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Abstract

It was recently shown that functions in L*([~B, B]) can be uniquely
recovered up to a global phase factor from the absolute values of their
Gabor transform sampled on a rectangular lattice. We prove that this re-
mains true if one replaces L*([—B, B]) by L?([—B, B]) with p € [2, 00]. To
do so, we adapt the original proof by Grohs and Liehr and use sampling
results in Bernstein spaces with general integrability parameters. Further-
more, we present some modifications of a result of Miintz—Szasz type first
proven by Zalik. Finally, we consider the implications of our results for
more general function spaces obtained by applying the fractional Fourier
transform to LP([—B, B]) and for more general nonuniform sampling sets.

Keywords Phase retrieval, Gabor transform, Sampling theory, Time-
frequency analysis, Miintz—Szdsz type results

Mathematics Subject Classification (2010) 94A12, 94A20

1 Introduction

In this paper, we consider the Gabor transform of functions f € L?(R) given by
Gf(z,w) =2/ / fe ™o o2t gt (2,0) € R?,
R

and try to understand if one can recover f from measurements of the absolute
value |G f| on discrete sets S C R2. This so-called sampled Gabor phase retrieval
problem has recently been studied extensively [1, 2, 10, 11]. It is an elegant
mathematical problem in the sense that it is rather easy to state while, at the
same time, being less easy to solve. Moreover, it is connected to certain audio
processing applications such as the phase vocoder [6, 14].

A hallmark of all phase retrieval problems is that signals cannot be fully
recovered from phaseless measurements. For the sampled Gabor phase retrieval
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problem, we can see that the functions f and e!®f, where a € R, generate the
same measurements

G 1) = |é°gf] = |61,
Hence, we are not able to distinguish between f and e!®f on the basis of their

sampled Gabor transform magnitudes. We will therefore consider the equiva-
lence relation ~ on L?(R) defined by

frg:<e= JacR: f=e¢". (1)

With the help of this relation, we can introduce the phase retrieval operator
A: X/~ —[0,00)%, where X is a subspace of L2(R), by

Af)(z,w) = Gf(z,w)|,  (z,0) €5,

for f € X/~. The sampled Gabor phase retrieval problem is the problem of
inverting A when S C R? is discrete. We note that it has long been known that
one can invert A for X = L?(R) and S = R%:

Lemma 1.1. The following are equivalent for f,g € L?(R):
1. f =¢€l%g for some o € R,
2. 1911 = 19gl-

In applications, one does typically not have access to measurements of the
Gabor transform magnitude on the entire time-frequency plane, however, and
we thus believe that the sampled Gabor phase retrieval problem is a natural first
step towards a better understanding of settings encountered in practice. While
it is known that one may invert A for S = R2, much less was known about the
inversion of A for discrete sets S. Recently, however, a series of breakthroughs
was presented in the papers [1, 2, 10, 11]. For the genesis of this paper, the
work in [10] was most important. The authors of [10] show that sampled Gabor
phase retrieval is unique with X = L*([-B, B]) and S = Z x (4B)~'Z.

Lemma 1.2 (Theorem 3.1 on p. 9 of [10]). Let B > 0. Then, the following are
equivalent for f,g € L*([-B, B)):

1. f=e%g for some a € R,
2. |Gfl =1Gg| on Z x (4B)~'Z.

What is curious about the result above is the use of the space L*([—B, B]).
In particular, we find it interesting to ask whether one may extend Lemma 1.2
to spaces with more general integrability conditions and notably to L?([—B, B]).
In this paper, we want to answer the prior questions positively by modifying
and generalising the original proof of Lemma 1.2. In this way, we obtain the
following result.

Theorem 1.3 (Cf. Theorem 5.5). Let B >0, b € (0, 75) and p € [2,00]. Then,
the following are equivalent for f,g € LP([-B, B]):



1. f =el% for some a € R,
2. |Gf] =1Gg| on N x bZ.

We observe that the above theorem is almost optimal in view of the results
presented in [1]: there, for any lattice S C R? in the time-frequency plane,
explicit examples f, g € L?(R) were constructed which do not agree up to global
phase but which satisfy that

Gf(z,w)| = |Gg(z,w)|,  (z,w)€ES.

In particular, it is necessary to restrict the Gabor phase retrieval problem to a
proper subspace X of L(IR) in order to obtain a uniqueness result from samples.

It may not surprise the reader that one may further generalise Theorem
1.3 in multiple ways to include more general function spaces obtained by taking
fractional Fourier transforms of elements in LP([— B, B]) or more general nonuni-
form sampling sets. Both of these generalisation have already been suggested
in [10] and we adapt them here.

Finally, we want to mention that our proof for Theorem 1.3 relies on a
Miintz—Szasz type result: to be precise, we prove two modifications of a theorem
by Zalik [15].

Outline In Section 2, we introduce some basic concepts needed for the further
understanding of this paper. Most importantly, we introduce the fractional
Fourier transform, the Paley—Wiener spaces and the Bernstein spaces along
with some of their most relevant properties.

Thereafter, in Section 3, we reimagine the proof of Lemma 1.2: in particular,
we will argue that Lemma 1.2 follows from two core insights. The first of
those being that the short-time Fourier transform of a bandlimited function
is bandlimited in the first argument (cf. Lemma 3.1) and the second of those
being a result of Miintz—Szasz type by Zalik. This argument sets the stage for
the following sections and the proof of our main result in Section 5 in particular.

In Section 4, we modify one of the Miintz—Szasz type results presented in
[15]. There, it was shown that certain translates of Gaussians are complete in
L?([a,b]), for a < b. We extend this result to LP([a,b]), for p € [1,00), by
adapting the original proof from [15]. In addition, we show that translates of
Gaussians can never be complete in L°°([a,b]) but that the annihilator of the
closed! linear hull of certain translates of Gaussians intersects L*([a, b]) trivially.

Finally, in Section 5, we apply the Miintz—Szasz type results developed in
Section 4 in our reimagination of the proof of Lemma 1.2 presented in Sec-
tion 3 to generalise the result from [10]. In this way, we obtain Theorem 1.3.
Thereafter, we consider certain generalisations with respect to the underlying
subspace X C L?(R) and the sampling lattice which are inspired by the original
paper [10].

Lwith respect to the L°-norm.



Notation Let us denote N ={1,2,3,...} as well as Ny = {0,1,2,...}. Fur-
thermore, we will denote the canonical inner product on L?(R) by (-,-) and the
open ball of radius R > 0 around the origin in C by

Br:={z€C||z| < R}.
We will make use of the translation operators {T, }.cr given by
To f(t) = f(t—=), teR,
for x € R, as well as the modulation operators {M,, },ecr given by
M, f(t) == f(t)e*™™,  teR,

for w € R, repeatedly. Both of these families of operators can be defined for
functions f : R — C and are unitary on L?(R). For sums, we will use notation
suggested in [13, 15]. To be precise, we will write

/
dorati=
0
for (rp)nen € [0,00). Finally, we will often deal with trivial extensions of
functions F' : [-B, B] — C, where B > 0. To simplify the exposition, we will

denote
F(§) if&e[-B, B,
0 else,

Fo(€) =

in this case.

2 Definitions and basic notions

We will use the convention
i) = [ fme it Oa  gerr,
]Rd

for the Fourier transform on L!(R?)NL?(RY), where d > 1. It is well-known that
the Fourier transform can be extended to L?(R?) by Plancherel’s theorem and
a density argument. The extension is a unitary map on L?(RY) and therefore
its inverse is given by its adjoint

FLF(t) = / F(§)e*™EY d¢ = FF(—t), tcRY
Rd

for F € L?(R%).
A property of the Fourier transform which we will use repeatedly is that it
relates complex conjugation to the involution

f#(t) = f(=t), t € R.



Indeed, it holds that
F(f)y=FNH*  fel'®ULR).

We note that f# is well-defined for f : R — C and one can directly show that
(-)# is an isometry on LP(R), for p € [1, .

Let us now consider a function ¢ € L?(R). We can then define the short-time
Fourier transform with window ¢ of f € L*(R) by

Vof(z,0) = /R FORE—2)e 2 dt,  (,w) € R2.

One can show that V,f is uniformly continuous and that Vs f € L?(R?) (see
Lemma 3.1.1 and Theorem 3.2.1 in [8]). Clearly, the Gabor transform as defined
in the introduction corresponds to the short-time Fourier transform with window
¢ = ce~™)’ where ¢ = 21/4,

It is notable that the short-time Fourier transform at a fixed time x € R
exactly corresponds to the Fourier transform of a short-time section of the signal
f. We will use this insight in some of our proofs so let us be a bit more precise.
It holds that

Vo f(z,w) = ]:(f . Tx@ (w), (r,w) € R%

Another way of rewriting the short-time Fourier transform which is useful at
times is
Vof(z,w)=(fiMuTzg), z,weR

Throughout this paper, we will often refer to the fundamental identity of
time-frequency analysis, which is the fact that the Fourier transform corresponds
to a rotation by 90 degrees of the time-frequency plane (see e.g. Lemma 3.1.1
on p. 39 of [8]):

V¢f(l’,ld) = 672Wizwvf¢‘/—:f(wa _$)7 ({E, w) € RQ,

for f,¢ € L*(R).
We introduce the phase retrieval operator Ay : X/~ — [0,00)° by

Atﬁ(f)(wi) = |V¢f(x,w)|, (x’w) €S,

for f € X/~. Here, ~ is the equivalence relation introduced in equation (1), S is
a subset of R? and X is a subspace of L?(R). The short-time Fourier transform
phase retrieval problem then refers to the inversion of A. When S is discrete,
we call the corresponding short-time Fourier transform phase retrieval problem
sampled. Moreover, if ¢ = ce’”(‘y7 for ¢ = 21/4, we call the short-time Fourier
transform phase retrieval problem the Gabor transform phase retrieval problem.

Let us now quickly return to the classical uniqueness result for Gabor phase
retrieval that we mentioned in the introduction. We may see Lemma 1.1 as
an instance of a more general result for short-time Fourier transform phase
retrieval.



Lemma 2.1. Let ¢ € L*(R) be such that V,¢ is non-zero almost everywhere.
Then, the following are equivalent for f,g € L*(R):

1. f =¢€l%g for some a € R,
2. Vo f| = Vogl-

Indeed, if ¢ = ce_”(')2, with ¢ = 2Y/4, it is well-known that (see Lemma
1.5.2 on p. 18 of [8])

Ved(@,w) = (¢, M, Ty ¢) = €279 (6, T, My, ¢) = e "o~ 3 (27 +)

for (r,w) € R?, such that the above result implies Lemma 1.1.

Finally, we want to point out that the proof of Lemma 2.1 — which can,
for instance, be found in [9] — can be seen as an application of the following
classical result on (radar) ambiguity functions.

Lemma 2.2 (Theorem 2.5 on p. 588 of [4]). Let f,g € L*(R) be such that
Vif =Vyg.
Then, it holds that there exists an o € R such that f = e'%g.

Notably, we will apply the above lemma in multiple proofs in the present
paper.

2.1 The fractional Fourier transform

The fundamental identity of time-frequency analysis which we introduced before
can be seen as a special case of a more general principle: the fractional Fourier
transform corresponds to a rotation of the time-frequency plane. This principle
is tremendously useful when generalising results in time-frequency analysis and
we will encounter it multiple times in this paper.

Let us define the fractional Fourier transform of a function f € L*(R)NL?(R)
by

]:ef(ﬁ) = Cgeﬂié cot9/ f(t)emtz cot0672wi$ dt, fE R,
R

for 6 € R\ 7Z, where ¢y € C is the square root of 1 — icotd with positive
real part, and by Forrf = f as well as Fiapy1)-f(§) 1= f(=E), for £ € R,
where k € Z. One can show that the fractional Fourier transform preserves the
canonical inner product on L?(R): to be precise, it holds that for all § € R and
f,g € LY(R) N L%(R), we have

(fvg) = (-Fef,]:ag)

It follows that one can extend the fractional Fourier transform to a unitary map
on L?(R).



One important property which the fractional Fourier transfogm inherits from
the classical Fourier transform is that the Gaussian ¢ = ce=™()" | with ¢ = 21/4,
is invariant under its action. More precisely, it holds that

Fodp = ¢, 0 € R.

One can prove this by a direct computation using the classical result which can,
for instance, be found on p. 17 of [8]. We have included the calculation in the
appendix for the convenience of the reader.

Finally, to state the fundamental principle that the fractional Fourier trans-
form corresponds to a rotation of the time-frequency plane, we will introduce
the operator Ry : R? — R? by

Ro(z,w) := (xcosf —wsin b, xsin 0 + w cos §), z,w € R.

One can see that Ry corresponds to a rotation by 6 of the time-frequency plane
R2. We can now state the following important identity which we will refer to
as the generalised fundamental identity of time-frequency analysis.

Lemma 2.3 (Cf. [3, 12]). Let 8 € R and f,g € L*(R). It holds that
Vfggfef((t» OJ) _ ng(Rg(:E, w))eﬂ'isin 9((w27w2) cos 0—2zw sin 0)’

for x,w € R.

Note that the texts [3, 12] do not contain the exact statement of the above
lemma but rather results from which the lemma might be deduced. For this
reason, we have decided to add a proof of the above result to the appendix of
the present paper.

2.2 The Paley—Wiener spaces

In the following, we will mostly work with bandlimited functions. To be precise,
we consider the Paley—Wiener spaces of bandlimited functions defined via

PW%, = {f:(C—)C

B
JF e L’([-B,B))Vz€C: f(2) = / F(€)e?mie= dg} ,
-B

for B > 0 and p € [1,00]. One may see that the Paley—Wiener spaces are nested
which is due to the nestedness of LP-spaces over closed intervals. Since both of
these facts will be used heavily in this paper, we state them in the following.

Proposition 2.4. Let 1 < p < ¢ < oo and B > 0. Then, LI([-B,B]) C
Lp([_B7 B]) :
Corollary 2.5. Let 1 <p <g¢q<oo and B> 0. Then, PW}, C PW,,.

One of the core properties of the Paley—Wiener spaces is that their elements

correspond to entire functions of exponential type. This is, in fact, the message
of the famous Paley—Wiener theorem:



Theorem 2.6 (Paley-Wiener theorem). Let B > 0. Then, the following are
equivalent:

1. f e PW%,
2. f is an entire function such that there exists a constant A > 0 for which

F(2) < Ae*PE sec,

and

/ 1F() dt < oo.
R

Another important property of bandlimited functions is that one may re-
cover them from samples on equidistant sets. This classical result is commonly
referred to as the Whittaker—Shannon—Kotelnikov (WSK) sampling theorem.

Theorem 2.7 (WSK sampling theorem). Let B > 0 and f € PW%. Then, we
have
(@) ZT;Zf(QnB) sinc (2Bt — n), t eR,

where the series converges unconditionally in L*(R).

In the following, we will often refer to the short-time Fourier transform of
a function in a Paley—Wiener space. This is a slight abuse of notation since
the short-time Fourier transform is not explicitly defined for functions whose
domain is C. In this case, the notation V,f is to be interpreted as V4(f|r),
where f|gr : R — C is understood to be the restriction of f : C — C to the
real numbers. Hence, the short-time Fourier transform of a function f in the
Paley-Wiener space PW%, with B > 0, is well-defined as long as p € [2,00]:
indeed, we may remember that the Paley—Wiener spaces are nested and that
therefore PW2, ¢ PW7%,. Tt follows that f € PW% such that the Paley-Wiener
theorem implies that f|g € L?(R). Therefore, the short-time Fourier transform
of f is uniformly continuous and an element of the Hilbert space L?(R?).

A final fact about functions f € PW?% which we will use very often is that
their Fourier transforms F(f|g) are in LP(R).

Lemma 2.8. Let 2 < p < 0o, B > 0 and f € PW%. Then, we have that
F(f|r) € LP(R) and supp F(f|r) C [-B, B].

Proof. By the definition of the Paley—Wiener spaces, we find that there exists
a function F € LP(|-B, B]) C L*([-B, B]) (the inclusion follows from Proposi-
tion 2.4 and p > 2) such that

B .
f(z) = /_ | F(&)e?m= d¢, z€C.

Using the notation Fy for the trivial extension of F to R (as introduced in the
paragraph “Notation”), we find that Fy € L*(R) N L?(R) and we might write
flr = F~1F,. Therefore, we have F(f|r) = Fo and the lemma follows. O



2.3 The Bernstein spaces

For our proof of Theorem 1.3, the WSK sampling result is not quite powerful
enough. We will instead need to use more general sampling results in the so-
called Bernstein spaces which we will introduce in the following.

Let p € [1,00] and o > 0. We define the Bernstein space BE to be the space
of entire functions f of exponential type o > 0, i.e. for every € > 0 there exist
constants A, R > 0 such that

[f(2)] < Ae@HIlEL 2 e C\ Bg,

whose restriction to R is in LP(R). When p = 2, it follows from the classical
Paley-Wiener theorem that PW% C B2 5. We are mostly interested in the
following inclusions.

Lemma 2.9. Let p € [1,2] and denote by q € [2,00] its Holder conjugate. Let
moreover B > 0. Then, it holds that PW, C B: .

We include a proof of the above lemma in the appendix. In the Bernstein
spaces B with p € [1,00), a general sampling theorem holds.

Theorem 2.10 (Cf. Theorem 2.2 on p. 26 of [16]). Let p € [1,00), o > 0 and
f € B2, Then, it holds that

kY . ot
f(t)—Zf<U>blnc<7r—k>, teR,
kEZ
where the series converges absolutely and uniformly on every compact subset.

We emphasise that the above result does not continue to hold in the same
form for p = oco. This is notable because BS° is exactly the space which we need
to consider when generalising Lemma 1.2 from L*([-B, B]) to L?([-B, B]).
Luckily, the following result can be used instead.

Theorem 2.11 (Cf. Theorem 2.3 on p. 29 of [16]). Let ¢ > 0 and f € B°.
Then, it holds that

f(z)sz(WIf)sinc(a/z—k), z € C,
kEZ g T

for o’ > o, where the series converges uniformly on every compact subset of the
complex plane.

3 The sampling result from [10] reimagined

One may see Lemma 1.2 (cf. Theorem 3.1 on p. 9 of [10]) as an amalgam
of two core insights: the first insight is that the squared magnitude of the
short-time Fourier transform of a bandlimited function is bandlimited in its



first argument; the second insight is that certain translates of Gaussians are
complete in L?([a,b]). We note that the first insight allows for the application
of the WSK sampling theorem in the time axis of the time-frequency plane while
the second insight can be used to analyse sampling in the frequency axis. It is
therefore interesting to think of the proof of Lemma 1.2 as a two step approach:
first, time is discretised: secondly, frequency is discretised.

We will start by showing that the square of the magnitude of the short-time
Fourier transform of a bandlimited function is bandlimited in its first argument.
We note that this first insight holds for general windows ¢ € L*(R).

Lemma 3.1. Let p € [2,00] and suppose that q € [1,2] is chosen such that
1 1 1

qg 2 p
Furthermore, let B >0, ¢ € L*(R), and f € PWY%. For all w € R it holds that
1. My, Vy f(-,w) is the restriction of a function in PW% to R,
2. [Vsf(,w)|? is the restriction of a function in PWSJ/BZ to R.

Proof. We remember that the assumption p € [2,00] ascertains that f|gr €
L?(R) and that thereby the short-time Fourier transform of f is a well-defined
uniformly continuous function. Let us now fix w € R arbitrary for this proof.

1. We start by considering the function

H,,(8) = F(flr)(©)F (€ — w) = F(fIr)(€) - Tw F(£),

for ¢ € [-B, B]. Since f € PW%, it follows from Lemma 2.8 that F(f|r) €
LP(R). Moreover, the assumption that ¢ € L?(R) implies by Plancherel’s
theorem that F¢ € L?(R). Since translations are isometries of L?(R), we
find that T,, F¢ € L?(R). Hence, it follows from Hélder’s inequality that

F(flr) - Tw Fo € LU(R)

and thus H, € LY([—-B, B]).
We will now define h,, € PW% by

B
he(2) := / H,(€)e*™¢ d¢, z€C.
-B
Let € R and note that by definition
B J .
hota) = [ FURNOTFOE =)ot de.
According to Lemma 2.8, it holds that supp F(f|r) C [~ B, B]. Therefore,

B
ho(z) = / | F(fla)€) FE e dg

10



= /R F([1)(€) Fo(€ — w)e™r de
= Vro (F(fIr)) (w, ~2)

holds and we can use the fundamental identity of time-frequency analysis
to obtain

ho(z) = Vg (F(flr)) (W, —2) = ™5V f (2, w).
It follows that M, V4 f(-,w) is the restriction of h, € PW% to R.

. We denote the trivial extension of H, € LI([-B,B]) to R by H, o €
L%(R), as mentioned in the paragraph “Notation”. Then, we define the
function

Fw(é) = (Hw,O * Hfo) (6), f € [—QB,QB].
Notably, Young’s convolution inequality implies that

H, 0 * Hjjfo e LP?(R)

as Hw,o,Hﬁo € L9(R) and

Therefore, F,, is a well-defined function in LP/?([-2B,2B]).

We furthermore note that
supp Hy, 0 * HY o C [-2B,2B]

because H,, o and Hf o are supported in the interval [-B, B]. Finally,
we remark that H,, € LY([-B, B]) C L'([-B, B]) by Proposition 2.4 and
g > 1. It follows that H, ¢ and Hf,o are in L*(R).

We may now define f,, € PW’;{; via

2B )
fulz) = / F,(§)e*™7dg,  zeC.

—2B

As in the proof of item 1, we may consider z € R arbitrary but fixed and
note that our observation on the support of H,, o * H, f o implies that

fulw) = / - (Hoo * HZp) (€7 dg = /R (Huo+ HEo) ()27 ag.

—2B

We had also noted that H,, o, Hf,o € L'(R) such that we may apply the
Fourier convolution theorem to see

o) = [ (Han = HE) (€7 e = F (o 12y ) (=0)

11



= FHoo(~a)F (HEy ) (~2) = FHoo(~2)F (Hu0) (—2)
= |FHoo(—2)|*.
It follows from the considerations in the proof of item 1 that
ful(@) = [FHoo(=2)]* = |ho(@)]* = Vo (@,w)].
Hence, [V f(-,w)|? is the restriction of f,, € PW2.? to R.
O

Next, we note that certain translates of Gaussians are complete in L?([a, b]).
This Miintz—Szdsz type result was proven in [15] (Theorem 4 on p. 302).

Theorem 3.2 (Zalik’s theorem). Let —oco < a < b < 00, ¢, € R\ {0} and let
(cn)nen € R be a sequence of distinct numbers. Then,

{e_cf('_c”)2 ‘n € N}

is complete in L?([a,b]) if and only if

! -1
> lenl

diverges.

Zalik’s theorem together with Lemma 3.1 allows for the proof the following
proposition.

Proposition 3.3 (C.f. Proposition 3.4 on p. 11 of [10]). Let B > 0 and b €
(0, i]. Then, the following are equivalent for f,g € PW‘}B :

1. f =¢él%g, for some o € R,
2. |Gf] =1Gg| on bZ x N.

We may use the fractional Fourier transform to rotate the above result in the
time-frequency plane and thus obtain Lemma 1.2 as a corollary. More generally,
we can obtain a result for functions in the spaces

FoL*([-B,B)) = {f:R—C|3F € LY[-B,B)) : f = FoFo},

for 6 € R and B > 0, where Fy is defined as in the paragraph “Notation”.
We should note that the Gabor transform of elements in FyL*([— B, B]) is well-
defined since L*([-B,B]) C L?(|[-B, B]) (cf. Proposition 2.4) implies Fy €
L?(R). The unitarity of the fractional Fourier transform does therefore imply
that FpL*([-B, B]) C L*(R).

Proposition 3.4 (C.f. Proposition 3.4 on p. 11 of [10]). Let B >0, b € (0, /5]
and 0 € R. Then, the following are equivalent for f,g € F_oL*([-B, B]):

1. f =él%g, for some o € R,
2. |1Gf] =1G9g| on Re(N x bZ).

12



4 Two modifications of Zalik’s theorem

To generalise Proposition 3.3 to PW/, with p < 4, we need to modify Zalik’s
theorem. The reason for this is that we will show that

he == F(flr) - Te F(fle) — Flgl) - Te Flgle) € LP*(R), £ €R,

is orthogonal to a family of translated Gaussians and want to deduce he = 0
from this. If p/2 < 2, then generally he ¢ L?(R) and thus Zalik’s theorem is
not applicable.

If p > 2, we can however prove that the action on h¢ of certain translated
Gaussians — when we view them as elements of the dual of LP/?([— B, B]) which
is isometrically isomorphic to LP/(P=2) ([~ B, B]) — is trivial. It is thus sufficient
to deduce that those translates of Gaussians are complete in LP/(P=2)([-B, B])
to conclude that he|—p, g = 0. We therefore propose the following extension of
Zalik’s theorem.

Theorem 4.1. Let p € [1,00), —00 < a < b < 00, ¢, € R\ {0} and let
(cn)nen € R be a sequence of distinct numbers. Then,

{e‘ci('_c”)Z ‘n € N}

is complete in LP([a,b]) if and only if

/ -1
2 el

diverges.

In the proof of the above result, we will rely on two results from [13]: the
first one is the following Mintz—Szasz type result.

Theorem 4.2 (Theorem 6.1 on p. 30 of [13]). Letp € [1,00), 0 < a < b < 00,
and let (dy)nen € C be a sequence of distinct numbers such that there exists a
6 >0 and an Ny € N with

[Red,| > 0|dy|, n > Ny.

Then,
{()% |n € N}
is complete in LP([a,b]) and C([a,b]) if and only if

S ™!

diverges.

The second one is an interesting construction of an entire function of expo-
nential type which can be seen as the extension of the Fourier transform of a
smooth function to C.
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Theorem 4.3 (Theorem 5.2 on p. 30 of [13]). Let m € Ny, —00 < a < b < o0,
and let (dy)nen € C\ {0} be an arbitrary sequence of numbers such that

Z/ |dn| " < .

Then, there exists g € C*°(R) with supp g C [a,b] such that the function

b
G(z) = / g(t)e = dt, z € C,

can be factored as

G(z) =cz™e 7" H (1 e

neN n

)[Imq%@, zeC

keN
where ¢ € C\ {0}, the sequence (ex)ren € (0,00) is such that
T = Z € < 00
keN
ando=a+T17=b—".

We may now prove Theorem 4.1 by adapting the proof of Zalik’s theorem
from [15]. We include this argument in the following for the convenience of the
reader.

Proof of Theorem 4.1. Suppose that 3 '|c,|~ diverges and let ¢ € (1,00] be
the Holder conjugate of p. Then, Li([a,b]) is isometrically isomorphic to the
dual of LP([a,b]). We can therefore consider f € Li([a,b]) such that

b
/ F)e =0=e) gt =0,  neN,
a
and show that f = 0 in order to prove that {e*‘f('*c")2 | n € N} is complete in

L?([a,b]). By expanding the square in the exponent of the above integrand, we
find that

b
/kﬂwaﬁ*.&ﬁ%%u:o, neN. (2)
a
With the notation
O, 2 €T
glw)i=amt/1f <13gf> L s e
CZ
for z € [a/,'], and the substitution z = 2!, we obtain
b’ eQCEb -2
, 2a 2¢2
a 62 z Z

202p

e”z 1 _2? log? = 1
= 203 . / , f ( ;ng) e z 4“'% . xc" . 2 5 dx (3)
e ¢ (&Y

2c2a
2 ’ 2¢2 2c2epnt
=2c;- | f(t)em%" -e*%=tdt =0,

a

14



for n € N, by equation (2). Moreover, it holds that

b/ e2c§b q 2
log x _qlog”

q q -1 q
Wl = [ ot ae= [ s (55)] o5
a e" "z Z

2¢2b
02 N ! logz\|? —qc2 104324“” 1
= 2C _— Cz
? Jo2e2a 2¢2 2c2x

b
= 2¢2 / [F@)I" e 7" dt < 2¢2 || f1|Ta 0y < 00

Since (cp)nen € R, it follows that |[Re(c, — 1/p)| = |cn — 1/p|. It is also true
that the numbers (¢, — 1/p)nen are distinct and that 0 < o’ < b’ < co. Finally,
it is readily seen that divergence of

ZI len| ! and Z/|cn—1/p\71.

are equivalent. It follows from Theorem 4.2 that {x“’"*l/ p | neN } is complete
in LP([a/,']) and thus equation (3) implies g = 0. We conclude that f = 0.

Suppose now that 3 '|c,|™" < oco. If the sequence (c,)nen contains zero,
then we set m = 1 and let (d,,)nen € C be the sequence obtained from removing
zero from (2ic2c, )nen. If (¢n)nen does not contain zero, we set m = 0 and let
(dp)nen = (2ic2c, )nen. In any case, we find that

S dal 7t < 0

such that Theorem 4.3 implies that there exists a g € C*°(R) with supp g C [a, ]
and such that

b
G(z) == / g(t)e = dt, z €C,

vanishes at the points (d,)nen (and zero in case the sequence (¢, )nen contains
zero). Note also that g is non-trivial: indeed, if g was trivial, then G would be
trivial which contradicts its factorisation in Theorem 4.3. So let us define

2,2

f(t):==gt)e=",  tela,b],
such that

”f”Lq([a,b]) < (b_a)l/q. sup |f(t)| < (b_a)l/qecz max{|al,[b|}* max |g(t)| < 00,
tela,b] t€(a,b]

where we used that continuous functions attain their maxima on compact in-
tervals. We therefore have that f € L([a,b]) is non-trivial and it holds that

b b
/ flt)em=t . e*aent dt = / g(t)e 3 4t = G(2ic2e,) = 0,

15



for n € N. Multiplying by e_cfci, we obtain that

/b f(t)e‘ci(t_c”)2 dt =0, n €N,
a
and we have thus proven that
{e_cf('_c”)2 ‘n € N}
is not complete in L?([a, b]). O

We emphasise that the case p = oo is excluded from Theorem 4.1. This is
unfortunate since in the proof of Theorem 1.3 (for the case p = 2), we will show
that the action of certain translated Gaussians on

he = F(flr) - Te F(flr) — Flglr) - Te F(glr) € L'(R), € €R,

is trivial. Here, the translated Gaussians are to be seen as elements of the dual
of L'([a,b]) which is isometrically isomorphic to L>([a,b]). It is however not

hard to see that
—c2(-—cn)?
{e g ‘ n e N}
cannot be complete in L>°([a, b]) and that we will thus have to adapt the strategy

of our proof at this point: indeed, consider that translated Gaussians are smooth
and that uniform limits of continuous functions are continuous. Therefore,

sp{e-ci(—en)*|n e N}LW([a’b]) C C([a,b])

and thus translated Gaussians cannot be complete in L ([a, b]).
Let us make three remarks on this: first, it might be tempting to show that

{e‘ci('_c")2 ‘n € N}

is complete in C([a,b]). While this may be true, it does not seem possible to
show it by a simple adaptation of the proof of Zalik’s theorem since the dual of
C([a, b]) is the space of Radon measures and it is not clear how the steps of the
proof would work in this setup.

Secondly, we observe that it is not necessary to show that

{e_cf('_c")z ‘n € N}

is complete in C([a, b]). In fact, it suffices to show that if the functions e (—en)?
act trivially on an element f € L'([a,b]), then f = 0. We will express this idea
using a standard definition.

Definition 4.4 (Annihilator). Let V be a normed space with (continuous) dual
space V' and let W C V be a closed linear subspace. The annihilator of W is
given by

Wt ={pcV'|W Cker¢}.

16



Note that we want to consider the normed space L*°([a,b]) in which the
underlying measure space is given by ([a, b], B([a,b]), A|5([a,5))), Where B([a,b])
denotes the Borel o-algebra on [a,b] and A denotes the Lebesgue measure. In
this setup, the dual of L>([a, b]) can be identified with the space ba([a, b], £, A|z)
(see Theorem 16 on p. 196 of [5]), where

L={AC[ab]|3Bo,B; € B(ja,b]) : By C AC By and A(B; \ Bo) = 0}

is the set of Lebesgue measurable subsets of [a,b]. Here, ba([a,b], L, A|z) de-
notes the space of all bounded, finitely additive signed measures on £ which
are absolutely continuous with respect to A equipped with the total variation

norm. In this setting, the space L!([a,b]) can be identified as a subspace of
ba([a,b], L, A|z) through the definition

A) :/Afd)\7 AcL.

Using the annihilator notation, we may thus see that realising our second remark
amounts to proving that

(sp {e cz(-—cn)? ’n € N} “e ])) N L*([a,b]) = {0}. (4)
Thirdly, approximating continuous functions with linear combinations of el-

ements of
{() [n € N}

is sufficient for proving equation (4) because the Fourier characters x,, =
are continuous.

27r1w

Theorem 4.5. Let —0o < a < b < 00, ¢, € R\ {0} and let (¢cp)neny € R be a
sequence of distinct numbers. Then, it holds that

L>([a,b +
<sp{ecz<-m2]neN} ( ”) A LY ([a, B]) = {0}

if and only if

! -1
> lenl

diverges.

Proof. Suppose that 3 '|c,|~! diverges and let us consider f € L'([a,b]) such
that

/f —Eit=en)” g = neN.

Our goal is to show that f = 0. As in the proof of Theorem 4.1, the notation

log x log? = 2 2
. —1 T a2 /. 2cja /. 2cib
g(x) == f(2c2 e a =e"?, b’ = e,

17



for z € [a/,'], and the substitution z = 2! allows us to compute that

b/
/ g(z)x dz =0, neN, (5)

and that g € L'([a’,V']). Moreover, Theorem 4.2 implies that {(-)*" |n € N} is
complete in C([a’,b]). So, let us consider & € R arbitrary but fixed and note
that there exists a sequence s; € C([a/,V]) of the form

N (k)
sk(z) = Z An (B)zCm, x € [d, V],
n=1
where (N (k))ken € N and (A, (k))n ken € C, such that
1
sup [xe(x) = sp(@)| < T,
z€[a’ b/ ¢ k- ||g||L1([a',b/])
for k € N. It follows from the linearity of the integral and equation (5) that

b N (k)

Y
// g(x)sk(x)de = Z )\n(k;)/ g(x)z dz =0, ke N.

a’

Hence, we may estimate

b’ b’
[ s@ixe@ds] = | [ gla) (xele) = sio) + su(a) da

<

.
< / 9() (xe () — si(x)) du

’

< HQHLl([a,b]) ‘ Es[u/pbl] Ixe (@) = sp(e)| <k

for k € N. Therefore,

b’ b’

Fao(-9) = [ a@emdn = [ gloxe(o)ds =0

and, since £ € R was arbitrary, we conclude that Fgy = 0. This implies that
go = 0 and thus that g = 0 which shows that f = 0.

Suppose now that 3 '|¢,|~ < co. As in the proof of Theorem 4.1, we may
find a non-trivial function f € L!([a, b]) such that

b
/ fe—e)®qt =0,  neN.
a

Therefore,

oo

1
(sl Taeny ™ ) aras) o)
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5 Generalisation of the sampling result: step by
step

As mentioned in the introduction, it is remarkable that the sampling result
in [10] which we have reimagined in Section 3 (Proposition 3.4) is only stated
and proven in FpL*([—B, B]). This immediately raises the question whether a
similar result continues to hold if we replace Fp L*([— B, B]) by the more general
spaces

FoLl’([-B,B]) :=={f:R—C|3F e LP([-B,B]) : f = FoFv},

for 6 € R, p € [2,00], and B > 0. In particular, the case p = 2 seems interesting
as Gabor phase retrieval is usually stated with respect to the Hilbert space
L?(R). We should note that, just as the LP-spaces on closed intervals and the
Paley—Wiener spaces, the spaces FyLP([—B, B]) are nested.

Proposition 5.1. Let 1 < p < qg< o0, B> 0, and 8 € R. Then, we have
FoL4([-B, B]) C FoLP([-B, B]).

Proof. Let f € FpL%(|—B, B]) be arbitrary. Then, by definition, there exists
an F' € Li([—B, B]) such that f = FpFy. By Proposition 2.4, we find that
F € L?([-B, B]) and thus that f € FpL?([-B, B]). O

It follows that the most general case which we will be considering is f, g €
FoL?*([-B, B]). Interestingly, the difficulty of generalising Proposition 3.4 to
FoL?([-B, B]) can already be understood from considering Lemma 3.1. Indeed,
the case FyL*([~B, B]) is in some sense particularly easy to deal with since
f € PW% implies that |G f |2 € PW35 which is exactly the space for which we
can apply the WSK sampling theorem. Additionally,

he = F(flz) - Te F(flr) — F(glr) - Te F(glr) € L*([R), £ €R,

allows for the application of Zalik’s theorem. If f € PW23, then |gf|2 € PW3 5,
however, and we need to replace the use of the WSK sampling theorem by
the use of a sampling theorem in a Bernstein space. In addition, as we have
discussed in the prior section, we cannot apply Zalik’s theorem and will instead
need to make use of Theorem 4.5.

As advertised in the title of the present section, we will generalise Proposition
3.4 step by step. To be precise, we will prove that Proposition 3.4 will continue
to hold if we replace FpL*([—B, B]) by FoLP([—B, B]), for general p € [2, o0].
We will do this in three steps which are naturally ordered by difficulty: first, we
consider p > 4, then we consider p € (2,4) and finally we consider p = 2.

51 p>4

Let us start with the case p > 4. In this case, we obtain the following result as
a direct corollary to Proposition 3.3.
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Corollary 5.2. Let p € [4,00], B >0 and b € (0, 75]. Then, the following are
equivalent for f,g € PW4:

1. f =¢el%g, for some o € R,
2. |Gf] =1Gg| on bZ x N.

Proof. According to Corollary 2.5, it holds that PW%, C PVleg7 for p € [4,00].
Therefore, f,g € PWY, satisfy that f,g € PW% and thus the equivalence of
item 1 and item 2 follows immediately from Proposition 3.3. O

52 p € (2,4)

Next, we can consider p € (2,4). In this case, we will need to make use of a
generalised version of the WSK sampling theorem. To be precise, we may apply
Lemma 2.9 to see that PWY, C B 5, where ¢ € (2, 00) is the Holder conjugate
of p, and then utilise Theorem 2.10. In addition, we will apply Theorem 4.1.

Proposition 5.3. Let p € (2,4), B > 0 and b € (0, ﬁ]. Then, the following
are equivalent for f,g € PWi:

1. f =él%g, for some a € R,
2. |Gf] =1Gg| on bZ x N.

Proof. First, note that if f = e'®g, for some a € R, then it follows immediately
that |Gf| = |Gg|. Secondly, suppose that |Gf| = |Gg| on VZ x N. If k € N
is arbitrary but fixed, it follows directly from the Lemmata 2.9 and 3.1 that
IGf(-.k)* and |Gg(-, k)|* are restrictions of functions in

2 —2 _2
PWhy € B c B
to R. Therefore, Theorem 2.10 implies
Gf(x, k)] = |Gg(x, k)|*, =z ER (6)

To apply Theorem 4.1, we need to reformulate the equation above. For this
purpose, we remember that f € PW%, C PWQB by p > 2 (Corollary 2.5) and that
the Paley—Wiener theorem does therefore imply that f|g € L?(R). Using that
the Gaussian is invariant under the Fourier transform as well as the fundamental
identity of time-frequency analysis, we can compute that

Gf (2, k)> = |G (F(flz)) (k, —2)* = G (F(fIr)) (k, —2)G (F(f[r)) (k, —).

As the short-time Fourier transform corresponds to the Fourier transform of the
short-time sections of the underlying function, we find that

Gf(z,k)|* = G (F(fIr)) (k, —2)G (F(f]p)) (k, —z)
= F(F(flr) - Tx ¢) (—2)F (F(flr) - Tr ¢) (—2)

20



= F(F(fle) - T ) (=) - F ((F(fl=) - T 9)*) (—2).
We note that F(f|r) Tk ¢ is in L'(R) because f|g, ¢ € L*(R). As the involution

()% is an isometry of L'(R), we may apply the Fourier convolution theorem to
the above equation. In this way, we obtain that

91 (@ B)* = F (F(fl) - T d) (2) - F (F(fe) - Te &) ) (—2)
= F ((F(fle) - T @)+ (F(fl) - Tk 6)* ) (~2).
We may also note that F(f|g) - Tx ¢ is in L*3(R). To see this, we can use
Holder’s inequality together with the facts that Ty ¢ € L*(R) and F(f|r) €
L?(R). The prior follows from translations being isometries of L*(R) and ¢ €

L*(R). Since the involution (-)# is an isometry of L*/3(R), it follows from
Young’s convolution inequality that

(F(flr) - T ¢) * (F(flr) - Tr ¢)" € LA(R).

Therefore, we find that for almost every ¢ € R, it holds that
F(195C0)) (€)= ((f(flR) Ted) * (F(fle) - Tio)®) (€)
= [ PR TR =8 - o = ol = € = k)
We may now use that ¢ = ce=™)*, with ¢ = 21/4, and compute
F (195 1P) © = [ FUl)@FTRIE =8 - o = kol = € = k) d
= V2 [ FUR) TR =8 - reth g
= V2 [ FURFTRG = - 28" a,

by completing the square in the exponent. By Lemma 2.8, we know that
supp F(f|r) C [-B, B] and thus

2

F(19160)7) © = V3 [ Pl @) F TR =8 - e 28"
Vi F [ PR TR e

Of course, the exact same can be shown for ¢ € PW%, and therefore it follows
from equation (6) that

2

2 B ¢
Vae / Pl ) FR =8 e
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=2 3 / F(glr)(w)F (glr)(w — &) - o-2m(w—k=5)* 4.,

holds, for almost every £ € R. Hence, we have

B
/ (FURE@FTRE =8 - Fol) @ FeR e - 9)

cem2m(e=k=5) g =0, (7)
for almost every £ € R. By Lemma 2.8, F(f|r), F(g9lr) € LP(R) and thus

= F(flr) - Te F(flr) — F(glr) - Te Fglr) € L*(R),  £€R.

The dual of LP/2(R) is isometrically isomorphic to LP/(P~2)(R) and since p/(p —
2) € [2,00), we may apply Theorem 4.1.

Let us fix £ € R arbitrary in a set of full measure in which equation (7) holds
and set a = —B, b= B, ¢, = V2 as well as ¢, =n +£/2, for n € N. As

S n+e/2l

diverges, Theorem 4.1 implies that

{earons)

nEN}

is complete in LP/?=2) ([~ B, B]). Since k € N was arbitrary in our computations
above, this together with equation (7) implies that h¢|—p, 5 = 0 and thus that

F(fle) - Te F(flr) = F(glr) - Te F(glr) (®)

as functions in LP/?([—B, B]). By the support properties of F(f|g) and F(g|r)
this equation extends to LP/?(R).

Since ¢ was chosen arbitrarily in a set of full measure, we may take the
Fourier transform of equation (8) to obtain that

Ve F (FIR) = VEga) F(9lr)-

Hence, by the fundamental identity of time-frequency analysis,

Vief = Vgle9-
Finally, Lemma 2.2 implies that there exists an o € R such that f|gr = e!%g|g.
As both f and g are entire, this equality extends to f = el®g. O

5.3 p=2

Finally, we may consider the most general case p = 2. As before, we can see
that it follows from Lemma 2.9 that PW% C B°, and that we can therefore
use Theorem 2.11 to take care of the sampling in time. We observe here that
Theorem 2.11 does not guarantee unique recovery from samples at the critical
rate in contrast to the WSK sampling theorem and Theorem 2.10. Additionally,
we make use of Theorem 4.5 to take care of the sampling in frequency.
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Proposition 5.4. Let B > 0 and b € (0, ﬁ). Then, the following are equivalent
for f,g € PW%:

1. f =el%g, for some a € R,
2. |1Gf] =1Gg| on bZ x N.

Proof. First, note that if f = el®g, for some a € R, then it follows immediately
that |Gf| = |Gg|. Secondly, suppose that |Gf| = |Gg| on bVZ x N. If k € N
is arbitrary but fixed, it follows directly from the Lemmata 2.9 and 3.1 that
IGf(-.k)|* and |Gg(-, k)|* are restrictions of functions in

PW3; C B,
to R. Therefore, Theorem 2.11 implies
Gf(x, k)] = |Gg(x, k)|*, =z eR 9)

We may now exactly follow the calculations in the proof of Proposition 5.3
to see that

[ (FUROFTRE 8 - Fol) @ FoR @ 0)

o258 qu =0 (10)

holds, for almost every & € R. By Lemma 2.8, F(f|z), F(glz) € L2(R) and thus
he = F(flz) - T F(TTe) - Flgls) - Te Flgle) € L'(B),  €€R

The dual of L!(R) is isometrically isomorphic to L>°(R) such that we may apply
Theorem 4.5.

Let us fix £ € R arbitrary in a set of full measure in which equation (7) holds
and set a = —B, b= B, ¢, = /2 as well as ¢, =n +¢/2, for n € N. As

S g2l

diverges, Theorem 4.5 implies that

L ([a,b -
(sp{eczccm meny ”) A LY ([, B]) = {0}.

Since k € N was arbitrary in our computations above, this together with equa-
tion (10) implies h¢|[—p ) = 0 and thus

F(flr) - Te F(flr) = F(glr) - Te F(g]r)

as functions in L'([-B, B]). By the support properties of F(f|g) and F(g|r)
this equation extends to L!(R). As in the proof of Proposition 5.3, we may now
deduce that there exists an o € R such that f = e'®g. O
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5.4 Main results

We can now use the fractional Fourier transform to rotate our results in the time-
frequency plane. In this way, we might unifyingly state the following theorem.

Theorem 5.5 (Main theorem). Let p € [2,00], B > 0 and 8 € R. Let b €
(0,75), if p =2, and b € (0,75], if p € (2,00]. Then, the following are
equivalent for f,g € F_gLP([—B, B]):

1. f =el%g, for some a € R,
2. 1Gf] =1Gg| on Ro(N x bZ).

Proof. 1t is obvious that item 1 implies item 2. Let us therefore assume that
|Gf| =1Gg| on Re(N x bZ), i.e.

|Gf(Ro(k,bn))| = |Gg(Ro(k,bn))|, keEN, neZ.

Now, note that by definition there exist F,G € LP([—B, B]) such that f =
F_oFp and g = F_yG, respectively. According to the generalised fundamental
identity of time-frequency analysis (Lemma 2.3), the fact that the Gaussian is
invariant under the fractional Fourier transform, and R_g Ry = id, we thus find
that

|GFo(k,bn)| = |GGo(k,bn)]|, keN nelZ. (11)

Let us next define the functions

B B
hy(z) = / F(£)e2™¢= g, hy(z) := /_B G(6)e?™ de,

—-B

for z € C. Since F,G € LP([-B, B]), it follows that hs, h, € PW%. By the
definition of Fy and Go, we find that hylg = F~1Fy as well as hy|lg = F Gy
and thus equation (11) implies

|GF (h¢|r)(k,bn)| = |GF (hglr)(k,bn)|, keN, neZ.
According to the fundamental identity of time-frequency analysis, we find that
|ghf(_bnv k)‘ = |ghg(_bn7 k)| ) ke N, n € 7.

Therefore, it follows from Corollary 5.2 (if p > 4), Proposition 5.4 (if p € (2,4))
and Proposition 5.3 (if p = 2) that there exists an « € R such that hy = e!%h,,
which immediately implies that f = e¢®g by the relations helg = F 1Ry =
F1Fof and hylgr = F1Go = F 1 Fyg. O

It is clear from the proofs presented in this paper that the main theorem
continues to hold for more general nonuniform sampling lattices. In particular,
N may be replaced by any sequence (¢, )nen of distinct real numbers such that

/ -1
> lenl
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diverges, and bZ may be replaced by any sequence (t,)nez of real numbers which
satisfies that f(¢,) = 0 implies f = 0, for all f € B3> 5. According to Theorem
3.2 on p. 44 of [16], the condition

b
sup [t, —bn| < —, (12)
nez 4
with 0 < b < é, is sufficient to guarantee this and therefore the following
holds.

Theorem 5.6. Letp € [2,00], B> 0 and 0 € R. Let (¢y)nen € R be a sequence
of distinct numbers such that
/
> enl™

diverges and let (t,)nez € R be a sequence which satisfies condition (12). Then,
the following are equivalent for f,g € F_oLP([-B, B]):

1. f =él%g, for some a € R,

2. |gf| = |gg| on RE’({Cn}neN X {tn}nEZ)-
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A Properties of the fractional Fourier transform
Lemma A.1. Let 0 € R and ¢ = ce”’(‘)z, with ¢ = 214, Then, it holds that
Fod = ¢.
Proof. Let us start by considering that
Fornd = ¢, Forr)ad(§) = ¢(=£) = ¢(§),

for £ € R, where we have used that ¢ is even. We consider 6 € R\ 27Z next
and compute

2 2 2 o _tE
]_-9(;5(§> _ CCgemf cot9/e 7t emt cot&9e 2y dt
R

o2 1 2 o i £
:Ccee‘n'lf cotQ/e w(1—icot )t e 27it 52 dt,
R

for £ € R arbitrary but fixed. The above expression involves the classical Fourier
transform of the Gaussian

Qﬁ(t) — efﬂ(lficot 0)t2’ te ]R,
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which according to Lemma 1.5.1 on p. 17 of [8] and the paragraph thereafter is
given by

1w g2
Fo(&) =cz'le TTeorpb
It follows that

Fod(§) = ccpe™ COte/

effr(lficot 0)t26727ritﬁ dt = ccgeﬂ'if2 cot G-F(P < 5 >
R

sin 6

o2 2 : _ 1 2
= cem§ COtae_lfizote(siﬁe) = cew(ICOte (1—icot9)sin29)5 .

Finally, we may compute

cotf — 1 :iCOSQ_ 1
(1—icotf)sin?f  sinf  (sinf —icosf)sinf
icos@(sinf —icosd) —1
- (sinf —icosf)sinf
icosfsin® + cos? — 1
- (sinf — icos @) sin b
B icosfsinf — sin? @ _ 1
(sind — icosf)sin b
such that
Fog(€) = eo” U0 Tmimmma)€ < o€ = ().

Lemma A.2 (Cf. [3, 12]). Let § € R and f,g € L*(R). It holds that

Vfgg-FGf(za UJ) — ng(Ra(a:’w))eﬂ'isin 9((x2—w2) cos 0 —2zw sin 0)’
for x,w e R.

Proof. Let x,w € R be arbitrary but fixed and consider

V]"zkwg]:ékwf(l'vw) = ng(wi)

as well as
VEorinmal @k f (T, w) = / Foart 1y f () Forryxg(t — x)e 2T dt
R
— [ -t
R
~ [ g e as
R

= ng(—.%‘, —OJ).
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We may therefore focus on 6 € R\ 27Z from here on out: we consider
ergfef(wi) = (-FﬁfaMw Tzfeg) .

To progress, we need to understand how modulations and translations act on
the fractional Fourier transform. Let us start by considering the action of trans-
lations through the following calculation:

r]:‘m .Fgg(T) = -7:09(7 _ IL’) — Ceefri(‘l'fzc)2 cot 6 / g(t)emt cot@ —2rit sme dt
R

_ . . 2 2 g2 _ s tT
= cye 27iTx cot Geﬂl(r +x ) cot 6 / g(t) 2y | emt cot He 2Ty dt
R

_ Caeﬂi(72+m2)cot9/g(t) 271'15m0 _eTrit2 COt9672ﬂ'i(ﬁ+ZL’COt0)T dt
R

(t+= cos )T

(2.2
— Cgem(T +x )cotG / g(t) 27 {2, _emt cot 6 —27‘1’1T dt
R

— Ceeﬂi(72+x2) cot 0
(s—x cos )z

. / g(S - ICOSH)GZWIT . em(sfzcose) cot 6 727”51“9 ds
R

— cgewi(rz—xz) cot 6

. 2 .
. / g(S — T eos 9) 2mi Ly eﬂl(s—xcos&) cot 08_2‘”1% ds
R

.2 .2 2,
_ C@GT”T cot Oeﬂ'm: (cos 6 1) cot 6

. 1 2.2 o i sT
. / g(S — xcos 9)8271—189:(51“9 cos 6 cot 9) . eTis cot@e 2migry ds
R

2

. 2 . .
— Cgeﬂ—”— cot 96 miz® sin 6 cos 6

: . 2 _ooi_sT
. / g(S — T cos 9)e2w1szsm9 . gTis” cot 06 2migT, ds
R

2
— o T sin 6 cos 0 - Fo

Mm sin 0 Ta: cos 6 g(T)

Next, we may consider the action of modulations. For this purpose, we consider
h € L?>(R) and compute

i i ir? it2 oo tT
1\/[0J fgh(’r) — J’_'gh(,r)eQﬂlrw — Cee2w1rwew1r cot@/ h(t)eww cot@e 24T, dt
R

ir2 it2 _ i —t— —
_ Cee‘m‘r cot 6 / h(t)eﬂ'lt cot Ge 27r1(sins w)'r dt
R
2 o . (t—wsin )T
_ Cee‘m‘r cot 6 / h(t)eﬂ'lt cot 9 2mi dt
R
.2 . 2 _
= cge™T cot 6 / h(s + wsin 9) mi(s+w sin §)~ cot 0 2mi 5 ds
R

2

wiT? cot Gerriw sin 0 cos 6

= Cpe

: L2 o i sT
. / h(S + wsin 0)e27nswcos0 LTS cotGe 27 £y ds
R
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= eWiWQ sinfcost FoMy coso T—wsing h(T)
The action of a translation followed by a modulation is therefore given by

Mw T, -7:99(7—) = eiﬂ—iw2 sinfcosd, -7:0 Mz sin0 Lz coso g(,]_)e%ri‘rw

i(w2—2?)sin 6 cos O
=e” (w ) .‘FQMwCOSGT—UJSiDGMaZSiHGT;ECOSQQ(T)

_ e'n'i(wzfzrz) sin 6 cos 9627ri$w sinZ 0

: FO Mz sin 0+w cos 0 Tz cos f—w sin 6 9(7_)
— e‘n’i sin 9((w2—z2) cos 0+2zw sin 9)

. ]:0 M:I: sin +w cos @ Tz cos f—w sin 6 9(7)7

where we have used that
Ty M = e 2™ M Ty, t, £ €R.

It does therefore follow from the unitarity of the fractional Fourier transform
that

ergfgf(x7w) = (]:9.}67 M, T, ]:99)
—7isin 9((w2—12) cos 0+2zw sin 9)

. (-Fef,fe Mmsin0+wcost9 Tmc0597wsin0 g)

—misin 0((w2—x2) cos O0+2xw sin 9)

= ¢

=€
: (f7 Mz sin 04w cos 0 T cos 0—w sin 6 g)
_ efﬂi sin 9((&)27:1:2) cos 04+2zw sin 9)

- Vyf(xrcosf —wsinb, xsin + wcosb).

B Paley—Wiener spaces and Bernstein spaces

Lemma B.1. Let p € [1,2] and denote by q € [2,00] its Hélder conjugate. Let
moreover B > 0. Then, it holds that PW%, C B2 .

Proof. Let us denote x.(£) := e*™¢* for ¢ € R and z € C, throughout this
proof. Moreover, we will drop the interval [—B, B] in the notation of the L"-
norms ||-[|, = |||~ (—p,py)» for r € [1, 00}, to shorten notation.

Let f € PWT,. By definition, there exists an F' € L?([—B, B]) such that

B .
f(z) = [ . F(&)e?™&= dg, 2 €eC.

Based on the above formula, we may show that f : C — C is continuous: indeed,
consider zy, z € C arbitrary and apply the triangle inequality as well as Holder’s
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inequality multiple times to obtain

B s .
() = f(z0)| = | [P (e — o) ag

B
< / IF(E) (x=(6) — x=0(6))] e
-B

1

SNFN, Ixz = Xz llg < @B)a 1F, X — Xzolloo
1

= (2B)7 ||IF|, IXz (Xz=20 = Dl

< @B)7 1F[l, [Ixzolloo X220 = Ul
1 T Z
< (2B) 1P| F|, Ixa-—z0 — Ul
_ (QB)% 27 B|zo]| ||F|| zgg eQwiE(zfzo) _ 1‘ ,

where we have used that x.4. = x.Xs, for z,2" € C. We may now assume that
|z — 20| < (47 B)~!, expand the exponential function and estimate

() = f(z0)] < (2B)ie2 =0l [ |, - sup |ericte—s0) 1]
£ER

(23) 271'B|zo\ ||F|| - sup i (2715(2 - ZO))k

¢er |1 k!
oo k
27TB|Z | . (27TB |Z - ZOD
< @p)tersialp, . 30 CTBE 20"
k=1
o)

< 2B)ae*™ Il ||F||, -y (2n Bz — z0l)*
k=1

2B |z — 2|
1—27B |z — 2|
< 92+ a4y gi+1/qg2mB|z0] ||F|\p |z — 2],

= (2B)ve* Bl || 7|

where we have used the convergence of the geometric series which holds due to
2B |z — 29| < 1/2 < 1. It follows that f : C — C is continuous.

Next, we can apply Morera’s theorem to see that f is entire. Indeed, we
might consider a closed piecewise C' curve v in C and compute

Lf(z) dz = L/Z F(&)e?™8 dedz = /i F(g)Le2”i€Z dzdé =0,

where we used Fubini’s theorem to exchange integration and applied Morera’s
theorem to see that the contour integral of z — e2™¢# vanishes, for all £ € R
— which works because z — e?™¢? is entire, for all £ € R. It therefore follows
from Morera’s theorem that f is entire.
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for
low

2.2.
p.

We can finally estimate

B
z)| = ‘/ )e?méz qg| < /_B |[F(&)x.(E)] d¢ < ||F||p ”Xz”q

< @2B)Y1|F|l, Ix:llo < @B F, e* P,

z € C. Tt follows that f is of exponential type 27 B. Additionally, it fol-
s from the classical Hausdorff-Young inequality (see for instance Proposition
16 on p. 114 of [7]) that flr € LI(R), where ¢ is the Hélder conjugate of

O
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