
Injectivity of sampled Gabor phase retrieval

in spaces with general integrability

conditions

M. Wellershoff

Research Report No. 2021-43

December 2021

Latest revision: June 2022

Seminar für Angewandte Mathematik

Eidgenössische Technische Hochschule

CH-8092 Zürich

Switzerland

____________________________________________________________________________________________________

Funding SNF: 200021_184698

33 pages



Injectivity of sampled Gabor phase retrieval in

spaces with general integrability conditions

Matthias Wellershoff∗

June 17, 2022

Abstract

It was recently shown that functions in L4([−B,B]) can be uniquely
recovered up to a global phase factor from the absolute values of their
Gabor transform sampled on a rectangular lattice. We prove that this re-
mains true if one replaces L4([−B,B]) by Lp([−B,B]) with p ∈ [2,∞]. To
do so, we adapt the original proof by Grohs and Liehr and use sampling
results in Bernstein spaces with general integrability parameters. Further-
more, we present some modifications of a result of Müntz–Szász type first
proven by Zalik. Finally, we consider the implications of our results for
more general function spaces obtained by applying the fractional Fourier
transform to Lp([−B,B]) and for more general nonuniform sampling sets.

Keywords Phase retrieval, Gabor transform, Sampling theory, Time-
frequency analysis, Müntz–Szász type results
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1 Introduction

In this paper, we consider the Gabor transform of functions f ∈ L2(R) given by

Gf(x, ω) := 21/4
∫

R

f(t)e−π(t−x)2e−2πitω dt, (x, ω) ∈ R
2,

and try to understand if one can recover f from measurements of the absolute
value |Gf | on discrete sets S ⊂ R

2. This so-called sampled Gabor phase retrieval
problem has recently been studied extensively [1, 2, 10, 11]. It is an elegant
mathematical problem in the sense that it is rather easy to state while, at the
same time, being less easy to solve. Moreover, it is connected to certain audio
processing applications such as the phase vocoder [6, 14].

A hallmark of all phase retrieval problems is that signals cannot be fully
recovered from phaseless measurements. For the sampled Gabor phase retrieval
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problem, we can see that the functions f and eiαf , where α ∈ R, generate the
same measurements

∣

∣G(eiαf)
∣

∣ =
∣

∣eiαGf
∣

∣ = |Gf | .
Hence, we are not able to distinguish between f and eiαf on the basis of their
sampled Gabor transform magnitudes. We will therefore consider the equiva-
lence relation ∼ on L2(R) defined by

f ∼ g : ⇐⇒ ∃α ∈ R : f = eiαg. (1)

With the help of this relation, we can introduce the phase retrieval operator
A : X/∼ → [0,∞)S , where X is a subspace of L2(R), by

A(f)(x, ω) := |Gf(x, ω)| , (x, ω) ∈ S,

for f ∈ X/∼. The sampled Gabor phase retrieval problem is the problem of
inverting A when S ⊂ R

2 is discrete. We note that it has long been known that
one can invert A for X = L2(R) and S = R

2:

Lemma 1.1. The following are equivalent for f, g ∈ L2(R):

1. f = eiαg for some α ∈ R,

2. |Gf | = |Gg|.

In applications, one does typically not have access to measurements of the
Gabor transform magnitude on the entire time-frequency plane, however, and
we thus believe that the sampled Gabor phase retrieval problem is a natural first
step towards a better understanding of settings encountered in practice. While
it is known that one may invert A for S = R

2, much less was known about the
inversion of A for discrete sets S. Recently, however, a series of breakthroughs
was presented in the papers [1, 2, 10, 11]. For the genesis of this paper, the
work in [10] was most important. The authors of [10] show that sampled Gabor
phase retrieval is unique with X = L4([−B,B]) and S = Z× (4B)−1

Z.

Lemma 1.2 (Theorem 3.1 on p. 9 of [10]). Let B > 0. Then, the following are
equivalent for f, g ∈ L4([−B,B]):

1. f = eiαg for some α ∈ R,

2. |Gf | = |Gg| on Z× (4B)−1
Z.

What is curious about the result above is the use of the space L4([−B,B]).
In particular, we find it interesting to ask whether one may extend Lemma 1.2
to spaces with more general integrability conditions and notably to L2([−B,B]).
In this paper, we want to answer the prior questions positively by modifying
and generalising the original proof of Lemma 1.2. In this way, we obtain the
following result.

Theorem 1.3 (Cf. Theorem 5.5). Let B > 0, b ∈ (0, 1
4B ) and p ∈ [2,∞]. Then,

the following are equivalent for f, g ∈ Lp([−B,B]):
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1. f = eiαg for some α ∈ R,

2. |Gf | = |Gg| on N× bZ.

We observe that the above theorem is almost optimal in view of the results
presented in [1]: there, for any lattice S ⊂ R

2 in the time-frequency plane,
explicit examples f, g ∈ L2(R) were constructed which do not agree up to global
phase but which satisfy that

|Gf(x, ω)| = |Gg(x, ω)| , (x, ω) ∈ S.

In particular, it is necessary to restrict the Gabor phase retrieval problem to a
proper subspace X of L2(R) in order to obtain a uniqueness result from samples.

It may not surprise the reader that one may further generalise Theorem
1.3 in multiple ways to include more general function spaces obtained by taking
fractional Fourier transforms of elements in Lp([−B,B]) or more general nonuni-
form sampling sets. Both of these generalisation have already been suggested
in [10] and we adapt them here.

Finally, we want to mention that our proof for Theorem 1.3 relies on a
Müntz–Szász type result: to be precise, we prove two modifications of a theorem
by Zalik [15].

Outline In Section 2, we introduce some basic concepts needed for the further
understanding of this paper. Most importantly, we introduce the fractional
Fourier transform, the Paley–Wiener spaces and the Bernstein spaces along
with some of their most relevant properties.

Thereafter, in Section 3, we reimagine the proof of Lemma 1.2: in particular,
we will argue that Lemma 1.2 follows from two core insights. The first of
those being that the short-time Fourier transform of a bandlimited function
is bandlimited in the first argument (cf. Lemma 3.1) and the second of those
being a result of Müntz–Szász type by Zalik. This argument sets the stage for
the following sections and the proof of our main result in Section 5 in particular.

In Section 4, we modify one of the Müntz–Szász type results presented in
[15]. There, it was shown that certain translates of Gaussians are complete in
L2([a, b]), for a < b. We extend this result to Lp([a, b]), for p ∈ [1,∞), by
adapting the original proof from [15]. In addition, we show that translates of
Gaussians can never be complete in L∞([a, b]) but that the annihilator of the
closed1 linear hull of certain translates of Gaussians intersects L1([a, b]) trivially.

Finally, in Section 5, we apply the Müntz–Szász type results developed in
Section 4 in our reimagination of the proof of Lemma 1.2 presented in Sec-
tion 3 to generalise the result from [10]. In this way, we obtain Theorem 1.3.
Thereafter, we consider certain generalisations with respect to the underlying
subspace X ⊂ L2(R) and the sampling lattice which are inspired by the original
paper [10].

1with respect to the L
∞-norm.
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Notation Let us denote N = {1, 2, 3, . . . } as well as N0 = {0, 1, 2, . . . }. Fur-
thermore, we will denote the canonical inner product on L2(R) by (·, ·) and the
open ball of radius R > 0 around the origin in C by

BR := {z ∈ C | |z| < R} .

We will make use of the translation operators {Tx}x∈R given by

Tx f(t) := f(t− x), t ∈ R,

for x ∈ R, as well as the modulation operators {Mω}ω∈R given by

Mω f(t) := f(t)e2πitω, t ∈ R,

for ω ∈ R, repeatedly. Both of these families of operators can be defined for
functions f : R → C and are unitary on L2(R). For sums, we will use notation
suggested in [13, 15]. To be precise, we will write

∑′
r−1
n :=

∑

n=1
rn 6=0

r−1
n ,

for (rn)n∈N ∈ [0,∞). Finally, we will often deal with trivial extensions of
functions F : [−B,B] → C, where B > 0. To simplify the exposition, we will
denote

F0(ξ) :=

{

F (ξ) if ξ ∈ [−B,B],

0 else,

in this case.

2 Definitions and basic notions

We will use the convention

Ff(ξ) :=

∫

Rd

f(t)e−2πi(t,ξ) dt, ξ ∈ R
d,

for the Fourier transform on L1(Rd)∩L2(Rd), where d ≥ 1. It is well-known that
the Fourier transform can be extended to L2(Rd) by Plancherel’s theorem and
a density argument. The extension is a unitary map on L2(Rd) and therefore
its inverse is given by its adjoint

F−1F (t) =

∫

Rd

F (ξ)e2πi(ξ,t) dξ = FF (−t), t ∈ R
d,

for F ∈ L2(Rd).
A property of the Fourier transform which we will use repeatedly is that it

relates complex conjugation to the involution

f#(t) := f(−t), t ∈ R.
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Indeed, it holds that

F(f) = F(f)#, f ∈ L1(R) ∪ L2(R).

We note that f# is well-defined for f : R → C and one can directly show that
(·)# is an isometry on Lp(R), for p ∈ [1,∞].

Let us now consider a function φ ∈ L2(R). We can then define the short-time
Fourier transform with window φ of f ∈ L2(R) by

Vφf(x, ω) :=

∫

R

f(t)φ(t− x)e−2πitω dt, (x, ω) ∈ R
2.

One can show that Vφf is uniformly continuous and that Vφf ∈ L2(R2) (see
Lemma 3.1.1 and Theorem 3.2.1 in [8]). Clearly, the Gabor transform as defined
in the introduction corresponds to the short-time Fourier transform with window
φ = ce−π(·)2 , where c = 21/4.

It is notable that the short-time Fourier transform at a fixed time x ∈ R

exactly corresponds to the Fourier transform of a short-time section of the signal
f . We will use this insight in some of our proofs so let us be a bit more precise.
It holds that

Vφf(x, ω) = F
(

f · Tx φ
)

(ω), (x, ω) ∈ R
2.

Another way of rewriting the short-time Fourier transform which is useful at
times is

Vgf(x, ω) = (f,Mω Tx g) , x, ω ∈ R.

Throughout this paper, we will often refer to the fundamental identity of
time-frequency analysis, which is the fact that the Fourier transform corresponds
to a rotation by 90 degrees of the time-frequency plane (see e.g. Lemma 3.1.1
on p. 39 of [8]):

Vφf(x, ω) = e−2πixωVFφFf(ω,−x), (x, ω) ∈ R
2,

for f, φ ∈ L2(R).
We introduce the phase retrieval operator Aφ : X/∼ → [0,∞)S by

Aφ(f)(x, ω) := |Vφf(x, ω)| , (x, ω) ∈ S,

for f ∈ X/∼. Here, ∼ is the equivalence relation introduced in equation (1), S is
a subset of R2 and X is a subspace of L2(R). The short-time Fourier transform
phase retrieval problem then refers to the inversion of A. When S is discrete,
we call the corresponding short-time Fourier transform phase retrieval problem
sampled. Moreover, if φ = ce−π(·)2 , for c = 21/4, we call the short-time Fourier
transform phase retrieval problem the Gabor transform phase retrieval problem.

Let us now quickly return to the classical uniqueness result for Gabor phase
retrieval that we mentioned in the introduction. We may see Lemma 1.1 as
an instance of a more general result for short-time Fourier transform phase
retrieval.
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Lemma 2.1. Let φ ∈ L2(R) be such that Vφφ is non-zero almost everywhere.
Then, the following are equivalent for f, g ∈ L2(R):

1. f = eiαg for some α ∈ R,

2. |Vφf | = |Vφg|.

Indeed, if φ = ce−π(·)2 , with c = 21/4, it is well-known that (see Lemma
1.5.2 on p. 18 of [8])

Vφφ(x, ω) = (φ,Mω Tx φ) = e−2πixω (φ,Tx Mω φ) = e−πixωe−
π
2 (x

2+ω2),

for (x, ω) ∈ R
2, such that the above result implies Lemma 1.1.

Finally, we want to point out that the proof of Lemma 2.1 — which can,
for instance, be found in [9] — can be seen as an application of the following
classical result on (radar) ambiguity functions.

Lemma 2.2 (Theorem 2.5 on p. 588 of [4]). Let f, g ∈ L2(R) be such that

Vff = Vgg.

Then, it holds that there exists an α ∈ R such that f = eiαg.

Notably, we will apply the above lemma in multiple proofs in the present
paper.

2.1 The fractional Fourier transform

The fundamental identity of time-frequency analysis which we introduced before
can be seen as a special case of a more general principle: the fractional Fourier
transform corresponds to a rotation of the time-frequency plane. This principle
is tremendously useful when generalising results in time-frequency analysis and
we will encounter it multiple times in this paper.

Let us define the fractional Fourier transform of a function f ∈ L1(R)∩L2(R)
by

Fθf(ξ) := cθe
πiξ2 cot θ

∫

R

f(t)eπit
2 cot θe−2πi tξ

sin θ dt, ξ ∈ R,

for θ ∈ R \ πZ, where cθ ∈ C is the square root of 1 − i cot θ with positive
real part, and by F2kπf := f as well as F(2k+1)πf(ξ) := f(−ξ), for ξ ∈ R,
where k ∈ Z. One can show that the fractional Fourier transform preserves the
canonical inner product on L2(R): to be precise, it holds that for all θ ∈ R and
f, g ∈ L1(R) ∩ L2(R), we have

(f, g) = (Fθf,Fθg).

It follows that one can extend the fractional Fourier transform to a unitary map
on L2(R).
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One important property which the fractional Fourier transform inherits from
the classical Fourier transform is that the Gaussian φ = ce−π(·)2 , with c = 21/4,
is invariant under its action. More precisely, it holds that

Fθφ = φ, θ ∈ R.

One can prove this by a direct computation using the classical result which can,
for instance, be found on p. 17 of [8]. We have included the calculation in the
appendix for the convenience of the reader.

Finally, to state the fundamental principle that the fractional Fourier trans-
form corresponds to a rotation of the time-frequency plane, we will introduce
the operator Rθ : R2 → R

2 by

Rθ(x, ω) := (x cos θ − ω sin θ, x sin θ + ω cos θ), x, ω ∈ R.

One can see that Rθ corresponds to a rotation by θ of the time-frequency plane
R

2. We can now state the following important identity which we will refer to
as the generalised fundamental identity of time-frequency analysis.

Lemma 2.3 (Cf. [3, 12]). Let θ ∈ R and f, g ∈ L2(R). It holds that

VFθgFθf(x, ω) = Vgf(Rθ(x, ω))e
πi sin θ((x2−ω2) cos θ−2xω sin θ),

for x, ω ∈ R.

Note that the texts [3, 12] do not contain the exact statement of the above
lemma but rather results from which the lemma might be deduced. For this
reason, we have decided to add a proof of the above result to the appendix of
the present paper.

2.2 The Paley–Wiener spaces

In the following, we will mostly work with bandlimited functions. To be precise,
we consider the Paley–Wiener spaces of bandlimited functions defined via

PWp
B :=

{

f : C → C

∣

∣

∣

∣

∣

∃F ∈ Lp([−B,B]) ∀ z ∈ C : f(z) =

∫ B

−B

F (ξ)e2πiξz dξ

}

,

for B > 0 and p ∈ [1,∞]. One may see that the Paley–Wiener spaces are nested
which is due to the nestedness of Lp-spaces over closed intervals. Since both of
these facts will be used heavily in this paper, we state them in the following.

Proposition 2.4. Let 1 ≤ p ≤ q ≤ ∞ and B > 0. Then, Lq([−B,B]) ⊂
Lp([−B,B]).

Corollary 2.5. Let 1 ≤ p ≤ q ≤ ∞ and B > 0. Then, PWq
B ⊂ PWp

B.

One of the core properties of the Paley–Wiener spaces is that their elements
correspond to entire functions of exponential type. This is, in fact, the message
of the famous Paley–Wiener theorem:
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Theorem 2.6 (Paley–Wiener theorem). Let B > 0. Then, the following are
equivalent:

1. f ∈ PW2
B,

2. f is an entire function such that there exists a constant A > 0 for which

|f(z)| ≤ A e2πB|z|, z ∈ C,

and
∫

R

|f(t)|2 dt < ∞.

Another important property of bandlimited functions is that one may re-
cover them from samples on equidistant sets. This classical result is commonly
referred to as the Whittaker–Shannon–Kotelnikov (WSK) sampling theorem.

Theorem 2.7 (WSK sampling theorem). Let B > 0 and f ∈ PW2
B. Then, we

have
f(t) =

∑

n∈Z

f
( n

2B

)

sinc (2Bt− n) , t ∈ R,

where the series converges unconditionally in L2(R).

In the following, we will often refer to the short-time Fourier transform of
a function in a Paley–Wiener space. This is a slight abuse of notation since
the short-time Fourier transform is not explicitly defined for functions whose
domain is C. In this case, the notation Vφf is to be interpreted as Vφ(f |R),
where f |R : R → C is understood to be the restriction of f : C → C to the
real numbers. Hence, the short-time Fourier transform of a function f in the
Paley–Wiener space PWp

B , with B > 0, is well-defined as long as p ∈ [2,∞]:
indeed, we may remember that the Paley–Wiener spaces are nested and that
therefore PWp

B ⊂ PW2
B . It follows that f ∈ PW2

B such that the Paley–Wiener
theorem implies that f |R ∈ L2(R). Therefore, the short-time Fourier transform
of f is uniformly continuous and an element of the Hilbert space L2(R2).

A final fact about functions f ∈ PWp
B which we will use very often is that

their Fourier transforms F(f |R) are in Lp(R).

Lemma 2.8. Let 2 ≤ p ≤ ∞, B > 0 and f ∈ PWp
B. Then, we have that

F(f |R) ∈ Lp(R) and suppF(f |R) ⊂ [−B,B].

Proof. By the definition of the Paley–Wiener spaces, we find that there exists
a function F ∈ Lp([−B,B]) ⊂ L2([−B,B]) (the inclusion follows from Proposi-
tion 2.4 and p ≥ 2) such that

f(z) =

∫ B

−B

F (ξ)e2πiξz dξ, z ∈ C.

Using the notation F0 for the trivial extension of F to R (as introduced in the
paragraph “Notation”), we find that F0 ∈ L2(R) ∩ Lp(R) and we might write
f |R = F−1F0. Therefore, we have F(f |R) = F0 and the lemma follows.
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2.3 The Bernstein spaces

For our proof of Theorem 1.3, the WSK sampling result is not quite powerful
enough. We will instead need to use more general sampling results in the so-
called Bernstein spaces which we will introduce in the following.

Let p ∈ [1,∞] and σ > 0. We define the Bernstein space Bp
σ to be the space

of entire functions f of exponential type σ > 0, i.e. for every ǫ > 0 there exist
constants A,R > 0 such that

|f(z)| ≤ Ae(σ+ǫ)|z|, z ∈ C \BR,

whose restriction to R is in Lp(R). When p = 2, it follows from the classical
Paley–Wiener theorem that PW2

B ⊂ B2
2πB . We are mostly interested in the

following inclusions.

Lemma 2.9. Let p ∈ [1, 2] and denote by q ∈ [2,∞] its Hölder conjugate. Let
moreover B > 0. Then, it holds that PWp

B ⊂ Bq
2πB.

We include a proof of the above lemma in the appendix. In the Bernstein
spaces Bp

σ with p ∈ [1,∞), a general sampling theorem holds.

Theorem 2.10 (Cf. Theorem 2.2 on p. 26 of [16]). Let p ∈ [1,∞), σ > 0 and
f ∈ Bp

σ. Then, it holds that

f(t) =
∑

k∈Z

f

(

πk

σ

)

sinc

(

σt

π
− k

)

, t ∈ R,

where the series converges absolutely and uniformly on every compact subset.

We emphasise that the above result does not continue to hold in the same
form for p = ∞. This is notable because B∞

σ is exactly the space which we need
to consider when generalising Lemma 1.2 from L4([−B,B]) to L2([−B,B]).
Luckily, the following result can be used instead.

Theorem 2.11 (Cf. Theorem 2.3 on p. 29 of [16]). Let σ > 0 and f ∈ B∞
σ .

Then, it holds that

f(z) =
∑

k∈Z

f

(

πk

σ′

)

sinc

(

σ′z

π
− k

)

, z ∈ C,

for σ′ > σ, where the series converges uniformly on every compact subset of the
complex plane.

3 The sampling result from [10] reimagined

One may see Lemma 1.2 (cf. Theorem 3.1 on p. 9 of [10]) as an amalgam
of two core insights: the first insight is that the squared magnitude of the
short-time Fourier transform of a bandlimited function is bandlimited in its
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first argument; the second insight is that certain translates of Gaussians are
complete in L2([a, b]). We note that the first insight allows for the application
of the WSK sampling theorem in the time axis of the time-frequency plane while
the second insight can be used to analyse sampling in the frequency axis. It is
therefore interesting to think of the proof of Lemma 1.2 as a two step approach:
first, time is discretised: secondly, frequency is discretised.

We will start by showing that the square of the magnitude of the short-time
Fourier transform of a bandlimited function is bandlimited in its first argument.
We note that this first insight holds for general windows φ ∈ L2(R).

Lemma 3.1. Let p ∈ [2,∞] and suppose that q ∈ [1, 2] is chosen such that

1

q
=

1

2
+

1

p
.

Furthermore, let B > 0, φ ∈ L2(R), and f ∈ PWp
B. For all ω ∈ R it holds that

1. Mω Vφf(·, ω) is the restriction of a function in PWq
B to R,

2. |Vφf(·, ω)|2 is the restriction of a function in PW
p/2
2B to R.

Proof. We remember that the assumption p ∈ [2,∞] ascertains that f |R ∈
L2(R) and that thereby the short-time Fourier transform of f is a well-defined
uniformly continuous function. Let us now fix ω ∈ R arbitrary for this proof.

1. We start by considering the function

Hω(ξ) := F(f |R)(ξ)Fφ(ξ − ω) = F(f |R)(ξ) · Tω Fφ(ξ),

for ξ ∈ [−B,B]. Since f ∈ PWp
B , it follows from Lemma 2.8 that F(f |R) ∈

Lp(R). Moreover, the assumption that φ ∈ L2(R) implies by Plancherel’s
theorem that Fφ ∈ L2(R). Since translations are isometries of L2(R), we
find that Tω Fφ ∈ L2(R). Hence, it follows from Hölder’s inequality that

F(f |R) · Tω Fφ ∈ Lq(R)

and thus Hω ∈ Lq([−B,B]).

We will now define hω ∈ PWq
B by

hω(z) :=

∫ B

−B

Hω(ξ)e
2πiξz dξ, z ∈ C.

Let x ∈ R and note that by definition

hω(x) =

∫ B

−B

F(f |R)(ξ)Fφ(ξ − ω)e2πiξx dξ.

According to Lemma 2.8, it holds that suppF(f |R) ⊂ [−B,B]. Therefore,

hω(x) =

∫ B

−B

F(f |R)(ξ)Fφ(ξ − ω)e2πiξx dξ

10



=

∫

R

F(f |R)(ξ)Fφ(ξ − ω)e2πiξx dξ

= VFφ (F(f |R)) (ω,−x)

holds and we can use the fundamental identity of time-frequency analysis
to obtain

hω(x) = VFφ (F(f |R)) (ω,−x) = e2πixωVφf(x, ω).

It follows that Mω Vφf(·, ω) is the restriction of hω ∈ PWq
B to R.

2. We denote the trivial extension of Hω ∈ Lq([−B,B]) to R by Hω,0 ∈
Lq(R), as mentioned in the paragraph “Notation”. Then, we define the
function

Fω(ξ) :=
(

Hω,0 ∗H#
ω,0

)

(ξ), ξ ∈ [−2B, 2B].

Notably, Young’s convolution inequality implies that

Hω,0 ∗H#
ω,0 ∈ Lp/2(R)

as Hω,0, H
#
ω,0 ∈ Lq(R) and

1

q
+

1

q
= 1 +

2

p
.

Therefore, Fω is a well-defined function in Lp/2([−2B, 2B]).

We furthermore note that

suppHω,0 ∗H#
ω,0 ⊂ [−2B, 2B]

because Hω,0 and H#
ω,0 are supported in the interval [−B,B]. Finally,

we remark that Hω ∈ Lq([−B,B]) ⊂ L1([−B,B]) by Proposition 2.4 and

q ≥ 1. It follows that Hω,0 and H#
ω,0 are in L1(R).

We may now define fω ∈ PW
p/2
2B via

fω(z) :=

∫ 2B

−2B

Fω(ξ)e
2πiξz dξ, z ∈ C.

As in the proof of item 1, we may consider x ∈ R arbitrary but fixed and
note that our observation on the support of Hω,0 ∗H#

ω,0 implies that

fω(x) =

∫ 2B

−2B

(

Hω,0 ∗H#
ω,0

)

(ξ)e2πiξx dξ =

∫

R

(

Hω,0 ∗H#
ω,0

)

(ξ)e2πiξx dξ.

We had also noted that Hω,0, H
#
ω,0 ∈ L1(R) such that we may apply the

Fourier convolution theorem to see

fω(x) =

∫

R

(

Hω,0 ∗H#
ω,0

)

(ξ)e2πiξx dξ = F
(

Hω,0 ∗H#
ω,0

)

(−x)

11



= FHω,0(−x)F
(

H#
ω,0

)

(−x) = FHω,0(−x)F (Hω,0) (−x)

= |FHω,0(−x)|2 .

It follows from the considerations in the proof of item 1 that

fω(x) = |FHω,0(−x)|2 = |hω(x)|2 = |Vφf(x, ω)|2 .

Hence, |Vφf(·, ω)|2 is the restriction of fω ∈ PW
p/2
2B to R.

Next, we note that certain translates of Gaussians are complete in L2([a, b]).
This Müntz–Szász type result was proven in [15] (Theorem 4 on p. 302).

Theorem 3.2 (Zalik’s theorem). Let −∞ < a < b < ∞, cz ∈ R \ {0} and let
(cn)n∈N ∈ R be a sequence of distinct numbers. Then,

{

e−c2z(·−cn)
2
∣

∣

∣
n ∈ N

}

is complete in L2([a, b]) if and only if

∑′
|cn|−1

diverges.

Zalik’s theorem together with Lemma 3.1 allows for the proof the following
proposition.

Proposition 3.3 (C.f. Proposition 3.4 on p. 11 of [10]). Let B > 0 and b ∈
(0, 1

4B ]. Then, the following are equivalent for f, g ∈ PW4
B:

1. f = eiαg, for some α ∈ R,

2. |Gf | = |Gg| on bZ× N.

We may use the fractional Fourier transform to rotate the above result in the
time-frequency plane and thus obtain Lemma 1.2 as a corollary. More generally,
we can obtain a result for functions in the spaces

FθL
4([−B,B]) :=

{

f : R → C
∣

∣ ∃F ∈ L4([−B,B]) : f = FθF0

}

,

for θ ∈ R and B > 0, where F0 is defined as in the paragraph “Notation”.
We should note that the Gabor transform of elements in FθL

4([−B,B]) is well-
defined since L4([−B,B]) ⊂ L2([−B,B]) (cf. Proposition 2.4) implies F0 ∈
L2(R). The unitarity of the fractional Fourier transform does therefore imply
that FθL

4([−B,B]) ⊂ L2(R).

Proposition 3.4 (C.f. Proposition 3.4 on p. 11 of [10]). Let B > 0, b ∈ (0, 1
4B ]

and θ ∈ R. Then, the following are equivalent for f, g ∈ F−θL
4([−B,B]):

1. f = eiαg, for some α ∈ R,

2. |Gf | = |Gg| on Rθ(N× bZ).

12



4 Two modifications of Zalik’s theorem

To generalise Proposition 3.3 to PWp
B with p < 4, we need to modify Zalik’s

theorem. The reason for this is that we will show that

hξ := F(f |R) · Tξ F(f |R)−F(g|R) · Tξ F(g|R) ∈ Lp/2(R), ξ ∈ R,

is orthogonal to a family of translated Gaussians and want to deduce hξ = 0
from this. If p/2 < 2, then generally hξ 6∈ L2(R) and thus Zalik’s theorem is
not applicable.

If p > 2, we can however prove that the action on hξ of certain translated
Gaussians — when we view them as elements of the dual of Lp/2([−B,B]) which
is isometrically isomorphic to Lp/(p−2)([−B,B]) — is trivial. It is thus sufficient
to deduce that those translates of Gaussians are complete in Lp/(p−2)([−B,B])
to conclude that hξ|[−B,B] = 0. We therefore propose the following extension of
Zalik’s theorem.

Theorem 4.1. Let p ∈ [1,∞), −∞ < a < b < ∞, cz ∈ R \ {0} and let
(cn)n∈N ∈ R be a sequence of distinct numbers. Then,

{

e−c2z(·−cn)
2
∣

∣

∣
n ∈ N

}

is complete in Lp([a, b]) if and only if

∑′
|cn|−1

diverges.

In the proof of the above result, we will rely on two results from [13]: the
first one is the following Müntz–Szász type result.

Theorem 4.2 (Theorem 6.1 on p. 30 of [13]). Let p ∈ [1,∞), 0 < a < b < ∞,
and let (dn)n∈N ∈ C be a sequence of distinct numbers such that there exists a
δ > 0 and an N0 ∈ N with

|Re dn| ≥ δ |dn| , n ≥ N0.

Then,
{

(·)dn
∣

∣n ∈ N
}

is complete in Lp([a, b]) and C([a, b]) if and only if

∑′
|dn|−1

diverges.

The second one is an interesting construction of an entire function of expo-
nential type which can be seen as the extension of the Fourier transform of a
smooth function to C.

13



Theorem 4.3 (Theorem 5.2 on p. 30 of [13]). Let m ∈ N0, −∞ < a < b < ∞,
and let (dn)n∈N ∈ C \ {0} be an arbitrary sequence of numbers such that

∑′
|dn|−1

< ∞.

Then, there exists g ∈ C∞(R) with supp g ⊂ [a, b] such that the function

G(z) :=

∫ b

a

g(t)e−itz dt, z ∈ C,

can be factored as

G(z) = czme−iσz
∏

n∈N

(

1− z2

d2n

)

∏

k∈N

cos(ǫkz), z ∈ C,

where c ∈ C \ {0}, the sequence (ǫk)k∈N ∈ (0,∞) is such that

τ =
∑

k∈N

ǫk < ∞

and σ = a+ τ = b− τ .

We may now prove Theorem 4.1 by adapting the proof of Zalik’s theorem
from [15]. We include this argument in the following for the convenience of the
reader.

Proof of Theorem 4.1. Suppose that
∑′|cn|−1 diverges and let q ∈ (1,∞] be

the Hölder conjugate of p. Then, Lq([a, b]) is isometrically isomorphic to the
dual of Lp([a, b]). We can therefore consider f ∈ Lq([a, b]) such that

∫ b

a

f(t)e−c2z(t−cn)
2

dt = 0, n ∈ N,

and show that f = 0 in order to prove that {e−c2z(·−cn)
2 |n ∈ N} is complete in

Lp([a, b]). By expanding the square in the exponent of the above integrand, we
find that

∫ b

a

f(t)e−c2zt
2 · e2c2zcnt dt = 0, n ∈ N. (2)

With the notation

g(x) := x−1/qf

(

log x

2c2z

)

e
− log2 x

4c2z , a′ := e2c
2
za, b′ := e2c

2
zb,

for x ∈ [a′, b′], and the substitution x = e2c
2
zt, we obtain

∫ b′

a′

g(x)xcn−1/p dx =

∫ e2c
2
zb

e2c
2
za

x−1/qf

(

log x

2c2z

)

e
− log2 x

4c2z xcn−1/p dx

= 2c2z ·
∫ e2c

2
zb

e2c
2
za

f

(

log x

2c2z

)

e
−c2z

log2 x

4c4z · xcn · 1

2c2zx
dx

= 2c2z ·
∫ b

a

f(t)e−c2zt
2 · e2c2zcnt dt = 0,

(3)

14



for n ∈ N, by equation (2). Moreover, it holds that

‖g‖qLq([a′,b′]) =

∫ b′

a′

|g(x)|q dx =

∫ e2c
2
zb

e2c
2
za

x−1

∣

∣

∣

∣

f

(

log x

2c2z

)∣

∣

∣

∣

q

e
−q log2 x

4c2z dx

= 2c2z

∫ e2c
2
zb

e2c
2
za

∣

∣

∣

∣

f

(

log x

2c2z

)∣

∣

∣

∣

q

e
−qc2z

log2 x

4c4z · 1

2c2zx
dx

= 2c2z

∫ b

a

|f(t)|q e−qc2zt
2

dt ≤ 2c2z ‖f‖qLq([a,b]) < ∞.

Since (cn)n∈N ∈ R, it follows that |Re(cn − 1/p)| = |cn − 1/p|. It is also true
that the numbers (cn − 1/p)n∈N are distinct and that 0 < a′ < b′ < ∞. Finally,
it is readily seen that divergence of

∑′
|cn|−1

and
∑′

|cn − 1/p|−1
.

are equivalent. It follows from Theorem 4.2 that
{

xcn−1/p
∣

∣n ∈ N
}

is complete
in Lp([a′, b′]) and thus equation (3) implies g = 0. We conclude that f = 0.

Suppose now that
∑′|cn|−1 < ∞. If the sequence (cn)n∈N contains zero,

then we set m = 1 and let (dn)n∈N ∈ C be the sequence obtained from removing
zero from (2ic2zcn)n∈N. If (cn)n∈N does not contain zero, we set m = 0 and let
(dn)n∈N = (2ic2zcn)n∈N. In any case, we find that

∑′
|dn|−1

< ∞

such that Theorem 4.3 implies that there exists a g ∈ C∞(R) with supp g ⊂ [a, b]
and such that

G(z) :=

∫ b

a

g(t)e−itz dt, z ∈ C,

vanishes at the points (dn)n∈N (and zero in case the sequence (cn)n∈N contains
zero). Note also that g is non-trivial: indeed, if g was trivial, then G would be
trivial which contradicts its factorisation in Theorem 4.3. So let us define

f(t) := g(t)ec
2
zt

2

, t ∈ [a, b],

such that

‖f‖Lq([a,b]) ≤ (b−a)1/q · sup
t∈[a,b]

|f(t)| ≤ (b−a)1/qec
2
z max{|a|,|b|}2 · max

t∈[a,b]
|g(t)| < ∞,

where we used that continuous functions attain their maxima on compact in-
tervals. We therefore have that f ∈ Lq([a, b]) is non-trivial and it holds that

∫ b

a

f(t)e−c2zt
2 · e2c2zcnt dt =

∫ b

a

g(t)e−it(2ic2zcn) dt = G(2ic2zcn) = 0,
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for n ∈ N. Multiplying by e−c2zc
2
n , we obtain that

∫ b

a

f(t)e−c2z(t−cn)
2

dt = 0, n ∈ N,

and we have thus proven that
{

e−c2z(·−cn)
2
∣

∣

∣
n ∈ N

}

is not complete in Lp([a, b]).

We emphasise that the case p = ∞ is excluded from Theorem 4.1. This is
unfortunate since in the proof of Theorem 1.3 (for the case p = 2), we will show
that the action of certain translated Gaussians on

hξ = F(f |R) · Tξ F(f |R)−F(g|R) · Tξ F(g|R) ∈ L1(R), ξ ∈ R,

is trivial. Here, the translated Gaussians are to be seen as elements of the dual
of L1([a, b]) which is isometrically isomorphic to L∞([a, b]). It is however not
hard to see that

{

e−c2z(·−cn)
2
∣

∣

∣
n ∈ N

}

cannot be complete in L∞([a, b]) and that we will thus have to adapt the strategy
of our proof at this point: indeed, consider that translated Gaussians are smooth
and that uniform limits of continuous functions are continuous. Therefore,

sp
{

e−c2z(·−cn)2
∣

∣n ∈ N
}L∞([a,b])

⊂ C([a, b])

and thus translated Gaussians cannot be complete in L∞([a, b]).
Let us make three remarks on this: first, it might be tempting to show that

{

e−c2z(·−cn)
2
∣

∣

∣
n ∈ N

}

is complete in C([a, b]). While this may be true, it does not seem possible to
show it by a simple adaptation of the proof of Zalik’s theorem since the dual of
C([a, b]) is the space of Radon measures and it is not clear how the steps of the
proof would work in this setup.

Secondly, we observe that it is not necessary to show that
{

e−c2z(·−cn)
2
∣

∣

∣
n ∈ N

}

is complete in C([a, b]). In fact, it suffices to show that if the functions e−c2z(·−cn)
2

act trivially on an element f ∈ L1([a, b]), then f = 0. We will express this idea
using a standard definition.

Definition 4.4 (Annihilator). Let V be a normed space with (continuous) dual
space V ′ and let W ⊂ V be a closed linear subspace. The annihilator of W is
given by

W⊥ := {φ ∈ V ′ |W ⊂ kerφ} .
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Note that we want to consider the normed space L∞([a, b]) in which the
underlying measure space is given by ([a, b],B([a, b]), λ|B([a,b])), where B([a, b])
denotes the Borel σ-algebra on [a, b] and λ denotes the Lebesgue measure. In
this setup, the dual of L∞([a, b]) can be identified with the space ba([a, b],L, λ|L)
(see Theorem 16 on p. 196 of [5]), where

L = {A ⊂ [a, b] | ∃B0, B1 ∈ B([a, b]) : B0 ⊂ A ⊂ B1 and λ(B1 \B0) = 0}

is the set of Lebesgue measurable subsets of [a, b]. Here, ba([a, b],L, λ|L) de-
notes the space of all bounded, finitely additive signed measures on L which
are absolutely continuous with respect to λ equipped with the total variation
norm. In this setting, the space L1([a, b]) can be identified as a subspace of
ba([a, b],L, λ|L) through the definition

µ(A) :=

∫

A

f dλ, A ∈ L.

Using the annihilator notation, we may thus see that realising our second remark
amounts to proving that

(

sp
{

e−c2z(·−cn)2
∣

∣n ∈ N
}L∞([a,b])

)⊥

∩ L1([a, b]) = {0}. (4)

Thirdly, approximating continuous functions with linear combinations of el-
ements of

{(·)cn |n ∈ N}
is sufficient for proving equation (4) because the Fourier characters χω = e2πiω·

are continuous.

Theorem 4.5. Let −∞ < a < b < ∞, cz ∈ R \ {0} and let (cn)n∈N ∈ R be a
sequence of distinct numbers. Then, it holds that

(

sp
{

e−c2z(·−cn)2
∣

∣n ∈ N
}L∞([a,b])

)⊥

∩ L1([a, b]) = {0}

if and only if
∑′

|cn|−1

diverges.

Proof. Suppose that
∑′|cn|−1 diverges and let us consider f ∈ L1([a, b]) such

that
∫ b

a

f(t)e−c2z(t−cn)
2

dt = 0, n ∈ N.

Our goal is to show that f = 0. As in the proof of Theorem 4.1, the notation

g(x) := x−1f

(

log x

2c2z

)

e
− log2 x

4c2z , a′ := e2c
2
za, b′ := e2c

2
zb,
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for x ∈ [a′, b′], and the substitution x = e2c
2
zt allows us to compute that

∫ b′

a′

g(x)xcn dx = 0, n ∈ N, (5)

and that g ∈ L1([a′, b′]). Moreover, Theorem 4.2 implies that {(·)cn |n ∈ N} is
complete in C([a′, b′]). So, let us consider ξ ∈ R arbitrary but fixed and note
that there exists a sequence sk ∈ C([a′, b′]) of the form

sk(x) =

N(k)
∑

n=1

λn(k)x
cn , x ∈ [a′, b′],

where (N(k))k∈N ∈ N and (λn(k))n,k∈N ∈ C, such that

sup
x∈[a′,b′]

|χξ(x)− sk(x)| <
1

k · ‖g‖L1([a′,b′])

,

for k ∈ N. It follows from the linearity of the integral and equation (5) that

∫ b′

a′

g(x)sk(x) dx =

N(k)
∑

n=1

λn(k)

∫ b′

a′

g(x)xcn dx = 0, k ∈ N.

Hence, we may estimate
∣

∣

∣

∣

∣

∫ b′

a′

g(x)χξ(x) dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ b′

a′

g(x) (χξ(x)− sk(x) + sk(x)) dx

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ b′

a′

g(x) (χξ(x)− sk(x)) dx

∣

∣

∣

∣

∣

≤ ‖g‖L1([a,b]) · sup
x∈[a′,b′]

|χξ(x)− sk(x)| ≤ k−1,

for k ∈ N. Therefore,

Fg0(−ξ) =

∫ b′

a′

g(x)e2πixξ dx =

∫ b′

a′

g(x)χξ(x) dx = 0

and, since ξ ∈ R was arbitrary, we conclude that Fg0 = 0. This implies that
g0 = 0 and thus that g = 0 which shows that f = 0.

Suppose now that
∑′|cn|−1 < ∞. As in the proof of Theorem 4.1, we may

find a non-trivial function f ∈ L1([a, b]) such that

∫ b

a

f(t)e−c2z(t−cn)
2

dt = 0, n ∈ N.

Therefore,
(

sp
{

e−c2z(·−cn)2
∣

∣n ∈ N
}L∞([a,b])

)⊥

∩ L1([a, b]) 6= {0}.
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5 Generalisation of the sampling result: step by
step

As mentioned in the introduction, it is remarkable that the sampling result
in [10] which we have reimagined in Section 3 (Proposition 3.4) is only stated
and proven in FθL

4([−B,B]). This immediately raises the question whether a
similar result continues to hold if we replace FθL

4([−B,B]) by the more general
spaces

FθL
p([−B,B]) := {f : R → C | ∃F ∈ Lp([−B,B]) : f = FθF0} ,

for θ ∈ R, p ∈ [2,∞], and B > 0. In particular, the case p = 2 seems interesting
as Gabor phase retrieval is usually stated with respect to the Hilbert space
L2(R). We should note that, just as the Lp-spaces on closed intervals and the
Paley–Wiener spaces, the spaces FθL

p([−B,B]) are nested.

Proposition 5.1. Let 1 ≤ p ≤ q ≤ ∞, B > 0, and θ ∈ R. Then, we have
FθL

q([−B,B]) ⊂ FθL
p([−B,B]).

Proof. Let f ∈ FθL
q([−B,B]) be arbitrary. Then, by definition, there exists

an F ∈ Lq([−B,B]) such that f = FθF0. By Proposition 2.4, we find that
F ∈ Lp([−B,B]) and thus that f ∈ FθL

p([−B,B]).

It follows that the most general case which we will be considering is f, g ∈
FθL

2([−B,B]). Interestingly, the difficulty of generalising Proposition 3.4 to
FθL

2([−B,B]) can already be understood from considering Lemma 3.1. Indeed,
the case FθL

4([−B,B]) is in some sense particularly easy to deal with since

f ∈ PW4
B implies that |Gf |2 ∈ PW2

2B which is exactly the space for which we
can apply the WSK sampling theorem. Additionally,

hξ = F(f |R) · Tξ F(f |R)−F(g|R) · Tξ F(g|R) ∈ L2(R), ξ ∈ R,

allows for the application of Zalik’s theorem. If f ∈ PW2
B , then |Gf |2 ∈ PW1

2B ,
however, and we need to replace the use of the WSK sampling theorem by
the use of a sampling theorem in a Bernstein space. In addition, as we have
discussed in the prior section, we cannot apply Zalik’s theorem and will instead
need to make use of Theorem 4.5.

As advertised in the title of the present section, we will generalise Proposition
3.4 step by step. To be precise, we will prove that Proposition 3.4 will continue
to hold if we replace FθL

4([−B,B]) by FθL
p([−B,B]), for general p ∈ [2,∞].

We will do this in three steps which are naturally ordered by difficulty: first, we
consider p ≥ 4, then we consider p ∈ (2, 4) and finally we consider p = 2.

5.1 p ≥ 4

Let us start with the case p ≥ 4. In this case, we obtain the following result as
a direct corollary to Proposition 3.3.
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Corollary 5.2. Let p ∈ [4,∞], B > 0 and b ∈ (0, 1
4B ]. Then, the following are

equivalent for f, g ∈ PWp
B:

1. f = eiαg, for some α ∈ R,

2. |Gf | = |Gg| on bZ× N.

Proof. According to Corollary 2.5, it holds that PWp
B ⊂ PW4

B , for p ∈ [4,∞].
Therefore, f, g ∈ PWp

B satisfy that f, g ∈ PW4
B and thus the equivalence of

item 1 and item 2 follows immediately from Proposition 3.3.

5.2 p ∈ (2, 4)

Next, we can consider p ∈ (2, 4). In this case, we will need to make use of a
generalised version of the WSK sampling theorem. To be precise, we may apply
Lemma 2.9 to see that PWp

B ⊂ Bq
2πB , where q ∈ (2,∞) is the Hölder conjugate

of p, and then utilise Theorem 2.10. In addition, we will apply Theorem 4.1.

Proposition 5.3. Let p ∈ (2, 4), B > 0 and b ∈ (0, 1
4B ]. Then, the following

are equivalent for f, g ∈ PWp
B:

1. f = eiαg, for some α ∈ R,

2. |Gf | = |Gg| on bZ× N.

Proof. First, note that if f = eiαg, for some α ∈ R, then it follows immediately
that |Gf | = |Gg|. Secondly, suppose that |Gf | = |Gg| on bZ × N. If k ∈ N

is arbitrary but fixed, it follows directly from the Lemmata 2.9 and 3.1 that
|Gf(·, k)|2 and |Gg(·, k)|2 are restrictions of functions in

PW
p/2
2B ⊂ B

p/(p−2)
4πB ⊂ B

p/(p−2)
π/b

to R. Therefore, Theorem 2.10 implies

|Gf(x, k)|2 = |Gg(x, k)|2 , x ∈ R. (6)

To apply Theorem 4.1, we need to reformulate the equation above. For this
purpose, we remember that f ∈ PWp

B ⊂ PW2
B by p > 2 (Corollary 2.5) and that

the Paley–Wiener theorem does therefore imply that f |R ∈ L2(R). Using that
the Gaussian is invariant under the Fourier transform as well as the fundamental
identity of time-frequency analysis, we can compute that

|Gf(x, k)|2 = |G (F(f |R)) (k,−x)|2 = G (F(f |R)) (k,−x)G (F(f |R)) (k,−x).

As the short-time Fourier transform corresponds to the Fourier transform of the
short-time sections of the underlying function, we find that

|Gf(x, k)|2 = G (F(f |R)) (k,−x)G (F(f |R)) (k,−x)

= F (F(f |R) · Tk φ) (−x)F (F(f |R) · Tk φ) (−x)
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= F (F(f |R) · Tk φ) (−x) · F
(

(F(f |R) · Tk φ)
#
)

(−x).

We note that F(f |R)·Tk φ is in L1(R) because f |R, φ ∈ L2(R). As the involution
(·)# is an isometry of L1(R), we may apply the Fourier convolution theorem to
the above equation. In this way, we obtain that

|Gf(x, k)|2 = F (F(f |R) · Tk φ) (−x) · F
(

(F(f |R) · Tk φ)
#
)

(−x)

= F
(

(F(f |R) · Tk φ) ∗ (F(f |R) · Tk φ)
#
)

(−x).

We may also note that F(f |R) · Tk φ is in L4/3(R). To see this, we can use
Hölder’s inequality together with the facts that Tk φ ∈ L4(R) and F(f |R) ∈
L2(R). The prior follows from translations being isometries of L4(R) and φ ∈
L4(R). Since the involution (·)# is an isometry of L4/3(R), it follows from
Young’s convolution inequality that

(F(f |R) · Tk φ) ∗ (F(f |R) · Tk φ)
# ∈ L2(R).

Therefore, we find that for almost every ξ ∈ R, it holds that

F
(

|Gf(·, k)|2
)

(ξ) =
(

(F(f |R) · Tk φ) ∗ (F(f |R) · Tk φ)
#
)

(ξ)

=

∫

R

F(f |R)(ω)F(f |R)(ω − ξ) · φ(ω − k)φ(ω − ξ − k) dω.

We may now use that φ = ce−π(·)2 , with c = 21/4, and compute

F
(

|Gf(·, k)|2
)

(ξ) =

∫

R

F(f |R)(ω)F(f |R)(ω − ξ) · φ(ω − k)φ(ω − ξ − k) dω

=
√
2

∫

R

F(f |R)(ω)F(f |R)(ω − ξ) · e−π(ω−k)2−π(ω−ξ−k)2 dω

=
√
2

∫

R

F(f |R)(ω)F(f |R)(ω − ξ) · e−2π(ω−k− ξ
2 )

2
−πξ2

2 dω

by completing the square in the exponent. By Lemma 2.8, we know that
suppF(f |R) ⊂ [−B,B] and thus

F
(

|Gf(·, k)|2
)

(ξ) =
√
2e−

πξ2

2

∫

R

F(f |R)(ω)F(f |R)(ω − ξ) · e−2π(ω−k− ξ
2 )

2

dω

=
√
2e−

πξ2

2

∫ B

−B

F(f |R)(ω)F(f |R)(ω − ξ) · e−2π(ω−k− ξ
2 )

2

dω.

Of course, the exact same can be shown for g ∈ PWp
B and therefore it follows

from equation (6) that

√
2e−

πξ2

2

∫ B

−B

F(f |R)(ω)F(f |R)(ω − ξ) · e−2π(ω−k− ξ
2 )

2

dω
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=
√
2e−

πξ2

2

∫ B

−B

F(g|R)(ω)F(g|R)(ω − ξ) · e−2π(ω−k− ξ
2 )

2

dω

holds, for almost every ξ ∈ R. Hence, we have

∫ B

−B

(

F(f |R)(ω)F(f |R)(ω − ξ)−F(g|R)(ω)F(g|R)(ω − ξ)
)

· e−2π(ω−k− ξ
2 )

2

dω = 0, (7)

for almost every ξ ∈ R. By Lemma 2.8, F(f |R),F(g|R) ∈ Lp(R) and thus

hξ = F(f |R) · Tξ F(f |R)−F(g|R) · Tξ F(g|R) ∈ Lp/2(R), ξ ∈ R.

The dual of Lp/2(R) is isometrically isomorphic to Lp/(p−2)(R) and since p/(p−
2) ∈ [2,∞), we may apply Theorem 4.1.

Let us fix ξ ∈ R arbitrary in a set of full measure in which equation (7) holds
and set a = −B, b = B, cz =

√
2π as well as cn = n+ ξ/2, for n ∈ N. As
∑′

|n+ ξ/2|′

diverges, Theorem 4.1 implies that
{

e−2π(·−n− ξ
2 )

2
∣

∣

∣
n ∈ N

}

is complete in Lp/(p−2)([−B,B]). Since k ∈ N was arbitrary in our computations
above, this together with equation (7) implies that hξ|[−B,B] = 0 and thus that

F(f |R) · Tξ F(f |R) = F(g|R) · Tξ F(g|R) (8)

as functions in Lp/2([−B,B]). By the support properties of F(f |R) and F(g|R)
this equation extends to Lp/2(R).

Since ξ was chosen arbitrarily in a set of full measure, we may take the
Fourier transform of equation (8) to obtain that

VF(f |R)F(f |R) = VF(g|R)F(g|R).
Hence, by the fundamental identity of time-frequency analysis,

Vf |Rf = Vg|Rg.

Finally, Lemma 2.2 implies that there exists an α ∈ R such that f |R = eiαg|R.
As both f and g are entire, this equality extends to f = eiαg.

5.3 p = 2

Finally, we may consider the most general case p = 2. As before, we can see
that it follows from Lemma 2.9 that PW2

B ⊂ B∞
2πB and that we can therefore

use Theorem 2.11 to take care of the sampling in time. We observe here that
Theorem 2.11 does not guarantee unique recovery from samples at the critical
rate in contrast to the WSK sampling theorem and Theorem 2.10. Additionally,
we make use of Theorem 4.5 to take care of the sampling in frequency.
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Proposition 5.4. Let B > 0 and b ∈ (0, 1
4B ). Then, the following are equivalent

for f, g ∈ PW2
B:

1. f = eiαg, for some α ∈ R,

2. |Gf | = |Gg| on bZ× N.

Proof. First, note that if f = eiαg, for some α ∈ R, then it follows immediately
that |Gf | = |Gg|. Secondly, suppose that |Gf | = |Gg| on bZ × N. If k ∈ N

is arbitrary but fixed, it follows directly from the Lemmata 2.9 and 3.1 that
|Gf(·, k)|2 and |Gg(·, k)|2 are restrictions of functions in

PW1
2B ⊂ B∞

4πB

to R. Therefore, Theorem 2.11 implies

|Gf(x, k)|2 = |Gg(x, k)|2 , x ∈ R. (9)

We may now exactly follow the calculations in the proof of Proposition 5.3
to see that

∫ B

−B

(

F(f |R)(ω)F(f |R)(ω − ξ)−F(g|R)(ω)F(g|R)(ω − ξ)
)

· e−2π(ω−k− ξ
2 )

2

dω = 0 (10)

holds, for almost every ξ ∈ R. By Lemma 2.8, F(f |R),F(g|R) ∈ L2(R) and thus

hξ = F(f |R) · Tξ F(f |R)−F(g|R) · Tξ F(g|R) ∈ L1(R), ξ ∈ R.

The dual of L1(R) is isometrically isomorphic to L∞(R) such that we may apply
Theorem 4.5.

Let us fix ξ ∈ R arbitrary in a set of full measure in which equation (7) holds
and set a = −B, b = B, cz =

√
2π as well as cn = n+ ξ/2, for n ∈ N. As

∑′
|n+ ξ/2|′

diverges, Theorem 4.5 implies that

(

sp
{

e−c2z(·−cn)2
∣

∣n ∈ N
}L∞([a,b])

)⊥

∩ L1([a, b]) = {0}.

Since k ∈ N was arbitrary in our computations above, this together with equa-
tion (10) implies hξ|[−B,B] = 0 and thus

F(f |R) · Tξ F(f |R) = F(g|R) · Tξ F(g|R)

as functions in L1([−B,B]). By the support properties of F(f |R) and F(g|R)
this equation extends to L1(R). As in the proof of Proposition 5.3, we may now
deduce that there exists an α ∈ R such that f = eiαg.
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5.4 Main results

We can now use the fractional Fourier transform to rotate our results in the time-
frequency plane. In this way, we might unifyingly state the following theorem.

Theorem 5.5 (Main theorem). Let p ∈ [2,∞], B > 0 and θ ∈ R. Let b ∈
(0, 1

4B ), if p = 2, and b ∈ (0, 1
4B ], if p ∈ (2,∞]. Then, the following are

equivalent for f, g ∈ F−θL
p([−B,B]):

1. f = eiαg, for some α ∈ R,

2. |Gf | = |Gg| on Rθ(N× bZ).

Proof. It is obvious that item 1 implies item 2. Let us therefore assume that
|Gf | = |Gg| on Rθ(N× bZ), i.e.

|Gf(Rθ(k, bn))| = |Gg(Rθ(k, bn))| , k ∈ N, n ∈ Z.

Now, note that by definition there exist F,G ∈ Lp([−B,B]) such that f =
F−θF0 and g = F−θG0, respectively. According to the generalised fundamental
identity of time-frequency analysis (Lemma 2.3), the fact that the Gaussian is
invariant under the fractional Fourier transform, and R−θ Rθ = id, we thus find
that

|GF0(k, bn)| = |GG0(k, bn)| , k ∈ N, n ∈ Z. (11)

Let us next define the functions

hf (z) :=

∫ B

−B

F (ξ)e2πiξz dξ, hg(z) :=

∫ B

−B

G(ξ)e2πiξz dξ,

for z ∈ C. Since F,G ∈ Lp([−B,B]), it follows that hf , hg ∈ PWp
B . By the

definition of F0 and G0, we find that hf |R = F−1F0 as well as hg|R = F−1G0

and thus equation (11) implies

|GF(hf |R)(k, bn)| = |GF(hg|R)(k, bn)| , k ∈ N, n ∈ Z.

According to the fundamental identity of time-frequency analysis, we find that

|Ghf (−bn, k)| = |Ghg(−bn, k)| , k ∈ N, n ∈ Z.

Therefore, it follows from Corollary 5.2 (if p ≥ 4), Proposition 5.4 (if p ∈ (2, 4))
and Proposition 5.3 (if p = 2) that there exists an α ∈ R such that hf = eiαhg

which immediately implies that f = eiαg by the relations hf |R = F−1F0 =
F−1Fθf and hg|R = F−1G0 = F−1Fθg.

It is clear from the proofs presented in this paper that the main theorem
continues to hold for more general nonuniform sampling lattices. In particular,
N may be replaced by any sequence (cn)n∈N of distinct real numbers such that

∑′
|cn|−1
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diverges, and bZmay be replaced by any sequence (tn)n∈Z of real numbers which
satisfies that f(tn) = 0 implies f = 0, for all f ∈ B∞

4πB . According to Theorem
3.2 on p. 44 of [16], the condition

sup
n∈Z

|tn − bn| < b

4
, (12)

with 0 < b < 1
4B , is sufficient to guarantee this and therefore the following

holds.

Theorem 5.6. Let p ∈ [2,∞], B > 0 and θ ∈ R. Let (cn)n∈N ∈ R be a sequence
of distinct numbers such that

∑′
|cn|−1

diverges and let (tn)n∈Z ∈ R be a sequence which satisfies condition (12). Then,
the following are equivalent for f, g ∈ F−θL

p([−B,B]):

1. f = eiαg, for some α ∈ R,

2. |Gf | = |Gg| on Rθ({cn}n∈N × {tn}n∈Z).
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A Properties of the fractional Fourier transform

Lemma A.1. Let θ ∈ R and φ = ce−π(·)2 , with c = 21/4. Then, it holds that

Fθφ = φ.

Proof. Let us start by considering that

F2kπφ = φ, F(2k+1)πφ(ξ) = φ(−ξ) = φ(ξ),

for ξ ∈ R, where we have used that φ is even. We consider θ ∈ R \ 2πZ next
and compute

Fθφ(ξ) = ccθe
πiξ2 cot θ

∫

R

e−πt2eπit
2 cot θe−2πi tξ

sin θ dt

= ccθe
πiξ2 cot θ

∫

R

e−π(1−i cot θ)t2e−2πit ξ
sin θ dt,

for ξ ∈ R arbitrary but fixed. The above expression involves the classical Fourier
transform of the Gaussian

ϕ(t) := e−π(1−i cot θ)t2 , t ∈ R,
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which according to Lemma 1.5.1 on p. 17 of [8] and the paragraph thereafter is
given by

Fϕ(ξ) = c−1
θ e−

π
1−i cot θ

ξ2 .

It follows that

Fθφ(ξ) = ccθe
πiξ2 cot θ

∫

R

e−π(1−i cot θ)t2e−2πit ξ
sin θ dt = ccθe

πiξ2 cot θFϕ

(

ξ

sin θ

)

= ceπiξ
2 cot θe−

π
1−i cot θ (

ξ
sin θ )

2

= ce
π
(

i cot θ− 1
(1−i cot θ) sin2 θ

)

ξ2

.

Finally, we may compute

i cot θ − 1

(1− i cot θ) sin2 θ
=

i cos θ

sin θ
− 1

(sin θ − i cos θ) sin θ

=
i cos θ(sin θ − i cos θ)− 1

(sin θ − i cos θ) sin θ

=
i cos θ sin θ + cos2 θ − 1

(sin θ − i cos θ) sin θ

=
i cos θ sin θ − sin2 θ

(sin θ − i cos θ) sin θ
= −1

such that

Fθφ(ξ) = ce
π
(

i cot θ− 1
(1−i cot θ) sin2 θ

)

ξ2

= ce−πξ2 = φ(ξ).

Lemma A.2 (Cf. [3, 12]). Let θ ∈ R and f, g ∈ L2(R). It holds that

VFθgFθf(x, ω) = Vgf(Rθ(x, ω))e
πi sin θ((x2−ω2) cos θ−2xω sin θ),

for x, ω ∈ R.

Proof. Let x, ω ∈ R be arbitrary but fixed and consider

VF2kπgF2kπf(x, ω) = Vgf(x, ω)

as well as

VF(2k+1)πgF(2k+1)πf(x, ω) =

∫

R

F(2k+1)πf(t)F(2k+1)πg(t− x)e−2πitω dt

=

∫

R

f(−t)g(x− t)e−2πitω dt

=

∫

R

f(s)g(x+ s)e2πisω ds

= Vgf(−x,−ω).
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We may therefore focus on θ ∈ R \ 2πZ from here on out: we consider

VFθgFθf(x, ω) = (Fθf,Mω Tx Fθg) .

To progress, we need to understand how modulations and translations act on
the fractional Fourier transform. Let us start by considering the action of trans-
lations through the following calculation:

Tx Fθg(τ) = Fθg(τ − x) = cθe
πi(τ−x)2 cot θ

∫

R

g(t)eπit
2 cot θe−2πi

t(τ−x)
sin θ dt

= cθe
−2πiτx cot θeπi(τ

2+x2) cot θ
∫

R

g(t)e2πi
tx

sin θ · eπit2 cot θe−2πi tτ
sin θ dt

= cθe
πi(τ2+x2) cot θ

∫

R

g(t)e2πi
tx

sin θ · eπit2 cot θe−2πi( t
sin θ

+x cot θ)τ dt

= cθe
πi(τ2+x2) cot θ

∫

R

g(t)e2πi
tx

sin θ · eπit2 cot θe−2πi
(t+x cos θ)τ

sin θ dt

= cθe
πi(τ2+x2) cot θ

·
∫

R

g(s− x cos θ)e2πi
(s−x cos θ)x

sin θ · eπi(s−x cos θ)2 cot θe−2πi sτ
sin θ ds

= cθe
πi(τ2−x2) cot θ

·
∫

R

g(s− x cos θ)e2πi
sx

sin θ · eπi(s−x cos θ)2 cot θe−2πi sτ
sin θ ds

= cθe
πiτ2 cot θeπix

2(cos2 θ−1) cot θ

·
∫

R

g(s− x cos θ)e2πisx(
1

sin θ
−cos θ cot θ) · eπis2 cot θe−2πi sτ

sin θ ds

= cθe
πiτ2 cot θe−πix2 sin θ cos θ

·
∫

R

g(s− x cos θ)e2πisx sin θ · eπis2 cot θe−2πi sτ
sin θ ds

= e−πix2 sin θ cos θ · Fθ Mx sin θ Tx cos θ g(τ).

Next, we may consider the action of modulations. For this purpose, we consider
h ∈ L2(R) and compute

Mω Fθh(τ) = Fθh(τ)e
2πiτω = cθe

2πiτωeπiτ
2 cot θ

∫

R

h(t)eπit
2 cot θe−2πi tτ

sin θ dt

= cθe
πiτ2 cot θ

∫

R

h(t)eπit
2 cot θe−2πi( t

sin θ
−ω)τ dt

= cθe
πiτ2 cot θ

∫

R

h(t)eπit
2 cot θe−2πi

(t−ω sin θ)τ
sin θ dt

= cθe
πiτ2 cot θ

∫

R

h(s+ ω sin θ)eπi(s+ω sin θ)2 cot θe−2πi sτ
sin θ ds

= cθe
πiτ2 cot θeπiω

2 sin θ cos θ

·
∫

R

h(s+ ω sin θ)e2πisω cos θ · eπis2 cot θe−2πi sτ
sin θ ds
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= eπiω
2 sin θ cos θ · Fθ Mω cos θ T−ω sin θ h(τ).

The action of a translation followed by a modulation is therefore given by

Mω Tx Fθg(τ) = e−πix2 sin θ cos θ · Fθ Mx sin θ Tx cos θ g(τ)e
2πiτω

= eπi(ω
2−x2) sin θ cos θ · Fθ Mω cos θ T−ω sin θ Mx sin θ Tx cos θ g(τ)

= eπi(ω
2−x2) sin θ cos θe2πixω sin2 θ

· Fθ Mx sin θ+ω cos θ Tx cos θ−ω sin θ g(τ)

= eπi sin θ((ω2−x2) cos θ+2xω sin θ)

· Fθ Mx sin θ+ω cos θ Tx cos θ−ω sin θ g(τ),

where we have used that

Tt Mξ = e−2πitξ Mξ Tt, t, ξ ∈ R.

It does therefore follow from the unitarity of the fractional Fourier transform
that

VFθgFθf(x, ω) = (Fθf,Mω Tx Fθg)

= e−πi sin θ((ω2−x2) cos θ+2xω sin θ)

· (Fθf,Fθ Mx sin θ+ω cos θ Tx cos θ−ω sin θ g)

= e−πi sin θ((ω2−x2) cos θ+2xω sin θ)

· (f,Mx sin θ+ω cos θ Tx cos θ−ω sin θ g)

= e−πi sin θ((ω2−x2) cos θ+2xω sin θ)

· Vgf(x cos θ − ω sin θ, x sin θ + ω cos θ).

B Paley–Wiener spaces and Bernstein spaces

Lemma B.1. Let p ∈ [1, 2] and denote by q ∈ [2,∞] its Hölder conjugate. Let
moreover B > 0. Then, it holds that PWp

B ⊂ Bq
2πB.

Proof. Let us denote χz(ξ) := e2πiξz, for ξ ∈ R and z ∈ C, throughout this
proof. Moreover, we will drop the interval [−B,B] in the notation of the Lr-
norms ‖·‖r = ‖·‖Lr([−B,B]), for r ∈ [1,∞], to shorten notation.

Let f ∈ PWp
B . By definition, there exists an F ∈ Lp([−B,B]) such that

f(z) =

∫ B

−B

F (ξ)e2πiξz dξ, z ∈ C.

Based on the above formula, we may show that f : C → C is continuous: indeed,
consider z0, z ∈ C arbitrary and apply the triangle inequality as well as Hölder’s
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inequality multiple times to obtain

|f(z)− f(z0)| =
∣

∣

∣

∣

∣

∫ B

−B

F (ξ)
(

e2πiξz − e2πiξz0
)

dξ

∣

∣

∣

∣

∣

≤
∫ B

−B

|F (ξ) (χz(ξ)− χz0(ξ))| dξ

≤ ‖F‖p ‖χz − χz0‖q ≤ (2B)
1
q ‖F‖p ‖χz − χz0‖∞

= (2B)
1
q ‖F‖p ‖χz0 (χz−z0 − 1)‖∞

≤ (2B)
1
q ‖F‖p ‖χz0‖∞ ‖χz−z0 − 1‖∞

≤ (2B)
1
q e2πB|z0| ‖F‖p ‖χz−z0 − 1‖∞

= (2B)
1
q e2πB|z0| ‖F‖p · sup

ξ∈R

∣

∣

∣
e2πiξ(z−z0) − 1

∣

∣

∣
,

where we have used that χz+z′ = χzχz′ , for z, z′ ∈ C. We may now assume that
|z − z0| < (4πB)−1, expand the exponential function and estimate

|f(z)− f(z0)| ≤ (2B)
1
q e2πB|z0| ‖F‖p · sup

ξ∈R

∣

∣

∣
e2πiξ(z−z0) − 1

∣

∣

∣

= (2B)
1
q e2πB|z0| ‖F‖p · sup

ξ∈R

∣

∣

∣

∣

∣

∞
∑

k=1

(2πiξ(z − z0))
k

k!

∣

∣

∣

∣

∣

≤ (2B)
1
q e2πB|z0| ‖F‖p ·

∞
∑

k=1

(2πB |z − z0|)k
k!

≤ (2B)
1
q e2πB|z0| ‖F‖p ·

∞
∑

k=1

(2πB |z − z0|)k

= (2B)
1
q e2πB|z0| ‖F‖p ·

2πB |z − z0|
1− 2πB |z − z0|

≤ 22+1/qπB1+1/qe2πB|z0| ‖F‖p · |z − z0| ,

where we have used the convergence of the geometric series which holds due to
2πB |z − z0| < 1/2 < 1. It follows that f : C → C is continuous.

Next, we can apply Morera’s theorem to see that f is entire. Indeed, we
might consider a closed piecewise C1 curve γ in C and compute

∫

γ

f(z) dz =

∫

γ

∫ B

−B

F (ξ)e2πiξz dξ dz =

∫ B

−B

F (ξ)

∫

γ

e2πiξz dz dξ = 0,

where we used Fubini’s theorem to exchange integration and applied Morera’s
theorem to see that the contour integral of z 7→ e2πiξz vanishes, for all ξ ∈ R

— which works because z 7→ e2πiξz is entire, for all ξ ∈ R. It therefore follows
from Morera’s theorem that f is entire.
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We can finally estimate

|f(z)| =
∣

∣

∣

∣

∣

∫ B

−B

F (ξ)e2πiξz dξ

∣

∣

∣

∣

∣

≤
∫ B

−B

|F (ξ)χz(ξ)| dξ ≤ ‖F‖p ‖χz‖q

≤ (2B)1/q ‖F‖p ‖χz‖∞ ≤ (2B)1/q ‖F‖p e2πB|z|,

for z ∈ C. It follows that f is of exponential type 2πB. Additionally, it fol-
lows from the classical Hausdorff–Young inequality (see for instance Proposition
2.2.16 on p. 114 of [7]) that f |R ∈ Lq(R), where q is the Hölder conjugate of
p.
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[8] Karlheinz Gröchenig. Foundations of time-frequency analysis. Birkhäuser
Boston, MA, 2001.

[9] Philipp Grohs, Sarah Koppensteiner, and Martin Rathmair. Phase re-
trieval: uniqueness and stability. SIAM Review, 62(2):301–350, 2020.

[10] Philipp Grohs and Lukas Liehr. Injectivity of Gabor phase retrieval from
lattice measurements. arXiv preprint arXiv:2008.07238, 2020.

[11] Philipp Grohs and Lukas Liehr. On foundational discretisation barriers
in STFT phase retrieval. Journal of Fourier Analysis and Applications,
28:1–21, 2022.

30



[12] Philippe Jaming. Uniqueness results in an extension of Pauli’s phase re-
trieval problem. Applied and Computational Harmonic Analysis, 37(3):413–
441, 2014.

[13] WAJ Luxemburg and J Korevaar. Entire functions and Müntz–Szász
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