

z
z z

i j k i j k

J
J J J J

t x x

J J
x

+ +
+ + − + + + + − +

+ + − +

∂
+ − + −

∂ ∆ ∆

+ − =
∆

   (3.29) 

It is easy to see that eqn. (3.29) scarcely resembles the first equation in eqn. (3.27). However, we 

now use the discrete circulations in faces ( ), , 1/ 2i j k +  and ( ), 1/ 2,i j k+  of Fig. 4 to make the 

transcription 

( ) ( )

( ) ( )

1/2, , 1/2 1/2, , 1/2 , 1/2, 1/2 , 1/2, 1/2

1/2, 1/2, 1/2, 1/2, , 1/2, 1/2 , 1/2, 1/2

1 1

1 1

y y x x

i j k i j k i j k i j k

z z x x

i j k i j k i j k i j k

J J J J
x y

J J J J
x z

+ + − + + + − +

+ + − + + + + −

− → −
∆ ∆

− → −
∆ ∆

     (3.30) 

Putting the transcription from eqn. (3.30) in eqn. (3.29) we get 

( ) ( )

( )

, 1/2, 1/2

, 1/2, 1/2 1, 1/2, 1/2 , 1/2, 1/2 , 1/2, 1/2

, 1/2, 1/2 , 1/2, 1/2

v v

v
                                                                     0

x x y
i j k x x x x

i j k i j k i j k i j k

z
x x

i j k i j k

J
J J J J

t x y

J J
z

+ +
+ + − + + + + − +

+ + + −

∂
+ − + −

∂ ∆ ∆

+ − =
∆

   (3.31) 

The concordance between eqn. (3.31) and the first equation in eqn. (3.27) is now very obvious. 

We see that at first order our globally curl-free scheme is indeed properly upwinded. For the update 
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in eqn. (3.31) we should use an effective control volume of size x y z∆ ×∆ ×∆  that is centered on 

the center of the edge ( ), 1/ 2, 1/ 2i j k+ +  shown in Fig. 4. As we use higher order curl-free or 

curl-preserving reconstructions and higher order timestepping, we have the assurance that the 

numerical dissipation will be progressively reduced with increasing order but the scheme will 

remain stable. The demonstration might require a few steps, but the previous equation can also be 

written in a form that makes the centered and dissipation parts self-evident. We don’t show the 

steps, but we show the final result. We have 

( ) ( )

( ) ( )

, 1/2, 1/2

1, 1/2, 1/2 1, 1/2, 1/2 , 3/2, 1/2 , 1/2, 1/2

, 1/2, 3/2 , 1/2, 1/2 1, 1/2, 1/2 , 1/2, 1/2 1, 1/2, 1/2

,

v v

2 2

vv
2

2 2

v

2

x x y
i j k x x x x

i j k i j k i j k i j k

xz
x x x x x

i j k i j k i j k i j k i j k

y

i

J
J J J J

t x y

J J J J J
z x

J
y

+ +
+ + + − + + + + − +

+ + + − + + + + + − + +

∂
+ − + −

∂ ∆ ∆

+ − = − +
∆ ∆

+
∆

( ) ( )3/2, 1/2 , 1/2, 1/2 , 1/2, 1/2 , 1/2, 3/2 , 1/2, 1/2 , 1/2, 1/2

v
2 2

2

z

x x x x x x

j k i j k i j k i j k i j k i j kJ J J J J
z

+ + + + − + + + + + + −− + + − +
∆

 (3.32) 

We now see that a higher order extension can be made, as detailed in the steps given in the next 

sub-section. 

 

III.5) Stepwise Strategy for Implementing a Curl-Preserving Scheme 

 Thus we can identify the three essential steps for implementing a curl-preserving scheme:- 

1) We make a higher order curl-free reconstruction of the sort that is presented in Sections II and 

III for any curl-constrained vector fields. Flow variables that have a zone-centered interpretation 

in a traditional higher order Godunov scheme can be reconstructed using well-known TVD or 

WENO methods. This gives us suitably high order spatial reconstruction in all instances. 

2) We continue to have the support of one-dimensional Riemann solver technology. However, on 

a two-dimensional mesh, we also use the two-dimensional Riemann solver to give us the potential 

φ at the corners of the mesh, as shown in Fig. 2. On a three dimensional mesh, like the one shown 

in Fig. 4, we can use the three-dimensional Riemann solver from Balsara [16] to give us the 

potential φ at the vertices of the mesh. We should also incorporate any suitable integration of 
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source terms. For example, it is evident that the terms ( )× ∇×v J  and 
Tρ
τ

− J  in eqn. (1.1d) should 

be averaged at an edge from the zones that come together at the edge of interest. This step and the 

previous step give us a single stage of a Runge-Kutta scheme.  

3) A higher order SSP-RK time-stepping strategy can then be used to obtain higher order temporal 

accuracy. This combination of innovations will produce a stable, high order, multidimensionally 

upwinded, globally curl-free (or curl-preserving) scheme. 

 

IV) von Neumann Stability Analysis of Curl Constraint-Preserving WENO-like Schemes 

 A von Neumann stability analysis for classical, volume-centered, DG schemes has been 

done (Liu et al. [44], Zhang and Shu [58]). In that analysis, the authors focused on the advection 

equation with a constant velocity. While the above authors showed a DG scheme, their methods 

can be adapted as well for WENO schemes. In a classical DG/WENO scheme, the primal variables 

are zone-centered and the objective is to satisfy a telescoping density-conservation constraint. (In 

other words, mass, momentum and energy densities are conserved in any subset of zones because 

of a telescoping application of mass, momentum and energy fluxes.) A similar von Neumann 

stability analysis for WENO-like and DG-like schemes for evolving the induction equation in 

MHD has also been carried out by Balsara and Käppeli [20]. The induction equation evolves a 

vector field in divergence-free fashion, and the analysis can be carried out with the simplification 

of a constant velocity in two dimensions. With that simplification, the induction equation also 

reduces to an advection of the two components of the vector field. In a divergence-preserving, 

face-centered, WENO-like or DG-like scheme for the induction equation, the primal variables are 

face-centered and the objective is to satisfy a telescoping divergence-preserving constraint. This 

choice of collocation also holds true for any divergence-constraint preserving PDE like Maxwell’s 

equations (Balsara and Käppeli [24]). It is now easy to see that for the curl-constraint preserving, 

edge-centered, WENO-like schemes for treating eqn. (2.22), we have the objective to satisfy a 

telescoping curl-preserving constraint. When we restrict eqn. (2.22) so as to have a constant 

velocity, eqns. (2.23) show us that the model PDE again reduces to the advection of two curl-free 

vector field components. (The reader should note that it is extremely difficult to analyze a full 2D 

scheme with non-constant velocity and that is the only reason for choosing a constant velocity. All 
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the schemes that are analyzed in this paper can be applied to practical problems that have non-

constant and time-evolving velocities, as shown later in Sections V and VI.) In all such stability 

analyses it is traditional to simplify the spatial and temporal parts of the problem by using multi-

stage Runge-Kutta timestepping. Therefore, we will use the SSP-RK timestepping schemes from 

(Shu and Osher [52], [53], Shu [54], Spiteri and Ruuth [50], [51], Gottlieb et al. [40]). The temporal 

order in our von Neumann stability analyses will always be matched to the spatial order of accuracy 

of the WENO-like scheme. (Because this paper is focused on WENO methods, we only develop 

the von Neumann stability analysis for curl-free WENO-like schemes for treating eqn. (2.22). In 

subsequent work, we would like to develop the same stability analysis for curl-free DG-like and 

PNPM-like schemes.) 

 We saw in Sub-sections II.5, III.4 and III.5 that the ingredients of a successful curl 

constraint-preserving scheme consist of :- 1) a higher order curl-free reconstruction, 2) a 

multidimensional Riemann solver and 3) a suitable high order timestepping strategy. It is possible 

to use these three building blocks to design WENO-like, PNPM-like and DG-like schemes of 

higher order Godunov type that preserve the global constraints. The full description of such a plan 

requires indeed a separate paper and such a paper is under construction (Balsara and Käppeli [28]). 

The description of DG-like schemes is more intricate and is not done here; however, we have 

indeed described WENO-like schemes in detail in this paper. Therefore, it makes sense to present 

the von Neumann stability analysis of edge-centered curl-preserving schemes here.  

 From the edge-centered primal variables, the reconstruction strategy described in Section 

II (and its associated Fig. 1) is used to reconstruct the entire vector field. For a von Neumann 

stability analysis, smooth flow variables can be assumed, so that we always use results from the 

suitably high order central stencil from the WENO reconstruction. The application of the 

multidimensional Riemann solver, along with the use of a suitably higher order SSP-RK 

timestepping scheme then completes the update strategy. In our von Neumann stability analysis 

we used a 2D Cartesian mesh with square zones. In such a von Neumann stability analysis, one 

posits a curl-free vector field in 2D with wave vector ( ),x yk k  which has harmonic variation of the 

form 
( )x yi k x k y

e
+

 . For the model problem shown in eqn. (2.22) we then obtain the amplification 

factor as well as the phase of the entire globally curl-free WENO-like scheme. The exclusive use 
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of the central stencil makes the entire scheme linear in the edge-centered variables with the result 

that a computer algebra system can be used to extract the entire amplification matrix. 

 Notice that each different choice of velocity components ( )v , vx y
 and each different choice 

of wave vector ( ),x yk k yields a different amplification factor and phase. What matters is that the 

amplification factor and phase depend on:- 1) The angle between the velocity vector and the x-

direction of the mesh, 2) the relative angle between the wave vector and the velocity and 3) the 

ratio of the wavelength to the mesh size. We consider situations where the velocity vector makes 

angles of 0o, 15o, 30o and 45 o relative to the x-direction of the mesh. This gives us a sufficiently 

interesting range of velocity directions. For each of those velocity directions we allow the wave 

vector to sweep over all possible angles between the direction of the velocity and the direction of 

the wave vector. Higher order WENO schemes usually display good resolving capabilities, so we 

display the amplitude and phase information when the wavelength spans 5 zones, 10 zones and 15 

zones. We do this for second, third and fourth order accurate WENO-like schemes.  

Place Fig. 5 here 

 

 We study the wave propagation characteristics for globally curl-free WENO-like schemes, 

which are second order accurate in space. The time-stepping was SSP-RK2 so that the entire 

scheme is spatially and temporally second order accurate. The von Neumann stability analysis 

shows us that this combination of spatial and temporal discretization yields a maximum CFL of 

0.7071.  

 For the plots shown in Fig. 5, the CFL was set at 90% of its maximum value. Figs. 5a to 

5d show one minus the absolute value of the amplification factor when the velocity vector makes 

angles of 0o, 15o, 30o and 45 o relative to the x-direction of the mesh. Figs. 5e to 5h show the phase 

error, again for the same angles. The 2D wave vector can make any angle relative to the 2D 

direction of velocity propagation, with the result that the amplitude and phase information are 

shown with respect to the angle made between the velocity direction and the direction of the wave 

vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the green 

curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that span 15 
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waves per wavelength. Notice that the cases where the velocity vector makes angles of 0o and 45o 

relative to the x-direction of the mesh indeed show symmetrical wave propagation characteristics, 

as expected. When the velocity vector makes angles of 15o and 30o relative to the x-direction of 

the mesh, there is no symmetry between the velocity direction, the mesh direction and the direction 

of the wave vector, with the result that we don’t expect to see symmetrical plots, and indeed we 

don’t. We do, however, observe that when the waves span 10 cells per wavelength and 15 cells 

per wavelength the wave propagation becomes very close to isotropic and quite free of dissipation. 

This is a good sign that even our second order WENO-like scheme shows rather isotropic wave 

propagation with increasing wave length. In all instances, Figs. 5a to 5d show us that one minus 

the amplification factor is always positive or zero, indicating that the globally curl-free, second 

order, WENO-like scheme is indeed stable.  

Place Fig. 6 here 

 

 We study the wave propagation characteristics for globally curl-free WENO-like schemes, 

which are spatially third order accurate. The time-stepping was SSP-RK3 so that the entire scheme 

is spatially and temporally third order accurate. The von Neumann stability analysis shows us that 

this combination of spatial and temporal discretization yields a maximum CFL of 1.1507. Note 

that a full application would involve zone-centered fluid-like variables which may need to be 

evolved with their own WENO reconstruction. That will impose its own CFL restriction, with the 

result that the smaller of the two CFL numbers has to be chosen. 

 For the plots shown in Fig. 6, the CFL was set at 90% of its maximum value. The first four 

panels in Fig. 6 show one minus the amplification factor, and the next four panels in Fig. 6 show 

the phase error. Comparing these results to their analogues in Fig. 5 we see that the third order 

scheme shows a significant improvement in the phase accuracy compared to the second order 

scheme. Owing to the built-in dissipation properties of SSP-RK3 time-stepping, the dissipation in 

Fig 6 is only competitive with that in Fig. 5. However, the improving trend is restored once we go 

to fourth order. This shows the benefit of resorting to a higher order WENO-like scheme. We also 

see that the wave propagation in Fig. 6 is much more isotropic compared to Fig. 5.  

Place Fig. 7 here 
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 We study the wave propagation characteristics for globally curl-free WENO-like schemes, 

which are spatially fourth order accurate. The time-stepping was SSP-RK(5,4) so that the entire 

scheme is spatially and temporally fourth order accurate. The von Neumann stability analysis 

shows us that this combination of spatial and temporal discretization yields a maximum CFL of 

1.3040. As before, when using this scheme along with a formulation that requires zone-centered 

fluid-like variables, one has to choose the smaller of the permissible CFL numbers. 

 For the plots shown in Fig. 7, the CFL was set at 90% of its maximum value. The first four 

panels in Fig. 7 show one minus the amplification factor, and the next four panels in Fig. 7 show 

the phase error. Comparing these results to analogous results in Figs. 5 or 6, we see that the 

transition to fourth order of accuracy has made a very substantial improvement in amplification 

factor as well as the phase accuracy. As before, comparing Fig. 7 to Figs. 5 or 6 shows that the 

fourth order WENO-like scheme has not just vastly improved accuracy but also significantly 

improved isotropy of wave propagation. Especially when there are ten or more zones per 

wavelength, Fig. 7 shows that the dissipation and dispersion errors of a fourth order WENO-like 

scheme are roughly one order of magnitude lower than that of a second or third order scheme. This 

shows that in multidimensions, higher order WENO-like curl-free schemes provide not just vastly 

improved accuracy but also significantly improved isotropy of wave propagation. 

 Taken together, the results of this Section show that our curl constraint-preserving 

reconstruction, coupled with the multidimensional Riemann solver, provides a successful 

framework for the design of a very proficient class of mimetic WENO-like schemes for involution-

constrained PDEs. Most importantly, the results presented point to a class of high order WENO -

like mimetic schemes for involution-constrained PDEs that have superior amplitude preservation 

and phase accuracy even in multiple dimensions. Analysis of DG-like and PNPM-like schemes 

will, it is hoped, show even further possibilities for improvement. 

 

V) Numerical Results for Two Model Problems; and a Demonstration of Order Property 

 It behooves us to design and display a model problem where one can palpably witness the 

value of an exactly curl-preserving scheme. Moreover, since we have presented entire classes of 
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such schemes with increasing order of accuracy, we would like to demonstrate the value of high 

order of accuracy. To that end, we present a test problem for a simple model PDE system, where 

the curl-free evolution of the vector field is of crucial importance.  

 Let us begin our discussion by considering the currently-available alternatives. Of course, 

a GLM-style cleaning procedure has been developed in Dumbser et al. [36], but it requires 

increasing signal speed of the cleaning equations and also adds many more vector fields than are 

originally necessary. In Dumbser et al. [37] and Boscheri et al. [30] a new exactly curl-free semi-

implicit scheme was presented using a vertex-based staggered mesh, but it is limited to second 

order of accuracy and requires frequent interpolation of the velocity field and of the curl-free vector 

field J to different staggered locations on the mesh, which makes it more difficult to extend to 

adaptive mesh refinement (AMR) techniques.  

 By contrast, the present formulation preserves the same control volume for the fluid 

variables as well as the curl-constraint preserving vector field, making it suitable for an eventual 

future extension to AMR. The availability of higher order curl-preserving formulations also allows 

us to show another interesting facet that has gone unappreciated in the literature. It turns out that 

in certain important limits, the curl-preserving vector field satisfies an energy principle. The 

quadratic energy of the vector field should remain unchanged in time. A good scheme should 

preserve this quadratic energy as much as possible. We show in this section that our increasingly 

accurate curl-preserving schemes preserve the quadratic energy with increasing precision. 

 In this Section we illustrate the capabilities of our new high order accurate numerical 

method with the help of the toy system introduced in Dumbser et al. [36], [37]. The governing 

PDE system reads  

( ) 0i

i

v
t x

ρ ρ∂ ∂
+ =

∂ ∂
          (5.1)  

( )2

0 0k
i k ik i k

i

v
v v p c J J

t x

ρ ρ δ ρ∂ ∂
+ + + =

∂ ∂
       (5.2)  

( ) 0k k m
m m m

k m k

J J J
v J v

t x x x

 ∂ ∂ ∂∂
+ + − = ∂ ∂ ∂ ∂ 

       (5.3)  
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where the Einstein convention implying summation over repeated indexes is adopted. The system 

of equations (5.1)-(5.3) describes the evolution of a scalar quantity ρ and two vector fields v and 

J, that in a fluid dynamic context could be interpreted as density, velocity and a kind of thermal 

impulse, respectively, while p represents the equivalent of a pressure, see Dumbser et al. [33]. As 

shown in Dumbser et al. [37] the system satisfies the extra energy conservation law  

( )2

0( ) 0k i i k

k

E
v E p v c J J

t x

ρ ρ ρ∂ ∂
+ + + =

∂ ∂
.       (5.4)  

In this paper the model system is closed by the simple linear relation  

2p γ ρ=            (5.5) 

where γ is a given constant, as well as c0 in eqn. (5.2). The system (5.1)-(5.3) with (5.4) falls into 

the larger class of symmetric hyperbolic and thermodynamically compatible (SHTC) systems 

studied by Godunov and Romenski, see Godunov [38] and Romenski [47] and references therein.   

Now, let us focus on the third PDE (5.3) and let m mv Jχ = be a scalar quantity. Applying the 

Schwarz theorem, which implies the symmetry of second derivatives, i.e.  

0
k m m kx x x x

χ χ∂ ∂ ∂ ∂
− =

∂ ∂ ∂ ∂
, 

it follows that eqn. (6.3) maintains the linear involution constraint  

0k m
mk

m k

C
J J

x x

          
         (5.6)  

for all times if the field J was curl-free at the initial time.   

It is therefore crucial to satisfy this constraint even at the discrete level, that is if 0mkC = at the 

initial time it must remain zero for all times. 

 

V.1) Model Problem: A Stationary curl-free solution  
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 To verify that the novel curl constraint-preserving scheme is able to fulfill over time the 

involution constraint in eqn. (5.6) we propose to solve the following test problem, which is an 

exact stationary and smooth solution of the model system (5.1)-(5.3). Let the computational 

domain be the square Ω=[-5;5]2 and let the generic radial coordinate r satisfy r2=x2+y2. The 

quantity J is defined as the gradient of a scalar potential φ, so that the initial condition is ensured 

to be curl-free. The potential is given by 

0( ) erf
r R

r Aϕ
σ
− =  

 
,         (5.7)  

with the parameters A, R0 and σ. Then, the initial condition for the radial component 

    r rJ r rJ e  reads 

2

0

2

( )2
( ) expr

r RA
J r

r

ϕ
σπσ

 −∂
= = − ∂  

,       (5.8) 

while the angular component is set to  J J e   . Here, re  and e  are the unit vectors in the radial 

and in the angular direction, respectively.  

 The initial condition in eqn. (5.8) guarantees that the involution constraint in eqn. (5.6) is 

satisfied at the initial time t=0. We furthermore impose v=0 at the initial time. From radial direction 

of eqn. (5.2) rewritten in polar coordinates it then follows that a stationary equilibrium is preserved 

if  

( )2 2 2 2

0 0

1
( ) ( ) ( ) 0,r r

d
p r r c J r c J

dr r
ρ ρ+ + =           (5.9)  

Solving the above equilibrium condition for the radial derivative of ρ(ρ) and using eqn. (5.5) yields 

the following non-autonomous ODE for ρ(r):  

2

0
02 2 2

0

( ) ( ) ( )
2 , (0)

r J r cd dJ J r

dr J c dr r

ρρ ρ ρ
γ

 = − + = +  
      (5.10) 

The ODE (5.10) can be solved numerically to obtain the initial condition for the density profile 

ρ(r), which completes the setup of the initial condition of this test case. To this purpose we use a 

classical fourth order Runge-Kutta ODE solver with a very fine mesh spacing in radial direction 
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so that the solution of the ODE can be considered as quasi exact. The parameters in this model 

problem are set to A=0.2, R0=2, σ=0.5, ρ0=2, c0=2 and γ=2.  

 

V.2) Accuracy Analysis of the Numerical Scheme Using our Model Problem 

Place Fig. 8 here 

 

 In Figure 8 we show the numerical results for the vector component Jx obtained on a mesh 

with 50 x 50 cells by running four different schemes: the semi-implicit second order accurate 

staggered curl-free (SCF) scheme proposed in (Boscheri et al. [30]) and the second, third and 

fourth order accurate edge centered curl-preserving (ECCP) reconstruction methods developed in 

Section II of this work. The final time of the simulation is very large, i.e. tend=100, in order to show 

the behavior and the stability of the scheme for very long time computations. The less dissipative 

behavior achieved by the high order order reconstructions is clearly visible. We also notice that 

the SCF scheme is the most dissipative of the schemes shown in Fig. 8 because of the copious 

interpolation of the velocity field and the curl-free vector field J to different staggered locations 

on the mesh. We also mentioned that the quadratic energy of the vector field should, in principle, 

be preserved for this physical problem. All numerical schemes fall short of this ideal goal. In Fig. 

9 we plot out the mesh-integrated quadratic energy, simply evaluated as 2 2 2

x yJ J J= +  as a function 

of time. We see that the higher order schemes preserve the quadratic energy much better than the 

lower order schemes. This is because the numerical viscosity is significantly reduced when a high 

order reconstruction technique is adopted. Finally, we would also like to point out that without a 

curl-preserving scheme the solution is spoiled after short times and the equilibrium is violated very 

soon leading to catastrophically unphysical results. At late times, the result of not treating the curl-

preserving aspect of the PDE is indeed a code blowup. 

Place Fig. 9 here 

 

 A numerical convergence study for this test problem is carried out by solving the model 

PDE system with the stationary initial condition discussed above until a final time of t=10 using a 
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sequence of successively refined meshes. The results for our novel curl-free WENO schemes 

presented in this paper are shown in Table II for nominal orders of accuracy from two to four.  In 

Fig. 9 we finally show the temporal evolution of the curl error of second, third and fourth order 

curl-free WENO schemes on a uniform Cartesian mesh composed of 32 x 32 elements. It can be 

clearly seen that in all cases and for all times, the curl errors remain at the level of machine 

precision, as expected.   

TABLE II. Numerical convergence study from second to fourth order accuracy for the 

novel high order curl-preserving schemes that draw on the Curl-Preserving reconstruction 

from Section II presented in this paper. Errors for the variable Jx are shown.  

Method Nx x Ny  
1L   Error 1L   Order L∞   Error L∞   Order 

Curl-

Preserving O2  

     

 64 x 64  2.4453E-3  4.7175E-2  

 128 x 128 5.0732E-4 2.3 1.7351E-2 1.4 

 256 x 256 9.2619E-5 2.4 7.4771E-3 1.2 

 512 x 512 1.5713E-5 2.6 1.8191E-3 2.0 

Curl-

Preserving O3  

     

 64 x 64  2.0530E-3  3.8879E-2  

 128 x 128 4.6588E-4 2.1 1.0150E-2 1.9 

 256 x 256 6.9384E-5 2.8 1.6952E-3 2.6 

 512 x 512 9.0052E-6 3.0 2.1711E-4 3.0 

Curl-

Preserving O4  

     

 64 x 64  3.7155E-4  9.1343E-3  

 128 x 128 1.6224E-5 4.5 4.7515E-4 4.2 

 256 x 256 1.6224E-5 4.3 2.4617E-5 4.3 

 512 x 512 5.3898E-8 3.9 1.9865E-6 3.6 

  

Place Fig. 10 here 

 

 Taken together, the results of this Sub-section show that our curl constraint-preserving 

reconstruction, coupled with the multidimensional Riemann solver, provides a successful 

framework for the design of mimetic finite volume schemes of increasing order of accuracy. 

Moreover, these schemes preserve the curl-constraint during very long time integrations. This 
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constraint-preservation also contributes significantly to the enhanced stability of the scheme. The 

model problem that we provide here is also quite novel and it enables us to precisely document 

that the methods presented here do indeed meet their designed order of accuracy. The utility of 

mimetic schemes with high accuracy is also emphasized by the fact that additional quadratic 

energy terms are also preserved with superlative precision as one goes to higher order. As a result, 

we have presented high order mimetic finite volume-type schemes which have long time stability 

and excellent preservation of quadratic energy. 

 

V.4) Model Problem: Inhomogeneous Curl Involution 

 This test case aims at demonstrating the consistency of the time evolution related to the 

curl of the vector field J. Let us consider a non-homogeneous curl involution in the toy model by 

adding a source term in eqn. (5.3) so that the evolutionary equation for the x- and y-components 

can be explicitly written as 

( )

( )

v v v    ;

v v v

with     sin sin     and    cos cos

yx x
x x y y y x

y y x
x x y y x y

x y

JJ J
J J S

t x y x

J J J
J J S

t y x y

S x y S x y

∂ ∂ ∂∂
+ + + − = ∂ ∂ ∂ ∂ 

∂ ∂ ∂∂
+ + + − = ∂ ∂ ∂ ∂ 

= =

      (5.11) 

The initial conditions are given by setting the density field to unity and the components of the 

velocity field to be zero throughout the computational domain. The initial conditions for the 

thermal impulse vector field are given by 

sin sin     and    cos cosx yJ x y J x y= =        (5.12) 

As a result, the curl of the thermal impulse vector assumes a prescribed non-zero initial value given 

by 2sin coszR x y= − . Similar to eqn. (1.2), an additional PDE is then defined which accounts for 

the time evolution of the Burger’s vector field = ∇×R J . In two-dimensions, the only non-zero 

component of zR whose evolution equation can be explicitly written as 
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( ) ( )v v 0z
x z y y z x

R
R S R S

t x y

∂ ∂ ∂
+ − + + =
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       (5.13) 

The constant 0c in eqn. (5.2) was set to zero. In eqn. (5.5), we set 2γ =  so that we have a 

constitutive relation between the density and the pressure. Notice that in addition to having initial 

conditions given by 2sin coszR x y= − , because the velocity field is zero, eqn. (5.13) becomes  

2sin coszR
x y

t

∂
= −

∂
          (5.14) 

In other words, the Burger’s vector is analytically integrable! The goal of this test problem is to 

verify that Burger’s vector, which is the curl of the thermal impulse vector, is correctly evolved by 

the scheme.  

Place Fig. 11 here 

 

 The computational domain is taken to be a 100×100 Cartesian zone mesh in two-

dimensions that spans [ ] [ ],3 ,3π π π π− × − . Using the third order curl-preserving scheme described 

in this paper (see Sub-Section III.5), we have run this test problem to a final time of unity. A CFL 

of 0.6 was used for the edge-centered curl-preserving scheme. (The reason it can sustain large CFL 

numbers is because it uses the multidimensional Riemann solver.) We also built a straightforward 

third order, zone-centered Godunov scheme that evolves eqns. (5.1), (5.2), (5.11) and (5.13) so 

that we can compare and contrast the curl constraint-preserving scheme with one that does not 

preserve the constraints. Please recall that because of eqn. (5.14), the Burger’s vector is analytically 

integrable. Fig. 11a shows the analytically evaluated Burger’s vector at a final time of unity. Fig. 

11b shows the Burger’s vector at the same final time when we used the third order accurate edge-

centered curl-preserving scheme. Fig. 11c shows the Burger’s vector at the same final time when 

we used a plain-vanilla, zone-centered, third order accurate Godunov scheme and directly finite 

differenced the zone-centered vector components xJ and yJ to obtain their curl. Although Figs. 

11a, 11b and 11c look similar, please examine the quantitative values by using the color bars. We 

see that the third order accurate edge-centered curl-preserving scheme in Fig. 11b has closely 

tracked the analytical result in Fig. 11a. However, the numerical values in Fig. 11c are substantially 
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different from those in Figs. 11a or 11b. This shows that a scheme that does not accurately account 

for the constraints in a curl-constrained PDE will indeed generate some noticeable errors even after 

a modest amount of time-integration. 

Place Fig. 12 here 

 We can also make the errors more quantitative when we realize that eqn. (5.13) is 

analytically integrable. We can, therefore, evaluate the error in the curl at each timestep as 

( )
( ) [ ]2, ,3

z

x y

Error R dA

π π∈ −

= ∇× −∫∫ J         (5.15) 

Fig. 12 shows the error in the time-evolution of the Burger’s vector when we use the third order 

accurate edge-centered curl-preserving scheme and when we use a plain-vanilla, zone-centered, 

third order accurate Godunov scheme. If the methods in this paper are not used, the errors in the 

curl are bigger by 2 to 4 orders of magnitude. This is significant because the curl indeed drives the 

evolution of the thermal impulse in eqn. (1.1d).  

 

VI) Results from Further Test Problems Involving the full GPR System from Eqn. (1.1) 

 While the previous Section showed several useful results with the help of a toy problem, 

we now turn our attention to the full GPR system from eqn. (1.1). Our test consists of a blast 

problem that is allowed to evolve with various extents of thermal conduction. The thermal 

conduction is controlled by the relaxation time τ in eqn. (1.1d) with the result that smaller values 

of τ result in the thermal conduction having an increasingly larger effect. Because we have run all 

our simulations with a time-explicit formulation of the source terms, we have restricted ourselves 

to 100τ = , 10τ = , 1τ = and 0.1τ = . As for the other coefficients that regulate the PDE system in 

eqn. (1.1), we have used 1.4γ = , 1hc = and 2.5vc = . Our objective is to carry out four simulations 

with the four different values of τ using the third order accurate, edge-centered, curl-preserving 

formulation with one-dimensional and multidimensional Riemann solvers that produces 

constrained evolution. We will then repeat the same four simulations with a plain-vanilla, third 

order accurate, zone-centered higher order Godunov scheme, with one-dimensional Riemann 

solver technology, where nothing special is done to account for the constrained evolution of the 
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thermal impulse vector field. We will then intercompare the two methods and bring to the forefront 

the simulations where the maximum differences have been found. 

 The blast problem with thermal conduction that we consider here is set up on a 200×200 

zone mesh that spans ( ) [ ]2
, 1,1x y ∈ − . Continuative or periodic boundary conditions may be used, 

because the simulation is always stopped before the outgoing blast wave reaches the boundary. 

Let “r” be the radius, measured from the origin. The problem consists of initializing the primitive 

variables ( ), v , v , , ,x y x yP j jρ  so that the central circular region is at higher density and pressure 

compared to the ambient region, as follows 

( ) ( )
( )

2,0,0,1,0,0                    for 0.2
, v , v , , ,

0.5,0,0,0.5,0,0               for 0.2
x y x y

r
P j j

r
ρ

≤=  >
 

The simulation is run to a time of 0.7, which is just before the outer shock encounters the boundary. 

The edge-centered, curl-preserving scheme was run with a CFL of 0.6, whereas the plain-vanilla 

Godunov scheme was run with a CFL of 0.45. Notice that the interior of this blast wave set-up is 

cooler than the exterior, even if it is at higher pressure. 

Place Fig. 13 here 

 

Place Fig. 14 here 

 

Place Fig. 15 here 

 

 Figs. 13a, 13b, 13c and 13d show the density, temperature, x-velocity and x-component of 

the thermal impulse at a final time of 0.7 for a simulation with 1τ =  that was run with the third 

order accurate, edge-centered, curl-preserving formulation with one-dimensional and 

multidimensional Riemann solvers. Most of our other simulations look similar to Fig. 13, 

indicating that when the relaxation time is relatively large, the fluxes are dominated by the fluid 

fluxes and thermal conduction does not play a dominant role. However, Fig. 14 shows the same 
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variables as in Fig. 13, but with 0.1τ = . The simulation in Fig. 14 was run with the same algorithm 

as Fig. 13. Fig. 15 shows another simulation with 0.1τ = , but this time it was run with a plain-

vanilla, third order accurate, zone-centered higher order Godunov scheme, with one-dimensional 

Riemann solver technology. All densities across Figs. 13 to 15 are shown with the same color table 

that spans [ ]0.45,2 ; this makes it easy to inter-compare results across the three figures. All 

temperatures (defined by P ρ ) across Figs. 13 to 15 are shown with the same color table that 

spans [ ]0.5,1.05 . Likewise, the x-velocity across the three figures uses a color table that has a 

range of [ ]0.18,0.18− . Similarly, the x-component of the thermal impulse uses a color table that 

has a range of [ ]0.75,0.75− across all three figures. The simulation rapidly sets up a system of 

outward-going circular shock and an inward-propagating reverse shock. This two-shock structure 

is well-known even for a purely hydrodynamical blast wave problem. The final time corresponds 

to a time when the inward-propagating reverse shock converges on to the origin. Because the 

interior of the blast is cooler than the exterior, a heat flux is set up that carries heat from the exterior 

to the interior of the blast. In other words, while the blast expands outwards, the heat propagates 

inwards. As a result, one can observe that the sign of the outward-going x-velocity is opposite to 

the sign of the inward-going x-component of the thermal impulse vector field in these three figures. 

Decreasing values of τ set up increasing amounts of heat flux. That heat flux has to compete with 

the other fluid dynamical fluxes in the problem with the result that we only expect small values of 

τ to produce heat fluxes that produce an appreciable difference relative to the fluid dynamical 

fluxes. Because the color bars are the same across flow variables in these three figures, let us now 

compare Fig. 14 with Fig. 15. We see that the density, temperature and the x-component of the 

thermal impulse are quite different in Fig. 14 compared to Fig. 15. Specifically, the x-component 

of the thermal impulse, which tracks the heat flux, is indeed very different. This shows that 

measurable differences have revealed themselves which can only be attributed to the difference in 

algorithms. We see that the curl-preserving formulation does make a substantial difference in the 

physical result! 

Place Fig. 16 here 

 



68 

 

 Now let us try to understand why the choice of algorithm plays a very important role in 

differentiating the results. To make this apparent, we plot 
max

∇×J as a function of simulation time 

for all our simulations of the blast problem in this Section. The results are shown in Fig. 16 in 

color-coded format. The solid curves show the results of the edge-centered curl-preserving 

algorithm. The dashed curves show the results of the plain-vanilla higher order Godunov 

algorithm. The dramatic difference is immediately evident. With diminishing values of τ , i.e. with 

increasingly stronger source terms in eqn. (1.1d), we see that the edge-centered curl-preserving 

algorithm produces a progressively larger maximum in the curl of the thermal impulse. In other 

words, the outputs are proportional to, and regulated by, the input value of τ ! This is exactly what 

we would desire in a well-designed numerical experiment! Please also note from eqn. (1.1d) that 

the ( )× ∇×v J term drives the build-up of the thermal impulse vector as long as there is a non-zero 

source term on the right-hand side of that equation. The non-zero source term in eqn. (1.1d) allows 

the evolution to cease being curl-free and makes it curl-preserving. But it is the non-zero value of 

the ( )× ∇×v J  term in eqn. (1.1d) that drives the further build-up of circulation in the thermal 

impulse field. The edge-centered curl-preserving algorithm does a perfect job of modulating all 

aspects of that build-up so that decreasing values of τ give us a well-modulated increase in the 

thermal flux! Now let us look at the dashed curves in Fig. 16. We see that regardless of the value 

of τ , the schemes that give rise to the dashed curves all produce the about same amount of 

circulation. Besides, that circulation builds up very quickly and in a completely unregulated 

fashion. This is because the circulation always tracks the discretization errors which can be quite 

large due to the zone-centered collocation that is inherent in a plain-vanilla higher order Godunov 

scheme. The need for a curl-preserving formulation has been driven home to us thanks to Fig. 16. 

 

VII) Conclusions 

 Structure-preserving PDEs are becoming increasingly important for several applications in 

physics and engineering. Of particular interest in this paper are PDEs that preserve the curl of a 

vector field. Examples of such PDEs include hyperelasticity, compressible multiphase flows with 

and without surface tension, first order reductions of the Einstein field equations as well as the 

novel first order hyperbolic reformulation of the Schrödinger equation, to name a few examples. 
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We have designed methods in this paper for increasingly high order numerical treatment of such 

PDEs. The essential building blocks for such methods are shown to be a non-linearly hybridized 

curl constraint-preserving, high order accurate reconstruction strategy and the use of 

multidimensional Riemann solvers that are needed for properly upwinded constraint-preserving 

time update. These two building blocks are then coupled to the third building block which is the 

SSP-RK family of time-stepping strategies.  

 Sections II and III show how curl-preserving reconstruction is carried out in two and three 

dimensions. The starting point is a one-dimensional WENO reconstruction along the edges. 

However, careful attention has to be paid to the curl constraints in order to get the reconstructed 

vector field at all locations within the zone of interest. This is why we think of the reconstruction 

as a WENO-like reconstruction. Notice that we use non-linearly hybridized WENO schemes to 

build the higher order moments in the edges and only then carry out the volumetric reconstruction 

according to principles of curl-preservation. As a result, our curl-preserving reconstruction is non-

linearly hybridized and, therefore, suitable for integration with higher order Godunov scheme 

philosophy. In those sections we also demonstrate that when the reconstruction is combined with 

multidimensional Riemann solvers, we get numerical schemes that are multidimensionally 

upwinded and multidimensionally stable. 

 We refer to the reconstruction described above as edge-centered curl-preserving (ECCP) 

reconstruction. If all the higher moments in each edge are obtained with WENO reconstruction 

then they can be referred to as WENO-ECCP schemes. If all the moments in each edge are evolved 

according to DG-like principles, then they can be referred to as DG-ECCP schemes. If only some 

of the lower moments in each edge are evolved, while higher moments are reconstructed, then they 

can be referred to as PNPM-ECCP schemes. 

 Section IV presents some of the results of a von Neumann stability analysis of globally 

structure preserving WENO-like schemes in multiple space dimensions. The results in Section IV 

point to a class of high order WENO-like mimetic schemes for involution-constrained PDEs that 

have superior amplitude preservation and phase accuracy even in multiple dimensions. 

 In Section V a test problem is constructed that produces steady-state analytically exact 

solutions. In that Section we show that the mimetic finite volume schemes that use our methods 

indeed preserve order of accuracy while simultaneously satisfying the curl-free constraint. In some 
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limits, these schemes also preserve the quadratic energy on the mesh. The utility of our mimetic 

schemes with high accuracy is also illustrated by the fact that additional quadratic energy terms 

are preserved with superlative precision as one goes to higher order. As a result, we have presented 

high order accurate mimetic finite volume-type schemes which have long time stability and 

excellent preservation of quadratic energy. Furthermore, we have also presented examples that 

show that our curl constraint-preserving schemes retain fidelity with known analytical results, 

while zone-centered higher order Godunov schemes lose that fidelity. Section VI shows further 

test problems involving thermal conductivity for the full GPR system in eqn. (1.1). We show that 

if the numerical scheme is not curl-preserving, eventually some measurable deficiencies will reveal 

themselves in the simulations. 

 In summary, in this paper we have shown that curl-constraint preserving WENO-like 

reconstruction provides a rich set of insights for mimetic scheme design when dealing with PDEs 

that have a curl-preserving involution. 
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Figure Captions 

Fig. 1 shows the collocation of vector components along the edges of  a two-dimensional control 

volume. As evaluated over the edges of the square element, the discrete circulation is fully 

specified. The mean value and its linear variation are shown along each edge, in anticipation of a 

second order accurate reconstruction scheme. The reconstruction problem for a curl-free 

reconstruction consists of obtaining a polynomial-based vector field that is globally curl-free 

within this two-dimensional control volume. The reconstruction problem for a curl-preserving 

reconstruction consists of obtaining a polynomial-based vector field that matches the specified 

mean circulation in the zone. 

 

Fig. 2 shows the components of the curl-free vector field around the four zones (i,j), (i-1,j), (i-1,j-

1) and (i,j-1). A first order curl-free reconstruction is used. The multidimensionally upwinded 

potentials at the vertices of the zone (i,j) are also shown. The red dashed rectangle shows the 

effective control volume that is used for the update of 
;

, 1/2

x n

i jJ −  . The blue dashed rectangle shows 

the effective control volume that is used for the update of  
;

1/2,

y n

i jJ −  .                

 

Fig. 3 shows the collocation of vector components along the edges of the control volume. Within 

each of the two x-faces, the two y-faces and the two z-faces, the discrete circulation (evaluated 

over those faces) is either exactly zero or specified. The mean value and its linear variation are 

shown along each edge, in anticipation of a second order accurate reconstruction scheme. The 

reconstruction problem consists of obtaining a polynomial that is globally curl-free/curl-

preserving within this control volume. 

 

Fig. 4 shows the collocation of curl-free vector components along the edges of a three-dimensional 

zone. The zone center is indexed by (i,j,k)and the edges are indexed suitably, consistent with the 

zone center’s indexing. We take all the velocity components to be constant and positive. The 
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upwinded potentials at two of the vertices of the mesh are also shown. The potentials at other 

vertices can be obtained by suitable shifts in the indexing. The purpose of this figure is to make it 

easy for us to understand how a curl-free reconstruction that is based on edge-centered vector 

components, in conjunction with a three dimensional Riemann solver, can give us a stable, globally 

curl-free scheme. 

 

Fig. 5 shows the wave propagation characteristics for curl-preserving second order WENO-like 

schemes. Figs. 5a to 5d show one minus the absolute value of the amplification factor when the 

velocity vector makes angles of 0o , 15 o , 30 o and 45 o relative to the x-direction of the 2D mesh. 

Figs. 5e to 5h show the phase error, again for the same angles. The 2D wave vector can make any 

angle relative to the 2D direction of velocity propagation, therefore, the amplitude and phase 

information are shown w.r.t. the angle made between the velocity direction and the direction of 

the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the 

green curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that 

span 15 waves per wavelength. 

 

Fig. 6 shows the wave propagation characteristics for curl-preserving third order WENO-like 

schemes. Figs. 6a to 6d show one minus the absolute value of the amplification factor when the 

velocity vector makes angles of 0o , 15 o , 30 o and 45 o relative to the x-direction of the 2D mesh. 

Figs. 6e to 6h show the phase error, again for the same angles. The 2D wave vector can make any 

angle relative to the 2D direction of velocity propagation, therefore, the amplitude and phase 

information are shown w.r.t. the angle made between the velocity direction and the direction of 

the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the 

green curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that 

span 15 waves per wavelength. 

 

Fig. 7 shows the wave propagation characteristics for curl-preserving fourth order WENO-like 

schemes. Figs. 7a to 7d show one minus the absolute value of the amplification factor when the 

velocity vector makes angles of 0o , 15 o , 30 o and 45 o relative to the x-direction of the 2D mesh. 
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Figs. 7e to 7h show the phase error, again for the same angles. The 2D wave vector can make any 

angle relative to the 2D direction of velocity propagation, therefore, the amplitude and phase 

information are shown w.r.t. the angle made between the velocity direction and the direction of 

the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the 

green curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that 

span 15 waves per wavelength. 

 

Fig. 7 shows the wave propagation characteristics for curl-preserving fourth order WENO-like 

schemes. Figs. 7a to 7d show one minus the absolute value of the amplification factor when the 

velocity vector makes angles of 0o , 15 o , 30 o and 45 o relative to the x-direction of the 2D mesh. 

Figs. 7e to 7h show the phase error, again for the same angles. The 2D wave vector can make any 

angle relative to the 2D direction of velocity propagation, therefore, the amplitude and phase 

information are shown w.r.t. the angle made between the velocity direction and the direction of 

the wave vector. In each plot, the blue curve refers to waves that span 5 cells per wavelength; the 

green curve refers to waves that span 10 cells per wavelength; the red curve refers to waves that 

span 15 waves per wavelength. 

 

Fig 8 shows four different simulations of our model test problem at 50X50 zone resolution. All 

figures show the y-component of the curl-free vector field after a very long simulation time; i.e. 

stopping time of 100. The color scheme is the same across all figures and the intervals between 

contours is also the same. Fig. 8a shows the result of the second-order curl free scheme from 

Boscheri et al. (2020) which frequently averages the solution to different locations of the mesh in 

the course of a timestep. Figs. 8b, 8c and 8d show the results from our new scheme that uses curl-

free reconstruction at second, third and fourth order, along with the multidimensional Riemann 

solver. The color saturation is seen to increase with increasing order and the solution is also less 

diffusive as one progresses from Fig. 8a to 8d. Very different second order schemes were used for 

Figs. 8a and 8b; we see that Fig. 8b shows appreciably lower diffusion. 
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Fig. 9 shows the evolution of the quadratic energy in the curl-free vector field as a function of time 

for the four schemes shown in Fig. 8. The model problem was run with 50X50 zone resolution to 

a time of 100. In principle, the quadratic energy of the constrained vector field integrated over the 

mesh should stay unchanged. The plot shows how much the quadratic energy decays with time for 

various schemes. Because of the frequent averaging over the course of a timestep, the second order 

SCF(O2) scheme from Dumbser et al. [32] shows appreciable decay of energy. The second order 

ECCP(O2) scheme designed here improves on the SCF(O2) scheme. The third order ECCP(O3) 

scheme shows substantial improvement over the second order schemes. The fourth order 

ECCP(O4) scheme provides the best preservation of quadratic energy, thus highlighting the value 

of well-designed higher order curl-preserving schemes for the evolution of curl-constrained vector 

fields. 

 

Fig. 10 shows the time series of the maximum pointwise error of the curl of J for the stationary 

curl free test problem until t=50. The computational domain is discretized with 32x32 uniform 

Cartesian cells. The results for second (black solid line), third (blue solid line) and fourth (red 

solid line) order curl-free WENO schemes are shown.  

  

Figs 11a, b, c show the colorized plot of Rz as a function of position in the test problem at a time 

of 1. Because the problem lends itself to analytical treatment, Fig. 11a was obtained analytically. 

Fig. 11b was obtained numerically. Using the color bar, please note the close concordance in 

values between Figs. 11a and 11b. Fig. 11c was obtained from direct differentiation of a zone-

centered higher order Godunov scheme that is not curl-preserving. Please use the color bars to 

compare the numerical values in Fig. 11c to those in Fig. 11a to see the significant differences. 

The color bar for each panel is different and scaled to the min and max of the data shown. 

 

Fig. 12 shows the maximum error in Rz as a function of time for the edge-centered curl-preserving 

scheme versus a higher order Godunov scheme that does not preserve the curl. The latter shows 

errors that are 2 to 4 magnitudes higher. 
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Fig. 13a, 13b, 13c, 13d show density, temperature, x-velocity and x-component of the thermal 

impulse when t=1 was used along with the ECCP scheme at third order. The solution is shown at 

a final time of 0.7. All densities across Figs. 13 to 15 are shown on the same scale to facilitate 

inter-comparison. Likewise, for all pressures across Figs. 13 to 15 . Similarly for all x-velocities 

and all x-components of the thermal impulse across Figs. 13 to 15. 

 

Fig. 14a, 14b, 14c, 14d show density, temperature, x-velocity and x-component of the thermal 

impulse when t=0.1 was used along with the ECCP scheme at third order. The solution is shown 

at a final time of 0.7. All densities across Figs. 13 to 15 are shown on the same scale to facilitate 

inter-comparison. Likewise, for all pressures across Figs. 13 to 15 . Similarly for all x-velocities 

and all x-components of the thermal impulse across Figs. 13 to 15. 

 

Fig. 15a, 15b, 15c, 15d show density, temperature, x-velocity and x-component of the thermal 

impulse when t=0.1 was used along with the plain-vanilla, zone-centered higher order Godunov 

scheme at third order. The solution is shown at a final time of 0.7. All densities across Figs. 13 to 

15 are shown on the same scale to facilitate inter-comparison. Likewise, for all pressures across 

Figs. 13 to 15 . Similarly for all x-velocities and all x-components of the thermal impulse across 

Figs. 13 to 15. 

 

Fig. 16 shows the evolution of the maximum absolute value of the curl of the thermal impulse 

vector as a function of time. The results are color-coded for the four different values of t used in 

the thermally conducting blast problem. Solid curves show the results from the edge-centered curl-

preserving (ECCP) algorithm that uses the multidimensional Riemann solver. Dashed curves show 

the results from the plain-vanilla zone-centered higher order Godunov (HOG) schemes.  
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Fig. 1 shows the collocation of vector components 

along the edges of  a two-dimensional control 

volume. As evaluated over the edges of the square 

element, the discrete circulation is fully specified. 

The mean value and its linear variation are shown 

along each edge, in anticipation of a second order 

accurate reconstruction scheme. The 

reconstruction problem for a curl-free 

reconstruction consists of obtaining a polynomial-

based vector field that is globally curl-free within 

this two-dimensional control volume. The 

reconstruction problem for a curl-preserving 

reconstruction consists of obtaining a polynomial-

based vector field that matches the specified mean 

circulation in the zone.
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components of the curl-

free vector field around 

the four zones (i,j), (i-1,j), 

(i-1,j-1) and (i,j-1). A first 

order curl-free 

reconstruction is used. 

The multidimensionally

upwinded potentials at 

the vertices of the zone 

(i,j) are also shown. The 

red dashed rectangle 

shows the effective 

control volume that is 

used for the update of  

. The blue dashed 

rectangle shows the 

effective control volume 

that is used for the update 

of            .               

;
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4 4,z z zV V

Fig. 3 shows the collocation of 

vector components along the 

edges of the control volume. 

Within each of the two x-faces, 

the two y-faces and the two z-

faces, the discrete circulation 

(evaluated over those faces) is 

either exactly zero or specified. 

The mean value and its linear 

variation are shown along each 

edge, in anticipation of a second 

order accurate reconstruction 

scheme. The reconstruction 

problem consists of obtaining a 

polynomial that is globally curl-

free/curl-preserving within this 

control volume.



Fig. 4 shows the collocation of curl-

free vector components along the 

edges of a three-dimensional zone. 

The zone center is indexed by 

(i,j,k)and the edges are indexed 

suitably, consistent with the zone 

center’s indexing. We take all the 

velocity components to be constant 

and positive. The upwinded potentials 

at two of the vertices of the mesh are 

also shown. The potentials at other 

vertices can be obtained by suitable 

shifts in the indexing. The purpose of 

this figure is to make it easy for us to 

understand how a curl-free 

reconstruction that is based on edge-

centered vector components, in 

conjunction with a three dimensional 

Riemann solver, can give us a stable, 

globally curl-free scheme.
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Fig. 5 shows the wave 

propagation characteristics for 

curl-preserving second order 

WENO-like schemes. Figs. 5a to 

5d show one minus the absolute 

value of the amplification factor 

when the velocity vector makes 

angles of 0o , 15 o , 30 o and 45 o

relative to the x-direction of the 

2D mesh. Figs. 5e to 5h show the 

phase error, again for the same 

angles. The 2D wave vector can 

make any angle relative to the 2D 

direction of velocity propagation, 

therefore, the amplitude and phase 

information are shown w.r.t. the 

angle made between the velocity 

direction and the direction of the 

wave vector. In each plot, the blue 

curve refers to waves that span 5 

cells per wavelength; the green 

curve refers to waves that span 10 

cells per wavelength; the red 

curve refers to waves that span 15 

waves per wavelength.
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Fig. 6 shows the wave propagation 

characteristics for curl-preserving 

third order WENO-like schemes. 

Figs. 6a to 6d show one minus the 

absolute value of the amplification 

factor when the velocity vector 

makes angles of 0o , 15 o , 30 o and 

45 o relative to the x-direction of 

the 2D mesh. Figs. 6e to 6h show 

the phase error, again for the same 

angles. The 2D wave vector can 

make any angle relative to the 2D 

direction of velocity propagation, 

therefore, the amplitude and phase 

information are shown w.r.t. the 

angle made between the velocity 

direction and the direction of the 

wave vector. In each plot, the blue 

curve refers to waves that span 5 

cells per wavelength; the green 

curve refers to waves that span 10 

cells per wavelength; the red curve 

refers to waves that span 15 waves 

per wavelength.

e) f)

g) h)
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Fig. 7 shows the wave propagation 

characteristics for curl-preserving 

fourth order WENO-like schemes. 

Figs. 7a to 7d show one minus the 

absolute value of the amplification 

factor when the velocity vector 

makes angles of 0o , 15 o , 30 o and 

45 o relative to the x-direction of 

the 2D mesh. Figs. 7e to 7h show 

the phase error, again for the same 

angles. The 2D wave vector can 

make any angle relative to the 2D 

direction of velocity propagation, 

therefore, the amplitude and phase 

information are shown w.r.t. the 

angle made between the velocity 

direction and the direction of the 

wave vector. In each plot, the blue 

curve refers to waves that span 5 

cells per wavelength; the green 

curve refers to waves that span 10 

cells per wavelength; the red curve 

refers to waves that span 15 waves 

per wavelength.
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b)

c)

d)

Fig 8 shows four different simulations of 

our model test problem at 50X50 zone 

resolution. All figures show the y-

component of the curl-free vector field 

after a very long simulation time; i.e. 

stopping time of 100. The color scheme is 

the same across all figures and the 

intervals between contours is also the 

same. Fig. 8a shows the result of the 

second-order curl free scheme from 

Boscheri et al. (2020) which frequently 

averages the solution to different locations 

of the mesh in the course of a timestep. 

Figs. 8b, 8c and 8d show the results from 

our new scheme that uses curl-free 

reconstruction at second, third and fourth 

order, along with the multidimensional 

Riemann solver. The color saturation is 

seen to increase with increasing order and 

the solution is also less diffusive as one 

progresses from Fig. 8a to 8d. Very 

different second order schemes were used 

for Figs. 8a and 8b; we see that Fig. 8b 

shows appreciably lower diffusion.



Fig. 9 shows the evolution of the quadratic 

energy in the curl-free vector field as a function 

of time for the four schemes shown in Fig. 8. 

The model problem was run with 50X50 zone 

resolution to a time of 100. In principle, the 

quadratic energy of the constrained vector field 

integrated over the mesh should stay 

unchanged. The plot shows how much the 

quadratic energy decays with time for various 

schemes. Because of the frequent averaging 

over the course of a timestep, the second order 

SCF(O2) scheme from Dumbser et al. [35] 

shows appreciable decay of energy. The second 

order ECCP(O2) scheme designed here 

improves on the SCF(O2) scheme. The third 

order ECCP(O3) scheme shows substantial 

improvement over the second order schemes. 

The fourth order ECCP(O4) scheme provides 

the best preservation of quadratic energy, thus 

highlighting the value of well-designed higher 

order curl-preserving schemes for the evolution 

of curl-constrained vector fields.



Fig. 10 shows the time series of the maximum pointwise error of the curl of

J for the stationary curl free test problem until t=50. The computational

domain is discretized with 32x32 uniform Cartesian cells. The results for

second (black solid line), third (blue solid line) and fourth (red solid line)

order curl-free WENO schemes are shown.



a) b) c)

Figs 11a, b, c show the colorized plot of Rz as a function of position in the test problem at a time of 1. Because the problem 

lends itself to analytical treatment, Fig. 11a was obtained analytically. Fig. 11b was obtained numerically. Using the color bar, 

please note the close concordance in values between Figs. 11a and 11b. Fig. 11c was obtained from direct differentiation of a

zone-centered higher order Godunov scheme that is not curl-preserving. Please use the color bars to compare the numerical 

values in Fig. 11c to those in Fig. 11a to see the significant differences. The color bar for each panel is different and scaled to 

the min and max of the data shown.



Fig. 12 shows the maximum error in Rz as a function of time for the 

edge-centered curl-preserving scheme versus a higher order Godunov 

scheme that does not preserve the curl. The latter shows errors that are 

2 to 4 magnitudes higher.
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Fig. 13a, 13b, 13c, 13d show 

density, temperature, x-velocity 

and x-component of the thermal 

impulse when t=1 was used along 

with the ECCP scheme at third 

order. The solution is shown at a 

final time of 0.7. All densities 

across Figs. 13 to 15 are shown on 

the same scale to facilitate inter-

comparison. Likewise, for all 

pressures across Figs. 13 to 15 . 

Similarly for all x-velocities and all 

x-components of the thermal 

impulse across Figs. 13 to 15.



Fig. 14a, 14b, 14c, 14d show 

density, temperature, x-velocity 

and x-component of the thermal 

impulse when t=0.1 was used 

along with the ECCP scheme at 

third order. The solution is shown 

at a final time of 0.7. All densities 

across Figs. 13 to 15 are shown on 

the same scale to facilitate inter-

comparison. Likewise, for all 

pressures across Figs. 13 to 15 . 

Similarly for all x-velocities and all 

x-components of the thermal 

impulse across Figs. 13 to 15.

a)
b)

c) d)



Fig. 15a, 15b, 15c, 15d show 

density, temperature, x-velocity 

and x-component of the thermal 

impulse when t=0.1 was used 

along with the plain-vanilla, zone-

centered higher order Godunov 

scheme at third order. The solution 

is shown at a final time of 0.7. All 

densities across Figs. 13 to 15 are 

shown on the same scale to 

facilitate inter-comparison. 

Likewise, for all pressures across 

Figs. 13 to 15 . Similarly for all x-

velocities and all x-components of 

the thermal impulse across Figs. 

13 to 15.

a)
b)

c) d)



Fig. 16 shows the evolution of the maximum 

absolute value of the curl of the thermal impulse 

vector as a function of time. The results are color-

coded for the four different values of t used in the 

thermally conducting blast problem. Solid curves 

show the results from the edge-centered curl-

preserving (ECCP) algorithm that uses the 

multidimensional Riemann solver. Dashed curves 

show the results from the plain-vanilla zone-

centered higher order Godunov (HOG) schemes. 
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