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EXPONENTIAL CONVERGENCE OF DEEP OPERATOR NETWORKS
FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

CARLO MARCATI∗ AND CHRISTOPH SCHWAB∗

Abstract. We construct and analyze approximation rates of deep operator networks (ONets) between infinite-dimen-
sional spaces that emulate with an exponential rate of convergence the coefficient-to-solution map of elliptic second-order
partial differential equations. In particular, we consider problems set in d-dimensional periodic domains, d = 1, 2, . . . , and
with analytic right-hand sides and coefficients. Our analysis covers linear, elliptic second order divergence-form PDEs as,
e.g., diffusion-reaction problems, parametric diffusion equations, and elliptic systems such as linear isotropic elastostatics
in heterogeneous materials.

We leverage the exponential convergence of spectral collocationmethods for boundary value problemswhose solutions
are analytic. In the present periodic and analytic setting, this follows from classical elliptic regularity. Within the ONet
branch and trunk construction of Chen and Chen [4] and of Lu et al. [18], we show the existence of deep ONets which
emulate the coefficient-to-solution map to a desired accuracy in theH1 norm, uniformly over the coefficient set. We prove
that the neural networks in the ONet have size O(|log(ε)|κ), where ε > 0 is the approximation accuracy, for some κ > 0
depending on the physical space dimension.
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1. Introduction. The application of numerical surrogates of solution operators to partial dif-
ferential equations (PDEs) via algorithms of deep learning has recently received considerable at-
tention. See, e.g., [2, 17, 19, 16] and the references there. Also, expression and approximation
rate bounds for such computable operator surrogates have appeared in various settings, see, e.g.
[13, 8, 7], and the references there. In the present paper, we construct deep operator network
(ONet) emulations of coefficient-to-solution maps for boundary value problems with linear, sec-
ond order elliptic divergence-form operators. In particular, we consider operator networks with
rectified linear unit (ReLU) activation and problems formulated in domains without boundary
and with analytic right-hand sides and coefficients. In this setting, we construct operator net-
works that approximate the (nonlinear) coefficient-to-solution map with exponential accuracy in
the corresponding function spaces. We bound—poly-logarithmically with respect to the energy
norm of the error—both the size of the approximating network and the number of sampling points
where the coefficient is queried.

1.1. Existing Results. Deep neural networks (DNN) have been employed increasingly in re-
cent years in the numerical solution of differential equations in science and engineering. We refer
to the survey [2] for uses and successes of DNN based numerical simulations in computational
fluid mechanics, and to [27] for their use in computational finance and computational option pric-
ing. First uses of DNNs in numerical PDE solution in engineering and the sciences focused on
leveraging DNNs for “mesh-free” solution approximation and representation (see, e.g., [26, 9]),
with good success explained, to some extent, by approximation properties of DNNs in function spaces
(see, e.g., [24, 22, 23, 20, 28, 10]) in particular overcoming the so-called Curse-of-Dimensionality
(CoD) in high-dimensional approximation of PDE solutionmanifolds [28, 11], of parametric PDEs
and of PDEs on high-dimensional state spaces, as arising, e.g., in computational finance (see [27, 1]
and the references therein).

Reference [15] addressed the expression rate of ReLU NNs for the solution maps of paramet-
ric PDEs. The analysis in that paper proceeds through the DNN emulation of reduced bases for the
approximation of solutions of the PDEs. The expression rate bounds obtained in [15] are subject to
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strong hypotheses on the DNN expressivity of reduced bases for the PDEs of interest. The param-
eter sets (i.e., the domains of the solution operator) considered in [15] are finite-dimensional; this
paper mostly concerns instead the approximation of solution maps between infinite dimensional
spaces. We nonetheless show how expression rates for finitely-parametric PDEs also follow from
our main results, see Theorem 5.12 and Remark 5.14.

DNNs have been leveraged in [8, 18, 16] for the DNN emulation of data-to-solution operators
for PDEs. See also the review [19]. Here, previous investigations have focused on universality of
NNs for operator approximation. The pioneering work [4] established this for a certain type of
NNs with a “branch and trunk” architecture, which will also be used in the present work. While
[4] imposed strong compactness assumptions, more recently [16] extended these results to certain
settingswithout the compactness assumptions of [4]. In these papers, focus has been on emulating
nonlinear maps, such as domain-to-solution, or coefficient-to-solution maps. For well-posed PDE
problems, continuous dependence on the problem data implies that these maps are continuous,
in the appropriate topologies on the data and the solution space. We refer to [14, 18] and the
references therein. In these references, some theory explaining some of the numerically observed
performances of NN emulation of nonlinear operators has been developed (see, e.g., [16, 8, 7]).
We also mention the analysis of [13] for Fourier Neural Operators, a different kind of operator
networks, introduced in [17].

The convergence rate estimates proved in these references indicate that a) DNNs are capable of
parsimonious numerical representations of the nonlinear, smooth data-to-solutionmaps for PDEs,
and b) they are not prone to the CoD in connection with the countable number of parameters due,
e.g., to series representations of inputs in separable Banach spaces of possibly infinite dimension.

1.2. Contributions. We construct DNN approximations of data-to-solution maps, so-called
“Operator Networks” for linear, second order divergence-form elliptic PDEs with non-homoge-
neous coefficients and source terms. We establish exponential expression rates for these coefficient-
to-solution operators for elliptic PDEs.

Our argument relies on analytic regularity for elliptic PDEs with analytic coefficients, on the
a priori analysis of periodic spectral approximation of PDEs, and on the error analysis of numer-
ical quadrature in fully discrete spectral methods. We consider linear second order divergence-
form elliptic boundary value problems with analytic, periodic coefficients, and (uniformly) an-
alytic solutions, whose inputs and solutions admit exponentially convergent spectral collocation
approximations from spaces of high-degree, periodically extendable polynomials. Our results
show that neural networks can emulate accurately the (nonlinear) data-to-solution operator of
Galerkin methods for the elliptic PDEs mentioned above with numerical integration. The opera-
tor networks we construct are composed of encoding, approximation, and reconstruction operators.
In the encoding step, the input datum is queried on collocation points in the physical domain.
The approximation and reconstruction parts of the operator networks are composed of two neural
networks, one that approximates a polynomial basis, while the other maps point evaluations of
the diffusion coefficient to coefficients over the basis.

Our proof is constructive, based on “NN emulation” of (building blocks of) a spectral method.
Our focus is on providing an upper bound on the expression rate of the Operator Network approx-
imation of the coefficient-to-solution maps, rather than to suggest a concrete algorithm to actually
construct those networks. Actual applications may be able to perform the numerical Operator
Network construction more efficiently.

For the sake of clarity of exposition, we develop this strategy for model, linear second or-
der elliptic PDEs in divergence form, with inhomogeneous coefficients. We then show, using the
compositionality of NNs, how to include problems with parametric diffusion, typically arising in
computational uncertainty quantification. Finally, we mention the minor modifications required
for PDEs with reaction coefficients and discuss in some detail ONet emulation of the coefficient-
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to-solution map for linear elasticity.
The exponential expression of data-to-solution maps proved in this manuscript is the first re-

sult of this kind for operator networks. It is based on exponential compression rates of encoders
and decoders which are based on spectral approximations to leverage analyticity of input and out-
put of the data-to-solution maps. Here, analyticity of the solution is a consequence of classical
elliptic regularity. The strong compression of spectral encoders and decoders facilitated by analyt-
icity allows to compose ONets from approximate neural network inversion of small, but generally
dense spectral Galerkin matrices. ONet constructions for finite regularity input and output pairs
with considerably different input encoder and output decoder maps differs substantially from the
present construction. They are considered in [12]. The approximation of data-to-solutionmaps for
similar elliptic PDEs has been analyzed with different techniques in [8] under weaker regularity
assumptions on the coefficients. These lines of argument yield lower expression rate bounds.

1.3. Structure of this paper. To fix a setting for developing our results, we introduce in Sec-
tion 2 a scalar, elliptic, isotropic diffusion equation. The coefficient-to-solution operator that will be
the main target of approximation by neural networks is also introduced in this section. Then, in
Section 3, we define feed forward neural networks (with ReLU activation) and operator networks
with the branch and trunk architecture of [4, 18], that approximate maps between infinite dimen-
sional spaces. We conclude the section by defining some operations on networks that will then
be used for the approximation analysis. In Section 4, we gather (classical) results on the polyno-
mial approximation of solutions to the elliptic problem. The main results of this paper are then
proved in Section 5. In Theorem 5.7, we show the exponential convergence of the operator net
approximation of the coefficient-to-solution map for the elliptic isotropic diffusion problem. We
extend the analysis to parametric diffusion coefficients in Theorem 5.12. Finally, in Section 6 we
extend our ONet approximation to further second order problems comprising reaction-diffusion
with nonzero reaction coefficients and linear elastostatics.

1.4. Notation. We use standard notation and symbols: N denotes the set of positive natural
numbers N = {1, 2, 3, . . . } and N0 = {0} ∪ N. We write vectors in lowercase boldface characters
andmatrices in uppercase boldface characters. We denote by ‖a‖2 the ℓ2-norm of a vector a, while
for any matrix A, we denote ‖A‖2 = sup‖x‖2=1 ‖Ax‖2 its operator norm. By ‖A‖0 and ‖x‖0 we
denote, respectively, the number of nonzero elements of a matrixA and a vector x. The spectrum
of a matrix A is written σ(A). For n ∈ N, Idn is the n × n identity matrix, while 0n is a vector of
zeros of size n. When used between matrices, we denote by ⊗ the Kronecker product: given two
matrices A ∈ Rm×n and B ∈ Rp×q , then C = A⊗B ∈ Rmp×nq , such that

C =



A11B · · · A1nB

...
. . .

...
Am1B · · · AmnB


 .

Given two functions v1, v2, we instead denote by v1 ⊗ v2 the function such that (v1 ⊗ v2)(x1, x2) =
v1(x1)v2(x2). We denote by [a1| . . . |an] the matrix with columns a1, . . . ,an. We indicate by vec :
Rm×n → Rmn and matr : Rmn → Rm×n the vectorization and matricization operators, such that
matr(vec(A)) = A for any matrixA. All results are independent of the ordering of the vectoriza-
tion operation; the dimensions of the matricization operation will be clear from the context. We
denote by Rn×nsym the space of symmetric matrices of size n× n. Given two matrices A,B ∈ Rn×n,
we writeA : B =

∑n
i,j=1 AijBij .

Let d ∈ N. For k ∈ N0, p ∈ [1,∞], and a domain D ⊂ Rd, we indicate byW k,p(D) the classical

Sobolev spaces. W k,p
loc (R

d) indicates functions that are inW k,p(D) for any bounded subsetD ofRd.
In the Hilbertian case p = 2, we writeHk(D); in addition, Lp(D) =W 0,p(D) and L2(D) = H0(D).
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Given Q = (0, 1)d and Ω = (R/Z)d, we denote , for all k ∈ N0 and p ∈ [1,∞],

W k,p(Ω) =W k,p
per (Q) :=

{
v|Q : v ∈W k,p

loc (R
d) and v is Q-periodic

}
,

i.e., the restriction to Q of all functions inW k,p
loc (R

d) that are Q-periodic. We denote by (·, ·) the L2

scalar product in Q.
For C > 0, define Hol(Ω;C) as the set of functions v that are real analytic in Rd, periodic with

period one in all coordinate directions, and such that

(1.1) ‖v‖Wk,∞(Q) ≤ Ck+1k!, ∀k ∈ N0.

Define furthermore the set of all real analytic functions in Ω as Hol(Ω) =
⋃
C>0 Hol(Ω;C). By the

Arzelà-Ascoli theorem, the set Hol(Ω;C) is compact in L∞(Ω).

2. Problem formulation. We introduce the set of admissible diffusion coefficient data D: for
each coefficient a ∈ D we assume ellipticity in the form that there exist constants amin, amax > 0
such that

(2.1) ∀x ∈ Q, ∀a ∈ D amin ≤ a(x) ≤ amax .

We also assume that all a ∈ D are real analytic andQ-periodic, with uniform bounds on the radius
of convergence of the Taylor series: there exists a constant AD > 0 such that

(2.2) D ⊂ Hol(Ω;AD).

As it will be useful in the sequel, we define the Poincaré constant Cpoi > 0 such that

(2.3) ‖v − 1

|Q|

∫

Ω

v‖L2(Q) ≤ Cpoi‖∇v‖L2(Q), ∀v ∈ H1(Ω) = H1
per(Q).

The ellipticity hypotheses (2.1) and the Poincaré inequality (2.3) imply that for every f ∈ L2(Ω)
such that

∫
Q
f = 0, and for each a ∈ D, the elliptic boundary value problem

(2.4) −∇ · (a∇ua) = f in Ω

admits a unique solution

ua ∈ X :=

{
v ∈ H1(Ω) :

∫

Q

v = 0

}
≃ H1

per(Q)/R.

It satisfies the variational formulation: given a ∈ D, find u ∈ X such that

(2.5) b
a(u, v) = (f, v) ∀v ∈ X.

Here, for a given a ∈ Hol(Ω), the bilinear form b
a(·, ·) : H1(Ω)×H1(Ω) → R is given by

b
a(w, v) :=

∫

Q

(a∇w · ∇v) .

In what follows, we assume the fixed source term f ∈ Hol(Ω) ∩X to be given and, for any a ∈ D,
we denote by ua the unique solution of (2.5) for this choice of f .

We denote (still keeping the source term f in (2.5) fixed) by S the data-to-solution operator
a 7→ ua in (2.5). We let U = S(D) the set of solutions of (2.5) corresponding to inputs from D.
As shown in Lemma B.1 in Appendix B, for fixed right source term f in (2.5), the data-to-solution
map S : L∞(Ω) → H1(Ω) is Lipschitz continuous. Furthermore, standard elliptic regularity (see
[21, 5] and Lemma 4.1 below) implies S(D) ⊂ Hol(Ω).
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3. Neural operator networks. Our goal is to derive bounds for the approximation of the so-
lution operator S : D → X ⊆ H1(Ω), defined in Section 2, by an operator network. To define
operator networks, we recall the definition of classical feed forward neural networks with ReLU
activation

ReLU : R → R, x 7→ max{0, x}.

3.1. Feed forward neural network.

Definition 3.1 ([24, Definition 2.1]). Let d, L ∈ N. A neural network Φwith input dimension
d and L layers is a sequence of matrix-vector tuples

Φ =
(
(A1, b1), (A2, b2), . . . , (AL, bL)

)
,

where N0 := d and N1, . . . , NL ∈ N, and where Aℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ for ℓ = 1, ..., L.
For a NN Φ, we define the associated realization of the NN Φ as

R(Φ) : Rd → RNL , x 7→ xL =: R(Φ)(x),

where the output xL ∈ RNL results from

x0 := x,

xℓ := ReLU(Aℓ xℓ−1 + bℓ), for ℓ = 1, . . . , L− 1,

xL := AL xL−1 + bL.

(3.1)

Here ReLU is understood to act component-wise on vector-valued inputs, i.e., for y = (y1, . . . , ym) ∈ Rm,

ReLU(y) := (ReLU(y1), . . . ,ReLU(ym)). We call N(Φ) := d +
∑L
j=1Nj the number of neurons

of the NN Φ, L(Φ) := L the number of layers or depth, Mj(Φ) := ‖Aj‖0 + ‖bj‖0 the number of

nonzero weights in the j-th layer, and M(Φ) :=
∑L
j=1 Mj(Φ) the number of nonzero weights of Φ,

also referred to as its size. We refer to NL as the dimension of the output layer of Φ.

3.2. Operator networks. The operator network approximating the solution operator S can be
seen as the composition R ◦ A ◦ E of three mappings:

• Encoding E : D → Rn, for n ∈ N,
• Approximation A : Rn → Rm, form ∈ N,
• Reconstruction R : Rm → H1(Q),

see the diagram in Figure 1. We refer the reader to [16, 14] for a broader view on and thorough
discussion of operator networks between infinite dimensional spaces. In our analysis, the encoding
step will map functions a ∈ D to the vector a ∈ Rn of their point evaluations, i.e.

a = E{x1,...,xn}(a) := [a(x1), . . . , a(xn)]
⊤
,

for suitable collection of points x1, . . . ,xn ∈ Q. The approximation and reconstruction steps in-
volve feed-forward neural networks that we will, respectively, denote Φbranch and Φtrunk. Specifi-
cally, the approximate solution operator A is realized as

AΦbranch(a) = R(Φbranch)(a).

For the reconstruction stepR, for all c ∈ Rm and x ∈ Q, we define

RΦtrunk(c)(x) =
(
R(Φtrunk)(x)

)
· c.
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D H1(Ω)

Rn Rm

Encoding
a 7→ a = [a(x1), . . . , a(xn)]

S

Approximation
a 7→ c = [c1, . . . , cm]

Reconstruction
c 7→ uaNN =

∑
i ciψi

Fig. 1: Diagram of operator network between infinite dimensional spaces

Fig. 2: Structure of the branch and trunk network; uaNN(x) := R(Φbranch)(a) · R(Φtrunk)(x).

This constructs the operator network mapping from D to H1(Q), defined by

RΦtrunk ◦ AΦbranch ◦ E{x1,...,xn} : a 7→ uaNN(·) := (R(Φtrunk)(·)) · R(Φbranch)(Ex1,...,xn
(a))

see Figure 2. For the precise definition of the branch and trunk networks used to approximate the
solution operator of (2.4) we refer the reader to Sections 5.1 and 5.2.

We aim for operator networks that approximate, for all a ∈ D, solutions ua of (2.4) in the
H1(Q)-norm, uniformly over the input space D, i.e., such that

sup
a∈D

‖ua − uaNN‖H1(Q) ≤ ε.

The main result of this paper consists in proofs for upper bounds on n, m, and on the sizes of
Φtrunk and Φbranch as functions of the error ε.

3.3. Operations on neural networks. We introduce and recall some operations on neural net-
works that will be necessary for the construction of the branch and trunk networks.

3.3.1. Concatenation and sparse concatenation.

Definition 3.2 (NN concatenation, [24, Definition 2.2]). Let L1, L2 ∈ N and let

Φ1 = ((A1
1, b

1
1), . . . , (A

1
L1
, b1L1

)), Φ2 = ((A2
1, b

2
1), . . . , (A

2
L2
, b2L2

))

be two neural networks such that the input layer of Φ1 has the same dimension as the output layer of Φ2.
Then, Φ1 Φ2 denotes the following L1 + L2 − 1 layer network:

Φ1
 Φ2 := ((A2

1, b
2
1), . . . , (A

2
L2−1, b

2
L2−1), (A

1
1A

2
L2
,A1

1b
2
L2

+ b11), (A
1
2, b

1
2), . . . , (A

1
L1
, b1L1

)).
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We call Φ1 Φ2 the concatenation of Φ1 and Φ2.

Proposition 3.3 (NN sparse concatenation, [24, Remark 2.6]). Let L1, L2 ∈ N, and let Φ1,Φ2

be two NNs of respective depths L1 and L2 such that N1
0 = N2

L2
=: d, i.e., the input layer of Φ1 has the

same dimension as the output layer of Φ2.
Then, there exists a NN Φ1 ⊙ Φ2, called the sparse concatenation of Φ1 and Φ2, such that Φ1 ⊙ Φ2

has L1 + L2 layers, R(Φ1 ⊙ Φ2) = R(Φ1) ◦ R(Φ2) and M
(
Φ1 ⊙ Φ2

)
≤ 2M

(
Φ1
)
+ 2M

(
Φ2
)
.

3.3.2. Emulation of matrix inversion. Dense matrix inversion can be approximated by suit-
able ReLU NNs. We recall the following result from [15] where, for Z ∈ R+ and N ∈ N,

KZ
N := {vec(A) : A ∈ RN×N , ‖A‖2 ≤ Z}.

Theorem 3.4. [15, Theorem 3.8] For ε, δ ∈ (0, 1) define

m(ε, δ) :=

⌈
log (0.5εδ)

log(1− δ)

⌉
.

There exists a universal constant Cinv > 0 such that for every N ∈ N, ε ∈ (0, 1/4) and every δ ∈ (0, 1)

there exists a NNΦ1−δ,N
inv,ε withN2-dimensional input,N2-dimensional output and the following properties:

1. L
(
Φ1−δ,N

inv;ε

)
≤ Cinv (1 + log (m(ε, δ))) · (log (1/ε) + log (m(ε, δ)) + log(N)),

2. M
(
Φ1−δ,N

inv;ε

)
≤ Cinvm(ε, δ)

(
1 + log2(m(ε, δ))

)
N3 · (log (1ε) + log (m(ε, δ)) + log(N)),

3. sup
vec(A)∈K1−δ

N

∥∥∥(IdN −A)
−1 −matr

(
R
(
Φ1−δ,N

inv;ε

)
(vec(A))

)∥∥∥
2
≤ ε,

4. for any vec(A) ∈ K1−δ
N we have

∥∥∥matr

(
R
(
Φ1−δ,N

inv;ε

)
(vec(A))

)∥∥∥
2
≤ ε+

∥∥∥(IdN −A)
−1
∥∥∥
2
≤ ε+

1

1− ‖A‖2
≤ ε+

1

δ
.

Remark 3.5. The bounds on the depth and size of the network of Theorem 3.4 are slightly
modified compared to those in [15], since some instances of log(m(ε, δ)) have been replaced by
1 + log(m(ε, δ)). Indeed, for all δ ∈ [2/(2 + ε), 1), with fixed ε > 0, m(ε, δ) = 1. In this case, the
unmodified estimates would give a degenerate bound on the depth and size of the network. This
modification is mathematically inconsequential, the relevant case for the approximation estimates
being ε ↓ 0.

4. Regularity and polynomial approximation. We shall exploit the classical fact that the an-
alyticity of the coefficient a and of the source term f in Ω combined with periodicity implies an-
alyticity of the solution ua of (2.4). This, in turn, will imply exponential convergence of tensor
product polynomial (spectral) approximations of a and ua, which will be the basis of the NN
approximation developed in Section 5 ahead.

4.1. Regularity. The following result follows from [5, Remark 1.6.5 and Theorem 1.7.1].

Lemma 4.1. There exists AU > 0 such that S(D) ⊂ Hol(Ω;AU ).

Proof. From [5, Theorem 1.7.1], it follows that S(D) ⊂ Hol(Ω) and, for each u ∈ S(D), there
exists Au > 0 such that

1

k!
|u|Hk(Q) ≤ Ak+1

u



k−2∑

j=0

1

j!
|f |Hj(Q) + ‖u‖H1(Q))


 , ∀k ∈ N0.
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Furthermore, from [5, Remark 1.6.5], inspecting the proof of [5, Theorem 1.7.1], and from (2.2),
the proof is completed since it follows that

AU := sup
u∈S(D)

Au <∞.

4.2. Polynomial basis and quadrature. Consider the univariate Legendre polynomials L0,
L1, . . . such that Li ∈ Qi((0, 1)), normalized with Li(1) = 1. Define then, for all i ∈ N,

ϕ1d
0 = L0, ϕ1d

2i−1 = L2i, ϕ1d
2i = L2i+1 − L1.

These functions satisfy, for all i ∈ N0, ϕ1d
i (0) = ϕ1d

i (1). It follows that, for all p ∈ N,

span(ϕ1, . . . , ϕp) = Qp+1((0, 1)) ∩
{
v ∈ H1(R/Z) :

∫

(0,1)

v = 0

}
.

We can then introduce, for all integer p ≥ 2,

(4.1) ϕi1+pi2+···+pd−1id = ϕ1d
i1 ⊗ ϕ1d

i1 ⊗ · · · ⊗ ϕ1d
id
, (i1, . . . , id) ∈ {0, . . . , p− 1}d.

Then, as shown in Lemma D.1 in the appendix, for all integer p ≥ 2, denoting nb = pd − 1,

(4.2) Xnb
:= span({ϕ1, . . . , ϕnb

}) =
{
v ∈ Qp(Q) :

∫

Q

v = 0 and v ∈ H1(Ω)

}
= Qp(Q) ∩X.

The restriction to polynomials of degree p ≥ 2 is without loss of generality, as the periodicity and
vanishing average constraints imply Q1(Q) ∩X = {0}.

For a quadrature order parameter q ≥ 2, denoting nq = qd, we consider the Gauss-Lobatto

quadrature rule with weights {w(q)
k }nq

k=1 and points {x(q)
k }nq

k=1 ⊂ Q such that

∫

Q

g =

nq∑

k=1

w
(q)
k g(x

(q)
k ), ∀g ∈ Q2q−3(Q).

There exist constants cquad,1, cquad,2 > 0 such that

(4.3) cquad,1‖v‖2L2(Q) ≤
(p+1)d∑

k=1

w
(p+1)
k (v(x

(p+1)
k ))2 ≤ cquad,2‖v‖2L2(Q), ∀v ∈ Qp(Q), ∀p ∈ N,

see [3, Equation (6.4.52)]. We remark that the constants cquad,1 and cquad,2 are independent of p,
but depend in general exponentially on the dimension d. Wemay assume, without loss of general-
ity, that cquad,1 ≤ 1 and cquad,2 ≥ 1. We introduce furthermore the bilinear form with quadrature
b
a
nq

b
a
nq
(u, v) =

nq∑

k=1

w
(q)
k a(x

(q)
k )∇u(x(q)

k ) · ∇v(x(q)
k ), ∀u, v ∈ C1(Q).

Eventually, here u, v shall be tensor product polynomials in Q.
For each a ∈ D, we introduce the symmetric matrices

[
A
a
nb

]
ij
= b

a(ϕj , ϕi),
[
A
a
nb,nq

]
ij
= b

a
nq
(ϕj , ϕi), (i, j) ∈ {1, . . . , nb}2.
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Let A1
nb,nq

be the matrix obtained with a ≡ 1 in Q. Let q ≥ p + 1: for all nonzero x ∈ Rnb , there
exists v ∈ Xnb

\{0} such that, for all a ∈ D,

(4.4) x⊤
A
a
nb,nq

x = b
a
nq
(v, v) > 0,

due to the equivalence of norms (4.3) and to the Poincaré inequality (2.3). Hence, the matrices
A
a
nb,nq

andA
1
nb,nq

are invertible. Denote then

Ã
a
nb,nq

= (A1
nb,nq

)−1
A
a
nb,nq

.

We also introduce the right-hand side vector cf ;nb
∈ Rnb such that

(4.5) [cf ;nb
]i =

∫

Q

fϕi, i ∈ {1, . . . , nb} .

The Cauchy-Schwarz inequality and

‖ϕi‖2L2(Q) ≤
{
1/(2i+ 3) if i is odd

1/(2i+ 3) + 1/3 if i is even,
∀i ∈ N,

hence ‖ϕi‖L2(Q) ≤ 1, imply that

(4.6) ‖cf ;nb
‖22 ≤ ‖f‖2L2(Q)

nb∑

i=1

‖ϕi‖2L2(Q) ≤ nb‖f‖2L2(Q).

Finally, let

c̃f ;nb
= (A1

nb,nq
)−1cf ;nb

.

and

(4.7) cau;nb,nq
:= (Aa

nb,nq
)−1cf ;nb

.

Here and in the sequel, for all q ∈ N, with nq = qd, we will denote anq
∈ Rnq the vector with

entries

[
anq

]
i
= a(x

(q)
k ), ∀k ∈ {1, . . . , nq}.

The following two statements concern the norms of the matrices introduced, and will be nec-
essary for later estimates.

Lemma 4.2. There exist Ccoer, Ccont > 0 such that for all a ∈ D, all p ∈ N, and all integer q ≥ p+ 1,

(4.8) σ(Ãa
nb,nq

) ⊂ [Ccoer, Ccont], σ((Ãa
nb,nq

)−1) ⊂ [1/Ccont, 1/Ccoer] ,

with nb = pd − 1 and nq = qd.

Proof. For all x ∈ Rnb ,

aminx
⊤
A

1
nb,nq

x ≤ x⊤
A
a
nb,nq

x ≤ amaxx
⊤
A

1
nb,nq

x.

Since the matrices A1
nb,nq

and A
a
nb,nq

are symmetric and positive definite, see (4.4), this implies,
by Lemma C.1 in the Appendix,

σ((A1
nb,nq

)−1
A
a
nb,nq

) ⊂ [amin, amax].

The assertion follows with Ccoer = amin and Ccont = amax.
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We assume, for ease of notation, that Ccoer ≤ 1 and Ccont ≥ 1.

Lemma 4.3. There exists a constant CA > 0 such that, for all p ∈ N, and for all integer q ≥ p+ 1,

‖(A1
nb,nq

)−1‖2 ≤ CAnb,

with nb = pd − 1 and nq = qd.

Proof. From (4.3), (2.3), the symmetry of the bilinear form, and Lemma D.2, it follows that

λmin (A
1
nb,nq

) := min
λ∈σ(A1

nb,nq
)
λ = inf

x∈Rnb

x⊤
A

1
nb,nq

x

‖x‖22
(D.1)
≥ inf

v∈Xnb

b
1
nq
(v, v)

C2
L2nb‖v‖2L2(Q)

(4.3)
≥

c2quad,1
C2
L2nb

inf
v∈Xnb

‖∇v‖2L2(Q)

‖v‖2L2(Q)

(2.3)
≥

c2quad,1
C2

poiC
2
L2nb

.

This concludes the proof, since ‖(A1
nb,nq

)−1‖2 = 1/λmin (A
1
nb,nq

).

5. NN approximation. We detail the structure of the branch and trunk networks (see Fig. 2)
and state and prove their convergence rate bounds.

5.1. Branch network.

5.1.1. Input layer. For all k ∈ {1, . . . , nq}, let D̂nb
(x

(q)
k ) denote the matrix with entries

[
D̂nb

(x
(q)
k )
]
ij
= w

(q)
k ∇ϕi(x(q)

k ) · ∇ϕj(x(q)
k ), (i, j) ∈ {1, . . . , nb}2.

The following statement follows from this definition.

Lemma 5.1. For all α ∈ R, the one-layer NN

ΦA,αnb,nq
:=
((

−α
[
vec(D̂nb

(x
(q)
1 ))| . . . |vec(D̂nb

(x(q)
nq

))
]
,0n2

b

))

satisfiesM(ΦA,αnb,nq
) ≤ n2

bnq and is such that

(5.1) matr

(
R(ΦA,αnb,nq

)(anq)
)
= −αAa

nb,nq
.

Proof. We have

[
R
(
ΦA,αnb,nq

)
(anq)

]
i
= −α

nq∑

k=1

[
vec(D̂(x

(q)
k ))

]
i
a(x

(q)
k ),

hence the equality after matricization. The size bound follows from the fact that

‖D̂nb
(x

(q)
k )‖0 ≤ n2

b, k ∈ {1, . . . , nq} .

Lemma 5.2. For all α ∈ R, the two-layer NN

(5.2) ΦÃ,Id,αnb,nq
:=
((

Idnb
⊗ (A1

nb,nq
)−1,vec(Idnb

)
))

⊙ ΦA,αnb,nq

is such that

matr

(
R(ΦÃ,Id,αnb,nq

)(anq
)
)
= −αÃa

nb,nq
+ Idnb

,

andM(ΦÃ,Id,αnb,nq
) ≤ 2nb(1 + nbnq + n2b).
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Proof. For all m,n, l ∈ N and all A ∈ Rm×n and X ∈ Rn×l, vec(AX) = (Idl ⊗ A)vec(X).
Hence,

R(ΦÃ,Id,αnb,nq
)
(5.2)
= (Idnb

⊗ (A1
nb,nq

)−1)R(ΦA,αnb,nq
) + vec(Idnb

)

(5.1)
= −α(Idnb

⊗ (A1
nb,nq

)−1)vec(Aa
nb,nq

) + vec(Idnb
)

= −αvec((A1
nb,nq

)−1
A
a
nb,nq

) + vec(Idnb
).

Finally, by Proposition 3.3,

M(ΦÃ,Id,αnb,nq
) ≤ 2M(ΦA,αnb,nq

) + 2
(
‖Idnb

⊗ (A1
nb,nq

)−1‖0 + ‖Idnb
‖0
)
≤ 2M(ΦA,αnb,nq

) + 2(n3
b + nb).

The following statement is a consequence of Lemmas 4.2 and 5.2.

Lemma 5.3. Let Ccont, Ccoer be the constants introduced in Lemma 4.2. For all a ∈ D, for all p ∈ N,
for all integer q ≥ p+ 1, and for all α ∈ (0, 1/Ccont),

‖matr

(
R(ΦÃ,Id,αnb,nq

)(anq
)
)
‖2 ≤ 1− αCcoer =: 1− δ,

with nb = pd − 1 and nq = qd.

Proof. By Lemma 5.2,matr

(
R(ΦÃ,Id,αnb,nq

)(anq)
)
= Idnb

−αÃa
nb,nq

. Due to Lemma 4.2 and since

α ≤ 1/Ccont, this matrix is symmetric positive definite and

‖Idnb
− αÃa

nb,nq
‖2 = sup

x∈Rnb

‖x‖2=1

x⊤(Idnb
− αÃa

nb,nq
)x = 1− α inf

x∈Rnb

‖x‖2=1

x⊤
Ã
a
nb,nq

x ≤ 1− αCcoer,

where the last inequality follows from Lemma 4.2.

Thanks to Theorem 3.4 we can construct the network that approximates the inversion of the “pre-

conditioned” Galerkin-Numerical Integrationmatrix Ãa
nb,nq

(more precisely, the network that em-

ulates the map anq
7→ (Ãa

nb,nq
)−1).

Proposition 5.4. Let Ccoer, Ccont be defined as in Lemma 4.2. There exists a constant Cinv,A > 0
such that for all nb ∈ N and for all εinv ∈ (0, 1), writing α = 1/(Ccoer+Ccont), δ = αCcoer, nq = nb+1,
and denoting

(5.3) ΦÃinv;εinv,nb
:= ((αIdnb

,0nb
))  Φ1−δ,nb

inv;
εinv
α

⊙ ΦÃ,Id,αnb,nq
,

we have

sup
a∈D

‖(Aa
nb,nq

)−1 −matr(R(ΦÃinv;εinv,nb
))(anq

)‖2 ≤ εinv,

and

L(ΦÃinv;εinv,nb
) ≤ Cinv,A

[
1 + log(1 + |log εinv|) + log(nb)

]

×
[
1 + |log εinv|+ log(nb) + log(1 + |log εinv|)

]

M(ΦÃinv;εinv,nb
) ≤ Cinv,An

3
b

[
1 + |log εinv|

][
1 + log(1 + |log εinv|) + log(nb)

]2

×
[
1 + |log εinv|+ log(nb) + log(1 + |log εinv|)

]
.
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Proof. We start by estimating the approximation error. By Lemma 5.3,

‖matr(R(ΦÃ,Id,αnb,nq
(anq)))‖2 ≤ 1− δ.

We temporarily restrict εinv ∈ (0, α/4). Then, we have, for all a ∈ D,

‖(Ãa
nb,nq

)−1 −matr(R(ΦÃinv;εinv,nb
))(anq

)‖2
(5.3)
= α‖(αÃa

nb,nq
)−1 −matr(R(Φ1−δ,nb

inv;
εinv
α

⊙ ΦÃ,Id,αnb,nq
))(anq)‖2

L. 5.2
= α‖(αÃa

nb,nq
)−1 −matr(R(Φ1−δ,nb

inv;
εinv
α

)(−αvec(Ãa
nb,nq

) + vec(Idnb
))‖2

T. 3.4
≤ α

εinv
α

= εinv.

We now have to bound the depth and size of ΦÃinv;εinv,nb
. First, we remark that

m(εinv/α, δ) =

⌈
log (Ccoerεinv/2)

log(1− δ)

⌉
,

where m(·, ·) is defined in Theorem 3.4. Now, we use the fact that there exists C1 > 1 such that,
for all εinv ∈ (0, 1),

| log(Ccoerεinv/2)| ≤ C1(1 + | log εinv|).

Furthermore, there existsC2 > 1 such that for all nb ∈ N, δ ≥ C−1
2 . Remark then that |log(1− y)| ≥

y for all y ∈ (0, 1), hence |log(1− δ)|−1 ≤ C2. We infer that for all εinv ∈ (0, 1) and for all nb ∈ N,

m(εinv/α, δ) ≤ C1C2(2 + | log εinv|) .

Therefore, from Theorem 3.4 we obtain that there exist constants C4, C5 > 0 dependent only on
Ccoer, Ccont, and d such that

L
(
Φ1−δ,nb

inv;
εinv
α

)
≤ C4 (1 + log(1 + | log εinv|) + log(nb)) · (1 + | log εinv|+ log(nb) + log(1 + | log εinv|))

and

M
(
Φ1−δ,nb

inv;
εinv
α

)
≤ C5(1 + | log εinv|)n3

b

[
1 + log(1 + | log εinv|) + log(nb)

]2

×
[
1 + | log εinv|+ log(nb) + log(1 + | log εinv|)

]
.

We can now drop the restriction εinv < α/4, adjusting the constants C4 and C5. Since, in addition,

L(ΦÃ,Id,αnb,nq
) = 2, M(ΦÃ,Id,αnb,nq

) ≤ C6n
3
b,

for C6 > 0 independent of nb, we obtain the bounds on the depth and size of ΦÃinv;εinv,nb
.

5.1.2. Computation of the coefficients.

Proposition 5.5. There exists a constant Ccu > 0 such that for all nb ∈ N and for all εu ∈ (0, 1),
writing nq = nb + 1 and

Φcuεu,nb
:=
(
(c̃⊤f ;nb

⊗ Idnb
,0nb

)
)
⊙ ΦÃ

inv;εu/(‖f‖L2(Ω)n
3/2
b CA),nb

,
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where CA is the constant from Lemma 4.3, we have

sup
a∈D

‖cau;nb,nq
− R(Φcuεu,nb

)(anq)‖2 ≤ εu

and

L(Φcuεu,nb
) ≤ Ccu

[
1 + log(1 + |log εu|+ log nb) + log(nb)

]

×
[
1 + |log εu|+ log(nb) + log(1 + |log εu|+ log nb)

]

M(Φcuεu,nb
) ≤ Ccun

3
b

[
1 + |log εu|

][
1 + log(1 + |log εu|+ log nb) + log(nb)

]2

×
[
1 + |log εu|+ log(nb) + log(1 + |log εu|)

]
.

Proof. For allm,n, l ∈ N, let B ∈ Rm×n and C ∈ Rn×l. Then

vec(BC) = (C⊤ ⊗ Idm)vec(B).

This identity implies

(5.4)
(
c̃⊤f ;nb

⊗ Idnb

)
R(ΦÃ

inv;εu/(‖f‖L2(Ω)n
3/2
b CA),nb

)(anq)

= matr

(
R(ΦÃ

inv;εu/(‖f‖L2(Ω)n
3/2
b CA),nb

)(anq)

)
c̃f ;nb

.

We assume that n
3/2
b CA‖f‖L2(Q) ≥ 1; if this does not hold, it is sufficient to temporarily restrict

εu < n
3/2
b CA‖f‖L2(Q) and drop this restriction at the end of the proof by adjusting the constants.

Therefore, for all a ∈ D,

‖cau;nb,nq
− R(Φcuεu,nb

)(anq
)‖2

(4.7)
= ‖

(
(Ãa

nb,nq
)−1 −matr

(
R(ΦÃ

inv;εu/(‖f‖L2(Ω)n
3/2
b CA),nb

)(anq)

))
c̃f ;nb

‖2

≤ ‖(Ãa
nb,nq

)−1 −matr

(
R(ΦÃ

inv;εu/(‖f‖L2(Ω)n
3/2
b CA),nb

)(anq
)

)
‖2‖c̃f ;nb

‖2
P. 5.4
≤ εu

n
3/2
b CA‖f‖L2(Q)

‖(A1
nb,nq

)−1‖2‖cf ;nb
‖2

(4.6)
≤ εu

n
3/2
b CA‖f‖L2(Q)

‖(A1
nb,nq

)−1‖2
√
nb‖f‖L2(Q)

L. 4.3
≤ εu

CAnb‖f‖L2(Q)
CAnb‖f‖L2(Q) = εu,

where in the last three steps we have used Proposition 5.4, bound (4.6), and Lemma 4.3. To derive

the bounds on the size and depth of ΦÃ
inv;εu/(‖f‖L2(Ω)n

3/2
b CA),nb

, first remark that

‖c̃⊤f ;nb
⊗ Idnb

‖0 ≤ n2
b.

Then, defining εinv := εu/(n
3/2
b ‖f‖L2(Q)CA), there exists C1 > 0 such that for all nb ∈ N and for

all εu ∈ (0, 1),

|log εinv| ≤ C1 (1 + |log εu|+ log nb) .

Inserting this bound in Proposition 5.4 and applying Proposition 5.4 concludes the proof.
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5.2. Trunk network. The following emulation rates for the approximation of the polynomial
basis are a direct consequence of [23, Proposition 2.13].

Proposition 5.6. There exists Cb > 0 such that, for all εb ∈ (0, 1) and all nb ∈ N, there exists a NN
Φb
εb,nb

such that R(Φb
εb,nb

) : Rd → Rnb ,

max
i∈{1,...,nb}

‖ϕi −
[
R(Φb

εb,nb
)
]
i
‖H1(Q) ≤ εb,

and
L(Φb

εb,nb
) ≤ Cb

(
1 + |log εb|+ n

1/d
b

)
(1 + log nb)

M(Φb
εb,nb

) ≤ Cb

(
n
2/d
b + n

1/d
b |log εb|+ nb(1 + log nb + |log εb|)

)
.

5.3. Operator network expression rates. Combining the results from Sections 5.1 and 5.2,
we obtain the main result on the operator network approximation of (2.4). The structure of the
operator network is schematically represented in Figures 1 and 2.

Theorem 5.7. There exists C > 0 such that, for all ε ∈ (0, 1), for all a ∈ D with ua = S(a) and
solution operator S as defined in Section 2, there exist

(a) nb, nq ∈ N,
(b) a set of points xenc := {x1, . . .xnq

} ⊂ Q,
(c) two NNs Φbr

ε and Φtr
ε with R(Φbr

ε ) : Rnq → Rnb and R(Φtr
ε ) : Q→ Rnb ,

such that
(i) nb, nq ≤ C(1 + |log ε|d),
(ii) the following error bound holds:

sup
a∈D

‖ua − (RΦtr
ε
◦ AΦbr

ε
◦ Exenc

)(a)‖H1(Q) ≤ ε,

(iii) as ε ↓ 0,

L(Φbr
ε ) = O (|log ε| (log |log ε|)) , M(Φbr

ε ) = O
(
|log ε|3d+2

(log |log ε|)2
)
,

and

L(Φtr
ε ) = O (|log ε| (log |log ε|)) , M(Φtr

ε ) = O
(
|log ε|d+1

)
.

Proof. Due to Lemma A.2, there exist constants CG, bG, Cq > 0 such that for all nb ∈ N, there
exists nq ≤ Cqnb such that

sup
a∈D

‖ua − uanb,nq
‖H1(Q) ≤ CG exp(−bGn1/d

b ),

where uanb,nq
=
∑nb

i=1

[
cau;nb,nq

]
i
ϕi ∈ Xnb

is the fully discrete Galerkin projection of ua onto Xnb
,

uanb,nq
∈ Xnb

: b
a
nq
(uanb,nq

, v) = (f, v), ∀v ∈ Xnb
.

We assume, without loss of generality and for ease of notation, that CG ≥ 1. Fix now

(5.5) p(ε) =

⌈ |log(ε/3)|+ logCG

bG

⌉
+ 1, nb(ε) = p(ε)d − 1 , nq(ε) = nb(ε) + 1.

Then, we observe that (5.5) implies the existence of a constant Cb > 0 such that, for all ε ∈ (0, 1),

we have nb(ε), nq(ε) ≤ Cb(1 + |log ε|d), i.e., item (i) of the statement of the theorem.
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We also define Cpol > 0 as a constant such that, for all p ∈ N,

(5.6) ‖∇q‖L2(Q) ≤ Cpolp
2‖q‖L2(Q), ∀q ∈ Qp(Q).

This inverse inequality follows straightforwardly from the classical Markov inequality in (0, 1),

with a tensorization argument (which yields that Cpol ∼
√
d). With nb(ε) as in (5.5) define

(5.7) εb :=
ε

3nb(ε)(2 + supa∈D ‖ua‖L2(Q))
, εu :=

ε

3(1 + C2
polnb(ε)4/d)1/2nb(ε)1/2

, εG :=
ε

3
.

We assume that ε ∈ (0, 1) implies εb, εu ∈ (0, 1). If this is not the case, it is sufficient to restrict ε
to values such that εb, εu ∈ (0, 1); the restriction can be dropped at the end of the proof. Due to
(5.5),

(5.8) sup
a∈D

‖ua − uanb(ε),nq(ε)
‖H1(Q) ≤ εG.

Define then

Φbr
ε = Φcuεu,nb(ε)

and Φtr
ε = Φb

εb,nb(ε)
,

where the NNs Φcuεu,nb(ε)
and Φb

εb,nb(ε)
are defined in Propositions 5.5 and 5.6, respectively.

Error estimate. For all a ∈ D,

‖ua −
(
R(Φbr

ε )(anq)
)
· R(Φtr

ε )‖H1(Q)

≤ ‖ua − uanb(ε),nq(ε)
‖H1(Q) + ‖uanb(ε),nq(ε)

−
(
R(Φbr

ε )(anq)
)
· R(Φtr

ε )‖H1(Q) =: (I) + (II).

We have already established that (I) ≤ εG = ε/3.
Consider term (II). We have

(II) = ‖
nb(ε)∑

i=1

([
cau;nb(ε),nq(ε)

]
i
ϕi −

[
R(Φcuεu,nb(ε)

)(anq
)
]
i

[
R(Φb

εb,nb(ε)
)
]
i

)
‖H1(Q)

≤ ‖
nb(ε)∑

i=1

([
cau;nb(ε),nq(ε)

]
i
−
[
R(Φcuεu,nb(ε)

)(anq
)
]
i

)
ϕi‖H1(Q)

+ ‖
nb(ε)∑

i=1

[
R(Φcuεu,nb(ε)

)
]
i

(
ϕi −

[
R(Φb

εb,nb(ε)
)
]
i

)
‖H1(Q)

=: (IIa) + (IIb).

Denote, for all i ∈ {1, . . . , nb(ε)},

ηi :=
[
cau;nb(ε),nq(ε)

]
i
−
[
R(Φcuεu,nb(ε)

)(anq
)
]
i
.

Using the Cauchy-Schwarz inequality, the bound ‖ϕi‖L2(Q) ≤ 1, the polynomial inverse inequality
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(5.6) and Proposition 5.5, we obtain

(IIa)2 ≤ ‖
nb(ε)∑

i=1

ηiϕi‖2H1(Q) =

∫

Q



nb(ε)∑

i=1

ηiϕi




2

+

∫

Q



nb(ε)∑

i=1

ηi∇ϕi




2

C-S
≤



nb(ε)∑

i=1

η2i



nb(ε)∑

i=1

(
‖ϕi‖2L2(Q) + ‖∇ϕi‖2L2(Q)

)

(5.6)
≤ ‖cau;nb(ε),nq(ε)

− R(Φcuεu,nb(ε)
)(anq)‖22

(
1 + C2

polnb(ε)
4/d
)
nb(ε)

P. 5.5
≤ ε2u

(
1 + C2

polnb(ε)
4/d
)
nb(ε)

(5.7)
≤
(ε
3

)2
.

Next, we estimate

(5.9)

‖R(Φcuεu,nb(ε)
)(anq)‖2 ≤ ‖R(Φcuεu,nb(ε)

)(anq)− cau;nb(ε),nq(ε)
‖2 + ‖cau;nb(ε),nq(ε)

‖2
P. 5.5,(D.1)

≤ 1 + CL2nb(ε)
1/2‖uanb(ε),nq(ε)

‖L2(Q)

≤ 1 + CL2nb(ε)
1/2‖uanb(ε),nq(ε)

− ua‖L2(Q) + CL2nb(ε)
1/2‖ua‖L2(Q)

(5.8)
≤
(
2 + ‖ua‖L2(Q)

)
CL2nb(ε)

1/2.

Then,

(IIb)2
C-S
≤ ‖R(Φcuεu,nb(ε)

)(anq
)‖22

nb(ε)∑

i=1

‖ϕi −
[
R(Φb

εb,nb(ε)
)
]
i
‖2H1(Q)

≤ nb(ε)‖R(Φcuεu,nb(ε)
)(anq

)‖22 max
i∈{1,...,nb(ε)}

‖ϕi −
[
R(Φb

εb,nb(ε)
)
]
i
‖2H1(Q)

P. 5.6,(5.9)
≤ nb(ε)(2 + ‖ua‖L2(Q))

2C2
L2nb(ε)ε

2
b

(5.7)
≤
(ε
3

)2
.

We can conclude that

‖ua −
(
R(Φbr

ε )(anq
)
)
· R(Φtr

ε )‖H1(Q) ≤ (I) + (IIa) + (IIb) ≤ ε.

Depth and size bounds. Using (5.5) and the definitions (5.7), we obtain that there exists a
constant C1 > 0 such that, for all ε ∈ (0, 1),

1 + max (|log εb| , |log εG| , |log εu|) ≤ C1(1 + |log ε|).

We infer then, from Proposition 5.5, that there exists C2 > 0 such that, for all ε ∈ (0, 1),

L(Φcuεu,nb(ε)
) ≤ C2

(
1 + log(1 + |log ε|d)

)
(1 + |log ε|)

and

M(Φcuεu,nb(ε)
) ≤ C2

(
1 + |log ε|d

)3
(1 + |log ε|)2

(
1 + log(1 + |log ε|d)

)2
.
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Furthermore, from Proposition 5.6, we have that there exists C3 > 0 such that for all ε ∈ (0, 1)

L(Φb
εb,nb(ε)

) ≤ C3(1 + |log ε|)
(
1 + log(1 + |log ε|d)

)

and

M(Φb
εb,nb(ε)

) ≤ C3(1 + |log ε|d+1
).

Using the definition of Φtr
ε and Φbr

ε gives Item (iii) and concludes the proof.

Remark 5.8. The implicit constants in the size bounds of the operator networks in Theorem 5.7
and in the theorems of the upcoming sections depend, in general, exponentially on the dimension
d.

Remark 5.9. In Theorem 5.7, we have considered the data-to-solution map a 7→ ua for a fixed,
given right-hand side f . The present analysis may be extended to the operator S : (a, c, f) 7→ u
where u is the solution to the reaction-diffusion equation

−∇ · (a∇u) + cu = f in Ω

with (analytic inQ andQ-periodic) positive diffusion coefficient function a, nonnegative reaction
coefficient function c and source-term f . This requires a straightforwardmodification of the branch
network so that

1. it takes the point evaluations of f at xenc as input and outputs an exponentially consistent
numerical quadrature approximation of cf ;nb

in (4.5);
2. the approximation of cf ;nb

is then passed to a network approximating matrix-vector mul-
tiplication (see [15, Proposition 3.7]) with the output of the network of Proposition 5.4.

The construction of the remaining parts of the operator network follows along the same lines.

5.4. Parametric diffusion coefficient. In many applications, for example in uncertainty quan-
tification, one is interested in the case where the diffusion coefficient in (2.4) is parametric. This is
naturally accommodated for by composition with solution operator networks and we briefly de-
tail this here. Specifically, suppose that there exists dp ∈ N and a compact parameter set P ⊂ Rdp

such that a : P → Hol(Ω) and that there exist constants amin, Cp, bp, αp, Ap, Aψ > 0, and functions
ψi : Q→ R and ai : P → R, i ∈ N, such that

(5.10) inf
y∈P

inf
x∈Q

a(y)(x) ≥ amin,

that

(5.11) ∀np ∈ N, sup
y∈P

‖a(y)−
np∑

i=1

ai(y)ψi‖L∞(Q) ≤ Cp exp(−bpnαp
p ),

with

(5.12) ∀i ∈ N, ψi ∈ Hol(Ω;Aψ), ai ∈ Hol(P;Ap),

and that

(5.13) sup
y∈P

∞∑

i=1

|ai(y)| ≤ Ap.

Here, we use the same constantAp in the second hypothesis in (5.12) and in (5.13) only to simplify
notation. For all y ∈ P , we denote uy ∈ X the solution to

(5.14) −∇ · (a(y)∇uy) = f, in Ω.
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Remark 5.10. Diffusion coefficient functions that can be written in Fourier series as

a(y)(x) =
∑

k∈Zd

(ak(y) + ibk(y))e
i2πk·x,

where ak, bk ∈ Hol(P, Ap) are chosen so that a is a real function for all y, with exponential decrease
of supy∈P(|ak(y)|+ |bk(y)|)with respect to |k|, and such that a is uniformly bounded from below
by a positive constant in the sense that (5.10) holds for its real part, fulfill conditions (5.11), (5.12)
and (5.13).

Lemma 5.11. There exists C > 0 such that for all np ∈ N and for all ε ∈ (0, 1), there exists a NN
Φa,coefε,np

with input dimension dp and output dimension np such that

(5.15) max
i=1,...,np

‖ai −
[
R(Φa,coefε,np

)
]
i
‖L∞(P) ≤ ε

and that L(Φa,coefε,np
) ≤ C(1 + |log ε|)(1 + log |log ε|) and M(Φa,coefε,np

) ≤ C(1 + |log ε|dp+1
)np.

Proof. The statement follows from a parallelization of the network of [23, Theorem 3.6].

Theorem 5.12. Let dp ∈ N and let a and uy be defined as above. There exists C > 0 such that, for all
ε ∈ (0, 1), there exist

(a) nb ∈ N,
(b) two NNs Φbr

ε and Φtr
ε with R(Φbr

ε ) : Rdp → Rnb and R(Φtr
ε ) : Q→ Rnb ,

such that
(i) nb ≤ C(1 + |log ε|d),
(ii) the following error estimate holds:

sup
y∈P

‖uy −
(
R(Φbr

ε )(y)
)
· R(Φtr

ε )‖H1(Q) ≤ ε,

(iii) as ε ↓ 0,

L(Φbr
ε ) = O (|log ε| (log |log ε|)) ,

M(Φbr
ε ) = O

(
|log ε|3d+2

(log |log ε|)2 + |log ε|1+dp+1/αp

)
,

and

L(Φtr
ε ) = O (|log ε| (log |log ε|)) , M(Φtr

ε ) = O
(
|log ε|d+1

)
.

Proof. The proof proceeds in several steps. We first prove a consistency bound, then detail the
construction of the ONet, and conclude with verification of the asserted bounds on the depth and
size of the ONet.

Let CL > 0 be the constant such that, given a1, a2 ∈ L∞(Ω) such that

(5.16) 0 <
amin

4
≤ ai ≤ max(amax, (1 +Ap)Aψ), a. e. in Q and for i = 1, 2,

and ui = S(ai), i = 1, 2, then

‖u1 − u2‖H1(Q) ≤ CL‖a1 − a2‖L∞(Q),

see Lemma B.1. We suppose, without loss of generality and for ease of notation, that Aψ ≥ 1 and
CL ≥ 1. Let now np be the smallest integer such that

(5.17) CLCp exp(−bpnαp
p ) ≤ min

(ε
3
,
amin

2

)
.
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This implies that there exists a constant C1 > 0 (depending only on CL, Cp, bp, amin) such that

np ≤ C1(1 + |log ε|1/αp)

and that, due to (5.10), (5.11), (5.12), and (5.13),

(5.18) inf
y∈P

inf
x∈Q

np∑

i=1

ai(y)ψi(x) ≥
amin

2
, sup

y∈P
‖
np∑

i=1

ai(y)ψi‖L∞(Q) ≤ ApAψ.

Let also

(5.19) εp :=
1

npAψ
min

(
ε

3CL
,
amin

4

)
, ã :=

np∑

i=1

[
R(Φa,coefεp,np

)
]
i
ψi,

where the network Φa,coefεp,np
is defined in Lemma 5.11. We now show that ã fulfills conditions like

(2.1) and (2.2) (with updated values of the constants amin, amax, AD), uniformly with respect to
np and εp. From (5.15) and (5.18), it follows that, for all k ∈ N0,

(5.20)
sup
y∈P

‖ã(y)‖Wk,∞(Q) ≤ sup
y∈P

np∑

i=1

(
|ai(y)−

[
R(Φa,coefεp,np

)(y)
]
i
|+ |ai(y)|

)
‖ψi‖Wk,∞(Q)

≤ (npεp +Ap)A
k+1
ψ k! ≤ (1 +Ap)A

k+1
ψ k!.

Furthermore, for all y ∈ P and all x ∈ Q,

(5.21)

ã(y)(x) ≥
np∑

i=1

([
R(Φa,coefεp,np

)(y)
]
i
− ai(y)

)
ψi(x) +

np∑

i=1

ai(y)ψi(x)

≥ amin

2
− npεpAψ,

≥ amin

4
.

Here we have used (5.13), (5.15), (5.18), and the definition of εp in (5.19).
Construction of the operator network and error estimate. For q ∈ N, nq = qd, we introduce

the matrixVnq,np
∈ Rnq×np with entries

(5.22)
[
Vnq,np

]
ij
= ψj(x

(q)
i ), i = 1, . . . , nq, j = 1, . . . , np,

where x
(q)
1 , . . . ,x

(q)
nq are the quadrature nodes introduced in Section 4.2. Then the NN

(5.23) Φã

εp,np,nq
=
((
Vnq,np ,0nq

))
⊙ Φa,coefεp,np

has realization such that

R(Φã

εp,np,nq
)(y) =




ã(y)(x
(q)
1 )

...

ã(y)(x
(q)
nq )


 .

Let ũy ∈ X denote, for each y ∈ P , the solution to

−∇ · (ã(y)∇ũy) = f in Ω.



20 C. MARCATI AND CH. SCHWAB

Thanks to (5.20), (5.21), and to Theorem 5.7, there exists a constant C2 independent of ε, nq ∈ N

such that nq ≤ C2(1 + |log ε|), and networks Φ̃br
ε/3 and Φ̃tr

ε/3 such that

∀y ∈ P : ‖ũy −
(
R(Φ̃br

ε/3) ◦ R(Φã

εp,np,nq
)
)
(y) · R(Φ̃tr

ε/3)‖H1(Q) ≤
ε

3
.

Furthermore, for all y ∈ P , a(y) and ã(y) satisfy the conditions in (5.16), hence for all y ∈ P
‖uy − ũy‖H1(Q) ≤ CL‖a(y)− ã(y)‖L∞(Q)

≤ CL

(
‖a(y)−

np∑

i=1

ai(y)ψi‖L∞(Q) + ‖
np∑

i=1

(
ai(y)−

[
R(Φa,coefεp,np

)(y)
]
i

)
ψi‖L∞(Q)

)

≤ ε

3
+ CLnpεpAψ

≤ 2

3
ε,

where we have used (5.11), (5.15), (5.17), and (5.19) in the third inequality and (5.19) in the last
one. We deduce that

sup
y∈P

‖uy −
(
R(Φ̃br

ε/3) ◦ R(Φã

εp,np,nq
)
)
(y) · R(Φ̃tr

ε/3)‖H1(Q) ≤ ε,

which is Item (ii), with

Φbr
ε := Φ̃br

ε/3 ⊙ Φã

εp,np,nq
, Φtr

ε := Φ̃tr
ε/3.

Depth and size bounds. The bounds on the depth and size ofΦtr
ε can be inferred directly from

Theorem 5.7. To compute bounds on the size and depth of Φbr
ε , note that, by Lemma 5.11, there

exist C3, C4, C5, C6 independent of ε such that

(5.24) L(Φa,coefεp,np
) ≤ C3(1 + |log εp|)(1 + log |log εp|) ≤ C4(1 + |log ε|)(1 + log |log ε|)

and

(5.25) M(Φa,coefεp,np
) ≤ C5(1 + |log εp|dp+1

)np ≤ C6(1 + |log ε|dp+1+1/αp).

Furthermore, there exists C7 independent of ε such that

(5.26) ‖Vnq,np
‖0 ≤ npnq ≤ C7(1 + |log ε|1+1/αp).

From (5.25) and (5.26) it follows that

(5.27) L(Φã

εp,np,nq
) ≤ C8(1 + |log ε|)(1 + log |log ε|), M(Φã

εp,np,nq
) ≤ C9(1 + |log ε|dp+1+1/αp),

for constants C8, C9 independent of ε. Combining the bounds in (5.27) with the bounds on the

depth and size of Φ̃br
ε/3 coming from Theorem 5.7 concludes the proof.

Remark 5.13. If each function ai does not depend on all the parameters but only on a subset of
them, the size bound of Theorem 5.12 results in an overestimation. Specifically, for all i ∈ N,
let Pi be the domain of ai and denote dp,i := dim(Pi). Then, modifying Lemma 5.11 so that
the subnetworks approximating each of the ai only take a dp,i-dimensional input, we obtain in
Theorem 5.12 that there exists a constant c > 0 independent of ε such that for ε ↓ 0,

M(Φbr
ε ) = O


|log ε|3d+2

(log |log ε|)2 +
c|log ε|1/αp∑

i=1

|log ε|1+dp,i

 .

Clearly, setting dp,i = dp for all i in the equation above gives the estimate in Theorem 5.12.
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Remark 5.14. Similar results to Theorem 5.12 can be obtained through the technique in [15], by
using the exponential convergence of polynomial approximations to the functions in the solution
manifold M = {u(y) : y ∈ P} to derive an upper bound on the n-width of M.

6. Generalizations. All steps of the analysis of ONet emulation rates for the coefficient-to-
solutionmap of (2.4) directly generalize to other, structurally similar, linear divergence-form ellip-
tic PDEs. We illustrate the extension of the preceding result by two of these: anisotropic diffusion-
reaction equations and linear elastostatics.

6.1. Linear anisotropic diffusion-reaction equations.

6.1.1. Definition of the problem. We consider again the torus Ω = (R/Z)d. For a constant
ADrd > 0, introduce the set of admissible data

Drd ⊂ Hol(Ω;ADrd)d×d ×Hol(Ω;ADrd)

of pairs (A, c) and suppose there exist Q0 ⊂ Q, amin, cmin > 0 such that for all (A, c) ∈ Drd,
• A is symmetric and is uniformly positive definite, i.e.,Aij = Aji and

∀x ∈ Q, ∀ξ ∈ Rd, ξ⊤A(x)ξ ≥ amin|ξ|2 ,

• c(x) ≥ cmin for all x ∈ Q0.
For all (A, c) ∈ Drd, the bilinear form b

(A,c)(·, ·) : H1(Ω)×H1(Ω) = H1
per(Q)×H1

per(Q) → R given
by

b
(A,c)(w, v) :=

∫

Q

((A∇w) · ∇v + cwv)

is coercive, i.e., there exists a constant α0 > 0 independent of (A, c) such that

∀v ∈ H1(Ω), b
(A,c)(v, v) ≥ α0‖v‖2H1(Q) .

The continuity of the form b
(A,c)(·, ·) on H1(Ω) × H1(Ω) → R being evident, the Lax-Milgram

Lemma implies that for every f ∈ Hol(Ω) there exists a unique solution

u ∈ H1(Ω) : b
(A,c)(u, v) = (f, v) ∀v ∈ H1(Ω) = H1

per(Q).

For given, fixed f ∈ Hol(Ω), the coefficient-to-solution map

Srd : (A, c) 7→ u

is analytic. Furthermore, there exists AUrd > 0 such that

Srd(Drd) ⊂ Hol(Ω;AUrd),

which can be proven as in Lemma 4.1.



22 C. MARCATI AND CH. SCHWAB

6.1.2. Operator network approximation. We introduce, for allnq ∈ N such that q := n
1/d
q ∈ N,

the encoding operator Erd
xenc

: C(Ω)d×d × C(Ω) → Rd
2nq+nq such that

Erd
xenc

(A, c) =




vec(A(x
(q)
1 ))

...

vec(A(x
(q)
nq ))

c(x
(q)
1 )
...

c(x
(q)
nq )




,

where xenc = x
(q)
1 , . . . ,x

(q)
nq are the points from Section 4.2. Theorem 5.7 can then be extended to

this class of reaction-diffusion equations.

Theorem 6.1. Theorem 5.7 holds with a ∈ D replaced by (A, c) ∈ Drd, S(a) replaced by Srd(A, c),
and Exenc

(a) replaced by Erd
xenc

(A, c).

For the proof, for all p ∈ N, writing ñb = pd, consider the basis functions {ϕ̃i}ñb
i=1 of Qp(Q)

such that

{ϕ̃i}ñb
i=1 = {ϕi}nb

i=1 ∪ {L0 ⊗ · · · ⊗ L0},

where L0 ≡ 1 is the constant, unit function in (0, 1). Define further

X̃nb
:= span({ϕ̃1, . . . , ϕ̃ñb

}) ⊂ X̃ := H1(Ω) = H1
per(Q).

In order to prove Theorem 6.1, we have to replace the input layer network introduced in
Lemma 5.1 with an input layer adapted for anisotropic diffusion-reaction problems, as introduced

in Lemma 6.2 below. For k ∈ {1, . . . , nq}, we introduce D̃(x
(q)
k ) such that

D̃
ij
mn(x

(q)
k ) = w

(q)
k (∂xn

ϕ̃j)(x
(q)
k )(∂xm

ϕ̃i)(x
(q)
k ), (i, j) ∈ {1, . . . , ñb}2, (m,n) ∈ {1, . . . , d}2.

Furthermore, let v : N2 → N be the reordering such that for any matrix A,

(6.1) vec(A)v(i,j) = Aij .

We introduce the operation ṽec : Rñb×ñb×d×d → Rñ
2
b×d

2

ṽec(D̃(x
(q)
k ))v(i,j)v(m,n) = D̃

ij
mn(x

(q)
k ).

Finally, define

M̂ij(x
(q)
k ) = w

(q)
k ϕ̃i(x

(q)
k )ϕ̃j(x

(q)
k ).

Lemma 6.2. For all α ∈ R the one-layer NN

Φ(A,c),α
nb,nq

:=
((

−α
[
ṽec(D̃(x

(q)
1 ))| . . . | ṽec(D̃(x(q)

nq
))|vec(M̂(x

(q)
1 )| . . . |vec(M̂(x(q)

nq
))
]
,0ñ2

b

))

is such that

matr

(
R(Φ(A,c),α

nb,nq
)(Erd

xenc
(A, c))

)
ij
= −αb(A,c)(ϕ̃j , ϕ̃i)
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and M(Φ
(A,c),α
nb,nq ) ≤ (d2 + 1)ñ2

bnq .

Proof. We have

[
R
(
Φ(A,c),α
nb,nq

)
(Erd

xenc
(A, c))

]
v(i,j)

= −α
nq∑

k=1

w
(q)
k

(
d∑

m,n=1

[Amn(∂xn ϕ̃j)(∂xm ϕ̃i)] (x
(q)
k ) + [cϕ̃jϕ̃i] (x

(q)
k )

)

= −α
nq∑

k=1

w
(q)
k

(
[(A∇ϕ̃i) · (∇ϕ̃j)] (x(q)

k ) + [cϕ̃jϕ̃i] (x
(q)
k )
)
,

hence the equality after matricization. The size bound follows from the fact that

‖D̃(x
(q)
k )‖0 ≤ d2ñ2

b , ‖M̂(x
(q)
k )‖0 ≤ ñ2

b ,

for all k ∈ {1, . . . , nq}.
We can now prove Theorem 6.1.

Proof of Theorem 6.1. The proof follows along the same lines as the proof of Theorem 5.7. In
particular, in the construction of Φbr

ε , the input network ΦA,αnb,nq
and Lemma 5.1 are replaced by the

network Φ
(A,c),α
nb,nq and Lemma 6.2. Then, the spaces X and Xnb

are replaced by X̃ and X̃ñb
. The

basis {ϕ̃1, . . . , ϕ̃ñb
} is equal to {ϕ1, . . . , ϕnb

} with the addition of a constant function, which can
be emulated exactly by deep ReLU neural networks. Hence, Proposition 5.6 can be extended to
this case. Finally, the matrices Aa

nb,nq
and A

1
nb,nq

used in the proof of Theorem 5.7 are replaced,
respectively, by the matrices with entries

b
(A,c)
nq

(ϕ̃j , ϕ̃i) and b
(Idd,1)
nq

(ϕ̃j , ϕ̃i), (i, j) ∈ {1, . . . , ñb}2,

where

b
(A,c)
nq

(u, v) :=

nq∑

k=1

w
(q)
k

(
A(x

(q)
k )∇u(x(q)

k )
)
· ∇v(x(q)

k ) +

nq∑

k=1

w
(q)
k c(x

(q)
k )u(x

(q)
k )v(x

(q)
k ),

for all u, v ∈ C1(Ω). Since the bilinear form b
(A,c) is coercive and continuous on H1(Ω), results

equivalent to Lemmas 4.2 and 4.3 with the new matrices can be proven directly. The rest of the
proof is the same as the proof of Theorem 5.7.

6.2. Linear Elastostatics.

6.2.1. Definition of the problem. We assume d = 2, 3. Small, linear elastic deformation of
a body occupying Q = (0, 1)d with periodic boundary conditions and subject to a prescribed,
periodic body force f : Ω = Rd/Zd → Rd can be described by the displacement field u : Ω → Rd

which satisfies the equilibrium of stress

(6.2) divσ[u] + f = 0 in Ω.

Here σ[u] : Ω → Rd×dsym is symmetric matrix function, the so-called stress tensor. It depends on the

displacement field u via the (linearized) strain tensor ε[u] : Ω → Rd×dsym which is given by

(6.3) ε[u] :=
1

2

(
gradu+ (gradu)⊤

)
, (ε[u])ij :=

1

2
(∂jui + ∂iuj), i, j = 1, ..., d .
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In the linearized theory, the tensors σ and ε in (6.2), (6.3) are related by the linear constitutive
stress-strain relation (“Hooke’s law”)

(6.4) σ = Aε.

In (6.4), A is a fourth order tensor field, i.e. A = {Aijkl : i, j, k, l = 1, ..., d}, with certain symmetries:
the d4 component functions Aijkl(x) are assumed analytic in [0, 1]d and 1-periodic with respect to
each coordinate, and satisfy for every x ∈ Ω,

(6.5) ∀τ ∈ Rd×dsym , A(x)τ ∈ Rd×dsym and ∀τ ,σ ∈ Rd×dsym , (A(x)τ ) : σ = (A(x)σ) : τ .

Key assumption on A is coercivity: there exists a constant amin > 0 such that

(6.6) ∀x ∈ Ω, ∀τ ∈ Rd×dsym , (A(x)τ ) : τ ≥ amin‖τ‖22 .

see, e.g., [30] for details. Inserting (6.4) into (6.2), integrating by parts and noting the periodic
boundary conditions, the so-called “primal variational formulation” of (6.2) reads: find uA ∈
[H1(Ω)/R]d such that

(6.7) b
A(uA,v) :=

∫

Ω

ε[v] : (Aε[uA]) =

∫

Ω

f · v ∀v ∈ [H1(Ω)/R]d .

Unique solvability of (6.7) is implied by the Lax-Milgram Lemmawith (6.6) and Korn’s inequality
upon noticing that the space Xd = [H1(Ω)/R]d does not contain rigid body motions: rigid body
rotations are eliminated due to the periodicity of the present setting, and rigid body translations
with the factoring of constants in each component. TheKorn inequality and the Poincaré inequality
(2.3) imply existence of a positive constant c such that

∀v ∈ Xd : b
A(v,v) ≥ camin‖v‖2H1(Q) .

For given, fixed,Q-periodic f ∈ [Hol(Ω)/R]d, there exists a unique solution of (6.7). Furthermore,

the coefficient-to-solution map Sel : A 7→ uA is analytic from the set Del = {A ∈ Hol(Ω, ADel)d
4

:
(6.6) and (6.5) hold} to Uel = Sel(Del) ⊂ Xd ∩Hol(Ω, AUel)d, for positive constants ADel , AUel .

6.2.2. Operator network approximation. For the operator network approximation of themap
Sel, we introduce modified encoding and reconstruction operators. To construct the encoding
operator, we extend the definition of the vectorization operation to fourth order tensors so that,
for all B ∈ Rn1×···×n4 , vec(B) ∈ Rn1···n4 . We consequently extend the definition of the reordering
function introduced in Section 6.1 to v : N× N× N× N such that

(6.8) vec(B)v(m,n,p,q) = Bmnpq.

The modified encoding operator Eel
xenc

: [C([0, 1]d)]d×d×d×d → Rd
4nq is then given by

(6.9) Eel
xenc

(A) :=




vec(A(x
(q)
1 ))

...

vec(A(x
(q)
nq ))


 ,

where xenc = x
(q)
1 , . . . ,x

(q)
nq are the usual quadrature points. For all m ∈ N, the modified recon-

struction operator Rel : Rdm → H1(Ω)d is instead defined, given a neural network Φbranch such
that R(Φbranch) : Q→ Rm, as

(6.10) Rel
Φbranch(c)(x) =

(
Idd ⊗ R(Φbranch)(x)

)⊤
c, ∀x ∈ Q, ∀c ∈ Rdm.

We can now state the operator network approximation result for problem (6.2).
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Theorem 6.3. Theorem 5.7 holds with a ∈ D replaced by A ∈ Del, S(a) replaced by Sel(A), Exenc
(a)

replaced by Eel
xenc

(A), and RΦbr
ε
replaced byRel

Φbr
ε
.

Proof. We construct a basis of the dnb-dimensional discrete space Xd
nb

approximating Xd as

ψ1 =



ϕ1

...
0


 , . . . ,ψnb

=



ϕnb

...
0


 , . . . ,ψ(d−1)nb+1 =




0
...
ϕ1


 ,ψdnb

=




0
...

ϕnb


 ,

where ϕ1, . . . , ϕnb
are the basis functions defined in Section 4.2. The trunk network Φtr

ε is then
constructed as in the proof of Theorem 5.7: it follows that the jth column of

(
Idd ⊗ R(Φtr

ε )
)⊤

contains an approximation of ψj , for each j ∈ {1, . . . , dnb}.
To construct the branch network Φbr

ε , we replace the input layer used in the proof of Theorem
5.7, in a similar way as we did in Lemma 6.2. Define, for all i, j ∈ {1, . . . , dnb} and m,n, p, q ∈
{1, . . . , d},

D̃
ij
mnpq(x

(q)
k ) = w

(q)
k

(
ε[ψi](x

(q)
k )
)
mn

(
ε[ψj ](x

(q)
k )
)
pq

and let ṽec(D̃(x
(q)
k )) ∈ Rd

2n2
b×d

4

such that

ṽec(D̃(x
(q)
k ))v(i,j)v(m,n,p,q) = D̃

ij
mnpq(x

(q)
k ),

with v defined in (6.1) and (6.8) for two and four arguments, respectively. Then,

ΦA,α
nb,nq

:=
((

−α
[
ṽec(D̃(x

(q)
1 ))| . . . | ṽec(D̃(x(q)

nq
))
]
,0d2n2

b

))

is such that

matr

(
R(ΦA,α

nb,nq
)(Eel

xenc
(A))

)
ij
= −αbA(ψj ,ψi), ∀(i, j) ∈ {1, . . . , dnb}2.

We can then construct Φtr
ε as in the proof of Theorem 5.7, with ΦA,α

nb,nq
replacing ΦA,αnb,nq

. The rest
of the proof follows the same argument as the proof of Theorem 5.7.

7. Conclusions. We proved, in the periodic setting on Ω = Rd/Zd, the exponential conver-
gence of deep operator network emulation of the coefficient-to-solutionmap of some linear elliptic
equations, under the assumption of analytic coefficients a and right-hand sides f . The proof used
the analytic regularity of solutions ua of (2.4) implied by classical elliptic regularity results and
the consequential exponential convergence of polynomial approximations of a and ua and of fully
discrete spectral-Galerkin numerical schemes. The expression rate bounds were not explicit in
the physical domain dimension d which is moderate in engineering applications. We have devel-
oped the analysis for isotropic diffusion equations and extended it to problems with parametric
diffusion, with anisotropic diffusion and reaction, and to linear elastostatics. We also obtained
corresponding expression rate bounds for PDEs with parametric inputs. Here, leveraging NN
composition, dependence of NN expression rates for the parametric inputs on the parameter di-
mension dp is inherited by the solution expression rate bounds.

Further directions comprise the derivation of NN expression rate bounds of data-to-solution
maps for smooth, nonlinear forward problems and for inverse problems. In the analysis of such prob-
lems, the presently established NN expression rate bounds constitute an essential building block
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in the construction of parameter-sparse NN approximations. Our analysis extends to ONet ap-
proximations of operators mapping both coefficients and right-hand sides to the solutions, see
Remark 5.9.

Appendix A. Exponential convergence of fully discrete Spectral-Galerkin Solution. We
present here the exponential convergence of fully discrete Spectral-Galerkin solutions of the prob-
lems considered in this paper. The following classical approximation result will be useful.

Lemma A.1. Let A > 0. Let X = {v ∈ H1(Ω) :
∫
Q
v = 0} or X = H1(Ω). Then, there exist

constants C, b > 0 such that for all p ∈ N0 and for all v ∈ Hol(Ω;A),

inf
w∈Qp(Q)∩X

‖v − w‖H1(Q) ≤ C exp(−bp), inf
w∈Qp(Q)∩X

‖v − w‖L∞(Q) ≤ C exp(−bp).

Proof. The error bound in theH1(Q)-norm follows from tensorization of a univariate interpo-
lation operator that is exact at the endpoints, see, e.g., [6, Theorem A.2]. This implies

inf
w∈Qp(Q)∩H1(Ω)

‖v − w‖H1(Q) ≤ C1 exp(−bp).

The bound in the L∞(Q)-norm is a consequence of, e.g., [23, Remark 3.1 and Theorem 3.5], which
implies

inf
w∈Qp(Q)

‖v − w‖L∞(Q) ≤ C1 exp(−bp).

To ensure conformity in H1(Ω) = H1
per(Q), i.e., to impose continuity across matching hyperfaces,

it is sufficient to lift the difference at vertices, followed (if d ≥ 2) by edges, and iteratively up to
d− 1 dimensional hyperfaces. The norm of the lifting is bounded by a constant (exponential in d)
multiplying the L∞(Q)-norm of v − w.

If X includes the vanishing average constraint, it is sufficient to remark that for all w ∈ L2(Q)

and all v ∈ X , there holds
∣∣∣
∫
Q
w
∣∣∣ ≤ ‖v − w‖L2(Q).

The following lemma, then, concerns the convergence of fully discrete Spectral-Galerkin solutions
for problems in Ω, with analytic right-hand sides and coefficients.

Lemma A.2. Let Θ ∈ {D,Drd,Del} and d = d for linear elasticity, d = 1 otherwise. Let X be the
space of solutions of the problem considered and denote Xp = Qp(Q)d ∩ X . Let f ∈ Hol(Ω)d and, for
coefficients θ ∈ Θ, let bθ(·, ·) be one of the bilinear forms defined in Sections 2, 6.1.1, or 6.2.1. There exists
C1, C2 > 0 such that, for all p ∈ N and for all integer q ≥ p+ 1,

sup
θ∈Θ

‖uθ − uθnb,nq
‖H1(Q) ≤ C1 exp(−C2p),

where uθnb,nq
∈ Xp is such that bθqd(u

θ
nb,nq

, v) = (f, v) for all v ∈ Xp.

Proof. Strang’s lemma [25, Lemma 10.1] implies that there exists C > 0 independent of θ ∈ Θ,
p, and q, such that

‖uθ − uθnb,nq
‖H1(Q) ≤ C inf

v∈Xp

(
‖uθ − v‖H1(Q) + sup

w∈Xp\{0}

|bθ(v, w)− b
θ
nq
(v, w)|

‖v‖H1(Q)‖w‖H1(Q)

)
.

By [3, Section 6.4.3], then, denoting p̃ = ⌊p/2⌋, there exists C̃ > 0 independent of θ ∈ Θ, p, and q
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such that

‖uθ − uθnb,nq
‖H1(Q) ≤ C̃

(
inf
v∈Xp

‖uθ − v‖H1(Q) + inf
v∈Yp̃

‖θ − v‖L∞(Q)

)
,

where the space Yp̃ depends on the problem under consideration:

Yp̃ =





Xp̃ if Θ = D,{
A ∈ Xd×d

p̃ : Aij = Aji

}
×Xp̃ if Θ = Drd,{

A ∈ Xd×d×d×d
p̃ : (6.5) holds

}
if Θ = Del.

Since functions in Θ and in S(D), Srd(Drd), or Sel(Del) are analytic with uniform bounds on the
norms at all orders, using Lemma A.1 concludes the proof.

Appendix B. Lipschitz continuity of the data-to-solutionmap. For the readers’ convenience,
we provide a proof of the (known) Lipschitz dependence of the solution of the PDEs considered
in this paper on the coefficients.

Lemma B.1. Let X be a Hilbert space, let Y be a Banach space, and let Θ ⊂ Y . Let furthermore
b
θ : X ×X → R be a bilinear form that is also linear with respect to the coefficient θ. Suppose that there

exists Ccont > 0 such that

(B.1) ∀θ ∈ Y : b
θ(u, v) ≤ Ccont‖θ‖Y ‖u‖X‖v‖X , ∀u, v ∈ X .

Furthermore, suppose there exists θmin > 0 such that

(B.2) b
θ(u, u) ≥ θmin‖u‖2X , ∀u ∈ X, ∀θ ∈ Θ.

For fixed f ∈ X ′ and for each θ ∈ Θ, define uθ ∈ X as the function such that

(B.3) b
θ(uθ, v) = 〈f, v〉, ∀v ∈ X.

Then, there exists CL > 0 (depending only on Ccont, θmin, and f) such that

‖uθ1 − uθ2‖X ≤ CL‖θ1 − θ2‖Y , ∀θ1, θ2 ∈ Θ.

Proof. Denote ui = uθi , i = 1, 2. Using (B.2), (B.3), the continuity of the bilinear form with
respect to the coefficient, and (B.1)

‖u1 − u2‖2X ≤ 1

θmin
b
θ1(u1 − u2, u1 − u2)

≤ 1

θmin

(
b
θ2(u2, u1 − u2)− b

θ1(u2, u1 − u2)
)

≤ Ccont

θmin
‖θ2 − θ1‖Y ‖u2‖X‖u1 − u2‖X .

The Lax-Milgram bound ‖u2‖X ≤ 1
θmin

‖f‖X′ concludes the proof.

Appendix C. Generalized eigenvalue problems. We recall and a result on the relationship
between Rayleigh quotients and generalized eigenvalue problems (see, e.g., [29, Section I.10]).

Lemma C.1. Let n ∈ N and let A,B ∈ Rn×n be symmetric, positive definite matrices. Suppose that
there exist constants c, C > 0 such that

∀x ∈ Rn : c ≤ x⊤
Ax

x⊤Bx
≤ C.

Then, the spectrum of B−1
A is contained in [c, C].
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Proof. Denote by B
1/2 the symmetric positive definite matrix such that B1/2

B
1/2 = B and by

B
−1/2 its inverse. For all y ∈ Rn, we can write x = B

−1/2y and by hypothesis

y⊤
B

−1/2
AB

−1/2y

y⊤y
=
x⊤

Ax

x⊤Bx
∈ [c, C].

Now, B−1/2
AB

−1/2 is a symmetric matrix, and we have shown that its Rayleigh quotient is con-
tained in [c, C]. Therefore,

σ(B−1/2
AB

−1/2) ⊂ [c, C].

We conclude by remarking that the matricesB−1/2
AB

−1/2 andB
−1

A are similar, hence have the
same eigenvalues [29, p. 38]

Appendix D. Polynomial basis in H1
per(Q). Let Xnb

be defined as in (4.2); we adopt the
notation of Section 4.2. In the next lemma, we show that Xnb

is a basis for polynomials that is
conforming in H1(Ω).

Lemma D.1. Let X = {v ∈ H1(Ω) = H1
per(Q) :

∫
Q
v = 0}. Let p ∈ N and nb = pd − 1. Then,

Xnb
= Qp(Q) ∩X.

Proof. The inclusion Xnb
⊂ Qp(Q) ∩ X is a consequence of the definition of ϕ1, . . . , ϕnb

. We
now prove that the dimensions of Xnb

and Qp(Q) ∩X are equal. Set ζ1d0 = L0, ζ1d1 = L1, and

ζ1d2i = L2i, i = 1, . . . , ⌊p/2⌋,
ζ1d2i+1 = L2i+1 − L1, i = 1, . . . , ⌊(p− 1)/2⌋.

Since {L0, . . . , Lp} is a basis for Qp((0, 1)), then {ζ1d0 , . . . , ζ1dp } is also a basis for Qp((0, 1)). Define

ζi1,...,id = ζ1di1 ⊗ · · · ⊗ ζ1did , (i1, . . . , id) ∈ Nd0.

It follows that {ζi1,...,id : (i1, . . . , id) ∈ {0, . . . , p}d} is a basis for Qp(Q). Now, given any function

v =
∑

i1,...,id∈{0,...,p}d

vi1,...,idζi1,...,id ,

requiring that v ∈ H1
per(Q) is equivalent to imposing that

vi1,...,id = 0, ∀(i1, . . . , id) ∈ {0, . . . , p}d : ∃j : ij = 1.

Since dim(Qp(Q)) = (p+ 1)d and

card
({

(i1, . . . , id) ∈ {0, . . . , p}d : ∃j : ij = 1
})

=
d∑

n=1

(
d

n

)
pd−n,

we infer that

dim(Qp(Q) ∩H1
per(Q)) = (p+ 1)d −

d∑

n=1

(
d

n

)
pd−n = pd.

Imposing vanishing average removes another degree of freedom, which implies dim(Qp(Q)∩X) =
nb and concludes the proof.
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In the next lemmawe bound the ℓ2 norm of the coefficients (in the basis introduced in Section 4.2)
of a function in Xnb

by its L2-norm.

Lemma D.2. Let ϕi, i ∈ N0, be the functions defined in (4.1). There exists CL2 ≥ 1 such that, for all
p ∈ N with p ≥ 2 and for all v ∈ Xnb

with nb = pd − 1 such that v =
∑nb

i=1 wiϕi,

(D.1) ‖w‖2 ≤ CL2n
1/2
b ‖v‖L2(Q)

where w = (w1, . . . , wnb
).

Proof. For ease of notation, we introduce the functions

ν1d2i = L2i, ν1d2i+1 = L2i+1 − L1, i ∈ N0,

and

νi1,...,id = ν1di1 ⊗ · · · ⊗ ν1did , (i1, . . . , id) ∈ Nd0.

Remark that ν1d1 = 0. We then rewrite v as

v =
∑

(i1,...,id)∈{0,...,p}d

xi1,...,idνi1,...,id .

Note that, since v ∈ Xnb
, we have x0,...,0 = 0. Furthermore, we assume that xi1,...,id = 0 if there

exists at least one j ∈ {1, . . . , d} such that ij = 1. We have

(D.2) {xi1,...,id : (i1, . . . , id) 6= (0, . . . , 0) and ∀j ∈ {1, . . . , d}, ij 6= 1} = {w1, . . . , wnb
},

with one-to-one correspondence between the sets. We now introduce the L2((0, 1))-orthonormal
basis

χ1d
i =

Li
‖Li‖L2((0,1))

, i ∈ N0,

and the L2(Q)-orthonormal basis

χi1,...,id = χ1d
i1 ⊗ · · · ⊗ χ1d

id
, (i1, . . . , id) ∈ Nd0.

It follows that

(D.3)

‖v‖2L2(Q) =
∑

(i1,...,id)∈{0,...,p}d

(v, χi1,...,id)
2
L2(Q)

=
∑

(i1,...,id)∈{0,...,p}d


 ∑

(j1,...,jd)∈{0,...,p}d

xj1,...,jd

d∏

k=1

(ν1djk , χ
1d
ik
)L2((0,1))




2

.

Now, for i, j ∈ {0, . . . , p}, we have

(ν1dj , χ1d
i )L2((0,1)) =





δij‖Li‖L2((0,1)) if i 6= 1

−‖L1‖L2((0,1)) if i = 1 and j is odd, j 6= 1

0 otherwise,
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where δij is the Kronecker delta. Hence,

‖v‖2L2(Q) =
∑

(i1,...id):ij 6=1,∀j

x2i1,...,id

d∏

k=1

‖Lik‖2L2((0,1))

+
∑

(i1,...id):∃j s.t. ij=1


 ∑

(j1,...,jd)∈{0,...,p}d

xj1,...,jd

d∏

k=1

(ν1djk , χ
1d
ik
)L2((0,1))




2

,

where in the sums we still require also (i1, . . . , id) ∈ {0, . . . , p}d. Since ‖Li‖2L2((0,1)) = 1/(2i+1), it

follows from the equation above that

‖v‖2L2(Q) ≥
1

(2p+ 1)d

∑

(i1,...id):ij 6=1,∀j

x2i1,...,id .

From the correspondence between coefficients (D.2) and since nb = pd − 1, we obtain the bound
in (D.1). We remark that the constant CL2 depends exponentially on d.
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